JPS6038912A - Elastic surface wave device - Google Patents

Elastic surface wave device

Info

Publication number
JPS6038912A
JPS6038912A JP14645983A JP14645983A JPS6038912A JP S6038912 A JPS6038912 A JP S6038912A JP 14645983 A JP14645983 A JP 14645983A JP 14645983 A JP14645983 A JP 14645983A JP S6038912 A JPS6038912 A JP S6038912A
Authority
JP
Japan
Prior art keywords
electrode
conductance
intersecting
comb
pairs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14645983A
Other languages
Japanese (ja)
Other versions
JPH0336327B2 (en
Inventor
Akitsuna Yuhara
章綱 湯原
Takashi Shiba
隆司 芝
Jun Yamada
純 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14645983A priority Critical patent/JPS6038912A/en
Publication of JPS6038912A publication Critical patent/JPS6038912A/en
Publication of JPH0336327B2 publication Critical patent/JPH0336327B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14552Transducers of particular shape or position comprising split fingers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02842Means for compensation or elimination of undesirable effects of reflections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14517Means for weighting

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To prevent characteristic degradation due to electrode reflection and diffraction and also to attain ease of coupling with an external circuit by prolonging the non-crossing part of all interdigital electrodes of a comb-tooth electrode. CONSTITUTION:The electrode pattern is formed on an LiNbO3 substrate. A normal type input electrode 2 having a crossing part 18 with a length W of 200mum and non-crossing parts 19, 19' having a length W', W'' each of 1,200mum and an output electrode 2' with cross width weighting having the same effective aperture and non-crossing part as those of the normal type input electrode are formed with pure Al as the electrode material, a film thickness of 0.1mum and electrode width and space of 1.2mum, the center frequency is 400MHz, the number of pairs of the input normal electrode is 14 pairs, the number of pairs of the output weighted electrode is 60 pairs and the 3dB band width is 30MHz. The radiation conductance at the center frequency is 5.6mm. mohs, the electrode finger conductance Gf of the normal type electrode 2 is 69.1mm. mohs, and the major crossing part of the weighted electrode is dominant to its electrode finger conductance Gf and it is the same as that of the normal type equivalently.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電極反射が抑圧された弾性表面波装置に係り1
%にUIIF等の尚周波における使用に際し好!なるよ
う、インピーダンス設計の自由度を広げることができる
と共に外部回路との整合を簡易化することができる弾性
表面波フィルタに関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a surface acoustic wave device in which electrode reflection is suppressed.
%, suitable for use at high frequencies such as UIIF! The present invention relates to a surface acoustic wave filter that can expand the degree of freedom in impedance design and simplify matching with external circuits.

〔発明の背景〕[Background of the invention]

弾性表面波装置では弾性表面波基板上に1個以上のすだ
れ状電極が設けられている。このすだれ状電極の各電極
指の父湧輻、ピッチに重みをつけることにより、振幅1
位相の伝達周波数特性な極々設計できる。この弾性表面
波装置のすだれ状電極は弾性表面波を反射する。そのた
め、電極間の多重反射による遅延信号が生じて、振幅、
位相の伝達周波数特性にリノグルが発生するので、いく
つかの対策が施されている。
In a surface acoustic wave device, one or more interdigital electrodes are provided on a surface acoustic wave substrate. By weighting the pitch of each electrode finger of this interdigital electrode, the amplitude 1
The phase transfer frequency characteristics can be extremely designed. The interdigital electrodes of this surface acoustic wave device reflect surface acoustic waves. Therefore, a delayed signal is generated due to multiple reflections between the electrodes, and the amplitude and
Several countermeasures have been taken to prevent linoggle from occurring in the phase transfer frequency characteristics.

上記のすだれ状電極による弾性表面波の反射には、電気
的な再放射と、音響的不連続による反射の二種類に分類
できる。後者の音響的不連続による反射はU S P 
5699564に示されたような電極幅と空白部が4彼
長で、同一極性の電極指が2本1組とEつ℃いるスフ゛
リットー極指により、一般に幻飛されている。
The reflection of surface acoustic waves by the interdigital electrodes described above can be classified into two types: electrical re-radiation and reflection due to acoustic discontinuity. Reflections from the latter acoustic discontinuities are U.S.P.
It is generally believed that the electrode width and blank space are 4 lengths long, and the spherite polar finger, as shown in No. 5,699,564, has two pairs of electrode fingers of the same polarity.

一方、上記のうち前者の電気的再放射による電極反射は
、送受波t=の放射コンダクタンスGaと外部回路のコ
ンターフタンスG、との相対関係で定まる。
On the other hand, the former electrode reflection due to electrical re-radiation is determined by the relative relationship between the radiation conductance Ga of the transmitted/received wave t= and the contour G of the external circuit.

電極反射の尺度として。as a measure of electrode reflection.

をとり、反射損失と呼んでいる。%極反射による特性劣
化を避けるため、反射損失の基準としては、入力電極と
出力電極の二回の反射を合せた値としてTV両画像主観
評価から得られた40dB以上が多く採用されている。
is called reflection loss. In order to avoid characteristic deterioration due to % polar reflection, a value of 40 dB or more obtained from subjective evaluation of both TV images, which is the sum of two reflections from the input electrode and the output electrode, is often adopted as the standard for reflection loss.

これは入力と出力の各電極に等しく分担させた場合、−
電極当りの反射損失として2odBであって、これを達
成するため従来は第2図に準拠して、 Gz/a、 >
9なる如く送受波電極放射コンダクタンスGcLを与え
ていた。この際フィルタ通過損失は実用上約20dB程
度で用いられている。
This means that if the input and output electrodes share equally, -
The reflection loss per electrode is 2 odB, and to achieve this, conventionally, based on Figure 2, Gz/a, >
9, the transmitting and receiving electrode radiation conductance GcL was given as follows. At this time, the filter passing loss is practically used at about 20 dB.

一方、外部回路系のコンダクタンスは一定の値、 多く
 t!20yrL’U(インピーダンスで500)と定
められているので、上記従来法では送受波電極の放射コ
ンダクタンスを2.2−以下と小さくする必要があった
。このため、VHF高域ないしU IfF帯の高周波領
域あるいは比帯域幅の狭い場合に1通常の二電極構成で
は次の2つの欠点が発生した。
On the other hand, the conductance of the external circuit system is a constant value, often t! 20yrL'U (impedance: 500), so in the conventional method described above, it was necessary to reduce the radiation conductance of the wave transmitting/receiving electrode to 2.2- or less. For this reason, the following two drawbacks occur in the conventional two-electrode configuration in the high frequency region of the VHF high range to the U IfF band or in the case of a narrow fractional bandwidth.

周波数が高く、あるいは対数が大きく(狭帯域)定めら
れた条件の下でGaを従来法による値(2,2mU )
とするためには電極の開口長IFを小さく定めねばなら
ない。そのため1%に重み付は電極の交差幅の小さい部
分のため1回折による帯域通過特性の裾部の乱れ、帯域
内のうねり等の特性劣化が発生する。例えば、結合足数
の大きな(0,055ン(D LiNbO3単結晶−1
28°回fY軸カット、X軸方向伝搬基板を用りた中心
周波数400MBz 、 5dB帯域幅50MIIzの
入力正規型、出力重み付けの弾性表面波フィルタでは開
口長Fは80μ扉すなわち約8波長と小さくなり、第1
図に示した上記例の特性に見られるように上記した劣化
は顕著である。
Under certain conditions, the frequency is high or the logarithm is large (narrow band), Ga is measured using the conventional method (2.2 mU).
In order to achieve this, the opening length IF of the electrode must be set small. Therefore, when the weight is set to 1%, characteristic deterioration such as disturbance in the tail of the bandpass characteristic and waviness within the band occurs due to single diffraction due to the small cross width of the electrodes. For example, if the number of bonds is large (0,055n(D), LiNbO3 single crystal-1
In an input normal type, output weighted surface acoustic wave filter with a center frequency of 400 MBz and a 5 dB bandwidth of 50 MIIz using a 28° fY-axis cut and an X-axis direction propagation substrate, the aperture length F is as small as 80μ, or about 8 wavelengths. , 1st
As seen in the characteristics of the above example shown in the figure, the above deterioration is remarkable.

次に、高周波になると、電極の接置だけでなくパッケー
ジや外部回路系の容量分を含むサセプタンス分が、送受
波電極の放射コンダクタンス分に比べ′″C1かなり大
きな腋となるので、サセプタンス分を打消すインダクタ
ンスを含む結合回路が必要であり1部品点数が増えるだ
けでなく、インダクタンスの調整が必要となる欠点が生
ずる。
Next, at high frequencies, the susceptance, which includes not only the electrode placement but also the capacitance of the package and external circuit system, becomes a considerably larger armpit '''C1 than the radiation conductance of the transmitting and receiving electrodes, so the susceptance is A coupling circuit including a canceling inductance is required, which not only increases the number of parts, but also causes the disadvantage that the inductance needs to be adjusted.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、VHF高域、あるいはUHF帯域の高
周波領域、あるいは、帯域幅が比較的に狭い場合に、電
極反射による特性劣化を無くし、しかも回折等による特
性劣化も無く、かつ外部回路と整合しやすぐ、調整工程
の少い弾性表面波装置を提供するにある。
The purpose of the present invention is to eliminate characteristic deterioration due to electrode reflection in the high frequency range of VHF or UHF band, or when the bandwidth is relatively narrow, to eliminate characteristic deterioration due to diffraction, etc., and to eliminate characteristic deterioration due to external circuits. The object of the present invention is to provide a surface acoustic wave device that is easy to match and requires few adjustment steps.

〔発明の概要〕[Summary of the invention]

本発明では、圧電体基板と、圧電体基板上に設けられた
互に交差するくし歯状電極から各なる入力および出力変
換器とからなり、各くし歯状電極は交差部分と非交差部
分とからなる電極指と電極指の非又差部分匝端部を結合
するノ(スパーとからなる弾性表面波装置において、各
変換器の一方のくし歯状電極のバスノく−と他方のくし
歯状電極の電極指先嬬との間隔が互いの接触を防ぐのに
必要な間隔よりも充分大きな間隔をもつように一方のく
し歯状電極の全電極指σつ非交差部分を長くすることに
より、電極反射、回折による特性劣化を防ぐととも外部
回路とσ〕結合を容易に行なえるようにしたものである
The present invention comprises a piezoelectric substrate and an input and output transducer formed of mutually intersecting comb-like electrodes provided on the piezoelectric substrate, and each comb-like electrode has an intersecting portion and a non-intersecting portion. In a surface acoustic wave device consisting of an electrode finger and a spar that connects the non-cross-shaped ends of the electrode fingers, the bass groove of one comb-shaped electrode of each transducer and the comb-shaped electrode of the other By lengthening the non-intersecting portions of all the electrode fingers of one comb-like electrode so that the distance between the electrode fingertips and the electrode fingers is sufficiently larger than the distance required to prevent contact with each other, the electrode This prevents characteristic deterioration due to reflection and diffraction, and also facilitates σ coupling with an external circuit.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明を実施例とともに説明する。 The present invention will be explained below along with examples.

第2図は本発明の基本原理を説明するための電極形状を
示す電極バタン図である。図から明らかのように、電極
指8の交差部分18の長さWは非交差部分19 、19
’の長さF’ 、 W’よりも長くされ、非交差部分1
9 、19′の抵抗分が考慮される。関係するパラメー
タは放射コンターフタンスGas電極全体にわたる電極
指コンダクタンスGy、外部回路のコンダクタンスGL
である。ここで上記電極指コンダクタンスG、は、対数
Nと一対当りの゛電極指抵抗rfにより次の第(11式
により与えられる(スゲリット電極指の場合は並列接続
した値で与える)。
FIG. 2 is an electrode button diagram showing the electrode shape for explaining the basic principle of the present invention. As is clear from the figure, the length W of the intersecting portion 18 of the electrode fingers 8 is different from the length W of the non-intersecting portion 19, 19.
'Length F', longer than W', non-intersecting part 1
9 and 19' are considered. The related parameters are radiation contourance Gas, electrode finger conductance Gy over the entire electrode, and conductance GL of the external circuit.
It is. Here, the electrode finger conductance G is given by the following formula (11) using the logarithm N and the electrode finger resistance rf per pair (in the case of sugerite electrode fingers, it is given as a value connected in parallel).

Gf−N/rf(1) また、一対当りの電極指抵抗?’7は次式で与える。Gf-N/rf (1) Also, the resistance of electrode fingers per pair? '7 is given by the following formula.

rt = (一方の極性の電極指の鳴動開口部と非交差
部における抵抗)+(他の極性の電極指の非交差部にお
ける抵抗)(2) 上述の反射損失は1嘱極当り1次に力えられる。
rt = (Resistance at the non-intersecting part of the ringing opening of the electrode finger of one polarity) + (Resistance at the non-intersecting part of the electrode finger of the other polarity) (2) The above-mentioned reflection loss is linear per pole. It gives me strength.

ここで、b −L/GaI c = Gf/a、であり
、係−〇 数αは実験的に0.0415と定めた。
Here, b-L/GaIc=Gf/a, and the coefficient α was experimentally determined to be 0.0415.

第(3)式を2nd、Eと置いた第(4)式が、コンダ
クタンスGLの外部回路に接続して、−°a極当りの反
射損失を基準の20dBとするために必要なG、を定め
る売件式である。
Equation (4), where Equation (3) is set as 2nd and E, calculates the G required to connect the conductance GL to the external circuit and set the return loss per -°a pole to the standard 20 dB. This is the sales method determined by the company.

(4) 先ず、電極指コンダクタンスG1の電極反射低減効果(
反射損失の増大)について説明する。
(4) First, the electrode reflection reduction effect of electrode finger conductance G1 (
(increase in reflection loss) will be explained.

前gtノttu<、反射損失はb−L/Ga、C−0f
/G Gaは次の様に与えられる。
Before gtnottu<, reflection loss is b-L/Ga, C-0f
/G Ga is given as follows.

実験例として、外部回路のコンダクタンスGL=20m
tTで、基板にL LNbOs単結晶、128°回転Y
軸カッiX軸方向伝搬を用い、送受波電極は入力出力共
に、中心周波数400 Mlz 、対数14の正規型電
極で、電極材料は純AI′t′膜厚0.1μm、有効開
ロ長は200μ77L、放射コンダクタンスG(Lは5
.6旬であって、入出力共に等しく非交差部の延長にヨ
ル電極指コンダクタンスG/の変化が行なわれている場
合の反射損失と非交差部長さの関係を第3図に示す。第
3図で、縦軸は1電極当りの反射損失、横軸は電極指抵
抗rt、1Ff、極指コンダクp y スG7 (= 
A’ / rf)、全電%爽隈(W 十F’ 十Ir′
)を同時に示す。第3図では電極指非交差部による電極
指抵抗の増大で反射損失が増加することおよび実線で示
す第151式の計算値と。
As an experimental example, the conductance of the external circuit GL = 20m
At tT, L LNbOs single crystal on the substrate, 128° rotation Y
Using axial propagation in the X-axis direction, the transmitting and receiving electrodes are regular type electrodes with a center frequency of 400 Mlz and a logarithm of 14 for both input and output, the electrode material is pure AI't' film thickness 0.1 μm, and the effective aperture length is 200 μ77L. , radiation conductance G (L is 5
.. FIG. 3 shows the relationship between the reflection loss and the length of the non-intersecting portion when the input and output are equal and the change in the conductance G/ of the electrode fingers is made in the extension of the non-intersecting portion. In Figure 3, the vertical axis is the reflection loss per electrode, the horizontal axis is the electrode finger resistance rt, 1Ff, and the polar finger conductor p y s G7 (=
A' / rf), Zenden% Soukuma (W 10F'1Ir'
) at the same time. In FIG. 3, reflection loss increases due to an increase in electrode finger resistance due to the non-intersecting portion of the electrode fingers, and the calculated value of Equation 151 is shown by a solid line.

実験値を示すA(非交差部延長せず、 Gy =622
.2m’c))、B(非交4 部長すIP”+ IT”
−、500μm 、Gf −177,877In )、
C(非交差部長さIV’十r= 1QQQμm 。
A showing the experimental value (non-intersecting part not extended, Gy = 622
.. 2m'c)), B (non-interactive 4 head IP"+IT"
-, 500 μm, Gf-177,877In),
C (non-intersecting length IV'0r = 1QQQμm.

Gy = 103.7m’U )、D(非交差部長さW
’ 十F’=1600、IF7L 、 Gy = 69
.177LU )、E(非交差部長さIV’十F“= 
2400μm % Gy = 47.9mT) )の各
点の値が一致することが示される。
Gy = 103.7 m'U), D (non-intersecting length W
'10F' = 1600, IF7L, Gy = 69
.. 177LU), E (non-intersecting length IV'10F"=
It is shown that the values at each point of 2400 μm % Gy = 47.9 mT) agree.

次に本発明の第1の実施例について説明する。Next, a first embodiment of the present invention will be described.

第4図は本発明の第1の実施例を示すt極ノ(タン図で
ある。第4図に示す電極バタンは第3図の実験例と同じ
L 1NbO,基板上に形成される。第2図と同様な長
さF=2ooμmの交差部分1B、長さF’二F’= 
1200μ扉の非交差部分19.19’を持つ正規型入
力電極2と、該正規型入力電極と同じ有効開口部、非交
差部を持つ交差幅重み付けを持つ出力電極2′が、t&
拐料に純AIを用い膜厚0.1μ77L、 を極線幅、
空白部が1.2μmで形成され、中心周波数は4001
dllz 、入力正規型電極の対数は14対、出力重み
付は電極の対数は60対で5dB帯域幅は50MHzで
ある。中心周波数における放射コンダクタンスはいずれ
も5.6mry、 電極指コンダクタンスGfは正規型
電極2で、69.1mtJであり。
FIG. 4 is a t-pole diagram showing the first embodiment of the present invention. The electrode tab shown in FIG. 4 is formed on the same L 1NbO substrate as in the experimental example of FIG. 3. Intersection part 1B with length F = 2ooμm similar to Figure 2, length F'2F' =
A normal type input electrode 2 with a non-intersecting part 19.19' of a 1200μ door, and an output electrode 2' having the same effective opening and non-intersecting part as the regular input electrode and cross width weighting, are t&
The film thickness is 0.1μ77L using pure AI as the coating material, and the polar line width is
The blank space is 1.2μm, and the center frequency is 4001
dllz, the number of pairs of input normal electrodes is 14, the number of pairs of output weighted electrodes is 60, and the 5 dB bandwidth is 50 MHz. The radiation conductance at the center frequency is 5.6 mry in both cases, and the electrode finger conductance Gf is 69.1 mtJ for the regular electrode 2.

重み付は電極では電極指コンダクタンスGyにはその主
要交差部(メインローブ)が支配的であって1等価的に
は正規型と同様である。
In terms of weighting, the electrode finger conductance Gy is dominated by its main intersection (main lobe), and is equivalently similar to the normal type.

第1の実施例における上記の非交差部分18の長さはコ
ンターフタンスGL = 20yatJの外部回路を考
えた場合における第(51式で与えられる反射損失計算
値を20dBとすることにより定められる。(入出力合
せた反射損失は40dBとなる。)一方、電極指非交差
部の長さが1例えば上記実施例ではII” +F“==
2400μmと長くなるため、補助手段として、第5図
の如くコンダクタンスGLを有する外部回路It5 、
17と弾性表面波装置14との結合回路15 、 i3
’として並列抵抗(コンダクタンスG、)を用いて、−
電極当りの反射損失を20dB (もL〈は、入出力合
せ”C40cl!B)とするのが1!極指非交差部を短
くできるので、実際的である。この際、GLをGt +
 Gpと置き換えて。
The length of the above-mentioned non-intersecting portion 18 in the first embodiment is determined by setting the return loss calculated value given by equation (51) to 20 dB when considering an external circuit with contourance GL = 20 yatJ. (The combined input and output reflection loss is 40 dB.) On the other hand, if the length of the non-intersecting part of the electrode fingers is 1, for example, in the above example, II"+F"==
Since the length is 2400 μm, as an auxiliary means, an external circuit It5 having a conductance GL as shown in FIG.
17 and the surface acoustic wave device 14 coupling circuit 15, i3
Using the parallel resistance (conductance G,) as ', -
It is practical to set the reflection loss per electrode to 20 dB (also L〈is the total input and output “C40cl!B”) because it can shorten the non-crossing portion of the pole fingers.In this case, GL is set to Gt +
Replace with Gp.

第(4)式を適用することで、G、とG、が決定される
By applying equation (4), G and G are determined.

上記の考えに基づいた実施例を第2の実施例として示す
。本実施例の平面構成その他は、入出力共に非交差部長
さW’=lV’= 500μmとし、並列コンダクタン
スGp i 21.3mυとした以外は前記した第1の
実施例と同じである。本実施例の実験結果を第6図(記
号q)に示す。第6図で。
An example based on the above idea will be shown as a second example. The planar configuration and other aspects of this embodiment are the same as those of the first embodiment described above, except that the non-intersecting portion length W'=lV'=500 μm for both input and output, and the parallel conductance Gp i 21.3 mυ. The experimental results of this example are shown in FIG. 6 (symbol q). In Figure 6.

コンダクタンスGL= 20mT)を有する外部回路に
to an external circuit with conductance GL = 20 mT).

並列コンダクタンスGPを接続した等価外部コンダクタ
ンス(GL+ Gy )を横軸K、通過損失。
The horizontal axis K is the equivalent external conductance (GL + Gy) connected to the parallel conductance GP, and the passing loss.

反射損失(いずれも入出力2電極分)を縦軸にとり示す
。第6図でGL== 2QmぴとG、 = 21.3m
Uの和、413mUで、入出力2電極の反射損失は40
dlJと目標に達した。一方、通過損失は25dBに止
まり、極端に大きくはならない。
The vertical axis shows the reflection loss (for both input and output electrodes). In Figure 6, GL== 2Qm PitoG, = 21.3m
The sum of U is 413 mU, and the reflection loss of the input and output 2 electrodes is 40
I reached my goal with dlJ. On the other hand, the passing loss remains at 25 dB and does not become extremely large.

第3の実施例として、第2の実施例の非交差部長さから
、 H7’=W’= ysoμmと変えた場合を示す。
As a third example, a case will be shown in which the length of the non-intersecting portion of the second example is changed to H7'=W'=ysoμm.

本実施例の実験結果を第2の実施例と同様に第6図(記
号D1)に示すが、コンダクタンスGL= 20yyz
tTの外部回路で、並列コンダクタンス107?L■接
続することで、入出力2電極の反射損失は40dBと目
標に達し1通過損失は22dBであった。
The experimental results of this example are shown in FIG. 6 (symbol D1) similarly to the second example, and conductance GL = 20yyz
In the external circuit of tT, the parallel conductance is 107? By connecting L■, the reflection loss of the two input and output electrodes reached the target of 40 dB, and the one-pass loss was 22 dB.

本発明の第4の実施例として、第3の実施例にて出力の
重み付け!極に非交差部の延長を行なっていない場合を
示す。この実施例の電極ノくタンを第7図に示す。本実
施例では、非交差部延長を行なっていない出力重み付け
t僕の反射損失が小さく、GL= 20での外部回j1
8に対しては14dB、並列コンダクタンスGp = 
2t3 mTJを接続して18tLEであるが、非交差
部延長を行なった正規型電極ではGZ = 20771
υの外部回路に対しては反射損失が18.2dB、並列
コンダクタンスGp。
As a fourth embodiment of the present invention, output weighting is performed in the third embodiment! This shows the case where the non-intersecting portions are not extended at the poles. The electrode terminal of this embodiment is shown in FIG. In this example, the reflection loss of the output weighting t without non-intersection extension is small, and the external circuit j1 at GL=20
14 dB for 8, parallel conductance Gp =
When connecting 2t3 mTJ, it is 18tLE, but with the regular electrode with non-crossing part extension, GZ = 20771
For the external circuit of υ, the return loss is 18.2 dB and the parallel conductance Gp.

2t5mUを接続して、反射損失が22dBとなるので
入出力合せた反射損失が40dBの目標値に達した次に
本発明の比5の実施例として、非又差部の電極構造に改
善を施した場合を第8図に示す第8図の電極構造では、
有効開口部18ではスプリント電極指であるが、非交差
部19 、19’では同じ極性の隣接した2本の電極指
が1本化されかつ′RL極1隔が有効開口部の1本分の
幅と同じてあり、非又差部の抵抗値が2倍となるため、
第2図の場合に比べて非交差部の長さが4で済み、装置
が小型となる刑点が有る。逆に、上記第5の実施例では
膜厚を厚くしても良いので。
2t5mU was connected, and the reflection loss was 22dB, so the combined input and output reflection loss reached the target value of 40dB.Next, as an example of ratio 5 of the present invention, improvements were made to the electrode structure of the non-straightened part. In the electrode structure shown in FIG. 8, the case is shown in FIG.
In the effective opening 18, splint electrode fingers are used, but in the non-intersecting parts 19 and 19', two adjacent electrode fingers of the same polarity are combined into one, and the 'RL pole distance is one electrode finger of the effective opening. It is the same as the width, and the resistance value of the non-crossover part is double, so
Compared to the case shown in Fig. 2, the length of the non-intersecting part is only 4, which has the advantage of making the device smaller. On the contrary, in the fifth embodiment, the film thickness may be increased.

ワイヤボンティングが容易となる利点が有る。This has the advantage that wire bonding is easy.

また、非交差部の延長に代えて、を極相膜厚を薄くして
電極指抵抗を増大させることが考えられるが1例えば第
1の実施例に対応させると膜厚が0.008μmと薄く
、ばらつき、イI頼性、抵抗による重み付けの変動等が
問題となるので。
In addition, instead of extending the non-intersecting part, it is possible to increase the electrode finger resistance by reducing the thickness of the polar phase film. , variations, reliability, fluctuations in weighting due to resistance, etc. become problems.

上記問題を避ける上から1本発明の非交差部延長が有効
である。
The non-intersecting portion extension of the present invention is effective in avoiding the above-mentioned problems.

、〔発明の効果〕 本発明により、VHF高域以上(約2001MIz )
以上の高周波、あるいは比較的に狭い帯域@(。 比帯
域10%以下〕で用いる弾性表面波装置において、を極
長1及射を40dB以下に押えて振幅、位相(群遅延時
間)の乱れを焦〈シ、かつ、従、未決より大きな放射コ
ンダクタンス、有効開口が得られるので、上記第3の実
施例での周彼都特性を示した第9図の如く、回折による
帯域内うねり、裾部の乱れ等の無い良好な周波a特性が
得られると共に、調整を要するインダクタンスな結合回
路に用いることなく、第5図の如く単に固定の並列抵抗
を用いることかできるので。
, [Effects of the Invention] According to the present invention, the VHF high frequency range or higher (approximately 2001 MIz)
In surface acoustic wave devices used at higher frequencies than above, or in relatively narrow bands @ (fractional bandwidth 10% or less), disturbances in amplitude and phase (group delay time) can be prevented by suppressing the maximum length of radiation to 40 dB or less. Since a larger radiation conductance and effective aperture can be obtained than in the focused, secondary, and undetermined ranges, as shown in FIG. A good frequency a characteristic without any disturbance can be obtained, and a fixed parallel resistor can be simply used as shown in FIG. 5 without using an inductance coupling circuit that requires adjustment.

部品点数を低減し、無詞整化を進めることができた。We were able to reduce the number of parts and proceed with unspoken reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の弾性表面波装置の周波数特性を示す特
性囚、第2図は本発明による電極指の非交差部を延長し
た電極構造の平面図、第3図は反射損失と非交差部長さ
の関係を示す特性図、第4図は本発明の一実施例を示す
電極バタン図、第5図は並列にコンダクタンスを接続し
た結合回路を説明する回路図、第6図は1本発明の第2
.第3の実施例における反射損失1通過損失と、並列コ
ンダクタンスとの関係を示す特性図、第7図は本発明の
第4の実施例を模式的に示す電極バタン図、第8図は本
発明の非交差部延長の他の構造を示す電極バタン図、第
9図は本発明により改善された周波数特性を示す特性図
である。 〔符号の説明〕 2.2’;弾性表面波の送受波電極 3;ポンディングパッド 4;母線電極5;電源 6;電源の内部コンダクタンス 6′;負荷コンダクタンス 8; 電極N5I0.S!
、・・・、SN;1.Z、・・・、N番目の電極対 15.13’;並列抵抗(コンダクタンスG、)14;
弾性表面波装置 15.15’;結合回路部16;信号
源 17;負荷 18;有効開口 19;非交差部電極指19’;19と
は極性の異なる非交差部電極指A ; Gf= 622
.27110 (非交差部延長なし)の場合B ; G
j= 177.8m’C) (’)場合C; Gy =
 105.7rnT)0) m合D; Gj ” 69
.1n(IJ (1) tJJ 合E ; Gy = 
47.9rnT)の場合C1;第2の実施例を示す測足
点 Dl;第3の実施例を示す側足点 代理人弁理士 高 橋 明 夫 駕 4 図 3′ 電 ら 錫a
Fig. 1 shows the frequency characteristics of a conventional surface acoustic wave device, Fig. 2 is a plan view of the electrode structure according to the present invention in which the non-intersecting parts of the electrode fingers are extended, and Fig. 3 shows reflection loss and non-intersecting parts. A characteristic diagram showing the relationship between lengths, FIG. 4 is an electrode batten diagram showing one embodiment of the present invention, FIG. 5 is a circuit diagram explaining a coupling circuit in which conductances are connected in parallel, and FIG. 6 is a diagram showing one embodiment of the present invention. the second of
.. A characteristic diagram showing the relationship between reflection loss 1 passage loss and parallel conductance in the third embodiment, FIG. 7 is an electrode batten diagram schematically showing the fourth embodiment of the present invention, and FIG. 8 is a diagram of the present invention. FIG. 9 is a characteristic diagram showing frequency characteristics improved by the present invention. [Explanation of symbols] 2.2'; surface acoustic wave transmitting/receiving electrode 3; bonding pad 4; bus electrode 5; power supply 6; internal conductance of power supply 6'; load conductance 8; electrode N5I0. S!
,...,SN;1. Z, ..., Nth electrode pair 15.13'; parallel resistance (conductance G,) 14;
Surface acoustic wave device 15.15'; Coupling circuit section 16; Signal source 17; Load 18; Effective aperture 19; Non-intersecting electrode finger 19'; Non-intersecting electrode finger A having a different polarity from 19; Gf=622
.. 27110 (no extension at non-intersection) B; G
j = 177.8m'C) (') Case C; Gy =
105.7rnT) 0) m combination D; Gj ” 69
.. 1n(IJ (1) tJJ combination E; Gy =
47.9rnT) case C1; foot measuring point Dl showing the second embodiment; side foot point showing the third embodiment Attorney Patent Attorney Akira Takahashi 4 Figure 3' Den et al.

Claims (1)

【特許請求の範囲】 1)圧電体基板と、圧電体基板上に設けられた互に交差
するくし歯状電極から各なる入力および出力変換器とか
らなり、各くし歯状電極は交差部分と非交差部分とから
1.仁る電極指と電極指の非交差部分側端部な結合する
バスバーとからなり、各変換器の一方のくし歯状電極の
バスパーと他方のくし歯状雷5極の市、極相先端との間
隔が互いの接触を防ぐのに必要な間隔よりも充分大きな
間隔をもつよ5に一方のくし歯状電極の全′電極指の非
交差部分が長くされたことな特徴とする弾性表面波装置
。 2)送受波を極の放射コンダクタンスG、の大キさを接
続される外部同時コンダクタンスGLの4以上とし、か
つ、送受波電極の対数Nと一対のta指抵抗rtからN
 / rlと定義される電極指コンダクタンスGfが非
交差部の延長が行なわれ工、b = GZ / Ga 
、 c = Gy/Gaで定義されるり、cによる次の
関係を満すことを特徴とする特許請求の範囲力1項記載
の弾性表面波装置。 ≧2DdE
[Claims] 1) Consisting of a piezoelectric substrate and input and output transducers each consisting of intersecting comb-like electrodes provided on the piezoelectric substrate, each comb-like electrode having an intersecting portion. From the non-intersecting part 1. Consisting of curved electrode fingers and a connecting bus bar at the side end of the non-intersecting part of the electrode fingers, the bus bar of one comb-shaped electrode of each converter and the center and pole phase tip of the comb-shaped lightning five poles of each converter are connected. 5. The surface acoustic wave is characterized in that the non-intersecting portions of all electrode fingers of one comb-shaped electrode are lengthened so that the spacing between the two electrodes is sufficiently larger than the spacing required to prevent contact with each other. Device. 2) The magnitude of the radiation conductance G of the pole for transmitting and receiving waves should be 4 or more than the connected external simultaneous conductance GL, and the number of pairs of wave transmitting and receiving electrodes N and the pair of ta finger resistances rt to N
When the electrode finger conductance Gf, defined as /rl, is extended at the non-intersecting part, b = GZ / Ga
, c = Gy/Ga, and the surface acoustic wave device according to claim 1, characterized in that it satisfies the following relationship by c. ≧2DdE
JP14645983A 1983-08-12 1983-08-12 Elastic surface wave device Granted JPS6038912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14645983A JPS6038912A (en) 1983-08-12 1983-08-12 Elastic surface wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14645983A JPS6038912A (en) 1983-08-12 1983-08-12 Elastic surface wave device

Publications (2)

Publication Number Publication Date
JPS6038912A true JPS6038912A (en) 1985-02-28
JPH0336327B2 JPH0336327B2 (en) 1991-05-31

Family

ID=15408112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14645983A Granted JPS6038912A (en) 1983-08-12 1983-08-12 Elastic surface wave device

Country Status (1)

Country Link
JP (1) JPS6038912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10524629B2 (en) 2005-12-02 2020-01-07 Irobot Corporation Modular Robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10524629B2 (en) 2005-12-02 2020-01-07 Irobot Corporation Modular Robot

Also Published As

Publication number Publication date
JPH0336327B2 (en) 1991-05-31

Similar Documents

Publication Publication Date Title
US4126837A (en) Impedance element and band-rejection filter using the same
US3686518A (en) Unidirectional surface wave transducers
US3894251A (en) Elastic surface wave transducer
US11277116B2 (en) Multiplexer
JP2006013576A (en) Saw device and apparatus employing the same
US11070195B2 (en) Acoustic wave filter and multiplexer
JPS6223490B2 (en)
DE10010089A1 (en) Interdigital transducer for surface acoustic wave filter, has same phase excitation and reflection in several base cells
EP1739830B1 (en) Elastic wave filter
JPS5937605B2 (en) surface acoustic wave device
US4396851A (en) Surface acoustic wave device
US5818310A (en) Series-block and line-width weighted saw filter device
US4575696A (en) Method for using interdigital surface wave transducer to generate unidirectionally propagating surface wave
US4575698A (en) Surface acoustic wave device
JPS6038912A (en) Elastic surface wave device
US5710529A (en) Surface acoustic wave filer device having a cascade filter structure and a piezoelectric substrate having mirror-polished surfaces
JPH0356014B2 (en)
JP2562321B2 (en) Surface acoustic wave device
JPS5997216A (en) Acoustic surface wave filter
JP2605002B2 (en) Surface acoustic wave filter
EP0649219B1 (en) Surface acoustic wave filter device
US5808524A (en) Surface wave filter with a specified transducer impulse train that reduces diffraction
US3936679A (en) Elastic surface wave transducer
JPS63131710A (en) Surface acoustic wave device
JPH07176973A (en) Surface acoustic wave filter