US20030024696A1 - Counterflow plate-fin heat exchanger with extended header fin - Google Patents

Counterflow plate-fin heat exchanger with extended header fin Download PDF

Info

Publication number
US20030024696A1
US20030024696A1 US09/922,367 US92236701A US2003024696A1 US 20030024696 A1 US20030024696 A1 US 20030024696A1 US 92236701 A US92236701 A US 92236701A US 2003024696 A1 US2003024696 A1 US 2003024696A1
Authority
US
United States
Prior art keywords
cell
bottom sheets
flow
finned member
cantilever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/922,367
Inventor
Alexander Haplau-Colan
James Nash
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ingersoll Rand Co
Original Assignee
Ingersoll Rand Energy Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingersoll Rand Energy Systems Corp filed Critical Ingersoll Rand Energy Systems Corp
Priority to US09/922,367 priority Critical patent/US20030024696A1/en
Assigned to INGERSOLL-RAND ENERGY SYSTEMS CORPORATION reassignment INGERSOLL-RAND ENERGY SYSTEMS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAPLAU-COLAN, ALEXANDER, NASH, JAMES S.
Priority to EP02016108A priority patent/EP1281921A3/en
Publication of US20030024696A1 publication Critical patent/US20030024696A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements

Definitions

  • the invention relates to recuperators primarily for use in gas turbine engines, and more particularly to a fin construction for the header portions of such recuperators.
  • the present invention provides a cell construction for a recuperator that is preferably used in a recuperated microturbine engine.
  • the cell includes top and bottom sheets having aligned manifold openings.
  • the cell also includes a header finned member disposed between the top and bottom sheets and having a cantilever portion extending into the manifold openings in cantilevered fashion.
  • the header finned member is metallurgically bonded to the top and bottom sheets.
  • the cantilever portion includes a free end edge.
  • a high pressure fluid, such as compressed air is supplied into the cell, and causes a state of tensile stress in the header finned member.
  • the free end edge of the cantilever portion is exposed to substantially reduced tensile stress because the cantilever portion is free from a direct metallurgical bond to the top and bottom sheets.
  • FIG. 1 is an exploded view of a recuperated microturbine engine embodying the invention.
  • FIG. 2 is a perspective view of the recuperator of the engine illustrated in FIG. 1.
  • FIG. 3 is an exploded view of one cell of the recuperator.
  • FIG. 4 is an enlarged perspective view of a portion of the recuperator.
  • FIG. 5 is a graphical representation of the tensile stress on the header finned members of the recuperator.
  • FIG. 1 illustrates a recuperated microturbine engine 10 that includes a frame 14 .
  • a recuperator or heat exchanger 18 is mounted to the frame 14 .
  • the recuperator 18 includes a plurality of stacked cells 22 that are metallurgically bonded (e.g., by welding and/or brazing) to each other to define an inlet manifold 26 and an outlet manifold 30 .
  • the interior spaces or volumes of the cells 22 communicate between the inlet and outlet manifolds 26 , 30 .
  • Exhaust gas flow spaces are defined between the cells 22 for a flow of hot exhaust gases 34 .
  • the details of the recuperator construction will be discussed in more detail below.
  • the engine 10 also includes an air compressor 38 that provides compressed air 40 (FIG. 2) to the inlet manifold 26 of the recuperator 18 through an air compressor duct (not shown).
  • the compressed air flows into the cells 22 , where it is heated by the cross-flow of hot exhaust gases 34 , and exits the recuperator 18 through the outlet manifold 30 as preheated compressed air 41 (FIG. 2).
  • a combustor 42 is housed within or otherwise communicates with the outlet manifold 30 of the recuperator 18 .
  • the preheated compressed air 41 exiting the recuperator 18 is mixed with a fuel (e.g., natural gas), and is then burned by the combustor 42 .
  • the efficiency of the combustor 42 is improved by preheating the compressed air.
  • the combustor 42 maintains a substantially continuous explosion that is fed by the fuel and air mixture. The explosion produces a rapidly-expanding flow of products of combustion.
  • the engine 10 also includes a turbine 46 that receives the products of combustion from the combustor 42 .
  • the expansion of the products of combustion discussed above drives the turbine 46 .
  • the turbine 46 in turn drives an electric generator 50 to generate electricity.
  • the turbine 46 also drives the air compressor 38 .
  • the exhaust gases 34 from the turbine 46 are then routed through the exhaust gas flow spaces in the recuperator 18 , as illustrated in FIG. 2, before the exhaust gases are finally vented to the atmosphere.
  • each cell 22 of the recuperator 18 includes top and bottom plates or sheets 58 , 62 , an internal or matrix finned member 66 , inlet and outlet header finned members 70 , and external finned members 74 .
  • the top and bottom sheets 58 , 62 define manifold openings 78 that align to define the manifolds 26 , 30 .
  • the manifold openings 78 and manifolds 26 , 30 are generally cylindrical in the illustrated embodiment, but could have other configurations.
  • the top and bottom sheets 58 , 62 include substantially planar portions 82 and diverging portions 86 angled with respect to the planar portions 82 .
  • the diverging portions 86 and planar portions 82 define a divergence edge 90 therebetween, and the divergence edges 90 define the boundaries of the manifolds 26 , 30 .
  • the planar portions 82 of the top sheets 58 are substantially parallel to the planar portions 82 of the bottom sheets 62 .
  • the diverging portion 86 of the top sheet 58 of each cell 22 is angled away from the bottom sheet 62 and header finned member 70 of that cell 22 , and is angled toward the bottom sheet 62 of the cell 22 above it.
  • the diverging portion 86 of the bottom sheet 62 of each cell 22 is angled away from the top sheet 58 and header finned member 70 of that cell 22 , and is angled toward the top sheet 58 of the cell 22 below it.
  • Adjacent cells 22 in the recuperator 18 are metallurgically bonded to each other where the diverging portions 86 of the top and bottom sheets 58 , 62 come together.
  • the sheets 58 , 62 are also sealed to each other along their edges to substantially air-tightly seal the interior volume of the cell 22 , except along the divergence edges 90 , where the cell communicates with the respective inlet and outlet manifolds 26 , 30 .
  • the matrix and header finned members 66 , 70 are metallurgically bonded to the top and bottom sheets 58 , 62 .
  • the header finned members 70 are thus metallurgically bonded to the top and bottom sheets 58 , 62 along the divergence edge 90 .
  • the compressed air increases pressure within the cells 22 and applies tensile stress on the matrix and header finned members 66 , 70 .
  • a cantilever portion 94 of each header finned member 70 extends beyond the divergence edge 90 and into the manifolds 26 , 30 in a cantilevered fashion. The cantilever portion 94 is therefore free from direct metallurgical bond to the top and bottom sheets 58 , 62 .
  • the cantilever portion 94 includes a free end edge 98 that is not aligned with the divergence edge 90 .
  • the free end edge 98 of the cantilever portion 94 may be cut and not polished or treated because the stress level on the free end edge 98 is reduced. This is because the free end edge 98 is not directly exposed to the tensile stresses in the header finned member 70 caused by the pressurized air in the cell 22 . Rather, the cantilever portion 94 helps resist the tensile loading on the header finned member 70 while reducing the tensile stress on the free end edge 98 .
  • the tensile stress on the header finned member 70 decreases over the span of the cantilever portion 94 , and is substantially diminished or non-existent at the free end edge 98 .

Abstract

A plate-fin heat exchanger includes a stacked array of cells. Each cell includes top and bottom sheets defining manifolds and header finned members disposed between the top and bottom sheets. The top and bottom sheets include substantially planar portions, diverging portions angled with respect to the planar portions, and divergence edges defined between the planar and diverging portions. The header finned member extends beyond the divergence edges of the top and bottom sheets and is supported in cantilevered fashion within the manifold.

Description

    BACKGROUND
  • The invention relates to recuperators primarily for use in gas turbine engines, and more particularly to a fin construction for the header portions of such recuperators. [0001]
  • SUMMARY
  • The present invention provides a cell construction for a recuperator that is preferably used in a recuperated microturbine engine. The cell includes top and bottom sheets having aligned manifold openings. The cell also includes a header finned member disposed between the top and bottom sheets and having a cantilever portion extending into the manifold openings in cantilevered fashion. The header finned member is metallurgically bonded to the top and bottom sheets. The cantilever portion includes a free end edge. A high pressure fluid, such as compressed air is supplied into the cell, and causes a state of tensile stress in the header finned member. The free end edge of the cantilever portion is exposed to substantially reduced tensile stress because the cantilever portion is free from a direct metallurgical bond to the top and bottom sheets. [0002]
  • Other features and advantages of the invention will become apparent to those skilled in the art upon review of the following detailed description, claims, and drawings. [0003]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an exploded view of a recuperated microturbine engine embodying the invention. [0004]
  • FIG. 2 is a perspective view of the recuperator of the engine illustrated in FIG. 1. [0005]
  • FIG. 3 is an exploded view of one cell of the recuperator. [0006]
  • FIG. 4 is an enlarged perspective view of a portion of the recuperator. [0007]
  • FIG. 5 is a graphical representation of the tensile stress on the header finned members of the recuperator.[0008]
  • Before one embodiment of the invention is explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including” and “comprising” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. The use of “consisting of and variations thereof herein is meant to encompass only the items listed thereafter. The use of letters to identify elements of a method or process is simply for identification and is not meant to indicate that the elements should be performed in a particular order. [0009]
  • DETAILED DESCRIPTION
  • For the sake of brevity, not all aspects of plate fin heat exchanger and microturbine combustor technology are discussed herein. For additional description of that technology, reference is made to U.S. patent application Ser. Nos. 09/790,464 filed Feb. 22, 2001, 09/668,358 filed Sept. 25, 2000, 09/409,641 filed Oct. 1, 1999, 09/239,647 filed Jan. 29, 1999 (now U.S. Pat. No. 5,983,992), and 08/792,261 filed Jan. 13, 1997. The entire contents of these applications are incorporated by reference herein. [0010]
  • FIG. 1 illustrates a recuperated microturbine engine [0011] 10 that includes a frame 14. A recuperator or heat exchanger 18 is mounted to the frame 14. As seen in FIG. 2, the recuperator 18 includes a plurality of stacked cells 22 that are metallurgically bonded (e.g., by welding and/or brazing) to each other to define an inlet manifold 26 and an outlet manifold 30. The interior spaces or volumes of the cells 22 communicate between the inlet and outlet manifolds 26, 30. Exhaust gas flow spaces are defined between the cells 22 for a flow of hot exhaust gases 34. The details of the recuperator construction will be discussed in more detail below.
  • The engine [0012] 10 also includes an air compressor 38 that provides compressed air 40 (FIG. 2) to the inlet manifold 26 of the recuperator 18 through an air compressor duct (not shown). The compressed air flows into the cells 22, where it is heated by the cross-flow of hot exhaust gases 34, and exits the recuperator 18 through the outlet manifold 30 as preheated compressed air 41 (FIG. 2). A combustor 42 is housed within or otherwise communicates with the outlet manifold 30 of the recuperator 18. The preheated compressed air 41 exiting the recuperator 18 is mixed with a fuel (e.g., natural gas), and is then burned by the combustor 42. The efficiency of the combustor 42 is improved by preheating the compressed air. During operation of the engine 10, the combustor 42 maintains a substantially continuous explosion that is fed by the fuel and air mixture. The explosion produces a rapidly-expanding flow of products of combustion.
  • The engine [0013] 10 also includes a turbine 46 that receives the products of combustion from the combustor 42. The expansion of the products of combustion discussed above drives the turbine 46. The turbine 46 in turn drives an electric generator 50 to generate electricity. The turbine 46 also drives the air compressor 38. The exhaust gases 34 from the turbine 46 are then routed through the exhaust gas flow spaces in the recuperator 18, as illustrated in FIG. 2, before the exhaust gases are finally vented to the atmosphere.
  • As seen in FIG. 3, each [0014] cell 22 of the recuperator 18 includes top and bottom plates or sheets 58, 62, an internal or matrix finned member 66, inlet and outlet header finned members 70, and external finned members 74. The top and bottom sheets 58, 62 define manifold openings 78 that align to define the manifolds 26, 30. The manifold openings 78 and manifolds 26, 30 are generally cylindrical in the illustrated embodiment, but could have other configurations.
  • As seen in FIGS. 3 and 4, the top and [0015] bottom sheets 58, 62 include substantially planar portions 82 and diverging portions 86 angled with respect to the planar portions 82. The diverging portions 86 and planar portions 82 define a divergence edge 90 therebetween, and the divergence edges 90 define the boundaries of the manifolds 26, 30. The planar portions 82 of the top sheets 58 are substantially parallel to the planar portions 82 of the bottom sheets 62.
  • The [0016] diverging portion 86 of the top sheet 58 of each cell 22 is angled away from the bottom sheet 62 and header finned member 70 of that cell 22, and is angled toward the bottom sheet 62 of the cell 22 above it. Similarly, the diverging portion 86 of the bottom sheet 62 of each cell 22 is angled away from the top sheet 58 and header finned member 70 of that cell 22, and is angled toward the top sheet 58 of the cell 22 below it. Adjacent cells 22 in the recuperator 18 are metallurgically bonded to each other where the diverging portions 86 of the top and bottom sheets 58, 62 come together. The sheets 58, 62 are also sealed to each other along their edges to substantially air-tightly seal the interior volume of the cell 22, except along the divergence edges 90, where the cell communicates with the respective inlet and outlet manifolds 26, 30.
  • The matrix and header finned [0017] members 66, 70 are metallurgically bonded to the top and bottom sheets 58, 62. The header finned members 70 are thus metallurgically bonded to the top and bottom sheets 58, 62 along the divergence edge 90. The compressed air increases pressure within the cells 22 and applies tensile stress on the matrix and header finned members 66, 70. A cantilever portion 94 of each header finned member 70 extends beyond the divergence edge 90 and into the manifolds 26, 30 in a cantilevered fashion. The cantilever portion 94 is therefore free from direct metallurgical bond to the top and bottom sheets 58, 62.
  • The [0018] cantilever portion 94 includes a free end edge 98 that is not aligned with the divergence edge 90. The free end edge 98 of the cantilever portion 94 may be cut and not polished or treated because the stress level on the free end edge 98 is reduced. This is because the free end edge 98 is not directly exposed to the tensile stresses in the header finned member 70 caused by the pressurized air in the cell 22. Rather, the cantilever portion 94 helps resist the tensile loading on the header finned member 70 while reducing the tensile stress on the free end edge 98.
  • More specifically, as illustrated in FIG. 5, the tensile stress on the header finned [0019] member 70 decreases over the span of the cantilever portion 94, and is substantially diminished or non-existent at the free end edge 98.

Claims (10)

1. A recuperated microturbine engine comprising:
an air compressor operable to create a flow of compressed air;
a combustor operable to mix the flow of compressed air with a fuel, and operable to combust the fuel/air mixture to create an expanding flow of products of combustion;
a turbine and generator assembly communicating with said combustor and operable in response to the expanding flow of products of combustion to generate electricity, said turbine and generator assembly exhausting a flow of hot exhaust gases; and
a recuperator including at least one cell through the inside of which said flow of compressed air flows, and around the outside of which the flow of exhaust gases flows, said recuperator preheating the flow of compressed air with heat from the flow of exhaust gases before the flow of compressed air is delivered to said combustor, said recuperator cell having top and bottom sheets and at least one header finned member sandwiched between and metallurgically bonded to said top and bottom sheets within the inside of said cell, said recuperator also including inlet and outlet manifolds communicating with the inside of said cell to direct the flow of the compressed air into and out of said cell, respectively;
wherein said header finned member includes a cantilever portion that is not directly metallurgically bonded to said top and bottom sheets and that extends into one of said inlet and outlet manifolds in a cantilever fashion, said cantilever portion including a free end edge within said manifold;
wherein said flow of compressed air creates a high pressure environment within said cell, which environment imparts tensile stresses to said header finned member; and
wherein said free end edge is subject to a substantially reduced state of tensile stress due to said cantilever extension of said header finned member into said manifold.
2. The engine of claim 1, wherein said header finned member is a first header finned member, said first header finned member extending into said inlet manifold, and wherein said cell further includes a second header finned member metallurgically bonded to said top and bottom sheets and having a cantilever portion extending into said outlet manifold.
3. The engine of claim 1, wherein said at least one cell includes a plurality of substantially identical cells arranged in a stacked configuration, said plurality of cells being metallurgically bonded to each other, and wherein said cells define exhaust gas flow spaces between said cells through which the flow of exhaust gases flows.
4. The engine of claim 1, wherein said top and bottom sheets each include a substantially flat portion, a diverging portion angled with respect to said substantially flat portion, and a divergence edge defined between said substantially flat portion and said diverging portion, wherein said flat portions of said top and bottom sheets are substantially parallel to each other, wherein said diverging portion of said top sheet extends away from said bottom sheet and said diverging portion of said bottom sheet extends away from said top sheet, and wherein said cantilever portion is cantilevered with respect to said divergence edges.
5. The engine of claim 4, wherein said header finned member is metallurgically bonded to said flat portions of said top and bottom plates.
6. The engine of claim 4, wherein said divergence edge at least partially defines a boundary of one of said inlet and outlet manifolds.
7. A heat exchanger cell comprising:
top and bottom sheets each including a manifold opening, said top and bottom sheets being positioned in stacked relation relative to one another to align their respective manifold openings; and
a header finned member disposed between and metallurgically bonded to said top and bottom sheets, said header finned member having a cantilever portion extending into said manifold openings in cantilever fashion, said cantilever portion being free from a direct metallurgical bond to said top and bottom sheets, said cantilever portion terminating in a free end edge;
wherein said cell is adapted to receive a high pressure fluid therein that creates tensile stresses in said header finned member; and
wherein the tensile stresses on said free end edge are substantially less than those on the portion of said header finned member that is metallurgically bonded to said top and bottom sheets by virtue of said cantilever portion being free from direct metallurgical bond to said top and bottom sheets.
8. The cell of claim 7, wherein said top and bottom sheets each include a substantially planar portion, a diverging portion, and a divergence edge defined between said planar and diverging portions, and wherein said cantilever portion is cantilevered with respect to said divergence edge of at least one of said top and bottom sheets.
9. A plate-fin heat exchanger comprising a first cell including:
a top sheet and a bottom sheet each having a substantially planar portion and a diverging portion angled with respect to said planar portion and joined to said planar portion along a divergence edge, said diverging portion of each sheet at least partially defining a manifold opening generally aligned with a manifold opening at least partially defined by the diverging portion of the other sheet; and
a formed member between and metallurgically bonded to said planar portions of said top and bottom sheets and having a cantilever portion extending into said manifold openings and terminating in a free end edge, said cantilever portion being free from a direct metallurgical bond to said top and bottom sheets;
wherein said diverging portions of said top and bottom sheets both extend away from said finned member and wherein said divergence edges of said top and bottom sheets are metallurgically bonded to said finned member, and said cantilever portion is cantilevered with respect to said divergence edge.
10. The plate-fin heat exchanger of claim 9, further comprising a second cell substantially identical to said first cell and including a top sheet having a diverging portion metallurgically bonded to said diverging portion of said bottom sheet of said first cell.
US09/922,367 2001-08-03 2001-08-03 Counterflow plate-fin heat exchanger with extended header fin Abandoned US20030024696A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/922,367 US20030024696A1 (en) 2001-08-03 2001-08-03 Counterflow plate-fin heat exchanger with extended header fin
EP02016108A EP1281921A3 (en) 2001-08-03 2002-07-19 Counterflow plate-fin heat exchanger with extended header fin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/922,367 US20030024696A1 (en) 2001-08-03 2001-08-03 Counterflow plate-fin heat exchanger with extended header fin

Publications (1)

Publication Number Publication Date
US20030024696A1 true US20030024696A1 (en) 2003-02-06

Family

ID=25446931

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/922,367 Abandoned US20030024696A1 (en) 2001-08-03 2001-08-03 Counterflow plate-fin heat exchanger with extended header fin

Country Status (2)

Country Link
US (1) US20030024696A1 (en)
EP (1) EP1281921A3 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030196785A1 (en) * 2002-03-30 2003-10-23 Wolfgang Knecht Heat exchanger
US20040083712A1 (en) * 2002-11-06 2004-05-06 Dewis David W. Heat transfer apparatus
DE102005002063A1 (en) * 2005-01-14 2006-07-20 Behr Gmbh & Co. Kg Stacking disk heat exchanger
US20090044931A1 (en) * 2006-02-15 2009-02-19 Angelo Rigamonti Heat Exchanger for Hot Air Generator and Boiler
US20090211740A1 (en) * 2007-05-03 2009-08-27 Brayton Energy, Llc Heat Exchange Device and Method for Manufacture
US20090211739A1 (en) * 2007-05-03 2009-08-27 Brayton Energy, Llc Heat Exchanger with Pressure and Thermal Stain Management
US20100162967A1 (en) * 2007-04-16 2010-07-01 Stephen Taylor Heat exchanger
US20120247145A1 (en) * 2009-08-31 2012-10-04 Valeo Systemes Thermiques Heat Exchanger
US20130068428A1 (en) * 2010-06-15 2013-03-21 Alfa Laval Corporate Ab Heat exchanger with improved corrosion resistance
US9631876B2 (en) 2013-03-19 2017-04-25 Mahle International Gmbh Heat exchanger
US20180252479A1 (en) * 2017-03-06 2018-09-06 Dana Canada Corporation Heat Exchanger For Cooling Multiple Layers Of Electronic Modules
US20190024982A1 (en) * 2017-07-24 2019-01-24 Hamilton Sundstrand Corporation Heat exchanger assembly with parting sheet support
US20210055063A1 (en) * 2018-03-22 2021-02-25 The Regents Of The University Of California Systems and methods for providing high temperature and high pressure heat exchangers using additive manufacturing
CN114234703A (en) * 2021-11-22 2022-03-25 北京动力机械研究所 Air intake and exhaust flow guide structure and method for multifunctional plate-fin heat exchanger

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10352880A1 (en) 2003-11-10 2005-06-09 Behr Gmbh & Co. Kg Heat exchanger, in particular charge air / coolant radiator
DE10352881A1 (en) * 2003-11-10 2005-06-09 Behr Gmbh & Co. Kg Heat exchanger, in particular charge air / coolant radiator
DE102004022433B4 (en) * 2004-05-06 2007-01-04 Joachim Schult Profiled heat transfer plate for a welded heat exchanger
DE102008007916A1 (en) * 2008-02-06 2009-08-13 Behr Gmbh & Co. Kg Heat exchanger for charge air cooling, method for producing a heat exchanger for charge air cooling
EP2136175B1 (en) 2008-06-21 2016-06-22 Joachim Schult Heat transfer plate, plate pair, plate stack, compact plate heat exchanger and its manufacturing process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5697429A (en) * 1995-07-25 1997-12-16 Valeo Thermique Moteur Heat exchanger having a header in the form of a stack
US6098703A (en) * 1997-12-10 2000-08-08 Denso Corporation Lamination type heat exchanger having refrigerant passage divided by inner fin into subpassages

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2211283B (en) * 1987-10-20 1992-04-15 Rolls Royce Plc Heat exchanger
JP3473181B2 (en) * 1995-05-19 2003-12-02 石川島播磨重工業株式会社 Plate-fin type heat exchanger and method of manufacturing separator used therein
ES2146459T3 (en) * 1996-02-01 2000-08-01 Northern Res & Eng PLATE HEAT EXCHANGER WITH FINS.
EP1083398A1 (en) * 1999-09-10 2001-03-14 Toyo Radiator Co., Ltd. Plate-type heat exchanger and method of its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5697429A (en) * 1995-07-25 1997-12-16 Valeo Thermique Moteur Heat exchanger having a header in the form of a stack
US6098703A (en) * 1997-12-10 2000-08-08 Denso Corporation Lamination type heat exchanger having refrigerant passage divided by inner fin into subpassages

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030196785A1 (en) * 2002-03-30 2003-10-23 Wolfgang Knecht Heat exchanger
US6920918B2 (en) * 2002-03-30 2005-07-26 Modine Manufacturing Company Heat exchanger
US20040083712A1 (en) * 2002-11-06 2004-05-06 Dewis David W. Heat transfer apparatus
US6966173B2 (en) * 2002-11-06 2005-11-22 Elliott Energy Systems, Inc. Heat transfer apparatus
DE102005002063A1 (en) * 2005-01-14 2006-07-20 Behr Gmbh & Co. Kg Stacking disk heat exchanger
US20080087411A1 (en) * 2005-01-14 2008-04-17 Behr Gmbh & Co. Kg Plate Heat Exchanger
US20090044931A1 (en) * 2006-02-15 2009-02-19 Angelo Rigamonti Heat Exchanger for Hot Air Generator and Boiler
US8091515B2 (en) * 2006-02-15 2012-01-10 Angelo Rigamonti Heat exchanger for hot air generator and boiler
US20100162967A1 (en) * 2007-04-16 2010-07-01 Stephen Taylor Heat exchanger
US20090211739A1 (en) * 2007-05-03 2009-08-27 Brayton Energy, Llc Heat Exchanger with Pressure and Thermal Stain Management
US20090211740A1 (en) * 2007-05-03 2009-08-27 Brayton Energy, Llc Heat Exchange Device and Method for Manufacture
US8215378B2 (en) 2007-05-03 2012-07-10 Brayton Energy, Llc Heat exchanger with pressure and thermal strain management
US8371365B2 (en) * 2007-05-03 2013-02-12 Brayton Energy, Llc Heat exchange device and method for manufacture
WO2009137482A1 (en) * 2008-05-05 2009-11-12 Brayton Energy, Llc Heat exchanger with pressure and thermal strain management
US9494369B2 (en) * 2009-08-31 2016-11-15 Valeo Systemes Thermiques Heat exchanger
US20120247145A1 (en) * 2009-08-31 2012-10-04 Valeo Systemes Thermiques Heat Exchanger
US20130068428A1 (en) * 2010-06-15 2013-03-21 Alfa Laval Corporate Ab Heat exchanger with improved corrosion resistance
US9631876B2 (en) 2013-03-19 2017-04-25 Mahle International Gmbh Heat exchanger
US20180252479A1 (en) * 2017-03-06 2018-09-06 Dana Canada Corporation Heat Exchanger For Cooling Multiple Layers Of Electronic Modules
US10928141B2 (en) * 2017-03-06 2021-02-23 Dana Canada Corporation Heat exchanger for cooling multiple layers of electronic modules
US20190024982A1 (en) * 2017-07-24 2019-01-24 Hamilton Sundstrand Corporation Heat exchanger assembly with parting sheet support
US20210055063A1 (en) * 2018-03-22 2021-02-25 The Regents Of The University Of California Systems and methods for providing high temperature and high pressure heat exchangers using additive manufacturing
CN114234703A (en) * 2021-11-22 2022-03-25 北京动力机械研究所 Air intake and exhaust flow guide structure and method for multifunctional plate-fin heat exchanger

Also Published As

Publication number Publication date
EP1281921A3 (en) 2003-12-17
EP1281921A2 (en) 2003-02-05

Similar Documents

Publication Publication Date Title
US20030024696A1 (en) Counterflow plate-fin heat exchanger with extended header fin
EP1761736B1 (en) Heat exchanger with header tubes
US6837419B2 (en) Recuperator for use with turbine/turbo-alternator
US4993223A (en) Annular recuperator
US6574950B2 (en) Thermally responsive recuperator housing
US5050668A (en) Stress relief for an annular recuperator
US7918268B2 (en) Heat exchanger
US20070227140A1 (en) Air-to-air aftercooler
GB2034871A (en) Minimising thermal stresses in plate heat exchangers
US6966173B2 (en) Heat transfer apparatus
US20040003916A1 (en) Unit cell U-plate-fin crossflow heat exchanger
US7185483B2 (en) Methods and apparatus for exchanging heat
JPS62293086A (en) Laminated type heat exchanger
CA2171182A1 (en) Primary surface heat exchanger for use with a high pressure ratio gas turbine engine
US6775989B2 (en) Catalyst support plate assembly and related methods for catalytic combustion
GB2451113A (en) Corrugations of a heat exchanger matrix having first and second different amplitudes
US20030116311A1 (en) High temperature primary surface recuperator air cell
EP1407210A4 (en) Heat exchanger having selectively compliant end sheet
US20030162075A1 (en) Fuel cell manifold base
CN100497923C (en) Methods and apparatus to reduce turbine engine nozzle base sheet stresses
JPH10288478A (en) Heat exchanger
WO1999023435A1 (en) Improved method for making a recuperator cell
JPH10281677A (en) Heat exchanger
WO2007128963A1 (en) A fuel burner and a method of manufacturing a fuel burner
CA2373876A1 (en) Fuel cell manifold base

Legal Events

Date Code Title Description
AS Assignment

Owner name: INGERSOLL-RAND ENERGY SYSTEMS CORPORATION, NEW HAM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAPLAU-COLAN, ALEXANDER;NASH, JAMES S.;REEL/FRAME:012054/0146

Effective date: 20010627

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION