JPS63120088A - Method of correcting position of unmanned cart loading robot - Google Patents

Method of correcting position of unmanned cart loading robot

Info

Publication number
JPS63120088A
JPS63120088A JP61264173A JP26417386A JPS63120088A JP S63120088 A JPS63120088 A JP S63120088A JP 61264173 A JP61264173 A JP 61264173A JP 26417386 A JP26417386 A JP 26417386A JP S63120088 A JPS63120088 A JP S63120088A
Authority
JP
Japan
Prior art keywords
robot
teaching
workpiece
hand
guided vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61264173A
Other languages
Japanese (ja)
Other versions
JPH089151B2 (en
Inventor
三宅 昭弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP61264173A priority Critical patent/JPH089151B2/en
Publication of JPS63120088A publication Critical patent/JPS63120088A/en
Publication of JPH089151B2 publication Critical patent/JPH089151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野」 この発明は、無人搬送車にロボットを搭載し、複数の離
れた場所に移動して作業を行えるようにした、無人搬送
車搭載ロボットの位置Mi正方法に関ずろ。
[Detailed Description of the Invention] [Industrial Application Field] This invention is an automated guided vehicle equipped with a robot, and is capable of moving to multiple remote locations to perform work. Regarding Mi correct method.

「従来の技術」 従来、無人搬送車搭載ロボットは、無人搬送車によって
ロボットを作業位置まで搬送し、続いてロボットが作業
をするという一連の動作を繰り返して、与えられた仕事
を完遂する。
``Prior Art'' Conventionally, a robot mounted on an automatic guided vehicle completes a given task by repeating a series of operations in which the automatic guided vehicle transports the robot to a working position, and then the robot performs the work.

この種のロボットの中には、ワークに関して予め教示さ
れた教示点を記憶し、この記憶をたどってプレイバック
するようになっているものがあり、ティーチング・プレ
イバック式のロボットとよばれている。
Some robots of this type are designed to memorize teaching points that have been taught in advance regarding the workpiece, and play back by following this memory, and are called teaching-playback type robots. .

ティーディング・プレイバック式のロボットに作業を行
わせる場合、ロボットの操作点(一般にはアーム先端)
とワークとの相対位置を常時把握していなければならず
、このためには、無人搬送車をワークに対して一定の位
置に停止させなければならない。
When a teasing/playback type robot performs work, the robot's operating point (generally the tip of the arm)
The relative position between the robot and the workpiece must be known at all times, and for this purpose, the automatic guided vehicle must be stopped at a fixed position relative to the workpiece.

これを実現する停止方法として、従来は次の2つの方法
が採られていた。
Conventionally, the following two methods have been adopted as stopping methods to achieve this.

(1)無人搬送車の停止位置に、機械的位置決め装置、
たとえばレールやコーンに無人搬送車を押し付ける装置
を設け、これによって位置決めする。
(1) A mechanical positioning device at the stop position of the automatic guided vehicle,
For example, a device is provided to press the automated guided vehicle against a rail or cone, and this is used to position the vehicle.

(2)視覚センサを用いてワークの位置を確認し、fl
l【人搬送車が正規の位置にあるときの位置とのずれ量
により、教示点を補正して動作させる。
(2) Confirm the position of the workpiece using a visual sensor, and
l [The teaching point is corrected and operated according to the amount of deviation from the position when the person carrier is in its normal position.

「発明が解決しようとする問題点」 ところで、上述した従来の位置補正方法では次のような
欠点があった。
"Problems to be Solved by the Invention" By the way, the conventional position correction method described above has the following drawbacks.

(A)上記1の方法では、無人搬送車はタイヤ駆動のた
め、横方向の位置決めが難しい。また、すべての作業位
置に位置決め装置を設置しなければならないため、スペ
ースと金額がかさむ。更に、位置決め装置を設置できな
い場所では、位置決めが不可能である。
(A) In method 1 above, since the automatic guided vehicle is driven by tires, it is difficult to position it in the lateral direction. Additionally, positioning devices must be installed at all working positions, which increases space and cost. Furthermore, positioning is impossible in locations where a positioning device cannot be installed.

(B)上記(2)での方法では、ワークの位置を精密に
把握できる視覚センサは、極めて高価になる。
(B) In the method (2) above, a visual sensor that can precisely grasp the position of the workpiece becomes extremely expensive.

また画像処理を行わなければならないため、高度の技術
力と投資とが必要になる。
Furthermore, since image processing must be performed, advanced technological capabilities and investment are required.

この問題に対し出願人は、無人搬送車に搭載されたロボ
ットを作業位置に搬送し、あらかじめ教示された教示点
に従って、前記作業位置に置かれたワークに作業を為す
ようにした無人搬送車搭載ロボットにおいて、前記作業
位置の所定箇所に記録されたマークと、前記ロボットに
取り付けられた画像検出手段とを備え、前記無人搬送車
を前記作業位置近傍に停止した後、前記画像検出手段で
前記マークを検出し、この時のマーク位置と教示時のマ
ーク位置とのずれ爪に基て変換式を作り、この変換式に
より前記ロボットの教示点を補正することを特徴とする
無人搬送車搭載ロボットの位置補正方法をすでに提案し
出願している。(特願昭61−34482参照)・ この発明によれば、ロボットの位置に応じて教示点を補
正することが可能となるが、たとえばハンドリングを行
う握持部位置についての補正であり、ワークに対する上
記握持部のずれ量が補正により修正されるもので、ワー
クに対するハンド自体の向きは補正の対象とはされてい
ない。このためワークを握持するロボットの場合などで
は、作業時ワークを握持する際のワークに対するハンド
自体の向きが教示時のそれと異なったものとなり、ハン
ドリングに支障をきたす場合があるという問題があった
In response to this problem, the applicant has proposed a system equipped with an automatic guided vehicle that transports the robot mounted on the automatic guided vehicle to a working position and performs work on a workpiece placed at the working position according to teaching points taught in advance. The robot includes a mark recorded at a predetermined location of the work position and an image detection means attached to the robot, and after the automatic guided vehicle is stopped near the work position, the image detection means detects the mark. , a conversion formula is created based on the deviation between the mark position at this time and the mark position at the time of teaching, and the teaching point of the robot is corrected by this conversion formula. We have already proposed and applied for a position correction method. (Refer to Japanese Patent Application No. 61-34482.) According to the present invention, it is possible to correct the teaching point according to the position of the robot. The amount of deviation of the gripping portion is corrected by correction, and the orientation of the hand itself with respect to the workpiece is not subject to correction. For this reason, in the case of a robot that grips a workpiece, there is a problem that the orientation of the hand itself relative to the workpiece when gripping the workpiece during work may be different from that during teaching, which may impede handling. Ta.

この発明は上述した事情に鑑みてなされたもので、本発
明の目的はワークに対するたとえばハンドリングの位置
のNli正のみならず、ハンド自体の向きをら補正する
ことにより、作業時におけるワークに対するハンド自体
の向きを教示時と同一にすることのできる無人搬送車搭
載ロボットの位置補正方法を提供することを目的として
いる。
This invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to correct not only the Nli of the handling position relative to the workpiece, but also the direction of the hand itself, so that the hand itself relative to the workpiece during work can be corrected. An object of the present invention is to provide a method for correcting the position of a robot mounted on an automatic guided vehicle, which can make the orientation of the robot the same as when it is taught.

「問題点を解決するための手段」 この発明は、無人搬送車に搭載されたロボットを作業位
置に搬送し、あらかじめ教示された教示点に従って、前
記作業位置に置かれたワークに作業を為すようにした無
人搬送車搭載ロボットにおいて、前記作業位置の所定箇
所に記録されたマークと、前記ロボットに取り付けられ
た画像検出手段とを備え、前記無人搬送車を前記作業位
置近傍に停止した後、前記画像検出手段で前記マークを
検出し、現在のマーク位置情報と教示時のマーク位置情
報とのずれmおよび教示時のワークに対するハンドの方
向と現在のハンドの方向とのずれ量を規定する情報に基
いて変換式を作り、この変換式により前記ロボットの教
示点を補正するとともにワークに対するハンドの方向を
補正することにより上記問題点を解決する手段とする。
"Means for solving the problem" This invention transports a robot mounted on an automatic guided vehicle to a work position, and performs work on a workpiece placed at the work position according to teaching points taught in advance. The automated guided vehicle-mounted robot includes a mark recorded at a predetermined location of the working position and an image detection means attached to the robot, and after stopping the automated guided vehicle near the working position, The mark is detected by the image detection means, and information defining the deviation m between the current mark position information and the mark position information at the time of teaching and the amount of deviation between the direction of the hand with respect to the workpiece at the time of teaching and the current direction of the hand is obtained. A conversion formula is created based on the conversion formula, and this conversion formula is used to correct the teaching point of the robot and the direction of the hand relative to the workpiece, thereby solving the above problems.

「作用」 上記構成によれば、現在のマーク位置と教示時のマーク
位置とのずれ量および教示時のハンドの方向と現在のハ
ンドの方向とのずれmにもとすいてワークに対するハン
ドの方向を容易に補正することができる。
"Operation" According to the above configuration, the direction of the hand with respect to the workpiece is determined based on the amount of deviation between the current mark position and the mark position at the time of teaching, and the deviation m between the direction of the hand at the time of teaching and the current direction of the hand. can be easily corrected.

したがって、ワークに対するハンドの方向を教示時と同
一になるように修正し制御することができる。
Therefore, the direction of the hand relative to the workpiece can be corrected and controlled so as to be the same as that at the time of teaching.

「実施例」 以下、図面を参照し、この発明の実施例について説明す
る。
"Embodiments" Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図はこの発明の一実施例を示す斜視図である。本実
施例に用いられている無人搬送車は、地上に布設された
誘導線に沿って走行する誘導無人車、あるいは誘導線を
持たずに走行する、いわゆる自立無人車のいずれであっ
てもよい。
FIG. 1 is a perspective view showing an embodiment of the present invention. The automated guided vehicle used in this example may be either a guided unmanned vehicle that runs along a guide line laid on the ground, or a so-called autonomous unmanned vehicle that runs without a guide line. .

無人搬送車Iには、ロボット2が搭載されている。ロボ
ット2は、水平旋回、前後回動および上下回動可能なア
ーム3を持っている。アーム3の先端位置には可動部3
aを介して、画像入力装置4とハンド5とが一体に取り
付けられており、これらは、振り、ひねり動作が可能な
ように構成されている。画像入力装置4はCOD、(電
荷結合デバイス)等からなる固体撮像素子である。また
、ハンド5はワーク6を握持するものである。なお、ワ
ーク6はロボット2に比べて拡大して描いである。上記
ワーク6は、作業台7の上面中央部に形成された枠7a
に置かれ、ロボット2の作業を受けるようになっている
。この作業台7の隅には、2点8a、8bからなるマー
ク8が書き込まれている。
The robot 2 is mounted on the automatic guided vehicle I. The robot 2 has an arm 3 that can rotate horizontally, rotate back and forth, and move up and down. The movable part 3 is located at the tip of the arm 3.
An image input device 4 and a hand 5 are integrally attached via a, and are configured to be capable of swinging and twisting motions. The image input device 4 is a solid-state image sensor made of a COD (charge coupled device) or the like. Further, the hand 5 is for gripping the workpiece 6. Note that the workpiece 6 is drawn enlarged compared to the robot 2. The workpiece 6 is placed in a frame 7a formed at the center of the upper surface of the workbench 7.
It is placed there and receives the work of robot 2. A mark 8 consisting of two points 8a and 8b is written on the corner of this workbench 7.

このような構成において、無人搬送車lは複数の作業台
7の間を走行し、作業を行う。゛この場合、無人搬送車
lの停止精度は低くつぎの手順で位置補正を行わなけれ
ばならない。
In such a configuration, the automatic guided vehicle 1 travels between the plurality of work platforms 7 and performs work. In this case, the stopping accuracy of the automatic guided vehicle l is low and the position must be corrected using the following procedure.

(1)まず作業に先立って為される教示のときにマーク
8の読み取り作業点を教示する。すなわち画像人力装置
4をマーク8の真上に移動し、この位置を教示するとと
もに、画像入力装置により取り込んだマーク8の画面上
の座標位置を作業動作と共に記憶する。この場合たとえ
ば、ロボット2の脚底部中央を原点とし、画像入力装置
4の水平走査線に平行な方向をX軸とする水平直行座標
系X−Yをとり、この座標系におけるマーク8の点8a
、8bの座標を各々(X a、 Y a)、(xb、y
b)とする(第2図(a))。
(1) First, when teaching is performed prior to work, the mark 8 is read and the work point is taught. That is, the image input device 4 is moved directly above the mark 8 and this position is taught, and the coordinate position of the mark 8 on the screen captured by the image input device is stored together with the work operation. In this case, for example, take a horizontal orthogonal coordinate system X-Y with the origin at the center of the bottom of the robot 2's legs and the X axis in a direction parallel to the horizontal scanning line of the image input device 4, and point 8a of the mark 8 in this coordinate system.
, 8b as (X a, Y a) and (xb, y
b) (Figure 2(a)).

(2)次に、無人搬送車lが上記作業点を目標に移動し
てきて停止した場合を考える。停止位置でロボットは教
示された手順で動作し、画像入力装置はマーク8を撮像
する。無人搬送車による位置決め精度は一般に低く、こ
の場合、上記X−Y座標系での上記マーク8の位置座標
は(1)における教示時に記憶した点8a、8bの位置
座標(X a、 Y a)、(Xb、Yb)と異なった
ものとなる。すなわち無人°搬送車lの位置決め誤差量
だけX軸、Y軸上の座標が異なったものとなり、上記X
−Y座標系は第2図(a)に示ずU−V座標系に移る。
(2) Next, consider a case where the automatic guided vehicle l moves toward the above-mentioned work point and stops. At the stop position, the robot operates according to the taught procedure, and the image input device images the mark 8. The positioning accuracy of automatic guided vehicles is generally low, and in this case, the position coordinates of the mark 8 in the X-Y coordinate system are the position coordinates of the points 8a and 8b (X a, Y a) memorized at the time of teaching in (1). , (Xb, Yb). In other words, the coordinates on the X and Y axes differ by the amount of positioning error of the unmanned guided vehicle l, and the
The -Y coordinate system is not shown in FIG. 2(a) and is shifted to the U-V coordinate system.

したがって、X−Y座標系で教示した教示点Piの座標
(X i。
Therefore, the coordinates of the teaching point Pi taught in the X-Y coordinate system (X i.

Yi)をU−V座標系テノ座標(U i、 V i)ニ
変換すればワーク6に対し正しいハンドリング操作を行
うことができる。
Correct handling operation can be performed on the workpiece 6 by converting Yi) into the Teno coordinates (Ui, Vi) of the UV coordinate system.

以下、この変換方法について述べる。This conversion method will be described below.

なお、以下の説明において、U−V座標系におけるマー
ク8の点8aの座標を(Ua、 Va)、点8bの座標
を(ub、vb)とする。
In the following description, the coordinates of the point 8a of the mark 8 in the UV coordinate system are (Ua, Va), and the coordinates of the point 8b are (ub, vb).

このような設定において、第2図(b)〜(d)に示す
手順で変換方法を述べる。
In such a setting, a conversion method will be described using the steps shown in FIGS. 2(b) to 2(d).

(+)点8aを原点とし、X−Y座標系に平行なX−Y
座標系で教示点Piの座11(xi、 yi)をもとめ
ると(第2図、b参照) xi= X i −X a   yi= Y i −Y
 aこれをマトリックスであられすと ここでZi、ziは各々X  Ys x  y各座標系
における点Piの高さ方向の座標であり、これらは不変
である。ここでX−Y座標系とX−y座標系との変換を
規定するマトリクスを八とする。
(+) With point 8a as the origin, X-Y parallel to the X-Y coordinate system
When finding the locus 11 (xi, yi) of the teaching point Pi in the coordinate system (see Figure 2, b), xi=X i -X a yi= Y i -Y
aIf this is expressed as a matrix, here Zi and zi are the coordinates in the height direction of the point Pi in each of the X, Ys, and Y coordinate systems, and these are unchanged. Here, it is assumed that the matrix defining the transformation between the X-Y coordinate system and the X-Y coordinate system is 8.

(2)次に、マーク8の点8bの、K−Y座標系におけ
る座標を求めると、第2図(b)のようになる。
(2) Next, the coordinates of point 8b of mark 8 in the K-Y coordinate system are determined as shown in FIG. 2(b).

すなわち(1)式より(Xb−XaS Yb−Ya)と
なる。
That is, from formula (1), (Xb-XaS Yb-Ya) is obtained.

また、点8bを時計方向にΔ0回転した点の座標は(U
b−UaSVb−Va)となる。これは、U−V・座標
系平行移動し、原点を(Ua、Va)とした座標系(こ
れは、後述するU−V座標系に他ならない)での点8b
の座標に一致する。
Also, the coordinates of the point 8b rotated clockwise by Δ0 are (U
b-UaSVb-Va). This is point 8b in the coordinate system (this is nothing but the UV coordinate system, which will be described later), which is translated in parallel to the UV coordinate system and whose origin is (Ua, Va).
matches the coordinates of

これら2つの座標(Xb−Xa、 Yb−Ya)、およ
び(Ub−Ua、 b−Va)と原点とを結ぶ直線がX
軸となす角をα、βとすると Lana = (Y b −Y a)/ (X b −
X a)tanβ冨(vb−va)/(Ub−Ua)・
・・・(4)またΔθ=β−αより tanΔθ=S/T ここで S =(Xb−Xa)(Vb−Va) −(Y b −Y aXU b −U a)T =(X
b −Xa)(Ub −Ua)−(Y b−Y a)(
V b−V a)したがって Δθ= A rctans / T (3)第2図(c)に示すようにx−y座標系をΔθ回
転させた場合の新たな座標系をu−1vとすると、座(
4)第2図(d)に示すように、u−v座標系を平行8
移動して、U−V座標系とし、この座標系に置ける点P
iの座標(Ui、 Vi)liUi=ui+Ua Vi=vi+Va これより変換マトリクスは 以上のことより変換後の点Qiの座標はQi=C−B−
A−Pi でもとめることができる。
The straight line connecting these two coordinates (Xb-Xa, Yb-Ya) and (Ub-Ua, b-Va) and the origin is
Letting the angles with the axis be α and β, Lana = (Y b - Y a)/ (X b -
X a) tan β wealth (vb-va)/(Ub-Ua)・
...(4) Also, from Δθ=β-α, tanΔθ=S/T, where S = (Xb-Xa) (Vb-Va) - (Y b - Y aXU b - U a) T = (X
b - Xa) (Ub - Ua) - (Y b - Y a) (
V b - V a) Therefore, Δθ = A rctans / T (3) If the new coordinate system when the x-y coordinate system is rotated by Δθ as shown in Figure 2 (c) is u-1v, then (
4) As shown in Figure 2(d), the uv coordinate system is parallel to 8
Move it to the U-V coordinate system, and place the point P in this coordinate system.
Coordinates of i (Ui, Vi)liUi=ui+Ua Vi=vi+Va From this, the transformation matrix is From the above, the coordinates of point Qi after transformation are Qi=C-B-
It can also be stopped with A-Pi.

なお3次元の場合はマークの点を3次元的に独立な3点
として、これらを2つ以上の画像人力装置で読み取るよ
うにすればよい。そして2次元の場合に準じた演算を行
う。すなわち、各座標軸方向の平行移動量と傾斜量にも
とずいて変換式を求め、これらにもとすいて座標変換を
すればよい。
In the case of a three-dimensional image, the marks may be set as three three-dimensionally independent points, and these points may be read by two or more human-powered image devices. Then, calculations similar to those in the two-dimensional case are performed. That is, a transformation formula may be determined based on the amount of parallel movement and the amount of inclination in each coordinate axis direction, and the coordinate transformation may be performed using these as well.

つぎに本実施例の動作について述べる。Next, the operation of this embodiment will be described.

まず、最初の教示時に第1図に示す教示点であるA点の
みならず、ロボットハンド基部(第1図に示すB点)の
位置座標も記憶しておく。そして、プレイバックの際に
上述した変換手段を用いて教示点Bに対し位置補正をお
こなう。次にロボットハンド握持部の教示点Aにたいし
位置補正を行う。
First, at the time of first teaching, not only point A, which is the teaching point shown in FIG. 1, but also the position coordinates of the robot hand base (point B shown in FIG. 1) are stored. Then, during playback, the position of the teaching point B is corrected using the above-mentioned conversion means. Next, the position of the teaching point A of the robot hand gripping section is corrected.

このようにロボットハンドは2つの点によりワークにた
いし補正され位置決めされることになるので、ロボット
ハンドがワークを握持する場合のハンドリング点の位置
補正が為されるだけでなく、ワークにたいしてのロボッ
トハンドの方向を教示時と同一に補正し規定することが
できる。
In this way, the robot hand is corrected and positioned with respect to the workpiece using two points, so not only is the position of the handling point corrected when the robot hand grasps the workpiece, but also the position of the handling point is corrected when the robot hand grips the workpiece. It is possible to correct and define the direction of the robot hand in the same manner as when teaching.

本実施例においてはロボットハンドにおける2つの点、
すなわち握持部における教示点A1およびハンド基部に
おける教示点Bおいて、ロボットハンドの位置補正がな
され、この結果ワークにたいするロボットハンドの方向
が規定されたが、他の実施例として、上記2つの教示点
A、Hの代わりにハンド基部における教示点Bについて
は上記実施例と同様に位置補正を行い、それから先のハ
ンド方向の補正に方向余弦を用い、ワークに対するロボ
ットハンドの方向を補正制御するようにしてもよい。
In this example, there are two points on the robot hand:
That is, the position of the robot hand is corrected at the teaching point A1 on the gripping part and the teaching point B on the hand base, and as a result, the direction of the robot hand with respect to the workpiece is defined. Instead of points A and H, the teaching point B at the base of the hand is corrected in the same manner as in the above embodiment, and then the direction cosine is used to correct the direction of the hand, and the direction of the robot hand relative to the workpiece is corrected and controlled. You may also do so.

「発明の効果」 以上説明したように、この発明によれば、ワークと係わ
りあうハンドの位置ずれを補正することが出来るできる
だけでなく、ワークに対するハンドの方向を教示時と同
一にすることができる効果が得られる。
"Effects of the Invention" As explained above, according to the present invention, it is possible not only to correct the positional deviation of the hand that engages with the workpiece, but also to make the direction of the hand relative to the workpiece the same as when teaching. Effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の構成を示す概略斜視図、
第2図は座標変換を説明するためのグラフである。
FIG. 1 is a schematic perspective view showing the configuration of an embodiment of the present invention;
FIG. 2 is a graph for explaining coordinate transformation.

Claims (1)

【特許請求の範囲】[Claims] 無人搬送車に搭載されたロボットを作業位置に搬送し、
あらかじめ教示された教示点に従って、前記作業位置に
置かれたワークに作業を為すようにした無人搬送車搭載
ロボットにおいて、前記作業位置の所定箇所に記録され
たマークと、前記ロボットに取り付けられた画像検出手
段とを備え、前記無人搬送車を前記作業位置近傍に停止
した後、前記画像検出手段で前記マークを検出し、現在
のマーク位置情報と教示時のマーク位置情報とのずれ量
および教示時のワークに対するハンドの方向と現在のハ
ンドの方向とのずれ量を規定する情報に基いて変換式を
作り、この変換式により前記ロボットの教示点を補正す
るとともにワークに対するハンドの方向を補正すること
を特徴とする無人搬送車搭載ロボットの位置補正方法。
Transport the robot mounted on the automated guided vehicle to the working position,
In a robot mounted on an automatic guided vehicle that performs work on a workpiece placed at the work position according to teaching points taught in advance, a mark recorded at a predetermined location at the work position and an image attached to the robot. detecting means, after stopping the automatic guided vehicle near the working position, detecting the mark with the image detecting means, and determining the amount of deviation between the current mark position information and the mark position information at the time of teaching, and the time of teaching. A conversion formula is created based on information that defines the amount of deviation between the direction of the hand with respect to the workpiece and the current direction of the hand, and the teaching point of the robot is corrected and the direction of the hand with respect to the workpiece is corrected using this conversion formula. A method for correcting the position of a robot mounted on an unmanned guided vehicle, characterized by:
JP61264173A 1986-11-06 1986-11-06 Position correction method for robot equipped with automatic guided vehicle Expired - Fee Related JPH089151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61264173A JPH089151B2 (en) 1986-11-06 1986-11-06 Position correction method for robot equipped with automatic guided vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61264173A JPH089151B2 (en) 1986-11-06 1986-11-06 Position correction method for robot equipped with automatic guided vehicle

Publications (2)

Publication Number Publication Date
JPS63120088A true JPS63120088A (en) 1988-05-24
JPH089151B2 JPH089151B2 (en) 1996-01-31

Family

ID=17399472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61264173A Expired - Fee Related JPH089151B2 (en) 1986-11-06 1986-11-06 Position correction method for robot equipped with automatic guided vehicle

Country Status (1)

Country Link
JP (1) JPH089151B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257313A (en) * 1989-03-30 1990-10-18 Daifuku Co Ltd Drive control facility for moving vehicle
JPH02260010A (en) * 1989-03-31 1990-10-22 Daifuku Co Ltd Stop position detector for mobile vehicle
JPH0348909A (en) * 1989-07-17 1991-03-01 Mitsubishi Electric Corp Space stabilizing device
JPH0445652U (en) * 1990-08-22 1992-04-17
JPH0714908A (en) * 1993-06-23 1995-01-17 Nec Corp Substrate transfer device
JPH11231933A (en) * 1998-02-18 1999-08-27 Shinko Electric Co Ltd Device for detecting deviation of stop position of mobile object and unmanned carrier
JP2000067238A (en) * 1998-08-18 2000-03-03 Meidensha Corp Bin picking method with position data calibration function, medium recording software for executing the method, and device for executing the method
US6278905B1 (en) 1998-01-28 2001-08-21 Nec Corporation Method and system for controlling robot arms of automatic guided vehicles on semiconductor wafer production line
JP2008068342A (en) * 2006-09-13 2008-03-27 Hitachi Ltd Carrying system
JP2009279663A (en) * 2008-05-19 2009-12-03 Kawada Kogyo Kk Method and apparatus for position identification of robot
JP2010064198A (en) * 2008-09-11 2010-03-25 Kawada Kogyo Kk Robot working position correcting system, and simple installation type robot with the system
WO2022097535A1 (en) * 2020-11-05 2022-05-12 Dmg森精機株式会社 Setting method using teaching operation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6490037B2 (en) * 2016-10-04 2019-03-27 ファナック株式会社 Robot system comprising a robot supported by a movable carriage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021675A (en) * 1983-07-18 1985-02-04 Toyota Motor Corp Method and apparatus of automatic correction of position shift of television camera in measuring device
JPS6049407A (en) * 1983-08-29 1985-03-18 Daifuku Co Ltd Unmanned truck
JPS61240304A (en) * 1985-04-17 1986-10-25 Hitachi Ltd Arithmetic unit for attachment error of end effector of industrial robot
JPS61244423A (en) * 1985-04-24 1986-10-30 Hitachi Ltd Picture processing method of machined article and machined material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021675A (en) * 1983-07-18 1985-02-04 Toyota Motor Corp Method and apparatus of automatic correction of position shift of television camera in measuring device
JPS6049407A (en) * 1983-08-29 1985-03-18 Daifuku Co Ltd Unmanned truck
JPS61240304A (en) * 1985-04-17 1986-10-25 Hitachi Ltd Arithmetic unit for attachment error of end effector of industrial robot
JPS61244423A (en) * 1985-04-24 1986-10-30 Hitachi Ltd Picture processing method of machined article and machined material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257313A (en) * 1989-03-30 1990-10-18 Daifuku Co Ltd Drive control facility for moving vehicle
JPH02260010A (en) * 1989-03-31 1990-10-22 Daifuku Co Ltd Stop position detector for mobile vehicle
JPH0348909A (en) * 1989-07-17 1991-03-01 Mitsubishi Electric Corp Space stabilizing device
JPH0445652U (en) * 1990-08-22 1992-04-17
JPH0714908A (en) * 1993-06-23 1995-01-17 Nec Corp Substrate transfer device
US6278905B1 (en) 1998-01-28 2001-08-21 Nec Corporation Method and system for controlling robot arms of automatic guided vehicles on semiconductor wafer production line
JPH11231933A (en) * 1998-02-18 1999-08-27 Shinko Electric Co Ltd Device for detecting deviation of stop position of mobile object and unmanned carrier
JP2000067238A (en) * 1998-08-18 2000-03-03 Meidensha Corp Bin picking method with position data calibration function, medium recording software for executing the method, and device for executing the method
JP2008068342A (en) * 2006-09-13 2008-03-27 Hitachi Ltd Carrying system
JP2009279663A (en) * 2008-05-19 2009-12-03 Kawada Kogyo Kk Method and apparatus for position identification of robot
JP2010064198A (en) * 2008-09-11 2010-03-25 Kawada Kogyo Kk Robot working position correcting system, and simple installation type robot with the system
WO2022097535A1 (en) * 2020-11-05 2022-05-12 Dmg森精機株式会社 Setting method using teaching operation

Also Published As

Publication number Publication date
JPH089151B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
JPS63120088A (en) Method of correcting position of unmanned cart loading robot
US20220314455A1 (en) Production system
US20060072988A1 (en) Transfer robot system
CN111278610A (en) Method and system for operating a mobile robot
US20190061163A1 (en) Control device and robot system
JP2743613B2 (en) Control method of mobile robot
JP2680298B2 (en) Position correction method for robot equipped with automatic guided vehicle
US6278905B1 (en) Method and system for controlling robot arms of automatic guided vehicles on semiconductor wafer production line
JPH1158273A (en) Mobile robot device
JP2017074631A (en) Manufacturing system
JPH11156764A (en) Locomotive robot device
DE10133624A1 (en) Arrangement for determining corrected movement data for a specified sequence of movement of a movable device, such as an industrial robot, uses computer unit for ascertaining corrected movement data via a reference device
KR100485221B1 (en) Position Correction Device of Work Device and Method
JP2679614B2 (en) Mobile robot hand positioning device
KR100194216B1 (en) Position Correction Device and Method of Mobile Robot Using Vision System
WO2022075303A1 (en) Robot system
JP2016203282A (en) Robot with mechanism for changing end effector attitude
JP2022141188A (en) Positioning accuracy measurement method of robot system
JPH01135451A (en) Transporting robot
JPH09156716A (en) Operating method for stacker crane
WO2021048579A1 (en) System and machine tool
US20200384641A1 (en) Processing device
KR0176540B1 (en) Position correction device of mobile robot
JPS6111815A (en) Compensating system of positional shift of robot
JP2532098B2 (en) Industrial Robot Teaching Method

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees