JPS63121625A - Method for recovering gold and silver from waste water - Google Patents

Method for recovering gold and silver from waste water

Info

Publication number
JPS63121625A
JPS63121625A JP26685186A JP26685186A JPS63121625A JP S63121625 A JPS63121625 A JP S63121625A JP 26685186 A JP26685186 A JP 26685186A JP 26685186 A JP26685186 A JP 26685186A JP S63121625 A JPS63121625 A JP S63121625A
Authority
JP
Japan
Prior art keywords
gold
silver
copper
waste water
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26685186A
Other languages
Japanese (ja)
Other versions
JPH0475285B2 (en
Inventor
Isamu Kato
勇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP26685186A priority Critical patent/JPS63121625A/en
Publication of JPS63121625A publication Critical patent/JPS63121625A/en
Publication of JPH0475285B2 publication Critical patent/JPH0475285B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently recover gold and silver from waste water contg. cyan complex salts of gold and silve and to make a waste water treatment simultaneously by adding bivalent copper ions and reducing agent to said waste water, recovering gold and silver from the formed precipitate and recovering copper from the separated liquid. CONSTITUTION:The waste water contg. the gold cyan complex salt and silver cyan complex salt is introduced into a reaction vessel 1 where the bivalent copper ions, reducing agent and pH controlling agent are added to the waste water and the waste water is stirred to form the hardly soluble precipitate. The reaction liquid thus formed is introduced into a flocculating vessel 2 where a high-polymer flocculating agent is added to the water to form flocs having good settleability. The water is then introduced into a settling vessel 3 and is subjected to a solid-liquid sepn. The solid-component is recovered as the complex salts of the gold and silver. The separated liquid is introduced into a neutralizing and flocculating vessel 4 where pH is adjusted and the excess copper is settled as copper hydroxide. The precipitate is separated in a settling vessel 5. The separated copper component is returned to the reaction vessel 1 and is utilized as a copper ion source of a gold and silver recovering stage. The separated liquid is introduced into a reneutralizing vessel 6 and is reneutralized. The liquid is then released in the form of the harmless treated liquid.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は廃水から金、銀を回収する方法、特に金シアン
錯塩および/または銀シアン錯塩を含む廃水から金、銀
をシアン錯塩のまま沈殿させて回収するとともに、廃水
処理を同時に行う方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for recovering gold and silver from wastewater, and in particular, a method for recovering gold and silver from wastewater containing gold cyanide complex salts and/or silver cyanide complex salts by precipitating gold and silver as cyanide complex salts. The present invention relates to a method for simultaneously recovering wastewater and treating wastewater at the same time.

〔従来の技術〕[Conventional technology]

金メッキ、銀メッキは耐食性に富み、電気抵抗が小さく
、熱伝導性が良く、シリコンとの接合が可能であるなど
の特長を有するため、従来より装飾品(時計、万年筆)
、航空機、電子機器部分など、近年はIC関係のリード
フレーム、プリン1へ回路板などの端子メッキに適用さ
れている。
Gold plating and silver plating have characteristics such as high corrosion resistance, low electrical resistance, good thermal conductivity, and can be bonded to silicone, so they have traditionally been used for decorative items (watches, fountain pens).
In recent years, it has been applied to terminal plating of IC-related lead frames, printed circuit boards, etc., aircraft, electronic equipment parts, etc.

このような金メッキ、銀メツキ工程から排出される廃水
中に含まれる金シアン錯塩は、アルカリ塩素法、オゾン
法などの酸化法では分解できない。
Gold cyanide complex salts contained in wastewater discharged from such gold plating and silver plating processes cannot be decomposed by oxidation methods such as the alkali chlorine method and the ozone method.

銀シアン錯塩は金シアン鉗塩に較べるとやや不安定であ
るが、完全に分解できないため、シアン錯塩を分解後金
、銀を固液分離により回収する方法は採用されていない
Although silver cyanide complex salt is slightly more unstable than gold cyanide salt, it cannot be completely decomposed, so a method of recovering gold and silver by solid-liquid separation after decomposing the cyanide complex salt has not been adopted.

従来の金、銀シアン錯塩力)らの金、銀の回収法として
は、イオン交換樹脂あるいは活性炭による吸着処理が行
われているが、一般に溶離が困難であるため、吸着した
樹脂あるいは活性炭を灰化して回収が行われている場合
が多い、樹脂がらシアン錯塩を溶離する再生方法も報告
されている。再生廃液からの金、銀の回収は、亜鉛末、
ナトリウムボロハイドライドなどにより還元し金属とし
て回収、あるいは電解により金属として回収する方法な
どがある。
Conventional methods for recovering gold and silver from gold and silver cyanide complex salts include adsorption treatment using ion exchange resins or activated carbon, but elution is generally difficult, so the adsorbed resin or activated carbon is ashed. A regeneration method has also been reported in which the cyanide complex salt is eluted from the resin, which is often recovered by converting it into a resin. Gold and silver can be recovered from recycled wastewater using zinc powder,
There are methods such as reducing it with sodium borohydride and recovering it as a metal, or recovering it as a metal through electrolysis.

このほか一般のシアン錯塩を含む廃水の処理法として、
アルカリ塩素法で遊離シアン等を分解したのち、鉄、銅
などの錯塩を還元剤で沈殿分離する方法が提案されてい
る(例えば特公昭51−29587号)。
In addition, as a treatment method for wastewater containing general cyanide complex salts,
A method has been proposed in which free cyanide, etc. are decomposed by an alkali chlorine method, and then complex salts of iron, copper, etc. are precipitated and separated using a reducing agent (for example, Japanese Patent Publication No. 51-29587).

〔発明が解決しようとする問題点〕゛ しかしながら、上記のような従来の金、銀をイオン交換
樹脂等により回収する方法は、いずれもイニシャルコス
トおよびランニングコストが高くなり、金、銀から解離
してきた遊離シアンの酸化分解を行わなければ放流でき
ないという問題点があった。
[Problems to be solved by the invention] [However, the above conventional methods of recovering gold and silver using ion exchange resins, etc. all have high initial costs and running costs, and the process of recovering gold and silver from dissociating from gold and silver. There was a problem in that it could not be discharged unless free cyanide was oxidized and decomposed.

また特公昭51−29587号の方法には金、銀に対す
る適用の可能性は示唆されていない上、第1段として酸
化法により遊離シアンを分解した後、不溶性錯塩を分離
する必要があり、工程が複雑であるなどの問題点があっ
た。
Moreover, the method of Japanese Patent Publication No. 51-29587 does not suggest the possibility of application to gold and silver, and it requires the separation of insoluble complex salts after decomposing free cyanide by an oxidation method in the first step. There were problems such as complexity.

この発明は上記のような問題点を解決するためのもので
、酸化法による分解を行うことなく、通常の沈殿処理に
より、金、銀のシアン錯塩を直接錯塩のまま運溶化して
固液分離を行い、貴金属として回収するとともに、廃水
処理を同時に行うことができる金銀の回収方法を得るこ
とを目的としている。
This invention is intended to solve the above-mentioned problems. Instead of decomposition by oxidation, cyanide complex salts of gold and silver are directly dissolved in the complex form by ordinary precipitation treatment, and solid-liquid separation is carried out. The purpose of this project is to develop a method for recovering gold and silver that can be recovered as precious metals and treated as wastewater at the same time.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、金シアン錯塩および/または銀シアン錯塩
を含有する廃水に、2価の銅イオンおよび還元剤を存在
させ、生成した難溶性の沈殿を分離回収する金銀回収工
程と、難溶性の沈殿を分離した上澄液にアルカリを添加
して過剰の銅を水酸化銅の沈殿として分離回収する飼回
収工程と、回収した水酸化銅を2価の銅イオン源として
金銀回収工程へ戻す工程とからなる廃水から金、銀を回
収する方法である。
This invention provides a gold-silver recovery process in which divalent copper ions and a reducing agent are present in wastewater containing gold-cyanide complex salts and/or silver-cyanide complex salts, and a sparingly soluble precipitate is separated and recovered; A feeding recovery process in which an alkali is added to the separated supernatant liquid to separate and recover excess copper as precipitate of copper hydroxide, and a process in which the recovered copper hydroxide is returned to the gold and silver recovery process as a divalent copper ion source. This method recovers gold and silver from wastewater consisting of

本発明において処理の対象となる廃水は金シアン錯塩お
よび/または銀シアン錯塩を含む廃水である。このよう
な廃水は金メッキおよび銀メツキ工程などから排出され
9通常遊離シアンを含んでいる。
The wastewater to be treated in the present invention is wastewater containing gold cyanide complex salt and/or silver cyanide complex salt. Such wastewater is discharged from processes such as gold plating and silver plating,9 and typically contains free cyanide.

以下、本発明を図面により説明する0図面は本発明の実
施態様を示す系統図であり、lは反応槽。
Hereinafter, the present invention will be explained with reference to the drawings. Drawing 0 is a system diagram showing an embodiment of the present invention, and l is a reaction tank.

2は凝集槽、3は沈殿槽、4は中和凝集槽、5は沈殿槽
、6は再中和槽である。
2 is a flocculation tank, 3 is a sedimentation tank, 4 is a neutralization flocculation tank, 5 is a sedimentation tank, and 6 is a re-neutralization tank.

処理方法は、まず金銀回収工程として廃水を反応槽1に
導入し、ここで廃水に銅塩、還元剤およびpH調整剤を
添加して攪拌し、難溶性の沈殿を生成させる。
In the treatment method, wastewater is first introduced into a reaction tank 1 as a gold-silver recovery step, where a copper salt, a reducing agent, and a pH adjuster are added to the wastewater and stirred to form a hardly soluble precipitate.

廃水を存在させる銅塩としては水溶性の塩であればよく
、1価の銅塩でも2価の銅塩でもよいが、一般に1価の
銅塩は難溶性で空気により容易に酸化されるため工業的
に入手することが困難であり、硫酸銅(II)、塩化銅
(II)、硝酸鋼(II)などの2価の銅塩が利用可能
である。
The copper salt to be used in wastewater may be any water-soluble salt, and may be monovalent copper salt or divalent copper salt, but monovalent copper salts are generally sparingly soluble and easily oxidized by air. It is difficult to obtain it industrially, and divalent copper salts such as copper (II) sulfate, copper (II) chloride, and steel (II) nitrate can be used.

還元剤は2価の銅イオンを1価に還元できる還元剤であ
り、例えば亜硫酸塩、ハイドロサルファイド、鉄塩(n
)、ヒドラジンなどいずれでもよいが、汚泥発生量の低
減および入手の容易性の点から亜硫酸塩およびハイドロ
サルファイドが推奨される。
The reducing agent is a reducing agent that can reduce divalent copper ions to monovalent ones, such as sulfites, hydrosulfides, iron salts (n
), hydrazine, etc., but sulfites and hydrosulfides are recommended from the viewpoint of reducing the amount of sludge generated and being easily available.

一般に硫酸銅などの2価の銅塩に亜硫酸塩、ハイドロサ
ルファイド、硫酸鉄(II)、ヒドラジンなどの各種還
元剤を添加してP[12〜11としても、見かけ上1価
の銅イオンの生成は見られないが、遊離シアンおよび金
2銀シアン錯塩含有廃水に2価の銅塩と還元剤を添加す
ると、1価の銅のシアン化合物が難溶性塩となって沈殿
する。
Generally, when various reducing agents such as sulfite, hydrosulfide, iron(II) sulfate, and hydrazine are added to divalent copper salts such as copper sulfate, apparently monovalent copper ions are generated even though P[12-11 is used. However, when divalent copper salts and reducing agents are added to wastewater containing free cyanide and gold disilver cyanide complex salts, monovalent copper cyanide compounds precipitate as sparingly soluble salts.

これは1価の銅イオンとシアン化合物が反応して沈殿し
、系内に1価の銅イオンが存在できない雰囲気となるた
め、見かけ上の酸化還元電位が変化して還元が進行した
と推察される。
This is thought to be because monovalent copper ions and cyanide react with each other and precipitate, creating an atmosphere where monovalent copper ions cannot exist in the system, resulting in a change in the apparent redox potential and reduction progressing. Ru.

上記の反応は下式により進行すると推測される。It is assumed that the above reaction proceeds according to the following formula.

Cu”十〇N−→CuCN↓         −(1
)Cu” +Au(CN)2− →CuAu(CN)2
↓   ・(2)Cu”+Ag(CN)2−−+CuA
g(CN)2↓   −(3)このうち(1)式は遊離
シアンの反応、(2)、(3)式はシアン錯塩の反応で
あり、いずれも1価の銅イオンの存在によ:り難溶性の
沈殿を生成し、−括して処理される。
Cu”10N-→CuCN↓-(1
)Cu” +Au(CN)2− →CuAu(CN)2
↓ ・(2) Cu"+Ag(CN)2--+CuA
g(CN)2↓ -(3) Among these, equation (1) is a reaction of free cyanide, and equations (2) and (3) are reactions of a cyanide complex salt, both of which are due to the presence of monovalent copper ions: This produces a poorly soluble precipitate, which is then treated all at once.

反応系に存在させる銅塩の量は上記(1)〜(3)式に
おける反応当量でよいが、廃水中のシアン濃度の変動に
対処するため、ならびに反応促進のためには廃水中のシ
アン濃度の2〜5倍量が好ましい。
The amount of copper salt present in the reaction system may be the reaction equivalent in equations (1) to (3) above, but in order to cope with fluctuations in the cyanide concentration in the wastewater and to promote the reaction, the cyanide concentration in the wastewater should be adjusted. 2 to 5 times the amount is preferred.

この場合、銅とシアン錯塩は化学量論的に反応して沈殿
するため、銅塩を過剰に添加しても、水酸化鋼が沈殿し
ないp、H領域でシアン錯塩を沈殿分離すれば、沈殿物
の組成は(1)〜(3)式で示した化合物のみとなるた
め、回収物の貴金属含有割合が高くなる。ここで過剰に
添加した銅塩は次の銀回収工程で回収される。
In this case, copper and cyanide complex react stoichiometrically and precipitate, so if the cyanide complex is precipitated and separated in the p and H regions where hydroxide steel does not precipitate even if copper salt is added in excess, precipitation will occur. Since the composition of the product is only the compounds shown by formulas (1) to (3), the noble metal content of the recovered product is high. The copper salt added in excess here is recovered in the next silver recovery step.

還元剤の量は2価の銅イオンを1価に還元するだめの理
論量および溶存酸素等によって消費される量の合計量で
あり1通常は100〜300m1(#I程度である。銅
塩および還元剤がすでに廃水中に存在する場合は不足分
を添加すればよい。銅塩および還元剤を添加する場合は
同時に添加するのが好ましいが、前後に分けて別々に添
加してもよい。
The amount of reducing agent is the total amount of the theoretical amount required to reduce divalent copper ions to monovalent and the amount consumed by dissolved oxygen, etc. 1 Usually 100 to 300 ml (about #I). If the reducing agent already exists in the wastewater, just add the missing amount.When adding the copper salt and reducing agent, it is preferable to add them at the same time, but they may be added separately before and after the addition.

金、銀シアン錯塩の沈殿するPH領領域4〜9であり、
pH4以下およびpi(9以上では是性塩が沈殿しにく
くなる。またpH7以上では過剰の銅が水酸化銅となっ
て沈殿して沈殿物中の金、銀の含量が低くなり、銅塩の
有効利用ができなくなるため、PH4〜6で沈殿を生成
させるのが好ましい。
PH region 4 to 9 in which gold and silver cyanide complexes precipitate,
At pH 4 or lower and pi (9 or higher), it becomes difficult for the natural salt to precipitate. At pH 7 or higher, excess copper becomes copper hydroxide and precipitates, lowering the content of gold and silver in the precipitate, and reducing the amount of copper salt. Since it cannot be used effectively, it is preferable to form a precipitate at a pH of 4 to 6.

反応時間はビーカー試験では2〜5分で反応が完結する
が、実装置では原水の短絡防止のため10〜20分が適
当である。
In a beaker test, the reaction is completed in 2 to 5 minutes, but in actual equipment, 10 to 20 minutes is appropriate to prevent short circuits in the raw water.

こうして反応槽1において難溶性の沈殿を生成させたの
ち、反応液を凝集槽2に導入し、高分子凝集剤を添加し
て凝集させ、沈降性の良いフロックを生成させる。そし
て沈殿槽3に導入して固液分離を行い、固形分を金、銀
の錯塩として回収する。
After a poorly soluble precipitate is thus generated in the reaction tank 1, the reaction solution is introduced into the flocculation tank 2, and a polymer flocculant is added to flocculate it to form a floc with good sedimentation properties. Then, it is introduced into a precipitation tank 3 to perform solid-liquid separation, and the solid content is recovered as a complex salt of gold and silver.

次に銀回収工程として、沈殿槽3め分離液を中和凝集槽
4に導入し、PH調整剤を添加してpH8〜11として
過剰の銅を水酸銅として沈殿させる。そして沈殿槽5に
おいて沈殿物を分離して銅をそのまま反応槽1に返送し
、金銀回収工程の銅イオン源として利用する。このよう
に過剰に加えた銅塩は回収利用されるので、銅塩の添加
量は全体としては理論量でよいことになる。
Next, as a silver recovery step, the separated liquid from the third precipitation tank is introduced into the neutralization flocculation tank 4, and a pH adjuster is added to adjust the pH to 8 to 11 to precipitate excess copper as copper hydroxide. Then, the precipitate is separated in the precipitation tank 5, and the copper is returned as it is to the reaction tank 1, where it is used as a copper ion source in the gold and silver recovery process. Since the copper salt added in excess is recovered and used, the total amount of copper salt to be added may be the theoretical amount.

沈殿槽5の分離液は再中和槽6においてPH調整剤を加
えて放流可能なpHに再中和し、必要により次亜塩素酸
塩等により過剰の還元剤を酸化し、処理水として放流す
る。この処理水は遊離シアン、シアン錯塩および銅塩は
完全に除去され、無害になっている。
The separated liquid in the settling tank 5 is re-neutralized to a pH that can be discharged by adding a pH adjuster in the re-neutralization tank 6, and if necessary, the excess reducing agent is oxidized with hypochlorite, etc., and the water is discharged as treated water. do. Free cyanide, cyanide complex salts and copper salts are completely removed from this treated water, making it harmless.

上記の処理において、界面活性剤5分散剤などを含み凝
集沈降性の悪い廃水に対しては、必要に応じ濾過器を設
置することができる。また生成する沈殿の分離には、沈
殿槽3に代えて濾過その他の固液分離手段を用いること
ができる。
In the above treatment, a filter may be installed as necessary for wastewater that contains surfactants, dispersants, etc. and has poor coagulation and sedimentation properties. Further, in place of the precipitation tank 3, filtration or other solid-liquid separation means can be used to separate the generated precipitate.

〔発明の効果〕〔Effect of the invention〕

以上の通り1本発明によれば、金シアン錯塩および/ま
たは銀シアン錯塩を含有する廃水に銅イオンおよび還元
剤を存在させて難溶性の沈殿を生成させるようにしたの
で、危険な酸化剤を使用することなく、河川な装置と操
作により効率よく金、銀を回収できるとともに、廃水の
処理を行うことができ、しかも過剰銅を回収して有効利
用することができる。
As described above, according to the present invention, copper ions and a reducing agent are present in the wastewater containing the gold cyanide complex salt and/or the silver cyanide complex salt to form a hardly soluble precipitate, thereby eliminating the dangerous oxidizing agent. Gold and silver can be efficiently recovered using conventional equipment and operations without using it, and wastewater can be treated, and excess copper can be recovered and used effectively.

〔実施例〕〔Example〕

以下1本発明の実施例について説明する。 An embodiment of the present invention will be described below.

実施例l KAu(CN)210mg/12(Auとして)および
KAg(CN)210mgIQ (Agとして)を含む
廃水に、 CuSO450mg/fl (Cuとして)
およびハイドロサルファイド200mg/Qを添加し、
pH5で30分間反応させて上澄液の分析を行ったとこ
ろ、Ag 0.14mg/Q、 Au<0.1mgIQ
、CN<0.01mg/Q、 Cu 37.1m3/+
2であった。 CuAg(CN)2とCuAu(CN)
zを生成させるためのCuは9mgIQであり、理論量
以上のCuは溶解していた。次にCuを含む上澄液をN
aOH溶液でpH8,5として残留Cuを水酸化物とし
て沈殿させ、Cuを測定した結果0.23mg/lであ
った・ 次にKAg(CN)z20mg#l(Agとして)、N
aC11,000mg/Q、 Na2SO350mg#
!を含む人工廃水に、上記により回収した水酸化銅40
mg/QCCuとして)およびCuSO410mg#l
 (Cuとして)き添加した場合と、上記により回収し
た水酸化銅40n+g/12 (Cuとして)およびC
uSO410mg/1(Cuとして)とNa2CO32
00mg/A添加した場合との比較を行った1反応30
分後濾紙Nci5Aで濾過した濾液の分析結果を表1に
示す、なお、この場合のKAg(CN)2に対するCu
の理論量は11.8mgIQである。
Example l CuSO450 mg/fl (as Cu) was added to wastewater containing 210 mg/12 (as Au) of KAu(CN) and 210 mg IQ (as Ag) of KAg(CN).
and adding hydrosulfide 200mg/Q,
When reacted for 30 minutes at pH 5 and analyzed the supernatant, Ag 0.14 mg/Q, Au < 0.1 mg IQ.
, CN<0.01mg/Q, Cu 37.1m3/+
It was 2. CuAg(CN)2 and CuAu(CN)
The amount of Cu used to generate z was 9 mgIQ, and more than the theoretical amount of Cu was dissolved. Next, the supernatant containing Cu was
Residual Cu was precipitated as hydroxide with aOH solution at pH 8.5, and Cu was measured and found to be 0.23 mg/l.Next, KAg(CN)z20mg#l (as Ag), N
aC11,000mg/Q, Na2SO350mg#
! Copper hydroxide 40 recovered as described above was added to artificial wastewater containing
mg/QCCu) and CuSO410mg#l
(as Cu) and copper hydroxide 40n+g/12 (as Cu) and C
uSO410mg/1 (as Cu) and Na2CO32
1 reaction compared with the case of adding 00mg/A 30
The analysis results of the filtrate filtered through filter paper Nci5A after 5 minutes are shown in Table 1.
The theoretical amount of is 11.8 mgIQ.

表1 表1において、Na2SO2無添加の場合は処理が不完
全であるが、200ng/Q添加するとAg(CN)2
はほぼ完全に沈殿した。なおNα5からCuとAg(C
N)zは化学量論的に反応しており、Nα6では過剰の
銅は水酸化物となって沈殿し、Na7ではpHが甚いと
処理効果が悪くなることが示されている。
Table 1 In Table 1, when Na2SO2 is not added, the treatment is incomplete, but when 200 ng/Q is added, Ag(CN)2
was almost completely precipitated. Note that Cu and Ag (C
N)z reacts stoichiometrically, and it has been shown that with Na6, excess copper becomes hydroxide and precipitates, and with Na7, the treatment effect deteriorates if the pH is too high.

実施例2 KAu(CN)237mH/12(Auとして)、 N
aC11,000mH/Q、を Na2CO3SO+mg/Hむ人工廃水に実施例1で回
収した水酸化銅40mg、l (Cuとして)およびC
uSO410mg#t(Cuとし℃左添加した場合と、
これらとNa25Oz Zo。
Example 2 KAu(CN) 237mH/12 (as Au), N
Copper hydroxide 40 mg, l (as Cu) and C
When uSO410mg #t (Cu) was added at °C,
These and Na25Oz Zo.

mg/flを併用した場合との比較を行った。反応30
分後の濾液の分析結果を表2に示す。なおKALJ(C
N)2に対するCuの理論量は12.2mg/Qである
A comparison was made with the case where mg/fl was used in combination. reaction 30
The analysis results of the filtrate after 1 minute are shown in Table 2. Furthermore, KALJ (C
The theoretical amount of Cu relative to N)2 is 12.2 mg/Q.

処理水分析において、Au(CN)zはJIS KO1
02のシアン分析法ではAu+CNに解離せず、測定不
能なことが判明しているため、シアンは分新しなかった
In treated water analysis, Au(CN)z conforms to JIS KO1
In the cyan analysis method of No. 02, it was found that it did not dissociate into Au+CN and could not be measured, so cyan was not separated.

表2 表2のNa 1〜4に示すように N a2S03.1
1!添加ではAu(CN)2−は全く沈殿せず、N a
 2SO3を添加した場合はNo5〜8に示すようにA
u(CN)2−は処理可能となった。またNα5,6の
弱酸化性側でのCuとAu(CN)2−の反応は化学量
論的に進行している。
Table 2 As shown in Na 1 to 4 in Table 2, Na2S03.1
1! Upon addition, Au(CN)2− did not precipitate at all, and Na
When 2SO3 is added, A as shown in Nos. 5 to 8.
u(CN)2- can now be processed. Further, the reaction between Cu and Au(CN)2- on the weakly oxidizing side of Nα5,6 proceeds stoichiometrically.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は実施態様を示す系統図であり、1は反応槽、2は
凝集糟、3,5は沈殿槽、4は中和凝集槽、6は再中和
槽である。
The drawing is a system diagram showing an embodiment, in which 1 is a reaction tank, 2 is a flocculation tank, 3 and 5 are settling tanks, 4 is a neutralization flocculation tank, and 6 is a re-neutralization tank.

Claims (3)

【特許請求の範囲】[Claims] (1)金シアン錯塩および/または銀シアン錯塩を含有
する廃水に、2価の銅イオンおよび還元剤を存在させ、
生成した難溶性の沈殿を分離回収する金銀回収工程と、
難溶性の沈殿を分離した上澄液にアルカリを添加して過
剰の銅を水酸化銅の沈殿として分離回収する銅回収工程
と、回収した水酸化銅を2価の銅イオン源として金銀回
収工程へ戻す工程とからなることを特徴とする廃水から
金、銀を回収する方法。
(1) Adding divalent copper ions and a reducing agent to wastewater containing a gold cyanide complex salt and/or a silver cyanide complex salt,
a gold and silver recovery process that separates and recovers the generated poorly soluble precipitate;
A copper recovery process in which an alkali is added to the supernatant liquid from which the poorly soluble precipitate has been separated to separate and recover excess copper as copper hydroxide precipitate, and a gold and silver recovery process in which the recovered copper hydroxide is used as a divalent copper ion source. A method for recovering gold and silver from wastewater, the method comprising the step of returning gold and silver to wastewater.
(2)金銀回収工程における沈殿の生成がpH4〜6で
行うものである特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the formation of the precipitate in the gold and silver recovery step is carried out at a pH of 4 to 6.
(3)銅回収工程における沈殿の生成がpH8〜11で
行うものである特許請求の範囲第1項または第2項記載
の方法。
(3) The method according to claim 1 or 2, wherein the precipitation in the copper recovery step is performed at a pH of 8 to 11.
JP26685186A 1986-11-10 1986-11-10 Method for recovering gold and silver from waste water Granted JPS63121625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26685186A JPS63121625A (en) 1986-11-10 1986-11-10 Method for recovering gold and silver from waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26685186A JPS63121625A (en) 1986-11-10 1986-11-10 Method for recovering gold and silver from waste water

Publications (2)

Publication Number Publication Date
JPS63121625A true JPS63121625A (en) 1988-05-25
JPH0475285B2 JPH0475285B2 (en) 1992-11-30

Family

ID=17436543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26685186A Granted JPS63121625A (en) 1986-11-10 1986-11-10 Method for recovering gold and silver from waste water

Country Status (1)

Country Link
JP (1) JPS63121625A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313112A (en) * 2004-04-30 2005-11-10 Katayama Chem Works Co Ltd Method for treating waste water containing cyanogen
CN102978414A (en) * 2012-11-28 2013-03-20 大连东泰产业废弃物处理有限公司 Method for precipitating gold from cyanogen-containing gold-plated waste liquid
CN103409632A (en) * 2013-07-18 2013-11-27 山东国大黄金股份有限公司 Method for comprehensively recovering gold mud wet technology tail gas

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2145573B1 (en) 2005-02-18 2011-09-07 iRobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
WO2019131946A1 (en) 2017-12-27 2019-07-04 三菱ケミカル株式会社 Method for recovering gold and gold recovery facility

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313112A (en) * 2004-04-30 2005-11-10 Katayama Chem Works Co Ltd Method for treating waste water containing cyanogen
CN102978414A (en) * 2012-11-28 2013-03-20 大连东泰产业废弃物处理有限公司 Method for precipitating gold from cyanogen-containing gold-plated waste liquid
CN103409632A (en) * 2013-07-18 2013-11-27 山东国大黄金股份有限公司 Method for comprehensively recovering gold mud wet technology tail gas
CN103409632B (en) * 2013-07-18 2016-01-13 山东国大黄金股份有限公司 A kind of method of gold mud wet processing tail gas comprehensive reutilization

Also Published As

Publication number Publication date
JPH0475285B2 (en) 1992-11-30

Similar Documents

Publication Publication Date Title
EP0168752A2 (en) Method of treating liquid wastes containing heavy metal chelate compounds
JPS62253738A (en) Removal of dangerous metal waste sludge
US4422943A (en) Method for precipitation of heavy metal sulfides
USH1852H (en) Waste treatment of metal plating solutions
US4445935A (en) Method for the recovery of silver from waste photographic fixer solutions
JPS63121625A (en) Method for recovering gold and silver from waste water
JP3191372B2 (en) Treatment of wastewater containing cyanide
US3989623A (en) Process for recovery of dissolved mercury salts from aqueous solutions
US2845330A (en) Method of recovering cyanides from waste aqueous solutions containing metal cyanides
US4428840A (en) Anionic and cationic removal of copper from cyanide-containing wastewater
EP0813500B1 (en) Purification of metal containing solutions
JPH0248315B2 (en)
CN113562877B (en) Treatment method of EDTA-Ni-containing wastewater
EP1438439B1 (en) A method for purifying the solution in the hydrometallurgical processing of copper
JP2548096B2 (en) Method of treating wastewater containing cadmium
JP2580610B2 (en) Treatment method for water containing iron cyanide complex
JP3788782B2 (en) Method for removing and recovering copper by treating waste water and chemicals used therefor
JP3257108B2 (en) Treatment method for sludge containing copper and cyanide insoluble salt
JP2002233882A (en) Method for recovering heavy metal from heavy metal- containing aqueous solution
KR102138194B1 (en) Method for recovering metal using absorbent
JPH0128629B2 (en)
JP3282452B2 (en) How to remove selenium from wastewater
CA2214523C (en) Purification of metal containing solutions
JPS622879B2 (en)
RU2039098C1 (en) Method for gold recovering from solutions of complex composition containing selenium and metals of platinum group

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees