TW200826686A - Method of authentication and restoration for images - Google Patents

Method of authentication and restoration for images Download PDF

Info

Publication number
TW200826686A
TW200826686A TW95146181A TW95146181A TW200826686A TW 200826686 A TW200826686 A TW 200826686A TW 95146181 A TW95146181 A TW 95146181A TW 95146181 A TW95146181 A TW 95146181A TW 200826686 A TW200826686 A TW 200826686A
Authority
TW
Taiwan
Prior art keywords
image
block
coefficient
information
watermarking
Prior art date
Application number
TW95146181A
Other languages
Chinese (zh)
Inventor
Chao-Ho Chen
Chung-Yih Lee
Original Assignee
Univ Nat Kaohsiung Applied Sci
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Kaohsiung Applied Sci filed Critical Univ Nat Kaohsiung Applied Sci
Priority to TW95146181A priority Critical patent/TW200826686A/en
Publication of TW200826686A publication Critical patent/TW200826686A/en

Links

Landscapes

  • Editing Of Facsimile Originals (AREA)
  • Image Processing (AREA)

Abstract

This patent presents a method of effective image authentication and image restoration by hiding watermarks into DCT coefficients. The basic concept is to embed the selected significant watermarking bits for authentication and restoration into the selected medium- and low-frequency DCT coefficients. Thus, it can detect the illegally tampered region and then the original information in that region is introduced for restoration. Experimental results show that the proposed authentication and restoration techniques can be applied to a DVR system, in which no original image information is involved, and it can effectively detect the illegally tampered region and restore the tampered region up to the human visual perceptual quality by only using a little embedded original information.

Description

200826686 九、發明說明: 【發明所屬之技術領域】 本發明係提供一種影像認證與復原之方法,尤指一種 利用離散餘弦轉換區塊係數並藉由藏入浮水印位元之影像 認證與復原技術。 【先前技術】 資料隱藏(Information Hiding )技術是屬於200826686 IX. Description of the Invention: [Technical Field] The present invention provides a method for image authentication and restoration, and more particularly to an image authentication and restoration technique that uses discrete cosine transform block coefficients and hides watermark bits. . [Prior Art] Information Hiding technology belongs to

Steganography” 的一種,steganography 代表“秘密寫 作”的意思,而資料隱藏意指將各種資訊藏在另一個資訊 之後,可以將資料,諸如文字、影像、視訊、聲音等資料, 隱藏至如公文、證件、文件影像、照片影像、語音、音樂、 影片、廣告等之類的資訊。資料隱藏的應用包括版權保護 (copyright protection)、資訊驗證(inf〇rmati〇n authentication)、註解植入(ann〇tation implantation)、 秘密傳輸(covert communication)、多家授權(muitipie authorizations)等 ° >料隱藏主要包括兩大方向··數位浮水印(D i g丨t a 1 Watermarking)與數位指紋(Digital Fingerprinting)。 數位浮水印可以將一些屬於智慧財產權的訊息,諸如 原創作者、出版處、公司地址等資訊,隱藏在數位媒體的 產品上。 而數位指紋則是對每一個不同的產品給予不同的編 遽’當產品被重製或無非共享時,利用該隱藏的編號可以 找出非法的傳播者。 6 200826686 目月ί比較新的數位浮水印研究方向,大都應用以下這 二理爾基礎’例如密碼學、展頻通訊(SpreacUpeCtrUffl Communication)和雜訊理論(N〇ise The〇ry)等。 實際上’數位浮水印可以被視為雜訊分佈,將數位浮 水印表不為一種雜訊樣式,然後將它加入原始的訊號中。 近年來’已經有越來越多的數位浮水印技術應用在竄 改偵測及版權保護方面,市面上有許多平易近人的多媒體 影像編輯的資訊產品,這些軟體採用新穎的技術,能夠剪 輯單張影像或是動態晝面,數位媒體資料的編輯工具越趨 簡單,因此,保護原始的數位影像資料以及確保所取得的 影像是沒有經過非法竄改是一項重要的課題。 一個良好的浮水印技術必須要能夠符合以下的幾項條 件,: 八 1、 不可視性(Invisible) ··當我們加入一串浮水印 貝汛到原始影像中時,不希望其它人能夠馬上發覺與原始 影像有所差異,否則浮水印資訊就很容易被萃取或是^ 壞,因此,通常一個浮水印技術必須要達到不可視性=程 度’目的除了降低遭有心人士發現而加以竄改外,最重要 的就是保留原始影像所應該擁有的内容資訊;而為了達到 不可視性的目的,對影像技術來說可以利用人類視覺系矣 (Human Vision System,HVS)或是可知覺的最小變化= (JND)將所要隱藏的資訊藏匿在人眼較不易查覺的地方里 2、 強健性(Robustness ): —個良好的浮水印方 必須具備一定的強韌性,經過一般常用的訊號處理 或幾何 200826686 應用範二=的浮水印資訊,甚至對於某些特定 測出原有浮h . 在經過人為惡意破壞後,仍能偵 产也不7 對於不同方面的應用,其強健性的嚴格 :性就比目二Γ版權保護為主的浮水印來說,所… 亞 〜❹的洋水印來的高,必須在即使經過多次 心思破壞’柄你 犯依“、、所偵測出的浮水印資訊來明確的肯定 其版權的所有人。 ··嵌入浮水印訊息的文件内 ,有可能萃取所嵌入的訊息 ,因此所嵌入的浮水印要具 可月b性,浮水印的安全性可 以編碼,再隱藏入欲保護的 的浮水印應避免被不法使用 擁有者才能偵測到所嵌入的 3、安全性(Security) 谷如果遭到有心人士惡意攻擊 内容並加以竄改、重製再發佈 有保密性,降低被惡意攻擊的 以使用密碼的方式將浮水印加 數位文件内容當中,一個成功 者破解的機率,唯有浮水印的 浮水印内容。 4、不可移除性(Undeletable):嵌入浮數位文件的 浮水印資訊必須與原文件緊密結合,也就是不能因為一般 訊,處理的方式’而使得浮水印資訊輕易的被移除,一般 來說’以影像驗證為主要目的的浮水印技術,在浮水印經 過移除後,該影像隨即變成無作用、不可信賴的影像内容。 實際上,每個資料隱藏的應用須要有不同程度的抵擋 資料修改的能力和資料隱藏的能力,若以L〇g〇為浮水印目 的來說,又可以為可視的商標資訊與不可視的隱藏商標, 對於不可視的Logo來說,強健性是必要的能力;而對於影 200826686 像驗證應用兔主&、办u匕 ^為主的林印,以不可視的浮水印應用較多, 目父於Logo’破碎性(亦或半破碎性)料必要的要求。 容㈣上’已有許多研究致力於研究影像視 几、竄改偵測技術並發表多篇國際會議論文⑴-⑽,破 !型浮水印、強健型浮水印,和近年來研究出的半破碎型 汗水=,都是可以甩來作為影像認證及版權保護的技術。 子水印的研究包含-般應用於空間域或頻率域的影像 竄改偵測方法,也有可以抵抗影像或視訊I縮方法的窥改 偵測技術研究被提出來,除此之外,向量量化、密碼學、 振幅相位移等的方法也被應用於竄改偵測技術中。 口在這研九領域中,較具代表性的有:Kwang-Fu Li [1J 提出基於小波轉換技術的影像竄改偵測技術,將影像中低 頻的4伤藏入鬲頻的部份來做為認證依據。 心Wu與Bede Liu [3]提出將影像中有意義的部份 才出作為浮水印並藏入影像頻率域中藉由查表法來完 成影像竄改债測。Steganography, steganography stands for "secret writing", and data hiding means hiding information from other information, and hiding information such as text, images, video, sound, etc. into documents such as documents and documents. Information such as document images, photo images, voice, music, videos, advertisements, etc. Data hiding applications include copyright protection, information verification (inf〇rmati〇n authentication), annotation implantation (ann〇tation) Implantation, covert communication, muitipie authorizations, etc. > material hiding mainly includes two major directions: digital watermarking and digital fingerprinting. Watermarking can hide information about intellectual property rights, such as original authors, publishing offices, company addresses, etc., on digital media products. Digital fingerprints give different compilations for each different product. Use this hidden code when being remade or not shared It is possible to find illegal communicators. 6 200826686 目月 ίCompared with the new digital watermark research direction, most of them apply the following two Lier foundations such as cryptography, spread communication (SpreacUpeCtrUffl Communication) and noise theory (N〇ise The〇ry) et al. In fact, the 'digital watermark can be regarded as a noise distribution, the digital watermark is not a noise pattern, and then added to the original signal. In recent years, 'there has been more and more The digital watermarking technology is applied to tamper detection and copyright protection. There are many easy-to-read multimedia video editing products on the market. These softwares use novel technology to edit single images or dynamic digital data. The easier it is to edit the tools, therefore, it is an important issue to protect the original digital image data and ensure that the images obtained are not falsified. A good watermarking technology must meet the following conditions: 1. Invisible · When we add a bunch of watermarks to the original image When you don't want other people to immediately find out that it is different from the original image, the watermark information will be easily extracted or corrupted. Therefore, usually a watermarking technology must achieve the invisibility = degree' purpose in addition to reducing the intention of the person. In addition to being tampered with, the most important thing is to preserve the content information that the original image should have. For the purpose of invisibility, the human vision system (Human Vision System, HVS) can be used for image technology. The smallest change in perception = (JND) hides the information to be hidden in a place where the human eye is less likely to detect. 2. Robustness: A good watermarker must have certain toughness. Signal processing or geometry 200826686 application of the second water = watermark information, even for some specific detection of the original floating h. After the artificial vandalism, can still detect production is not 7 for different aspects of the application, its robustness Strict: Sex is better than the watermark based on the copyright protection of the second, the sub-~ ❹ foreign watermark comes high, even in even Had many thoughts sabotage 'handle you make depend ",, the watermark information to detect a clear recognition of the copyright owner. · Embedded in the file of the watermark message, it is possible to extract the embedded message, so the embedded watermark must have a monthly b, the security of the watermark can be encoded, and then hidden into the watermark to be protected should be avoided The owner of the illegal use can detect the embedded 3. Security Valley. If someone has maliciously attacked the content and tampering it, reproduce it and then publish it with confidentiality, and reduce the malicious attack to use the password. Adding a watermark to the content of a digital file, the probability of a successful person cracking, only the watermarked watermark content. 4, Undeletable (Undeletable): The watermark information embedded in the floating-bit file must be closely integrated with the original file, that is, the watermark information cannot be easily removed because of the general message, the way of processing, in general The watermarking technology with image verification as the main purpose, after the watermark is removed, the image becomes an inactive and untrustworthy image content. In fact, each data hiding application needs to have different degrees of ability to resist data modification and data hiding. If L〇g〇 is used for watermarking purposes, it can be a visual trademark information and an invisible hidden trademark. For the invisible logo, robustness is a necessary ability; for the shadow 200826686, like the verification application rabbit main &, the main printing, the Lin Yin, mainly invisible watermark application, the father of the logo 'Required requirements for broken (also or semi-crushed) materials. Rong (4) has many researches dedicated to researching image visualization, tamper detection technology and publishing many international conference papers (1)-(10), broken! watermark, robust watermarking, and semi-broken type developed in recent years. Sweat =, can be used as a technology for image authentication and copyright protection. The study of sub-watermarks includes image tamper detection methods that are generally applied to the spatial or frequency domain, and sneak detection techniques that can resist image or video reduction methods have been proposed, in addition to vector quantization and passwords. Methods such as learning, amplitude phase shifting, etc. are also applied to tamper detection techniques. In this research field, the more representative ones are: Kwang-Fu Li [1J proposed image tamper detection technology based on wavelet transform technology, which is used to hide the low-frequency 4 injuries in the image into the 鬲 frequency part. Certification basis. Heart Wu and Bede Liu [3] proposed that the meaningful part of the image be used as a watermark and hidden in the image frequency domain to complete the image tampering debt test by look-up table method.

Chlng-Yung Lin 與 Shih_Fu Chang [5]_[7]提出以區 塊間相互的關聯性來做為認證的方式,為了達到能夠抗壓 縮的特性’將認證機制架構在聰為基礎的壓縮系綠,利 用兩個隨機選取的區塊關係萃取出特徵資訊,在研究中他 們發現’區塊間的相互關係在壓縮前和壓縮後保有不變 性,因此能夠抵抗JPEG的壓縮。雖然Lin使用這種獨特的 相關性來確保浮水印資訊能在JpEG壓縮系統上得以保存, 但他們計算特徵資訊的方式卻是隨機選取任意的兩個區 200826686 塊,這使得影像中的結構特性無法被展現出來。 因此 Chung-Shien Lu 與 Hong-Yuan Mark Liao [5]改 善Lin所提出的方法,捨棄對任意兩個區塊計算關聯性, 針對多層次小波轉換後的資訊產生對影像的結構有意義的 數位簽章,稱之為 Structural Digital Signature(SDs), SDS的設計對於内容保留的影像處理是屬於強健的,換句話 說仙S 了以谷忍fi iter、壓縮和縮放等影像處理,但是 如果影像内容遭到竄改,則可以很容易的偵測出來。 此外,L· M. Marvel [14]提出基於jpeg壓縮系統的Chlng-Yung Lin and Shih_Fu Chang [5]_[7] proposed a method of authentication based on the inter-block correlation, in order to achieve the anti-compression characteristics of the certification mechanism in the Cong-based compression system green Using two randomly selected block relationships to extract feature information, they found that 'the inter-block relationship is invariant before and after compression, so it can resist JPEG compression. Although Lin uses this unique correlation to ensure that watermark information can be saved on the JpEG compression system, the way they calculate feature information is to randomly select any two areas 200826686, which makes the structural features in the image impossible. Be revealed. Therefore, Chung-Shien Lu and Hong-Yuan Mark Liao [5] improved the method proposed by Lin, discarding the correlation between any two blocks, and generating a meaningful digital signature for the structure of the image for multi-level wavelet transformed information. It is called Structural Digital Signature (SDs). The design of SDS is robust to the image processing of content retention. In other words, it is processed by image processing such as valence, compression and scaling, but if the image content is Tampering can be easily detected. In addition, L. M. Marvel [14] proposed a jpeg-based compression system.

Stego-JPEG藏入浮水印,可以應用在MpEG系統等以沉丁為 基礎的壓縮影像/視訊中。s.Kutter [15 ]提出利用影像中具有特徵位置的資訊加密後產生數 位簽早’在認證時,取出所藏入的資訊與待認證影像的特 徵資訊比對後,那些無法正確比對的區塊就可以稱作是遭 到竄改的區域,這種認證方式確定可以抵抗中高;品質的 JPEG壓縮,因為在JPEG壓縮中特徵資訊也會隨之保留。Stego-JPEG is embedded in a watermark and can be applied to compressed images/videos based on the Sip-based system such as the MpEG system. s.Kutter [15] proposes to use the information of the feature position in the image to encrypt and generate the digital sign early. In the authentication, after the information hidden in the image is compared with the feature information of the image to be authenticated, those areas that cannot be correctly aligned are compared. Blocks can be called tamper-evident areas. This authentication method is determined to be resistant to medium-to-high quality JPEG compression because feature information is preserved in JPEG compression.

Phen-Lan Lin [16]於2005年提出階層式的偵測方 式,能讓在第一次偵測過程中無法被偵測到的竄改區域能 夠在在後的第二、三次偵測被查覺,利用三種不同大小的 偵測區塊(2x2、4x4、Uxl2 )來達成階層式偵測,利用階層 式的浮水印可以提高竄改偵測的效能,但相對的,錯誤债 測所發生的機率也會跟著提升。 又基於 M· Kutter 與 F· Α· P. Petitcolasb [18]以 及Sviatoslav Voloshynovskiy [19]等人所提出的影像攻 200826686 分為五種不同的種類 擊方式’我們可以將影像攻擊類型 錄分別說明如下·· 1、移除式攻磬:士西^ ^ ^ ^ 主要目的是移除影像内容所藏入的 理資訊:將所藏入的浮水印資訊視為雜訊來處 气藏匿f “充十刀析或疋預測的方式,對所有可能的認證資 此臧匿點加以用雜訊濾险人 專 、觀心為基礎的方式來處理,使得 衫谷…法取出任何可供辨識的相關資訊。 盤切變$攻擊.以基本的影像處理做為浮水印攻 =式’其原意並非將所嵌人的浮水印訊息移除,而是 月邮二本的W像處理技術,對喪人浮水印後的影像内容做 道一的處理,使得其原有之像素值關係遭受破壞,進而 2驗證失效,較典型的方式包括:位移、剪裁、滤波、 r 》疋轉、縮放、攔或列的刪除等。 β 3、密碼學攻擊:這類型的攻擊方式是利用窮舉法或 =力法’強迫猜測原始嵌人的浮水印位置及内容,當機 密資訊被破解時,内藏的驗證資訊就可輕易的移除,^至 是竄改影像内容而仍然可以通過原始的驗證程序:、此種攻 擊方式相當費時及消耗資源’因&,若不是非常了解驗工 程序’則通常不會使用這類型的攻擊技術。 4、系統協定攻擊:藉由不同的浮水印方法嵌入不同 的認證資訊,使得原有的嵌入資訊遭受影響,使得原本、 驗證過程失效。 /、 的 5、其它:諸如壓縮、量化、格式轉換等,都有可炉 造成認證資訊的遺失。 % 11 200826686 以Logo為主的浮水印應用,必須要能夠抵抗上述的每 一種攻擊方式,包括壓縮、變形、轉換、縮放、 ......寺’雖 說如此,L〇go浮水印的目的是要能辨別出原創者或是版權 所有人,因此只需要能夠使用人眼識別出偵測出叩即 可。而影像驗證的浮水印應用,則只能允許不改變影像主 題的攻擊模式’如壓縮、縮放、" ...等’對於影像驗證的浮 水印來說,相對的受到的限制較大。 M· Kutter 與 F· A. P. Petitcolasb [18]於 1999 年 提出基於小波轉換的影像驗證方法,主要目的是偵測影像 中空間域和頻率域的變化,並將可能被竄改的區域標示出 來,藉以驗證影像的正確性。 (1)參數定義: f (m,η):原始影像Phen-Lan Lin [16] proposed a hierarchical detection method in 2005, which enables the tampering area that could not be detected during the first detection process to be detected in the second and third detections. Three different sizes of detection blocks (2x2, 4x4, Uxl2) are used to achieve hierarchical detection. Hierarchical watermarking can improve the performance of tamper detection, but the probability of wrong debt measurement is also Will follow the promotion. Based on M. Kutter and F. Α P. Petitcolasb [18] and Sviatoslav Voloshynovskiy [19] and others, the image attack 200826686 is divided into five different types of hits. ·· 1. Removal type attack: Shixi ^ ^ ^ ^ The main purpose is to remove the information hidden in the image content: the hidden watermark information is regarded as noise and the gas is hidden. In the way of knife analysis or forecasting, all possible certifications are handled in a way that is confusing and clear-minded, so that the shirts can extract any relevant information that can be identified. Disk shearing $attack. Basic image processing as a watermark attack = type 'the original intention is not to remove the embedded watermark message, but the monthly image of the W image processing technology, the watermark for the funeral After the image content is processed, the original pixel value relationship is destroyed, and then the verification fails. The typical methods include: displacement, clipping, filtering, r 疋 、, scaling, blocking or column deletion. Etc. β 3, cryptography Strike: This type of attack is to use the exhaustive method or the = force method to force the guessing of the original embedded watermark location and content. When the confidential information is cracked, the built-in verification information can be easily removed. It is possible to tamper with the video content and still pass the original verification procedure: this type of attack is quite time consuming and consumes resources 'cause & if it is not very familiar with the inspection procedure', this type of attack technology is usually not used. Protocol attack: embedding different authentication information by different watermarking methods, so that the original embedded information is affected, and the original and verification process is invalid. /, 5. Others: such as compression, quantization, format conversion, etc. The furnace can cause the loss of certification information. % 11 200826686 Logo-based watermarking application must be able to resist each of the above attacks, including compression, deformation, conversion, scaling, ... Temple's though The purpose of L〇go watermarking is to be able to identify the original or copyright owner, so you only need to be able to use the human eye to identify the detected flaws. The image-authenticated watermark application can only allow attack patterns that do not change the image theme 'such as compression, scaling, " ..., etc., for the watermarking of image verification, the relative restrictions are relatively large. M·Kutter and F·AP Petitcolasb [18] proposed an image verification method based on wavelet transform in 1999. The main purpose is to detect the spatial and frequency domain changes in the image and to identify the areas that may be tampered with to verify Correctness of the image. (1) Parameter definition: f (m, η): original image

Lez+ :小波轉換的最大階數Lez+ : the maximum order of wavelet transform

f k,1 ( m,η ):小波影像係數,k=h,v,d,a,1 = 1,2, L fa,L(m,n):最高階最低頻的小波係數 w(i) · Validation key,i = l,......,Nw ckey(i) : Coefficient selection key , i=l , qkey(i) · Quantization key 5 i=l , ...... , Nw (5 : Quantization parameter (2 )浮水印隱藏方式: 首先對原始影像f (m,n)進行L階的小波轉換,由頻率 12 200826686 轉換可以取得3L種不同的小波係數影像資訊,以及最高階 最低頻的小波係數f a,L(ffl,n) ’因此所分解出的小波係數可 以表示如下: {Λ>,4:==βί^Ι/(Μ] (2-1) 其中k=h,V,d,a (水平、垂直、對角、最高階最低 頻區),以及1 = 1,· · ·,L。接著,對位於各階的水平、垂 直、和對角的小波係數,藉由Ckey來選擇所要嵌入浮水印 的係數位置,其步驟如下:Fk,1 ( m,η ): wavelet image coefficient, k=h,v,d,a,1 = 1,2, L fa,L(m,n): wavelet coefficient w(i) of the highest order lowest frequency · Validation key, i = l, ..., Nw ckey(i) : Coefficient selection key , i=l , qkey(i) · Quantization key 5 i=l , ...... , Nw ( 5 : Quantization parameter (2) Watermark hiding method: First, the original image f (m, n) is L-order wavelet transform, and the frequency 12 200826686 conversion can obtain 3L different wavelet coefficient image information, and the highest order lowest frequency The wavelet coefficients fa, L(ffl, n) 'The wavelet coefficients thus decomposed can be expressed as follows: {Λ>, 4:==βί^Ι/(Μ] (2-1) where k=h, V, d, a (horizontal, vertical, diagonal, highest order lowest frequency region), and 1 = 1, · · ·, L. Next, for the horizontal, vertical, and diagonal wavelet coefficients at each order, by Ckey Select the position of the coefficient to be embedded in the watermark, as follows:

Step 1: 若 ,立 士 · 具中1的值在1到Nw之間,我們做下列 碉整: if Qs(fkJ (m5η))^ ^)φ qkey^ 〜(m, w) = I 八,(w,w) - 处 Λ,/ (所,《) > 〇 [/:j{m^«)+ δ2ι, if fkJ (m5 n)<0 (2-2) else zki(m^n)- fkl{m,n) end 其中,函數&⑺的定義為: 2^(/)= 0,if f J2l _ Uf f is even is odd (2-3) 對於最高階L最低頻k = a的每一個在位置(m,n)的小波 13 200826686 係數而言,不做量化調整。 執行L階的離散小波反轉換,以小波係數集合忆加4來 轉換回原始影像Z(m,η),表示如下: » Z(m, n) = ID WTHAAR [{z^; (m? n)}J ( 2 - 4 ) 其中女=九 f,且 /=1,2, . . . i:。 (3 )浮水印萃取及竄改評估的方法: 假設我們針對一張已藏入浮水印的影像z(m,n)做驗證 的,我們需要一串經過密鑰κ加密過的二進位原始嵌入浮 尺印貝料W(1),1 = 1,2, · · · Nw,其中亦可經由密鑰κ來還原 原始的浮水印資料。首先將原始影像Z(m,η)進行L階的 Haar離散小波轉換,產生儿種不同小波俵數影像 k’ 1 (m’ η),其中k=h,V,d(水平、垂直、對角),1 = 1,… L為區別*同小波解析層所分解出來的小波係數。 ’ 出…從分解^來的離散小波係數^暑庸•叫射,取 其^水印母—個取出的浮水印位元為砟)=么(4>,《))^知(/), 屮 ·愚^,小波係數;彳見/?)是由所選擇 ^ & 用在鑰κ對所卒取出來的R還原回原始的浮 出的变=:者的浮水印比對是否相同,並利用所推導 霞改箱^來㈣竄改的程度:Step 1: If, the value of Lishi 1 is between 1 and Nw, we make the following adjustment: if Qs(fkJ (m5η))^ ^)φ qkey^ ~(m, w) = I 八, (w,w) - Λ, / (所,《) > 〇[/:j{m^«)+ δ2ι, if fkJ (m5 n)<0 (2-2) else zki(m^n )- fkl{m,n) end where function &(7) is defined as: 2^(/)= 0,if f J2l _ Uf f is even is odd (2-3) For the highest order L lowest frequency k = Each of a is not quantized in terms of the wavelet 13 200826686 coefficient of position (m, n). The L-order discrete wavelet inverse transform is performed, and the wavelet coefficient set is added back to 4 to convert back to the original image Z(m, η), which is expressed as follows: » Z(m, n) = ID WTHAAR [{z^; (m? n )}J ( 2 - 4 ) where female = nine f, and /=1,2, . . . i:. (3) Method of watermark extraction and tamper evaluation: Suppose we verify the image z(m,n) that has been hidden in the watermark, we need a string of binary embedded embedding encrypted by key κ The ruler is W(1), 1 = 1, 2, · · · Nw, wherein the original watermark data can also be restored via the key κ. Firstly, the original image Z(m, η) is transformed into Haar discrete wavelet transform of L order, which produces different wavelet image k' 1 (m' η), where k=h, V, d (horizontal, vertical, right Angle), 1 = 1,... L is the difference* with the wavelet coefficients decomposed by the wavelet analysis layer. 'Out...The discrete wavelet coefficient from the decomposition ^^昌庸•叫射, take its watermark mother--take the watermark bit as 砟)=么(4>, "))^知(/), 屮· 愚^, wavelet coefficient; 彳见/?) is selected by ^ & used in the key κ to extract the R returned to the original floating variable =: the watermark comparison is the same, and Use the degree of tampering that is derived from the Xia Box: (4):

if TAF(wfw) > T e/f改對於影像的辨析題影響的 (2-5) 可“任的影像内容 end 14 200826686 其中 3¾¾¾) = 士坌 _·)㊉邱) Ϊ=1 Τ為對影像竄改可接受的容忍度。If TAF(wfw) > T e/f changes the influence of the image analysis problem (2-5) can be "any video content end 14 200826686 where 33⁄43⁄43⁄4) = 士坌_·) 十邱) Ϊ=1 Τ Acceptable tolerance for image tampering.

Kutter所提出的浮水印技術,可以驗證影像内容是否 k焚竄改,並藉由所記錄的浮水印嵌入位置得知遭竄改的 邛伤,加上利用量化的強度5調整對於jpEG壓縮的容忍 度’這種方式對於影像内容遭受扭曲、雜訊、縮放的非惡 意攻擊’ m㈣測的正確性就會降低,而且對於竄改的部 份並不具備復原的能力,因此當影像遭受破壞時,就必須 要重新傳輸影像並驗證,才能得到所需要的資訊。 又 Yulin Wang 與 Alan Pearmain [13]於 2〇〇4 年提出 兩種不同的浮水印方法用來偵測及標示竄改區域,這兩種 洋水印方法分別估測亮度資訊在空間域的變化,以及OCT 頻率域中的π係數值的變化來隱藏浮水印資訊。 基於人類視覺的研究上指出,人類的視覺系統對於單 一像素值的變化較不敏感,即使對少數特定的像素值做修 改也不易被㈣’即便如此,像素值對於影像處理的適應 性部:微弱,因此,Wang利用區塊間係數值的相對性關係 做為嵌入浮水印資訊的考量, ” 绝個方法對於嵌入資訊的不 可視、資訊量、以及強健度達到了最佳的平衡點,並且可 以應用M DCT為基礎的視訊㈣技術,諸 MPEG-2、Η.262 等。 以下為浮水印嵌入演算法之實施例·· (1 )參數定義:The watermarking technology proposed by Kutter can verify whether the image content is burned or not, and the tampering bruise is detected by the recorded watermark embedding position, and the tolerance for jpEG compression is adjusted by using the intensity of quantization 5 In this way, the correctness of the non-malicious attack of the image content subjected to distortion, noise, and scaling is reduced, and the tampering part does not have the ability to recover. Therefore, when the image is damaged, it is necessary. Re-transfer the image and verify it to get the information you need. In addition, Yulin Wang and Alan Pearmain [13] proposed two different watermarking methods to detect and mark tampering areas in 2-4 years. These two ocean watermark methods respectively estimate the change of brightness information in the spatial domain, and The change in the value of the π coefficient in the OCT frequency domain hides the watermark information. Based on human visual research, it is pointed out that the human visual system is less sensitive to changes in single pixel values, and it is not easy to be modified even for a few specific pixel values. (4) Even so, the adaptive part of pixel values for image processing: weak Therefore, Wang uses the relative relationship between the coefficient values of the blocks as the embedded watermark information. "The absolute method achieves the best balance point for the invisibility, information volume, and robustness of the embedded information, and can be applied. M DCT-based video (4) technology, MPEG-2, Η.262, etc. The following is an example of a watermark embedding algorithm. (1) Parameter definition:

Lreal ··中心點像素值的亮度資訊 15 200826686Lreal ··Center point pixel value brightness information 15 200826686

Lraean : 所選擇的範圍内臨近的像素值亮度:身訊的平均 △ 1 △ 2 ·肷入以及驗證時所使用的臨界值 (2 )浮水印隱藏方式: 請參閱第1圖所示,在所提出的浮水印方法中,區塊 的選擇可以是3x3(a)7 7r 、 ^ v J Dxb lb) 、7χ7 ( c)、甚至是 9χ9 (d)的像素值區塊,而Lreal就是指以“〇,,標示的區塊 中〜點像素的數值,而Lmean就是指包含周圍像素值 均數。 當所要嵌入的認證位元為“丨,,時,我們修改中間像素 值的壳度資訊使其滿足下列公式所述: (2-6)Lraean : The brightness of the adjacent pixel value in the selected range: the average value of the body △ 1 △ 2 · The threshold used for the intrusion and verification (2) The watermark hiding method: Please refer to Figure 1, in the In the proposed watermarking method, the block selection can be 3x3(a)7 7r , ^ v J Dxb lb) , 7χ7 ( c), or even 9χ9 (d) pixel value block, and Lreal means “ 〇,, the value of the pixel in the indicated block, and Lmean refers to the value of the surrounding pixel value. When the authentication bit to be embedded is “丨,, we modify the shell information of the intermediate pixel value to make it Meet the following formula: (2-6)

Lreal ^ Lmean + Δΐ 反之,如果所要嵌入的認證位元為“〇,,時,修改中間 像素值的焭度資訊使其滿足下列公式所述: (2-7)Lreal ^ Lmean + Δΐ Conversely, if the authentication bit to be embedded is “〇,, the information of the intermediate pixel value is modified to satisfy the following formula: (2-7)

Lreal <C Lmean 一 八 2 以實驗所得到的結果經驗下,△ ι、△ 2設定為L…的 5〜10%為最佳範圍。 (3 )浮水印萃取及竄改評估的方法: 在萃取所藏入的資訊時,採用的方法和嵌入時的方法 是大同小異的。 首先計算區塊的亮度資訊平均數厶_以及中心點的亮 度貝汛Lreal,如果Lreal 2 Lmean,則所萃取的認證位元 為 1 ’否則若Lreal < Lmean,則所萃取出的位元為‘‘ 〇 ” ’再將所萃取出的認證位元與原始的認證位元做比對, 16 200826686 如此則可以偵測出被竄改的區域。 以下為浮水印嵌入演算法之另一實施例,: (1)參數定義: AC.., •中心區塊之低頻區Μ係數值 ^q\ ;:估測的中心區塊之低頻區dc係數值 △:嵌入以及驗證時所使用的臨界值 (2 )浮水印隱藏方式: , 在Choi和Aizawa [12]於1 999年所提出的方法中, 利用9個8x8 DCT區塊中的DC係數值來計算所要嵌入的資 訊’藉以改變目前區塊(中央區塊)的DC係數值作為浮水 印’貝訊的藏入。然而Choi的方法卻只用到9個〇(^區塊的 上、下、左、右,四個區塊做為Z)C值的估測(請參閱第2 圖所不),這種方式對於人類視覺上會有較高的敏感性, 也就是况值的改變會讓影像品質的pSNR比降低。除此之 外,對於臨界值(△)的估測方法,用以控制浮水印的強 健性及不可視的特性以求達到最佳的平衡點,更會是一項 " 困難的抉擇。 為 了改善 Choi 的缺點,Wang 和 Pearmain [ 12]於 1990 長:出方法來增強低頻區jc係數預測的精確性(如下式 2-8 ),將估測所使用到的區塊由原本的上、下、左、右, 四個區塊擴增使用到相鄰的8個區塊,並且由原本的藏入 資訊到汉:值改為低頻區的5個此值,這種做法可以減少影 像品質因為嵌入資訊量增加而損失。 17 200826686 ^C(05l) = U3884*(Z)C4-Z)C6)/8; = 1.13884 * (DCi - DCs) / 8; AC(0,2) = 0.27881 * {DCa + DCe - 2 * DCs) / 8; AC(250) = 0.27881 * {DCi + DC% - 2 * DCs) / 8; ^C(1,1) = 0.16213 * (DCi + DC9 - DCs - DCi) / 8; ( 2 - 8 ) 接著,再套用與前述相同之的判斷條件,將認證位元 隱藏至中心區塊的5個,係數值,其中,代表在公式(3) 中所估算的5個’值,分別為^(o,1)、」c(1,0)、」c(0,2)、Jc(2,0)、 娜,1) 〇Lreal <C Lmean 八 2 2 Based on the results obtained from the experiment, △ ι and △ 2 are set to 5 to 10% of L... as the optimum range. (3) Method of watermarking extraction and tamper evaluation: When extracting the information hidden, the method used and the method of embedding are similar. First, calculate the luminance information average 厶_ of the block and the brightness of the center point. If LReal 2 Lmean, the extracted authentication bit is 1 ' otherwise, if Lreal < Lmean, the extracted bit is '' 〇' 'Compare the extracted authentication bit with the original authentication bit, 16 200826686 This will detect the falsified area. The following is another embodiment of the watermark embedding algorithm. : (1) Parameter definition: AC.., • Low-frequency zone Μ coefficient value of the central block ^q\ ;: Estimated dc coefficient value of the low-frequency zone of the central block △: Threshold value used for embedding and verification ( 2) Watermark hiding method: In the method proposed by Choi and Aizawa [12] in 1999, the DC coefficient values in the 9 8x8 DCT blocks are used to calculate the information to be embedded 'to change the current block ( The DC coefficient value of the central block is hidden as the watermark 'BeiXun. However, Choi's method only uses 9 〇 (^ block up, down, left, right, four blocks as Z) Estimation of the C value (see Figure 2), this way for human vision The high sensitivity, that is, the change in the condition will reduce the pSNR ratio of the image quality. In addition, the estimation method for the threshold (△) is used to control the robustness and invisibility of the watermark. To achieve the best balance point, it will be a difficult choice. To improve the shortcomings of Choi, Wang and Pearmain [12] were in 1990: a method to enhance the accuracy of the prediction of the jc coefficient in the low frequency region (see Equation 2 below). -8), the block used by the estimation is amplified from the original upper, lower, left, right, and four blocks to the adjacent 8 blocks, and the original information is hidden into the Han: The value is changed to 5 values in the low frequency region, which can reduce the image quality due to the increased amount of embedded information. 17 200826686 ^C(05l) = U3884*(Z)C4-Z)C6)/8; = 1.13884 * (DCi - DCs) / 8; AC(0,2) = 0.27881 * {DCa + DCe - 2 * DCs) / 8; AC(250) = 0.27881 * {DCi + DC% - 2 * DCs) / 8; ^C(1,1) = 0.16213 * (DCi + DC9 - DCs - DCi) / 8; ( 2 - 8 ) Next, apply the same judgment condition as above to hide the authentication bit to the central block 5 One , the coefficient value, where represents the five 'values estimated in equation (3), respectively ^(o,1), "c(1,0),"c(0,2), Jc(2, 0), Na, 1) 〇

Set ACi > AC\ + Δ to embed bit ΊSet ACi > AC\ + Δ to embed bit Ί

Set ACi < AC\ - Δ to embed bit Ό1. ( 2 - 9 ) (3 )浮水印萃取及竄改評估的方法: 在認證時,藉由取出的係數與鄰近區塊所估測出的 相比較,如果則所取出的特徵位元為“ Γ ,否則 若A:/,則所取出的特徵位元為“〇” 。 接著取出的特徵位元再跟原始的認證位元互相比較, 就可以得知該區塊是否有被惡意竄改。 然而,這種嵌入方式有幾個缺點,首先,當取出的JCV险 好等於XC;時,無法判定該認證位元是0或1,造成認證上 的盲點。其次,9個8x8的DCT區塊中只針對中間的區塊做 浮水印嵌入,在認證過程中會造成區塊效應,無法明確的 標不出確切被霞改的區域。 又 Ching-Yung Lin 與 Shih-Fu Chang [5]-[7]於 1999 至2 001年間,分別提出可抗JPEG壓縮及MPEG壓縮影像認 證方法。作者提出兩種基於8x8 DCT區塊的影像關聯性不 變理論,如下:Set ACi < AC\ - Δ to embed bit Ό1. ( 2 - 9 ) (3) Method of watermark extraction and tamper evaluation: At the time of authentication, the coefficient extracted is compared with the estimated by neighboring blocks. If the extracted feature bit is " Γ , otherwise if A: /, then the extracted feature bit is "〇". Then the extracted feature bits are compared with the original authentication bits, and then Knowing whether the block has been maliciously tampered with. However, this embedding method has several shortcomings. First, when the JCV risk is equal to XC, it cannot be determined that the authentication bit is 0 or 1, which causes blind spots on authentication. Secondly, in the 8 8x8 DCT blocks, only the middle block is embedded in the watermark, which will cause block effect in the authentication process, and it is impossible to clearly identify the area that is exactly modified by Xia. Ching-Yung Lin Shih-Fu Chang [5]-[7] proposed anti-JPEG compression and MPEG compressed image authentication methods from 1999 to 2002. The authors propose two image correlation invariance theories based on 8x8 DCT blocks, as follows: :

1、定義Fp和Fq是兩個在影像X中不重疊的8x8 DCT 18 200826686 區塊,Q為JPEG失真壓縮所使用的量化表,V“,ve[0,...7]、 VMe[1,···川,夕為影像中所有8x8 DCT區塊數,△‘, F {μ, v) ^ integer roundi Fp Q(u,v) Q(u,v) ,令厂下 列性質恆為真·· ^ ^p,q (U^v) > 〇, then AFp q (u, v) > 05 (2-10) elseif AFpq(u,v)<Q,thenA?pq(u,v)sQ, else AFpq (u, v) = 〇5 then AF (w5 v) = 0 2、延伸上述1的定義,Are及為一固定的臨界值,對於 ^ 1; Kv ^integerround 任意的w,v,〇,v)2elseif AFpq、u,v)<k, k ,下列性質恆為真:1. Define Fp and Fq are two 8x8 DCT 18 200826686 blocks that do not overlap in image X. Q is the quantization table used for JPEG distortion compression, V ", ve[0,...7], VMe[1 ,···川, 夕 is the number of all 8x8 DCT blocks in the image, △', F {μ, v) ^ integer roundi Fp Q(u,v) Q(u,v) , the following properties are always true ·· ^ ^p,q (U^v) > 〇, then AFp q (u, v) > 05 (2-10) elseif AFpq(u,v)<Q,thenA?pq(u,v )sQ, else AFpq (u, v) = 〇5 then AF (w5 v) = 0 2. Extend the definition of 1 above, Are and a fixed threshold, for ^ 1; Kv ^integerround any w, v , 〇, v) 2elseif AFpq, u, v) <k, k , the following properties are true:

elseMp,q(u,v) = k, Ο,): 人ν·δ(“,ν), |,v-l).0(W,V), k 〃 2(w,v) e elsewhere KyQ(u,v), 、fc,v+l).0(w,v), ,k ,sZ Ωψ,ν) elsewhere ^ Kv -Q{u,v\ i〜 \ k Q{u,v) eZ (2-11) 基於上述的兩個不變定理,Lin和chang提出下述的影 像驗證方法,用以解決浮水印資訊在JpEG壓縮上所受到的 不定性影響。 (1 )參數定義: f (m,η):原始影像 19 200826686 小波轉換的最大階數elseMp,q(u,v) = k, Ο,): person ν·δ(“,ν), |,vl).0(W,V), k 〃 2(w,v) e elsewhere KyQ(u ,v), ,fc,v+l).0(w,v), ,k ,sZ Ωψ,ν) elsewhere ^ Kv -Q{u,v\ i~ \ k Q{u,v) eZ (2 -11) Based on the above two invariance theorems, Lin and Chang propose the following image verification method to solve the uncertainty of the watermark information on JpEG compression. (1) Parameter definition: f (m, η): original image 19 200826686 maximum order of wavelet transform

V fk,l(m,n) ··小波影像係數,V fk,l(m,n) ··wavelet image coefficient,

……,L (2 )浮水印隱藏方式·· 首先對將原始影像取出a = lt 合 脾旦1 r 種不同的特徵向量集 將原始影像尤切害丨|成8 s ΠΓΤ .s ^ 的區塊,並對每個區塊進行 CT運异,將所有區塊~為兩群,其中之—為^t。〜, 考慮在P中的每個區塊的v = lt〇6 徵集A n個係數值’對N個不同的特 τ ,的臨界值灸以及乂,#中走為應用在......, L (2) watermark hiding method ·· First, take the original image out a = lt spleen 1 r different eigenvector sets to make the original image especially 丨 | into 8 s ΠΓΤ .s ^ Block, and CT differentiation of each block, all blocks ~ two groups, of which - ^ t. ~, consider each block in P v = lt 〇 6 to collect A n coefficient values 'for N different special τ, the critical value of moxibustion and 乂, #中走为在在在在

Theorem 2的臨界值。 你 當《 = 1時,指定(=0 Μ 、 保留Μ的正負符號,爾後的其 過程:’ -I:""疋々為動態的二元決策範圍以確保在驗證 疋的精確度’當我們所取出的特徵向量集合越多 時就可以做更精確的驗證。 個集::疋广為一映射函數,因此我們可以找出兩 /心2,...办2}和V“,...,〜},使得並滿足 4 飞% 1,例如^{l,3,w_l}、八={24,,小 其中1函數的選擇可以為—個 強浮水印認證時的安全性。 歡此夠加 M (L後對P中的每個區塊的〜個係數計算其H若 …則所取出的特徵碼為‘‘〇,,,否則Z„為“ i,、右 隼,的特徵碼集合就稱為該原始影像的特徵資料 u為爾後影像驗證時的依據。 (3 )影像驗證方式: 20 200826686 基於上述的影像特徵資料取方式,對於f彡像令每一 個區塊户及其DCT係數值P,利用The〇r㈣2的判斷式, 從影像中萃取其特徵值Z„,再跟原先所儲存㈣徵值z”做比 對’若兩者不相符則稱之為受竄改的區域。 在Lin和Changm提出的方法中,使用到區塊間的關 聯性做為特徵值的萃取與比對,藉由調整臨界值以及位於 8x8 DCT區塊中所要判斷的係數個數&,可以針對所要應用 的影像内容強化其驗證強度或是準確度,並且可以套用在 JPEG或是MPEG等,以DCT量化為主的影像壓縮技術之上。 於其他影像之復原方法中,J·訐丨心丨吡與^ G〇ijan [8 ]提出的方法主要是在DCT頻率域中取得影像特徵,並 當影像疑似遭受竄改時,可利用此特徵來對影像進行驗證 或竄改還原,其流程請參閱第3圖所示,j· Fridrich與 M· Go 1 jan所提出的影像還原方法是在DCT頻率域中萃取特 徵值,先將原始影像分割成不重複的8χ8區塊後將每個 區塊進行DCT轉換,頻率域中的能量會明顯的以Zig—zag 方式往左上角集中(請參閱第4圖所示)。 再將每個DCT轉換後的區塊利用jpEG標準的量化表進 行ΐ化動作,在量化之後所保留下來的資訊大多為低頻區 域的係數,這是因為JPEG量化表的設計考量到人們對於高 頻£的變化較不敏感,而設計出來的不對稱量化方式。】 Firdrich與M· Gol jan利用這個特性設計出他們的影像還 原方法。 J· Fridrich與M· Goljan所提出的影像還原方法有兩 21 200826686 種特徵編碼方式,分別為64 bits與128 bits兩種。以128 bits的編碼方式所產生的特徵向量較大,但相對的所能還 原的影像品質也較佳。 請參閱第5圖所示,編碼矩陣的數字所代表的意義為 位元數,例如第一行第一列的7所表示的意義為該相對應 位置的量化後DCT係數最大允許編碼範圍為7 bits,當係 數值大於127則視為127。 r 利用此一原則來記錄一張影像中每個區塊的區塊特 徵,在求得所有的區塊特徵後,將結果藏入空間域的[邡 中(若為128 bits的編碼方式,則藏入到最小2位元)。 由於J· Fridrich與M· Gol jan所提出的方法是記錄 頻率域中低頻的係數值’在向頻部份被消減的情況下,細 節部位的紋理便有如遭受低通濾波器(Low—Pass Filter) 處理過一般,顯的較為模糊。 請參閱第6圖所示,利用J· Fridrich與M· Gol jan提 出的方法所作的試驗比較圖:(a )為原圖;(b )為利用j · Fridrich與M. Gol jan所提出的方法進行特徵隱藏;(c) 遭受竄改的車牌;(d)還原後的車牌。 又 Hsien-Chu Wu 與 Chin-Chen Chang [9]於 2002 年 提出基於空間域之影像還原方法。 該方法特別的地方在於僅還原影像的輪廓,也就是邊 緣區,而無法將竄改影像還原至原始影像的灰階值。 基於這項特性,此方法有著極低的影像特徵向量長度。 其特徵產生^私圖’凊參閱第7圖所示,在Hs i en-Chu 22 200826686The critical value of Theorem 2. When you = 1 , specify (=0 Μ , retain the sign of Μ, and then the process: ' -I:"" 疋々 is the dynamic binary decision range to ensure the accuracy of the verification ' When we extract more feature vector sets, we can do more accurate verification. Set:: 疋广 is a mapping function, so we can find two / heart 2, ... 2} and V", ..., ~}, make and satisfy 4 fly% 1, such as ^{l,3,w_l}, eight={24, small, one of the functions can be selected as a strong watermark authentication security. It is enough to add M (L after calculating the H of each block in P to calculate its H if... then the extracted feature code is ''〇,, otherwise Z„ is “i, right 隼, The feature code set is called the feature data of the original image, which is the basis for the subsequent image verification. (3) Image verification method: 20 200826686 Based on the above image feature data acquisition method, for each block and The DCT coefficient value P, using the judgment formula of The〇r(4)2, extracts the characteristic value Z„ from the image, and then stores the (four) value with the original z"Do the comparison" If the two do not match, it is called the area to be tampered with. In the method proposed by Lin and Changm, the correlation between the blocks is used as the extraction and comparison of the feature values, by adjusting The threshold value and the number of coefficients to be judged in the 8x8 DCT block can enhance the verification strength or accuracy for the image content to be applied, and can be applied to JPEG or MPEG, etc., mainly based on DCT quantization. Image compression technology. In other image restoration methods, J. 讦丨 丨 与 and ^ G〇ijan [8] proposed the method mainly to obtain image features in the DCT frequency domain, and when the image is suspected of being tampered with This feature can be used to verify or tamper with the image. The process is shown in Figure 3. The image restoration method proposed by J. Fridrich and M. Go 1 jan is to extract the feature values in the DCT frequency domain. After the original image is divided into non-repeating 8χ8 blocks, each block is DCT-converted, and the energy in the frequency domain is obviously concentrated in the upper left corner in the Zig-zag mode (see Figure 4). Every DCT turn The latter block uses the jpEG standard quantization table to perform the deuteration action. Most of the information retained after quantization is the coefficient of the low frequency region. This is because the design of the JPEG quantization table is less sensitive to the change of the high frequency £. And the asymmetric quantization method designed.] Firdrich and M. Gol jan use this feature to design their image restoration methods. The image restoration methods proposed by J. Fridrich and M. Goljan have two 21 200826686 feature coding methods. They are 64 bits and 128 bits respectively. The feature vector generated by the 128-bit encoding method is larger, but the relative image quality that can be restored is also better. Referring to FIG. 5, the meaning of the number of the coding matrix is the number of bits. For example, the meaning of 7 in the first column of the first row is that the quantized DCT coefficient of the corresponding position is the maximum allowable coding range of 7. Bits, when the coefficient value is greater than 127, is regarded as 127. r Use this principle to record the block features of each block in an image. After all the block features are obtained, the results are hidden in the space domain [if 128 bits are encoded, then Hide to a minimum of 2 bits). Since the method proposed by J. Fridrich and M. Gol jan is to record the coefficient value of the low frequency in the frequency domain', the texture of the detail part is subject to the low-pass filter (Low-Pass Filter). The treatment has been general, and the display is more vague. See Figure 6 for a comparison of the experiments performed by the method proposed by J. Fridrich and M. Gol jan: (a) is the original image; (b) is the method proposed by J. Fridrich and M. Gol jan. Feature hiding; (c) License plate that has been tampered with; (d) Reduced license plate. In 2002, Hsien-Chu Wu and Chin-Chen Chang [9] proposed a spatial domain-based image restoration method. The special feature of this method is that it only restores the outline of the image, that is, the edge area, and cannot restore the tamper image to the grayscale value of the original image. Based on this feature, this method has a very low image feature vector length. Its characteristics produce a private graph '凊 see Figure 7, at Hs i en-Chu 22 200826686

Wu與Chi η-Chen Ch红ng所使用的邊緣偵測方法是利用四個 不同的邊緣偵測遮罩,配合下列公式來取得影像的邊緣: 9kG\H,D\D\v) 2] X z{i, j) x Mask(U j) (2-12) 其中//,/),D+,F四個遮罩表示的意義分別為水平邊緣遮 罩、垂直邊緣遮罩、+45°斜對角線遮罩與-45。斜對角線遮罩, 請參閱第8圖所示。 在分別計算四個遮罩的λ值後,取最大的值與門檻值r 比較,若大於門檻值則設為1 (邊緣),否則為〇 (背景)。 因此可用1個位元來表示4><4區塊為邊緣或是背景,一 個8x8的區塊則只需使用4個位元來表示邊緣特徵,其中分 別使用二種不同的臨界值做為邊緣判斷條件(請參閱第8 圖所示)’利用Hsien-Chu Wu與Chin-Chen Chang所提出 的方法對受竄改的影像進行邊緣萃取及還原的實驗結果 (請參閱第9圖所示)。, 又Phen-Lan Lin等人[16]於2005年提出透過在空間 域上取得影像特徵的影像還原方法,並將取得的特徵向量 經過Hash編碼後取得長度為16 bits的驗證資訊,可用於 影像驗證與還原被竄改的影像。 其流程圖請參閱第1 〇圖所示,在Phen-Lan Un所提 出的影像特徵萃取方法中,先將原始影像切割成不重疊的 8X8區塊(請參閱第1 1圖所示),再將每一區塊切割成“2 的子區塊做處理,求出每個區塊的平均值並記錄最高的六 個位元成為該子區塊的還原資訊。 因此一個8x8的區塊就會產生96個位元的還原資訊,在 23 200826686 取=影像中的特徵值後,利用每個像素的最低兩位元來藏 _貝a所以個區塊恰好可以存人影像特徵的⑽個位 元(區塊位置+還原資訊+驗證資訊),而在進行藏入時, 為了避免區塊的特徵資訊藏入到自身所屬的區塊中,使用 密鑰將區塊打亂後再進行資訊藏入的動作。 請參閱第1 2圖所示,(a)與(c)分別為^影像截去 左侧及上方影像資訊之竄改影像,(b)與⑷為利用藏入之 ’復原資訊,對(a)與(c)進行竄改復原動作,觀察改區域之 原始影像與竄改後還原之影像内容,可發現霞改還原後之 影像有明顯的區塊效應,這是因為還原資訊的記錄是記錄 了 子區塊的平均值,因此在還原竄改區域後,會有明顯 的區塊效應。 【發明内容】 本發明係指一種影像認證與復原之方法,希藉此設 計,能夠有效的偵測出被非法竄改的區域並加以進行資訊 復原’達到可直接以人眼識別之影像品質。 為達到前述發明目的,本發明係提供一種影像認證與 復原之方法,利用離散餘弦轉換(Discrete。“此 Transform)區塊係數並藉由藏入浮水印位元之影像認證與 復原技術,主要是對在數位監錄系統(Digi tal nde〇 Recorder System)中所取得的單張影像做影像驗證的動 作’藉由區塊間的相關係所取得的特徵資訊,解決所藏入 24 200826686 的認證資訊於DCT轉換及量化過程中計算誤差的影響,、 且在偵測到被竄改區域後,利用從數位簽章取出的影像特 徵資訊,對該被竄改區域做復原的動作。 、 藉由上述影像認證與復原之方法,主要可達到如下 述的功效: ^ 1、 能夠接受合理範圍内的影像壓縮:因為JPEG壓縮产 用的疋DCT轉換的技術’區塊間相對應的dct係數經、母 量化、轉換後仍有大者恆大,小者恆小的特性,而本發 明在取特徵值時,即利用了區塊之間的關連性,故本發 明提出的方法能夠對抗合理範圍的影像壓縮。。 2、 可確實找出影像被遭受竄改的部份,並標示可能的 竄改區域:因為本方法是先將影像切割成8 x 8的區塊, 經DCT轉換後並進行DC及AC特徵值的計算以碑為要藏 入的資訊,而在驗證時,亦針對每個8 x 8的DCT區塊The edge detection method used by Wu and Chi η-Chen Chhongng uses four different edge detection masks to obtain the edges of the image with the following formula: 9kG\H, D\D\v) 2] X z{i, j) x Mask(U j) (2-12) where the four masks of //, /), D+, and F represent the horizontal edge mask, the vertical edge mask, and the +45° slope. Diagonal matte with -45. Oblique diagonal mask, see Figure 8. After calculating the λ values of the four masks separately, the largest value is compared with the threshold value r, and if it is greater than the threshold value, it is set to 1 (edge), otherwise it is 〇 (background). Therefore, 1 bit can be used to represent 4><4 blocks are edges or background, and an 8x8 block only needs 4 bits to represent edge features, wherein two different threshold values are used as Edge Judgment Conditions (See Figure 8) 'Experimental results of edge extraction and reduction of tampered images using the method proposed by Hsien-Chu Wu and Chin-Chen Chang (see Figure 9). In addition, Phen-Lan Lin et al. [16] proposed an image restoration method for obtaining image features in the spatial domain in 2005, and hashed the obtained feature vectors to obtain verification information with a length of 16 bits, which can be used for images. Verify and restore the image that was tampered with. The flow chart is shown in Figure 1. In the image feature extraction method proposed by Phen-Lan Un, the original image is first cut into non-overlapping 8X8 blocks (see Figure 1 1). Cut each block into "2 sub-blocks for processing, find the average of each block and record the highest six bits to become the restoration information of the sub-block. So an 8x8 block will Generate 96-bit restoration information. After taking the feature value in the image at 23 200826686, use the lowest two-digit element of each pixel to hide the _ _ a, so that the block can just store the (10) bits of the image feature. (block location + restore information + verification information), and when hiding, in order to avoid the feature information of the block hidden in the block to which it belongs, use the key to scramble the block and then hide the information. Please refer to Figure 1 2, (a) and (c) for the image to cut off the left and above image information, (b) and (4) to use the hidden information, (a) and (c) carry out tampering and recovery actions, observe the original image of the modified area and after tampering The restored image content can be found that the image after the restoration of Xiachang has obvious block effect. This is because the record of the restored information records the average value of the sub-blocks, so after the tamper-reduced area is restored, there will be obvious blocks. [Invention] The present invention relates to a method for image authentication and restoration, which is designed to effectively detect an illegally tampered area and perform information restoration to achieve image quality that can be directly recognized by the human eye. In order to achieve the foregoing object, the present invention provides a method for image authentication and restoration, which utilizes discrete cosine transform (Discrete. "This Transform" block coefficient and image authentication and restoration technology by hiding watermark bits, mainly It is an action of performing image verification on a single image obtained in the Digital nde〇Recorder System. 'The characteristic information obtained by the relationship between the blocks is used to solve the certification of the 24 200826686. Information on the impact of calculation errors in the DCT conversion and quantization process, and after detecting the falsified area, using the digital signature The image feature information, the area was tampered with to make undone action. With the above method of image authentication and restoration, the following effects can be achieved: ^ 1. Can accept image compression within a reasonable range: 疋DCT conversion technology used by JPEG compression's corresponding dct between blocks After the coefficient is quantized, quantized, and converted, there is still a large majority, and the small one is constant. However, when the feature value is taken, the correlation between the blocks is utilized, so the method proposed by the present invention can resist A reasonable range of image compression. . 2. It is possible to find out the part of the image that has been tampered with and mark the possible tampering area: because this method first cuts the image into 8 x 8 blocks, and after DCT conversion, the DC and AC eigenvalues are calculated. The monument is the information to be hidden, and for verification, it is also for each 8 x 8 DCT block.

做特徵值的計算與比較,故可以指出那個8 X 8的DCT 區塊遭受竄改,因此能確實找出影像被竄改的部份並且 標示出來。 3、 取特徵時考慮到週遭區塊的係數:因為區塊間的相 互關係在轉換前和轉換後會保持一致性(根據 Chlng〜Yung Lin 和 Shih-Fu Chang[5] [6] [7]所提出的理 順)區塊間對應的係數值不論經過多少的離散餘弦轉 200826686 換、反轉換都會保留有相同的性質,故本發明即利用這 種特性來取特徵值,以達到半破碎性浮水印的效果。。 4、 藏入資訊後的影像仍保有高品質的影像内容:因為 針對每個8 X 8的DCT區塊,我們所取出的要藏入的資 訊為1個DC特徵值和4個AC特徵值,之後並利用查表 法的方式來藏入資訊,所以我們的方法中,藏入的資訊 位元並不夕且又能保留有區塊間的特性,故藏入資訊後 的影像仍保有高品質的影像内容。 5、 以不同的區塊係數掃描方式,取得影像復原所需的 資訊’有效化簡所需的儲存空間:除了 JpEG壓縮採用 Zig-zag 掃描方式之外,Η·261/Η·263 在 Intra_Frame 的 編碼方式中,更增加了輪流垂直掃描與輪流水平掃描兩 種不同的係數掃描方式,故可以先針對不同的區塊來計 算其平坦度指標並加以分類,依照了不同區塊能量分佈 的情形,採用了不同的係數掃描方式,以減少只用 Zig-zag掃描而只儲存低頻固定位置的係數值所造成的 能量損失,並採用DPCM來儲存區塊的重要係數以減少所 需要的儲存資料量。 Θ、可有效的將被竄改區塊復原:將要復原的資訊做為 數位簽章存入額外的數位儲存空間,當本發明利用驗證 26 200826686 的方法找出被竄改的區塊後,本發明可以從數位簽章中 取出所始要的復原> sfl來加以還原,所取得的復原資訊 包括區塊的DC係數及m個AC係數,再加上一個區塊水 平/垂直判斷位元,所以本發明可以利用這些資訊,有效 的將被竄改的區塊復原。 【實施方式】 在影像壓縮技術上分為有失真(L〇ssy)以及無失真 (L〇SS-Less )兩類壓縮方法,其中無失真壓縮包括Huffman 編碼、shannon-Fano編碼、算術編碼,以及Lz系列等的編 碼方式。 無失真影像壓縮一般採取的模式有「統計模式」與「字 典基礎模式」’其中,統計模式的做法是根據每—個符號 的出現機率來做編碼,給定每一個符號的出現機率,它所 建立的編碼表具有下列之重要性質·· 1、 不同的碼使用不同的位元數。 2、 低出現機率之符號的碼使用較多的位元,高出現 機率之符號的碼則使用較少的位元。 但是可以唯一解碼,事實上它是 3、碼的長度不一 即時碼。· 典型的統計模式編碼法像是Huffman編碼與算術編 碼,這兩種編碼方式在許多國際標準上都有使用到 JPEG、JPEG2000、MPEG、H.26x、.等。 字典基礎模式的無失真影像麼縮法則採取完全不同的 27 200826686 方法來壓縮影像’對於不同長度的符號都用同一種記號來 表不,而攻個記號所表示的就是一個片語在字典中的位 置,只要纪號所需要之位元數比起它所取代的片語所需要 之位元數還小,我們就做到了影像壓縮。 通昂為了付到比無失真影像壓縮法還低的資料率,我 們允許重建訊號可以有—些失真,這些失真在視覺上可能 很明顯,也可能不易察覺。 般在網路上傳輸的影像,我們允許較大的失真以達 到更低的資料率,而失真壓縮法常見的有向量量化編碼、 轉換編碼、小波編碼等,其中,是一種非常基本的失真 影像壓縮法’有很多重要的影像壓縮技術(例如jpEG)都 應用到VQ的基本觀念,因此,改良VQ的壓縮結果將會對 其他的相關影像壓縮技術有所幫助,故VQ是學術界最廣被 用來研究影像壓縮的重要格式。 傳統VQ的基本作法首先將壓縮的影像分割成許多大 小相同的小方格,例如-張512像素的影像,我們通常會 將它分割成軸個4x4點的小方格,按著查詢事先完成的 碼薄(Code book ),最接近於原向量的碼向量(c〇de w〇rd ) 會被選出來,然後,再利用這些最接近的碼向量之索引值, 組成一張索引表,如此即完成影像的壓縮。 這張索引表即是VQ㈣後的結果,因為索引表的體積 通常會比原影像小方格的體積小很多,故VQ能有很好的壓 縮效果’-般而言,VQ㈣像品質決定於碼薄内碼向量的 數量多寡及代表性之優劣。 28 200826686 轉換編碼是將原訊號經過一個轉換變成另外一種表示 法,這個表示法可以經由逆轉換回復成原訊號,而且它的 月b塁車父原訊號來得集中,因此比較容易做影像壓縮。 吊見影像轉換方法Karhunen-Loeve轉換(KLT )、數 位傅利葉轉換(DFT)及數位餘弦轉換(DCT)、......等,但 是,對於一般展現高度取樣間累贅的影像來說,DCT的表現 幾乎與KLT相差無幾,由於它不會產生像D{?T所產生的多 r 餘的高頻項,因此DCT能做到更高的壓縮效能。 又分頻編碼法中廣受注目的是利用小波(Wavelet)來 做为頻濾波器;小波指的是由一個函數經過放大與平移所 形成的函數族群,在語音處理、影像處理、電腦視 研究領域有著相當成功的應用。 J波刀解可以視為分頻編碼法的一個特例,其中最具 代表十生的廄用由紅ΤΠΤ^^ΟΛΛ A .By doing the calculation and comparison of the eigenvalues, it can be pointed out that the 8×8 DCT block has been tampered with, so that the portion of the image that has been tampered with can be found and marked. 3. Take the characteristics of the surrounding blocks when taking the features: because the inter-block relationship will remain consistent before and after the conversion (according to Chlng~Yung Lin and Shih-Fu Chang[5] [6] [7] The corresponding coefficient values between the proposed rationalized blocks will retain the same property regardless of the number of discrete cosine transforms and the inverse transforms. Therefore, the present invention uses this characteristic to take the feature values to achieve the semi-breaking property. The effect of watermarking. . 4. The image after hiding the information still retains high-quality image content: because for each 8×8 DCT block, the information we want to hide is 1 DC eigenvalue and 4 AC eigenvalues. After that, I used the method of table lookup to hide information. Therefore, in our method, the hidden information bits are not in the same place and can retain the characteristics between the blocks. Therefore, the images hidden in the information still retain high quality. Image content. 5. Use different block coefficient scanning methods to obtain the information needed for image restoration. 'Storage space required for effective simplification: In addition to JpEG compression using Zig-zag scanning method, Η·261/Η·263 in Intra_Frame In the coding mode, two different coefficient scanning modes of rotating vertical scanning and rotating horizontal scanning are added, so the flatness index can be calculated and classified according to different blocks, according to the energy distribution of different blocks. Different coefficient scanning methods are used to reduce the energy loss caused by only the Zig-zag scanning and only the coefficient values of the low frequency fixed position, and DPCM is used to store the important coefficients of the block to reduce the amount of stored data required. Θ, the tampering block can be effectively restored: the information to be restored is stored as a digital signature in an additional digital storage space. When the present invention utilizes the method of verification 26 200826686 to find the falsified block, the present invention can The original recovery > sfl is retrieved from the digital signature to be restored. The recovered information includes the block DC coefficient and m AC coefficients, plus a block horizontal/vertical decision bit, so this The invention can use this information to effectively recover the tampered blocks. [Embodiment] The image compression technology is divided into two types of compression methods: distortion (L〇ssy) and distortion-free (L〇SS-Less), wherein the distortion-free compression includes Huffman coding, shannon-Fano coding, arithmetic coding, and The encoding method of the Lz series. The modes that are generally used for distortion-free image compression are "statistical mode" and "dictionary basic mode". Among them, the statistical mode is based on the probability of occurrence of each symbol, giving the probability of occurrence of each symbol. The established coding table has the following important properties: 1. Different codes use different number of bits. 2. Codes with low probability symbols use more bits, and codes with higher probability symbols use fewer bits. But it can be decoded uniquely. In fact, it is 3. The length of the code is not the same. · Typical statistical mode coding methods are Huffman coding and arithmetic coding. These two coding methods are used in many international standards such as JPEG, JPEG2000, MPEG, H.26x, etc. The dictionary-based mode of the distortion-free image reduction method takes a completely different 27 200826686 method to compress the image 'for the different lengths of the symbols are represented by the same token, and the attack mark represents a phrase in the dictionary. Position, as long as the number of bits required by the record is smaller than the number of bits required for the phrase it replaces, we have done image compression. In order to pay a lower data rate than the distortion-free image compression method, we allow the reconstruction signal to have some distortion, which may be visually obvious or not easily detectable. Generally, the image transmitted on the network allows a large distortion to achieve a lower data rate, and the distortion compression method commonly has vector quantization coding, conversion coding, wavelet coding, etc., among which is a very basic distortion image compression. There are many important image compression techniques (such as jpEG) applied to the basic concept of VQ. Therefore, the improved VQ compression result will be helpful to other related image compression technologies, so VQ is the most widely used in academia. To study the important format of image compression. The basic practice of traditional VQ first divides the compressed image into many small squares of the same size, for example, a 512-pixel image. We usually divide it into small squares of 4x4 points, which are completed in advance according to the query. Code book, the code vector closest to the original vector (c〇de w〇rd ) will be selected, and then use the index values of these closest code vectors to form an index table, thus Complete image compression. This index table is the result of VQ (four), because the volume of the index table is usually much smaller than the size of the original image, so VQ can have a good compression effect. - In general, the quality of the VQ (four) image is determined by the code. The number of thin inner code vectors and the pros and cons of representativeness. 28 200826686 Conversion coding is to convert the original signal into another representation. This representation can be restored to the original signal via inverse conversion, and its monthly b 塁 original signal is concentrated, so it is easier to do image compression. Imagine image conversion methods such as Karhunen-Loeve conversion (KLT), digital Fourier transform (DFT), and digital cosine transform (DCT), etc., but for images that generally exhibit cumbersome sampling between heights, DCT The performance is almost the same as that of KLT. Because it does not produce high-frequency terms like D{?T, DCT can achieve higher compression performance. Also popular in the cross-frequency coding method is the use of wavelet (Wavelet) as a frequency filter; wavelet refers to a functional group formed by a function of amplification and translation, in speech processing, image processing, computer vision research The field has quite successful applications. The J wave knife solution can be regarded as a special case of the frequency division coding method, and the most representative of the ten generations is the use of red ΤΠΤ^^ΟΛΛ A .

使用的色彩模型像异、vrh〜、VTA ,The color model used is different, vrh~, VTA,

表示藍色成份與一參考 一參考值的差距。 值的差距,Cr則表示紅色成份與另 的轉換公式如下: 29 200826686 "16 ' '65.481 128.553 24.966" 一R 一 Cb = 128 + 一 37.797 — 74.203 112.000 G Cr 128_ 112.000 -93.786 -18.214 B 一般而言,^^6,17,...,235}、C0,Cre{l6,17”..,24〇},而在 (3-1) J Jl IL Vj 壓縮規格上,則允許co^ed·,255}。YCbCr並不是一個絕 對的色彩空間,它是用來對RGB彩色資訊編碼的一個方式, 實際上顯示時還是需要轉換為RGB色彩空間。 離散餘弦變換(Discrete Cosine Transform,DCT) 是將空間域的數位影像資訊轉換成頻率域,是與傅立葉相 關的變換,與離散傅立葉變換(Discrete F〇urier Transform,DFT)相似,但是僅使用實數來表示。 離散餘弦轉換最常使用的變形轉換是第二型的DCT,簡 單地經常稱為DCT。而它的反轉換通常被稱為inverse DCT(IDCT) 〇 DCT經常被使用在影像處理上,如擷取特徵或是資料隱 藏’特別是有失真的影像壓縮方法,因為它具有較強健的 「能量集中」性質,大多數的信號資訊會被集中在DCT的 幾個低頻區’以影像壓縮技術的JPEG、μ jpeg、mpeg、H. 2 6x 來說明,的二維DCT轉換被用在訊號壓縮上,透過量化 和熵編碼(Entropy Coded)達到壓縮的效果。 在正常的情況下N會等於8,因此DCT轉換後的結果會 疋8><8的轉換係數值,其中(〇,〇)代表的是%係數 (Zero-Frequency ),而且垂直和水平方向的係數值分別 表示有較高的垂直或水平空間頻率。 30 200826686 而二維的DCT公式如3-2與3-3所示,其中八,))為輸入 的區塊資訊,F(“,v)為輸出的資料。 for w = 〇 (3-2) C(w) = ^ λ/2/ΛΓ /orw = l?25...57V-l ^v)=C(M)C(v)||/(,y)cos^cos^ (3.3) 又 JPEG 的全名是 j〇int ph〇t〇graphic Experts Group,其主要功能在於影像壓縮,之後推廣到了影像交換 協定、掃描器、印表機、數位相機,以及網路上廣泛流通 的影像格式,除了減少影像儲存空間外,也加速了影像在 網路上的傳輸速度。 靜態的影像大都以此為壓縮標準,jPEG壓縮的流程請 參閱第1 3圖所示,首先將像素值〇〜255經過階層位移 (Level Offset)處理,將像素值減去128,使得數值範圍 在-128〜127之間,接下來將影像切割成仏8的區塊,並經過 離散餘弦轉換’將空間域的訊號轉換到頻率域。 由於經過DCT轉換後的數值屬於實數,所以jpeg利用 量化表(Quantization Table)將數值量化為整數,而量 化後的數值分為DC與AC兩部份,每個區塊經過上述的處 理後’影像内所有的DC部份再利用差分脈衝調解碼 (Differential Pulse Code Modulation,DPCM),記錄 每個DC的差值再加入可變長度編碼法(Variable Length Coding),利用DC Huffman表的對應方式找出差值所對應 31 200826686 的編碼資料,然後送出壓縮過的位元資料流(Bit—Stream)。 而對於AC部份,JPEG使用Zigzag掃瞄法(Zigzag Scan ) 將二維的區塊頻率域係數轉為一維型態的資訊,再利用跑 長編碼法(Run-Length Coding)記錄資料連續出現的次數, 最後使用AC Huffman表將符號與出現次數利用查表法查出 壓縮碼。 一般來說,JPEG壓縮會經過量化過程,量化的目的是 為了簡化所需的儲存資訊量,藉由量化的過程,使得原本 頻率域中的中、低頻區域的係數改變為零,因此可以減少 所需要儲存的係數個數,並經過上述的Dc與AC編碼方式 加以編碼,在量化時所採用的量化表也分為亮度與色彩資 訊兩種量化表,請參閱第1 4圖所示。 以JPEG來說,量化部份使用Unif〇rm 方式進 行量化’所使用的量化公式如下,其中_為所設定的品 質因子(Quality Factor ),W尸 e{i,2”..i〇〇},各 ’备J Q F越大時, 代表所壓縮過的影像品質越好’❿JQF趨近於零時,量化 後的係數值就含有越多的零係數,亦即所能代表影像的資 :量就越少,因此在還原影像時,所得到的影像品質就越 if JQF> 50 qs = 2-JQFx〇.〇2 else qs = 50/JQF (3-4) QTable = QTable x qs F(u, v) = IntegerRound (3-5)Indicates the difference between the blue component and a reference to a reference value. The difference in value, Cr means that the red component and the other conversion formula are as follows: 29 200826686 "16 ' '65.481 128.553 24.966" A R - Cb = 128 + a 37.797 — 74.203 112.000 G Cr 128_ 112.000 -93.786 -18.214 B For example, ^^6,17,...,235}, C0,Cre{l6,17"..,24〇}, and in the (3-1) J Jl IL Vj compression specification, allow co^ Ed·, 255}. YCbCr is not an absolute color space, it is a way to encode RGB color information, in fact, it still needs to be converted to RGB color space. Discrete Cosine Transform (DCT) It converts digital image information in the spatial domain into a frequency domain, which is a Fourier-related transform, similar to Discrete F〇urier Transform (DFT), but only uses real numbers. The most commonly used variant of discrete cosine transform Conversion is a second type of DCT, often referred to simply as DCT, and its inverse conversion is often referred to as inverse DCT (IDCT). 〇DCT is often used in image processing, such as capturing features or hiding data 'especially Distorted Image compression method, because it has a strong "energy concentration" nature, most of the signal information will be concentrated in several low-frequency areas of the DCT's image compression technology JPEG, μ jpeg, mpeg, H. 2 6x It is shown that the two-dimensional DCT conversion is used for signal compression, and the compression effect is achieved by quantization and entropy coded. Under normal circumstances, N will be equal to 8, so the result after DCT conversion will be &8<8 conversion coefficient values, where (〇, 〇) represents the % coefficient (Zero-Frequency), and the vertical and horizontal directions The coefficient values indicate a higher vertical or horizontal spatial frequency, respectively. 30 200826686 The two-dimensional DCT formulas are shown in 3-2 and 3-3, where VIII)) is the input block information, and F(",v) is the output data. for w = 〇(3-2 C(w) = ^ λ/2/ΛΓ /orw = l?25...57V-l ^v)=C(M)C(v)||/(,y)cos^cos^ (3.3) The full name of JPEG is j〇int ph〇t〇graphic Experts Group, whose main function is image compression, and then extended to image exchange protocols, scanners, printers, digital cameras, and widely distributed image formats on the Internet. In addition to reducing the image storage space, it also speeds up the transmission speed of images on the network. Static images are mostly used as compression standards. For the flow of jPEG compression, please refer to Figure 13. First, the pixel values are 〇~255 through the hierarchy. Level Offset processing, subtracting the pixel value by 128, so that the value range is between -128 and 127, and then the image is cut into blocks of 仏8, and the discrete cosine transform is used to convert the signal of the spatial domain to the frequency. Since the DCT-converted value belongs to a real number, jpeg quantizes the value into an integer using a quantization table. The converted value is divided into DC and AC. After each block is processed, all DC parts in the image are reused by Differential Pulse Code Modulation (DPCM) to record each DC. The difference is further added to the variable length coding method (Variable Length Coding), and the corresponding data of the DC Huffman table is used to find the coded data corresponding to the difference 31 200826686, and then the compressed bit stream (Bit-Stream) is sent. For the AC part, JPEG uses the Zigzag Scan method to convert the two-dimensional block frequency domain coefficients into one-dimensional type information, and then uses Run-Length Coding to record data continuously. The number of times, finally use the AC Huffman table to find the compression code by using the look-up table method. In general, JPEG compression will undergo a quantization process, and the purpose of quantization is to simplify the amount of stored information required, by the process of quantization. So that the coefficients of the middle and low frequency regions in the original frequency domain are changed to zero, so that the number of coefficients to be stored can be reduced, and the above Dc and AC coding methods are adopted. The quantization table used for quantization and quantization is also divided into two kinds of quantization tables of luminance and color information, as shown in Fig. 14. In the case of JPEG, the quantization part is quantized using the Unif〇rm method. The quantization formula is as follows, where _ is the set quality factor (Quality Factor), W corpse e{i, 2"..i〇〇}, each of the 'prepared JQF is larger, representing the better the quality of the compressed image. '❿JQF approaches zero, the quantized coefficient value contains more zero coefficients, that is, the amount of energy that can represent the image: the less the amount of image quality, the more the image quality is obtained when restoring the image. JQF&gt 50 qs = 2-JQFx〇.〇2 else qs = 50/JQF (3-4) QTable = QTable x qs F(u, v) = IntegerRound (3-5)

Qiu,v) 32 200826686 藉由量化表,我們可以將DCT轉換後的實數值量化成 整數,在量化過後的係數中,高頻區大部份量化為〇,且由 於自然界訊號的高頻部份其能量通常比低頻要少,也就是 說而頻區的資訊對於影像較不重要,因此可以藉由損失較 少的高頻能量,來減少所需儲存的係數數量。 視訊壓縮標準包括 MPEG(Moving Pictures ExpertQiu, v) 32 200826686 By means of the quantization table, we can quantize the real value after DCT conversion into integers. In the quantized coefficients, most of the high frequency region is quantized as 〇, and because of the high frequency part of the natural signal The energy is usually less than the low frequency, which means that the information in the frequency domain is less important for the image, so the amount of coefficients needed to be stored can be reduced by losing less high frequency energy. Video compression standards include MPEG (Moving Pictures Expert)

Group)組織所制定的MPEG系列(MpEG_4、MpEG_7等), 及CCITT所制定的H. 26x系列(Η. 263、Η. 264等)。視訊 是由一連串具有時間相關性的影像所組成,因此視訊壓縮 方法是利用前後張晝面的關係進行估測(Estimati〇n,請 參閱第15圖所示)。 估測技術的良寡操控著解碼後的影像品質良率,以及 視訊壓縮技術的壓縮率,請參閱第i 5圖、第i 6圖及第 1 7圖所示,在H· 263視訊壓縮技術中,將畫面分為Group) The MPEG series (MpEG_4, MpEG_7, etc.) developed by the organization, and the H. 26x series (Η.263, Η.264, etc.) developed by CCITT. Video is composed of a series of time-correlated images, so the video compression method is estimated using the relationship between the front and the back (Estimati〇n, see Figure 15). The quality of the estimation technique controls the image quality yield after decoding and the compression ratio of the video compression technology. Please refer to the i.5, i6, and 17 diagrams for the H.263 video compression technology. Dividing the picture into

Intra-Frames ( I-frames) 、 Inter-Frames (P-ffames) 以及PB-Frames,I-frame為一個獨立的影像内容,JpEG的 、 壓縮應用在單一畫面的影像資訊,因此稱為Intra,而 P-frame是由I-frame所估測出的晝面内容;PB-frame是 由兩張影像編碼而成,所以PB-frame中的Macro Block含 有 12 個區塊(6 p-blocks,6 B-blocks); B-block 如果有 被編碼的話,一定是採用Inter的編碼方式,即使是在一Intra-Frames (I-frames), Inter-Frames (P-ffames) and PB-Frames, I-frame is a separate image content, JpEG, compresses image information applied in a single screen, hence the name Intra, and The P-frame is the facet content estimated by the I-frame; the PB-frame is encoded by two images, so the Macro Block in the PB-frame contains 12 blocks (6 p-blocks, 6 B -blocks); B-block If it is encoded, it must be encoded in Inter, even in one

個INTRAMB中也一樣’又H.263支援五種分辨率,除了 η·261 支援的 QCIF 和 CIF 外,還有 SQCIF、4CIF 和 16CIF。SQCIF 的分辨率大約是QCIF的一半,而4CIF和16CIF的分辨率 33 200826686 分別是CIF的4倍和16倍,其支援的詳細規格請參閱第1 6圖所示。 在H. 263中的DCT係數量化方式是採用non - uni form 的方式,相較於JPEG的DCT方式,Η· 263使用快速DCT以 加速空間頻率域的轉換,若以dct和qdct分為用來表示量 化前與量化後的係數,則其Intra-Frame的DC係數可以表 不為: qdct = IntegerRound =IntegerRound] 8 (3-6)The same is true for INTRAMB'. H.263 supports five resolutions, in addition to QCIF and CIF supported by η·261, as well as SQCIF, 4CIF and 16CIF. The resolution of SQCIF is about half of QCIF, and the resolution of 4CIF and 16CIF 33 200826686 are 4 times and 16 times of CIF respectively. For the detailed specifications of support, please refer to Figure 16. The DCT coefficient quantization method in H. 263 adopts the non-uniform method. Compared with the JPEG DCT method, Η·263 uses fast DCT to accelerate the conversion of the spatial frequency domain, if it is divided into dct and qdct. For the pre-quantization and quantized coefficients, the DC coefficient of the Intra-Frame can be expressed as: qdct = IntegerRound = IntegerRound] 8 (3-6)

Kstep size y 而對於其它的係數則可以表示如下,其中scale為一 整數值,介於1〜31之間: qdct= = L故;|_2心〇也」 (3-7) 在JPEG壓縮中,影像品質是由量化表(Quantizati〇nKstep size y and for other coefficients can be expressed as follows, where scale is an integer value between 1 and 31: qdct = = L; therefore, |_2 heart is also "" (3-7) In JPEG compression, Image quality is quantified by Quantizati〇n

Table)及品質因子(Quality Fact〇r)所控制,當影像經 過:化後,DCT係數量化的結果會造成影像品質的降低,以Table) and quality factor (Quality Fact〇r) control, when the image is processed, the result of DCT coefficient quantization will cause the image quality to decrease,

在子水印的藏入方式是將浮水印位元隱藏至像素值的LSB 位元’這種作法在影像品質簡上佔有很大的優勢,它只 修改了像素值的最低位元,因此PSNR值會較其它浮水印藏 ^法還高’-般而言’在空間域的浮水印方法較為簡單易 :,它提:較方便的使用方式,僅僅對影像的像素值做調 =:不考慮到影像處理對於像素值的影響,所以空間域 的子水印方法漸漸不被重視。 且這種浮水印藏入方式擁有的缺點也比較多,除了對 34 200826686 基本影像處理(濾、波、旋轉、縮放等)不具抵抗力之外, 對於影隸縮更Μ成無法正相取“藏人料水印資 訊0 而對於衫像内谷來說,影像的特徵可以充份的在頻率 域轉換中被表達出I,在影像本身經過旋轉、縮放、雜訊 濾除等不改變影像内容的處理後(在這裡所謂的不改變影 像内容是指影像所要表達的主題、物件不會因為經過處理 而消失或失去原有的涵意),仍然可以保留原有的特徵資 訊,所以它對於影像處理的容忍程度相較於空間域的浮水 1方法來的高’同時也能夠更有效的抵抗壓縮時所造成的 資訊遺失,所以在本發明所提出的影像驗證方法中,我們 應用頻率域的特性,分別以數位浮水印與數位簽章兩種方 式做為資訊隱藏的基礎,除了將驗證資訊藏入至原始影像 的頻率域(DCT domain)中,並將所需的復原資訊儲存成 數位簽章(額外儲存空間),請參閱第18圖及第^圖 所示。 經過離散餘弦轉換後的總能量不變,並未減少,所以 DCT本身是一種無失真的空間域轉頻率域的轉換方式,如果 一張影像經過DCT轉成頻率域後,必能經由離散餘弦反轉 換(IDCT )還原成原來的空間域資訊。 因此在我們的處理過程中 k{l6,17”..,235}、〇)5〇^{16517,"”240} 雖然係數轉換前後保留相同的係數個數,但在經過 IDCT轉換時的像素值有時會超出所允許的範圍(〇〜255 ), 先將YCbCr係數值固定在 以減少反轉換時所產生的誤 35 200826686 差’接著我們將影像切割成數個不互相重疊的㈣區塊,並 對每個區塊進仃DCT轉換,經過⑽轉換後的係數值會呈 現能量集中的現象,對於能量的分佈較趨集中。 由於DCT轉換屬於無失真的轉換過程,區塊間的相互 關係在轉換前和轉換後會保持一致性,假設第一個區塊的 DC係數值%大於第二個區塊的Dc係數值%時,不論經過 〜:的離散餘弦轉換、反轉換’都會保留有相同的性質。 ^項特性更可衍生至經過量化後的dct係數值,以 Ching-Yung Lin與如卜Fu㈤叩[5]_[7]所提出的理論 中’當區塊的DCT係數值經過量化後,仍然有大者恆大的 特性。 明參閱第2 0圖所示,在本發明中分別對沉係數與AC 係數計算其特徵值,其中在De係數的部份,我們以目前區 塊1為中〜,向外擴張選取其它m個區塊做為比較的依據, 每個區塊間的距離為Di stb。 、、中D丨s ^ b越大,代表其區塊間的相關性越低,當ρ丨s七b 為1時,表不所選取的範圍為3>0的區域,然後計算中心區 塊的dc係數值ης與其它m個DC係數值DCy的差值,其中 7 L ”··’Μ,若其差值大於所設定的臨界值時,則該區塊的 DC特徵值為1,否則為〇。The method of hiding the sub-watermark is to hide the watermark bit to the LSB bit of the pixel value. This method has a great advantage in image quality, it only modifies the lowest bit of the pixel value, so the PSNR value It will be higher than other watermarking methods. In general, the watermarking method in the spatial domain is relatively simple: it mentions: a more convenient way to use, only to adjust the pixel value of the image =: not considered The effect of image processing on pixel values is so that the sub-watermarking method of the spatial domain is gradually ignored. Moreover, this method of watermark hiding has many disadvantages, except that it is not resistant to the basic image processing (filtering, wave, rotation, scaling, etc.) of 34 200826686, and it is impossible to take the opposite direction. Tibetan material watermark information 0 For the image of the valley, the image features can be fully expressed in the frequency domain conversion I, the image itself is rotated, zoomed, noise filtered, etc. does not change the image content. After processing (the so-called not changing the image content here means that the subject to be expressed by the image, the object will not disappear or lose its original meaning after processing), and the original feature information can still be retained, so it is for image processing. The degree of tolerance is higher than that of the floating method in the spatial domain. At the same time, it can more effectively resist the loss of information caused by compression. Therefore, in the image verification method proposed by the present invention, we apply the characteristics of the frequency domain. Digital watermarking and digital signature are used as the basis for information hiding, except that the verification information is hidden in the frequency domain of the original image (DCT doma). In), and save the required recovery information into a digital signature (extra storage space), please refer to Figure 18 and Figure 2. The total energy after discrete cosine conversion is unchanged, so it is not reduced, so DCT itself is a distortion-free spatial domain to frequency domain conversion method. If an image is converted into a frequency domain by DCT, it must be restored to the original spatial domain information by discrete cosine inverse transform (IDCT). Therefore, in our During processing, k{l6,17"..,235},〇)5〇^{16517,""240} Although the same coefficient number is retained before and after the coefficient conversion, the pixel value at the time of IDCT conversion sometimes Will exceed the allowable range (〇~255), first fix the YCbCr coefficient value to reduce the error caused by the inverse conversion. 35200826686 Poor' Then we cut the image into several blocks that do not overlap each other, and for each The block is transformed into DCT, and the coefficient value after the (10) conversion will show the phenomenon of energy concentration, and the distribution of energy is more concentrated. Since the DCT conversion is a distortion-free conversion process, the inter-block relationship is before the conversion. After the conversion, the consistency will be maintained. If the DC coefficient value % of the first block is greater than the Dc coefficient value % of the second block, the discrete cosine transform and inverse transform of the ~: will retain the same property. The ^ term characteristic can be derived to the quantized dct coefficient value. In the theory proposed by Ching-Yung Lin and Rufu (5) 叩 [5] _ [7], when the DCT coefficient value of the block is quantized, In the present invention, the eigenvalues of the sink coefficient and the AC coefficient are calculated separately, and in the part of the De coefficient, we use the current block 1 as the medium~ To expand outward, select other m blocks as the basis for comparison. The distance between each block is Di stb. The larger the D 丨 s ^ b is, the lower the correlation between the blocks is. When ρ 丨s 7 b is 1, the range selected is 3 > 0, and then the central block is calculated. The difference between the dc coefficient value ης and the other m DC coefficient values DCy, where 7 L ′···′Μ, if the difference is greater than the set threshold value, the DC eigenvalue of the block is 1, otherwise Why?

當決定了所要參考的區塊範圍與數量後,分別針對DC 與AC係數取出該區塊的特徵值。其中D(:係數的特徵萃取 方式如下: 36 200826686 ifDCi>\/DCjJ^{\,2,...m} the feature bit (Featurefc) of DC. else reature^ (3-8) 而當Distb=l時(請參閱第2 0圖(a )所示的Macr〇After determining the extent and number of blocks to be referenced, the feature values of the block are extracted for DC and AC coefficients, respectively. The characteristic extraction method of D(: coefficient is as follows: 36 200826686 ifDCi>\/DCjJ^{\,2,...m} the feature bit (Featurefc) of DC. else reature^ (3-8) and when Distb= l time (please refer to the Macr〇 shown in Figure 2 (a)

Block)會使得若他^<=1,恆等於〇,這種情況可以 增加萃取認證位元的速度。 if Feature fc = 1 then Feature^ = 〇 (3-9) else Feature^ -〇or\ 我們使用上述的方法取出影像區塊中的DC係數特徵, 以一張犯><512大小的影像來說,總共會取出(feyh23)#個 DC係數特徵值,而每一個DC係數特徵值的非〇即1。 另外對於AC係數方面(請參閱第2 0圖所示),採用 口亥圖中(a )的3X3區塊做為工作區塊,在每一個區塊中計算 出四個AC特徵值,以心表示,其中i為目前區塊的索引 值,j為取得的特徵索引值,#{ο,ι,2,3}。在計算特徵值時,以 中間區塊i為基準,採取水平、垂直和對角線的g式計算 出四個特徵值(請參閱第2 1圖所示),每一個特徵值非〇 即1 〇 特徵值的計算方式如式3 —10到3 —13所示,其中 a’ 丨為水平方向(Horizontal )與垂直方向(verticai) 非零AC係數的個數(請參閱第2 2圖所示),其完整的認 證資訊萃取流程,請參閱第2 3圖所示。 if (NQAC.h > NQAC2h)&(NQAC,h > NQAC^h)Block) will make it possible to increase the speed of extracting the authentication bit if it is equal to 〇. If Feature fc = 1 then Feature^ = 〇(3-9) else Feature^ -〇or\ We use the above method to extract the DC coefficient feature in the image block, one image of the size of ><512 It is said that a total of (feyh23) #DC coefficient feature values are taken out, and the non-〇 of each DC coefficient feature value is 1. In addition, for the AC coefficient (see Figure 20), the 3X3 block of (a) in the mouth chart is used as the working block, and four AC eigenvalues are calculated in each block. Representation, where i is the index value of the current block, and j is the obtained feature index value, #{ο,ι,2,3}. When calculating the eigenvalues, four eigenvalues are calculated using the horizontal, vertical, and diagonal g formulas based on the intermediate block i (see Figure 21). Each eigenvalue is not 〇 1 The eigenvalues are calculated as shown in Equations 3-10 to 3-13, where a' 丨 is the number of non-zero AC coefficients in the horizontal (vertical) and vertical (verticai) (see Figure 2) ), for the complete certification information extraction process, please refer to Figure 2 3. If (NQAC.h >NQAC2h)&(NQAC,h> NQAC^h)

Feature^ = 1 else (3-10)Feature^ = 1 else (3-10)

Featurefc = 〇 37 200826686 (3-11) if{NQACiv>NQACj&(NQACUv>NQACj Feature^ =1 elseFeaturefc = 〇 37 200826686 (3-11) if{NQACiv>NQACj&(NQACUv>NQACj Feature^ =1 else

Feature^ = 0 (3-12) if(NQACuh>NQAClh)&{NQAC,h > NQACj &(NQACih > NQAC6,h)&(NQACih > NQACJ Feature^ = 1 elseFeature^ = 0 (3-12) if(NQACuh>NQAClh)&{NQAC,h > NQACj &(NQACih >NQAC6,h)&(NQACih> NQACJ Feature^ = 1 else

Feature^ = 0 if{NQACiv >NQACj&(NQAC.v > NQACj ^QACiv>NQACj&^QACiv>NQAC,v) (3-13)Feature^ = 0 if{NQACiv >NQACj&(NQAC.v > NQACj ^QACiv>NQACj&^QACiv>NQAC,v) (3-13)

Feature^ =1 elseFeature^ =1 else

Featuref^ = 0 在選擇藏入位置時,考慮到DCT係數改變對於影像品 質的影響,在DC係數上,選擇以Lookup Table的方式, 決定藏入認證位元時所要改變的DC係數值,請參Μ第2 4 圖所示。 對於AC係數的藏入方式,為了減少在計算AC特徵值 的判斷式的影響,選擇將AC特徵值藏入到Zig-zag 掃描的」c?、dCll'dCl3四個位置,請參閱第2 5圖所示。Featuref^ = 0 When selecting the hidden position, taking into account the effect of the DCT coefficient change on the image quality, on the DC coefficient, choose the Lookup Table method to determine the DC coefficient value to be changed when the authentication bit is hidden. Μ Figure 2 4 shows. For the hiding method of the AC coefficient, in order to reduce the influence of the judgment formula in calculating the AC characteristic value, the AC characteristic value is selected to be hidden in the four positions of "c?, dCll'dCl3 of the Zig-zag scan, see the second 5th. The figure shows.

以DC係數說明,假設要將特徵藏入第k個係數中,則 我們參考QLB的第k個量化係數,來調整DCT的係數值, 以將特徵藏入影像當中。假設圖中圓圈表示藏入位置的原 始DCT係數值,若將藏入的特徵位元為“ Γ ,則將DCT係 數調整至3xL㈨;若將藏入的特徵位元為“0” ,則將DCT 38 200826686 係數調整至㈣』。同樣的,對於AC係數也可以採用相同 的藏入方法’其中需注意的地方在於當Ac係數改變時,可 能會改變到在認證位元產生時所計算的區塊料ac係數 準〜的個數,針對這個潛在的問題,我們在竄改㈣時會 使用一 界值來處理。 在進行影像認證時,使用與藏入方式相同的前處理方 式,先將影像轉為YCbCr色彩空間,分別針對亮度分量與 色彩分量進行正規化的動作,然後將影像切割成仏8區塊並 進行DCT轉換,接著使用與萃取區塊驗證位元相同的計算 方式,對每一個區塊計算DC與託係數的特徵值。 上述本發明提及當認證位元隱藏至AC係數的低頻區 時,可旎會改變計算區塊AC係數特徵時的非零Ae係數 寧^的個數。 針對上述潛在的問題,本發明在驗證階段的AC係數特 徵值汁算中,修正式3-1Q的公式,加入一臨界值,以期望 能夠解決上述的問*題。 修正後的AC係數特徵值計算方式將如下式所示·· if WACUh - NQAClih)+ [NQACUh -NQACl tl)> 2t Feature^ = 1 else (3-14)Describe the DC coefficient, assuming that the feature is to be hidden in the kth coefficient, then we refer to the kth quantized coefficient of the QLB to adjust the coefficient value of the DCT to hide the feature in the image. Suppose the circle in the figure indicates the original DCT coefficient value of the hidden position. If the hidden feature bit is “ Γ , the DCT coefficient is adjusted to 3×L (9); if the hidden feature bit is “0”, the DCT will be 38 200826686 The coefficient is adjusted to (4). Similarly, the same hiding method can be used for the AC coefficient'. The point to note is that when the Ac coefficient changes, it may change to the block calculated when the authentication bit is generated. For the potential problem, we will use a boundary value for the tampering (4). When performing image authentication, use the same pre-processing method as the hiding method to convert the image to The YCbCr color space is normalized for the luminance component and the color component, and then the image is cut into 仏8 blocks and subjected to DCT conversion, and then calculated for each block using the same calculation method as the extraction block verification bit. The characteristic value of the DC and the carrier coefficient. The above mentioned invention mentions that when the authentication bit is hidden to the low frequency region of the AC coefficient, the non-zero Ae when calculating the AC coefficient feature of the block may be changed. In view of the above potential problems, in the AC coefficient eigenvalue calculation of the verification stage, the formula of the formula 3-1Q is modified to add a critical value, in order to solve the above problem. The corrected AC coefficient eigenvalue calculation method will be as follows: · if WACUh - NQAClih) + [NQACUh -NQACl tl)> 2t Feature^ = 1 else (3-14)

Feature^ = 〇 其中臨界值i取決於所要隱藏的認證位元數量,在本 發明的實驗過程中,以卜丨為較好的經驗值,請參閱第2 6 圖所示。 接下來要從影像中取得所藏入的認證位元,本發明依 39 200826686 ’分別取出DC係 然對DC與AC係數使用第2 5圖的查表法 數的認證位元,以及m個AC係數的認證位元。 對於DC係數,因 自身區塊的DC係數,Feature^ = 〇 where the critical value i depends on the number of authentication bits to be hidden. In the course of the experiment of the present invention, dip is a better empirical value, as shown in Figure 26. Next, the authentication bit element hidden in the image is obtained from the image. According to the invention, 39 200826686 'receives the DC system, and the DC and AC coefficients use the authentication bit of the table check method of the 25th figure, and m ACs. The authentication bit of the coefficient. For the DC coefficient, due to the DC coefficient of its own block,

因為在藏入時是將Dc認證位元隱藏到 ,所以可以簡單的就取出所藏入的DC 認證位元’而在AC係數的認證位元方面,藏入認證位元時 是以私密金鑰選取相對應的區塊進行隱藏的動作,因此在Because the Dc authentication bit is hidden when hiding, it is easy to take out the hidden DC authentication bit', and in the authentication bit of the AC coefficient, the private key is hidden in the authentication bit. Select the corresponding block to perform the hidden action, so

應的區塊,才能夠從相對區塊中取得AC係數的認證位元。 由於DCT轉換後的係數值會呈現能量集中的現象,在 以DCT為基礎的壓縮技術當中,z字型的掃描方式(zig— Scan)是最常見的係數掃描方法,利用Zig—zag掃描可以 先行取得能量較大的係數值,對於能量較小的係數則可以 乎略,這樣變換後,似乎只需要少量的資料數就$以表示 而除了 JPEG影像壓縮技術所使用的Zig—zag,,掃描方 式,Η· 261/Η. 263在Intra-Frame的編碼方式中,更增加了 輪流垂直掃描(Alternate-Vertical Scan)與輪流水平掃 抗(Alternate-Horizontal Scan)兩種不同的係數掃描方 式。 在上述所提出的復原方法中,本發明以數位簽章的方 式儲存還原影像時所需的資訊,首先針對區塊計算水平與 垂直月b畺’再對該區塊的能量分佈特性,使用不同的係數 掃描方式取出左個量化後的係數值,並計算與前一區塊所 取出的係數值之差值,以DPCM的方式儲存區塊的重要係 200826686 數,這種方式可以減少所需要的儲存資料量。 且本發明並依照不同的區塊能量分佈情形,採用不同 的係數掃描方式,以解決以z字掃描時只儲存低頻區固定 位置的係數值所造成的能量損失。 在區塊復原資訊的選取過程中,一樣先對影像的8以區 塊進行DCT轉換,在轉換後的Dc係數值會介於[―⑼你⑼47】之 間,而AC係數值會介於[-陶〇23]之間,若沒有經過特別處 里在儲存DC時品要使用至ij 12個位元,且一個AC係數值 佔用11個位元,因此,若從8><8DCT區塊中選取一個dc係 數與m個AC係數作為復原資訊,單—區塊所要佔用的儲存 空間為(i2 + mXll)個位元,光是一張心犯的影像選取一個此 係數與5個AC係數,就需要(ΐ2 + 5χΐι)χ212個位元,相當於 34, 304 Bytes,這樣的復原資訊佔用太多的儲存空間,若 以一連續的影像内容來說,不符合精簡的需求。 此外’在本發明的實驗過程中發現,保留5個係數 並不足以表示該區塊的内容,因此,本發明針對不同的區 塊性質’使用不同的位元保留模式(pattern)。 首先對每個SxSDCT區塊計算平坦度指標,平坦度指標 的定義如下: 卜叱, (3-15) 其中巧和&分別是區塊的垂直和水平平坦度指標,a、b 為比例因數,用來調整垂直和水平平坦度的比例以獲得區 塊的平坦度指標。一般而言= 1,而Fv和仄定義如下, ~()為相鄰像素的平坦度測試函數·· 41 200826686The correct block can obtain the authentication bit of the AC coefficient from the relative block. Since the coefficient value after DCT conversion will exhibit energy concentration, in the DCT-based compression technology, the z-type scanning method (zig-Scan) is the most common coefficient scanning method, which can be used first by Zig-zag scanning. Obtaining the coefficient value of the larger energy, the coefficient of the smaller energy can be abbreviated. After the transformation, it seems that only a small amount of data is needed to represent the Zig-zag, except the JPEG image compression technology. , Η · 261 / Η. 263 In the Intra-Frame encoding method, the addition of alternating vertical scanning (Alternate-Vertical Scan) and alternate horizontal scanning resistance (Alternate-Horizontal Scan) two different coefficient scanning methods. In the above-mentioned restoration method, the present invention stores the information required for restoring an image by means of a digital signature. First, the horizontal and vertical months b畺' are calculated for the block, and the energy distribution characteristics of the block are used differently. The coefficient scanning method takes the left quantized coefficient value and calculates the difference from the coefficient value taken out from the previous block, and stores the important number of the block 200826686 in the DPCM manner, which can reduce the required number. Store the amount of data. Moreover, according to different block energy distribution situations, the present invention uses different coefficient scanning methods to solve the energy loss caused by storing only the coefficient values of the fixed positions of the low frequency region when scanning in z-shape. In the process of selecting the block recovery information, the DCT of the image is first converted to the block. The converted Dc coefficient value will be between [―(9) you (9)47], and the AC coefficient value will be between [ - between Tao Tao 23], if there is no special place to store DC, the product will use id 12 bits, and an AC coefficient value occupies 11 bits, so if it is from 8><8DCT block Select a dc coefficient and m AC coefficients as the recovery information. The storage space occupied by the single-block is (i2 + mXll) bits. The light is a heart attack image. Select one coefficient and five AC coefficients. It requires (ΐ2 + 5χΐι)χ212 bits, which is equivalent to 34,304 Bytes. This kind of recovery information takes up too much storage space. If it is a continuous image content, it does not meet the needs of streamlining. Furthermore, it has been found during the course of the experiment of the present invention that the retention of five coefficients is not sufficient to represent the content of the block, and therefore, the present invention uses different bit retention patterns for different block properties. First, the flatness index is calculated for each SxSDCT block. The definition of the flatness index is as follows: Di, (3-15) where Qiao and & are the vertical and horizontal flatness indicators of the block, respectively, a and b are the scaling factors. , used to adjust the ratio of vertical and horizontal flatness to obtain the flatness index of the block. In general, 1, and Fv and 仄 are defined as follows, ~() is the flatness test function of adjacent pixels·· 41 200826686

Fv=iF^)=iiFM(h+u-i, /=〇 /=〇 y=o Fh=iF^hitMiuj+^^ /=〇 i=n /=n where FM(x) - i=0 j=0 fl3x>r 1〇,χ<Γ (3-16) 一般而言,如果圖像的均方差較大,則臨界值T也要 較大’否則’均方差較小,臨界值τ也較小。而臨界值τ 可以用下列公式來決定: σ2 =^ΣΣ(/^-^)2^=^ΣΣ/υ· , 04 /=〇 y=o 64,,y Γ = σ2/δ + 1 (3-17) 當所得到的平坦度指標Fv-仄>7>且巧>7>2時,本發明選 擇使用輪流垂直掃描的方式(請參閱第2 7圖所示(c )) 來選取所要使用的m個AC係數值,反之,當尽—仄>7>且夂>7>2 則選用輪流水平掃描的方式(請參閱第2 7圖所示(b ))。 其它情形則表示為平滑區塊(請參閱第2 7圖所示(a ))。 在取得DC係數严與瓜個Ac係數如^茂,其中 ^{^••,^使用差值法的方式記錄目前係數與前一係數的差 值;先計算—严與細< 的差值,存放到該區塊的復原資 訊接著對每—個篩選出的仏係數心_巧計算差值, 同樣存放到該區塊的復原資訊細〜當處理完該區塊的每 DCT係數值後,利用私密金鑰句對所取出的復原資訊 办对⑽,.進行加密動作,並存 卫仔放到額外儲存空間,請參閱第2 8圖所示。 當接收端收到影像德,刹田 用所k出的驗證程序判斷事 像内容是否遭受非法的竄改㈣斷- 斯禾〜像中發現到可疑的區 42 200826686 塊時’再從接收到的復原資訊中,取得所需要的還原資訊。 從數位簽章中所取得的還原資訊包括區塊的DC係數及双個 AC係數,加上一個區塊水平/垂直判斷位元,對於不同的 區塊性質’分別使用輪流水平掃描或輪流垂直掃描將取得 的DC/AC係數值填入8x8DCT區塊中,進行反DCT的轉換, 然後再填入偵測錯誤的區塊中。 在本發明的測試樣本中,使用不同類型的影像内容, 包括細節區較多的Baboon影像(請參閱第2 9圖(a )所 不)、平滑區較多的pepper影像(請參閱第2 9圖(c ) 所示),以及細節區與平滑區佔有相同比例的Lena影像(請 參閱第2 9圖(b )所示),另外加上由DVR系統所擷取 到的五張監錄晝面(請參閱第2 9圖(d〜h)所示)與四 張自行拍攝的影像(請參閱第29圖(i〜1)所示),為 了達到公正客觀的測試角度,除了含有亮度較高的測試影 像外’也包含夜間所拍攝的影像,其特性是晝面中的亮度 較偏暗,且明亮部份含有較多雜訊存在。 在評估標準上,本發明使用PSNR (Peak Signal to Noise Ratio)做為評估演算法好壞的一個依據;pSNR的單 位疋dB,訊號雜訊比越高的和原來晝面的差距就越小,越 接近原始晝面,代表壓縮的品質越好,psNR的定義如下: PSNR = 201og1〇Fv=iF^)=iiFM(h+ui, /=〇/=〇y=o Fh=iF^hitMiuj+^^ /=〇i=n /=n where FM(x) - i=0 j=0 fl3x&gt ;r 1〇,χ<Γ (3-16) In general, if the mean square error of the image is large, the critical value T is also larger, otherwise the mean square error is smaller and the critical value τ is smaller. The critical value τ can be determined by the following formula: σ2 =^ΣΣ(/^-^)2^=^ΣΣ/υ· , 04 /=〇y=o 64,,y Γ = σ2/δ + 1 (3- 17) When the obtained flatness index Fv-仄>7> and Q>7>2, the present invention selects the method of using the vertical scanning in turn (see (7) shown in Fig. 27) to select the desired The m AC coefficient values are used. Conversely, when 尽-仄>7> and 夂>7>2, the horizontal scanning method is used alternately (please refer to (b) shown in Fig. 27). To smooth the block (see Figure (a) in Figure 27). Obtain the DC coefficient and the Ac coefficient of the melon, where ^{^••,^ use the difference method to record the current coefficient and The difference of the previous coefficient; first calculate the difference between the strict and the thin < the recovery information stored in the block and then filter out each仏Core _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Encrypt the action, and save it to the extra storage space, please refer to Figure 28. When the receiving end receives the image, the field uses the verification program to determine whether the content has been illegally falsified (four) - When the suspicious area 42 200826686 is found in the image, the required restoration information is obtained from the received recovery information. The restoration information obtained from the digital signature includes the DC coefficient of the block and two The AC coefficient, plus a block horizontal/vertical decision bit, is used to fill the DC/AC coefficient values in the 8x8DCT block for the different block properties by using the horizontal scan or the vertical scan, respectively. Convert and then fill in the block that detected the error. In the test sample of the present invention, different types of image content are used, including Baboon images with more details (see Figure 29 (a)) , A larger image of the peter in the sliding zone (see Figure 29 (c)), and a Lena image with the same proportion of the smoothing zone as the smoothing zone (see Figure 29 (b)), plus The five monitors captured by the DVR system (see Figure 29 (d~h)) and four self-portrait images (see Figure 29 (i~1)) In order to achieve a fair and objective test angle, in addition to the test image with high brightness, it also contains images taken at night. The characteristic is that the brightness in the face is darker, and the bright part contains more noise. In terms of evaluation criteria, the present invention uses PSNR (Peak Signal to Noise Ratio) as a basis for evaluating the performance of the algorithm; the unit of pSNR is 疋dB, and the difference between the higher the signal-to-noise ratio and the original surface is smaller. The closer to the original surface, the better the quality of the compression. The definition of psNR is as follows: PSNR = 201og1〇

255 MSE MSE = Σ\/(^Αυ)]2 Ν~2 (4-1) 其中,MSE ( Mean Square Error )為原始訊號和藏入 43 200826686 資訊後的訊號之均方差,通常來說,PSNR低於25dB的 話,一般人都無法滿意這樣的畫質;高於35dB,一般會認 為畫質不錯;高於40dB以上,不定格注意看的話通常無 法分辦和原圖有何不同。 除了以PSNR做為評估標準外,本發明亦使用誤失偵測 率評估所提出的影像驗證方法之準確性,以誤失偵測來 說,包含兩種定義·· 1、漏失偵測(Miss-Detection Rate) ··有被竄改, 而沒有摘測出來。 沒有被竄改 2、錯誤偵測(Error_Detecti〇nRate) 而誤以為被竄改的區塊。 。由於在影像驗證的應用上,主要是避免無法將被霞改 區鬼偵測出來的情形,纟某些範圍上的錯誤偵測是能夠被 目此在我們的評估標準中,是以第—種定義(漏 二做為演异法準確性的驗證項目。而所使用的漏失 偵測率疋以4-2式為計算方式。 漏失偵測率=(沒有偵測出的竄改數/偵測出的竄改數) (4-2) 在能量分佈的分析上,們 指標,首先將;& 所提到的平坦度 1〇,秋後心 用Η.263量化,量化階度為 二運用3-12〜3-14式來計算平坦度指標。 在完成運算後,將卩撿八& ^ 丁 以及平、、、 夺£ 4刀為水平細節區、垂直細節區 千心,分別使用紅色、藍色及黑色標示出來,請參 200826686 閱第3 0圖所示,其為水平能量與垂直能量分佈實驗的結 果。 清參閱第3 1圖所示,影像中除了平滑區塊與細節區 塊外,在細節區塊中尚分類為水平細節區與垂直細節區, 口此,在本發明的復原資訊萃取中,使用了三種不同的係 數掃描方式,以使得在DCT係數的選擇上能有更精確的表 現這也疋在H. 263和MPEG系列的視訊壓縮技術中所使用 到的掃描方式。 在本發明的實驗評估中,藏入浮水印後的影像品質是 主要的考量;數位浮水印的基本要求就是藏入資訊後的影 像品質,不能與原圖有太多視覺上的差異,因此本發明使 用PSNR值做為評估的依據,由藏入資訊後的影像品質可以 發現,所提出的浮水印藏入演算法,可以有效的保留影像 資訊’避免在藏入浮水印後與原圖有過多的差異性。 請參閱第3 2圖及第3 3圖所示,其分別為藏入浮水 印後的影像,以及影像品質(pSNR)的統計圖,其中藏入 浮水印後的影像品質我們又與其它三種方式做比較(以*標 示),依序分別是 Hsien-Chu Wu and Chin-Chen Chang 2002 [9]、Yulin fang and Alan pearmain 2〇〇4 [13]和255 MSE MSE = Σ\/(^Αυ)]2 Ν~2 (4-1) where MSE (Mean Square Error) is the mean square error of the original signal and the signal after the inclusion of 43 200826686 information. Generally, PSNR Below 25dB, most people can't be satisfied with such quality; higher than 35dB, generally think that the picture quality is good; above 40dB, if you do not freeze, you can't usually distinguish it from the original picture. In addition to using PSNR as the evaluation standard, the present invention also uses the error detection rate to evaluate the accuracy of the proposed image verification method. In the case of false detection, there are two definitions. 1. Loss detection (Miss) -Detection Rate) ·· Has been tampered with, but not taken out. I have not been tampered with 2. Error detection (Error_Detecti〇nRate) and mistakenly thought that the block was tampered with. . Because in the application of image verification, it is mainly to avoid the situation that the ghosts of the Xiachang District cannot be detected. 纟 Some scope of error detection can be seen in our evaluation standard, which is the first species. Definition (Leak 2 is used as the verification item for the accuracy of the different method. The leak detection rate used is calculated by the 4-2 type. Loss detection rate = (no detected tampering number / detected) The number of tampering) (4-2) In the analysis of the energy distribution, the indicators, first of all; & mentioned the flatness of 1 〇, after the autumn heart Η 263 Quantification, quantized gradation for the second application 3 12~3-14 to calculate the flatness index. After completing the calculation, use 卩捡8 & ^ and ping, 、, and 4 knives as the horizontal detail area and the vertical detail area, using red and blue respectively. Color and black are marked, please refer to 200826686, see Figure 30, which is the result of horizontal energy and vertical energy distribution experiments. See Figure 31 for details, except for smooth and detail blocks in the image. In the detail block, it is still classified into a horizontal detail area and a vertical detail area. In the invention of the recovery information extraction, three different coefficient scanning methods are used, so that the selection of DCT coefficients can be more accurately performed. This is also the scanning used in the H. 263 and MPEG series video compression technologies. In the experimental evaluation of the present invention, the image quality after hiding the watermark is the main consideration; the basic requirement of the digital watermark is the image quality after the information is hidden, and there is not much visual difference with the original image. Therefore, the present invention uses the PSNR value as a basis for evaluation, and the image quality after hiding the information can be found, and the proposed watermark hiding algorithm can effectively retain the image information 'avoiding the original watermark after hiding the watermark There are too many differences. Please refer to Figure 3 2 and Figure 3, which are the images after watermarking and the image quality (pSNR), in which the image quality after watermarking is hidden. We compare it with the other three methods (marked by *), followed by Hsien-Chu Wu and Chin-Chen Chang 2002 [9], Yulin fang and Alan pearmain 2〇〇4 [13] and

Ching-Yung Lin and Shih-Fu Chang 2001 [6]。 在本發明的驗證過程中,首先從欲進行驗證的影像 中,取得所藏入的認證資訊,並計算區塊的特徵資訊,相 同的,本發明從12張測試影像中進行實驗,並計算誤失偵 測的比例,請參閱第3 4圖及第3 5圖所示,其為影像驗 45 200826686 第3 4圖(b ) )為摘測出遭 為進行竄改還 證的結果,其中第34圖(a)為原始影像, 為加入浮水印後的竄改影像,第3 4圖(c 竄改的區域(紅色標記),第3 4圖(d ) 原後的影像。 從實驗結果中可以發現,所使用的影像驗證方法可以 有效的標不出竄改的區塊,降低誤失偵測的可能性,並且 透過區塊復原方法’有效的將被竄改區塊還原到近似於原 始影像。 本發明的影像認證與復原技術可應用至各類影像認證 處理系統、數位視訊錄影設備如DVR (Digitai 的Ching-Yung Lin and Shih-Fu Chang 2001 [6]. In the verification process of the present invention, firstly, the acquired authentication information is obtained from the image to be verified, and the feature information of the block is calculated. Similarly, the present invention performs experiments from 12 test images and calculates errors. For the proportion of loss detection, please refer to Figure 34 and Figure 5, which is the image test 45 200826686, Figure 3 4 (b), which is the result of the tampering test. Figure (a) is the original image, which is the tampering image after adding the watermark, Figure 34 (c tampering area (red mark), picture 34 (d) original image. From the experimental results, it can be found that The image verification method used can effectively mark the tampering block, reduce the possibility of missed detection, and effectively restore the tampered block to approximate the original image through the block restoration method. Image authentication and restoration technology can be applied to various image authentication processing systems, digital video recording devices such as DVR (Digitai)

ReC〇rder)……等,且適用於各種壓縮格式,如Η. 26X系列、 MPEG系列、JPEG、JPEG2000……等,又本發明可儲存在一 電腦可讀取媒介(如磁碟片、光碟片、及其類似物)中的 程式達成,藉由將程式由前述媒介安裝至一電腦系統中即 可實現本發明。 具此竄改後測暨認證復原之DVR監控系統可裝設於一 般大樓及重要機關場所,並可推展至社區安全主系統的建 立’精以提昇該產品之附加價值及強化其國際競爭力。 有關本發明相關概念於2 0 0 6年8月在中國大陸北京舉 辦之關於資訊處理的國際學術研討會(2〇〇6ICICIC, 2006 International Conference on Innovative Computing, Information and Control)中,由陳昭和(Th〇u-Ho Chen)、 李崇逸(Chung-Yih Lee)、陳聰毅(Tsong-Yi Chen )及王 大謹(Da-Jinn Wang)所發表的「An Effective 46 200826686ReC〇rder)......etc., and is applicable to various compression formats, such as 26. 26X series, MPEG series, JPEG, JPEG2000, etc., and the present invention can be stored in a computer readable medium (such as a magnetic disk, a compact disc). The program in the film, and the like, is achieved by mounting the program from the aforementioned medium to a computer system. The DVR monitoring system with this tamper-tested and certified restoration can be installed in general buildings and important institutions, and can be extended to the establishment of a community safety main system to enhance the added value of the product and enhance its international competitiveness. In relation to the concept of the present invention, in August 2006, at the International Conference on Innovative Computing (Information and Control) held in Beijing, China, by Chen Zhaohe ( "An Effective 46 200826686 by Th〇u-Ho Chen), Chung-Yih Lee, Tsong-Yi Chen and Da-Jinn Wang

Authenticating Method on the Compressed Image Data」 (一種壓縮資料之認證方法)(pp· 249_252)並公開出版。 【圖式簡單說明】 第1圖為在不同大小區塊下的中心點及相鄰點。 第2圖為使用上、下、左、右,四個區塊的Dc值來估測 中間區塊的乃c值。 第3圖為j· Fridr ich與M· Gol jan所提出的影像還原 流程圖。 第4圖為(a)為j)CT轉換前的區塊係數;(b)為將區塊透 過DCT轉換至頻率域後之係數;(c)為jpEG標準 量化表;(d)為利用量化表將圖第4圖;(b)量化 後之係數值。 圖為J. Fridrich與Μ· Gol jan所提出的編碼矩陣。 第6圖(a)為原圖;(b)為利用Fridrich與M· G〇i 所提出的方法進行特徵隱藏;(c)為遭受竄改的車 牌;(d)為還原後的車牌。 為1^1611-(]111^11與(:1^11-(:11611(]11&叫所提出的特 徵選取流程圖。 第8圖為Lena之邊緣偵測結果。 第q 、 圖為利用 Hsien-Chu Wu 與 Chin-ChenChang 所提出 的方法的實驗結果。 $ 1 π 圖為利用 Hsien-ChuWu 與 Chin-ChenChang 所提 出的影像還原方法。 47 200826686 第1 1圖為特徵資訊的產生方法。 第1 2圖為利用Phen-Lan Lin提出的方法之實驗結果。 第1 3圖為JPEG壓縮流程圖。 第1 4圖為JPEG壓縮DCT係數量化表;(a)亮度資訊量 化表;(b)色彩資訊量化表。 第1 5圖為視訊編碼中的畫面估測方法。 第1 6圖為H. 263視訊編碼所支援的影像格式 第1 7圖為 H· 263 視訊編碼的 Intra-Frame、Authenticating Method on the Compressed Image Data (pp. 249_252) and published. [Simple description of the figure] Figure 1 shows the center point and adjacent points under different size blocks. Figure 2 shows the Dc values of the four blocks using up, down, left, and right to estimate the c value of the middle block. Figure 3 shows the image restoration flowchart proposed by J. Fridr ich and M. Gol jan. Figure 4 is (a) is the block coefficient before the CT conversion; (b) is the coefficient after the block is converted to the frequency domain by DCT; (c) is the jpEG standard quantization table; (d) is the use of quantization The table will be shown in Figure 4; (b) the quantized coefficient values. The picture shows the coding matrix proposed by J. Fridrich and Μ Gol jan. Figure 6 (a) is the original image; (b) is the feature hiding using the method proposed by Fridrich and M·G〇i; (c) is the license plate that has been tampered; (d) is the restored license plate. For 1^1611-(]111^11 and (:1^11-(:11611(]11& called the proposed feature selection flow chart. Figure 8 is the edge detection result of Lena. The qth, the picture is the use The experimental results of the method proposed by Hsien-Chu Wu and Chin-ChenChang. The $1 π map is an image restoration method proposed by Hsien-ChuWu and Chin-ChenChang. 47 200826686 The first picture is the generation method of feature information. 1 2 is the experimental result of the method proposed by Phen-Lan Lin. Figure 13 is the JPEG compression flow chart. Figure 14 is the JPEG compressed DCT coefficient quantization table; (a) luminance information quantization table; (b) color Information quantization table. Figure 15 is the picture estimation method in video coding. Figure 16 shows the image format supported by H.263 video coding. Figure 17 shows the H-263 video coding Intra-Frame.

Inter-Frame、以及 PB-Frame。 第1 8圖為本發明所提出之藏入浮水印方法。 第1 9圖為本發明所提出之影像驗證與復原程序。 第20圖為區塊選取方式。 第21圖為特徵值計算方式。 第2 2圖為非零AC係數計算方式。 第2 3圖為認證資訊萃取流程圖。 第2 4圖為查表法。 第2 5圖為所選擇的AC係數藏入位置。 第2 6圖為影像驗證流程圖。 第2 7圖為DCT係數掃描方式。 第2 8圖為影像復原資訊選取流程圖。 第2 9圖為實驗使用之影像。 第3 0圖為區塊分類統計圖表。 第3 1圖為區塊分類結果。 48 200826686 第3 2圖為隱藏認證資訊後的影像。 第3 3圖為隱藏認證資訊後的影像品質統計圖。 第3 4圖為影像驗證與復原成果。 第3 5圖為區塊驗證統計圖。 【主要元件符號說明】 49Inter-Frame, and PB-Frame. Figure 18 is a method for hiding watermarks proposed by the present invention. Figure 19 is a video verification and restoration procedure proposed by the present invention. Figure 20 shows the block selection method. Figure 21 shows the eigenvalue calculation method. Figure 2 2 shows the calculation of the non-zero AC coefficient. Figure 2 3 shows the flow chart of the certification information extraction. Figure 24 shows the table lookup method. Figure 25 shows the selected AC coefficient hiding position. Figure 26 is a flow chart of image verification. Figure 27 shows the DCT coefficient scanning method. Figure 28 is a flow chart for selecting image restoration information. Figure 29 is the image used in the experiment. Figure 30 is a statistical chart of block classification. Figure 31 shows the results of block classification. 48 200826686 Figure 3 2 shows the image after hiding the authentication information. Figure 3 3 is an image quality chart after hiding the authentication information. Figure 34 shows the results of image verification and restoration. Figure 35 is a block verification chart. [Main component symbol description] 49

Claims (1)

200826686 十、申請專利範圍: 1、 一種影像認證與復原之方法,其包含以下步驟: 將欲認證之影像轉換為YCbCr色彩空間; 設定 YCbCr 之係數值(}^{16,17,···,235}、α?,α^{ΐ6,17,···,24〇}); 將該影像切割成複數個不互相重疊的8x8區塊; 對每個區塊進行DCT轉換; 選擇並計算所選擇之區塊的DC及AC係數特徵; 得到數組係數值; 判斷該組係數值的真實性; 若該係數值為合理則該影像未受竄改,其為真實影像; 若該係數值有誤則該影像曾遭竄改,且需執行以下步 驟; 將原始影像轉換為YCbCr色彩空間; 設定 YCbCr 之係數值(7e{16,17”.”235}、C6,Oe{l6,17”.”24〇}) · 將該影像切割成複數個不互相重疊的8x8區塊 對母個8 X 8區塊計算其水平及垂直平坦度指標; 對每個區塊進行DCT轉換; 將DCT區塊分類; 取得DC及AC係數復原資訊; 以DPCM的方式儲存量化後的係數值; 對DC及AC的係數復原資訊進行加密動作; 將已加密的復原資訊填入遭竄改之影像的區塊中。 2、 如申請專利範圍第1項所述之影像認證與復原之 方法,其中,選擇並計算所選擇之區塊的及A(:係數特 50 200826686 徵時,該DC及AC係數各以區塊i為中心,向外擴張選取 其他m個區塊作為比較的依據; 每個區塊的距離為Distb,該Distb值為1時,表示所 選區塊為3x3的區域,Distb值越大,代表其區塊相關性越 低; ^汁算中心區塊’與其它m個DC係數值/的差值, 其中4{l,2”.”m},若其差值大於所設定的臨界值時,則該區塊 的DC特徵值為!,否則為〇 ; AC特徵值取得方式亦同此。 3、如申請專利範圍第1項所述之影像認證與復原之 方法,其中,該水平及垂直平坦度指標定義為厂=<+的,&、 b為比例因數,F v及Fh定義如下: FM ()為相鄰像素的平坦度測試函數:200826686 X. Patent application scope: 1. A method for image authentication and restoration, which comprises the following steps: converting the image to be authenticated into a YCbCr color space; setting the coefficient value of YCbCr (}^{16,17,···, 235}, α?, α^{ΐ6,17,···,24〇}); cut the image into a plurality of 8x8 blocks that do not overlap each other; perform DCT conversion on each block; select and calculate Select the DC and AC coefficient characteristics of the block; obtain the array coefficient value; determine the authenticity of the set of coefficient values; if the coefficient value is reasonable, the image is not falsified, and it is a real image; if the coefficient value is incorrect The image has been tampered with and the following steps are required; the original image is converted to the YCbCr color space; the coefficient value of YCbCr is set (7e{16,17"."235}, C6, Oe{l6,17"."24〇 }) · Cut the image into a plurality of 8x8 blocks that do not overlap each other, and calculate the horizontal and vertical flatness indicators for the parent 8×8 blocks; perform DCT conversion for each block; classify the DCT blocks; DC and AC coefficient recovery information; stored in DPCM The quantized coefficient value; encrypts the DC and AC coefficient recovery information; and fills the encrypted restoration information into the block of the falsified image. 2. For the method of image authentication and restoration as described in item 1 of the patent application, wherein the selected block and A (: coefficient 50 200826686 sign, the DC and AC coefficients are each block) i is the center, and the other m blocks are selected as the basis for comparison; the distance of each block is Distb. When the value of Distb is 1, it indicates that the selected block is 3x3. The larger the Distb value, the more The lower the block correlation; the difference between the juice center block' and the other m DC coefficient values, where 4{l, 2"."m}, if the difference is greater than the set threshold, Then, the DC eigenvalue of the block is !, otherwise it is 〇; the AC eigenvalue acquisition method is also the same. 3. The method for image authentication and restoration according to claim 1, wherein the horizontal and vertical flatness The degree index is defined as factory=<+, &, b is the scaling factor, and F v and Fh are defined as follows: FM () is the flatness test function of adjacent pixels: τ為臨界值,可用以下公式決定:τ is the critical value and can be determined by the following formula: f = cr /0十丄 當所得到的平坦度指標Fv—巧> rr且巧> h £ 輪流垂直掃描的方式來選取所要使用的思個 >7>且' >7>2則選用輪流水平掃描的方式; 八>?>且巧>7>2時,選擇使用 示為平滑區塊。 的思個AC係數值;當 的方式;其它情形則表 其係利用請專利範 4、一種影像認證處理系統, 圍第1項所述之方法運作。 51 200826686 5、 一種數位視訊錄影設備,其係利用如申請專利車色 圍第1項所述之方法運作。 6、 一種電腦可讀取媒介,其儲存有用以使一電腦系 統執行如申請專利蔚JU签"I g Μ f π軛固弟1項所述之影像認證與復原之 法的程式碼。 52 200826686 附件: [1] . Tsong-Yi Chen,Chien-Hua Huang and Thou-Ho Chen, “Authentication of Lossy Compressed Video Data by Semi-Fragile Watermarking”,IEEE 2004 International Conference on Image Processing (ICIP Singapore), 2004. [2] . Kwang-Fu Li, Tung-Shou Chen and Seng-Cheng Wu,’’ Image tamper detection and recovery system based on discrete wavelet transformation” , Communications, Computers and signal Processing, 2001 IEEE Pacific Rim Conference on, Vol. 1, Aug. 2001, Page(s): 164 -167 vol. 1· [3] . Min Wu and Bede Liu, “Watermarking for Image Authentication”, Proceedings of IEEE International Conference on Image Processing, Oct· 4-7, 1998, Chicago, Illinois, USA,Vol· 2, Page(s): 437-441· [4] · Tae-Yun Chung,Min-Suk Hong, Young-Nam Oh,Dong-Ho Shin and Sang-Hui Park, “Digital Watermarking for Copyright Protections of MPEG2 Compressed Video”,IEEE Trans· on Consumer Electronics, Vol. 44, No. 3, Aug. 1998, Page(s): 895-901. [5] · Ching-Yung Lin and Shih-Fu Chang, “Semi-Fragile Watermarking for Authenticating JPEG Visual Content” , SPIE International Conf. on Security and Watermarking of Multimedia Contents II, 53 200826686 Vol. 3971, No. 13, El J 00, San Jose, USA, Jan 2000. [6] . Ching-Yung Lin and Shih-Fu Chang, “SARI: Self-Authentication-and-Recovery Image watermarking system”, ACM Multimedia 2001 Workshops - 2001 Multimedia Conference, 2001, Page(s): 628-629. [7] · Ching-Yung Lin and Shih-Fu Chang, “Issues and Solutions for Authenticating MPEG Video” , SPIE International Conf. on Security and Watermarking of Multimedia Contents, Vol. 3657, No. 06,El ’ 99,San Jose, USA, Jan 1999. [8] . J. Fridrich and M. Goljan, “Images with Self-Correcting Capabilities” , IEEE International Conference on Image Processing (ICIP ’99), Vol· 3,Oct· 1999,Page(s): 792-796· [9] . Hsien-Chu Wu and Chin-Chen Chang, “Detection and Restoration of Tampered JPEG Images”,The Journal of System and Software, Vol. 64, NO. 25 15 Nov. 2002 Page(s): 151-161. [10] . Phen-Lan Lin, Po-Whei Huang and An-Wei Peng, “A Fragile Watermarking Scheme for Image Authentication with Localization and Recovery” , Multimedia Software Engineering, 2004. Proceedings. IEEE Sixth International Symposium on 13-15 Dec. 2004, Page(s): 146-153· 54 200826686 [11] . Chung-Shien Lu and Hong-Yuan Mark Liao, “Structural Digital Signature for Image Authentication: An Incidental Distortion Resistant Scheme”,IEEE Transactions on Multimedia, Vol. 5, No. 2, Jun. 2003. [12] . Choi, Y. and Aizawa, I., “Digital watermarking using interblock correlation”,In: Proc. International Conference on Image Processing (ICIP J 99), Vol. 2, 24- 28 Oct. 1^99, Page(s): 216 - 220· [13] . Yulin Wang and Alan Pearmain, “Blind image data hiding based on self reference” , Pattern Recognition Letters, Vo. 25,Issue 15, Nov. 2004, Page(s): 1681-1689. [14] · L. M. Marvel, G. HartwigandC. G. Bonce let Jr., “Compression Compatible Fragile and Semi-Fragile Tamper Detection” , SPIE International Conf. on Security and Watermarking of Multimedia Contents II,Vol· 3971,No. 12,El ’ 00,San Jose, USA, Jan 2000· [15] . S. Bhattachar jee and M. Kutter, “Compression Tolerant Image Authentication” , IEEE International Conference on Image Processing (ICIP ’98),Chicago,USA, Oct 1998. [16] · Phen-Lan Lin, Chung-Kai Hsieh and Po-Whei Huang, “A Hierarchical Digital Watermarking Method for Image Tamper 55 200826686 Detection and Recovery”,Pattern Recognition, Vol. 38,Issue: 12, Dec· 2005, Page(s): 2519-2529,· [17] . Hae-Yeoun Lee, Heung-Kyu Lee and Junseok Lee, “Comparison of Feature Extraction Techniques for Watermark Synchronization”,9th International Conference, KES 2005, Vol. 3, Sep. 2005, Page(s): 309-316. [18] . M. KutterandF. A. P. Petitcolasb, ff A fair benchmark for image watermarking systems11, Electronic Imaging 1999. Security and Watermarking of Multimedia Contents, Vol. 3657, Sans Jose, CA, USA, 25-27 Jan. 1999. The International Society for Optical Engineering. [19] . Sviatoslav Voloshynovskiy, Shelby Pereira, Victor Iquise and Thierry Pun, “Attack modeling: Towards a second generation benchmark” , Signal Processing, Special Issue: Information Theoretic Issues in Digital Watermarking, May 2001. [20] . Jiri Fridrich, Miroslav Goljan, Rui Du, “Invertible Authentication Watermark for JPEG Images” , Information Technology: Coding and Computing, Proceedings. International Conference, Apr· 2001, Page(s):223-227. [21] ·林禎吉、賴溪松,數位浮水印的技術,資訊安全通訊第四卷第三期, 56 200826686 1998. 06. [22] ·張真誠、陳同孝、黃國峰,數位影像處理技術,松岗電腦圖書資料 股份有限公司,2001,台北. [23] . Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing 2nd Edition, Prentice Hall, 2002. [24] . Digital Watermarking World, http://www. watermarkingworId. org/ [25] · The Checkmark Watermark Benchmarking Project, http://watermarking, unige. |ch/Checkmark/index, html [26] . The Sti mark Benchmark, http://www. petitcolas. net/fabien/watermarking/ stirmark/ 57f = cr /0 丄 丄 所 所 平坦 平坦 F rr rr rr rr rr h h h h h h h h 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直Select the method of rotating horizontal scanning; eight >?> and Q>7>2, select to use as smoothing block. The value of the AC coefficient; the way of the other; in other cases, the use of the patent model 4, an image authentication processing system, operates according to the method described in item 1. 51 200826686 5. A digital video recording device that operates using the method described in item 1 of the patented vehicle color. 6. A computer readable medium storing a program code for causing a computer system to execute a method of image authentication and restoration as described in the patent application U.S. Patent Application "I g Μ f π yoke. 52 200826686 Attachment: [1] . Tsong-Yi Chen, Chien-Hua Huang and Thou-Ho Chen, “Authentication of Lossy Compressed Video Data by Semi-Fragile Watermarking”, IEEE 2004 International Conference on Image Processing (ICIP Singapore), 2004 [2] . Kwang-Fu Li, Tung-Shou Chen and Seng-Cheng Wu, '' Image tamper detection and recovery system based on discrete wavelet transformation" , Communications, Computers and signal Processing, 2001 IEEE Pacific Rim Conference on, Vol 1, Aug. 2001, Page(s): 164 -167 vol. 1· [3] . Min Wu and Bede Liu, “Watermarking for Image Authentication”, Proceedings of IEEE International Conference on Image Processing, Oct· 4-7 , 1998, Chicago, Illinois, USA, Vol· 2, Page(s): 437-441· [4] · Tae-Yun Chung, Min-Suk Hong, Young-Nam Oh, Dong-Ho Shin and Sang-Hui Park , "Digital Watermarking for Copyright Protections of MPEG2 Compressed Video", IEEE Trans. on Consumer Electronics, Vol. 44, No. 3, Aug. 1998, Page(s): 895-901. [5] · Ching-Yung Lin and Shih-Fu Chang, "Semi-Fragile Watermarking for Authenticating JPEG Visual Content", SPIE International Conf. on Security and Watermarking of Multimedia Contents II, 53 200826686 Vol. 3971, No. 13, El J 00, San Jose, USA, Jan 2000. [6] . Ching-Yung Lin and Shih-Fu Chang, “SARI: Self-Authentication-and-Recovery Image watermarking system”, ACM Multimedia 2001 Workshops - 2001 Multimedia Conference, 2001, Page ( s): 628-629. [7] Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch , El '99, San Jose, USA, Jan 1999. [8] . J. Fridrich and M. Goljan, “Images with Self-Correcting Capabilities”, IEEE International Conference on Image Processing (ICIP '99), Vol· 3, Oct· 1999, Page(s): 792-796· [9] . Hsien-Chu Wu and Chin-Chen Chang, “Detection and Restoration of Tampered JPEG Images” The Journal of System and Software, Vol. 64, NO. 25 15 Nov. 2002 Page(s): 151-161. [10] . Phen-Lan Lin, Po-Whei Huang and An-Wei Peng, “A Fragile Watermarking Scheme for Image Authentication with Localization and Recovery" , Multimedia Software Engineering, 2004. Proceedings. IEEE Sixth International Symposium on 13-15 Dec. 2004, Page(s): 146-153· 54 200826686 [11] . Chung-Shien Lu and Hong-Yuan Mark Liao, "Structural Digital Signature for Image Authentication: An Incidental Distortion Resistant Scheme", IEEE Transactions on Multimedia, Vol. 5, No. 2, Jun. 2003. [12] . Choi, Y. and Aizawa, I ., "Digital watermarking using interblock correlation", In: Proc. International Conference on Image Processing (ICIP J 99), Vol. 2, 24- 28 Oct. 1^99, Page(s): 216 - 220· [13] Yulin Wang and Alan Pearmain, "Blind image data hiding based on self reference" , Pattern Recognition Letters, Vo. 25, Issue 15, Nov. 2004, Page(s): 1681-1689. [14] · LM Marvel, G . Hartwigand C. G. Bonce let Jr., "Compression Compatible Fragile and Semi-Fragile Tamper Detection", SPIE International Conf. on Security and Watermarking of Multimedia Contents II, Vol. 3971, No. 12, El ' 00, San Jose, USA , Jan 2000· [15] . S. Bhattachar jee and M. Kutter, “Compression Tolerant Image Authentication”, IEEE International Conference on Image Processing (ICIP '98), Chicago, USA, Oct 1998. [16] · Phen-Lan Lin, Chung-Kai Hsieh and Po-Whei Huang, “A Hierarchical Digital Watermarking Method for Image Tamper 55 200826686 Detection and Recovery”, Pattern Recognition, Vol. 38, Issue: 12, Dec· 2005, Page(s): 2519- 2529,· [17] . Hae-Yeoun Lee, Heung-Kyu Lee and Junseok Lee, “Comparison of Feature Extraction Techniques for Watermark Synchronization”, 9th International Conference, KES 2005, Vol. 3, Sep. 2005, Page(s) : 309-316. [18] . M. KutterandF. AP Petitcolasb, ff A fair benchmark for image watermarking systems11, Electronic Imaging 1999. Security and Watermarking of Multimedia Contents, Vol. 3657, Sans Jose, CA, USA, 25-27 Jan. 1999. The International Society for Optical Engineering. [19] . Sviatoslav Voloshynovskiy, Shelby Pereira, Victor Iquise and Thierry Pun "Attack modeling: Towards a second generation benchmark" , Signal Processing, Special Issue: Information Theoretic Issues in Digital Watermarking, May 2001. [20] . Jiri Fridrich, Miroslav Goljan, Rui Du, "Invertible Authentication Watermark for JPEG Images" , Information Technology: Coding and Computing, Proceedings. International Conference, Apr. 2001, Page(s): 223-227. [21] · Lin Yiji, Lai Xisong, Digital Watermark Technology, Information Security Newsletter, Volume 4, Issue 3 , 56 200826686 1998. 06. [22] · Zhang Chengxin, Chen Tongxiao, Huang Guofeng, Digital Image Processing Technology, Songgang Computer Books and Materials Co., Ltd., 2001, Taipei. [23] . Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing 2nd Edition, Prentice Hall , 2002. [24] . Digital Watermarking World, http://www. watermarkingworId. org/ [25] · The Checkmark Watermark Benchmarking Project, http://watermarking, unige. |ch/Checkmark/index, html [26] The Sti mark Benchmark, http://www. petitcolas. net/fabien/watermarking/ stirmark/ 57
TW95146181A 2006-12-11 2006-12-11 Method of authentication and restoration for images TW200826686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95146181A TW200826686A (en) 2006-12-11 2006-12-11 Method of authentication and restoration for images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95146181A TW200826686A (en) 2006-12-11 2006-12-11 Method of authentication and restoration for images

Publications (1)

Publication Number Publication Date
TW200826686A true TW200826686A (en) 2008-06-16

Family

ID=44772512

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95146181A TW200826686A (en) 2006-12-11 2006-12-11 Method of authentication and restoration for images

Country Status (1)

Country Link
TW (1) TW200826686A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398829B (en) * 2010-03-17 2013-06-11 Floating watermark embedding device and verification device, digital floating watermark verification system
TWI416432B (en) * 2010-09-08 2013-11-21 Univ Nat Kaohsiung Applied Sci Method of using singular value decompostion for enhancing and segmenting fingerprint images and a system thereof
TWI452889B (en) * 2009-04-30 2014-09-11 Sumitomo Electric Industries Encryption key generating device
TWI466535B (en) * 2011-06-28 2014-12-21 Himax Media Solutions Inc Three-dimensional imaging method using single-lens mage-capture apparatus, and three-dimensional image enhancement method and three-dimensional image enhancement apparatus based on first and second two-dimensional images for three-dimensional image displ
TWI473035B (en) * 2011-05-20 2015-02-11
TWI497446B (en) * 2010-01-13 2015-08-21 Chi Mei Comm Systems Inc System and method for concealing image errors
TWI656979B (en) * 2016-12-31 2019-04-21 大陸商江蘇九迪激光裝備科技有限公司 A computer to screen equipment based on laser direct imaging and its exposuring process
TWI661721B (en) * 2018-04-03 2019-06-01 奇景光電股份有限公司 Method and circuit for detection motion
CN114063194A (en) * 2021-11-18 2022-02-18 核工业北京地质研究院 Baseline drift correction method and system for natural potential curve

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452889B (en) * 2009-04-30 2014-09-11 Sumitomo Electric Industries Encryption key generating device
TWI497446B (en) * 2010-01-13 2015-08-21 Chi Mei Comm Systems Inc System and method for concealing image errors
TWI398829B (en) * 2010-03-17 2013-06-11 Floating watermark embedding device and verification device, digital floating watermark verification system
TWI416432B (en) * 2010-09-08 2013-11-21 Univ Nat Kaohsiung Applied Sci Method of using singular value decompostion for enhancing and segmenting fingerprint images and a system thereof
TWI473035B (en) * 2011-05-20 2015-02-11
TWI466535B (en) * 2011-06-28 2014-12-21 Himax Media Solutions Inc Three-dimensional imaging method using single-lens mage-capture apparatus, and three-dimensional image enhancement method and three-dimensional image enhancement apparatus based on first and second two-dimensional images for three-dimensional image displ
TWI656979B (en) * 2016-12-31 2019-04-21 大陸商江蘇九迪激光裝備科技有限公司 A computer to screen equipment based on laser direct imaging and its exposuring process
TWI661721B (en) * 2018-04-03 2019-06-01 奇景光電股份有限公司 Method and circuit for detection motion
CN114063194A (en) * 2021-11-18 2022-02-18 核工业北京地质研究院 Baseline drift correction method and system for natural potential curve
CN114063194B (en) * 2021-11-18 2023-10-03 核工业北京地质研究院 Baseline drift correction method and system for natural potential curve

Similar Documents

Publication Publication Date Title
Hsu et al. DCT-based watermarking for video
Xu et al. A novel watermarking scheme for H. 264/AVC video authentication
US7792377B2 (en) Method of image authentication and restoration
TW200826686A (en) Method of authentication and restoration for images
Hzu et al. Digital watermarking for video
Fu Robust oblivious image watermarking scheme based on coefficient relation
Farfoura et al. Low complexity semi-fragile watermarking scheme for H. 264/AVC authentication
Chen et al. A robust watermarking algorithm based on QR factorization and DCT using quantization index modulation technique
Ullah et al. Dual-purpose semi-fragile watermark: authentication and recovery of digital images
Langelaar Real-time watermarking techniques for compressed video data
Embaby et al. Digital Watermarking Properties, Classification and Techniques
Shahid et al. Spread spectrum-based watermarking for Tardos code-based fingerprinting for H. 264/AVC video
Zain Strict authentication watermarking with JPEG compression (SAW-JPEG) for medical images
Phadikar et al. Quality access control of compressed color images using data hiding
Chen et al. H. 264 video authentication based on semi-fragile watermarking
Fallahpour et al. Flexible image watermarking in JPEG domain
Shojanazeri et al. Analysis of watermarking techniques in video
Chamlawi et al. Dual watermarking method for secure image authentication and recovery
Soppari et al. Study of digital watermarking algorithms for digital rights management and their attacks
Aparna et al. A review on data hiding techniques in compressed video
Shekhawat et al. A robust watermarking technique based on biorthogonal wavelet transform
Helmy et al. Authentication scheme based on principal component analysis for satellite images
Potdar et al. Subjective and Objective Watermark Detection Using a Novel Approach–Barcode Watermarking
Li et al. An adaptive secure watermarking scheme for images in spatial domain using fresnel transform
Barari et al. An Overview of Visual Cryptography based Video Watermarking Schemes: Techniques and Performance Comparison