TWI690816B - Map constructing apparatus and map constructing method - Google Patents

Map constructing apparatus and map constructing method Download PDF

Info

Publication number
TWI690816B
TWI690816B TW107142375A TW107142375A TWI690816B TW I690816 B TWI690816 B TW I690816B TW 107142375 A TW107142375 A TW 107142375A TW 107142375 A TW107142375 A TW 107142375A TW I690816 B TWI690816 B TW I690816B
Authority
TW
Taiwan
Prior art keywords
map
depth
algorithm
image information
image
Prior art date
Application number
TW107142375A
Other languages
Chinese (zh)
Other versions
TW202020693A (en
Inventor
陳昱達
黃翊庭
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW107142375A priority Critical patent/TWI690816B/en
Application granted granted Critical
Publication of TWI690816B publication Critical patent/TWI690816B/en
Publication of TW202020693A publication Critical patent/TW202020693A/en

Links

Images

Abstract

A map constructing method adopted by a map constructing apparatus and includes following steps of: continually obtaining colored image and depth-image information by an image sensor and a depth sensor of the map constructing apparatus while the map constructing apparatus is moving; identifying the colored image for determining whether a dynamic object exists; labeling an object area corresponding to the location of the dynamic object if the dynamic object exists in the colored image; mapping the object area to a depth-image coordinates of the depth-image information, searching the corresponding position of the object area upon the depth-image information and filtering the object area from the depth-image information for generating an adjusted depth-image information; and, inputting the adjusted depth-image information to a map constructing algorithm for creating map data.

Description

地圖建置設備及其地圖建置方法 Map building equipment and map building method

本發明涉及一種地圖建置設備及其地圖建置方法,尤其是涉及一種具備RGB-D裝置的地圖建置設備,以及藉由此類地圖建置設備實現的地圖建置方法。 The invention relates to a map building device and a map building method, in particular to a map building device equipped with an RGB-D device, and a map building method realized by such map building device.

於現行市場中,許多移動式機器人(例如自動搬運車)會直接內嵌有地圖建置設備。通過地圖建置設備的使用,此類移動式機器人可以自行建置所在區域的地圖,並且依據所建置的地圖來進行移動以及相關作業。 In the current market, many mobile robots (such as automatic trucks) are directly embedded with map building equipment. Through the use of map building equipment, this type of mobile robot can build a map of its own area and move and perform related operations according to the built map.

一般來說,目前市場上的移動式機器人多是以2D雷達同步定位與地圖建置技術(Lidar Simultaneous Localization and Mapping)或是2D視覺影像同步定位與地圖建置技術(Visual Simultaneous Localization and Mapping)做為主要的地圖建置手段。然而,此類地圖建置技術實有著許多的限制與缺點,因此現行的移動式機器人所建置的地圖通常有著不夠精確的問題。 Generally speaking, mobile robots currently on the market are mostly based on 2D radar simultaneous positioning and mapping technology (Lidar Simultaneous Localization and Mapping) or 2D visual image simultaneous positioning and mapping technology (Visual Simultaneous Localization and Mapping). Build means for the main map. However, this type of map building technology has many limitations and shortcomings, so the maps built by current mobile robots usually have insufficient accuracy.

具體而言,若使用2D雷達同步定位與地圖建置技術,則因為2D光學雷達僅能取得固定高度下的一維距離訊息,無法掌握真實環境狀況,因而難 以建置精確的地圖。若使用2D視覺影像同步定位與地圖建置技術,則因為目前視覺輔助技術僅停留在避障與測距等功能,無法適用於地圖建置階段,因此難以從地圖中排除暫時性物體。 Specifically, if you use 2D radar synchronous positioning and map building technology, because 2D optical radar can only obtain one-dimensional distance information at a fixed height, it is impossible to grasp the real environmental conditions, so it is difficult To build accurate maps. If the 2D visual image synchronization positioning and map building technology is used, because the current visual assistance technology only stays in the functions of obstacle avoidance and ranging, and cannot be applied to the map building stage, it is difficult to exclude temporary objects from the map.

承上所述,若採用上述技術,則地圖必須在完全沒有任何動態物體存在於空間中的情況下才能夠被建置。若地圖建置設備所在的空間中存在著動態物體(例如人、推車等)或任何非經常性存在於空間中的物體,則這些物體都將會被建置到地圖中。這樣一來,將會使得所建置的地圖不夠精確,進而影響了移動式機器人於後續的定位使用。 As mentioned above, if the above technology is used, the map can only be built without any dynamic objects in the space. If there are dynamic objects (such as people, carts, etc.) in the space where the map building device is located, or any objects that are not in the space, then these objects will be built into the map. In this way, the built map will not be accurate enough, which will affect the subsequent positioning and use of the mobile robot.

有鑑於此,現階段在建置地圖時,為求地圖的精確,通常需要先清空整個空間後,才可令移動式機器人於空間中移動,並且進行地圖的建置。然而,這樣的作法實會提高地圖的建置難度,並且增加了建置成本。 In view of this, when building a map at this stage, in order to obtain the accuracy of the map, it is usually necessary to clear the entire space before the mobile robot can move in the space and build the map. However, this approach will actually increase the difficulty of building maps and increase the cost of building.

本發明的主要目的,在於提供一種地圖建置設備及其地圖建置方法,可改善傳統的地圖建置設備及方法對於周圍環境感知不足的缺點,強化了設備在物件影像偵測以及環境影像識別的能力,藉此可在地圖的建置過程中有效過濾屬於前景部分的動態物件並且保留屬於背景部分的環境影像。 The main purpose of the present invention is to provide a map building device and a map building method, which can improve the shortcomings of the traditional map building device and method inadequate perception of the surrounding environment, and strengthen the device in object image detection and environmental image recognition The ability to effectively filter the dynamic objects belonging to the foreground part and retain the environmental images belonging to the background part during the construction of the map.

為了達成上述的目的,本發明的地圖建置方法主要運用於具有一影像感測器及一深度感測器的一地圖建置設備,並且包括下列步驟:於該地圖建置設備開始移動時通過該影像感測器及該深度感測器持續取得彩色影像及深度影像資訊;對該彩色影像進行影像辨識以判斷是否存在一動態物件;當該動態物件存在時,於該彩色影像中標記一物件區域;將該物件區域對應至深度影像資訊 的一深度影像座標;於該深度影像資訊中搜尋並過濾該物件區域,並產生修正後深度影像資訊;將該修正後深度影像資訊輸入一地圖建置演算法中以產生一地圖資料。 In order to achieve the above object, the map building method of the present invention is mainly applied to a map building device having an image sensor and a depth sensor, and includes the following steps: passing when the map building device starts to move The image sensor and the depth sensor continuously obtain color image and depth image information; perform image recognition on the color image to determine whether there is a dynamic object; when the dynamic object exists, mark an object in the color image Area; map the object area to depth image information A depth image coordinate; searching and filtering the object area in the depth image information and generating corrected depth image information; inputting the corrected depth image information into a map building algorithm to generate a map data.

本發明相對於相關技術所能達到的技術功效至少包括:(1)於地圖建置設備上設置RGB-D裝置(包括影像感測器及深度感測器),以加強地圖建置設備對於環境影像的認知能力;(2)藉由加強後的認知能力,可在彩色影像中偵測並標記出動態物件以及非經常性存在於空間中的物件;(3)藉由偵測並標記動態物件,在建置地圖時可以即時分割背景部分(即,靜態的空間資訊)以及前景部分(即,所述動態物件以及非經常性存在於空間中的物件),並且加以保存;(4)在建置地圖時主動修改或刪除動態物件的資訊(如深度資訊)並保留背景部分,藉此強化地圖資料中的空間資訊;及(5)當地圖建置設備依據已建置的地圖進行移動,並且發現環境已經改變時(例如機台的設置地點更換、場域局部變動等),能夠主動對已建置的地圖進行更新。 The technical effects that the present invention can achieve relative to the related art include at least: (1) setting RGB-D devices (including image sensors and depth sensors) on the map building equipment to enhance the environment of the map building equipment to the environment The cognitive ability of the image; (2) By the enhanced cognitive ability, the dynamic objects and the objects that are infrequently present in the space can be detected and marked in the color image; (3) By detecting and marking the dynamic objects , The background part (ie, static spatial information) and the foreground part (ie, the dynamic objects and objects that are not in the space infrequently) can be divided and saved in real time when building the map; (4) Under construction Actively modify or delete the information of dynamic objects (such as depth information) and retain the background when placing the map, thereby enhancing the spatial information in the map data; and (5) the local map construction equipment moves according to the built map, and When it is found that the environment has changed (for example, the installation location of the machine is changed, the local field is changed, etc.), it can actively update the built map.

1:地圖建置設備 1: Map building equipment

10:處理器 10: processor

11:影像感測器 11: Image sensor

12:深度感測器 12: Depth sensor

13:儲存單元 13: Storage unit

131:地圖資料 131: Map data

132:物件特徵資料 132: Object characteristic data

14:移動構件 14: moving member

15:動作構件 15: Action widget

16:人機介面 16: Human Machine Interface

2:空間 2: space

3:彩色影像 3: color image

31:背景 31: Background

32:動態物件 32: Dynamic objects

33:標記框 33: Mark box

4:深度影像資訊 4: Depth image information

41:物件深度資訊 41: Object depth information

5:修正後深度影像資訊 5: Depth image information after correction

6:地圖影像 6: Map image

7:過濾後地圖影像 7: Map image after filtering

S10~S32:建置步驟 S10~S32: Construction steps

S40~S56:更新步驟 S40~S56: Update procedure

圖1為本發明的地圖建置示意圖的第一具體實施例。 FIG. 1 is a first specific embodiment of a map construction schematic diagram of the present invention.

圖2為本發明的地圖建置設備的方塊圖的第一具體實施例。 FIG. 2 is a first specific embodiment of a block diagram of a map building device of the present invention.

圖3A為本發明的地圖建置流程圖第一部分的第一具體實施例。 FIG. 3A is a first specific embodiment of the first part of the map building flowchart of the present invention.

圖3B為本發明的地圖建置流程圖第二部分的第一具體實施例。 FIG. 3B is a first specific embodiment of the second part of the map building flowchart of the present invention.

圖4為本發明的標記框示意圖的第一具體實施例。 FIG. 4 is a first specific embodiment of a schematic diagram of a marker frame of the present invention.

圖5A為本發明的深度影像資訊的示意圖的第一具體實施例。 FIG. 5A is a first specific embodiment of a schematic diagram of depth image information of the present invention.

圖5B為本發明的深度影像資訊的示意圖的第二具體實施例。 FIG. 5B is a second embodiment of the schematic diagram of the depth image information of the present invention.

圖6為本發明的修正後深度影像資訊的示意圖的第一具體實施例。 FIG. 6 is a first specific embodiment of a schematic diagram of corrected depth image information of the present invention.

圖7A為本發明的地圖影像的示意圖的第一具體實施例。 7A is a first specific embodiment of a schematic diagram of a map image of the present invention.

圖7B為本發明的地圖影像的示意圖的第二具體實施例。 7B is a second specific embodiment of a schematic diagram of a map image of the present invention.

圖8A為本發明的過濾後地圖影像的示意圖的第一具體實施例。 8A is a first specific embodiment of a schematic diagram of a filtered map image of the present invention.

圖8B為本發明的過濾後地圖影像的示意圖的第二具體實施例。 8B is a second specific embodiment of the schematic diagram of the filtered map image of the present invention.

圖9為本發明的地圖更新流程圖的第一具體實施例。 9 is a first specific embodiment of the map update flowchart of the present invention.

茲就本發明之一較佳實施例,配合圖式,詳細說明如後。 The following is a detailed description of a preferred embodiment of the present invention with reference to the drawings.

首請參閱圖1,其為本發明的地圖建置示意圖的第一具體實施例。如圖1所示,本發明揭露了一種地圖建置設備1,所述地圖建置設備1可以設置於一個移動式機器人上(例如自動搬運車,圖未標示),以協助移動式機器人進行地圖的建置作業。 Please refer first to FIG. 1, which is a first specific embodiment of a map construction schematic diagram of the present invention. As shown in FIG. 1, the present invention discloses a map building device 1. The map building device 1 may be installed on a mobile robot (such as an automatic truck, not shown in the figure) to assist the mobile robot in performing maps Build operations.

當所述搭載有(可為內嵌或外接)地圖建置設備1的移動式機器人被放置於一個未知的空間2中時,可通過地圖建置設備1來建置空間2的地圖。具體而言,當移動式機器人在空間2中移動時,可以通過地圖建置設備1來偵測周圍環境的影像,藉此自動建立所在空間2的地圖。經過一或多次的移動,地圖建置設備1即可建立描繪了所在空間2的平面空間資訊(例如深度資訊)的地圖資料。如此一來,未來當移動式機器人在空間2中移動並執行任務時,可以依 據預先建置完成的地圖資料來進行移動,以排除移動時可能會發生的問題(例如碰撞機台、進入死角等)。 When the mobile robot equipped with (can be embedded or externally connected) the map building device 1 is placed in an unknown space 2, the map of the space 2 can be built by the map building device 1. Specifically, when the mobile robot moves in the space 2, the image of the surrounding environment can be detected by the map building device 1, thereby automatically creating a map of the space 2 in which it is located. After one or more movements, the map building device 1 can create map data depicting the planar spatial information (such as depth information) of the space 2 in which it is located. As a result, when mobile robots move in space 2 and perform tasks in the future, they can rely on Move according to the pre-built map data to eliminate the problems that may occur when moving (such as collision with the machine, entering the dead end, etc.).

續請參閱圖2,其為本發明的地圖建置設備的方塊圖的第一具體實施例。如圖2所示,所述地圖建置設備1至少包括處理器10,以及與處理器10電性連接的影像感測器11、深度感測器12及儲存單元13。本實施例中,所述處理器10通過內部匯流排與影像感測器11、深度感測器12以及儲存單元13電性連接,並且主要用以執行內嵌或由外部輸入的演算法,以實現地圖建置設備1的各項需求與功能(容後詳述)。 Please refer to FIG. 2, which is a first specific embodiment of the block diagram of the map building device of the present invention. As shown in FIG. 2, the map building device 1 includes at least a processor 10, an image sensor 11, a depth sensor 12 and a storage unit 13 electrically connected to the processor 10. In this embodiment, the processor 10 is electrically connected to the image sensor 11, the depth sensor 12, and the storage unit 13 through an internal bus, and is mainly used to execute an embedded or externally input algorithm to Realize the various requirements and functions of the map building device 1 (to be described in detail later).

本發明的地圖建置設備1主要是經由內建或外接的RGB-D(即RGB深度圖像,RGB-Depth Map)設備來實現地圖的建置與更新。於一實施例中,所述RGB-D設備可為分開的兩個設備,包括用以擷取周圍環境的彩色影像(即,RGB影像)的第一設備及用以感測周圍環境的深度資訊(即,Depth資訊)的第二設備。於另一實施例中,所述RGB-D設備可為能夠同時取得周圍環境的彩色影像以及深度資訊的整合式影像擷取裝置,於此實施例中,所述地圖建置設備1不需要設置分開的影像感測器11及深度感測器12。於又一實施例中,所述RGB-D設備可為分開設置的影像感測器11及深度感測器12,其中影像感測器11可例如為彩色攝影機,深度感測器可例如為光學雷達。 The map building device 1 of the present invention mainly implements the building and updating of the map via built-in or external RGB-D (ie RGB-Depth Map) devices. In an embodiment, the RGB-D device may be two separate devices, including a first device for capturing a color image (ie, RGB image) of the surrounding environment and a depth information for sensing the surrounding environment (Ie, Depth Info) the second device. In another embodiment, the RGB-D device may be an integrated image capture device that can simultaneously obtain color images and depth information of the surrounding environment. In this embodiment, the map building device 1 does not need to be provided Separate image sensor 11 and depth sensor 12. In yet another embodiment, the RGB-D device may be an image sensor 11 and a depth sensor 12 that are separately provided, wherein the image sensor 11 may be, for example, a color camera, and the depth sensor may be, for example, optical radar.

上述說明僅為本發明的具體實施範例,不以此為限。為便於理解,下面將於說明書中以分開設置的所述影像感測器11及深度感測器12為例,來進行說明。 The above description is only a specific implementation example of the present invention and is not limited thereto. For ease of understanding, the image sensor 11 and the depth sensor 12 which are provided separately will be described as an example in the following description.

本實施例中,使用者可以直接啟動地圖建置設備1,或是啟動所述移動式機器人,並由移動式機器人主動啟動所連接的地圖建置設備1。當地圖 建置設備1被啟動後,處理器10即可驅動影像感測器11持續取得周圍環境的彩色影像,並且驅動深度感測器12持續取得周圍環境的深度影像資訊。 In this embodiment, the user can directly start the map building device 1, or start the mobile robot, and the mobile robot actively starts the connected map building device 1. When the map After the building device 1 is started, the processor 10 can drive the image sensor 11 to continuously obtain color images of the surrounding environment, and drive the depth sensor 12 to continuously obtain depth image information of the surrounding environment.

於一實施例中,處理器10可藉由所述彩色影像從周圍環境中識別出需要在地圖中排除的動態物件(例如人、推車、或動物等等),並且藉由所述深度影像資訊來建置用以描繪周圍環境的二維地圖。於另一實施例中,處理器10可同時參考所述彩色影像及所述深度影像資訊,藉以建置用以描繪周圍環境的三維地圖。為便於理解,下面將於說明書中以建置二維地圖為例,進行說明。 In an embodiment, the processor 10 can identify the dynamic objects (such as people, carts, or animals, etc.) that need to be excluded from the map from the surrounding environment through the color image, and through the depth image Information to build a two-dimensional map that depicts the surrounding environment. In another embodiment, the processor 10 can simultaneously refer to the color image and the depth image information to construct a three-dimensional map for depicting the surrounding environment. For ease of understanding, the following will take the construction of a two-dimensional map as an example to explain.

於地圖建置設備1被啟動後,所述處理器10可持續由所述影像感測器11取得所述彩色影像。本實施例中,處理器10可執行內嵌或外部輸入的偵測演算法,以對所接收的彩色影像進行影像辨識。具體而言,處理器10將所取得的彩色影像做為偵測演算法的輸入參數,並且偵測演算法於執行完成後回覆一個辨識結果給處理器10,所述辨識結果指出彩色影像中是否存在著可識別的動態物件(即,地圖建置設備1的周圍環境中是否存在動態物件)。 After the map building device 1 is started, the processor 10 can continue to obtain the color image from the image sensor 11. In this embodiment, the processor 10 may execute an embedded or externally input detection algorithm to perform image recognition on the received color image. Specifically, the processor 10 uses the obtained color image as an input parameter of the detection algorithm, and the detection algorithm returns a recognition result to the processor 10 after the execution is completed, the recognition result indicating whether the color image There are identifiable dynamic objects (ie, whether there are dynamic objects in the surrounding environment of the map building device 1).

本發明的其中一項技術特徵在於,地圖建置設備1可在地圖的建置過程中偵測前景部分(即,動態物件)以及背景部分(即,靜態空間),並且將前景部分與背景部分進行分割,使得前景部分不會出現在建置完成的地圖中。若處理器10由偵測演算法的辨識結果中判斷彩色影像中存在至少一個動態物件,則處理器10會進一步對所述動態物件進行標記,並產生對應的標記框(Bounding box)。如此一來,當處理器10藉由其他演算法執行地圖的建置程序時,所述演算法可搜尋並識別所述標記框,並且將所述標記框的相關資訊排除在所建置的地圖外(容後詳述)。 One of the technical features of the present invention is that the map building device 1 can detect the foreground part (ie, dynamic objects) and the background part (ie, static space) during the construction of the map, and the foreground part and the background part Perform segmentation so that the foreground part will not appear in the completed map. If the processor 10 determines that there is at least one dynamic object in the color image from the recognition result of the detection algorithm, the processor 10 will further mark the dynamic object and generate a corresponding marking box (Bounding box). In this way, when the processor 10 executes the map building process by other algorithms, the algorithm can search for and identify the marker frame, and exclude relevant information of the marker frame from the built map Outside (to be described in detail later).

如前文所述,處理器10主要是依據所述深度影像資訊來執行二維影像的建置作業,因此當所述標記框被產生後,處理器10會將標記框視為一個感興趣區域(Region of Interest,ROI),並且進一步將標記框對應(mapping)至所述深度影像資訊所採用的深度影像座標。於一實施例中,處理器10可以藉由一個轉換演算法來執行轉換作業,以將所述彩色影像中的標記框的位置對應至深度影像資訊的深度影像座標。值得一提的是,此實施例中所指的彩色影像及深度影像資訊,較佳為相同時間點所取得的彩色影像及深度影像資訊(即,兩者的取得時間相同,或是時間差小於一個誤差容忍值)。 As described above, the processor 10 mainly executes the construction operation of the two-dimensional image based on the depth image information. Therefore, when the marker frame is generated, the processor 10 regards the marker frame as a region of interest ( Region of Interest (ROI), and further mapping the marker frame to the depth image coordinates used by the depth image information. In one embodiment, the processor 10 may perform a conversion operation by a conversion algorithm to correspond the position of the marker frame in the color image to the depth image coordinate of the depth image information. It is worth mentioning that the color image and depth image information referred to in this embodiment are preferably the color image and depth image information obtained at the same time point (that is, the two have the same acquisition time, or the time difference is less than one Error tolerance value).

於上述的轉換作業執行完成後,處理器10可進一步於所述深度影像資訊中搜尋所述標記框(例如搜尋標記框的對應座標),並且於深度影像資訊中過濾所述標記框的相關資訊,藉此產生修正後深度影像資訊。於一實施例中,處理器10可執行內建或外部輸入的一個過濾演算法,以從深度影像資訊中過濾所述標記框的相關資訊並產生所述修正後深度影像資訊。本發明中,所述修正後深度影像資訊僅描述了背景部分的靜態空間資訊,因此可視為是所在空間2下的平面空間深度資訊。 After the above conversion operation is completed, the processor 10 may further search for the marker frame in the depth image information (for example, search for the corresponding coordinates of the marker frame), and filter the relevant information of the marker frame in the depth image information To generate corrected depth image information. In one embodiment, the processor 10 may execute a built-in or externally input filtering algorithm to filter the relevant information of the marked frame from the depth image information and generate the corrected depth image information. In the present invention, the corrected depth image information only describes the static spatial information of the background part, so it can be regarded as the planar spatial depth information under the space 2 in which it is located.

最後,處理器10還可執行內建或外部輸入的一個地圖建置演算法,以依據所述修正後深度影像資訊來生成能夠描繪所在空間2的地圖資料131。並且,處理器10可將所生成的地圖資料131儲存於儲存單元13。當移動式機器人正式啟動並執行任務時,即可依據所預先建置的地圖資料131來進行移動。 Finally, the processor 10 can also execute a built-in or externally input map building algorithm to generate map data 131 capable of depicting the space 2 according to the corrected depth image information. Furthermore, the processor 10 can store the generated map data 131 in the storage unit 13. When the mobile robot officially starts and executes the task, it can move according to the pre-built map data 131.

如圖2所示,於本發明的一個具體實施例中,地圖建置設備1可與所述移動式機器人整合為單一個體,所述處理器10可同時電性連接移動式機器人的各項元件,例如移動構件14、動作構件15、人機介面16等,不加以限 定。於一實施例中,所述移動構件14可例如為齒輪、輪胎、傳動軸、輸送帶等可帶動地圖建置設備1移動的構件,所述動作構件15可例如為馬達、機器手臂等可協助地圖建置設備1執行機器人相關任務的構件,所述人機介面16可例如為螢幕、鍵盤、滑鼠、觸控螢幕或語音控制單元等可對地圖建置設備1下達命令並顯示所建置的地圖資料131的構件。惟,上述說明僅為本發明的部分具體實例,不應用以限制本發明的實際專利範圍。 As shown in FIG. 2, in a specific embodiment of the present invention, the map building device 1 can be integrated with the mobile robot into a single entity, and the processor 10 can be electrically connected to various components of the mobile robot at the same time , Such as moving member 14, operating member 15, man-machine interface 16, etc., not limited set. In an embodiment, the moving member 14 may be, for example, a gear, a tire, a transmission shaft, a conveyor belt, and the like that can drive the map-building device 1 to move, and the moving member 15 may be, for example, a motor, a robot arm, or the like to assist A component of the map building device 1 for performing robot-related tasks. The human-machine interface 16 may be, for example, a screen, a keyboard, a mouse, a touch screen, or a voice control unit, etc., which can issue commands to the map building device 1 and display the built Components of the map data 131. However, the above descriptions are only some specific examples of the present invention, and should not be used to limit the actual patent scope of the present invention.

於本發明的一實施例中,所述處理器10可記錄一或多種偵測演算法(圖未標示),例如是方向梯度直方圖(Histogram of Oriented Gradient,HOG)特徵提取演算法、支援向量機(Support Vector Machine,SVM)演算法、卷積神經網路(Convolutional Neural Network,CNN)演算法、YOLO(You Only Look Once)演算法、SSD(Single Shot multibox Detector)演算法或其他採用神經網絡訓練之物件偵測演算法等其中一種或其組合,在此並不加以限定。 In an embodiment of the present invention, the processor 10 may record one or more detection algorithms (not shown), such as a histogram of oriented gradient (HOG) feature extraction algorithm, support vector Support Vector Machine (SVM) algorithm, Convolutional Neural Network (CNN) algorithm, YOLO (You Only Look Once) algorithm, SSD (Single Shot multibox Detector) algorithm or other neural networks One or a combination of training object detection algorithms and the like is not limited here.

在地圖建置設備1被使用之前,所述處理器10可藉由上述偵測演算法的其中之一或其組合來進行機器學習。具體而言,地圖建置設備1的製造者可將大量的辨識素材(如記錄有動態物件的照片或影片)匯入所述偵測演算法,以對偵測演算法進行訓練。所述偵測演算法可以通過機器學習得出各種物件類型(例如人、推車、動物等)的物件特徵資料132,並且儲存於儲存單元13中。 Before the map building device 1 is used, the processor 10 can perform machine learning by one or a combination of the above detection algorithms. Specifically, the manufacturer of the map building device 1 can import a large amount of identification materials (such as photos or videos recorded with dynamic objects) into the detection algorithm to train the detection algorithm. The detection algorithm can obtain object feature data 132 of various object types (such as people, carts, animals, etc.) through machine learning and store them in the storage unit 13.

在地圖的建置過程中,處理器10可持續將影像感測器11取得的彩色影像與儲存單元13中儲存的複數物件特徵資料132進行比對,當彩色影像中具有比對符合的一或多個影像時,處理器10將這些影像視為所述動態物件,並且對動能物件進行標記。如此一來,處理器10可以在後續的建置程序中濾除所述動態物件。 During the construction of the map, the processor 10 may continuously compare the color image obtained by the image sensor 11 with the plurality of object characteristic data 132 stored in the storage unit 13, when the color image has a matching or When there are multiple images, the processor 10 treats these images as the dynamic objects and marks the kinetic energy objects. In this way, the processor 10 can filter the dynamic objects in the subsequent build process.

續請參閱圖3A及圖3B,分別為本發明的地圖建置流程圖第一部分以及地圖建置流程圖第二部分的第一具體實施例。首先,使用者於要建置地圖時啟動地圖建置設備1(步驟S10)。具體而言,使用者可以直接啟動地圖建置設備1,或是啟動搭載有地圖建置設備1的移動式機器人,並由移動式機器人主動啟動地圖建置設備1。 Please refer to FIG. 3A and FIG. 3B for the first specific embodiment of the first part of the map building flowchart and the second part of the map building flowchart of the present invention. First, the user activates the map building device 1 when building a map (step S10). Specifically, the user can directly start the map building device 1 or start the mobile robot equipped with the map building device 1, and the mobile robot actively starts the map building device 1.

地圖建置設備1可在被啟動後開始移動(步驟S12),例如藉由所述移動構件14進行移動,或是由移動式機器人帶動地圖建置設備1移動。於進行移動時,地圖建置設備1通過所述影像感測器11及深度感測器12來偵測周圍環境(步驟S14)。於一實施例中,影像感測器11可例如為一彩色攝影機,地圖建置設備1通過影像感測器11持續偵測周圍環境並取得彩色影像;深度感測器12為一光學雷達,地圖建置設備1通過深度感測器12持續偵測周圍環境並取得深度影像資訊(步驟S16)。 The map building device 1 can start moving after being activated (step S12), for example, by the moving member 14, or the mobile building robot drives the map building device 1 to move. When moving, the map building device 1 detects the surrounding environment through the image sensor 11 and the depth sensor 12 (step S14). In an embodiment, the image sensor 11 may be, for example, a color camera. The map building device 1 continuously detects the surrounding environment through the image sensor 11 and obtains color images; the depth sensor 12 is an optical radar, map The installation device 1 continuously detects the surrounding environment through the depth sensor 12 and obtains depth image information (step S16).

接著,地圖建置設備1通過所述處理器10執行偵測演算法,以對彩色影像進行影像辨識(步驟S18),並且判斷彩色影像中是否存在動態物件(步驟S20)。 Next, the map building device 1 executes a detection algorithm through the processor 10 to perform image recognition on the color image (step S18), and determines whether there is a dynamic object in the color image (step S20).

如前文所述,所述地圖建置設備1可通過如方向梯度直方圖特徵提取演算法、支援向量機演算法、卷積神經網路演算法、YOLO演算法、SSD演算法或其他採用神經網絡訓練之物件偵測演算法等其中一種或其組合來進行機器學習,以產生並儲存屬於不同物件類型的複數物件特徵資料132。於上述步驟S18中,處理器10將所取得的彩色影像與這些物件特徵資料132進行比對,並且將比對符合的一或多個影像視為所述動態物件。 As mentioned above, the map building device 1 can use a histogram feature extraction algorithm such as a direction gradient, a support vector machine algorithm, a convolutional neural network algorithm, a YOLO algorithm, an SSD algorithm or other neural network training One or a combination of object detection algorithms, etc., is used for machine learning to generate and store a plurality of object feature data 132 belonging to different object types. In the above step S18, the processor 10 compares the obtained color image with the object characteristic data 132, and regards the one or more images matching the comparison as the dynamic object.

若處理器10於步驟S20中判斷沒有動態物件存在,則可直接依據目前取得的深度影像資訊來建置地圖資料131,即,直接依據當前的深度影像資訊執行步驟S28。 If the processor 10 determines in step S20 that no dynamic object exists, it can directly construct the map data 131 according to the currently acquired depth image information, that is, directly execute step S28 according to the current depth image information.

若處理器10於步驟S20中判斷有動態物件存在,則進一步對動態物件進行標記,並且產生對應的一個標記框(步驟S22)。於一實施例中,處理器10將所述標記框視為一個感興趣區域(ROI)。於另一實施例中,處理器10進一步將所述感興趣區域轉換為一個易於識別的遮罩(MASK)。處理器10可以儲存所述標記框所在位置(即感興趣區域或遮罩)的座標、像素資訊等等,藉此將標記框所在位置記錄為彩色影像中的前景部分,並將標記框以外的位置記錄為彩色影像中的背景部分。如此一來,處理器10可以有效分割彩色影像中的前景部分及背景部分,並且在所產生的地圖資料131中過濾掉所述前景部分(容後詳述)。 If the processor 10 determines that there is a dynamic object in step S20, the dynamic object is further marked, and a corresponding mark frame is generated (step S22). In an embodiment, the processor 10 treats the marked frame as a region of interest (ROI). In another embodiment, the processor 10 further converts the region of interest into an easily recognizable mask (MASK). The processor 10 can store the coordinates, pixel information, etc. of the position of the marker frame (ie, the region of interest or mask), thereby recording the position of the marker frame as the foreground part in the color image, The location is recorded as the background part of the color image. In this way, the processor 10 can effectively segment the foreground part and the background part in the color image, and filter out the foreground part in the generated map data 131 (to be described in detail later).

於步驟S22後,處理器10進一步將所述標記框對應(mapping)至所述深度影像資訊的深度影像座標(步驟S24),藉此,當處理器10依據深度影像資訊進行地圖資料131的建置動作時,可輕印地在地圖資料131中過濾所述標記框的對應位置(即,感興趣區域或遮罩)的深度資訊。 After step S22, the processor 10 further maps the marker frame to the depth image coordinates of the depth image information (step S24), whereby when the processor 10 constructs the map data 131 based on the depth image information When the action is set, the depth information of the corresponding position (that is, the region of interest or mask) of the marker frame can be filtered in the map data 131 by printing.

請同時參閱圖4,為本發明的標記框示意圖的第一具體實施例。圖4揭露了由影像感測器11所擷取的一張彩色影像3,如圖4所示,彩色影像3主要記錄了地圖建置設備1的周圍環境的背景31,當處理器10藉由偵測演算法於彩色影像3中辨識出一個動態物件32(圖4中以人為例)時,處理器10會產生一個能夠涵蓋全部或部分動態物件32的標記框33。 Please also refer to FIG. 4, which is a first specific embodiment of the schematic diagram of the marker frame of the present invention. FIG. 4 reveals a color image 3 captured by the image sensor 11. As shown in FIG. 4, the color image 3 mainly records the background 31 of the surrounding environment of the map building device 1, when the processor 10 When the detection algorithm recognizes a dynamic object 32 in the color image 3 (taking human as an example in FIG. 4 ), the processor 10 generates a marking frame 33 that can cover all or part of the dynamic object 32.

於一實施例中,處理器10在辨識出所述動態物件32後,分別取得動態物件32在彩色影像3中的X軸起點座標位置(Xstart)、X軸終點座標位置 (Xend)、Y軸起點座標位置(Ystart)及Y軸終點座標位置(Yend),並且依據這些座標位置(Xstart、Ystart、Xend、Yend)建立所述標記框33(換句話說,藉由這些座標位置構成一個感興趣區域ROI)。 In one embodiment, after recognizing the dynamic object 32, the processor 10 obtains the X-axis start coordinate position (X start ), X-axis end coordinate position (X end ) of the dynamic object 32 in the color image 3, The Y-axis starting coordinate position (Y start ) and the Y-axis ending coordinate position (Y end ), and according to these coordinate positions (X start , Y start , X end , Y end ), the marker frame 33 (in other words, borrow These coordinate positions constitute a region of interest (ROI).

承上,在將標記框33對應至所述深度影像資訊的深度影像座標時(即,執行圖3B的步驟S24時),處理器10是將所述標記框33的位置對應至所述深度影像座標上,並且將標記框33內的所有像素的像素資訊設定為一個像素極值,並產生一個自定義像素資訊(即,將感興趣區域轉換成遮罩)。如此一來,處理器10所採用的演算法將可以在深度影像資訊中識別出所述標記框33(即,所述遮罩)的對應位置。於一實施例中,所述像素極值可設定為0。於另一實施例中,所述像素極值可設定為255。於又一實施例中,所述像素極值可設定為演算法可以直接識別的特定數值,但不加以限定。 As mentioned above, when the marker frame 33 is mapped to the depth image coordinates of the depth image information (ie, when step S24 of FIG. 3B is executed), the processor 10 corresponds the position of the marker frame 33 to the depth image On the coordinates, and set the pixel information of all pixels in the mark frame 33 to a pixel extremum, and generate a custom pixel information (ie, convert the region of interest into a mask). In this way, the algorithm used by the processor 10 can identify the corresponding position of the marker frame 33 (ie, the mask) in the depth image information. In one embodiment, the pixel extremum can be set to zero. In another embodiment, the pixel extremum can be set to 255. In yet another embodiment, the pixel extremum can be set to a specific value that the algorithm can directly identify, but it is not limited.

舉例來說,處理器10可依據如下所示的程式碼來產生遮罩:If Object is exist For example, the processor 10 can generate a mask according to the code shown below: If Object is exist

For X=Xstart to Xend For X=X start to X end

For Y=Ystart to Yend For Y=Y start to Y end

Image[X][Y]=Mask Value Image[X][Y]=Mask Value

End for X,Y End for X,Y

End if End if

惟,上述僅為本發明的其中一個具體實施範例,但不應以此為限。 However, the above is only one specific implementation example of the present invention, but should not be limited to this.

回到圖3B。於步驟S24之後,所述處理器10即可在所述深度影像資訊中搜尋所述標記框33的對應位置(例如搜尋所述像素極值所在的位置),於深度影像資訊中過濾所述標記框33的相關資訊,並且產生一個修正後深度影 像資訊(步驟S26)。本實施例中,所述修正後深度影像資訊中將不包含所述動態物件32所在位置的深度資訊。 Return to Figure 3B. After step S24, the processor 10 can search the corresponding position of the marker frame 33 in the depth image information (for example, search for the position where the pixel extremum is located), and filter the marker in the depth image information The relevant information in box 33 and produce a corrected depth image Image information (step S26). In this embodiment, the corrected depth image information will not include the depth information of the location of the dynamic object 32.

請同時參閱圖5A及圖5B,分別為本發明的深度影像資訊的示意圖的第一具體實施例及第二具體實施例。 Please refer to FIG. 5A and FIG. 5B at the same time, which are the first specific embodiment and the second specific embodiment of the schematic diagram of the depth image information of the present invention, respectively.

如圖5A及圖5B所示,若處理器10沒有從深度影像資訊中過濾動態物件32的對應位置的深度資訊,則當所述彩色影像3中出現動態物件32(例如人)時,在深度影像資訊的對應位置上將會出現對應的物件深度資訊41。若處理器10依據這個深度影像資訊直接建置地圖資料131,就會將這個物件深度資訊41視為平面空間的一部分,進而導致地圖的精確度下降。 As shown in FIGS. 5A and 5B, if the processor 10 does not filter the depth information of the corresponding position of the dynamic object 32 from the depth image information, when the dynamic object 32 (such as a person) appears in the color image 3, the depth The corresponding object depth information 41 will appear at the corresponding position of the image information. If the processor 10 directly constructs the map data 131 according to the depth image information, the object depth information 41 will be regarded as a part of the planar space, which will cause the accuracy of the map to decrease.

請同時參閱圖6,為本發明的修正後深度影像資訊的示意圖的第一具體實施例。 Please also refer to FIG. 6, which is a first embodiment of the schematic diagram of the corrected depth image information of the present invention.

根據本發明的技術方案,處理器10可以在辨識出動態物件32後對動態物件32進行標記並產生標記框33,將標記框33的位置對應至深度影像座標上,並且將標記框33內的的像素資訊設定為所述像素極值。如此一來,處理器10可以依據所述像素極值在深度影像資訊中搜尋標記框33的對應位置,並且於深度影像資訊中過濾掉這些位置上的深度資訊。 According to the technical solution of the present invention, the processor 10 may mark the dynamic object 32 after identifying the dynamic object 32 and generate a marking frame 33, correspond the position of the marking frame 33 to the depth image coordinates, and mark the The pixel information of is set to the pixel extremum. In this way, the processor 10 can search for the corresponding positions of the marker frame 33 in the depth image information according to the pixel extreme values, and filter the depth information at these positions in the depth image information.

如圖6所示,雖然在彩色影像3中可以看到動態物件32存在,但在深度影像資訊中已過濾了動態物件32的對應位置上的深度資訊(即,生成了修正後深度影像資訊5),也就是說,修正後深度影像資訊5中將不會出現上述的物件深度資訊41。若處理器10依據修正後深度影像資訊5來建置地圖資料131,將可有效排除動態物件,進而提高地圖的精確度。 As shown in FIG. 6, although the dynamic object 32 can be seen in the color image 3, the depth information at the corresponding position of the dynamic object 32 has been filtered in the depth image information (ie, the corrected depth image information 5 is generated ), that is to say, the above-mentioned object depth information 41 will not appear in the corrected depth image information 5. If the processor 10 builds the map data 131 according to the corrected depth image information 5, it will effectively exclude dynamic objects, thereby improving the accuracy of the map.

於一實施例中,處理器10是在判斷動態物件32存在於彩色影像3中時,通過指令(例如Get Depth Raw Data)獲得對應的深度影像資訊的掃描範圍,接著取得動態物件32(或標記框33)在深度影像資訊上的物件邊界始點(DXstart)及物件邊界終點(DXend),並且將物件邊界始點及物件邊界終點所構成的範圍的深度資訊設定為0,藉此產生修正後深度影像資訊5。具體而言,處理器10是在該深度影像資訊中搜尋所述自定義像素資訊所在的範圍,並將這個範圍內的深度資訊設定為0,以產生所述修正後深度影像資訊5。 In one embodiment, when determining that the dynamic object 32 exists in the color image 3, the processor 10 obtains the scan range of the corresponding depth image information through a command (such as Get Depth Raw Data), and then obtains the dynamic object 32 (or mark Box 33) The object boundary start point (DX start ) and object boundary end point (DX end ) on the depth image information, and the depth information of the range formed by the object boundary start point and the object boundary end point is set to 0, thereby generating Depth image information after correction 5. Specifically, the processor 10 searches the depth image information for the range in which the custom pixel information is located, and sets the depth information in this range to 0 to generate the corrected depth image information 5.

具體而言,上述的物件邊界始點及物件邊界終點為處理器10將所述標記框33的位置對應至深度影像座標上所得到的結果,並且處理器10可藉由搜尋所述像素極值(即,所述自定義像素資訊,或稱為遮罩)來確認物件邊界始點及物件邊界終點所構成的範圍。 Specifically, the above object boundary start point and object boundary end point are the results obtained by the processor 10 mapping the position of the marker frame 33 to the depth image coordinates, and the processor 10 may search for the pixel extremum (That is, the custom pixel information, or called a mask) to confirm the range formed by the start point of the object boundary and the end point of the object boundary.

於一實施例中,處理器10可依據如下所示的程式碼來進行物件深度資訊的搜尋與過濾:If Object is exist In an embodiment, the processor 10 can search and filter the object depth information according to the following code: If Object is exist

Function Get Depth Daw Data input DYlayer return Rangeenvironment Function Get Depth Daw Data input DY layer return Range environment

For Range=0 to Rnageenvironment For Range=0 to Rnage environment

If Rangeenvironment subtraction DXstart>=Range If Range environment subtraction DX start >=Range

AND Rangeenvironment subtract DXend<=Range AND Range environment subtract DX end <=Range

Rangeenvironment[Range]=Filter Value Range environment [Range]=Filter Value

End for Range End for Range

End if End if

於上述程式碼中,DYlayer為深度影像資訊的掃描範圍,而Filter Value可設定為0(即,可令物件深度資訊41於深度影像資訊中消失的數值),但不加以限定。於其他實施例中,處理器10亦可將Filter Value設定為一個預設的特別數值,當演算法讀到這個特別數值後,會自動將這個位置的深度資訊從地圖資料131中濾除。 In the above code, the DY layer is the scanning range of the depth image information, and the Filter Value can be set to 0 (that is, a value that makes the object depth information 41 disappear in the depth image information), but it is not limited. In other embodiments, the processor 10 may also set the Filter Value to a preset special value. When the algorithm reads this special value, it will automatically filter the depth information at this location from the map data 131.

回到圖3B。於步驟S26後,處理器10即可依據修正後深度影像資訊5來執行地圖建置演算法(步驟S28),以產生地圖資料131並將地圖資料131儲存於儲存單元13中(步驟S30)。於一實施例中,所述處理器10是以可攜式網路圖形(Portable Network Graphics,png)、點陣圖(BitMap,bmp)或可攜式灰階圖(Portable Gray Map,pgm)等檔案格式將所建置的地圖資料131儲存於儲存單元13,但不加以限定。 Return to Figure 3B. After step S26, the processor 10 can execute the map building algorithm based on the corrected depth image information 5 (step S28) to generate map data 131 and store the map data 131 in the storage unit 13 (step S30). In one embodiment, the processor 10 is a portable network graphics (Portable Network Graphics, png), a bitmap (BitMap, bmp), or a portable grayscale map (Portable Gray Map, pgm), etc. The file format stores the built map data 131 in the storage unit 13, but it is not limited.

具體而言,處理器10是將修正後深度影像資訊5做為地圖建置演算法的輸入參數,藉此,處理器10在執行了地圖建置演算法後,可以建立與修正後深度影像資訊5的內容相對應的地圖資料131。 Specifically, the processor 10 uses the corrected depth image information 5 as an input parameter of the map building algorithm, by which the processor 10 can create and correct the depth image information after executing the map building algorithm The map data 131 corresponding to the content of 5.

於一實施例中,本發明的地圖建置演算法可為視覺影像同步定位與地圖建構(Visual Simultaneous Localization and Mapping,SLAM)演算法,並且所述地圖建置演算法可通過三角定位法、卡爾曼濾波器(Kalman Filter)、粒子濾波器(Particle Filter)、蒙特卡羅定位法(Monte Carlo Localization,MCL)、混合型蒙特卡羅定位法(Mixture MCL)或基於網格的馬可夫定位法(Grid-Based Markov)等技術的其中之一或其組合來實現。 In an embodiment, the map building algorithm of the present invention may be a Visual Simultaneous Localization and Mapping (SLAM) algorithm, and the map building algorithm may use triangulation, Karl Kalman Filter, Particle Filter, Monte Carlo Localization (MCL), Hybrid Monte Carlo Localization (Mixture MCL) or Grid-based Markov Localization (Grid -Based on one or a combination of technologies such as Based Markov).

請同時參閱圖7A及圖7B,分別為本發明的地圖影像的示意圖的第一具體實施例及第二具體實施例。若處理器10不執行動態物件的搜尋及過濾 程序(即,不產生所述修正後深度影像資訊5),則如圖7A及圖7B所示,當處理器10於彩色影像3中辨識到動態物件32時,地圖建置演算法依據深度影像資訊所產生的地圖影像6中,就會在動態物件32的位置上顯示對應的物件深度資訊41。如此一來,當地圖建置設備1或移動式機器人依據這個地圖影像6(即,地圖資料131)進行移動時,將會依據指令避開物件深度資訊41所指的位置,進而造成移動上的不便。 Please refer to FIG. 7A and FIG. 7B at the same time, which are the first specific embodiment and the second specific embodiment of the schematic diagram of the map image of the present invention, respectively. If the processor 10 does not perform searching and filtering of dynamic objects Process (ie, the corrected depth image information 5 is not generated), as shown in FIGS. 7A and 7B, when the processor 10 recognizes the dynamic object 32 in the color image 3, the map building algorithm is based on the depth image In the map image 6 generated by the information, the corresponding object depth information 41 is displayed at the position of the dynamic object 32. In this way, when the local map construction device 1 or the mobile robot moves according to this map image 6 (ie, the map data 131), it will avoid the position indicated by the object depth information 41 according to the instruction, which may cause inconvenient.

請同時參閱圖8A及圖8B,分別為本發明的過濾後地圖影像的示意圖的第一具體實施例及第二具體實施例。若處理器10採用了本發明的技術方案,於深度影像資訊中過濾動態物件32的對應位置上的物件深度資訊41並且產生修正後深度影像資訊5,則如圖8A及圖8B所示,當處理器10於彩色影像3中辨識到動態物件32時,由於地圖建置演算法是依據修正後深度影像資訊5來產生的過濾後地圖影像7,因此過濾後地圖影像7中將不會顯示所述物件深度資訊41。當地圖建置設備1或移動式機器人依據過濾後地圖影像7(即,地圖資料131)進行移動時,將不會受到動態物件32的影響。 Please refer to FIG. 8A and FIG. 8B at the same time, which are the first specific embodiment and the second specific embodiment of the schematic diagram of the filtered map image of the present invention, respectively. If the processor 10 adopts the technical solution of the present invention, the object depth information 41 at the corresponding position of the dynamic object 32 is filtered in the depth image information and the corrected depth image information 5 is generated, as shown in FIGS. 8A and 8B, when When the processor 10 recognizes the dynamic object 32 in the color image 3, since the map building algorithm is based on the filtered depth map information 5 after the correction, the filtered map image 7 will not be displayed in the filtered map image 7.述 Object depth information 41. When the map building device 1 or the mobile robot moves according to the filtered map image 7 (ie, the map data 131), it will not be affected by the dynamic object 32.

回到圖3B。於步驟S30後,處理器10進一步判斷地圖的建置程序是否結束(步驟S32),並且於建置程序尚未結束前重覆步驟S12至步驟S30。藉此,地圖建置設備1可以持續移動,並且依據偵測所得的複數彩色影像及深度影像資訊來持續建立周圍環境的地圖資料131,以供日後移動時使用。 Return to Figure 3B. After step S30, the processor 10 further determines whether the map building procedure is completed (step S32), and repeats steps S12 to S30 before the building procedure is completed. In this way, the map building device 1 can continue to move, and the map data 131 of the surrounding environment can be continuously created based on the detected complex color image and depth image information for future use when moving.

值得一提的是,除了上述動態物件外,環境中的靜態物件的位置亦有可能會改變(例如機台的擺放位置改變、空間的裝潢改變等)。因此,本發明的其中一項技術特徵在於,令地圖建置設備1(或搭載地圖建置設備1的移動式 機器人)在正常使用時,仍可通過上述技術方案來進行地圖資料131的更新,藉此克服傳統機器人僅能依據固定不變的地圖進行移動所可能遭遇的不便。 It is worth mentioning that, in addition to the above-mentioned dynamic objects, the position of static objects in the environment may also be changed (for example, the placement of the machine is changed, the decoration of the space is changed, etc.). Therefore, one of the technical features of the present invention is to make the map building device 1 (or the mobile type equipped with the map building device 1 (Robot) During normal use, the map data 131 can still be updated through the above technical solution, thereby overcoming the inconvenience that the conventional robot can only move according to a fixed map.

參閱圖9,為本發明的地圖更新流程圖的第一具體實施例。圖9揭露了一種地圖的更新方法,應用於具備有移動能力的地圖建置設備1(例如具有圖2所示的移動構件14與動作構件15),或是搭載有所述地圖建置設備1的移動式機器人。為便於理解,下面將於說明書中以搭載有地圖建置設備1的移動式機器人來舉例說明,但不以此為限。 Referring to FIG. 9, it is a first specific embodiment of the map update flowchart of the present invention. FIG. 9 discloses a method for updating a map, which is applied to a map-building device 1 (for example, having a moving member 14 and an action member 15 shown in FIG. 2) with mobile capabilities, or is equipped with the map-building device 1 Mobile robot. For ease of understanding, the mobile robot equipped with the map building device 1 will be exemplified in the description below, but not limited to this.

所述移動式機器人中儲存有預先建置完成的地圖資料131。本實施例中,使用者可以先啟動所述移動式機器人(步驟S40),並且移動式機器人於啟動後自動載入地圖資料131(步驟S42)。於一實施例中,移動式機器人可於如圖2所示的儲存單元13中載入地圖資料131。於另一實施例中,移動式機器人由可內建的記憶體、外接的硬碟或無線連接的資料庫中載入預先建置完成的地圖資料131,不加以限定。 The mobile robot stores map data 131 that has been built in advance. In this embodiment, the user can start the mobile robot first (step S40), and the mobile robot automatically loads the map data 131 after starting (step S42). In an embodiment, the mobile robot can load the map data 131 in the storage unit 13 shown in FIG. 2. In another embodiment, the mobile robot loads pre-built map data 131 from a built-in memory, an external hard disk, or a wirelessly connected database, which is not limited.

當移動式機器人載入地圖資料131完成後,即可依據地圖資料131的指示開始於空間中移動(步驟S44)。本實施例中,所述地圖資料131記載了移動式機器人所在空間的平面空間資訊。 After the mobile robot loads the map data 131, it can start to move in space according to the instructions of the map data 131 (step S44). In this embodiment, the map data 131 records the planar spatial information of the space where the mobile robot is located.

於移動過程中,移動式機器人通過地圖建置設備1判斷是否需要更新當前的地圖資料131(步驟S46)。具體而言,地圖建置設備1可在移動式機器人的移動過程中持續通過影像感測器11取得彩色影像,持續通過深度感測器12取得深度影像資訊,並且依據彩色影像以及深度影像資訊的內容來判斷所述地圖資料131是否需要更新。 During the movement, the mobile robot determines whether it is necessary to update the current map data 131 through the map building device 1 (step S46). Specifically, the map building device 1 can continuously obtain color images through the image sensor 11 and continuously obtain depth image information through the depth sensor 12 during the movement of the mobile robot, and based on the color image and the depth image information Content to determine whether the map data 131 needs to be updated.

於一實施例中,地圖建置設備1可以在於彩色影像中辨識出動態物件時,判斷所述地圖資料131需要更新。於另一實施例中,地圖建置設備1可以在判斷所得到的深度影像資訊與地圖資料131的內容不相符時,判斷所述地圖資料131需要更新。於又一實施例中,地圖建置設備1可以不執行步驟S46的判斷程序,並且在移動式機器人的移動過程中自動且持續地更新地圖資料131。惟,上述說明皆僅為本發明的具體實施範例,並非用來限定本發明的專利範圍。 In one embodiment, the map building device 1 may determine that the map data 131 needs to be updated when a dynamic object is identified in the color image. In another embodiment, the map building device 1 may determine that the map data 131 needs to be updated when the obtained depth image information does not match the content of the map data 131. In yet another embodiment, the map building device 1 may not execute the determination procedure of step S46, and automatically and continuously update the map data 131 during the movement of the mobile robot. However, the above descriptions are only specific implementation examples of the present invention and are not intended to limit the patent scope of the present invention.

若地圖建置設備1需執行步驟S46的判斷程序,並且判斷所述地圖資料131不需更新,則地圖建置設備1不執行任何動作。 If the map building device 1 needs to execute the determination procedure of step S46 and determines that the map data 131 does not need to be updated, the map building device 1 does not perform any action.

若地圖建置設備1於步驟S46中判斷所述地圖資料131需要更新,則地圖建置設備1依據本發明的技術手段來執行所述偵測演算法以對彩色影像進行影像辨識,於彩色影像中標記動態物件並且產生對應的標記框(步驟S48)。接著,地圖建置設備1將所述標記框對應至深度影像資訊的深度影像座標(步驟S50),並且將標記框33內的所有像素的像素資訊設定為一個像素極值以產生一個自定義像素資訊。 If the map building device 1 determines that the map data 131 needs to be updated in step S46, the map building device 1 executes the detection algorithm according to the technical means of the present invention to perform image recognition on the color image. The dynamic object is marked in the middle and a corresponding marked frame is generated (step S48). Next, the map building device 1 corresponds the marker frame to the depth image coordinates of the depth image information (step S50), and sets the pixel information of all pixels in the marker frame 33 to a pixel extremum to generate a custom pixel News.

步驟S50後,地圖建置設備1於深度影像資訊中搜尋所述自定義像素資訊(即,標記框),並從深度影像資訊中過濾所述標記框的對應位置上的深度資訊,以產生修正後深度影像資訊(步驟S52)。並且,地圖建置設備1再依據修正後深度影像資訊執行所述地圖建置演算法,藉此更新當前使用的地圖資料131(步驟S54)。 After step S50, the map building device 1 searches the depth image information for the custom pixel information (ie, the marker frame), and filters the depth information at the corresponding position of the marker frame from the depth image information to generate a correction Rear depth image information (step S52). Furthermore, the map building device 1 executes the map building algorithm based on the corrected depth image information, thereby updating the currently used map data 131 (step S54).

值得一提的是,於步驟S54中,地圖建置演算法可以依據修正後深度影像資訊依序產生一或多張的局部地圖影像,並且依據一或多張的局部地圖影像來更新地圖資料131。如此一來,地圖建置設備1可以依據實際需求修改 一部分的地圖資料131,而不需要更新整份地圖資料131,這使得本發明的地圖更新程序更為彈性。 It is worth mentioning that, in step S54, the map building algorithm can sequentially generate one or more partial map images according to the corrected depth image information, and update the map data 131 according to the one or more partial map images . In this way, the map building device 1 can be modified according to actual needs A part of the map data 131 does not need to update the entire map data 131, which makes the map update program of the present invention more flexible.

步驟54後,移動式機器人判斷其作動程序是否結束(步驟S56),例如判斷使用者經由人機介面16所指派的任務是否執行完畢、移動式機器人是否關機、地圖建置設備1是否關機、移動式機器人是否停止移動等。並且,移動式機器人於所述作動程序尚未結束前返回步驟S44,以持續進行移動以及地圖資料131的更新動作。 After step 54, the mobile robot determines whether its actuation procedure is completed (step S56), for example, whether the task assigned by the user via the human-machine interface 16 is completed, whether the mobile robot is turned off, whether the map-building device 1 is turned off, or moved Whether the robot will stop moving, etc. In addition, the mobile robot returns to step S44 before the operation procedure is completed, so as to continue the movement and the updating operation of the map data 131.

通過本發明的技術方案,可以加強地圖建置設備1對於周圍環境的認知能力,偵測出非經常性存在於空間中的物件,並且於所建置的地圖中濾此物件的深度資訊,藉此提高所建置的地圖的精確性。再者,通過在地圖已建置完成後持續執行本發明的技術方案,可令地圖建置設備1在發現周圍環境改變時主動對已建置的地圖進行更新,藉此維持地圖與實際環境的一致性。 Through the technical solution of the present invention, it is possible to enhance the cognitive ability of the map building device 1 in the surrounding environment, detect objects that are not present frequently in the space, and filter the depth information of the objects in the built map, by This improves the accuracy of the built map. Furthermore, by continuing to execute the technical solution of the present invention after the map has been built, the map building device 1 can actively update the built map when it discovers that the surrounding environment has changed, thereby maintaining the map and the actual environment. consistency.

以上所述僅為本發明之較佳具體實例,非因此即侷限本發明之專利範圍,故舉凡運用本發明內容所為之等效變化,均同理皆包含於本發明之範圍內,合予陳明。 The above is only a preferred specific example of the present invention, and the patent scope of the present invention is not limited by this, so all equivalent changes in applying the content of the present invention are included in the scope of the present invention in the same way. Bright.

S20~S32:建置步驟 S20~S32: Construction steps

Claims (10)

一種地圖建置方法,運用於一地圖建置設備,並且上述地圖建置方法包括下列步驟:a)於該地圖建置設備啟動後,通過一影像感測器持續取得周圍環境的一彩色影像,並且通過一深度感測器持續取得周圍環境的一深度影像資訊;b)由一處理器執行一偵測演算法以對該彩色影像進行影像辨識,並且判斷該彩色影像中是否存在一動態物件,其中該偵測演算法為方向梯度直方圖(Histogram of Oriented Gradient,HOG)特徵提取演算法、支援向量機(Support Vector Machine,SVM)演算法、卷積神經網路(Convolutional Neural Network,CNN)演算法、YOLO(You Only Look Once)演算法、SSD(Single Shot multibox Detector)演算法或其他採用神經網絡訓練之物件偵測演算法的其中一種或其組合;c)於該動態物件存在時對該動態物件進行標記並產生一標記框;d)將該標記框對應至該深度影像資訊的一深度影像座標;e)於該深度影像資訊中搜尋並過濾該標記框以產生一修正後深度影像資訊,其中該修正後深度資訊中濾除了該標記框的對應位置上的深度資訊;f)由該處理器依據該修正後深度影像資訊執行一地圖建置演算法;及g)由該地圖建置演算法產生一地圖資料並儲存於一儲存單元中。 A map building method is applied to a map building device, and the above map building method includes the following steps: a) After the map building device is started, a color image of the surrounding environment is continuously obtained through an image sensor, And continuously obtain a depth image information of the surrounding environment through a depth sensor; b) a processor executes a detection algorithm to perform image recognition on the color image and determine whether a dynamic object exists in the color image, Among them, the detection algorithm is a Histogram of Oriented Gradient (HOG) feature extraction algorithm, a Support Vector Machine (SVM) algorithm, and a Convolutional Neural Network (CNN) algorithm. Method, YOLO (You Only Look Once) algorithm, SSD (Single Shot multibox Detector) algorithm or other object detection algorithms using neural network training, one or a combination of these; c) when the dynamic object exists Dynamic objects are marked and a marked frame is generated; d) The marked frame is mapped to a depth image coordinate of the depth image information; e) The marked image frame is searched and filtered in the depth image information to generate a corrected depth image information , Where the corrected depth information filters out the depth information at the corresponding position of the marker frame; f) the processor executes a map building algorithm based on the corrected depth image information; and g) builds by the map The algorithm generates a map data and stores it in a storage unit. 如請求項1所述的地圖建置方法,其中影像感測器為一彩色攝影機(RGB camera),該深度感測器為一光學雷達。 The map building method according to claim 1, wherein the image sensor is a color camera (RGB camera), and the depth sensor is an optical radar. 如請求項1所述的地圖建置方法,其中該儲存單元儲存有對應至不同物件類別的複數物件特徵資料,該步驟b)是由該偵測演算法將該彩色影像與該複數物件特徵資料進行比對,並且將比對符合的影像視為該動態物件。 The map building method according to claim 1, wherein the storage unit stores a plurality of object feature data corresponding to different object categories, and the step b) is the detection algorithm to use the color image and the plurality of object feature data The comparison is performed, and the image matching the comparison is regarded as the dynamic object. 如請求項3所述的地圖建置方法,其中該步驟c)是取得該動態物件於該彩色影像中的一X軸起點座標位置(Xstart)、一X軸終點座標位置(Xend)、一Y軸起點座標位置(Ystart)及一Y軸終點座標位置(Yend),並依據該些座標位置(Xstart、Ystart、Xend、Yend)建立該標記框,該步驟d)是將該標記框的座標位置對應至該深度影像座標上,並將該標記框內的所有像素的一像素資訊設定為一像素極值以產生一自定義像素資訊。 The map building method according to claim 3, wherein the step c) is to obtain an X-axis starting coordinate position (X start ), an X-axis ending coordinate position (X end ) of the dynamic object in the color image, A Y-axis starting coordinate position (Y start ) and a Y-axis ending coordinate position (Y end ), and according to these coordinate positions (X start , Y start , X end , Y end ) to create the marker frame, the step d) The coordinate position of the mark frame is mapped to the depth image coordinate, and one pixel information of all pixels in the mark frame is set as a pixel extremum to generate a custom pixel information. 如請求項4所述的地圖建置方法,其中該像素極值為0或255。 The map building method according to claim 4, wherein the pixel extreme value is 0 or 255. 如請求項4所述的地圖建置方法,其中該步驟e)是於該深度影像資訊中搜尋該自定義像素資訊所在的一範圍,並將該範圍的一深度資訊設定為0,以產生該修正後深度影像資訊。 The map building method according to claim 4, wherein the step e) searches the depth image information for a range in which the custom pixel information is located, and sets a depth information in the range to 0 to generate the Corrected depth image information. 如請求項1所述的地圖建置方法,其中該地圖建置演算法為為視覺影像同步定位與地圖建構(Visual Simultaneous Localization and Mapping,SLAM)演算法,並且通過三角定位法、卡爾曼濾波器(Kalman Filter)、粒子濾波器(Particle Filter)、蒙特卡羅定位法(Monte Carlo Localization,MCL)、混合型蒙特卡羅定位法(Mixture MCL)或基於網格的馬可夫定位法(Grid-Based Markov)來實現。 The map building method according to claim 1, wherein the map building algorithm is a visual image synchronous positioning and map construction (Visual Simultaneous Localization and Mapping, SLAM) algorithm, and the triangulation method and the Kalman filter (Kalman Filter), Particle Filter (Particle Filter), Monte Carlo Localization (MCL), Mixed Monte Carlo Localization (Mixture MCL) or Grid-Based Markov )to fulfill. 如請求項1所述的地圖建置方法,其中該地圖資料以可攜式網路圖形(Portable Network Graphics,png)、點陣圖(BitMap,bmp)或可攜式灰階圖(Portable Gray Map,pgm)的檔案格式儲存於該儲存單元。 The map construction method according to claim 1, wherein the map data is a portable network graphics (Portable Network Graphics, png), a bitmap (BitMap, bmp), or a portable gray map (Portable Gray Map) , pgm) is stored in the storage unit. 如請求項1所述的地圖建置方法,其中該地圖建置設備搭載於一移動式機器人,並且該地圖建置方法更包括下列步驟:h)該移動式機器人由該儲存單元載入該地圖資料並且開始移動;i)通過該影像感測器持續取得該彩色影像,並且通過該深度感測器持續取得該深度影像資訊;j)判斷是否需要更新該地圖資料;k)於判斷需更新該地圖資料時,執行該偵測演算法以對該彩色影像進行影像辨識;l)於該彩色影像中對一第二動態物件進行標記並產生一第二標記框;m)將該第二標記框對應至該深度影像資訊的該深度影像座標;n)於該深度影像資訊中搜尋並過濾該第二標記框以產生該修正後深度影像資訊;o)依據該修正後深度影像資訊執行該地圖建置演算法;及p)由該地圖建置演算法產生一局部地圖影像,並依據該局部地圖影像更新該地圖資料。 The map construction method according to claim 1, wherein the map construction equipment is mounted on a mobile robot, and the map construction method further includes the following steps: h) the mobile robot loads the map from the storage unit Data and start to move; i) continue to obtain the color image through the image sensor, and continue to obtain the depth image information through the depth sensor; j) determine whether the map data needs to be updated; k) determine the need to update the When mapping data, execute the detection algorithm to perform image recognition on the color image; l) mark a second dynamic object in the color image and generate a second mark frame; m) the second mark frame The coordinate of the depth image corresponding to the depth image information; n) searching and filtering the second marker frame in the depth image information to generate the corrected depth image information; o) performing the map building based on the corrected depth image information Placement algorithm; and p) generating a partial map image from the map creation algorithm, and updating the map data according to the partial map image. 一種地圖建置設備,包括:一影像感測器,於該地圖建置設備啟動後持續取得周圍環境的一彩色影像;一深度感測器,於該地圖建置設備啟動後持續取得周圍環境的一深度影像資訊; 一處理器,電性連接該影像感測器及該深度感測器,該處理器執行一偵測演算法以對該彩色影像進行影像辨識並判斷該彩色影像中是否存在一動態物件,當該動態物件存在時於該彩色影像中對該動態物件進行標記並產生一標記框,其中,該處理器將該標記框對應至該深度影像資訊的一深度影像座標,並且於該深度影像資訊中搜尋並過濾該標記框以產生一修正後深度影像資訊,並且該處理器依據該修正後深度影像資訊執行一地圖建置演算法以產生一地圖資料,其中該修正後深度影像資訊中濾除了該標記框的對應位置上的深度資訊,其中該偵測演算法為方向梯度直方圖(Histograml of Oriented Gradient,HOG)特徵提取演算法、支援向量機(Support Vector Machine,SVM)演算法、卷積神經網路(Convolutional Neural Network,CNN)演算法、YOLO(You Only Look Once)演算法、SSD(Single Shot multibox Detector)演算法或其他採用神經網絡訓練之物件偵測演算法的其中一種或其組合;及一儲存單元,電性連接該處理器,儲存該地圖資料。 A map building device includes: an image sensor that continuously obtains a color image of the surrounding environment after the map building device is activated; and a depth sensor that continuously obtains the surrounding environment after the map building device is activated A depth image information; A processor, electrically connected to the image sensor and the depth sensor, the processor executes a detection algorithm to perform image recognition on the color image and determine whether a dynamic object exists in the color image, when the When the dynamic object exists, the dynamic object is marked in the color image and a mark frame is generated, wherein the processor corresponds the mark frame to a depth image coordinate of the depth image information, and searches in the depth image information And filtering the marker frame to generate a corrected depth image information, and the processor executes a map building algorithm based on the corrected depth image information to generate a map data, wherein the marker is filtered out of the corrected depth image information Depth information at the corresponding position of the frame, where the detection algorithm is a Histograml of Oriented Gradient (HOG) feature extraction algorithm, Support Vector Machine (SVM) algorithm, convolutional neural network One or a combination of Convolutional Neural Network (CNN) algorithm, YOLO (You Only Look Once) algorithm, SSD (Single Shot multibox Detector) algorithm or other object detection algorithms trained with neural networks; and A storage unit is electrically connected to the processor and stores the map data.
TW107142375A 2018-11-28 2018-11-28 Map constructing apparatus and map constructing method TWI690816B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107142375A TWI690816B (en) 2018-11-28 2018-11-28 Map constructing apparatus and map constructing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107142375A TWI690816B (en) 2018-11-28 2018-11-28 Map constructing apparatus and map constructing method

Publications (2)

Publication Number Publication Date
TWI690816B true TWI690816B (en) 2020-04-11
TW202020693A TW202020693A (en) 2020-06-01

Family

ID=71134291

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107142375A TWI690816B (en) 2018-11-28 2018-11-28 Map constructing apparatus and map constructing method

Country Status (1)

Country Link
TW (1) TWI690816B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114322939A (en) * 2020-09-30 2022-04-12 财团法人车辆研究测试中心 Positioning and drawing method and mobile device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114445502A (en) 2020-11-06 2022-05-06 财团法人工业技术研究院 Multi-camera positioning and scheduling system and method
TWI760128B (en) * 2021-03-05 2022-04-01 國立陽明交通大學 Method and system for generating depth image and positioning system using the method
US20230004170A1 (en) * 2021-06-30 2023-01-05 Delta Electronics Int'l (Singapore) Pte Ltd Modular control system and method for controlling automated guided vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200914097A (en) * 2007-05-21 2009-04-01 World Golf Tour Inc Electronic game utilizing photographs
TW201030672A (en) * 2008-12-02 2010-08-16 Koninkl Philips Electronics Nv Generation of a depth map
US20120185096A1 (en) * 2010-05-20 2012-07-19 Irobot Corporation Operating a Mobile Robot
CN107209853A (en) * 2015-01-27 2017-09-26 诺基亚技术有限公司 Positioning and map constructing method
CN107403987A (en) * 2016-05-20 2017-11-28 日本电产艾莱希斯株式会社 Radiated element, aerial array and radar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200914097A (en) * 2007-05-21 2009-04-01 World Golf Tour Inc Electronic game utilizing photographs
TW201030672A (en) * 2008-12-02 2010-08-16 Koninkl Philips Electronics Nv Generation of a depth map
US20120185096A1 (en) * 2010-05-20 2012-07-19 Irobot Corporation Operating a Mobile Robot
CN107209853A (en) * 2015-01-27 2017-09-26 诺基亚技术有限公司 Positioning and map constructing method
CN107403987A (en) * 2016-05-20 2017-11-28 日本电产艾莱希斯株式会社 Radiated element, aerial array and radar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114322939A (en) * 2020-09-30 2022-04-12 财团法人车辆研究测试中心 Positioning and drawing method and mobile device

Also Published As

Publication number Publication date
TW202020693A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
JP6854840B2 (en) Map construction device and its map construction method
TWI690816B (en) Map constructing apparatus and map constructing method
US8467596B2 (en) Method and apparatus for object pose estimation
US8265425B2 (en) Rectangular table detection using hybrid RGB and depth camera sensors
US9811742B2 (en) Vehicle-surroundings recognition device
CN108297115B (en) Autonomous repositioning method for robot
JP2019515407A (en) System and method for initializing a robot-learned route to travel autonomously
KR20180044279A (en) System and method for depth map sampling
JP7438320B2 (en) Alignment of cross-modal sensor data
JP2007293722A (en) Image processor, image processing method, image processing program, and recording medium with image processing program recorded thereon, and movile object detection system
WO2022078513A1 (en) Positioning method and apparatus, self-moving device, and storage medium
WO2022078488A1 (en) Positioning method and apparatus, self-moving device, and storage medium
KR20090061355A (en) Method for controlling driving of moving robot and moving robot using the same
JP2017111638A (en) Image processing method, image processing apparatus, image processing system, production apparatus, program, and recording medium
US20210348927A1 (en) Information processing apparatus, information processing method, and recording medium
CN110942520B (en) Auxiliary positioning method, device and system for operation equipment and storage medium
KR20100062320A (en) Generating method of robot motion data using image data and generating apparatus using the same
JP6410231B2 (en) Alignment apparatus, alignment method, and computer program for alignment
JP2009217832A (en) Method and device for automatically recognizing road sign in video image, and storage medium which stores program of road sign automatic recognition
JP2020179441A (en) Control system, information processing device and control method
JP2018073308A (en) Recognition device and program
KR101233938B1 (en) Robot and method of tracing object
JP2017033556A (en) Image processing method and electronic apparatus
JP4824729B2 (en) Object detection method
JP2015005187A (en) Line inspection device, line inspection method and distance metering device