WO2011149260A2 - Rcm structure for a surgical robot arm - Google Patents

Rcm structure for a surgical robot arm Download PDF

Info

Publication number
WO2011149260A2
WO2011149260A2 PCT/KR2011/003817 KR2011003817W WO2011149260A2 WO 2011149260 A2 WO2011149260 A2 WO 2011149260A2 KR 2011003817 W KR2011003817 W KR 2011003817W WO 2011149260 A2 WO2011149260 A2 WO 2011149260A2
Authority
WO
WIPO (PCT)
Prior art keywords
rcm
instrument
robot arm
point
link
Prior art date
Application number
PCT/KR2011/003817
Other languages
French (fr)
Korean (ko)
Other versions
WO2011149260A3 (en
Inventor
최승욱
원종석
Original Assignee
주식회사 이턴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100050681A external-priority patent/KR20110131053A/en
Priority claimed from KR1020100076924A external-priority patent/KR101550451B1/en
Application filed by 주식회사 이턴 filed Critical 주식회사 이턴
Publication of WO2011149260A2 publication Critical patent/WO2011149260A2/en
Publication of WO2011149260A3 publication Critical patent/WO2011149260A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/007Arms the end effector rotating around a fixed point
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • A61B2090/506Supports for surgical instruments, e.g. articulated arms using a parallelogram linkage, e.g. panthograph

Definitions

  • the present invention relates to the RCM structure of a surgical robot arm.
  • surgery refers to healing a disease by cutting, slitting, or manipulating skin, mucous membranes, or other tissues with a medical device.
  • open surgery which incise the skin of the surgical site and open, treat, shape, or remove the organs inside of the surgical site, has recently been performed using robots due to problems such as bleeding, side effects, patient pain, and scars. This alternative is in the spotlight.
  • the surgical robot includes a robot arm for operation for surgery, and an instrument is mounted on the tip of the robot arm.
  • an instrument is mounted on the tip of the robot arm to perform an operation
  • the instrument moves along with the movement of the robot arm, which partially perforates the patient's skin and inserts an instrument there to perform the operation.
  • the benefits of robotic surgery may be halved, such as having to cut the skin as much as the path of the instrument or perforate the skin at each surgical site.
  • the instrument mounted at the tip of the robot arm sets a virtual rotation center point at a predetermined position of the distal end and controls the robot arm to rotate the instrument about this point.
  • the virtual center point is referred to as' remote center 'or' RCM (remote center of motion).
  • an RCM structure 23 composed of a parallel link is constituted so that a predetermined position on the shaft of the instrument mounted at the end of the robot arm is remotely located (8). Control method is applied.
  • the conventional RCM structure has a limited operating range.
  • the RCM structure shown in FIG. 1 can operate only in one region with respect to an imaginary line connecting the base 1 and the RCM point 8. As a result, there is a limit in the range in which the tip portion T of the instrument can move as shown by the arrow R in FIG. 1.
  • the robot arm 1 when the nodes of each link are connected, the robot arm 1 is constituted by a plurality of links so as to become parallelograms.
  • An RCM structure was applied to control the maintenance.
  • This 'parallel quadrangle RCM structure' is theoretically controlled so that the imaginary line ('S1' in FIG. 19) forming one side of the parallelogram ('P' in FIG. 19) is rotated about the RCM point (8). It is a structure that can be done.
  • a holder 4 for mounting the instrument 5 at the end of the robot arm 1 should be interposed. Therefore, when the instrument 5 is mounted on the holder 4, the instrument ( The shaft of 5) is not located on the S1 axis, but is inevitably located on a line ('S2' of FIG. 19) rotated by a predetermined angle from the S1 axis.
  • the effective range of control is lost by the angle formed by the S1 axis and the S2 axis ('A' in FIG. 19).
  • the instrument shaft should ideally be able to lie down to the S1 axis, but in reality, only the S2 axis is laid down, and when the robot arm is removed as shown in FIG. You have to go all the way up, but you actually go up to the S2 axis, and you have no control over the instrument in the desired angle range.
  • the U.S. patent may consequently allow the instrument to lie down as much as desired or not unnecessarily fall over, but rather from controlling the theoretical control target axis S1 of the RCM structure from the S1 axis.
  • the effective control range is still lost by a predetermined angle A in that it controls the axis S2 in which the actual shaft rotated a predetermined angle is located.
  • the background art described above is technical information possessed by the inventors for the derivation of the present invention or acquired during the derivation process of the present invention, and is not necessarily a publicly known technique disclosed to the general public before the application of the present invention.
  • the present invention is to provide an RCM structure of a surgical robot arm that the surgical instrument can freely rotate about the RCM point.
  • the present invention also provides an RCM structure of a surgical robot arm capable of controlling the RCM operation of a surgical instrument based on an ideal control target axis.
  • the RCM structure of the surgical robot arm is operated so that the instrument rotates about a remote remote center of motion (RCM) point, the base ( base), a first link portion coupled to the base so as to be rotatable both on one side and the other side with respect to an imaginary line connecting the base and the RCM point, and rotatably coupled to the first link portion, and at the end of the instrument
  • RCM remote remote center of motion
  • the first link unit may be coupled to the base to enable 360 degree rotation.
  • the robot arm is coupled to a support arm coupled to the robot body, the base is formed at the end of the support arm, and the first link portion and the second link portion may form the robot arm.
  • the instrument includes a housing coupled to the second link portion and a shaft extending from the housing, wherein the RCM point can be located on the shaft.
  • the second link portion includes a link member rotatably coupled to the first link portion, and an instrument holder rotatably coupled to the link member and to which the instrument is mounted, wherein a coupling axis of the base and the first link portion is predetermined.
  • a first point that meets the plane, a second point where the coupling axis of the first link portion and the link member meet the plane, a third point where the coupling axis of the link member and the instrument holder meet the plane, and the RCM point may form a parallelogram. .
  • the second link portion can be operated such that the first point, the second point, the third point and the RCM point maintain a parallelogram.
  • the first link portion is axially coupled to the base so as to be rotatable without interfering with the base
  • the link member is axially coupled to the first link portion to be rotatable without interfering with the (base and) first link portion
  • the instrument holder May be axially coupled to the link member so as to be rotatable without interfering with the (base, first link portion) and the link member.
  • the instrument may also be mounted to the instrument holder such that its rotational motion does not interfere with the base, the first link portion and the second link portion.
  • the first link portion is axially coupled to the base at an angle such that its imaginary extension line passes through the RCM point
  • the link member is axially coupled to the first link portion at an angle so that the imaginary extension line passes through the RCM point.
  • the instrument holder may be axially coupled to the link member at an angle such that its virtual extension line passes through the RCM point.
  • the instrument comprises a housing coupled to the instrument holder, a shaft extending from the housing, the RCM point being located on the shaft, and the instrument having an angle such that the imaginary extension line from the instrument holder passes through the RCM point. It can be mounted to an instrument holder.
  • the RCM of the surgical robot arm is operated to rotate about the remote remote center of motion (RCM) point
  • the structure includes a base, a first link portion axially coupled to the base to rotate about a first axis, a second link portion axially coupled to rotate about the second axis to the first link portion, and a second A first point where the first axis meets an imaginary plane, the instrument holder being axially coupled to rotate about a third axis, the interface having an interface on which an instrument is mounted;
  • the second point where the two axes meet the plane, the third point where the third axis meets the plane, and the RCM point form a parallelogram, the instrument having a length from the housing and the housing coupled to the interface.
  • It includes a shaft extending in the direction, the shaft is first the RCM structure of a surgical robot arm, characterized in that, to match the position of the virtual straight line connecting three points and RCM
  • the robotic arm may be operated such that the virtual rectangle connecting the first point, the second point, the third point and the RCM point maintains a parallelogram.
  • the instrument holder may have a structure that is stretched in a direction parallel to the longitudinal direction of the shaft.
  • the second link portion is coupled to extend forward from the first link portion, and the interface may be formed on the rear side of the instrument holder.
  • a driving part which is operated by receiving driving force from the interface may be formed on the front surface of the housing facing the interface.
  • the instrument holder is stretched between the upper side and the lower side, and the interface may be formed on the upper surface of the instrument holder.
  • a lower surface of the housing facing the interface may be formed with a driving unit which is operated by receiving a driving force from the interface.
  • the surgical instrument is mounted to the end of the robot arm comprising a housing and a shaft extending in the longitudinal direction from the housing, the surgery is operated to rotate the instrument about a remote RCM point
  • An RCM structure of a robotic arm for a robot comprising: a base, a first link portion axially coupled to the base to rotate about a first axis, coupled to extend forwardly from the first link portion, and a second axis attached to the first link portion.
  • a second link portion axially coupled to rotate relative to the reference, a second link portion axially coupled to rotate relative to the third axis, an interface is formed to allow the housing to be coupled to its rear surface, and parallel to the longitudinal direction of the shaft
  • An instrument holder having a structure stretched in a direction, the first point of which the first axis meets the imaginary plane, and the second axis of which meets the plane Surgical robot arm, characterized in that the two points, the third point where the third axis meets the plane and the RCM point forms a parallelogram, and a driving part is formed on the front surface of the housing facing the interface to receive the driving force from the interface.
  • the RCM structure is provided.
  • a surgical instrument including a housing and a shaft extending longitudinally from the housing is mounted so that the instrument is rotated about a remote RCM point.
  • An RCM structure of a surgical robot arm to be used comprising: a base, a first link portion axially coupled to the base to rotate about a first axis, and a second link portion axially coupled to rotate about the second axis to the first link portion And, the second link portion is axially coupled to rotate with respect to the third axis, the interface is formed so that the housing can be coupled to the upper surface, the structure is stretched between the upper and lower in a direction parallel to the longitudinal direction of the shaft
  • An instrument holder comprising a first point at which the first axis meets an imaginary plane, a second point at which the second axis meets the plane, and a third axis being in the plane The third point where the meeting point and the RCM point is formed in a parallelogram, and the lower surface of the housing
  • the housing may be coupled to the interface such that the shaft is positioned in line with an imaginary straight line connecting the third point and the RCM point, and the robot arm connects the first point, the second point, the third point and the RCM point.
  • the imaginary rectangle can be operated to maintain parallelograms.
  • the link portion in a structure that can be rotated 360 degrees with respect to the base, it is possible to greatly improve the range that the surgical instrument can rotate around the RCM point, accordingly surgical robot arm This RCM can be maintained to allow for a wider range of operation.
  • the instrument shaft is positioned at an ideal control target axis, so that the surgical shaft can be operated on the basis of a preset control target axis from the design process of the RCM structure without losing the effective range of control. You can control the RCM operation of the instrument.
  • FIG. 1 is a view showing the RCM structure of a surgical robot arm according to the prior art.
  • FIG. 2 is a conceptual diagram showing the RCM structure of the surgical robot arm according to an embodiment of the present invention.
  • FIG. 3 is a view showing how the RCM structure operates in accordance with an embodiment of the present invention.
  • Figure 4 is a perspective view showing the structure of the robot arm according to an embodiment of the present invention.
  • 5 and 6 are views showing the structure of the robot arm in the 'A' direction of FIG.
  • FIG. 7 to 10 are views showing the structure of a robot arm according to an embodiment of the present invention.
  • 11 to 18 are views showing the RCM operating state of the robot arm according to the embodiment of the present invention.
  • 19 to 21 is a view showing the RCM structure of the surgical robot arm according to the prior art.
  • 22 and 23 are side views showing the RCM structure of the surgical robot arm according to an embodiment of the present invention.
  • 24 and 25 are side views showing the RCM structure of the surgical robot arm according to another embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIG. 2 is a conceptual diagram showing the RCM structure of the surgical robot arm according to an embodiment of the present invention
  • Figure 3 is a view showing the operation of the RCM structure according to an embodiment of the present invention. 2 and 3, the robot arm 1, the support arm 3, the instrument 5, the housing 6, the shaft 7, the RCM point 8, the base 10, the first link.
  • a portion 20, a second link portion 30, a link member 32, and an instrument holder 34 are shown.
  • the surgical robot arm can be operated while maintaining the remote center of motion (RCM) by configuring the parallel link of the robot arm so as to be rotatable in all directions with respect to a predetermined base. It extends its range and features a robotic arm structure that eliminates the need to move the base or minimizes the operation of the base.
  • RCM remote center of motion
  • the RCM structure according to the present embodiment has a parallel link structure, that is, a parallelogram structure formed by each link member 32 of the robot arm is different from one side of the virtual line connecting the base 10 and the RCM point. It can be made of a structure that can be rotated so as to fully pass toward.
  • the support arm of the surgical robot is set in the vertical direction as shown in FIG. 3, and the robot arm is set in the vertical axis ('S' in FIG. 3). To freely move in both directions (left and right in FIG. 3).
  • the RCM structure is a structure in which a surgical robot arm is operated such that a surgical instrument mounted at the end of the robot arm, as described above, rotates about a remote 'RCM point', for example a point on the instrument shaft.
  • a surgical instrument mounted at the end of the robot arm as described above, rotates about a remote 'RCM point', for example a point on the instrument shaft.
  • a remote 'RCM point' for example a point on the instrument shaft.
  • the robot arm is designed, built, and operated so that the point at which the instrument's shaft contacts the patient's skin is the RCM point, minimizing external forces on the patient's skin. Safer robotic surgery can be performed
  • the robot arm 1 is composed of a base structure 10 and a link structure rotatably coupled to the base 10.
  • the link structure is configured in parallel link form as will be described later to implement the RCM. .
  • the link structure includes a first link part 20 rotatably coupled to the base 10, and a second link part 30 rotatably coupled to the first link part 20. At the end of the second link portion 30, a surgical instrument is mounted.
  • the first link unit 20 is operated to rotate relative to the base 10
  • the second link unit 30 is also actuated (rotated) so that the instrument always rotates about the RCM point in conjunction with it.
  • the first link unit 20 is freely coupled to the base 10, for example, the base 10 may be coupled to be capable of rotating 360 degrees. That is, as shown in Figure 2, the first link portion 20 of the reference line connecting the base 10 and the RCM point 8 around the coupling axis to the base 10 (see 'S' in Figure 2) It may be coupled to the base 10 so as to be rotatable (see arrow 'R' in FIG. 2) both on one side and on the other side (up and down in FIG. 2).
  • the range in which the instrument is operated while maintaining the RCM can also be expanded, thereby supporting the support arm for supporting the surgical robot arm ( It is not necessary to operate 3) or the operation can be minimized.
  • the surgical robot includes a support arm 3 coupled to the robot body, a robot arm 1 coupled to the support arm 3, and an instrument 5 mounted at an end of the robot arm 1.
  • the end of the support arm 3 (part where the robot arm is coupled) as the base 10
  • the first link portion 20 and the second link portion 30 is a robot arm
  • RCM structure according to the present embodiment can be implemented.
  • the RCM structure according to the present embodiment greatly extends the operating range of the robot arm, and it is not necessary or necessary to move the base 10 (support arm 3) to change the position of the instrument 5. It moves only in a minimum range, and the operating range required for the rest of the surgery is characterized by covering the operating range of the instrument 5 using the RCM structure of the robot arm.
  • the instrument 5 mounted on the surgical robot includes a housing 6 coupled to an end of the robot arm 1, that is, an end of the second link portion 30, and a shaft 7 extending from the housing 6.
  • the robot arm can be designed such that the RCM point 8 is located at a point on the shaft 7 (the point at which the shaft 7 contacts the patient's skin).
  • the robot arm 1 may be configured in the form of a parallel link.
  • the second link unit 30 according to the present embodiment is a link member rotatably coupled to the first link unit 20. 32 and an instrument holder 34 rotatably coupled to the link member 32.
  • the instrument holder 34 is equipped with an instrument 5.
  • the robot arm 1 when configured in the form of a parallel link, that is, as shown in FIG. 2, the point at which the first link unit 20 is coupled to the base 10 ('P1' in FIG. 2), the link The point at which the member 32 is coupled to the first link portion 20 ('P2' in FIG. 2), the point at which the instrument holder 34 is coupled to the link member 32 ('P3' in FIG. 2), and The RCM points 8 form a parallelogram.
  • the link member 32 rotates about P2 in the opposite direction by the angle that the first link portion 20 rotates about P1, and the instrument holder 34 has the first link portion about P3.
  • the link member 32 rotates about P2 in the opposite direction by the angle that the first link portion 20 rotates about P1
  • the instrument holder 34 has the first link portion about P3.
  • the base 10, the first link portion 20, the link member 32, and the instrument holder 34 are not necessarily located on the same plane, in which case the RCM point 8 is included.
  • the point where the coupling axis of the base 10 and the first link portion 20 meets the plane is 'P1', and the coupling axis of the first link portion 20 and the link member 32 is parallel to the plane.
  • the point where the meeting point is 'P2', the point where the coupling axis of the link member 32 and the instrument holder 34 meets the plane may be 'P3'.
  • the instrument 5 can always be rotated about the RCM point 8, ie the RCM function is implemented in the robot arm 1.
  • FIG. 4 is a perspective view showing the structure of a robot arm according to an embodiment of the present invention
  • Figures 5 and 6 are views showing the structure of the robot arm in the 'A' direction of FIG. 4 to 6, the instrument 5, the housing 6, the shaft 7, the RCM point 8, the base 10, the first link portion 20, and the second link portion 30.
  • Link member 32, instrument holder 34 is shown.
  • the robot arm of the parallel link structure is operated in a wider range, that is, as described above, the first link portion 20 can be freely rotated with respect to the base and positioned on either side of the reference line (see 'S' in FIG. 2).
  • the first link portion 20 can be axially coupled to the base 10 so as to be rotatable without interfering with the base 10.
  • the first link portion 20 may not interfere with the base 10 during the rotation process. Can be.
  • the link member 32 is axially coupled to the first link portion 20 so as to be rotatable without interfering with the (base 10 and) the first link portion 20, and the instrument holder ( 34 may be axially coupled to the link member 32 so as to be rotatable without interfering with the base 10, the first link unit 20, and the link member 32.
  • FIG. 5 shows the structure of the robot arm 1 illustrated in FIG. 4 in the 'A' direction, and as shown in FIG. 5, the components are not interfered with each other by being axially coupled to each other so that they are located on different parallel planes. It is an example that is configured to be rotatable without.
  • FIGS. 7 and 9 showing the robot arm structure illustrated in FIG. 2 in the 'P' direction
  • a coupling structure may be applied such that each component is rotatable without interfering with each other.
  • FIG. 8 which is a perspective view of FIG. 7
  • the first link portion 20 is rotatable through the central portion of the base 10
  • the second link portion 30 is rotated through the central portion of the first link portion 20.
  • a rotatable link structure is illustrated, and in FIG. 10, which is a perspective view of FIGS. 9 and 9, as in FIGS. 5 and 6, each component is axially coupled to each other such that they are positioned on different parallel planes. have.
  • the instrument 5 When the instrument holder 34 rotates without interfering with the link member 32, the shaft 7 of the instrument 5 mounted on the holder 34 is rotated while the base 10 and the first link portion ( 20) and the link member 32 may be interfered with.
  • the instrument 5 according to the present embodiment may be mounted to the instrument holder 34 so as to be rotatable without interfering with the (base 10, the first link portion, and the link member 32).
  • the housing 6 of the instrument 5 may be provided with a plurality of driving wheels so as to receive a driving force from the holder 34, so that the surface of the instrument 5 is in contact with the holder 34. To be mounted.
  • a driving wheel is formed on the rear surface of the housing, so that the instrument is mounted so that the rear surface of the housing is in contact with the holder 34.
  • the instrument 5 may have a structure in which the side surface of the housing 6 is mounted so as to contact the holder 34.
  • a plurality of driving wheels may be formed on the side surface of the housing 6, that is, the surface where the housing 6 is in contact with the holder 34 (see 'F' in FIG. 4).
  • the side of the housing 6 may be in contact with the holder 34, but the instrument 5 and the holder 34 may be manufactured in a structure in which a driving force may be transmitted through the other surface.
  • RCM may not be implemented in three-dimensional space.
  • the link structure according to the present embodiment can be axially coupled to each component such that each component has a predetermined angle, so that the RCM can be substantially maintained in the three-dimensional space in accordance with the operation of the robot arm (1).
  • the first link unit 20 may be coupled to the base 10 to have a predetermined angle while being positioned on a plane different from the base 10.
  • the angle of the first link portion 20 with respect to the base 10 is such that a virtual extension line (see 'b1' in FIG. 5) in the longitudinal direction of the first link portion 20 passes through the RCM point 8. Can be set to the angle. Accordingly, when the first link unit 20 is rotated relative to the base 10, a plane formed by the rotational trajectory of the first link unit 20 passes through the RCM point 8.
  • the coupling structure between the first link unit 20 and the base 10 may also be applied to the second link unit 30. That is, the link member 32 may be coupled to the first link portion 20 so as to have a predetermined angle while being positioned on a plane different from the first link portion 20.
  • the angle with respect to the first link portion 20 of the link member 32 is such that a virtual extension line (see 'b2' in FIG. 5) in the longitudinal direction of the link member 32 passes through the RCM point 8. Can be set in degrees. Accordingly, when the link member 32 is rotated relative to the first link unit 20, the plane formed by the rotational trajectory of the link member 32 passes through the RCM point 8.
  • the instrument holder 34 may also be coupled to the link member 32 to be positioned at a different plane from the link member 32 and to have a predetermined angle.
  • the angle with respect to the link member 32 of the instrument holder 34 is such that the imaginary extension in the longitudinal direction of the instrument holder 34 (see 'b3' in FIG. 5) passes through the RCM point 8. Can be set. Accordingly, when the instrument holder 34 is rotated relative to the link member 32, the plane formed by the rotational trajectory passes through the RCM point 8.
  • the components constituting the RCM structure according to the present embodiment that is, the first link portion 20 and the second link portion 30 (link member 32, instrument holder 34) at a predetermined angle
  • the components constituting the RCM structure according to the present embodiment that is, the first link portion 20 and the second link portion 30 (link member 32, instrument holder 34) at a predetermined angle
  • the instrument 5 can also be mounted to the instrument holder 34 to have a predetermined angle, which angle is one point on the shaft 5 of the instrument 5, ie the RCM point 8. And an imaginary extension line (see 'b3' in FIG. 5) from the instrument holder 34.
  • the instrument holder 34 is tilted as shown in FIG. 6, so that the RCM point 8 extends in the longitudinal direction of the base 10.
  • the RCM function may be maintained by passing through an imaginary extension line (see 'b' in FIG. 6).
  • the link structure of the robot arm 1 may be designed such that the RCM point is located on the central axis of the support arm 3 (see 'S' in FIGS. 7 and 9).
  • the components are not combined to have a predetermined angle as described above, that is, each component is located on the same plane (in FIG. 7), or each of them is located on a parallel plane (see FIG. 9).
  • the RCM may be implemented according to the rotation of the link structure.
  • 11 to 18 illustrate states in which the robot arm described above rotates, that is, each link of the robot arm moves while the RCM function is maintained.
  • 11 is a side view when the first link portion is rotated by 0 degrees
  • FIG. 12 is a perspective view of FIG. 11
  • FIG. 13 is a side view when the first link portion is rotated by 45 degrees
  • FIG. 14 is a perspective view of FIG. 13
  • 15 is a side view when the first link portion is rotated by 90 degrees
  • FIG. 16 is a perspective view of FIG. 15
  • FIG. 17 is a side view when the first link portion is rotated by 135 degrees
  • FIG. 18 is a perspective view of FIG. 17.
  • 22 and 23 are side views showing the RCM structure of the surgical robot arm according to an embodiment of the present invention. 22 and 23, the robot arm 1, the RCM point 8, the instrument 5, the housing 6, the drive unit 9, the shaft 7, the base 10, and the first point ( 12), a first link portion 20, a second point 22, a second link portion 30, a third point 33, an instrument holder 40, and an interface 42 are shown.
  • the structure of the instrument holder is changed, and in particular, the interface portion is configured to be located at the rear side, not the front side, that is, the opposite side of the robot arm.
  • the shaft of the instrument mounted to the interface is positioned on the ideal control axis of the parallelogram RCM structure, that is, the ideal shaft axis of the RCM structure and the realistic shaft axis are characterized in that the same.
  • the front, back, up, and down are not limited to only front, back, up, and down in the absolute coordinate space
  • the 'front' is a direction in which the robot arm extends from the surgical robot body.
  • 'Rear' means the opposite direction of the front
  • 'Front' means the front side
  • 'Rear' may mean the opposite side of the front.
  • 'upward' means upward
  • 'downward' means opposite upward
  • 'upper' means upward.
  • the term 'bottom' may be interpreted as meaning the opposite side of the upper surface.
  • the RCM structure of the surgical robot arm mounts a surgical instrument 5 at the end of the robot arm 1, and the instrument 5 rotates about a predetermined point (RCM point 8) on the shaft 7. To operate and control the structure.
  • the RCM structure consists of a parallelogram link structure extending from the base 10. That is, the instrument holder is axially coupled to the first link portion 20 axially coupled to the base 10, the second link portion 30 axially coupled to the first link portion 20, and the second link portion 30.
  • the coupling axis between the base 10 and the first link portion 20 is coupled to the first axis, the first link portion 20 and the second link portion 30.
  • the axis is referred to as the second axis
  • the coupling axis between the second link portion 30 and the instrument holder 40 is the third axis
  • the point where the virtual plane including the RCM point 8 and the first, second, and third axes meet When referred to as the first, second, and third points, respectively, the first point 12, the second point 22, the third point 33, and the RCM point 8 have a structure forming a parallelogram.
  • the robot arm 1 is configured such that the nodes (first point 12, second point 22, third point 33) and RCM point 8 of each link form a parallelogram, and the robot arm In the process of driving (1), each node and the RCM point 8 control the robot arm 1 to operate while maintaining the parallelogram, whereby the control target axis forming one side of the parallelogram (see 'S1' in FIG. 22). ) May rotate about a point (RCM point 8) located remotely from the base 10.
  • An interface 42 is formed in the instrument holder 40, and the instrument 5 is mounted to the holder 40 via the interface 42. That is, when the instrument 5 consists of the housing 6 and the shaft 7 extending in the longitudinal direction from the housing 6, the instrument 5 is connected to the holder by connecting the housing 6 to the interface 42. 40 is mounted.
  • the interface 42 is formed with a mechanism for coupling with the housing 6 and a driver for transmitting a driving force from the robot arm 1, and correspondingly for coupling to the interface 42 in the housing 6.
  • a driving wheel or the like that is engaged with the mechanism and the driver may be formed.
  • the interface 42 and the housing 6 are each formed with a coupling means and a drive transmission means corresponding to each other, whereby the instrument 5 transmits a driving force from the robot arm 1 in a state mounted on the holder 40. It will work.
  • the instrument shaft 7 is not properly positioned on the RCM control target axis in the process of mounting the instrument 5 on the holder 40, and is mounted in a state of being rotated by a predetermined angle.
  • the RCM control on the control target axis could not be effectively applied to the instrument 5.
  • the actual instrument 5 is rotated by a predetermined angle more than this, or the control target axis is not necessary to rotate the actual instrument 5 by the desired angle ( Or less than necessary).
  • the shaft 7 of the instrument is positioned to coincide with a virtual straight line connecting the control target axis, that is, the third point 33 and the RCM point 8. do.
  • the instrument holder 40 In order to move the instrument 5 forward or backward, i.e., to move the instrument 5 in the longitudinal direction of the shaft 7, the instrument holder 40 has a structure that is stretched in a direction parallel to the longitudinal direction of the shaft 7 Can be done.
  • a plurality of members may be configured to be expanded or contracted in a sliding manner, or as shown in FIG. 24. have.
  • the instrument holder 40 is coupled to the second link portion 30 so that its stretching direction is parallel to the control target axis.
  • the holder since the holder is manufactured and coupled in a structure in which the sliding structure is stacked forward, assuming that the instrument is mounted on the front of the holder, the holder may interfere with the second link unit 30 in the process of lying down. Accordingly, a predetermined angle difference exists between the control target shaft and the holder in the stretching direction (the longitudinal direction of the shaft).
  • the holder 40 may be manufactured in a structure in which the instrument 5 is mounted at the rear, and accordingly, the sliding structure is also configured to be stacked toward the rear. do. As such, changing the structure of the holder 40 may further increase the angle at which the holder 40 lies rearward, and as a result, the holder 40 may be parallel so that the stretching direction of the holder 40 is parallel to the direction of the control target axis. It is possible to couple to the second link portion (30).
  • the instrument holder 40 since the instrument holder 40 according to the present embodiment has a structure in which the instrument 5 is mounted at the rear thereof, the interface 42 is formed on the rear surface of the holder 40. That is, the instrument 5 is mounted on the rear side of the holder 40.
  • the instrument housing 6 according to the present embodiment has a driving part 9 (interface) on its front surface (a surface facing the interface 42). A driving wheel, etc., which is operated by receiving a driving force from 42 may be formed.
  • the stretching direction of the holder 40 is set to be parallel to the direction of the control target axis as described above, the shaft of the instrument mounted to the interface 42 by appropriately adjusting the distance between the interface 42 portion and the control target axis ( 7) can be positioned coincident with the control target axis.
  • the instrument 5 can be actually positioned on the ideal control target axis of the parallelogram RCM structure, and the RCM control can be effectively performed without angular loss with respect to the actual instrument 5.
  • the instrument shaft 7 may interfere with the third point 33 (combination site between the second link portion 30 and the holder 40), which is By drilling the middle part of the third axis or by configuring the third axis in a structure in which the middle part is not connected, the shaft 7 can pass through the middle part of the third axis.
  • the RCM structure according to the present embodiment is in the order of the 'robot arm-instrument-instrument holder'.
  • the structure has been changed to position, whereby the shaft 7 of the instrument can be positioned in accordance with the axis of control.
  • the initial state of the robot arm 1 is often in the unfolded state as shown in FIG. 23 rather than the folded state as shown in FIG. 22.
  • the detachment of the instrument 5 may be more convenient than the existing structure.
  • the RCM structure of the robot arm changes the instrument holder 40 to a structure in which the instrument 5 is mounted at the rear thereof so that the stretching direction of the holder 40 is parallel to the direction of the control target axis.
  • the drive shaft 9 is formed on the front surface of the instrument housing 6 so that the front surface of the housing 6 is connected to the rear surface of the holder 40 (interface 42) so that the shaft 7 of the instrument can be connected. Is positioned in accordance with the control target axis, and accordingly, the instrument 5 is actually positioned on the ideal control target axis of the parallelogram RCM structure to effectively control the RCM.
  • 24 and 25 are side views showing the RCM structure of the surgical robot arm according to another embodiment of the present invention. 24 and 25, the robot arm 1, the RCM point 8, the instrument 5, the housing 6, the drive 9, the shaft 7, the base 10, and the first point ( 12), the first link portion 20, the second point 22, the second link portion 30, the third point 33, the instrument holder 50, and the interface 52 are shown.
  • This embodiment is another example in which the structure of the holder and the instrument is changed from the conventional one so that the shaft of the instrument is aligned with the control target axis.
  • the instrument holder 50 in order to move the instrument 5 in the longitudinal direction of the shaft 7, has a structure in which a plurality of members are telescopically stretched, that is, as shown in FIGS. 24 and 25.
  • the holder 50 can be constructed in a structure that is stretched between the upper side and the lower side.
  • the instrument holder 50 is coupled to the second link portion 30 so that its stretching direction coincides (parallel) with the control target axis.
  • Holder 50 according to the present embodiment, as shown in Figure 24, can be manufactured in a structure that the instrument 5 is mounted upward, accordingly the holder 50 is telescopic structure that is stretched up and down as a whole It can be configured as.
  • the interface 52 is formed on the upper surface of the holder 50. That is, the instrument 5 is mounted on the upper surface side of the holder 50.
  • the instrument housing 6 according to the present embodiment has a driving portion 9 (interface) on its lower surface (surface facing the interface 52). A driving wheel which is operated by receiving the driving force from 52).
  • the stretching direction of the holder 50 is set to coincide with the control target shaft, when the instrument 5 is mounted on the interface 52, the shaft 7 is positioned in accordance with the control target shaft.
  • the instrument 5 can be actually positioned on the ideal control target axis of the parallelogram RCM structure, and the RCM control can be effectively performed without angular loss with respect to the actual instrument 5.
  • the lower surface of the housing 6 is coupled to the interface 52 so that the ideal axis of control and the actual shaft axis can coincide.
  • the coupling structure (drive part 9, etc.) is formed on the lower surface of the housing 6 as in the present embodiment, the instrument 5 is formed in comparison with the case where the coupling structure is formed on the front or rear surface of the housing 6. ) Can be easily detached from the holder (50).
  • the coupling structure is formed on the front or rear side, in order to separate the housing 6 from the interface 42, the housing 6 must be slid by the height of the front or rear side and then detached, whereas the coupling structure is formed on the bottom side. In this case, since the housing 6 is separated from the interface 52 at the moment of detaching the housing 6 from the interface 52, the instrument 5 can be detached from the holder 50 with minimal movement.
  • the interface is formed on the back (rear) of the instrument holder and the drive is formed on the front of the housing facing the interface, due to this 'rear interface-front drive' coupling structure RCM
  • the angle between the control target axis of the structure (see 'S1' in FIG. 19) and the realistic shaft axis (see 'S2' in FIG. 19) can be reduced.
  • the interface is formed on the upper surface of the instrument holder and the driving portion is formed on the lower surface of the housing opposite the interface, due to this 'top interface-lower surface driving unit' coupling structure of the RCM structure It is also possible to reduce the angle between the control target axis (see 'S1' in FIG. 19) and the realistic shaft axis (see 'S2' in FIG. 19) (see 'A' in FIG. 19).
  • the angular loss for the actual instrument can be minimized to ensure that the RCM control is relatively good.
  • one side of the parallelogram is controlled by controlling the robot arm to operate while maintaining the parallelogram of each node (first point, second point, and third point) in the process of driving the robot arm.
  • the control target axis (see 'S1' in FIGS. 22 to 25) to be formed may be rotated about a point (RCM point) located remotely from the base.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Robotics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

The present invention relates to a remote center of motion (RCM) structure for a surgical robot arm. The RCM structure for a surgical robot arm is configured such that an end of the robot arm is equipped with a surgical instrument such that the surgical instrument is rotatable about a point of an RCM. The RCM structure for a surgical robot arm comprises: a base; a first link unit coupled to the base such that the first link unit is rotatable in both directions about the virtual line interconnecting the base and the RCM point; and a second link unit which is rotatably coupled to the first link, and the end of which is equipped with the surgical instrument. The first and second link units are rotatable by 360 degrees with respect to the base so as to significantly increase the range in which the surgical instrument rotates about the RCM point, thereby enabling the surgical robot arm to operate in a wider range while maintaining the RCM.

Description

수술용 로봇 암의 RCM 구조RC structure of surgical robot arm
본 발명은 수술용 로봇 암의 RCM 구조에 관한 것이다.The present invention relates to the RCM structure of a surgical robot arm.
의학적으로 수술이란 피부나 점막, 기타 조직을 의료 기계를 사용하여 자르거나 째거나 조작을 가하여 병을 고치는 것을 말한다. 특히, 수술부위의 피부를 절개하여 열고 그 내부에 있는 기관 등을 치료, 성형하거나 제거하는 개복 수술 등은 출혈, 부작용, 환자의 고통, 흉터 등의 문제로 인하여 최근에는 로봇(robot)을 사용한 수술이 대안으로서 각광받고 있다.Medically, surgery refers to healing a disease by cutting, slitting, or manipulating skin, mucous membranes, or other tissues with a medical device. In particular, open surgery, which incise the skin of the surgical site and open, treat, shape, or remove the organs inside of the surgical site, has recently been performed using robots due to problems such as bleeding, side effects, patient pain, and scars. This alternative is in the spotlight.
수술용 로봇에는 수술을 위한 조작을 위해 로봇 암을 구비하게 되며, 로봇 암의 선단부에는 인스트루먼트(instrument)가 장착된다. 이와 같이 로봇 암의 선단에 인스트루먼트를 장착하여 수술을 수행하게 되면 로봇 암의 움직임에 따라 인스트루먼트도 같이 움직이며, 이는 환자의 피부를 일부 천공하고 여기에 인스트루먼트를 삽입하여 수술을 수행하는 과정에서 인체의 피부에 불필요한 손상을 입힐 우려가 있다. 또한, 수술 부위가 넓을 경우에는 인스트루먼트가 움직이는 경로만큼 피부를 절개하거나 각 수술 부위마다 피부를 천공해야 하는 등 로봇 수술의 잇점이 반감될 우려도 있다.The surgical robot includes a robot arm for operation for surgery, and an instrument is mounted on the tip of the robot arm. As such, when an instrument is mounted on the tip of the robot arm to perform an operation, the instrument moves along with the movement of the robot arm, which partially perforates the patient's skin and inserts an instrument there to perform the operation. There is a danger of causing unnecessary damage to the skin. In addition, when the surgical site is wide, the benefits of robotic surgery may be halved, such as having to cut the skin as much as the path of the instrument or perforate the skin at each surgical site.
따라서, 로봇 암의 선단에 장착되는 인스트루먼트는 말단부의 소정 위치에 가상의 회전 중심점을 설정하고 이 점을 중심으로 인스트루먼트가 회전하도록 로봇 암을 제어하게 되는데, 이러한 가상의 중심점을 '원격중심' 또는 'RCM(remote center of motion)'이라 한다.Therefore, the instrument mounted at the tip of the robot arm sets a virtual rotation center point at a predetermined position of the distal end and controls the robot arm to rotate the instrument about this point. The virtual center point is referred to as' remote center 'or' RCM (remote center of motion).
종래의 수술용 로봇 암에는, 도 1에 도시된 것처럼, 패러랠 링크(parallel link)로 이루어진 RCM 구조(23)를 구성하여, 로봇 암의 단부에 장착되는 인스트루먼트의 샤프트 상의 소정 위치가 원격중심(8)이 되도록 제어하는 방식이 적용되었다.In the conventional surgical robot arm, as shown in FIG. 1, an RCM structure 23 composed of a parallel link is constituted so that a predetermined position on the shaft of the instrument mounted at the end of the robot arm is remotely located (8). Control method is applied.
그러나, 종래의 RCM 구조는 그 작동 범위에 한계가 있었는데, 예를 들어 도 1에 도시된 RCM 구조는 베이스(1)와 RCM 포인트(8)를 연결한 가상의 선에 대해 한쪽 영역에서만 작동이 가능하며, 이에 따라 도 1에서 원호 형상의 화살표(R)처럼 인스트루먼트의 팁 부분(T)이 움직일 수 있는 범위에도 한계가 있었다.However, the conventional RCM structure has a limited operating range. For example, the RCM structure shown in FIG. 1 can operate only in one region with respect to an imaginary line connecting the base 1 and the RCM point 8. As a result, there is a limit in the range in which the tip portion T of the instrument can move as shown by the arrow R in FIG. 1.
또한, 종래의 수술용 로봇 암은, 도 19에 도시된 것처럼, 각 링크의 절점을 연결하면 평행사변형이 되도록 복수의 링크로 로봇 암(1)을 구성하고, 로봇 암의 작동 과정에서도 평행사변형이 유지되도록 제어하는 RCM 구조가 적용되었다. 이러한 '평행사변형 RCM 구조'는 이론적으로 볼 때 평행사변형(도 19의 'P')의 한 변을 이루는 가상의 선(도 19의 'S1')이 RCM 포인트(8)를 중심으로 회전하도록 제어할 수 있는 구조이다.In addition, in the conventional surgical robot arm, as shown in FIG. 19, when the nodes of each link are connected, the robot arm 1 is constituted by a plurality of links so as to become parallelograms. An RCM structure was applied to control the maintenance. This 'parallel quadrangle RCM structure' is theoretically controlled so that the imaginary line ('S1' in FIG. 19) forming one side of the parallelogram ('P' in FIG. 19) is rotated about the RCM point (8). It is a structure that can be done.
그러나, 실제로 로봇 암을 제작하는 과정에서는 로봇 암(1)의 단부에 인스트루먼트(5)를 장착하기 위한 홀더(4)가 개재되어야 하며, 따라서 홀더(4)에 인스트루먼트(5)를 장착하면 인스트루먼트(5)의 샤프트가 S1축에 위치하지 못하고 S1 축으로부터 소정 각도만큼 회전된 선(도 19의 'S2')에 위치할 수밖에 없게 된다.However, in the process of actually manufacturing the robot arm, a holder 4 for mounting the instrument 5 at the end of the robot arm 1 should be interposed. Therefore, when the instrument 5 is mounted on the holder 4, the instrument ( The shaft of 5) is not located on the S1 axis, but is inevitably located on a line ('S2' of FIG. 19) rotated by a predetermined angle from the S1 axis.
이에 따라, 로봇 암을 제어함에 있어서 S1축과 S2축이 이루는 각도(도 19의 'A') 만큼 제어의 유효 범위를 잃어버리는 결과를 가져오게 된다. 다시 말해서, 도 19와 같이 로봇 암을 접었을 때에 이상적으로는 인스트루먼트 샤프트가 S1축까지 누울 수 있어야 하지만 실제로는 S2축까지만 눕게 되고, 도 20과 같이 로봇 암을 폈을 때에 이상적으로는 인스트루먼트 샤프트가 S1축까지만 넘어가야 있어야 하지만 실제로는 S2축까지 넘어가게 되어, 인스트루먼트를 원하는 각도 범위에서 유효하게 제어하지 못하게 되는 것이다.Accordingly, in controlling the robot arm, the effective range of control is lost by the angle formed by the S1 axis and the S2 axis ('A' in FIG. 19). In other words, when the robot arm is folded as shown in FIG. 19, the instrument shaft should ideally be able to lie down to the S1 axis, but in reality, only the S2 axis is laid down, and when the robot arm is removed as shown in FIG. You have to go all the way up, but you actually go up to the S2 axis, and you have no control over the instrument in the desired angle range.
이러한 문제를 해결하기 위해, 미국특허 US7,594,912호(offset remote center manipulator for robotic surgery)에서는 도 21에 도시된 것처럼 베이스(42)를 아래쪽으로 구부러진 형상으로 제작함으로써, 평행사변형(도 21의 'P'') 자체를 요(yaw)축(도 21의 'Y')에 대해 소정 각도(도 21의 'α')만큼 뒤로 더 눕힌 구조를 제시한 바 있다.In order to solve this problem, US Patent No. 7,594,912 (offset remote center manipulator for robotic surgery) by making the base 42 bent downward as shown in Figure 21, the parallelogram ('P of Figure 21 '') Has shown itself a structure laid further back by a predetermined angle ('α' in Figure 21) with respect to the yaw axis ('Y' in Figure 21).
그러나, 상기 미국특허는 결과적으로는 인스트루먼트가 원하는 만큼 더 누울 수 있거나, 불필요하게 많이 넘어가지 않도록 할 수 있을지는 몰라도, RCM 구조의 이론적인 제어 대상축(S1)을 제어하는 것이 아니라, S1축으로부터 소정 각도 회전된 실제 샤프트가 위치하는 축(S2)을 제어한다는 점에서 여전히 유효 제어 범위를 소정 각도(A)만큼 잃어버린 구조라는 한계가 있다.However, the U.S. patent may consequently allow the instrument to lie down as much as desired or not unnecessarily fall over, but rather from controlling the theoretical control target axis S1 of the RCM structure from the S1 axis. There is a limitation that the effective control range is still lost by a predetermined angle A in that it controls the axis S2 in which the actual shaft rotated a predetermined angle is located.
전술한 배경기술은 발명자가 본 발명의 도출을 위해 보유하고 있었거나, 본 발명의 도출 과정에서 습득한 기술 정보로서, 반드시 본 발명의 출원 전에 일반 공중에게 공개된 공지기술이라 할 수는 없다.The background art described above is technical information possessed by the inventors for the derivation of the present invention or acquired during the derivation process of the present invention, and is not necessarily a publicly known technique disclosed to the general public before the application of the present invention.
본 발명은, 수술용 인스트루먼트가 RCM 포인트를 중심으로 자유자재로 회전할 수 있는 수술용 로봇 암의 RCM 구조를 제공하는 것이다.The present invention is to provide an RCM structure of a surgical robot arm that the surgical instrument can freely rotate about the RCM point.
또한, 본 발명은, 이상적인 제어 대상축을 기준으로 수술용 인스트루먼트의 RCM 작동을 제어할 수 있는 수술용 로봇 암의 RCM 구조를 제공하는 것이다.The present invention also provides an RCM structure of a surgical robot arm capable of controlling the RCM operation of a surgical instrument based on an ideal control target axis.
본 발명의 일 측면에 따르면, 로봇 암의 단부에 수술용 인스트루먼트를 장착하여, 인스트루먼트가 원격의 RCM(remote center of motion) 포인트를 중심으로 회전하도록 작동되는 수술용 로봇 암의 RCM 구조로서, 베이스(base)와, 베이스와 RCM 포인트를 연결한 가상의 선을 기준으로 일측과 타측으로 모두 회전가능하도록 베이스에 결합되는 제1 링크부와, 제1 링크부에 회전가능하도록 결합되며, 그 단부에 인스트루먼트가 장착되는 제2 링크부를 포함하는 수술용 로봇 암의 RCM 구조가 제공된다. 제1 링크부는 360도 회전이 가능하도록 베이스에 결합될 수 있다.According to an aspect of the present invention, by mounting a surgical instrument on the end of the robot arm, the RCM structure of the surgical robot arm is operated so that the instrument rotates about a remote remote center of motion (RCM) point, the base ( base), a first link portion coupled to the base so as to be rotatable both on one side and the other side with respect to an imaginary line connecting the base and the RCM point, and rotatably coupled to the first link portion, and at the end of the instrument An RCM structure of a surgical robot arm comprising a second link portion to which is mounted is provided. The first link unit may be coupled to the base to enable 360 degree rotation.
로봇 암은 로봇 본체에 결합되는 서포트 암(support arm)에 결합되며, 베이스는 서포트 암의 단부에 형성되고, 제1 링크부 및 제2 링크부는 로봇 암을 이룰 수 있다.The robot arm is coupled to a support arm coupled to the robot body, the base is formed at the end of the support arm, and the first link portion and the second link portion may form the robot arm.
인스트루먼트는 제2 링크부에 결합되는 하우징과, 하우징으로부터 연장되는 샤프트를 포함하며, RCM 포인트는 샤프트 상에 위치할 수 있다.The instrument includes a housing coupled to the second link portion and a shaft extending from the housing, wherein the RCM point can be located on the shaft.
제2 링크부는 제1 링크부에 회전가능하도록 결합되는 링크부재와, 링크부재에 회전가능하도록 결합되며 인스트루먼트가 장착되는 인스트루먼트 홀더(holder)를 포함하며, 베이스와 제1 링크부의 결합축이 소정의 평면과 만나는 제1 지점, 제1 링크부와 링크부재의 결합축이 평면과 만나는 제2 지점, 링크부재와 인스트루먼트 홀더의 결합축이 평면과 만나는 제3 지점 및 RCM 포인트는 평행사변형을 이룰 수 있다.The second link portion includes a link member rotatably coupled to the first link portion, and an instrument holder rotatably coupled to the link member and to which the instrument is mounted, wherein a coupling axis of the base and the first link portion is predetermined. A first point that meets the plane, a second point where the coupling axis of the first link portion and the link member meet the plane, a third point where the coupling axis of the link member and the instrument holder meet the plane, and the RCM point may form a parallelogram. .
이 경우, 제1 링크부가 회전함에 따라, 제2 링크부는 제1 지점, 제2 지점, 제3 지점 및 RCM 포인트가 평행사변형을 유지하도록 작동될 수 있다.In this case, as the first link portion rotates, the second link portion can be operated such that the first point, the second point, the third point and the RCM point maintain a parallelogram.
이를 위해, 제1 링크부는 베이스에 간섭되지 않고 회전가능하도록 베이스에 축결합되고, 링크부재는 (베이스 및) 제1 링크부에 간섭되지 않고 회전가능하도록 제1 링크부에 축결합되며, 인스트루먼트 홀더는 (베이스, 제1 링크부 및) 링크부재에 간섭되지 않고 회전가능하도록 링크부재에 축결합될 수 있다. 또한, 인스트루먼트는 그 회전 동작이 베이스, 제1 링크부 및 제2 링크부에 간섭되지 않도록 인스트루먼트 홀더에 장착될 수 있다.To this end, the first link portion is axially coupled to the base so as to be rotatable without interfering with the base, the link member is axially coupled to the first link portion to be rotatable without interfering with the (base and) first link portion, and the instrument holder May be axially coupled to the link member so as to be rotatable without interfering with the (base, first link portion) and the link member. The instrument may also be mounted to the instrument holder such that its rotational motion does not interfere with the base, the first link portion and the second link portion.
제1 링크부는 그 가상의 연장선이 RCM 포인트를 통과하도록 소정의 각도를 가지고 베이스에 축결합되고, 링크부재는 그 가상의 연장선이 RCM 포인트를 통과하도록 소정의 각도를 가지고 제1 링크부에 축결합되며, 인스트루먼트 홀더는 그 가상의 연장선이 RCM 포인트를 통과하도록 소정의 각도를 가지고 링크부재에 축결합될 수 있다.The first link portion is axially coupled to the base at an angle such that its imaginary extension line passes through the RCM point, and the link member is axially coupled to the first link portion at an angle so that the imaginary extension line passes through the RCM point. The instrument holder may be axially coupled to the link member at an angle such that its virtual extension line passes through the RCM point.
이 경우, 인스트루먼트는 인스트루먼트 홀더에 결합되는 하우징과, 하우징으로부터 연장되는 샤프트를 포함하고, RCM 포인트는 샤프트 상에 위치하며, 인스트루먼트는 인스트루먼트 홀더로부터의 가상의 연장선이 RCM 포인트 통과하도록 소정의 각도를 가지고 인스트루먼트 홀더에 장착될 수 있다.In this case, the instrument comprises a housing coupled to the instrument holder, a shaft extending from the housing, the RCM point being located on the shaft, and the instrument having an angle such that the imaginary extension line from the instrument holder passes through the RCM point. It can be mounted to an instrument holder.
한편, 본 발명의 다른 측면에 따르면, 로봇 암의 단부에 수술용 인스트루먼트(instrument)를 장착하여, 인스트루먼트가 원격의 RCM(remote center of motion) 포인트를 중심으로 회전하도록 작동되는 수술용 로봇 암의 RCM 구조로서, 베이스(base)와, 베이스에 제1 축을 기준으로 회전하도록 축결합되는 제1 링크부와, 제1 링크부에 제2 축을 기준으로 회전하도록 축결합되는 제2 링크부와, 제2 링크부에 제3 축을 기준으로 회전하도록 축결합되며, 그 일부에 인스트루먼트가 장착되는 인터페이스(interface)가 형성된 인스트루먼트 홀더(holder)를 포함하되, 제1 축이 가상의 평면과 만나는 제1 지점, 제2 축이 평면과 만나는 제2 지점, 제3 축이 평면과 만나는 제3 지점 및 RCM 포인트는 평행사변형을 이루고, 인스트루먼트는 인터페이스에 결합되는 하우징과 하우징으로부터 길이방향으로 연장되는 샤프트를 포함하며, 샤프트가 제3 지점과 RCM 포인트를 연결하는 가상의 직선에 일치하여 위치하도록, 하우징이 인터페이스에 결합되는 것을 특징으로 하는 수술용 로봇 암의 RCM 구조가 제공된다.On the other hand, according to another aspect of the invention, by mounting a surgical instrument (instrument) to the end of the robot arm, the RCM of the surgical robot arm is operated to rotate about the remote remote center of motion (RCM) point The structure includes a base, a first link portion axially coupled to the base to rotate about a first axis, a second link portion axially coupled to rotate about the second axis to the first link portion, and a second A first point where the first axis meets an imaginary plane, the instrument holder being axially coupled to rotate about a third axis, the interface having an interface on which an instrument is mounted; The second point where the two axes meet the plane, the third point where the third axis meets the plane, and the RCM point form a parallelogram, the instrument having a length from the housing and the housing coupled to the interface. It includes a shaft extending in the direction, the shaft is first the RCM structure of a surgical robot arm, characterized in that, to match the position of the virtual straight line connecting three points and RCM point housing is coupled to an interface is provided.
로봇 암은 제1 지점, 제2 지점, 제3 지점 및 RCM 포인트를 연결하는 가상의 사각형이 평행사변형을 유지하도록 작동될 수 있다. 인스트루먼트 홀더는, 샤프트의 길이방향과 평행한 방향으로 신축되는 구조로 이루어질 수 있다.The robotic arm may be operated such that the virtual rectangle connecting the first point, the second point, the third point and the RCM point maintains a parallelogram. The instrument holder may have a structure that is stretched in a direction parallel to the longitudinal direction of the shaft.
제2 링크부는 제1 링크부로부터 전방을 향하여 연장되도록 결합되고, 인터페이스는 인스트루먼트 홀더의 후면에 형성될 수 있다. 이 경우, 인터페이스에 면하는 하우징의 전면에는 인터페이스로부터 구동력을 전달받아 작동되는 구동부가 형성될 수 있다.The second link portion is coupled to extend forward from the first link portion, and the interface may be formed on the rear side of the instrument holder. In this case, a driving part which is operated by receiving driving force from the interface may be formed on the front surface of the housing facing the interface.
인스트루먼트 홀더는 상방과 하방 사이에서 신축되며, 인터페이스는 인스트루먼트 홀더의 상면에 형성될 수 있다. 이 경우, 인터페이스에 면하는 하우징의 하면에는 인터페이스로부터 구동력을 전달받아 작동되는 구동부가 형성될 수 있다.The instrument holder is stretched between the upper side and the lower side, and the interface may be formed on the upper surface of the instrument holder. In this case, a lower surface of the housing facing the interface may be formed with a driving unit which is operated by receiving a driving force from the interface.
한편, 본 발명의 다른 측면에 따르면, 로봇 암의 단부에, 하우징과 하우징으로부터 길이방향으로 연장되는 샤프트를 포함하는 수술용 인스트루먼트를 장착하여, 인스트루먼트가 원격의 RCM 포인트를 중심으로 회전하도록 작동되는 수술용 로봇 암의 RCM 구조로서, 베이스와, 베이스에 제1 축을 기준으로 회전하도록 축결합되는 제1 링크부와, 제1 링크부로부터 전방을 향하여 연장되도록 결합되고, 제1 링크부에 제2 축을 기준으로 회전하도록 축결합되는 제2 링크부와, 제2 링크부에 제3 축을 기준으로 회전하도록 축결합되고, 그 후면에 하우징이 결합될 수 있도록 인터페이스가 형성되며, 샤프트의 길이방향과 평행한 방향으로 신축되는 구조로 이루어지는 인스트루먼트 홀더를 포함하되, 제1 축이 가상의 평면과 만나는 제1 지점, 제2 축이 평면과 만나는 제2 지점, 제3 축이 평면과 만나는 제3 지점 및 RCM 포인트는 평행사변형을 이루고, 인터페이스에 면하는 하우징의 전면에는 인터페이스로부터 구동력을 전달받아 작동되는 구동부가 형성되는 것을 특징으로 하는 수술용 로봇 암의 RCM 구조가 제공된다.On the other hand, according to another aspect of the present invention, the surgical instrument is mounted to the end of the robot arm comprising a housing and a shaft extending in the longitudinal direction from the housing, the surgery is operated to rotate the instrument about a remote RCM point An RCM structure of a robotic arm for a robot, comprising: a base, a first link portion axially coupled to the base to rotate about a first axis, coupled to extend forwardly from the first link portion, and a second axis attached to the first link portion. A second link portion axially coupled to rotate relative to the reference, a second link portion axially coupled to rotate relative to the third axis, an interface is formed to allow the housing to be coupled to its rear surface, and parallel to the longitudinal direction of the shaft An instrument holder having a structure stretched in a direction, the first point of which the first axis meets the imaginary plane, and the second axis of which meets the plane Surgical robot arm, characterized in that the two points, the third point where the third axis meets the plane and the RCM point forms a parallelogram, and a driving part is formed on the front surface of the housing facing the interface to receive the driving force from the interface. The RCM structure is provided.
한편, 본 발명의 또 다른 측면에 따르면, 로봇 암의 단부에, 하우징과 하우징으로부터 길이방향으로 연장되는 샤프트를 포함하는 수술용 인스트루먼트를 장착하여, 상기 인스트루먼트가 원격의 RCM 포인트를 중심으로 회전하도록 작동되는 수술용 로봇 암의 RCM 구조로서, 베이스와, 베이스에 제1 축을 기준으로 회전하도록 축결합되는 제1 링크부와, 제1 링크부에 제2 축을 기준으로 회전하도록 축결합되는 제2 링크부와, 제2 링크부에 제3 축을 기준으로 회전하도록 축결합되고, 그 상면에 하우징이 결합될 수 있도록 인터페이스가 형성되며, 샤프트의 길이방향과 평행한 방향으로 상방과 하방 사이에서 신축되는 구조로 이루어지는 인스트루먼트 홀더를 포함하되, 제1 축이 가상의 평면과 만나는 제1 지점, 제2 축이 평면과 만나는 제2 지점, 제3 축이 평면과 만나는 제3 지점 및 RCM 포인트는 평행사변형을 이루고, 인터페이스에 면하는 하우징의 하면에는 인터페이스로부터 구동력을 전달받아 작동되는 구동부가 형성되는 것을 특징으로 하는 수술용 로봇 암의 RCM 구조가 제공된다.Meanwhile, according to another aspect of the present invention, at the end of the robot arm, a surgical instrument including a housing and a shaft extending longitudinally from the housing is mounted so that the instrument is rotated about a remote RCM point. An RCM structure of a surgical robot arm to be used, comprising: a base, a first link portion axially coupled to the base to rotate about a first axis, and a second link portion axially coupled to rotate about the second axis to the first link portion And, the second link portion is axially coupled to rotate with respect to the third axis, the interface is formed so that the housing can be coupled to the upper surface, the structure is stretched between the upper and lower in a direction parallel to the longitudinal direction of the shaft An instrument holder comprising a first point at which the first axis meets an imaginary plane, a second point at which the second axis meets the plane, and a third axis being in the plane The third point where the meeting point and the RCM point is formed in a parallelogram, and the lower surface of the housing facing the interface is provided with the RCM structure of the surgical robot arm, characterized in that the drive unit is operated to receive the driving force from the interface is formed.
하우징은, 샤프트가 제3 지점과 RCM 포인트를 연결하는 가상의 직선에 일치하여 위치하도록, 인터페이스에 결합될 수 있으며, 로봇 암은 제1 지점, 제2 지점, 제3 지점 및 RCM 포인트를 연결하는 가상의 사각형이 평행사변형을 유지하도록 작동될 수 있다.The housing may be coupled to the interface such that the shaft is positioned in line with an imaginary straight line connecting the third point and the RCM point, and the robot arm connects the first point, the second point, the third point and the RCM point. The imaginary rectangle can be operated to maintain parallelograms.
전술한 것 외의 다른 측면, 특징, 잇점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.Other aspects, features, and advantages other than those described above will become apparent from the following drawings, claims, and detailed description of the invention.
본 발명의 바람직한 실시예에 따르면, 베이스에 대해 360도 회전 가능한 구조로 링크부를 구성함으로써, 수술용 인스트루먼트가 RCM 포인트를 중심으로 회전할 수 있는 범위를 대폭 향상시킬 수 있으며, 이에 따라 수술용 로봇 암이 RCM을 유지하면서 보다 넓은 범위에서 작동되도록 할 수 있다.According to a preferred embodiment of the present invention, by configuring the link portion in a structure that can be rotated 360 degrees with respect to the base, it is possible to greatly improve the range that the surgical instrument can rotate around the RCM point, accordingly surgical robot arm This RCM can be maintained to allow for a wider range of operation.
또한, 수술용 로봇 암에 적용되는 평행사변형 RCM 구조에 있어서 인스트루먼트 샤프트가 이상적인 제어 대상축에 위치하도록 함으로써, 제어의 유효 범위를 잃지 않고, RCM 구조의 설계 과정에서부터 미리 설정된 제어 대상축을 기준으로 수술용 인스트루먼트의 RCM 작동을 제어할 수 있다.In addition, in a parallelogram RCM structure applied to a surgical robot arm, the instrument shaft is positioned at an ideal control target axis, so that the surgical shaft can be operated on the basis of a preset control target axis from the design process of the RCM structure without losing the effective range of control. You can control the RCM operation of the instrument.
도 1은 종래기술에 따른 수술용 로봇 암의 RCM 구조를 나타낸 도면.1 is a view showing the RCM structure of a surgical robot arm according to the prior art.
도 2는 본 발명의 실시예에 따른 수술용 로봇 암의 RCM 구조를 나타낸 개념도.Figure 2 is a conceptual diagram showing the RCM structure of the surgical robot arm according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 RCM 구조의 작동 방식을 나타낸 도면.3 is a view showing how the RCM structure operates in accordance with an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 로봇 암의 구조를 나타낸 사시도.Figure 4 is a perspective view showing the structure of the robot arm according to an embodiment of the present invention.
도 5 및 도 6은 도 4의 'A' 방향에서 로봇 암의 구조를 도시한 도면.5 and 6 are views showing the structure of the robot arm in the 'A' direction of FIG.
도 7 내지 도 10은 본 발명의 실시예에 따른 로봇 암의 구조를 나타낸 도면.7 to 10 are views showing the structure of a robot arm according to an embodiment of the present invention.
도 11 내지 도 18은 본 발명의 실시예에 따른 로봇 암의 RCM 작동 상태를 나타낸 도면.11 to 18 are views showing the RCM operating state of the robot arm according to the embodiment of the present invention.
도 19 내지 도 21은 종래기술에 따른 수술용 로봇 암의 RCM 구조를 나타낸 도면.19 to 21 is a view showing the RCM structure of the surgical robot arm according to the prior art.
도 22 및 도 23은 본 발명의 일 실시예에 따른 수술용 로봇 암의 RCM 구조를 나타낸 측면도.22 and 23 are side views showing the RCM structure of the surgical robot arm according to an embodiment of the present invention.
도 24 및 도 25는 본 발명의 다른 실시예에 따른 수술용 로봇 암의 RCM 구조를 나타낸 측면도.24 and 25 are side views showing the RCM structure of the surgical robot arm according to another embodiment of the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
이하, 본 발명의 실시예를 첨부한 도면들을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, and in the following description with reference to the accompanying drawings, the same or corresponding components are given the same reference numerals and redundant description thereof will be omitted. Shall be.
도 2는 본 발명의 실시예에 따른 수술용 로봇 암의 RCM 구조를 나타낸 개념도이고, 도 3은 본 발명의 실시예에 따른 RCM 구조의 작동 방식을 나타낸 도면이다. 도 2 및 도 3을 참조하면, 로봇 암(1), 서포트 암(3), 인스트루먼트(5), 하우징(6), 샤프트(7), RCM 포인트(8), 베이스(10), 제1 링크부(20), 제2 링크부(30), 링크부재(32), 인스트루먼트 홀더(34)가 도시되어 있다.2 is a conceptual diagram showing the RCM structure of the surgical robot arm according to an embodiment of the present invention, Figure 3 is a view showing the operation of the RCM structure according to an embodiment of the present invention. 2 and 3, the robot arm 1, the support arm 3, the instrument 5, the housing 6, the shaft 7, the RCM point 8, the base 10, the first link. A portion 20, a second link portion 30, a link member 32, and an instrument holder 34 are shown.
본 실시예는, 소정의 베이스(base)를 기준으로 전(全)방향으로 회전가능하도록 로봇 암의 패러랠 링크를 구성함으로써, 수술용 로봇 암이 RCM(remote center of motion)을 유지한 채로 작동될 수 있는 범위를 확장하고, 이를 통해 베이스를 움직일 필요가 없거나 베이스의 작동을 최소화할 수 있는 로봇 암 구조를 특징으로 한다.In this embodiment, the surgical robot arm can be operated while maintaining the remote center of motion (RCM) by configuring the parallel link of the robot arm so as to be rotatable in all directions with respect to a predetermined base. It extends its range and features a robotic arm structure that eliminates the need to move the base or minimizes the operation of the base.
이를 위해, 본 실시예에 따른 RCM 구조는 패러랠 링크 구조, 즉 로봇 암의 각 링크부재(32)가 이루는 평행사변형 구조가 베이스(10)와 RCM 포인트를 연결한 가상의 선을 기준으로 한 쪽에서 다른 쪽으로 완전히 넘어가도록 회전할 수 있는 구조로 이루어질 수 있다.To this end, the RCM structure according to the present embodiment has a parallel link structure, that is, a parallelogram structure formed by each link member 32 of the robot arm is different from one side of the virtual line connecting the base 10 and the RCM point. It can be made of a structure that can be rotated so as to fully pass toward.
이처럼, RCM 구조를 그 가동 범위가 보다 넓어지도록 개선함으로써, 수술용 로봇의 서포트 암을 도 3에 도시된 것처럼 수직 방향으로 세워서 세팅을 하고, 로봇 암이 수직 방향의 축(도 3의 'S' 참조)을 중심으로 양쪽으로(도 3에서는 좌측 및 우측) 자유롭게 움직이면서 작동되도록 할 수 있다.As such, by improving the RCM structure so that its movable range is wider, the support arm of the surgical robot is set in the vertical direction as shown in FIG. 3, and the robot arm is set in the vertical axis ('S' in FIG. 3). To freely move in both directions (left and right in FIG. 3).
RCM 구조는, 전술한 바와 같이 로봇 암의 단부에 장착된 수술용 인스트루먼트가 원격의 'RCM 포인트', 예를 들면 인스트루먼트 샤프트 상의 한 지점을 중심으로 회전하도록, 수술용 로봇 암이 작동되는 구조이다. 예를 들어, 환자의 피부를 천공하고 인스트루먼트를 삽입한다면, 인스트루먼트의 샤프트가 환자의 피부에 접하는 지점이 RCM 포인트가 되도록 로봇 암을 설계, 제작, 작동시킴으로써, 환자의 피부에 가해지는 외력을 최소화하면서 보다 안전한 로봇 수술을 수행할 수 있다.The RCM structure is a structure in which a surgical robot arm is operated such that a surgical instrument mounted at the end of the robot arm, as described above, rotates about a remote 'RCM point', for example a point on the instrument shaft. For example, if a patient's skin is drilled and an instrument is inserted, the robot arm is designed, built, and operated so that the point at which the instrument's shaft contacts the patient's skin is the RCM point, minimizing external forces on the patient's skin. Safer robotic surgery can be performed
본 실시예에 따른 로봇 암(1)은 베이스(10)와, 베이스(10)에 회전가능하도록 결합되는 링크 구조로 이루어지는데, 링크 구조는 RCM을 구현하기 위해 후술하는 것처럼 패러랠 링크 형태로 구성된다.The robot arm 1 according to the present embodiment is composed of a base structure 10 and a link structure rotatably coupled to the base 10. The link structure is configured in parallel link form as will be described later to implement the RCM. .
본 실시예에 따른 링크 구조는 베이스(10)에 회전가능하도록 결합되는 제1 링크부(20)와, 제1 링크부(20)에 회전가능하도록 결합되는 제2 링크부(30)로 이루어지며, 제2 링크부(30)의 단부에는 수술용 인스트루먼트가 장착된다. 제1 링크부(20)가 작동되어 베이스(10)에 대해 회전하면, 제2 링크부(30) 또한 그에 연동하여 인스트루먼트가 항상 RCM 포인트를 중심으로 회전하도록 작동(회전)된다.The link structure according to the present exemplary embodiment includes a first link part 20 rotatably coupled to the base 10, and a second link part 30 rotatably coupled to the first link part 20. At the end of the second link portion 30, a surgical instrument is mounted. When the first link unit 20 is operated to rotate relative to the base 10, the second link unit 30 is also actuated (rotated) so that the instrument always rotates about the RCM point in conjunction with it.
본 실시예에서 제1 링크부(20)는 베이스(10)에 대해 자유자재로, 예를 들면 베이스(10)에 대해 360도 회전이 가능하도록 결합되는 것을 특징으로 한다. 즉, 도 2에서 볼 수 있듯이, 제1 링크부(20)는 베이스(10)에의 결합축을 중심으로 베이스(10)와 RCM 포인트(8)를 연결한 기준선(도 2의 'S' 참조)의 일측 및 타측(도 2에서는 상방 및 하방)으로 모두 회전가능하도록(도 2의 화살표 'R' 참조) 베이스(10)에 결합될 수 있다.In the present embodiment, the first link unit 20 is freely coupled to the base 10, for example, the base 10 may be coupled to be capable of rotating 360 degrees. That is, as shown in Figure 2, the first link portion 20 of the reference line connecting the base 10 and the RCM point 8 around the coupling axis to the base 10 (see 'S' in Figure 2) It may be coupled to the base 10 so as to be rotatable (see arrow 'R' in FIG. 2) both on one side and on the other side (up and down in FIG. 2).
이처럼, 제1 링크부(20)가 베이스(10)에 대해 회전가능한 범위를 확장함으로써, 인스트루먼트가 RCM을 유지하면서 작동되는 범위 또한 확장될 수 있으며, 이에 따라 수술용 로봇 암을 지지하는 서포트 암(3)을 작동시킬 필요가 없거나 그 작동을 최소화할 수 있다.As such, by extending the rotatable range of the first link portion 20 with respect to the base 10, the range in which the instrument is operated while maintaining the RCM can also be expanded, thereby supporting the support arm for supporting the surgical robot arm ( It is not necessary to operate 3) or the operation can be minimized.
즉, 수술용 로봇은, 로봇 본체에 결합되는 서포트 암(3)과, 서포트 암(3)에 결합되는 로봇 암(1), 및 로봇 암(1)의 단부에 장착되는 인스트루먼트(5)를 기본적인 구조로 하여 구성될 수 있는데, 서포트 암(3)의 단부(로봇 암이 결합되는 부분)를 베이스(10)로 하고 제1 링크부(20) 및 제2 링크부(30)가 로봇 암(1)을 이루도록 하여 본 실시예에 따른 RCM 구조를 구현할 수 있다. 전술한 것처럼, 본 실시예에 따른 RCM 구조는 로봇 암의 작동 범위를 대폭 확장한 것으로서, 인스트루먼트(5)의 위치를 변경하기 위해 베이스(10)(서포트 암(3))를 움직일 필요가 없거나 필요한 최소한의 범위에서만 움직이고, 나머지 수술에 필요한 동작 범위는 로봇 암의 RCM 구조를 이용한 인스트루먼트(5)의 작동 범위로 커버하도록 한 것을 특징으로 한다.In other words, the surgical robot includes a support arm 3 coupled to the robot body, a robot arm 1 coupled to the support arm 3, and an instrument 5 mounted at an end of the robot arm 1. It can be configured as a structure, the end of the support arm 3 (part where the robot arm is coupled) as the base 10, the first link portion 20 and the second link portion 30 is a robot arm (1) RCM structure according to the present embodiment can be implemented. As described above, the RCM structure according to the present embodiment greatly extends the operating range of the robot arm, and it is not necessary or necessary to move the base 10 (support arm 3) to change the position of the instrument 5. It moves only in a minimum range, and the operating range required for the rest of the surgery is characterized by covering the operating range of the instrument 5 using the RCM structure of the robot arm.
수술용 로봇에 장착되는 인스트루먼트(5)는, 로봇 암(1)의 단부, 즉 제2 링크부(30)의 단부에 결합되는 하우징(6)과 하우징(6)으로부터 연장되는 샤프트(7)로 이루어지는데, 전술한 것처럼 샤프트(7) 상의 한 지점(샤프트(7)가 환자의 피부에 접하는 지점)에 RCM 포인트(8)가 위치하도록 로봇 암을 설계할 수 있다.The instrument 5 mounted on the surgical robot includes a housing 6 coupled to an end of the robot arm 1, that is, an end of the second link portion 30, and a shaft 7 extending from the housing 6. As described above, the robot arm can be designed such that the RCM point 8 is located at a point on the shaft 7 (the point at which the shaft 7 contacts the patient's skin).
RCM을 구현하기 위해서는 로봇 암(1)을 패러랠 링크 형태로 구성할 수 있는데, 이를 위해 본 실시예에 따른 제2 링크부(30)는 제1 링크부(20)에 회전가능하도록 결합되는 링크부재(32)와, 링크부재(32)에 회전가능하도록 결합되는 인스트루먼트 홀더(34)로 이루어질 수 있다. 인스트루먼트 홀더(34)에는 인스트루먼트(5)가 장착된다.In order to implement the RCM, the robot arm 1 may be configured in the form of a parallel link. For this purpose, the second link unit 30 according to the present embodiment is a link member rotatably coupled to the first link unit 20. 32 and an instrument holder 34 rotatably coupled to the link member 32. The instrument holder 34 is equipped with an instrument 5.
이처럼 로봇 암(1)을 패러랠 링크 형태로 구성할 경우, 즉, 도 2에 도시된 것처럼, 제1 링크부(20)가 베이스(10)에 결합되는 지점(도 2의 'P1'), 링크부재(32)가 제1 링크부(20)에 결합되는 지점(도 2의 'P2'), 인스트루먼트 홀더(34)가 링크부재(32)에 결합되는 지점(도 2의 'P3'), 및 RCM 포인트(8)는 평행사변형을 이루게 된다.As such, when the robot arm 1 is configured in the form of a parallel link, that is, as shown in FIG. 2, the point at which the first link unit 20 is coupled to the base 10 ('P1' in FIG. 2), the link The point at which the member 32 is coupled to the first link portion 20 ('P2' in FIG. 2), the point at which the instrument holder 34 is coupled to the link member 32 ('P3' in FIG. 2), and The RCM points 8 form a parallelogram.
예를 들어, 제1 링크부(20)가 P1을 중심으로 회전한 각도만큼 반대 방향으로 링크부재(32)가 P2를 중심으로 회전하고, 인스트루먼트 홀더(34)는 P3을 중심으로 제1 링크부와 같은 방향으로 같은 각도만큼 회전하도록, 제1 링크부(20) 및 링크부재(32) 내부에 풀리나 벨트 등을 설치함으로써, 로봇 암의 링크 구조가 '평행사변형 구조'를 유지하도록 할 수 있다.For example, the link member 32 rotates about P2 in the opposite direction by the angle that the first link portion 20 rotates about P1, and the instrument holder 34 has the first link portion about P3. By installing a pulley or a belt in the first link portion 20 and the link member 32 to rotate by the same angle in the same direction, it is possible to maintain the link structure of the robot arm 'parallel quadrilateral structure'.
후술하는 것처럼, 베이스(10), 제1 링크부(20), 링크부재(32), 인스트루먼트 홀더(34)는 반드시 동일 평면상에 위치해야 하는 것은 아니며, 이 경우 RCM 포인트(8)를 포함하는 가상의 평면에 있어서, 베이스(10)와 제1 링크부(20)의 결합축이 평면과 만나는 지점이 'P1', 제1 링크부(20)와 링크부재(32)의 결합축이 평면과 만나는 지점이 'P2', 링크부재(32)와 인스트루먼트 홀더(34)의 결합축이 평면과 만나는 지점이 'P3'이 될 수 있다.As will be described later, the base 10, the first link portion 20, the link member 32, and the instrument holder 34 are not necessarily located on the same plane, in which case the RCM point 8 is included. In the imaginary plane, the point where the coupling axis of the base 10 and the first link portion 20 meets the plane is 'P1', and the coupling axis of the first link portion 20 and the link member 32 is parallel to the plane. The point where the meeting point is 'P2', the point where the coupling axis of the link member 32 and the instrument holder 34 meets the plane may be 'P3'.
이처럼, 링크 구조의 각 지점(P1, P2, P3, 8)이 평행사변형을 이루도록 패러랠 링크를 구현한 상태에서, 로봇 암(1)을 작동시켜 제1 링크부(20)가 회전하면, 그에 따라, 제2 링크부(30), 즉 링크부재(32) 및 인스트루먼트 홀더(34)를 연동하여 회전시켜, 각 지점(P1, P2, P3, 8)이 여전히 평행사변형을 유지하도록 함으로써, 인스트루먼트(5)가 항상 RCM 포인트(8)를 중심으로 회전하도록, 즉 로봇 암(1)에 RCM 기능이 구현되도록 할 수 있다.As described above, when the first link unit 20 is rotated by operating the robot arm 1 while the parallel link is implemented such that the points P1, P2, P3, and 8 of the link structure form a parallelogram. By rotating the second link portion 30, that is, the link member 32 and the instrument holder 34, so that each point P1, P2, P3, 8 still maintains the parallelogram, the instrument 5 ) Can always be rotated about the RCM point 8, ie the RCM function is implemented in the robot arm 1.
도 4는 본 발명의 실시예에 따른 로봇 암의 구조를 나타낸 사시도이고, 도 5 및 도 6은 도 4의 'A' 방향에서 로봇 암의 구조를 도시한 도면이다. 도 4 내지 도 6을 참조하면, 인스트루먼트(5), 하우징(6), 샤프트(7), RCM 포인트(8), 베이스(10), 제1 링크부(20), 제2 링크부(30), 링크부재(32), 인스트루먼트 홀더(34)가 도시되어 있다.4 is a perspective view showing the structure of a robot arm according to an embodiment of the present invention, Figures 5 and 6 are views showing the structure of the robot arm in the 'A' direction of FIG. 4 to 6, the instrument 5, the housing 6, the shaft 7, the RCM point 8, the base 10, the first link portion 20, and the second link portion 30. , Link member 32, instrument holder 34 is shown.
패러랠 링크 구조의 로봇 암이 보다 넓은 범위에서 작동되도록, 즉 전술한 것처럼 제1 링크부(20)가 베이스에 대해 자유자재로 회전하여 기준선(도 2의 'S' 참조)의 어느 쪽으로도 위치할 수 있도록 하기 위해, 제1 링크부(20)는 베이스(10)에 간섭되지 않고 회전가능하도록 베이스(10)에 축결합될 수 있다. 예를 들어, 도 5에 도시된 것처럼, 베이스(10)의 일측에 제1 링크부(20)를 축결합함으로써 제1 링크부(20)는 그 회전 과정에서 베이스(10)에 간섭되지 않도록 할 수 있다.The robot arm of the parallel link structure is operated in a wider range, that is, as described above, the first link portion 20 can be freely rotated with respect to the base and positioned on either side of the reference line (see 'S' in FIG. 2). In order to be able to do so, the first link portion 20 can be axially coupled to the base 10 so as to be rotatable without interfering with the base 10. For example, as shown in FIG. 5, by axially coupling the first link portion 20 to one side of the base 10, the first link portion 20 may not interfere with the base 10 during the rotation process. Can be.
제1 링크부(20)가 베이스(10)에 간섭되지 않고 회전할 경우, RCM을 유지하면서 회전하는 제2 링크부(30) 또한 제1 링크부(20) 및/또는 베이스(10)에 간섭될 우려가 있다. 이를 위해, 본 실시예에 따른 링크부재(32)는 (베이스(10) 및) 제1 링크부(20)에 간섭되지 않고 회전가능하도록 제1 링크부(20)에 축결합되며, 인스트루먼트 홀더(34)는 (베이스(10), 제1 링크부(20) 및) 링크부재(32)에 간섭되지 않고 회전가능하도록 링크부재(32)에 축결합될 수 있다.When the first link unit 20 rotates without interfering with the base 10, the second link unit 30 that rotates while maintaining the RCM also interferes with the first link unit 20 and / or the base 10. There is a concern. To this end, the link member 32 according to the present embodiment is axially coupled to the first link portion 20 so as to be rotatable without interfering with the (base 10 and) the first link portion 20, and the instrument holder ( 34 may be axially coupled to the link member 32 so as to be rotatable without interfering with the base 10, the first link unit 20, and the link member 32.
이처럼, 로봇 암(1)을 구성하는 각 구성요소, 즉 제1 링크부(20), 링크부재(32) 및 인스트루먼트 홀더(34)를 서로 간섭되지 않고 회전가능하도록 결합함으로써, RCM 기능이 유지되도록 로봇 암(1)을 작동시키면서도 그 작동 가능 범위를 넓힐 수 있다. 도 5는 도 4에 예시된 로봇 암(1) 구조를 'A' 방향에서 도시한 것으로서, 도 5에서 볼 수 있듯이 각 구성요소가 각각 평행한 다른 평면상에 위치하도록 서로 축결합함으로써 서로 간섭되지 않고 회전가능하도록 구성한 사례이다.As such, the components constituting the robot arm 1, that is, the first link portion 20, the link member 32 and the instrument holder 34 are rotatably coupled without interfering with each other, so that the RCM function is maintained. It is possible to widen the operable range while operating the robot arm 1. FIG. 5 shows the structure of the robot arm 1 illustrated in FIG. 4 in the 'A' direction, and as shown in FIG. 5, the components are not interfered with each other by being axially coupled to each other so that they are located on different parallel planes. It is an example that is configured to be rotatable without.
다만, 각 구성요소를 반드시 도 4 및 도 5에 도시된 것처럼 결합해야 하는 것은 아니며, 서로 간섭되지 않고 회전가능하도록 하는 다양한 결합 구조가 적용될 수 있다.However, it is not necessary to combine each component as shown in FIGS. 4 and 5, and various coupling structures may be applied to allow the components to be rotatable without interfering with each other.
예를 들면, 도 2에 예시된 로봇 암 구조를 'P' 방향에서 도시한 도 7 및 도 9와 같이, 각 구성요소가 서로 간섭되지 않고 회전가능하도록 하는 결합 구조가 적용될 수 있는데, 도 7 및 도 7에 대한 사시도인 도 8에는 베이스(10)의 중앙 부분을 통해 제1 링크부(20)가 회전가능하고, 제1 링크부(20)의 중앙 부분을 통해 제2 링크부(30)가 회전가능하도록 결합한 링크 구조가 예시되어 있으며, 도 9 및 도 9에 대한 사시도인 도 10에는 도 5나 도 6과 마찬가지로 각 구성요소가 각각 평행한 다른 평면상에 위치하도록 서로 축결합한 경우가 예시되어 있다.For example, as shown in FIGS. 7 and 9 showing the robot arm structure illustrated in FIG. 2 in the 'P' direction, a coupling structure may be applied such that each component is rotatable without interfering with each other. In FIG. 8, which is a perspective view of FIG. 7, the first link portion 20 is rotatable through the central portion of the base 10, and the second link portion 30 is rotated through the central portion of the first link portion 20. A rotatable link structure is illustrated, and in FIG. 10, which is a perspective view of FIGS. 9 and 9, as in FIGS. 5 and 6, each component is axially coupled to each other such that they are positioned on different parallel planes. have.
인스트루먼트 홀더(34)가 링크부재(32)에 간섭되지 않고 회전할 경우, 홀더(34)에 장착된 인스트루먼트(5)의 샤프트(7)가 그 회전 과정에서 베이스(10), 제1 링크부(20), 링크부재(32) 등에 간섭될 우려가 있다. 이를 위해, 본 실시예에 따른 인스트루먼트(5)는 (베이스(10), 제1링크부, 및) 링크부재(32)에 간섭되지 않고 회전가능하도록 인스트루먼트 홀더(34)에 장착될 수 있다.When the instrument holder 34 rotates without interfering with the link member 32, the shaft 7 of the instrument 5 mounted on the holder 34 is rotated while the base 10 and the first link portion ( 20) and the link member 32 may be interfered with. To this end, the instrument 5 according to the present embodiment may be mounted to the instrument holder 34 so as to be rotatable without interfering with the (base 10, the first link portion, and the link member 32).
인스트루먼트(5)의 하우징(6)에는 홀더(34)로부터 구동력을 전달받을 수 있도록 복수의 구동휠이 구비될 수 있으며, 따라서 인스트루먼트(5)는 그 구동휠이 형성된 면이 홀더(34)에 접하도록 장착되게 된다.The housing 6 of the instrument 5 may be provided with a plurality of driving wheels so as to receive a driving force from the holder 34, so that the surface of the instrument 5 is in contact with the holder 34. To be mounted.
로봇 암의 각 구성요소가 동일 평면상에 위치하는 종래의 로봇 암 구조에서 하우징의 배면에 구동휠이 형성되며, 따라서 하우징의 배면이 홀더(34)에 접하도록 인스트루먼트가 장착되는 반면, 본 실시예처럼 로봇 암(1)의 각 구성요소가 서로 평행한 다른 평면상에 위치하는 경우, 인스트루먼트(5)는 그 하우징(6)의 옆면이 홀더(34)에 접하도록 장착되는 구조가 될 수 있다.In a conventional robot arm structure in which each component of the robot arm is located on the same plane, a driving wheel is formed on the rear surface of the housing, so that the instrument is mounted so that the rear surface of the housing is in contact with the holder 34. As such, when each component of the robot arm 1 is located on a different plane parallel to each other, the instrument 5 may have a structure in which the side surface of the housing 6 is mounted so as to contact the holder 34.
이를 위해, 도 4에 도시된 것처럼, 하우징(6)의 옆면, 즉 하우징(6)이 홀더(34)에 접하는 면(도 4의 'F' 참조)에 복수의 구동휠을 형성할 수 있다. 또는, 하우징(6)의 측면이 홀더(34)에 접하되 다른 면을 통해 구동력이 전달될 수 있는 구조로 인스트루먼트(5) 및 홀더(34)를 제작할 수도 있다.To this end, as shown in FIG. 4, a plurality of driving wheels may be formed on the side surface of the housing 6, that is, the surface where the housing 6 is in contact with the holder 34 (see 'F' in FIG. 4). Alternatively, the side of the housing 6 may be in contact with the holder 34, but the instrument 5 and the holder 34 may be manufactured in a structure in which a driving force may be transmitted through the other surface.
전술한 것처럼, 로봇 암(1)의 각 구성요소가 서로 다른 평면상에 위치하도록 결합할 경우, 도 4처럼 로봇 암(1)을 측면에서 볼 때에는 '평행사변형' 링크 구조가 형성된 것처럼 보이지만, 실제로는 링크의 각 절점이 동일 평면상에 위치하지 않으므로 3차원 공간상에서 RCM이 구현되지 않을 우려가 있다.As described above, when the components of the robot arm 1 are combined so as to be located on different planes, when the robot arm 1 is viewed from the side as shown in FIG. Since each node of the link is not located on the same plane, RCM may not be implemented in three-dimensional space.
이를 위해, 본 실시예에 따른 링크 구조는 각 구성요소가 소정의 각도를 가지도록 서로 축결합함으로써, 로봇 암(1)의 작동에 따라 3차원 공간상에서 실질적으로 RCM이 유지되도록 할 수 있다.To this end, the link structure according to the present embodiment can be axially coupled to each component such that each component has a predetermined angle, so that the RCM can be substantially maintained in the three-dimensional space in accordance with the operation of the robot arm (1).
즉, 도 5에 도시된 것처럼 제1 링크부(20)는 베이스(10)와 다른 평면상에 위치하면서도, 소정의 각도를 가지도록 베이스(10)에 결합될 수 있다. 제1 링크부(20)의 베이스(10)에 대한 각도는, 제1 링크부(20)의 길이방향으로의 가상의 연장선(도 5의 'b1' 참조)이 RCM 포인트(8)를 통과하도록 하는 각도로 설정할 수 있다. 이에 따라, 베이스(10)를 기준으로 제1 링크부(20)를 회전시키면 제1 링크부(20)의 회전 궤적에 의해 형성되는 평면이 RCM 포인트(8)를 지나게 된다.That is, as shown in FIG. 5, the first link unit 20 may be coupled to the base 10 to have a predetermined angle while being positioned on a plane different from the base 10. The angle of the first link portion 20 with respect to the base 10 is such that a virtual extension line (see 'b1' in FIG. 5) in the longitudinal direction of the first link portion 20 passes through the RCM point 8. Can be set to the angle. Accordingly, when the first link unit 20 is rotated relative to the base 10, a plane formed by the rotational trajectory of the first link unit 20 passes through the RCM point 8.
이러한 제1 링크부(20)와 베이스(10) 간의 결합구조를 제2 링크부(30)에도 적용할 수 있다. 즉, 링크부재(32)는 제1 링크부(20)와 다른 평면상에 위치하면서도, 소정의 각도를 가지도록 제1 링크부(20)에 결합될 수 있다. 링크부재(32)의 제1 링크부(20)에 대한 각도는, 링크부재(32)의 길이방향으로의 가상의 연장선(도 5의 'b2' 참조)이 RCM 포인트(8)를 통과하도록 하는 각도로 설정할 수 있다. 이에 따라, 제1 링크부(20)를 기준으로 링크부재(32)를 회전시키면 링크부재(32)의 회전 궤적에 의해 형성되는 평면이 RCM 포인트(8)를 지나게 된다.The coupling structure between the first link unit 20 and the base 10 may also be applied to the second link unit 30. That is, the link member 32 may be coupled to the first link portion 20 so as to have a predetermined angle while being positioned on a plane different from the first link portion 20. The angle with respect to the first link portion 20 of the link member 32 is such that a virtual extension line (see 'b2' in FIG. 5) in the longitudinal direction of the link member 32 passes through the RCM point 8. Can be set in degrees. Accordingly, when the link member 32 is rotated relative to the first link unit 20, the plane formed by the rotational trajectory of the link member 32 passes through the RCM point 8.
인스트루먼트 홀더(34) 또한 링크부재(32)와 다른 평면상에 위치하면서도, 소정의 각도를 가지도록 링크부재(32)에 결합될 수 있다. 인스트루먼트 홀더(34)의 링크부재(32)에 대한 각도는, 인스트루먼트 홀더(34)의 길이방향으로의 가상의 연장선(도 5의 'b3' 참조)이 RCM 포인트(8)를 통과하도록 하는 각도로 설정할 수 있다. 이에 따라, 링크부재(32)를 기준으로 인스트루먼트 홀더(34)를 회전시키면 그 회전 궤적에 의해 형성되는 평면이 RCM 포인트(8)를 지나게 된다.The instrument holder 34 may also be coupled to the link member 32 to be positioned at a different plane from the link member 32 and to have a predetermined angle. The angle with respect to the link member 32 of the instrument holder 34 is such that the imaginary extension in the longitudinal direction of the instrument holder 34 (see 'b3' in FIG. 5) passes through the RCM point 8. Can be set. Accordingly, when the instrument holder 34 is rotated relative to the link member 32, the plane formed by the rotational trajectory passes through the RCM point 8.
이처럼, 본 실시예에 따른 RCM 구조를 구성하는 각 구성요소들, 즉 제1 링크부(20) 및 제2 링크부(30)(링크부재(32), 인스트루먼트 홀더(34))를 소정의 각도를 가지도록 축결합함으로써, 각 구성요소의 회전 궤적이 모두 RCM 포인트(8)를 통과하게 되며, 따라서 3차원 공간상에서 로봇 암(1)이 작동됨에 따라 인스트루먼트(5)가 RCM을 유지하면서 움직이도록 할 수 있다.As such, the components constituting the RCM structure according to the present embodiment, that is, the first link portion 20 and the second link portion 30 (link member 32, instrument holder 34) at a predetermined angle By axial coupling to ensure that the rotational trajectory of each component passes through the RCM point 8 so that the instrument 5 moves while maintaining the RCM as the robot arm 1 is operated in three-dimensional space. can do.
따라서, 본 실시예에 따른 인스트루먼트(5)도 소정의 각도를 가지도록 인스트루먼트 홀더(34)에 장착될 수 있는데, 그 각도는 인스트루먼트(5) 샤프트(7) 상의 한 지점, 즉 RCM 포인트(8)와 인스트루먼트 홀더(34)로부터의 가상의 연장선(도 5의 'b3' 참조)이 만나도록 하는 각도로 설정할 수 있다.Thus, the instrument 5 according to the present embodiment can also be mounted to the instrument holder 34 to have a predetermined angle, which angle is one point on the shaft 5 of the instrument 5, ie the RCM point 8. And an imaginary extension line (see 'b3' in FIG. 5) from the instrument holder 34.
또는, 도 5와 같이 RCM 구조를 구성하는 각 구성요소들을 모두 틸팅시키는 대신, 도 6에 도시된 것처럼 인스트루먼트 홀더(34)만을 틸팅시켜, RCM 포인트(8)가 베이스(10)의 길이방향으로의 가상의 연장선(도 6의 'b' 참조)을 통과하도록 함으로써, RCM 기능이 유지되도록 할 수도 있다.Alternatively, instead of tilting all the components constituting the RCM structure as shown in FIG. 5, only the instrument holder 34 is tilted as shown in FIG. 6, so that the RCM point 8 extends in the longitudinal direction of the base 10. The RCM function may be maintained by passing through an imaginary extension line (see 'b' in FIG. 6).
한편, 도 7 및 도 9에 도시된 것처럼, 서포트 암(3)의 중심 축(도 7, 도 9의 'S' 참조) 상에 RCM 포인트가 위치하도록 로봇 암(1)의 링크 구조를 설계할 경우에는, 전술한 것처럼 각 구성요소들끼리 소정의 각도를 가지도록 결합하지 않더라도, 즉 각 구성요소가 동일 평면상에 위치(도 7의 경우)하거나, 각각 평행한 평면상에 위치(도 9의 경우)하면서, 링크 구조의 회동에 따라 RCM이 구현되도록 할 수 있다.Meanwhile, as shown in FIGS. 7 and 9, the link structure of the robot arm 1 may be designed such that the RCM point is located on the central axis of the support arm 3 (see 'S' in FIGS. 7 and 9). In this case, even if the components are not combined to have a predetermined angle as described above, that is, each component is located on the same plane (in FIG. 7), or each of them is located on a parallel plane (see FIG. 9). The RCM may be implemented according to the rotation of the link structure.
이상으로 설명한 로봇 암이 회동하는 상태, 즉 RCM 기능이 유지되면서 로봇 암의 각 링크가 움직이는 상태는 도 11 내지 도 18에 도시되어 있다. 도 11은 제1 링크부가 0도만큼 회전한 경우의 측면도, 도 12는 도 11의 사시도이고, 도 13은 제1 링크부가 45도만큼 회전한 경우의 측면도, 도 14는 도 13의 사시도이며, 도 15는 제1 링크부가 90도만큼 회전한 경우의 측면도, 도 16은 도 15의 사시도이고, 도 17은 제1 링크부가 135도만큼 회전한 경우의 측면도, 도 18은 도 17의 사시도이다.11 to 18 illustrate states in which the robot arm described above rotates, that is, each link of the robot arm moves while the RCM function is maintained. 11 is a side view when the first link portion is rotated by 0 degrees, FIG. 12 is a perspective view of FIG. 11, FIG. 13 is a side view when the first link portion is rotated by 45 degrees, and FIG. 14 is a perspective view of FIG. 13, 15 is a side view when the first link portion is rotated by 90 degrees, FIG. 16 is a perspective view of FIG. 15, FIG. 17 is a side view when the first link portion is rotated by 135 degrees, and FIG. 18 is a perspective view of FIG. 17.
도 22 및 도 23은 본 발명의 일 실시예에 따른 수술용 로봇 암의 RCM 구조를 나타낸 측면도이다. 도 22 및 도 23을 참조하면, 로봇 암(1), RCM 포인트(8), 인스트루먼트(5), 하우징(6), 구동부(9), 샤프트(7), 베이스(10), 제1 지점(12), 제1 링크부(20), 제2 지점(22), 제2 링크부(30), 제3 지점(33), 인스트루먼트 홀더(40), 인터페이스(42)가 도시되어 있다.22 and 23 are side views showing the RCM structure of the surgical robot arm according to an embodiment of the present invention. 22 and 23, the robot arm 1, the RCM point 8, the instrument 5, the housing 6, the drive unit 9, the shaft 7, the base 10, and the first point ( 12), a first link portion 20, a second point 22, a second link portion 30, a third point 33, an instrument holder 40, and an interface 42 are shown.
본 실시예는 인스트루먼트 홀더의 구조를 변경한 것으로서, 구체적으로는 인터페이스 부분이 전방이 아니라 후방, 즉 로봇 암이 연장된 쪽이 아니라 그 반대쪽에 위치하도록 구성한 것을 특징으로 한다. 또한, 이러한 홀더 구조를 기초로, 인터페이스에 장착되는 인스트루먼트의 샤프트가 평행사변형 RCM 구조의 이상적인 제어 대상축에 위치하도록, 즉 RCM 구조의 이상적인 샤프트 축과 현실적인 샤프트 축이 일치하도록 한 것을 특징으로 한다.In this embodiment, the structure of the instrument holder is changed, and in particular, the interface portion is configured to be located at the rear side, not the front side, that is, the opposite side of the robot arm. Further, on the basis of such a holder structure, the shaft of the instrument mounted to the interface is positioned on the ideal control axis of the parallelogram RCM structure, that is, the ideal shaft axis of the RCM structure and the realistic shaft axis are characterized in that the same.
이하, 본 실시예에서 전, 후, 상, 하는 반드시 절대좌표 공간에서의 앞, 뒤, 위, 아래만을 의미하는 것으로 한정되는 것은 아니며, '전방'은 수술용 로봇 본체로부터 로봇 암이 연장되는 방향을 의미하고, '후방'은 전방의 반대 방향을 의미하며, '전면'은 전방을 향한 면을 의미하고, '후면'은 전면의 반대쪽 면을 의미하는 것으로 해석될 수 있다. 또한, 수술 환자의 위쪽에 로봇 암 및 그에 장착된 인스트루먼트가 위치한다고 할 때, '상방'은 위쪽을 의미하고, '하방'은 상방의 반대 방향을 의미하며, '상면'은 상방을 향한 면을 의미하고, '하면'은 상면의 반대쪽 면을 의미하는 것으로 해석될 수 있다.Hereinafter, in this embodiment, the front, back, up, and down are not limited to only front, back, up, and down in the absolute coordinate space, and the 'front' is a direction in which the robot arm extends from the surgical robot body. 'Rear' means the opposite direction of the front, 'Front' means the front side, and 'Rear' may mean the opposite side of the front. In addition, when the robot arm and the instrument mounted thereon is positioned above the surgical patient, 'upward' means upward, 'downward' means opposite upward, and 'upper' means upward. The term 'bottom' may be interpreted as meaning the opposite side of the upper surface.
수술용 로봇 암의 RCM 구조는 로봇 암(1)의 단부에 수술용 인스트루먼트(5)를 장착하고, 인스트루먼트(5)가 그 샤프트(7) 상의 소정 지점(RCM 포인트(8))을 중심으로 회전하도록 작동, 제어하는 구조이다.The RCM structure of the surgical robot arm mounts a surgical instrument 5 at the end of the robot arm 1, and the instrument 5 rotates about a predetermined point (RCM point 8) on the shaft 7. To operate and control the structure.
본 실시예에 따른 RCM 구조는, 베이스(10)로부터 연장되는 평행사변형 링크 구조로 이루어진다. 즉, 베이스(10)에 축결합되는 제1 링크부(20), 제1 링크부(20)에 축결합되는 제2 링크부(30) 및 제2 링크부(30)에 축결합되는 인스트루먼트 홀더(40)로 이루어지는 로봇 암(1) 구조에 있어서, 베이스(10)와 제1 링크부(20) 간의 결합축을 제1 축, 제1 링크부(20)와 제2 링크부(30) 간의 결합축을 제2 축, 제2 링크부(30)와 인스트루먼트 홀더(40) 간의 결합축을 제3 축이라 하고, RCM 포인트(8)를 포함하는 가상의 평면과 제1, 2, 3 축이 만나는 지점을 각각 제1, 2, 3 지점이라 할 때, 제1 지점(12), 제2 지점(22), 제3 지점(33) 및 RCM 포인트(8)는 평행사변형을 이루는 구조로 이루어진다.The RCM structure according to the present embodiment consists of a parallelogram link structure extending from the base 10. That is, the instrument holder is axially coupled to the first link portion 20 axially coupled to the base 10, the second link portion 30 axially coupled to the first link portion 20, and the second link portion 30. In the robot arm (1) structure composed of 40, the coupling axis between the base 10 and the first link portion 20 is coupled to the first axis, the first link portion 20 and the second link portion 30. The axis is referred to as the second axis, the coupling axis between the second link portion 30 and the instrument holder 40 is the third axis, and the point where the virtual plane including the RCM point 8 and the first, second, and third axes meet. When referred to as the first, second, and third points, respectively, the first point 12, the second point 22, the third point 33, and the RCM point 8 have a structure forming a parallelogram.
이처럼, 각 링크의 절점(제1 지점(12), 제2 지점(22), 제3 지점(33)) 및 RCM 포인트(8)가 평행사변형을 이루도록 로봇 암(1)을 구성하고, 로봇 암(1)을 구동시키는 과정에서도 각 절점 및 RCM 포인트(8)가 평행사변형을 유지하면서 로봇 암(1)이 작동하도록 제어함으로써, 평행사변형의 일변을 이루는 제어 대상축(도 22의 'S1' 참조)이 베이스(10)로부터 원격에 위치하는 한 점(RCM 포인트(8))을 중심으로 회전하도록 할 수 있다.As such, the robot arm 1 is configured such that the nodes (first point 12, second point 22, third point 33) and RCM point 8 of each link form a parallelogram, and the robot arm In the process of driving (1), each node and the RCM point 8 control the robot arm 1 to operate while maintaining the parallelogram, whereby the control target axis forming one side of the parallelogram (see 'S1' in FIG. 22). ) May rotate about a point (RCM point 8) located remotely from the base 10.
인스트루먼트 홀더(40)에는 인터페이스(42)가 형성되어 있고, 인스트루먼트(5)는 인터페이스(42)를 통해 홀더(40)에 장착된다. 즉, 인스트루먼트(5)가 하우징(6)과 하우징(6)으로부터 길이방향으로 연장되는 샤프트(7)로 이루어져 있다고 할 때, 하우징(6)을 인터페이스(42)에 결합함으로써 인스트루먼트(5)는 홀더(40)에 장착되는 것이다.An interface 42 is formed in the instrument holder 40, and the instrument 5 is mounted to the holder 40 via the interface 42. That is, when the instrument 5 consists of the housing 6 and the shaft 7 extending in the longitudinal direction from the housing 6, the instrument 5 is connected to the holder by connecting the housing 6 to the interface 42. 40 is mounted.
인터페이스(42)에는 하우징(6)과의 결합을 위한 기구물 및 로봇 암(1)으로부터 구동력을 전달하기 위한 구동자 등이 형성되며, 이에 대응하여 하우징(6)에도 인터페이스(42)에의 결합을 위한 기구물 및 구동자에 맞물려 작동되는 구동휠 등이 형성될 수 있다. 이처럼, 인터페이스(42)와 하우징(6)에는 서로 대응되는 결합 수단 및 구동전달 수단이 각각 형성되며, 이로써 인스트루먼트(5)는 홀더(40)에 장착된 상태에서 로봇 암(1)으로부터 구동력을 전달받아 작동되게 된다.The interface 42 is formed with a mechanism for coupling with the housing 6 and a driver for transmitting a driving force from the robot arm 1, and correspondingly for coupling to the interface 42 in the housing 6. A driving wheel or the like that is engaged with the mechanism and the driver may be formed. As such, the interface 42 and the housing 6 are each formed with a coupling means and a drive transmission means corresponding to each other, whereby the instrument 5 transmits a driving force from the robot arm 1 in a state mounted on the holder 40. It will work.
전술한 것처럼, 종래의 로봇 암 구조에서는 홀더(40)에 인스트루먼트(5)가 장착되는 과정에서 인스트루먼트 샤프트(7)가 RCM 제어 대상축에 제대로 위치하지 못하고, 소정 각도만큼 회전한 상태로 장착되어, 제어 대상축에 대한 RCM 제어가 인스트루먼트(5)에 유효하게 적용되지 못하는 한계가 있었다. 예를 들어, 제어 대상축을 원하는 각도만큼 회전시키더라도 실제 인스트루먼트(5)는 이보다 소정 각도만큼 더 회전한 상태에 위치하거나, 실제 인스트루먼트(5)를 원하는 각도만큼 회전시키기 위해 제어 대상축이 필요 이상(또는 필요 이하)으로 회전하도록 제어해야 한다는 문제가 있었다.As described above, in the conventional robot arm structure, the instrument shaft 7 is not properly positioned on the RCM control target axis in the process of mounting the instrument 5 on the holder 40, and is mounted in a state of being rotated by a predetermined angle. There was a limitation that the RCM control on the control target axis could not be effectively applied to the instrument 5. For example, even though the control target axis is rotated by a desired angle, the actual instrument 5 is rotated by a predetermined angle more than this, or the control target axis is not necessary to rotate the actual instrument 5 by the desired angle ( Or less than necessary).
이에 대해, 본 실시예에 따른 RCM 구조에서는 인스트루먼트의 샤프트(7)가 제어 대상축, 즉 제3 지점(33)과 RCM 포인트(8)를 연결하는 가상의 직선에 일치하여 위치하도록 한 것을 특징으로 한다.On the other hand, in the RCM structure according to the present embodiment, the shaft 7 of the instrument is positioned to coincide with a virtual straight line connecting the control target axis, that is, the third point 33 and the RCM point 8. do.
이를 위해, 인스트루먼트 홀더(40)의 구조 및 홀더(40)에 장착되는 인스트루먼트(5)의 구조를 종래와 다르게 변경할 필요가 있는데, 그 일례로서 도 22 및 도 23에 도시된 것과 같은 홀더-인스트루먼트 결합 구조를 채택할 수 있다.To this end, it is necessary to change the structure of the instrument holder 40 and the structure of the instrument 5 mounted on the holder 40 differently from the prior art, and as an example, a holder-instrument coupling as shown in FIGS. 22 and 23. Can adopt the structure.
인스트루먼트(5)의 전진, 후퇴, 즉 인스트루먼트(5)를 그 샤프트(7)의 길이방향으로 이동시키기 위해, 인스트루먼트 홀더(40)는 샤프트(7)의 길이방향과 평행한 방향으로 신축되는 구조로 이루어질 수 있다. 예를 들어, 도 22에 도시된 것처럼 복수의 부재가 슬라이딩 방식으로 신축되는 구조, 또는 도 24에 도시된 것처럼 복수의 부재가 텔레스코픽(telescopic) 방식으로 신축되는 구조 등, 다양한 신축 기구로 구성할 수 있다.In order to move the instrument 5 forward or backward, i.e., to move the instrument 5 in the longitudinal direction of the shaft 7, the instrument holder 40 has a structure that is stretched in a direction parallel to the longitudinal direction of the shaft 7 Can be done. For example, as shown in FIG. 22, a plurality of members may be configured to be expanded or contracted in a sliding manner, or as shown in FIG. 24. have.
이 경우, 인스트루먼트의 샤프트(7)가 제어 대상축에 일치하여 장착되도록 하기 위해, 첫째 그 신축 방향이 제어 대상축과 평행하게 되도록 인스트루먼트 홀더(40)를 제2 링크부(30)에 결합한다. 종래에는 홀더의 전방에 인스트루먼트가 장착되는 것을 전제로 하여 슬라이딩 구조가 전방을 향하여 적층되는 구조로 홀더를 제작, 결합하였기 때문에, 홀더가 후방으로 눕는 과정에서 제2 링크부(30)에 의해 간섭될 수 있으며, 이에 따라 제어 대상축과 홀더의 신축 방향(샤프트의 길이방향) 사이에 소정의 각도 차이가 존재하게 되었다.In this case, in order to ensure that the shaft 7 of the instrument is mounted in accordance with the control target axis, first, the instrument holder 40 is coupled to the second link portion 30 so that its stretching direction is parallel to the control target axis. Conventionally, since the holder is manufactured and coupled in a structure in which the sliding structure is stacked forward, assuming that the instrument is mounted on the front of the holder, the holder may interfere with the second link unit 30 in the process of lying down. Accordingly, a predetermined angle difference exists between the control target shaft and the holder in the stretching direction (the longitudinal direction of the shaft).
본 실시예에 따른 홀더(40)는, 도 22에 도시된 것처럼, 인스트루먼트(5)가 후방에 장착되는 구조로 제작될 수 있으며, 이에 따라 슬라이딩 구조 또한 후방을 향하여 적층되는 구조로 이루어진 것을 특징으로 한다. 이처럼, 홀더(40)의 구조를 변경하면 홀더(40)가 후방으로 눕는 각도를 더욱 증가시킬 수 있으며, 결과적으로 홀더(40)의 신축 방향과 제어 대상축의 방향이 평행하게 되도록 홀더(40)를 제2 링크부(30)에 결합시킬 수 있게 된다.As shown in FIG. 22, the holder 40 according to the present embodiment may be manufactured in a structure in which the instrument 5 is mounted at the rear, and accordingly, the sliding structure is also configured to be stacked toward the rear. do. As such, changing the structure of the holder 40 may further increase the angle at which the holder 40 lies rearward, and as a result, the holder 40 may be parallel so that the stretching direction of the holder 40 is parallel to the direction of the control target axis. It is possible to couple to the second link portion (30).
둘째, 본 실시예에 따른 인스트루먼트 홀더(40)는 그 후방에서 인스트루먼트(5)가 장착되는 구조이므로, 인터페이스(42)가 홀더(40)의 후면에 형성된다. 즉, 인스트루먼트(5)를 홀더(40)의 후면 쪽에서 장착하게 되며, 이를 위해 본 실시예에 따른 인스트루먼트 하우징(6)에는 그 전면(인터페이스(42)에 대향하는 면)에 구동부(9)(인터페이스(42)로부터 구동력을 전달받아 작동되는 구동휠 등)가 형성될 수 있다.Second, since the instrument holder 40 according to the present embodiment has a structure in which the instrument 5 is mounted at the rear thereof, the interface 42 is formed on the rear surface of the holder 40. That is, the instrument 5 is mounted on the rear side of the holder 40. For this purpose, the instrument housing 6 according to the present embodiment has a driving part 9 (interface) on its front surface (a surface facing the interface 42). A driving wheel, etc., which is operated by receiving a driving force from 42 may be formed.
전술한 바와 같이 홀더(40)의 신축 방향이 제어 대상축의 방향과 평행하도록 설정되어 있으므로, 인터페이스(42) 부분과 제어 대상축 간의 간격을 적절하게 조절함으로써 인터페이스(42)에 장착되는 인스트루먼트의 샤프트(7)가 제어 대상축에 일치하여 위치하도록 할 수 있다.Since the stretching direction of the holder 40 is set to be parallel to the direction of the control target axis as described above, the shaft of the instrument mounted to the interface 42 by appropriately adjusting the distance between the interface 42 portion and the control target axis ( 7) can be positioned coincident with the control target axis.
이로써, 평행사변형 RCM 구조의 이상적인 제어 대상축에 실제로 인스트루먼트(5)가 위치하도록 할 수 있으며, 실제 인스트루먼트(5)에 대하여 각도 손실 없이 유효하게 RCM 제어가 이루어지도록 할 수 있다.As a result, the instrument 5 can be actually positioned on the ideal control target axis of the parallelogram RCM structure, and the RCM control can be effectively performed without angular loss with respect to the actual instrument 5.
도 22 및 도 23과 같이 RCM 구조를 구성할 경우, 인스트루먼트 샤프트(7)가 제3 지점(33)(제2 링크부(30)와 홀더(40) 간의 결합 부위)에 간섭될 수 있는데, 이는 제3 축의 중간 부분을 천공하거나, 제3 축을 그 중간 부분이 연결되지 않은 구조로 구성함으로써, 샤프트(7)가 제3 축의 가운데 부분을 통해 지나가도록 할 수 있다.When configuring the RCM structure as shown in Figs. 22 and 23, the instrument shaft 7 may interfere with the third point 33 (combination site between the second link portion 30 and the holder 40), which is By drilling the middle part of the third axis or by configuring the third axis in a structure in which the middle part is not connected, the shaft 7 can pass through the middle part of the third axis.
종래의 RCM 구조는 베이스로부터 전방을 향하여 '로봇 암-인스트루먼트 홀더-인스트루먼트'의 순서로 위치하는 구조였던 데에 반하여, 본 실시예에 따른 RCM 구조는 '로봇 암-인스트루먼트-인스트루먼트 홀더'의 순서로 위치하는 구조로 변경되었으며, 이에 따라 인스트루먼트의 샤프트(7)가 제어 대상축에 일치하여 위치하도록 할 수 있다.Whereas the conventional RCM structure was located in the order of the 'robot arm-instrument holder-instrument' toward the front from the base, the RCM structure according to the present embodiment is in the order of the 'robot arm-instrument-instrument holder'. The structure has been changed to position, whereby the shaft 7 of the instrument can be positioned in accordance with the axis of control.
본 실시예와 같이 인터페이스(42)의 위치를 종래와 반대로, 즉 전방에서 후방으로 변경하더라도, 그에 상응하여 하우징(6)의 구조가 변경되므로, 인스트루먼트(5)를 홀더(40)에 장착하는 방식은 종래와 동일하게 할 수 있다.As in this embodiment, even if the position of the interface 42 is reversed from the prior art, that is, from front to back, the structure of the housing 6 is changed correspondingly, so that the instrument 5 is mounted on the holder 40. Can be made similar to the prior art.
나아가, 실제로는 인스트루먼트(5)를 홀더(40)에 장착할 때 로봇 암(1)의 초기 상태는 도 22와 같이 접혀진 상태보다는 도 23과 같이 펴진 상태인 경우가 많은데, 본 실시예에 따른 '홀더-인스트루먼트' 커플링 구조에서는 인스트루먼트(5)를 위에서 아래쪽으로 장착할 수 있는 구조가 될 수 있으므로, 오히려 기존 구조에 비하여 인스트루먼트(5)의 탈착이 더욱 편리해질 수도 있다.Furthermore, in practice, when the instrument 5 is mounted on the holder 40, the initial state of the robot arm 1 is often in the unfolded state as shown in FIG. 23 rather than the folded state as shown in FIG. 22. In the holder-instrument 'coupling structure, since the instrument 5 can be mounted from the top to the bottom, the detachment of the instrument 5 may be more convenient than the existing structure.
정리하면, 본 실시예에 따른 로봇 암의 RCM 구조는, 인스트루먼트 홀더(40)를 그 후방에서 인스트루먼트(5)가 장착되는 구조로 변경함으로써 홀더(40)의 신축 방향이 제어 대상축의 방향과 평행하게 되도록 하고, 인스트루먼트 하우징(6)의 전면에 구동부(9)를 형성하여 하우징(6)의 전면이 홀더(40)의 후면(인터페이스(42))에 결합되는 구조로 변경함으로써 인스트루먼트의 샤프트(7)가 제어 대상축에 일치하여 위치하도록 하였으며, 이에 따라 평행사변형 RCM 구조의 이상적인 제어 대상축에 실제로 인스트루먼트(5)가 위치하여 RCM 제어가 유효하게 이루어지도록 한 것이다.In summary, the RCM structure of the robot arm according to the present embodiment changes the instrument holder 40 to a structure in which the instrument 5 is mounted at the rear thereof so that the stretching direction of the holder 40 is parallel to the direction of the control target axis. The drive shaft 9 is formed on the front surface of the instrument housing 6 so that the front surface of the housing 6 is connected to the rear surface of the holder 40 (interface 42) so that the shaft 7 of the instrument can be connected. Is positioned in accordance with the control target axis, and accordingly, the instrument 5 is actually positioned on the ideal control target axis of the parallelogram RCM structure to effectively control the RCM.
도 24 및 도 25는 본 발명의 다른 실시예에 따른 수술용 로봇 암의 RCM 구조를 나타낸 측면도이다. 도 24 및 도 25를 참조하면, 로봇 암(1), RCM 포인트(8), 인스트루먼트(5), 하우징(6), 구동부(9), 샤프트(7), 베이스(10), 제1 지점(12), 제1 링크부(20), 제2 지점(22), 제2 링크부(30), 제3 지점(33), 인스트루먼트 홀더(50), 인터페이스(52)가 도시되어 있다.24 and 25 are side views showing the RCM structure of the surgical robot arm according to another embodiment of the present invention. 24 and 25, the robot arm 1, the RCM point 8, the instrument 5, the housing 6, the drive 9, the shaft 7, the base 10, and the first point ( 12), the first link portion 20, the second point 22, the second link portion 30, the third point 33, the instrument holder 50, and the interface 52 are shown.
본 실시예는 인스트루먼트의 샤프트가 제어 대상축에 일치하여 위치하도록 하기 위해, 홀더 및 인스트루먼트의 구조를 종래와 다르게 변경한 또 다른 사례이다.This embodiment is another example in which the structure of the holder and the instrument is changed from the conventional one so that the shaft of the instrument is aligned with the control target axis.
본 실시예에서는 인스트루먼트(5)를 그 샤프트(7)의 길이방향으로 이동시키기 위해, 인스트루먼트 홀더(50)를 복수의 부재가 텔레스코픽 방식으로 신축되는 구조, 즉 도 24 및 도 25에 도시된 것처럼 인스트루먼트 홀더(50)를 상방과 하방 사이에서 신축되는 구조로 구성할 수 있다.In this embodiment, in order to move the instrument 5 in the longitudinal direction of the shaft 7, the instrument holder 50 has a structure in which a plurality of members are telescopically stretched, that is, as shown in FIGS. 24 and 25. The holder 50 can be constructed in a structure that is stretched between the upper side and the lower side.
이 경우, 인스트루먼트의 샤프트(7)가 제어 대상축에 일치하여 장착되도록 하기 위해, 그 신축 방향이 제어 대상축과 일치(평행)하도록 인스트루먼트 홀더(50)를 제2 링크부(30)에 결합한다. 본 실시예에 따른 홀더(50)는, 도 24에 도시된 것처럼, 인스트루먼트(5)가 상방에 장착되는 구조로 제작될 수 있으며, 이에 따라 홀더(50)는 전체적으로 상, 하방으로 신축되는 텔레스코픽 구조로 구성할 수 있다.In this case, in order for the shaft 7 of the instrument to be mounted in accordance with the control target axis, the instrument holder 50 is coupled to the second link portion 30 so that its stretching direction coincides (parallel) with the control target axis. . Holder 50 according to the present embodiment, as shown in Figure 24, can be manufactured in a structure that the instrument 5 is mounted upward, accordingly the holder 50 is telescopic structure that is stretched up and down as a whole It can be configured as.
본 실시예에 따른 인스트루먼트 홀더(50)는 그 상방에서 인스트루먼트(5)가 장착되는 구조이므로, 인터페이스(52)가 홀더(50)의 상면에 형성된다. 즉, 인스트루먼트(5)를 홀더(50)의 상면 쪽에서 장착하게 되며, 이를 위해 본 실시예에 따른 인스트루먼트 하우징(6)에는 그 하면(인터페이스(52)에 대향하는 면)에 구동부(9)(인터페이스(52)로부터 구동력을 전달받아 작동되는 구동휠 등)가 형성될 수 있다.Since the instrument holder 50 according to the present embodiment has a structure in which the instrument 5 is mounted thereon, the interface 52 is formed on the upper surface of the holder 50. That is, the instrument 5 is mounted on the upper surface side of the holder 50. For this purpose, the instrument housing 6 according to the present embodiment has a driving portion 9 (interface) on its lower surface (surface facing the interface 52). A driving wheel which is operated by receiving the driving force from 52).
전술한 바와 같이 홀더(50)의 신축 방향이 제어 대상축과 일치하도록 설정되어 있으므로, 인스트루먼트(5)를 인터페이스(52)에 장착하면 그 샤프트(7)가 제어 대상축에 일치하여 위치하게 된다.As described above, since the stretching direction of the holder 50 is set to coincide with the control target shaft, when the instrument 5 is mounted on the interface 52, the shaft 7 is positioned in accordance with the control target shaft.
이로써, 평행사변형 RCM 구조의 이상적인 제어 대상축에 실제로 인스트루먼트(5)가 위치하도록 할 수 있으며, 실제 인스트루먼트(5)에 대하여 각도 손실 없이 유효하게 RCM 제어가 이루어지도록 할 수 있다.As a result, the instrument 5 can be actually positioned on the ideal control target axis of the parallelogram RCM structure, and the RCM control can be effectively performed without angular loss with respect to the actual instrument 5.
즉, 본 실시예에서는 하우징(6)의 하면이 인터페이스(52)와 결합되도록 함으로써 이상적인 제어 대상축과 현실적인 샤프트 축이 일치하도록 할 수 있다.In other words, in this embodiment, the lower surface of the housing 6 is coupled to the interface 52 so that the ideal axis of control and the actual shaft axis can coincide.
한편, 본 실시예와 같이 하우징(6)의 하면에 커플링 구조(구동부(9) 등)를 형성할 경우, 하우징(6)의 전면이나 후면에 커플링 구조를 형성한 경우에 비하여 인스트루먼트(5)를 홀더(50)로부터 쉽게 탈착할 수 있다.On the other hand, when the coupling structure (drive part 9, etc.) is formed on the lower surface of the housing 6 as in the present embodiment, the instrument 5 is formed in comparison with the case where the coupling structure is formed on the front or rear surface of the housing 6. ) Can be easily detached from the holder (50).
커플링 구조가 전면이나 후면에 형성된 경우, 하우징(6)을 인터페이스(42)로부터 분리하기 위해서는 하우징(6)을 전면이나 후면의 높이만큼 슬라이딩시킨 후 떼어 내야 하는 반면, 커플링 구조가 하면에 형성된 경우, 하우징(6)을 인터페이스(52)로부터 떼어내는 순간 하우징(6)이 인터페이스(52)로부터 분리되는 것이므로, 최소한의 이동만으로 인스트루먼트(5)를 홀더(50)에 탈착할 수 있다.If the coupling structure is formed on the front or rear side, in order to separate the housing 6 from the interface 42, the housing 6 must be slid by the height of the front or rear side and then detached, whereas the coupling structure is formed on the bottom side. In this case, since the housing 6 is separated from the interface 52 at the moment of detaching the housing 6 from the interface 52, the instrument 5 can be detached from the holder 50 with minimal movement.
한편, 본 발명의 다른 실시예에 따르면, 인스트루먼트 홀더의 뒷면(후면)에 인터페이스가 형성되고 인터페이스에 대향하여 하우징의 전면에 구동부가 형성되며, 이러한 '후면 인터페이스-전면 구동부' 커플링 구조로 인하여 RCM 구조의 제어 대상축(도 19의 'S1' 참조)과 현실적인 샤프트 축(도 19의 'S2' 참조)이 이루는 각도(도 19의 'A' 참조)를 줄일 수 있다.On the other hand, according to another embodiment of the present invention, the interface is formed on the back (rear) of the instrument holder and the drive is formed on the front of the housing facing the interface, due to this 'rear interface-front drive' coupling structure RCM The angle between the control target axis of the structure (see 'S1' in FIG. 19) and the realistic shaft axis (see 'S2' in FIG. 19) can be reduced.
또한, 본 발명의 또 다른 실시예에 따르면, 인스트루먼트 홀더의 상면에 인터페이스가 형성되고 인터페이스에 대향하여 하우징의 하면에 구동부가 형성되며, 이러한 '상면 인터페이스-하면 구동부' 커플링 구조로 인하여 RCM 구조의 제어 대상축(도 19의 'S1' 참조)과 현실적인 샤프트 축(도 19의 'S2' 참조)이 이루는 각도(도 19의 'A' 참조)를 줄일 수도 있다.In addition, according to another embodiment of the present invention, the interface is formed on the upper surface of the instrument holder and the driving portion is formed on the lower surface of the housing opposite the interface, due to this 'top interface-lower surface driving unit' coupling structure of the RCM structure It is also possible to reduce the angle between the control target axis (see 'S1' in FIG. 19) and the realistic shaft axis (see 'S2' in FIG. 19) (see 'A' in FIG. 19).
이러한 다양한 실시예에서는, 실제 인스트루먼트에 대한 각도 손실을 최대한 줄여 RCM 제어가 비교적 제대로 이루어지도록 할 수 있다.In these various embodiments, the angular loss for the actual instrument can be minimized to ensure that the RCM control is relatively good.
이 경우, 그 샤프트가 제어 대상축(제3 지점과 RCM 포인트를 연결하는 가상의 직선)에 일치하여 위치하도록 인스트루먼트의 하우징을 인터페이스에 결합함으로써, 실제 인스트루먼트에 대하여 각도 손실 없이 유효하게 RCM 제어가 이루어지도록 할 수 있음은 전술한 실시예에서와 마찬가지이다.In this case, by coupling the housing of the instrument to the interface such that the shaft is aligned with the axis of control (an imaginary straight line connecting the third point and the RCM point), the RCM control is effectively performed without angular loss with respect to the actual instrument. The same as in the above-described embodiment.
또한, 이 경우에도, 로봇 암을 구동시키는 과정에서 각 절점(제1 지점, 제2 지점, 제3 지점) 및 RCM 포인트가 평행사변형을 유지하면서 로봇 암이 작동하도록 제어함으로써, 평행사변형의 일변을 이루는 제어 대상축(도 22 내지 도 25의 'S1' 참조)이 베이스로부터 원격에 위치하는 한 점(RCM 포인트)을 중심으로 회전하도록 할 수 있음은 전술한 바와 같다.Also in this case, one side of the parallelogram is controlled by controlling the robot arm to operate while maintaining the parallelogram of each node (first point, second point, and third point) in the process of driving the robot arm. As described above, the control target axis (see 'S1' in FIGS. 22 to 25) to be formed may be rotated about a point (RCM point) located remotely from the base.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야에서 통상의 지식을 가진 자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to a preferred embodiment of the present invention, those skilled in the art that various modifications of the present invention without departing from the spirit and scope of the invention described in the claims below And can be changed.

Claims (10)

  1. 로봇 암의 단부에 수술용 인스트루먼트를 장착하여, 상기 인스트루먼트가 원격의 RCM(remote center of motion) 포인트를 중심으로 회전하도록 작동되는 수술용 로봇 암의 RCM 구조로서,As an RCM structure of a surgical robot arm mounted to the end of the robot arm, the instrument is operated to rotate about a remote remote center of motion (RCM) point,
    베이스(base)와;A base;
    상기 베이스와 상기 RCM 포인트를 연결한 가상의 선을 기준으로 일측과 타측으로 모두 회전가능하도록 상기 베이스에 결합되는 제1 링크부와;A first link unit coupled to the base to be rotatable to one side and the other side based on a virtual line connecting the base and the RCM point;
    상기 제1 링크부에 회전가능하도록 결합되며, 그 단부에 상기 인스트루먼트가 장착되는 제2 링크부를 포함하는 수술용 로봇 암의 RCM 구조.The RCM structure of the surgical robot arm is rotatably coupled to the first link portion, the surgical robot arm including a second link portion is mounted to the end of the instrument.
  2. 제1항에 있어서,The method of claim 1,
    상기 로봇 암은 로봇 본체에 결합되는 서포트 암(support arm)에 결합되며, 상기 베이스는 상기 서포트 암의 단부에 형성되고, 상기 제1 링크부 및 상기 제2 링크부는 상기 로봇 암을 이루는 것을 특징으로 하는 수술용 로봇 암의 RCM 구조.The robot arm is coupled to a support arm coupled to the robot body, wherein the base is formed at an end of the support arm, and the first link portion and the second link portion form the robot arm. RCM structure of a surgical robot arm.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1 링크부는 360도 회전이 가능하도록 상기 베이스에 결합되는 것을 특징으로 하는 수술용 로봇 암의 RCM 구조.The first link portion RCM structure of the surgical robot arm, characterized in that coupled to the base to enable a 360-degree rotation.
  4. 제1항에 있어서,The method of claim 1,
    상기 인스트루먼트는 상기 제2 링크부에 결합되는 하우징과, 상기 하우징으로부터 연장되는 샤프트를 포함하며, 상기 RCM 포인트는 상기 샤프트 상에 위치하는 것을 특징으로 하는 수술용 로봇 암의 RCM 구조.The instrument includes a housing coupled to the second link portion and a shaft extending from the housing, wherein the RCM point is located on the shaft.
  5. 제1항에 있어서,The method of claim 1,
    상기 제2 링크부는 상기 제1 링크부에 회전가능하도록 결합되는 링크부재와, 상기 링크부재에 회전가능하도록 결합되며 상기 인스트루먼트가 장착되는 인스트루먼트 홀더(holder)를 포함하며,The second link portion includes a link member rotatably coupled to the first link portion, and an instrument holder rotatably coupled to the link member and to which the instrument is mounted.
    상기 베이스와 상기 제1 링크부의 결합축이 소정의 평면과 만나는 제1 지점, 상기 제1 링크부와 상기 링크부재의 결합축이 상기 평면과 만나는 제2 지점, 상기 링크부재와 상기 인스트루먼트 홀더의 결합축이 상기 평면과 만나는 제3 지점 및 상기 RCM 포인트는 평행사변형을 이루는 것을 특징으로 하는 수술용 로봇 암의 RCM 구조.A first point at which a coupling axis of the base and the first link part meet a predetermined plane, a second point at which a coupling axis of the first link part and the link member meets the plane, a coupling of the link member and the instrument holder The RCM structure of the surgical robot arm of claim 3, wherein the third point where the axis meets the plane and the RCM point form a parallelogram.
  6. 제5항에 있어서,The method of claim 5,
    상기 제1 링크부가 회전함에 따라, 상기 제2 링크부는 상기 제1 지점, 상기 제2 지점, 상기 제3 지점 및 상기 RCM 포인트가 평행사변형을 유지하도록 작동되는 것을 특징으로 하는 수술용 로봇 암의 RCM 구조.As the first link portion rotates, the second link portion is operated so that the first point, the second point, the third point and the RCM point maintain a parallelogram. rescue.
  7. 제6항에 있어서,The method of claim 6,
    상기 제1 링크부는 상기 베이스에 간섭되지 않고 회전가능하도록 상기 베이스에 축결합되는 것을 특징으로 하는 수술용 로봇 암의 RCM 구조.And the first link portion is axially coupled to the base so as to be rotatable without interfering with the base.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 링크부재는 상기 제1 링크부에 간섭되지 않고 회전가능하도록 상기 제1 링크부에 축결합되는 것을 특징으로 하는 수술용 로봇 암의 RCM 구조.The link member is an RCM structure of the surgical robot arm, characterized in that coupled to the first link portion rotatably without interference with the first link portion.
  9. 제8항에 있어서,The method of claim 8,
    상기 인스트루먼트 홀더는 상기 링크부재에 간섭되지 않고 회전가능하도록 상기 링크부재에 축결합되는 것을 특징으로 하는 수술용 로봇 암의 RCM 구조.And the instrument holder is axially coupled to the link member so as to be rotatable without interfering with the link member.
  10. 제9항에 있어서,The method of claim 9,
    상기 인스트루먼트는 그 회전 동작이 상기 제1 링크부 및 상기 제2 링크부에 간섭되지 않도록 상기 인스트루먼트 홀더에 장착되는 것을 특징으로 하는 수술용 로봇 암의 RCM 구조.The instrument is RCM structure of a surgical robot arm, characterized in that the rotational movement is mounted to the instrument holder so as not to interfere with the first link portion and the second link portion.
PCT/KR2011/003817 2010-05-28 2011-05-25 Rcm structure for a surgical robot arm WO2011149260A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020100050681A KR20110131053A (en) 2010-05-28 2010-05-28 Rcm structure of surgical robot arm
KR10-2010-0050681 2010-05-28
KR1020100076924A KR101550451B1 (en) 2010-08-10 2010-08-10 RCM structure of surgical robot arm
KR10-2010-0076924 2010-08-10

Publications (2)

Publication Number Publication Date
WO2011149260A2 true WO2011149260A2 (en) 2011-12-01
WO2011149260A3 WO2011149260A3 (en) 2012-04-19

Family

ID=45004558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003817 WO2011149260A2 (en) 2010-05-28 2011-05-25 Rcm structure for a surgical robot arm

Country Status (1)

Country Link
WO (1) WO2011149260A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104783900A (en) * 2015-04-03 2015-07-22 中国科学院深圳先进技术研究院 Follow-up type nasal endoscope operation auxiliary robot
WO2015142512A1 (en) * 2014-03-17 2015-09-24 Intuitive Surgical Operations, Inc. Structural adjustment systems and methods for a teleoperational medical system
CN105979902A (en) * 2014-02-04 2016-09-28 皇家飞利浦有限公司 Remote center of motion definition using light sources for robot systems
US9782198B2 (en) 2013-03-28 2017-10-10 Koninklijke Philips N.V. Localization of robotic remote center of motion point using custom trocar
JP2018504201A (en) * 2015-01-23 2018-02-15 マッケ・ゲゼルシャフトミットベシュレンクターハフトゥング Device for holding and moving the laparoscope during surgery
CN110421577A (en) * 2019-08-08 2019-11-08 四川阿泰因机器人智能装备有限公司 Synchronous telescopic boom and its inspecting robot
JP2019213898A (en) * 2012-06-01 2019-12-19 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Multi-port surgical robotic system architecture
CN114533269A (en) * 2021-09-13 2022-05-27 广西大学 RCM positioning mechanism of surgical robot
US11547281B2 (en) 2018-02-15 2023-01-10 Covidien Lp Sheath assembly for a rigid endoscope

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003067341A2 (en) * 2002-02-06 2003-08-14 The Johns Hopkins University Remote center of motion robotic system and method
WO2008157225A1 (en) * 2007-06-19 2008-12-24 Intuitive Surgical, Inc. Robotic manipulator with remote center of motion and compact drive
US20090048611A1 (en) * 1992-05-27 2009-02-19 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US20090234369A1 (en) * 2006-06-19 2009-09-17 Robarts Research Institute Apparatus for guiding a medical tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090048611A1 (en) * 1992-05-27 2009-02-19 International Business Machines Corporation System and method for augmentation of endoscopic surgery
WO2003067341A2 (en) * 2002-02-06 2003-08-14 The Johns Hopkins University Remote center of motion robotic system and method
US20090234369A1 (en) * 2006-06-19 2009-09-17 Robarts Research Institute Apparatus for guiding a medical tool
WO2008157225A1 (en) * 2007-06-19 2008-12-24 Intuitive Surgical, Inc. Robotic manipulator with remote center of motion and compact drive
US20080314181A1 (en) * 2007-06-19 2008-12-25 Bruce Schena Robotic Manipulator with Remote Center of Motion and Compact Drive

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11576734B2 (en) 2012-06-01 2023-02-14 Intuitive Surgical Operations, Inc. Multi-port surgical robotic system architecture
JP2019213898A (en) * 2012-06-01 2019-12-19 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Multi-port surgical robotic system architecture
US9782198B2 (en) 2013-03-28 2017-10-10 Koninklijke Philips N.V. Localization of robotic remote center of motion point using custom trocar
CN105979902A (en) * 2014-02-04 2016-09-28 皇家飞利浦有限公司 Remote center of motion definition using light sources for robot systems
US10182873B2 (en) 2014-03-17 2019-01-22 Intuitive Surgical Operations, Inc. Structural adjustment systems and methods for a teleoperational medical system
KR20160135288A (en) 2014-03-17 2016-11-25 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Structural adjustment systems and methods for a teleoperational medical system
US11432893B2 (en) 2014-03-17 2022-09-06 Intuitive Surgical Operations, Inc. Structural adjustment systems and methods for a teleoperational medical system
WO2015142512A1 (en) * 2014-03-17 2015-09-24 Intuitive Surgical Operations, Inc. Structural adjustment systems and methods for a teleoperational medical system
US11963731B2 (en) 2014-03-17 2024-04-23 Intuitive Surgical Operations, Inc. Structural adjustment systems and methods for a teleoperational medical system
JP2018504201A (en) * 2015-01-23 2018-02-15 マッケ・ゲゼルシャフトミットベシュレンクターハフトゥング Device for holding and moving the laparoscope during surgery
CN104783900A (en) * 2015-04-03 2015-07-22 中国科学院深圳先进技术研究院 Follow-up type nasal endoscope operation auxiliary robot
US11547281B2 (en) 2018-02-15 2023-01-10 Covidien Lp Sheath assembly for a rigid endoscope
CN110421577A (en) * 2019-08-08 2019-11-08 四川阿泰因机器人智能装备有限公司 Synchronous telescopic boom and its inspecting robot
CN114533269A (en) * 2021-09-13 2022-05-27 广西大学 RCM positioning mechanism of surgical robot
CN114533269B (en) * 2021-09-13 2023-10-31 广西大学 RCM positioning mechanism of surgical robot

Also Published As

Publication number Publication date
WO2011149260A3 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
WO2011149260A2 (en) Rcm structure for a surgical robot arm
CN106901837B (en) For multiple articulated type instruments to be retracted the method and system that entry conductor moves in series
WO2010019001A2 (en) Tool for minimally invasive surgery and method for using the same
EP2259743B1 (en) Coupler to transfer controller motion from a robotic manipulator to an attached instrument
JP5610547B2 (en) Multi-configuration telepresence system and method
EP2052675B1 (en) A control assembly
WO2010123231A2 (en) Coupling structure for a surgical instrument
US6788018B1 (en) Ceiling and floor mounted surgical robot set-up arms
CN105073055B (en) The system and method that near-end for operating theater instruments controls
WO2010068003A2 (en) Surgical instrument and coupling structure for surgical robot
KR101550451B1 (en) RCM structure of surgical robot arm
CN101912307B (en) Offset remote center manipulator
CN102469921B (en) Endoscope-holding device
WO2019240453A1 (en) Robot arm structure and surgical robot manipulator including same
WO2010068005A2 (en) Surgical robot
WO2015163546A1 (en) Surgical instrument
WO2013018984A2 (en) Master gripper structure for surgical robot
JP2016120277A (en) Device for robot-assisted surgery
WO2011102629A2 (en) Master control device of robot, and surgical robot using same
AU2012332099A1 (en) Steady hand micromanipulation robot
BR112012011435B1 (en) Surgical instrument mechanism, robotic surgical instrument set and robotic surgical instrument system
WO2020024946A1 (en) Slave manipulator device assembly
EP3225207B1 (en) Surgical robot/instrument system
CN111093550B (en) Energy disconnection for robotic surgical assembly
JP3628742B2 (en) Medical manipulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786892

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786892

Country of ref document: EP

Kind code of ref document: A2