JPH11188015A - Biological signal measuring apparatus - Google Patents

Biological signal measuring apparatus

Info

Publication number
JPH11188015A
JPH11188015A JP9367137A JP36713797A JPH11188015A JP H11188015 A JPH11188015 A JP H11188015A JP 9367137 A JP9367137 A JP 9367137A JP 36713797 A JP36713797 A JP 36713797A JP H11188015 A JPH11188015 A JP H11188015A
Authority
JP
Japan
Prior art keywords
signal
circuit
wireless
biological signal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9367137A
Other languages
Japanese (ja)
Inventor
Noriyoshi Matsuo
典義 松尾
Naomi Sawada
直見 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP9367137A priority Critical patent/JPH11188015A/en
Priority to US09/050,989 priority patent/US6026321A/en
Publication of JPH11188015A publication Critical patent/JPH11188015A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a radio multi-channel biological signals measuring apparatus of judging radio interference easily and improve a measuring accuracy. SOLUTION: A radio electrode 121 has a detection electrode 201, 202 which inputs the bionic signal S1, a mixed amplification circuit 22 which mixes a standard signal C1 of the frequency that is not included in the frequency of a bionic signal S1 into the biological signal S1 to amplify as a detection signal D1, and a modulation transmission circuit 24 which modulates the detection signal D1 output from mixed amplification circuit 22 to a carrier FM1 in a different frequency to every radio electrode 121 and so on to transmit. A receiver 141 has a receiving modulation circuit 26 which receives the detection signal D1 transmitted from the radio electrode 121 and demodulates it and a filter circuit 28 which separates the detection signal D1 output from the receiving modulation circuit 26 into the bionic signal S1 and the standard signal C1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば筋電位(E
MG)、眼電位(EOG)、心電位(ECG)、脳波
(EEG)等の生体信号を、無線によって計測する生体
信号計測装置に関する。この生体信号計測装置は、医療
分野に限らず、運動学を含む生理学や注意・覚醒等の心
理学的な分野にも適用可能なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a biological signal measurement device that wirelessly measures biological signals such as MG), electro-oculogram (EOG), electrocardiogram (ECG), and electroencephalogram (EEG). This biological signal measuring device is applicable not only to the medical field but also to physiological fields including kinematics and psychological fields such as attention and arousal.

【0002】[0002]

【従来の技術】単一の生体信号を無線によって計測する
ための生体信号計測装置は、特開平2−283354号
公報、特開昭63−49135号公報等に開示されてい
る。この生体信号計測装置は、被験者に装着する電極に
無線送信機能を付加することにより、被験者の行動を制
限することなく、生体信号を計測できるようにしたもの
である。このような無線送信機能を有する電極を、以下
「無線電極」という。
2. Description of the Related Art A biological signal measuring device for wirelessly measuring a single biological signal is disclosed in JP-A-2-283354, JP-A-63-49135, and the like. This biological signal measuring device is configured to be able to measure a biological signal without restricting the subject's behavior by adding a wireless transmission function to an electrode worn on the subject. An electrode having such a wireless transmission function is hereinafter referred to as a “wireless electrode”.

【0003】単一ではなく複数の生体信号を同時に計測
できる生体信号計測装置(以下「多チャンネルの生体信
号計測装置」という。)は、現在のところ電極にリード
線が付いた有線によるものだけであり、完全に無線化し
たものは知られていない。多チャンネルの生体信号計測
装置を従来技術によって完全に無線化したものとして
は、複数の無線電極と、それぞれの無線電極に対応する
複数の受信機とを備え、各無線電極ごとに搬送周波数を
変えたものが考えられる。
At present, a biological signal measuring device capable of simultaneously measuring not a single biological signal but a plurality of biological signals (hereinafter referred to as a "multi-channel biological signal measuring device") is only a wired device having electrodes with lead wires. Yes, no completely wireless version is known. A multi-channel biological signal measurement device that is completely wireless by the conventional technology includes a plurality of wireless electrodes and a plurality of receivers corresponding to each wireless electrode, and changes a carrier frequency for each wireless electrode. Can be considered.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな無線による多チャンネルの生体信号計測装置では、
次のような問題を生じる。
However, in such a wireless multi-channel biological signal measuring device,
The following problems occur.

【0005】(1).無線電極では、被験者に負担をかけず
に皮膚に装着可能とするために、内蔵する電池や回路を
できるだけ小さくすることが要求される。そのため、電
池の容量は小さく、補償用回路も限られたものとなる。
その結果、電源電圧の低下や周囲温度の変化によって、
搬送周波数がずれることがある。この搬送周波数のずれ
は受信機での混信を招くので、得られた生体信号に大き
なノイズが混入することになる。また、複数の無線電極
は互いに異なる搬送周波数であることが前提であるが、
搬送周波数を誤って設定したために混信が生じることも
あり得る。しかし、これらの場合に混信しているか否か
を判断することは、熟練者の勘などに頼るしかないの
で、極めて困難である。
(1) In the case of a wireless electrode, it is required that a built-in battery and a circuit be as small as possible so that the wireless electrode can be worn on the skin without placing a burden on a subject. Therefore, the capacity of the battery is small, and the compensating circuit is limited.
As a result, a drop in power supply voltage or a change in ambient temperature
The carrier frequency may shift. This shift of the carrier frequency causes interference at the receiver, so that large noise is mixed in the obtained biological signal. Also, it is assumed that the plurality of wireless electrodes have different carrier frequencies,
Interference may occur due to the incorrect setting of the carrier frequency. However, in these cases, it is extremely difficult to judge whether or not there is interference, since it depends only on the intuition of a skilled person.

【0006】(2).生体信号は、数μV〜数十mV程度の
微小な電圧値であるため、増幅して計測される。そし
て、生体信号のデータは、増幅率に基づいて換算され、
増幅前の電圧値として取り扱われる。しかし、増幅率は
周囲温度や電源電圧の変動等により変化するため、換算
後の生体信号の値には誤差が少なからず含まれることに
なる。
(2) Since the biological signal has a very small voltage value of about several μV to several tens mV, it is amplified and measured. Then, the data of the biological signal is converted based on the amplification factor,
It is treated as the voltage value before amplification. However, since the amplification factor changes due to fluctuations in the ambient temperature, the power supply voltage, and the like, the value of the converted biological signal includes a considerable amount of error.

【0007】[0007]

【発明の目的】そこで、本発明の目的は、第一に混信の
判断を簡単にでき、第二に計測精度を向上できる、無線
による多チャンネルの生体信号計測装置を提供すること
にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a wireless multi-channel biological signal measuring apparatus which can firstly determine interference and improve measurement accuracy.

【0008】[0008]

【課題を解決するための手段】本発明に係る生体信号計
測装置は、皮膚に装着されるとともに生体信号を無線で
送信する複数の無線電極と、これらの無線電極のそれぞ
れに対応した複数の受信機とを備えたものである。前記
無線電極は、生体信号を入力する検出電極と、当該生体
信号の周波数帯に含まれない周波数の基準信号を、前記
検出電極から入力した生体信号に混合及び増幅して検出
信号として出力する混合増幅回路と、この混合増幅回路
から出力された検出信号を前記各無線電極ごとに異なる
周波数の搬送波で変調して送信する変調送信回路とを備
えている。前記受信機は、前記無線電極から送信された
検出信号を受信及び復調する受信復調回路と、この受信
復調回路から出力された検出信号を前記生体信号と前記
基準信号とに分離するフィルタ回路とを備えている。
A biological signal measuring device according to the present invention comprises a plurality of wireless electrodes which are attached to the skin and transmit biological signals wirelessly, and a plurality of receiving electrodes respectively corresponding to these wireless electrodes. Machine. The wireless electrode is configured to mix and amplify a detection electrode for inputting a biological signal and a reference signal having a frequency not included in the frequency band of the biological signal with a biological signal input from the detection electrode and output the amplified signal as a detection signal. An amplifier circuit, and a modulation transmission circuit that modulates a detection signal output from the mixed amplification circuit with a carrier having a different frequency for each of the wireless electrodes and transmits the modulated signal. The receiver, a reception demodulation circuit that receives and demodulates the detection signal transmitted from the wireless electrode, a filter circuit that separates the detection signal output from the reception demodulation circuit into the biological signal and the reference signal Have.

【0009】そして、請求項1記載の生体信号計測装置
は、前記基準信号の周波数を前記各無線電極ごとに異な
るものとしている。請求項2記載の生体信号計測装置
は、前記基準信号を一定電圧としている。請求項1記載
の生体信号計測装置によれば、基準信号の周波数が無線
電極ごとに異なるので、フィルタ回路で分離された基準
信号の周波数は特定の無線電極を示す。請求項2記載の
生体信号計測装置によれば、基準信号が一定電圧である
ので、フィルタ回路で分離された基準信号と生体信号と
の電圧値の比は、増幅率の変動の影響を排除したものと
なる。
In the biological signal measuring device according to the first aspect, the frequency of the reference signal is different for each of the wireless electrodes. According to a second aspect of the present invention, the reference signal has a constant voltage. According to the biological signal measuring device of the first aspect, the frequency of the reference signal differs for each wireless electrode, so that the frequency of the reference signal separated by the filter circuit indicates a specific wireless electrode. According to the biological signal measuring device of the second aspect, since the reference signal has a constant voltage, the ratio of the voltage value of the reference signal and the voltage of the biological signal separated by the filter circuit excludes the influence of the fluctuation of the amplification factor. It will be.

【0010】[0010]

【発明の実施の形態】図1は、本発明に係る生体信号計
測装置の一実施形態を示すブロック図である。図2は、
図1の生体信号計測装置の使用例を示す説明図である。
以下、これらの図面に基づき説明する。
FIG. 1 is a block diagram showing an embodiment of a biological signal measuring device according to the present invention. FIG.
FIG. 2 is an explanatory diagram showing a usage example of the biological signal measurement device in FIG. 1.
Hereinafter, description will be made based on these drawings.

【0011】本実施形態の生体信号計測装置10は、筋
電位を計測するものてあり、被験者Mの皮膚に装着され
るとともに生体信号を無線で送信する四個の無線電極1
21〜124と、無線電極121〜124のそれぞれに
対応した四個の受信機141〜144とを備えている。
受信機141〜144の出力信号は、解析装置16に入
力される。解析装置16は、例えばコンピュータであ
る。
The biological signal measuring device 10 of the present embodiment measures myoelectric potential, and is mounted on the skin of the subject M and includes four wireless electrodes 1 for wirelessly transmitting biological signals.
21 to 124, and four receivers 141 to 144 corresponding to the wireless electrodes 121 to 124, respectively.
Output signals of the receivers 141 to 144 are input to the analyzer 16. The analysis device 16 is, for example, a computer.

【0012】無線電極121は、生体信号S1を入力す
る検出電極201,202と、生体信号S1の周波数帯
に含まれない周波数の基準信号C1を生体信号S1に混
合及び増幅して検出信号D1として出力する混合増幅回
路22と、混合増幅回路22から出力された検出信号D
1を無線電極121〜124ごとに異なる周波数の搬送
波FM1で変調して送信する変調送信回路24とを備え
ている。受信機141は、無線電極121から送信され
た検出信号D1を受信及び復調する受信復調回路26
と、受信復調回路26から出力された検出信号D1を生
体信号S1と基準信号C1とに分離するフィルタ回路2
8とを備えている。
The wireless electrode 121 mixes and amplifies the detection electrodes 201 and 202 for inputting the biological signal S1 and a reference signal C1 of a frequency not included in the frequency band of the biological signal S1 into the biological signal S1 to obtain a detection signal D1. And a detection signal D output from the mixed amplification circuit 22.
And a modulation transmission circuit 24 that modulates and transmits the modulation signal 1 with a carrier FM1 having a different frequency for each of the wireless electrodes 121 to 124. The receiver 141 receives and demodulates the detection signal D1 transmitted from the wireless electrode 121.
And a filter circuit 2 for separating the detection signal D1 output from the reception demodulation circuit 26 into a biological signal S1 and a reference signal C1.
8 is provided.

【0013】基準信号C1は、無線電極121〜124
ごとに異なる周波数であり、かつ一定電圧である。無線
電極122〜124は、基準信号C2〜C4(図示せ
ず)及び搬送波FM2〜FM4の周波数が異なる点を除
き、無線電極121と同じ構成である。受信機142〜
144は、同調周波数が異なる点を除き、受信機141
と同じ構成である。
The reference signal C1 is transmitted to the radio electrodes 121 to 124.
The frequency is different for each and is a constant voltage. The wireless electrodes 122 to 124 have the same configuration as the wireless electrode 121 except that the frequencies of the reference signals C2 to C4 (not shown) and the carrier waves FM2 to FM4 are different. Receiver 142-
144 is a receiver 141 except that the tuning frequency is different.
It has the same configuration as.

【0014】検出電極201,202は、指向性を考慮
することなく筋電位を計測できるように、同心円状に配
設されたものである。混合増幅回路22は、基準信号C
1を発生する正弦波発振回路30と、基準信号C1を生
体信号S1に混合及び増幅して検出信号D1として出力
する増幅回路32とから構成されている。変調送信回路
24及び受信復調回路26は、例えばFM変調用IC及
びFM復調用ICからなる一般的なものである。フィル
タ回路28は、検出信号D1から基準信号C1を分離す
るハイパスフィルタ281と、検出信号D1から生体信
号S1を分離するローパスフィルタ282とから構成さ
れている。
The detection electrodes 201 and 202 are arranged concentrically so that the myoelectric potential can be measured without considering the directivity. The mixed amplifier circuit 22 receives the reference signal C
1 and a amplifying circuit 32 that mixes and amplifies the reference signal C1 with the biological signal S1 and outputs it as a detection signal D1. The modulation transmission circuit 24 and the reception demodulation circuit 26 are, for example, general ones including an FM modulation IC and an FM demodulation IC. The filter circuit 28 includes a high-pass filter 281 that separates the reference signal C1 from the detection signal D1, and a low-pass filter 282 that separates the biological signal S1 from the detection signal D1.

【0015】図3は、図1の生体信号計測装置における
正弦波発振回路及び混合増幅回路の一例を示す回路図で
ある。図4は、図3の混合増幅回路における増幅器を示
す回路図である。図5は、図3における信号源から増幅
器までの等価回路を示す回路図である。以下、これらの
図面に基づき説明する。ただし、図1と同一部分は同一
符号を付すことにより重複説明を省略する。
FIG. 3 is a circuit diagram showing an example of a sine wave oscillation circuit and a mixed amplification circuit in the biological signal measuring device of FIG. FIG. 4 is a circuit diagram showing an amplifier in the mixed amplification circuit of FIG. FIG. 5 is a circuit diagram showing an equivalent circuit from the signal source to the amplifier in FIG. Hereinafter, description will be made based on these drawings. However, the same parts as those in FIG.

【0016】混合増幅回路32は、増幅器34及び補償
器36によって構成されている。電源電圧Vccは、図示
しない電池から供給され、ただ一つの直流定電圧となっ
ている。また、補償器36は、オペアンプ361及び抵
抗器362〜365によって構成され、電源電圧Vccを
分圧して基準電圧として増幅器34へ出力する。なお、
図示しないが、電源電圧Vccは、増幅器34やオペアン
プ361にも供給されている。
The mixing amplifier circuit 32 includes an amplifier 34 and a compensator 36. The power supply voltage Vcc is supplied from a battery (not shown) and is a single DC constant voltage. The compensator 36 includes an operational amplifier 361 and resistors 362 to 365. The compensator 36 divides the power supply voltage Vcc and outputs the divided voltage to the amplifier 34 as a reference voltage. In addition,
Although not shown, the power supply voltage Vcc is also supplied to the amplifier 34 and the operational amplifier 361.

【0017】増幅器34には、バーブラウン社製「IN
A118」という名称のICを用いている。このICに
は、抵抗器341とコンデンサ342との直列回路が接
続されている。この直列回路により、検出電極201,
202から入力された筋電位を増幅する際の利得を設定
する機能と、検出電極201,202から入力された筋
電位に含まれるノイズを増幅前に除去する高域通過フィ
ルタとしての機能とが実現されている。
The amplifier 34 has "IN" manufactured by Burr-Brown.
An IC named "A118" is used. A series circuit of a resistor 341 and a capacitor 342 is connected to this IC. With this series circuit, the detection electrodes 201,
A function of setting a gain when amplifying the myoelectric potential input from 202 and a function as a high-pass filter for removing noise contained in the myoelectric potential input from the detection electrodes 201 and 202 before amplification are realized. Have been.

【0018】増幅器34は、非反転増幅器352及び差
動増幅器353によって構成されている。非反転増幅器
352は、外付けの抵抗器341及びコンデンサ34
2、オペアンプ343,344、抵抗器345,346
等によって構成されている。差動増幅器353は、抵抗
器347〜350及びオペアンプ351によって構成さ
れている。ここで、抵抗器341の抵抗値をRG 、コン
デンサ342の容量値をC、抵抗器345,346の抵
抗値をR1 、抵抗器347,348の抵抗値をR2 、抵
抗器349,350の抵抗値をR3 とする。抵抗器34
1は利得設定用であり、コンデンサ342が無ければす
なわち短絡していれば、利得Gは、G=1+50[kΩ]
/RG で与えられる。
The amplifier 34 includes a non-inverting amplifier 352 and a differential amplifier 353. The non-inverting amplifier 352 includes an external resistor 341 and a capacitor 34.
2. Operational amplifiers 343 and 344, resistors 345 and 346
And so on. The differential amplifier 353 includes resistors 347 to 350 and an operational amplifier 351. Here, the resistance value of the resistor 341 is R G , the capacitance value of the capacitor 342 is C, the resistance values of the resistors 345 and 346 are R 1 , the resistance values of the resistors 347 and 348 are R 2 , and the resistors 349 and 350. Is R 3 . Resistor 34
1 is for setting the gain, and if there is no capacitor 342, that is, if the capacitor is short-circuited, the gain G is G = 1 + 50 [kΩ].
/ RG .

【0019】本実施形態では、抵抗器341にコンデン
サ342が直列に接続されているので、利得Gは次式で
与えられる。 G={(RG +2R1 )jωC+1}/(jωCRG +1)・(R3 /R2 ) ・・・ ここで、R3 =R2 、RG <<R1 、ωCR>>1とする
と、式は次式で与えられる。 |G|=1+2R1 /RG (ω→∞) ・・・ このとき、遮断周波数fC は次式で与えられる。 fC =1/2πCRG ・・・
In this embodiment, since the capacitor 342 is connected to the resistor 341 in series, the gain G is given by the following equation. G = {(R G + 2R 1 ) jωC + 1} / (jωCR G +1) · (R 3 / R 2 ) where R 3 = R 2 , R G << R 1 , ωCR >> 1 , Are given by: | G | = 1 + 2R 1 / R G (ω → ∞) At this time, the cutoff frequency f C is given by the following equation. f C = 1 / 2πCR G ...

【0020】補償器36は、電源電圧Vcc(例えば3
V)を分圧する抵抗器362,363と、抵抗器36
2,363で得られる基準電圧Vcc/2(例えば1.5
V)を増幅器34へ出力するボルテージフォロワとして
のオペアンプ361と、オペアンプ361の出力端子と
増幅器34の±入力端子との間にそれぞれ接続された抵
抗器364,365とを備えている。オペアンプ361
の出力端子と増幅器34の±入力端子との間にそれぞれ
抵抗器364,365を接続したことにより、検出電極
201,202から増幅器34の±入力端子までの電圧
が抵抗器364,365を介してオペアンプ361に負
帰還するので、検出電極201,202から入力された
筋電位のノイズが除去される。除去されるノイズには、
直流成分やコモンモードノイズが含まれる。
The compensator 36 supplies a power supply voltage Vcc (for example, 3
V), resistors 362 and 363, and a resistor 36
The reference voltage Vcc / 2 (for example, 1.5
V) to the amplifier 34, and an operational amplifier 361 as a voltage follower, and resistors 364 and 365 connected between the output terminal of the operational amplifier 361 and the ± input terminal of the amplifier 34, respectively. Operational amplifier 361
Are connected between the output terminal of the amplifier 34 and the ± input terminal of the amplifier 34, respectively, so that the voltage from the detection electrodes 201 and 202 to the ± input terminal of the amplifier 34 is connected via the resistors 364 and 365. The negative feedback to the operational amplifier 361 removes the myoelectric potential noise input from the detection electrodes 201 and 202. The noise removed includes
DC components and common mode noise are included.

【0021】正弦波発振回路30は、基準信号C1の元
となる正弦波を発生する信号源301と、信号源301
で発生した正弦波を所定の振幅に減衰する振幅減衰回路
302とから構成されている。信号源301は、例えば
ウィーンブリッジ回路、クォドラチェア回路、水晶発振
回路等の一般的なものである。振幅減衰回路302は、
コンデンサ311及び抵抗器312〜314によって構
成されている。
The sine wave oscillating circuit 30 includes a signal source 301 for generating a sine wave which is a source of the reference signal C1, and a signal source 301.
And an amplitude attenuating circuit 302 for attenuating the sine wave generated in the step (a) to a predetermined amplitude. The signal source 301 is a general signal source such as a Wien bridge circuit, a quadrature chair circuit, and a crystal oscillation circuit. The amplitude attenuation circuit 302
It comprises a capacitor 311 and resistors 312 to 314.

【0022】増幅器34の±入力端子の入力インピーダ
ンスは、CMRR(同相信号除去比)の低下によるノイ
ズの混入を避けるために、どちらも等しくする必要があ
る。したがって、抵抗器364,365,312,31
3,314の抵抗値をそれぞれr1,r2,r3,r
4,r5(ただし、r5>>r4)とすると、各抵抗値は
次の関係を満たすように選定されている。 r1={r2×(r3+r4)}/{r2+(r3+r4)} ・・・
Both input impedances of the ± input terminals of the amplifier 34 need to be equal in order to prevent noise from being mixed due to a decrease in CMRR (common-mode rejection ratio). Therefore, the resistors 364, 365, 312, 31
3,314, respectively, are r1, r2, r3, r
Assuming that r4 and r5 (where r5 >> r4), each resistance value is selected so as to satisfy the following relationship. r1 = {r2 × (r3 + r4)} / {r2 + (r3 + r4)}

【0023】また、信号源301の出力電圧値をE1
すると、増幅器34の−入力端子の入力電圧値E2 は、
次式で与えられる。 E2 =[r2/{(r4//r5+r3)+r2}]×{r4+(r4+r5) }×E1 ・・・
If the output voltage value of the signal source 301 is E 1 , the input voltage value E 2 of the − input terminal of the amplifier 34 is
It is given by the following equation. E 2 = [r2 / {(r4 // r5 + r3) + r2}] × {r4 + (r4 + r5)} × E 1.

【0024】次に、図1及び図2に基づき生体信号計測
装置10の動作を説明する。
Next, the operation of the biological signal measuring device 10 will be described with reference to FIGS.

【0025】まず、無線電極121について説明する。
無線電極121を皮膚に密着させると、筋肉活動によっ
て生じる筋電位からなる生体信号S1が検出電極20
1,202から入力される。入力された生体信号S1
は、混合増幅回路22で基準信号C1と混合及び増幅さ
れて検出信号D1となる。検出信号D1は、変調送信回
路24から搬送波FM1によって受信機141へ送信さ
れ、受信変調回路26で元に戻される。
First, the wireless electrode 121 will be described.
When the wireless electrode 121 is brought into close contact with the skin, a biological signal S1 consisting of a myoelectric potential generated by muscle activity is detected by the detection electrode 20.
1, 202. The input biological signal S1
Is mixed and amplified with the reference signal C1 by the mixing amplifier circuit 22 to become the detection signal D1. The detection signal D1 is transmitted from the modulation transmission circuit 24 to the receiver 141 by the carrier FM1, and is restored by the reception modulation circuit 26.

【0026】ここで、生体信号S1の電圧及び周波数を
それぞれVs1 ,Fs1 、基準信号C1の電圧及び周波
数をそれぞれVc1 ,Fc1 、増幅率をαとすると、検
出信号D1は、電圧がα(Vs1 +Vc1 )、周波数成
分が(Fs1 ,Fc1 )となる。無線電極122〜12
4についても同様に、生体信号S2〜S4の電圧及び周
波数をそれぞれVs2 〜 Vs4 ,Fs2 〜 Fs4
基準信号C2〜C4の電圧及び周波数をそれぞれVc2
〜 Vc4 ,Fc2 〜 Fc4 とすると、検出信号D2
〜D4は、それぞれ電圧がα(Vs2 +Vc2 )〜α
(Vs4 +Vc4)、周波数成分が(Fs2 ,Fc2
〜(Fs4 ,Fc4 )となる。生体信号S1〜S4は、
筋電位であるので、電圧がmVオーダ、周波数が5Hz
〜1kHzである。例えば、基準信号C1〜C4の電圧
はVc1 〜Vc4 =10mVであり、基準信号C1〜C
4の周波数は、Fc1 =2.0kHz、Fc2 =2.5
kHz、Fc3 =3.0kHz、Fc4 =3.5kHz
である。
Here, assuming that the voltage and frequency of the biological signal S1 are Vs 1 and Fs 1 , respectively, the voltage and frequency of the reference signal C1 are Vc 1 and Fc 1 , and the amplification factor is α. α (Vs 1 + Vc 1 ) and the frequency component are (Fs 1 , Fc 1 ). Wireless electrodes 122-12
Similarly, the 4, the voltage and frequency of the biosignal S2~S4 respectively Vs 2 ~ Vs 4, Fs 2 ~ Fs 4,
The voltages and frequencies of the reference signals C2 to C4 are respectively set to Vc 2
To Vc 4 , Fc 2 to Fc 4 , the detection signal D 2
To D4 have voltages α (Vs 2 + Vc 2 ) to α, respectively.
(Vs 4 + Vc 4 ), and the frequency component is (Fs 2 , Fc 2 )
To (Fs 4 , Fc 4 ). The biological signals S1 to S4 are
Since it is a myoelectric potential, the voltage is on the order of mV and the frequency is 5 Hz
11 kHz. For example, the voltages of the reference signals C1 to C4 are Vc 1 to Vc 4 = 10 mV, and the voltages of the reference signals C1 to C4 are
The frequency of No. 4 is Fc 1 = 2.0 kHz, Fc 2 = 2.5
kHz, Fc 3 = 3.0 kHz, Fc 4 = 3.5 kHz
It is.

【0027】受信機141のフィルタ回路28におい
て、ハイパスフィルタ281及びローパスフィルタ28
2のカットオフ周波数cfは、基準信号C1〜C4のう
ちの最小周波数をFcmin 、生体信号S1〜S4のうち
の最大周波数をFsmax とすると、Fsmax <cf<F
cmin の関係を満たすように選定されている。したがっ
て、ハイパスフィルタ281からは電圧αVc1 及び周
波数Fc1 が得られ、ローパスフィルタ282からは電
圧αVs1 及び周波数Fs1 が得られる。なお、カット
オフ周波数cfは、受信機142〜144についても同
じ値である。
In the filter circuit 28 of the receiver 141, the high-pass filter 281 and the low-pass filter 28
The cutoff frequency cf of 2 is Fsmax <cf <F, where Fcmin is the minimum frequency of the reference signals C1 to C4 and Fsmax is the maximum frequency of the biological signals S1 to S4.
cmin. Therefore, the voltage αVc 1 and the frequency Fc 1 are obtained from the high-pass filter 281, and the voltage αVs 1 and the frequency Fs 1 are obtained from the low-pass filter 282. Note that the cutoff frequency cf has the same value for the receivers 142 to 144.

【0028】ここで、ハイパスフィルタ281で得られ
る周波数Fc1 は無線電極121を示すので、無線電極
121から飛来した生体信号S1を受信していることが
簡単に確認できる。また、無線電極121の搬送波FM
1に他の無線電極122,…の搬送波FM2,…が混信
していれば、周波数Fc1 に他の周波数Fc2 ,…が混
じったビート波となるので、混信が簡単に判断できる。
また、無線電極121,…の搬送周波数を誤って設定し
たことにより混信が生じた場合も、同様にして簡単に判
断できる。
Here, since the frequency Fc 1 obtained by the high-pass filter 281 indicates the wireless electrode 121, it can be easily confirmed that the biological signal S 1 flying from the wireless electrode 121 is received. Also, the carrier FM of the wireless electrode 121
Other wireless electrode 122 to 1, ... carrier FM2, ... As long as the interference, other frequency Fc 2 to the frequency Fc 1, since ... becomes the intermingled beat wave, interference can be easily determined.
.. Can be easily determined in the same manner even when interference occurs due to erroneous setting of the carrier frequency of the wireless electrodes 121,.

【0029】また、ローパスフィルタ282で得られる
電圧αVs1 と、ハイパスフィルタ281で得られる電
圧αVc1 と、既知の基準信号C1の電圧Vc1 とか
ら、生体信号S1の電圧Vs1 は、次式によって算出さ
れる。 Vs1 =Vc1 ×(αVs1 )/(αVc1 ) ・・・ 式から明らかなように、電圧Vs1 は、増幅率αの変
動の影響が排除された値となる。
Further, the voltage ArufaVs 1 obtained by the low-pass filter 282, a voltage ArufaVc 1 obtained by the high-pass filter 281, a voltage Vc 1 Tokyo known reference signal C1, the voltage Vs 1 of the bio-signal S1, the following equation It is calculated by Vs 1 = Vc 1 × (αVs 1 ) / (αVc 1 ) As is clear from the equation, the voltage Vs 1 is a value excluding the influence of the fluctuation of the amplification factor α.

【0030】[0030]

【発明の効果】請求項1記載の生体信号計測装置によれ
ば、基準信号の周波数が無線電極ごとに異なるので、受
信機のフィルタ回路で分離された基準信号の周波数によ
って、どの無線電極から飛来した生体信号を受信してい
るかを簡単に確認でき、また、他の無線電極との混信も
基準信号の周波数が異常となるので簡単に判断できる。
According to the biological signal measuring device of the present invention, since the frequency of the reference signal is different for each wireless electrode, the frequency of the reference signal separated by the filter circuit of the receiver causes any wireless electrode to fly. It is possible to easily confirm whether the received biological signal is received, and to easily determine interference with other wireless electrodes since the frequency of the reference signal becomes abnormal.

【0031】請求項2記載の生体信号計測装置によれ
ば、基準信号が一定電圧であるので、フィルタ回路で分
離された基準信号と生体信号との電圧値の比を求めるこ
とにより、増幅率の変動の影響を排除した高精度の生体
信号を得ることができる。
According to the biological signal measuring device of the second aspect, since the reference signal is a constant voltage, the ratio of the voltage value between the reference signal and the biological signal separated by the filter circuit is obtained, whereby the amplification factor can be determined. It is possible to obtain a high-precision biological signal excluding the influence of the fluctuation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る生体信号計測装置の一実施形態を
示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a biological signal measuring device according to the present invention.

【図2】図1の生体信号計測装置の使用例を示す説明図
である。
FIG. 2 is an explanatory diagram showing an example of use of the biological signal measuring device of FIG. 1;

【図3】図1の生体信号計測装置における正弦波発振回
路及び混合増幅回路の一例を示す回路図である。
FIG. 3 is a circuit diagram showing an example of a sine wave oscillation circuit and a mixed amplification circuit in the biological signal measurement device of FIG.

【図4】図3の混合増幅回路における増幅器を示す回路
図である。
FIG. 4 is a circuit diagram illustrating an amplifier in the mixed amplification circuit of FIG. 3;

【図5】図3における信号源から増幅器までの等価回路
を示す回路図である。
FIG. 5 is a circuit diagram showing an equivalent circuit from a signal source to an amplifier in FIG. 3;

【符号の説明】[Explanation of symbols]

10 生体信号計測装置 22 混合増幅回路 24 変調送信回路 26 受信復調回路 28 フィルタ回路 121〜124 無線電極 141〜144 受信機 201,202 検出電極 C1 基準信号 D1 検出信号 S1 生体信号 FM1〜FM4 搬送波 REFERENCE SIGNS LIST 10 biological signal measuring device 22 mixing amplifier circuit 24 modulation transmission circuit 26 reception demodulation circuit 28 filter circuit 121 to 124 wireless electrode 141 to 144 receiver 201, 202 detection electrode C1 reference signal D1 detection signal S1 biological signal FM1 to FM4 carrier

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 皮膚に装着されるとともに生体信号を無
線で送信する複数の無線電極と、これらの無線電極のそ
れぞれに対応した複数の受信機とを備え、 前記無線電極は、 生体信号を入力する検出電極と、 当該生体信号の周波数帯に含まれない前記各無線電極ご
とに異なる周波数の基準信号を、前記検出電極から入力
した生体信号に混合及び増幅して検出信号として出力す
る混合増幅回路と、 この混合増幅回路から出力された検出信号を前記各無線
電極ごとに異なる周波数の搬送波で変調して送信する変
調送信回路とを備え、 前記受信機は、 前記無線電極から送信された検出信号を受信及び復調す
る受信復調回路と、 この受信復調回路から出力された検出信号を前記生体信
号と前記基準信号とに分離するフィルタ回路とを備え
た、 生体信号計測装置。
A plurality of wireless electrodes that are attached to the skin and transmit a biological signal wirelessly, and a plurality of receivers corresponding to each of the wireless electrodes, wherein the wireless electrode inputs a biological signal; And a mixed amplifier circuit that mixes and amplifies a reference signal of a different frequency for each wireless electrode that is not included in the frequency band of the biological signal with a biological signal input from the detection electrode and outputs the amplified signal as a detection signal. And a modulation transmission circuit that modulates a detection signal output from the mixed amplification circuit with a carrier having a different frequency for each of the wireless electrodes and transmits the modulated signal. The receiver includes a detection signal transmitted from the wireless electrode. And a filter circuit for separating a detection signal output from the reception / demodulation circuit into the biological signal and the reference signal. Measuring device.
【請求項2】 皮膚に装着されるとともに生体信号を無
線で送信する複数の無線電極と、これらの無線電極のそ
れぞれに対応した複数の受信機とを備え、 前記無線電極は、 生体信号を入力する検出電極と、 当該生体信号の周波数帯に含まれない周波数かつ一定電
圧の基準信号を、前記検出電極から入力した生体信号に
混合及び増幅して検出信号として出力する混合増幅回路
と、 この混合増幅回路から出力された検出信号を前記各無線
電極ごとに異なる周波数の搬送波で変調して送信する変
調送信回路とを備え、 前記受信機は、 前記無線電極から送信された検出信号を受信及び復調す
る受信復調回路と、 この受信復調回路から出力された検出信号を前記生体信
号と前記基準信号とに分離するフィルタ回路とを備え
た、 生体信号計測装置。
2. A wireless device comprising: a plurality of wireless electrodes mounted on the skin and transmitting a biological signal wirelessly; and a plurality of receivers corresponding to each of the wireless electrodes, wherein the wireless electrode inputs a biological signal. A mixing and amplification circuit that mixes and amplifies a reference signal having a frequency and a constant voltage that is not included in the frequency band of the biological signal with the biological signal input from the detection electrode and outputs the signal as a detection signal; A modulation transmission circuit that modulates and transmits a detection signal output from an amplification circuit with a carrier having a different frequency for each of the wireless electrodes, wherein the receiver receives and demodulates the detection signal transmitted from the wireless electrode. A biological signal measuring device, comprising: a receiving and demodulating circuit for performing the processing; and a filter circuit for separating a detection signal output from the receiving and demodulating circuit into the biological signal and the reference signal.
JP9367137A 1997-04-02 1997-12-25 Biological signal measuring apparatus Withdrawn JPH11188015A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9367137A JPH11188015A (en) 1997-12-25 1997-12-25 Biological signal measuring apparatus
US09/050,989 US6026321A (en) 1997-04-02 1998-03-31 Apparatus and system for measuring electrical potential variations in human body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9367137A JPH11188015A (en) 1997-12-25 1997-12-25 Biological signal measuring apparatus

Publications (1)

Publication Number Publication Date
JPH11188015A true JPH11188015A (en) 1999-07-13

Family

ID=18488559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9367137A Withdrawn JPH11188015A (en) 1997-04-02 1997-12-25 Biological signal measuring apparatus

Country Status (1)

Country Link
JP (1) JPH11188015A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042956A (en) * 2004-08-02 2006-02-16 Keiichi Mitani Evaluation and ameliorate system of conditions of mind and body
JP2006231020A (en) * 2005-01-27 2006-09-07 Harada Denshi Kogyo Kk Electrocardiograph and electrode pad
JP2018515293A (en) * 2013-09-25 2018-06-14 バーディ ディアグノスティクス インコーポレイテッドBardy Diagnostics, Inc. Long-time electrocardiogram recording and fainting sensor monitor for walking
US10123703B2 (en) 2015-10-05 2018-11-13 Bardy Diagnostics, Inc. Health monitoring apparatus with wireless capabilities for initiating a patient treatment with the aid of a digital computer
US10154793B2 (en) 2013-09-25 2018-12-18 Bardy Diagnostics, Inc. Extended wear electrocardiography patch with wire contact surfaces
US10165946B2 (en) 2013-09-25 2019-01-01 Bardy Diagnostics, Inc. Computer-implemented system and method for providing a personal mobile device-triggered medical intervention
US10172534B2 (en) 2013-09-25 2019-01-08 Bardy Diagnostics, Inc. Remote interfacing electrocardiography patch
US10251575B2 (en) 2013-09-25 2019-04-09 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US10251576B2 (en) 2013-09-25 2019-04-09 Bardy Diagnostics, Inc. System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US10264992B2 (en) 2013-09-25 2019-04-23 Bardy Diagnostics, Inc. Extended wear sewn electrode electrocardiography monitor
US10265015B2 (en) 2013-09-25 2019-04-23 Bardy Diagnostics, Inc. Monitor recorder optimized for electrocardiography and respiratory data acquisition and processing
US10271755B2 (en) 2013-09-25 2019-04-30 Bardy Diagnostics, Inc. Method for constructing physiological electrode assembly with sewn wire interconnects
US10271756B2 (en) 2013-09-25 2019-04-30 Bardy Diagnostics, Inc. Monitor recorder optimized for electrocardiographic signal processing
US10278606B2 (en) 2013-09-25 2019-05-07 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation
US10278603B2 (en) 2013-09-25 2019-05-07 Bardy Diagnostics, Inc. System and method for secure physiological data acquisition and storage
US10398334B2 (en) 2013-09-25 2019-09-03 Bardy Diagnostics, Inc. Self-authenticating electrocardiography monitoring circuit
US10413205B2 (en) 2013-09-25 2019-09-17 Bardy Diagnostics, Inc. Electrocardiography and actigraphy monitoring system
US10433751B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data
US10433748B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US10463269B2 (en) 2013-09-25 2019-11-05 Bardy Diagnostics, Inc. System and method for machine-learning-based atrial fibrillation detection
CN110530249A (en) * 2019-08-30 2019-12-03 无锡市海鹰工程装备有限公司 A kind of preamplifier and its inductosyn of inductosyn
US10499812B2 (en) 2013-09-25 2019-12-10 Bardy Diagnostics, Inc. System and method for applying a uniform dynamic gain over cardiac data with the aid of a digital computer
US10624551B2 (en) 2013-09-25 2020-04-21 Bardy Diagnostics, Inc. Insertable cardiac monitor for use in performing long term electrocardiographic monitoring
US10667711B1 (en) 2013-09-25 2020-06-02 Bardy Diagnostics, Inc. Contact-activated extended wear electrocardiography and physiological sensor monitor recorder
US10716516B2 (en) 2013-09-25 2020-07-21 Bardy Diagnostics, Inc. Monitor recorder-implemented method for electrocardiography data compression
US10736532B2 (en) 2013-09-25 2020-08-11 Bardy Diagnotics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US10736529B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable electrocardiography monitor
US10736531B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection
US10799137B2 (en) 2013-09-25 2020-10-13 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US10806360B2 (en) 2013-09-25 2020-10-20 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US10820801B2 (en) 2013-09-25 2020-11-03 Bardy Diagnostics, Inc. Electrocardiography monitor configured for self-optimizing ECG data compression
US10888239B2 (en) 2013-09-25 2021-01-12 Bardy Diagnostics, Inc. Remote interfacing electrocardiography patch
US11096579B2 (en) 2019-07-03 2021-08-24 Bardy Diagnostics, Inc. System and method for remote ECG data streaming in real-time
US11116451B2 (en) 2019-07-03 2021-09-14 Bardy Diagnostics, Inc. Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities
US11213237B2 (en) 2013-09-25 2022-01-04 Bardy Diagnostics, Inc. System and method for secure cloud-based physiological data processing and delivery
US11324441B2 (en) 2013-09-25 2022-05-10 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US11678830B2 (en) 2017-12-05 2023-06-20 Bardy Diagnostics, Inc. Noise-separating cardiac monitor
US11723575B2 (en) 2013-09-25 2023-08-15 Bardy Diagnostics, Inc. Electrocardiography patch

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042956A (en) * 2004-08-02 2006-02-16 Keiichi Mitani Evaluation and ameliorate system of conditions of mind and body
JP2006231020A (en) * 2005-01-27 2006-09-07 Harada Denshi Kogyo Kk Electrocardiograph and electrode pad
US10888239B2 (en) 2013-09-25 2021-01-12 Bardy Diagnostics, Inc. Remote interfacing electrocardiography patch
US10631748B2 (en) 2013-09-25 2020-04-28 Bardy Diagnostics, Inc. Extended wear electrocardiography patch with wire interconnects
US10154793B2 (en) 2013-09-25 2018-12-18 Bardy Diagnostics, Inc. Extended wear electrocardiography patch with wire contact surfaces
US10165946B2 (en) 2013-09-25 2019-01-01 Bardy Diagnostics, Inc. Computer-implemented system and method for providing a personal mobile device-triggered medical intervention
US10172534B2 (en) 2013-09-25 2019-01-08 Bardy Diagnostics, Inc. Remote interfacing electrocardiography patch
US10251575B2 (en) 2013-09-25 2019-04-09 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US10251576B2 (en) 2013-09-25 2019-04-09 Bardy Diagnostics, Inc. System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US10264992B2 (en) 2013-09-25 2019-04-23 Bardy Diagnostics, Inc. Extended wear sewn electrode electrocardiography monitor
US10265015B2 (en) 2013-09-25 2019-04-23 Bardy Diagnostics, Inc. Monitor recorder optimized for electrocardiography and respiratory data acquisition and processing
US10271755B2 (en) 2013-09-25 2019-04-30 Bardy Diagnostics, Inc. Method for constructing physiological electrode assembly with sewn wire interconnects
US10271756B2 (en) 2013-09-25 2019-04-30 Bardy Diagnostics, Inc. Monitor recorder optimized for electrocardiographic signal processing
US10278606B2 (en) 2013-09-25 2019-05-07 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation
US10278603B2 (en) 2013-09-25 2019-05-07 Bardy Diagnostics, Inc. System and method for secure physiological data acquisition and storage
US11918364B2 (en) 2013-09-25 2024-03-05 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US10398334B2 (en) 2013-09-25 2019-09-03 Bardy Diagnostics, Inc. Self-authenticating electrocardiography monitoring circuit
US10413205B2 (en) 2013-09-25 2019-09-17 Bardy Diagnostics, Inc. Electrocardiography and actigraphy monitoring system
US10433743B1 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. Method for secure physiological data acquisition and storage
US10433751B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data
US10433748B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US10463269B2 (en) 2013-09-25 2019-11-05 Bardy Diagnostics, Inc. System and method for machine-learning-based atrial fibrillation detection
US10478083B2 (en) 2013-09-25 2019-11-19 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US11826151B2 (en) 2013-09-25 2023-11-28 Bardy Diagnostics, Inc. System and method for physiological data classification for use in facilitating diagnosis
US10499812B2 (en) 2013-09-25 2019-12-10 Bardy Diagnostics, Inc. System and method for applying a uniform dynamic gain over cardiac data with the aid of a digital computer
US10561328B2 (en) 2013-09-25 2020-02-18 Bardy Diagnostics, Inc. Multipart electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation
US10561326B2 (en) 2013-09-25 2020-02-18 Bardy Diagnostics, Inc. Monitor recorder optimized for electrocardiographic potential processing
US10602977B2 (en) 2013-09-25 2020-03-31 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US10624552B2 (en) 2013-09-25 2020-04-21 Bardy Diagnostics, Inc. Method for constructing physiological electrode assembly with integrated flexile wire components
US11013446B2 (en) 2013-09-25 2021-05-25 Bardy Diagnostics, Inc. System for secure physiological data acquisition and delivery
US11006883B2 (en) 2013-09-25 2021-05-18 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US10667711B1 (en) 2013-09-25 2020-06-02 Bardy Diagnostics, Inc. Contact-activated extended wear electrocardiography and physiological sensor monitor recorder
US10939841B2 (en) 2013-09-25 2021-03-09 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US10736532B2 (en) 2013-09-25 2020-08-11 Bardy Diagnotics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US10736529B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable electrocardiography monitor
US10736531B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection
US10799137B2 (en) 2013-09-25 2020-10-13 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US10806360B2 (en) 2013-09-25 2020-10-20 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US10813568B2 (en) 2013-09-25 2020-10-27 Bardy Diagnostics, Inc. System and method for classifier-based atrial fibrillation detection with the aid of a digital computer
US10813567B2 (en) 2013-09-25 2020-10-27 Bardy Diagnostics, Inc. System and method for composite display of subcutaneous cardiac monitoring data
US10820801B2 (en) 2013-09-25 2020-11-03 Bardy Diagnostics, Inc. Electrocardiography monitor configured for self-optimizing ECG data compression
US10849523B2 (en) 2013-09-25 2020-12-01 Bardy Diagnostics, Inc. System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders
US11793441B2 (en) 2013-09-25 2023-10-24 Bardy Diagnostics, Inc. Electrocardiography patch
JP2018515293A (en) * 2013-09-25 2018-06-14 バーディ ディアグノスティクス インコーポレイテッドBardy Diagnostics, Inc. Long-time electrocardiogram recording and fainting sensor monitor for walking
US10716516B2 (en) 2013-09-25 2020-07-21 Bardy Diagnostics, Inc. Monitor recorder-implemented method for electrocardiography data compression
US11786159B2 (en) 2013-09-25 2023-10-17 Bardy Diagnostics, Inc. Self-authenticating electrocardiography and physiological sensor monitor
US10624551B2 (en) 2013-09-25 2020-04-21 Bardy Diagnostics, Inc. Insertable cardiac monitor for use in performing long term electrocardiographic monitoring
US11051743B2 (en) 2013-09-25 2021-07-06 Bardy Diagnostics, Inc. Electrocardiography patch
US11051754B2 (en) 2013-09-25 2021-07-06 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US11744513B2 (en) 2013-09-25 2023-09-05 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US11103173B2 (en) 2013-09-25 2021-08-31 Bardy Diagnostics, Inc. Electrocardiography patch
US11723575B2 (en) 2013-09-25 2023-08-15 Bardy Diagnostics, Inc. Electrocardiography patch
US11179087B2 (en) 2013-09-25 2021-11-23 Bardy Diagnostics, Inc. System for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US11213237B2 (en) 2013-09-25 2022-01-04 Bardy Diagnostics, Inc. System and method for secure cloud-based physiological data processing and delivery
US11272872B2 (en) 2013-09-25 2022-03-15 Bardy Diagnostics, Inc. Expended wear ambulatory electrocardiography and physiological sensor monitor
US11324441B2 (en) 2013-09-25 2022-05-10 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US11445964B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. System for electrocardiographic potentials processing and acquisition
US11445967B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Electrocardiography patch
US11445970B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. System and method for neural-network-based atrial fibrillation detection with the aid of a digital computer
US11445961B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Self-authenticating electrocardiography and physiological sensor monitor
US11445966B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US11445962B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor
US11445965B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for long-term electrocardiographic monitoring
US11445907B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Ambulatory encoding monitor recorder optimized for rescalable encoding and method of use
US11445969B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. System and method for event-centered display of subcutaneous cardiac monitoring data
US11445908B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Subcutaneous electrocardiography monitor configured for self-optimizing ECG data compression
US11457852B2 (en) 2013-09-25 2022-10-04 Bardy Diagnostics, Inc. Multipart electrocardiography monitor
US11647941B2 (en) 2013-09-25 2023-05-16 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US11647939B2 (en) 2013-09-25 2023-05-16 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US11653870B2 (en) 2013-09-25 2023-05-23 Bardy Diagnostics, Inc. System and method for display of subcutaneous cardiac monitoring data
US11653868B2 (en) 2013-09-25 2023-05-23 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for electrocardiographic (ECG) signal acquisition
US11653869B2 (en) 2013-09-25 2023-05-23 Bardy Diagnostics, Inc. Multicomponent electrocardiography monitor
US11701045B2 (en) 2013-09-25 2023-07-18 Bardy Diagnostics, Inc. Expended wear ambulatory electrocardiography monitor
US11660035B2 (en) 2013-09-25 2023-05-30 Bardy Diagnostics, Inc. Insertable cardiac monitor
US11660037B2 (en) 2013-09-25 2023-05-30 Bardy Diagnostics, Inc. System for electrocardiographic signal acquisition and processing
US11701044B2 (en) 2013-09-25 2023-07-18 Bardy Diagnostics, Inc. Electrocardiography patch
US11678832B2 (en) 2013-09-25 2023-06-20 Bardy Diagnostics, Inc. System and method for atrial fibrillation detection in non-noise ECG data with the aid of a digital computer
US11678799B2 (en) 2013-09-25 2023-06-20 Bardy Diagnostics, Inc. Subcutaneous electrocardiography monitor configured for test-based data compression
US10123703B2 (en) 2015-10-05 2018-11-13 Bardy Diagnostics, Inc. Health monitoring apparatus with wireless capabilities for initiating a patient treatment with the aid of a digital computer
US10869601B2 (en) 2015-10-05 2020-12-22 Bardy Diagnostics, Inc. System and method for patient medical care initiation based on physiological monitoring data with the aid of a digital computer
US10390700B2 (en) 2015-10-05 2019-08-27 Bardy Diagnostics, Inc. Health monitoring apparatus for initiating a treatment of a patient based on physiological data with the aid of a digital computer
US11678830B2 (en) 2017-12-05 2023-06-20 Bardy Diagnostics, Inc. Noise-separating cardiac monitor
US11678798B2 (en) 2019-07-03 2023-06-20 Bardy Diagnostics Inc. System and method for remote ECG data streaming in real-time
US11653880B2 (en) 2019-07-03 2023-05-23 Bardy Diagnostics, Inc. System for cardiac monitoring with energy-harvesting-enhanced data transfer capabilities
US11116451B2 (en) 2019-07-03 2021-09-14 Bardy Diagnostics, Inc. Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities
US11096579B2 (en) 2019-07-03 2021-08-24 Bardy Diagnostics, Inc. System and method for remote ECG data streaming in real-time
CN110530249A (en) * 2019-08-30 2019-12-03 无锡市海鹰工程装备有限公司 A kind of preamplifier and its inductosyn of inductosyn

Similar Documents

Publication Publication Date Title
JPH11188015A (en) Biological signal measuring apparatus
US6026321A (en) Apparatus and system for measuring electrical potential variations in human body
US5415181A (en) AM/FM multi-channel implantable/ingestible biomedical monitoring telemetry system
US8682419B2 (en) Circuit and method for compensating for an electrode motion artifact
US20080159365A1 (en) Analog Conditioning of Bioelectric Signals
US5871451A (en) Apparatus and method for providing dual output signals in a telemetry transmitter
US8818731B2 (en) Apparatus and method for interfacing time-variant signals
EP0617917B1 (en) Receiver for differential signals
US10117591B2 (en) Impedance bootstrap circuit for an interface of a monitoring device
US7769435B2 (en) Earphone sensor system for measuring electrocardiogram signals
KR20120102444A (en) Apparatus, unit measurer and method for measuring biological signal without noise
EP0199219A2 (en) Narrow band electroencephalographic amplifier
Chien et al. Miniature telemetry system for the recording of action and field potentials
US10028661B2 (en) Buffered body return receiver
WO2006063341A2 (en) System for, and method of, monitoring heartbeats of a patient
JP5395600B2 (en) Biological information measuring device
Cosmanescu et al. Design and implementation of a wireless (Bluetooth®) four channel bio-instrumentation amplifier and digital data acquisition device with user-selectable gain, frequency, and driven reference
Pereira et al. Development of a two-electrode ECG acquisition system with dynamic interference rejection
JPH10276995A (en) Myoelectrometer
Smith et al. Multichannel subcarrier ECG, respiration, and temperature biotelemetry system
Guerrero et al. Biopotential acquisition systems
Nikola et al. A novel AC-amplifier for electrophysiology: active DC suppression with differential to differential amplifier in the feedback-loop
US11937947B2 (en) Low-noise biopotential acquisition system for dry electrode application
Srivastava et al. Bio-telemetry and bio-instrumentation technologies for healthcare monitoring systems
TWI752867B (en) Circuitry of a biopotential acquisition system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301