JPH0981240A - Method for controlling traveling of autonomously traveling automated guided vehicle - Google Patents

Method for controlling traveling of autonomously traveling automated guided vehicle

Info

Publication number
JPH0981240A
JPH0981240A JP7236284A JP23628495A JPH0981240A JP H0981240 A JPH0981240 A JP H0981240A JP 7236284 A JP7236284 A JP 7236284A JP 23628495 A JP23628495 A JP 23628495A JP H0981240 A JPH0981240 A JP H0981240A
Authority
JP
Japan
Prior art keywords
wheel
vehicle body
rotation
traveling
reference point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7236284A
Other languages
Japanese (ja)
Inventor
Michio Kondo
美智雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HITACHI MECHATRO KAIHATSU KYODO KUMIAI
Original Assignee
HITACHI MECHATRO KAIHATSU KYODO KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HITACHI MECHATRO KAIHATSU KYODO KUMIAI filed Critical HITACHI MECHATRO KAIHATSU KYODO KUMIAI
Priority to JP7236284A priority Critical patent/JPH0981240A/en
Publication of JPH0981240A publication Critical patent/JPH0981240A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an autonomously traveling automated guided vehicle capable of accurately moving its reference point to an optional destination at the time of traveling followed by directional change and having simple constitution in respect to a two-wheel driving type automated guided vehicle using a battery as a power source. SOLUTION: In this method, a controller rotates either one of right and left driving wheels 2b, 2a at first until auxiliary wheels 5a, 5b are turned up to almost horizontal directions when the traveling direction of a vehicle body 1 is changed from forward to backward or from backward to forward on the way of movement from the reference point up to an aimed position and then rotates the other driving wheel by the same rotational amount. Then the controller rotates the auxiliary wheels at first to turn the position of the vehicle body 1 in parallel with the initial position, calculated the deviation amount (x), (y) of the vehicle body 1 at the time of changing the direction and controls a DC motor so as to correct the deviation amounts (x), (y) to move the reference point to the aimed position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自律走行方式の無人搬送
車に係り、特に任意の目的位置に正確に移動させること
のできる無人搬送車に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an autonomous guided vehicle, and more particularly to an automated guided vehicle that can be accurately moved to any desired position.

【0002】[0002]

【従来の技術】工場等における部品、製品等の搬送及び
荷役に無人搬送車が広く利用されているが、製造、製品
の多様化等の要求に応えて、製造工程の変更に伴う無人
搬送車の走行径路の変更を頻繁に行う必要がある。これ
には、誘導路が不要で、走行径路の変更が容易な自律走
行方式の無人搬送車が適している。
2. Description of the Related Art Unmanned guided vehicles are widely used for transporting and handling parts and products in factories, but unmanned guided vehicles accompanying changes in the manufacturing process in response to demands for manufacturing, product diversification, etc. It is necessary to change the traveling route of the car frequently. For this, an autonomous guided vehicle that does not require a taxiway and is easy to change the travel route is suitable.

【0003】自律走行方式の無人搬送車は、走行径路を
示すデータを予めメモリに保持しており、各種のセンサ
により車体の現在位置を検出しながら車体が所定の走行
径路上になるように制御しつつ走行する。
An autonomous guided vehicle has data indicating a traveling route stored in a memory in advance, and controls the vehicle so that the vehicle is on a predetermined traveling route while detecting the current position of the vehicle by various sensors. Run while doing.

【0004】軌道式の無人搬送車を走行させるとき、左
右の軌道検出センサーにより軌道とのズレを検出し左右
の車輪の回転をコントロールする事により走行が可能で
ある。この種の技術は、例えば特開平5−324057
号公報に記載されている。
When a track-type automatic guided vehicle is run, it is possible to run by detecting the deviation from the track by the left and right track detection sensors and controlling the rotation of the left and right wheels. This type of technology is disclosed in, for example, Japanese Patent Laid-Open No. 5-324057
No., published in Japanese Unexamined Patent Publication No.

【0005】[0005]

【発明が解決しようとする課題】しかし、ロボットワゴ
ンのように無軌道走行をさせる場合、軌道検出センサー
がないために走行精度を極めて高くする必要である。ま
た、直進・旋回・カーブ等の走行を行うときに、左右の
車輪をどのように回転させるかを、すべて計算で求めそ
の通りに回転させることが必要である。
However, in the case of running without a track like a robot wagon, it is necessary to make the running accuracy extremely high because there is no track detection sensor. Further, when traveling straight, turning, turning, etc., it is necessary to calculate all how to rotate the left and right wheels and rotate them exactly.

【0006】直進の場合は、移動量を車輪の円周で割る
ことで簡単に回転量を求めることができる。また、旋回
の場合は、後輪のピッチを直径とする円周上を後輪が左
右逆方向に回転することにより旋回するので、旋回角度
から後輪の移動量は容易に求めることができる。
In the case of going straight, the amount of rotation can be easily obtained by dividing the amount of movement by the circumference of the wheel. Further, in the case of turning, since the rear wheel turns in the left and right directions on the circumference having the diameter of the pitch of the rear wheel, the amount of movement of the rear wheel can be easily obtained from the turning angle.

【0007】しかし、カーブ走行の場合、車体の左右の
駆動輪の回転量が異なるために、容易に求めることは困
難である。
However, in the case of curve traveling, it is difficult to easily obtain it because the left and right driving wheels of the vehicle body have different amounts of rotation.

【0008】また、無人搬送車の進行方向が前進のみか
後退のみの場合は問題ないが、前進から後退、後退から
前進のように途中で進行方向を切り替えるとき、途中で
自在キャスター(補助輪)が回転するために車体1位置
がずれてしまう。これは、キャスターの回転が制御シス
テムで関知しないときに発生するために起こる現象であ
り、ズレ分の補正が不可能である。
There is no problem when the traveling direction of the automatic guided vehicle is only forward or backward, but when the traveling direction is switched midway such as from forward to backward and from backward to forward, a flexible caster (auxiliary wheel) is midway. Due to the rotation of the car, the position of the vehicle body 1 is displaced. This is a phenomenon that occurs when the rotation of the caster is not known by the control system, and it is impossible to correct the deviation.

【0009】本発明の目的は、バッテリーを動力源とす
る2輪駆動方式の無人搬送車において、方向転換を伴う
走行の場合に無人搬送車の基準点を任意の目的位置に正
確に移動させることのできる、構成の簡単な自律走行方
式の無人搬送車を提供することにある。
An object of the present invention is to accurately move a reference point of an automatic guided vehicle to an arbitrary target position in a two-wheel drive type automatic guided vehicle using a battery as a power source when traveling with a direction change. It is an object of the present invention to provide an unmanned guided vehicle of an autonomous traveling system which is capable of performing and has a simple structure.

【0010】[0010]

【課題を解決するための手段】本発明の特徴は、車体の
左右対称位置に取付けられた一対の駆動輪と、補助輪
と、バッテリーを動力源とし該駆動輪を駆動させるため
直流モ−タ−と、前記駆動輪の回転数を検出するロータ
リーエンコ−ダと、制御情報及び前記エンコーダの出力
信号に基づき前記直流モ−タ−の回転パルス及び回転方
向を指令値として出力するコントローラとを備えた自律
走行式無人搬送車における走行制御方法おいて、前記コ
ントローラは、前記車体を基準点から目的位置まで移動
させるとき、該進行方向が前進から後退あるいは後退か
ら前進のように途中で切り替わるものである場合、前記
左右いずれかの駆動輪を先に前記補助輪がほぼ真横の向
きになるまで回転させ、その後、もう一方の駆動輪を同
じだけ回転させ前記補助輪を先に回転させて前記車体の
位置を最初の位置と平行な状態とし、該方向転換時にお
ける前記車体のずれ量x,yを演算で求め、該ずれ量
x,yを補正するように前記直流モ−タ−を制御して、
前記基準点を前記目的位置に移動させることにある。
The features of the present invention are a DC motor for driving a pair of drive wheels, which are mounted at symmetrical positions of a vehicle body, an auxiliary wheel, and a battery as a power source. -, A rotary encoder for detecting the number of rotations of the driving wheels, and a controller for outputting a rotation pulse and a rotation direction of the DC motor as command values based on control information and an output signal of the encoder. In the traveling control method for the autonomous guided vehicle, the controller is such that when the vehicle body is moved from the reference point to the target position, the traveling direction is switched from forward to backward or backward to forward. In some cases, one of the left and right drive wheels is first rotated until the auxiliary wheel is in a substantially horizontal direction, and then the other drive wheel is rotated by the same amount. The auxiliary wheels are rotated first to bring the position of the vehicle body parallel to the initial position, the displacement amounts x and y of the vehicle body at the time of the direction change are calculated, and the displacement amounts x and y are corrected. To control the DC motor,
It is to move the reference point to the target position.

【0011】[0011]

【作用】本発明によれば、車体の前後方向に中心線に左
右対称な位置に取り付けられた一対の駆動輪を駆動させ
るための直流モ−タ−及び前記駆動輪の回転数を検出す
るエンコ−ダを有するものにおいて、車体の基準点を所
定距離離れた目的位置へ正確に移動させることができ
る。特に、方向転換時の車体のずれx,yが計算で求め
られ、それ以降走行するときに補正することにより、正
確な位置制御が可能になる。
According to the present invention, a DC motor for driving a pair of driving wheels mounted symmetrically with respect to the center line in the front-rear direction of the vehicle body and an encoder for detecting the rotational speed of the driving wheels. In the case of the one having a dash, the reference point of the vehicle body can be accurately moved to a target position separated by a predetermined distance. In particular, accurate position control becomes possible by calculating the displacements x and y of the vehicle body at the time of turning, and correcting the displacements when traveling thereafter.

【0012】この方法は、ベッド・ワゴン等比較的簡単
な移動装置に採用すると、前輪制御が不要であるため
に、低コスト化ができると共に、小電力化が実現できる
ため、様々な用途で利用可能である。
When this method is applied to a relatively simple moving device such as a bed / wagon, the front wheel control is not required, so that the cost can be reduced and the power consumption can be reduced, so that the method can be used in various applications. It is possible.

【0013】[0013]

【実施例】以下、本発明の実施例を図により説明する。
まず、図1は本発明の一実施例に係る無人搬送車の車体
1の裏面を概念的に示す図である。この無人搬送車は、
後輪駆動形の無人搬送車である。車体1の後部の左右対
称な位置には、駆動輪2a,2bが取り付けられてい
る。3a,3bは駆動輪2a,2bを駆動させるための
直流モ−タ−であり、さらに駆動輪の回転数を検出する
ロータリーエンコ−ダ4a,4bが設けられている。5
は自在キャスター(補助輪)、6はコントローラであ
る。車体1の走行距離及び車体角は、エンコーダ4a、
4bの出力信号に基づきコントローラ6で検出される。
車体1には直流モ−タ−の動力源としてのバッテリーが
搭載されている(図示略)。
Embodiments of the present invention will be described below with reference to the drawings.
First, FIG. 1 is a view conceptually showing a back surface of a vehicle body 1 of an automated guided vehicle according to an embodiment of the present invention. This automated guided vehicle is
It is a rear-wheel drive type automated guided vehicle. Drive wheels 2a and 2b are attached to the rear portion of the vehicle body 1 at symmetrical positions. DC motors 3a and 3b for driving the drive wheels 2a and 2b are provided with rotary encoders 4a and 4b for detecting the rotational speed of the drive wheels. 5
Is a universal caster (auxiliary wheel), and 6 is a controller. The traveling distance and the vehicle body angle of the vehicle body 1 are determined by the encoder 4a,
It is detected by the controller 6 based on the output signal of 4b.
The vehicle body 1 is equipped with a battery as a power source for the DC motor (not shown).

【0014】コントローラ6は、図2に示すように構成
されている。すなわち、マイクロコンピュータ61は、
上位(メイン)のコンピュータ(図示せず)から移動量
の指令とロータリーエンコ−ダ4a,4bの検出値を入
力として受け、補助輪5の位置を基準点としこの位置5
を目的位置へ移動させると共に、車体1の移動後の車体
角を求めるように、直流モ−タ−3a,3bを駆動すべ
く、主軸モータアンプ62に回転パルス及び回転方向を
指令値として出力する。なお、車体1の移動コース及び
現在位置等の情報は、メインのコンピュータに保持され
ている。
The controller 6 is constructed as shown in FIG. That is, the microcomputer 61
A movement amount command and detection values of the rotary encoders 4a and 4b are received as inputs from a host (main) computer (not shown), and the position of the auxiliary wheel 5 is used as a reference point.
Is output to the spindle motor amplifier 62 as command values so as to drive the DC motors 3a and 3b so as to obtain the vehicle body angle after the vehicle body 1 is moved. . Information such as the moving course and the current position of the vehicle body 1 is held in the main computer.

【0015】次に、コントローラ6による車体1の制御
動作を図3の車体位置関係図及び図4の制御フローで説
明する。この制御は、図3において、駆動輪の位置2
a,2b及び基準点5を結ぶ三角形5・2a・2bの基
準点5を、角度θ(右前方)の方向に距離Mだけ離れた
目的位置5’に移動させるとき、駆動輪2a,2bをど
れだけ移動させれば良いかを求めるものである。
Next, the control operation of the vehicle body 1 by the controller 6 will be described with reference to the vehicle body positional relationship diagram of FIG. 3 and the control flow of FIG. This control is based on the drive wheel position 2 in FIG.
When moving the reference points 5 of the triangles 5a, 2b connecting the a, 2b and the reference points 5 to the target position 5'distance M in the direction of the angle θ (front right), the drive wheels 2a, 2b are moved. It asks how much should be moved.

【0016】メインのコンピュータでは、まず、車体1
の姿勢(車体角)が進行方向に対して所定の範囲、例え
ば左右30°以内に有るかどうかをチェックする(ステ
ップ402)。もし、車体1の角度が左右30°以内に
無ければ、直流モ−タ−3a,3bを駆動して30°以
内になるように車体1を旋回させる(ステップ40
4)。
In the main computer, first, the vehicle body 1
It is checked whether the posture (vehicle body angle) is within a predetermined range with respect to the traveling direction, for example, within 30 ° to the left and right (step 402). If the angle of the vehicle body 1 is not within 30 ° from the left and right, the DC motors 3a and 3b are driven to turn the vehicle body 1 within 30 ° (step 40).
4).

【0017】次に、コントローラ6は、メインのコンピ
ュータから車体1の進行方向及び進行距離に関する情
報、すなわち現在位置から進行方向への移動角度θ及び
移動距離Mのデータをもらう(ステップ406)。
Next, the controller 6 receives information about the traveling direction and traveling distance of the vehicle body 1 from the main computer, that is, data on the traveling angle θ and traveling distance M from the current position to the traveling direction (step 406).

【0018】次に、コントローラ6は車体1の旋回中心
Zの位置を演算で求める(ステップ408)。ここで、
三角形5・2a・2bの基準点5が目的位置5’に移動
するときの回転中心Z点は、基準点5と目的位置5’の
中心点から延ばした垂線と駆動輪の位置2a,2bの延
長線が交わる点である。
Next, the controller 6 calculates the position of the turning center Z of the vehicle body 1 (step 408). here,
The center Z of rotation when the reference point 5 of the triangles 5 2a 2b moves to the target position 5 ′ is the perpendicular line extending from the center point of the reference point 5 and the target position 5 ′ and the positions 2a and 2b of the drive wheels. This is the point where the extension lines intersect.

【0019】次に、以下に述べるような方法で、コント
ローラ6は車体1の旋回量θxを求める(ステップ41
0)。
Next, the controller 6 obtains the turning amount θx of the vehicle body 1 by the method described below (step 41).
0).

【0020】まず、駆動輪2a,2bと基準点5の前後
方向のいずれをHとすると、駆動輪2a,2bの中心点
の移動回転半径(SZ)は、図3中の三角形5ABの辺
5Bと三角形BCZの辺CZの和である。 辺5B=M/2*cosecθ で求められる。 辺ZC=H*cotθで求められる。 辺SZ=辺5B+辺CZ =M/2*cosecθ+H*cotθ =M*cosecθ/2+H*cosθ/sinθ =(M+2H*cosθ)/(2*sinθ) で求められる 。
First, if either of the front and rear directions of the drive wheels 2a and 2b and the reference point 5 is set to H, the moving turning radius (SZ) of the center point of the drive wheels 2a and 2b is the side 5B of the triangle 5AB in FIG. And the side CZ of the triangle BCZ. The side 5B = M / 2 * cosec θ. It is calculated by the side ZC = H * cotθ. Side SZ = side 5B + side CZ = M / 2 * cosec θ + H * cot θ = M * cosec θ / 2 + H * cos θ / sin θ = (M + 2H * cos θ) / (2 * sin θ)

【0021】よって駆動輪2aの移動回転半径は、辺2
aZ=辺SZ+辺2a2b/2となり、駆動輪2bの移
動回転半径は、辺2bZ=辺SZ−辺2a2b/2で求
められる。
Therefore, the radius of gyration of movement of the drive wheel 2a is the side 2
aZ = side SZ + side 2a2b / 2, and the moving radius of rotation of the drive wheel 2b is obtained by side 2bZ = side SZ−side 2a2b / 2.

【0022】また、移動角度及び移動後の車体角はθX
=θY=θZ で求められる。 ここで、θY=ARCTAN((H+Mcosθ)/(辺SZ-Msinθ)) =ARCTAN((H+Mcosθ)/(((M+2Hcosθ)/(2sinθ))-Msinθ)) =ARCTAN((H+Mcosθ)/((M+2Hcosθ-2Msinθ*sinθ)/2sinθ)) =ARCTAN((2sinθ(H+Mcosθ)/((M+2Hcosθ-2M(1-cosθ*cosθ))) =ARCTAN((2sinθ(H+Mcosθ))/(2cosθ(H+Mcosθ)-M)) また、 θZ=ARCTAN(H/辺SZ) =ARCTAN(H/((M+2Hcosθ)/2sinθ)) =ARCTAN(2Hsinθ/(M+2cosθ)) 次に、左右の後輪の回転量R、Lを求める(ステップ4
12)。基準点5を目的位置5’に移動させるときの右
車輪の移動距離(R)は、辺2b2を半径とする円周上を
θXだけ移動するので、R=2*辺2bZ*π*θX/360 で求
められる。
Further, the movement angle and the vehicle body angle after movement are θX.
= ΘY = θZ Here, θY = ARCTAN ((H + Mcosθ) / (side SZ-Msinθ)) = ARCTAN ((H + Mcosθ) / (((M + 2Hcosθ) / (2sinθ))-Msinθ)) = ARCTAN ((H + Mcosθ) / ((M + 2Hcosθ-2Msinθ * sinθ) / 2sinθ)) = ARCTAN ((2sinθ (H + Mcosθ) / ((M + 2Hcosθ-2M (1-cosθ * cosθ))) = ARCTAN ((2sinθ (H + Mcosθ)) / (2cosθ (H + Mcosθ) -M)) In addition, θZ = ARCTAN (H / side SZ) = ARCTAN (H / ((M + 2Hcosθ) / 2sinθ)) = ARCTAN (2Hsinθ / ( M + 2cos θ)) Next, the rotation amounts R and L of the left and right rear wheels are obtained (step 4
12). The moving distance (R) of the right wheel when moving the reference point 5 to the target position 5 ′ moves by θX on the circumference having the radius of the side 2b2, so R = 2 * side 2bZ * π * θX / Required by 360.

【0023】又、左車輪の移動距離(L)は、辺2aZを
半径とする円周上をθXだけ移動するので、 L=2*辺
2aZ*π*θX/360 で求められる。
Further, the moving distance (L) of the left wheel moves by θX on the circumference having the radius of the side 2aZ, so that L = 2 * side
It is calculated by 2aZ * π * θX / 360.

【0024】次に、回転量の多い方を主輪、少ない方を
従輪とし(ステップ414)、主輪、従輪を設定速度で
回転させる(ステップ416)。
Next, the one with the larger amount of rotation is the main wheel and the one with the smaller amount of rotation is the slave wheel (step 414), and the main wheel and the slave wheel are rotated at the set speed (step 416).

【0025】さらに、従輪の回転量を検出し、計算値と
比較し、多いときは従輪の回転を停止、少ないときは回
転させ、この処理を主輪が設定量の回転をするまで繰り
返し、主輪が設定量だけ回転したら主輪を停止させる
(ステップ418〜422)。
Further, the amount of rotation of the slave wheel is detected and compared with a calculated value. When the amount of slave wheel is large, the rotation of the slave wheel is stopped, and when it is small, it is rotated, and this process is repeated until the master wheel rotates by the set amount. When the wheel has rotated by the set amount, the main wheel is stopped (steps 418 to 422).

【0026】続いて、従輪を回転させ、後輪が設定量だ
け回転したら従輪を停止させる(ステップ424〜42
8)。
Then, the driven wheel is rotated, and when the rear wheel has rotated by the set amount, the driven wheel is stopped (steps 424 to 42).
8).

【0027】なお、右前方へ移動する場合は、上記ステ
ップ412におけるR,Lの計算で問題なく移動する
が、それ以外の方向の場合、移動はするが、無人搬送車
としては、不自然な動きになってしまう。すなわち、旋
回に近い動作をする。
When the vehicle moves to the right front, it moves without any problem in the calculation of R and L in step 412, but in the other directions, it moves, but it is unnatural as an automated guided vehicle. It will be in motion. That is, the operation is similar to turning.

【0028】そこで、このような場合、 進行方向が90°より小さければ、そのまま計算す
る。 進行方向が90°<θ<180°の時は、(180°
−θ)をθに置き換え計算し、左右後輪を共に逆転させ
る。
Therefore, in such a case, if the traveling direction is smaller than 90 °, the calculation is performed as it is. When the traveling direction is 90 ° <θ <180 °, (180 °
-Θ) is replaced with θ, and the left and right rear wheels are reversed.

【0029】進行方向が270°<θ<360°の時
は、(360°−θ)をθに置き換え計算し、左後輪の
回転量と右後輪の回転量を入れかえて共に正転させる。
When the traveling direction is 270 ° <θ <360 °, (360 ° -θ) is replaced with θ and the rotation amount of the left rear wheel and the rotation amount of the right rear wheel are exchanged for normal rotation. .

【0030】進行方向が180°<θ<270°の時
は、(θ−180°)をθに置き換え計算し、左後輪の
回転量と右後輪の回転量を入れかえて共に逆転させる。
When the traveling direction is 180 ° <θ <270 °, (θ-180 °) is replaced with θ, and the rotation amount of the left rear wheel and the rotation amount of the right rear wheel are replaced and both are reversed.

【0031】すなわち、右後方へ移動する場合、(18
0°−走行方向)を走行方向に置き換え同じ計算を行
い、左右の車輪を逆に回転させ移動させると、基準点5
を後退により目的位置5’に移動させる事が出来る。
That is, when moving to the rear right, (18
(0 ° -running direction) is replaced with the running direction, the same calculation is performed, and when the left and right wheels are rotated and moved in reverse, the reference point 5
Can be moved to the target position 5'by retreating.

【0032】又、左前方へ移動するときは、(360°
−走行角度)を走行角度に置き換え、計算を行い左右輪
の移動量を逆にして移動させると基準点5を目的位置
5’に移動させる事が出来る。
When moving to the left front, (360 °
-When the traveling angle) is replaced with the traveling angle, the calculation is performed, and the left and right wheels are moved in the opposite amounts, the reference point 5 can be moved to the target position 5 '.

【0033】又、左後方に移動するときは、(走行方向
−180°)を走行方向に置き換え、同じ計算を行い、
左右輪の移動量を逆にし、車輪も逆に回転させる事と後
退左折により、基準点5を目的位置5’に移動させる事
が出来る。
Further, when moving to the left rear, (running direction −180 °) is replaced with the running direction, the same calculation is performed,
It is possible to move the reference point 5 to the target position 5'by reversing the movement amount of the left and right wheels, rotating the wheels in the opposite direction, and backward turning left.

【0034】このようにして、駆動輪2a,2bを移動
距離R及びLだけ上記の方法で回転させることにより基
準点5が目的位置5’へ移動する。但し、このとき駆動
輪2a(2b)は、2b(2a)に対し一定の割合で回
転しなければならない。
In this way, the reference point 5 is moved to the target position 5'by rotating the drive wheels 2a, 2b by the moving distances R and L in the above manner. However, at this time, the drive wheel 2a (2b) must rotate at a constant rate with respect to 2b (2a).

【0035】通常はこのような場合、駆動用モ−タ−3
a,3bにサ−ボ系のシステムを構成しそれぞれ、速度
コントロ−ルにより一定速度で回転させる方式は一般的
である。
Normally, in such a case, the driving motor-3
It is a general method to construct a servo system in a and 3b and rotate them at a constant speed by a speed control.

【0036】本発明の場合、駆動源としてバッテリ−を
使用している為に、電力の消費を抑える事と、駆動輪2
a,2bの回転割合を更に正確に保つために、上記ステ
ップ414以下に示したような処理フローとした。
In the case of the present invention, since the battery is used as the drive source, the power consumption is suppressed and the drive wheel 2 is used.
In order to keep the rotation ratios of a and 2b more accurate, the processing flow is as shown in the above step 414 and thereafter.

【0037】すなわち、駆動輪2a,2bのうち、移動
距離が多い方を主輪、少ない方を従輪とし、従輪/主輪
の移動量の割合を予め演算により求めておき、主輪及び
従輪用の駆動モ−タ−3a,3bを指定された速度で回
転させる。このとき主輪の回転数をエンコ−ダ4a(4
b)により読みとり、その値と割合(従輪/主輪)とを
乗じた値と、従輪のエンコ−ダ4b(4a)を比較し、
従輪の回転量が多い場合は従輪の駆動モ−タ−3a(3
b)の回転をOFFにし、少ない場合はONにする事を
高速に繰り返す事により、主輪・従輪の回転割合を常に
理想に近い状態に保つ事が出来る。
That is, of the drive wheels 2a and 2b, the one having the longer travel distance is the main wheel and the one having the smaller travel distance is the slave wheel, and the ratio of the slave wheel / main wheel travel distance is calculated in advance and used for the master wheel and the slave wheel. The drive motors 3a and 3b are rotated at a designated speed. At this time, the rotation speed of the main wheel is set to the encoder 4a (4
b), read the value, multiply the value by the ratio (subordinate wheel / main wheel), and compare the encoder 4b (4a) of the secondary wheel with
When the amount of rotation of the driven wheel is large, the driven motor for the driven wheel-3a (3
By turning off the rotation of b) and turning it on at high speed when it is small, it is possible to always keep the rotation ratio of the main wheel and the sub-wheel close to the ideal state.

【0038】又、直進の場合駆動モ−タ−3a,3bを
指定された速度で回転させ、回転数をエンコ−ダ4a,
4bで読みとり、回転量が多い方の駆動モ−タ−の回転
をOFFさせる事を高速で繰り返す事により左右の駆動
輪2a,2bの回転量を常に同じにする事が出来る。
In the case of straight traveling, the drive motors 3a and 3b are rotated at a designated speed, and the rotation speed is changed to the encoder 4a,
It is possible to make the rotation amounts of the left and right drive wheels 2a and 2b always the same by reading at 4b and turning off the rotation of the drive motor having the larger rotation amount at high speed.

【0039】この方式の場合、無人搬送車を移動させる
のに必要最小限の電力ですみ、バッテリ−の消費を抑え
る事が出来る。
In the case of this system, the minimum electric power required for moving the automatic guided vehicle is sufficient, and the consumption of the battery can be suppressed.

【0040】なお、上記ステップ414以下で、進行方
向が前進のみか後退のみの場合は問題ないが、前進から
後退、後退から前進のように途中で進行方向を切り替え
るとき、途中で自在キャスター5が回転するために車体
1の位置がずれてしまう。これは、キャスターの回転が
制御システムで関知しないときに発生するために起こる
現象であり、ズレ分の補正が不可能である。
There is no problem if the traveling direction is forward only or backward only in the above step 414, but when the traveling direction is switched midway such as forward to backward and backward to forward, the flexible caster 5 is in the middle. The position of the vehicle body 1 is displaced due to the rotation. This is a phenomenon that occurs when the rotation of the caster is not known by the control system, and it is impossible to correct the deviation.

【0041】そこで、上記ステップ414以下の処理の
前に、この補正を行うのが望ましい。この補正を図5,
図6で説明する。なお、図の例は、自在キャスターが左
右5a,5bの2個有るが、1個の場合と何ら変わると
ころは無い。補正に当たっては、図6(A)の状態か
ら、車体1の方向転換をして強制的にキャスター5を回
転させるべく、図6(B)のように左右どちらかの駆動
輪2a,2bを先にキャスター5が真横の向きになるま
で回転させる。その結果、車体は1’の位置に移動す
る。その後図6(C)に示すように、もう一方の駆動輪
を同じだけ回転させキャスターを先に回転させる。その
結果、車体は1”の位置に移動する。
Therefore, it is desirable to carry out this correction before the processing of step 414 and thereafter. This correction is shown in FIG.
This will be described with reference to FIG. In the example of the figure, there are two free casters, the left and right 5a and 5b, but there is no difference from the case of one. In the correction, in order to forcibly rotate the caster 5 by changing the direction of the vehicle body 1 from the state of FIG. 6 (A), as shown in FIG. 6 (B), the drive wheel 2a, 2b on either the left or right side is moved first. Then, rotate the caster 5 until it faces straight. As a result, the vehicle body moves to the 1'position. Then, as shown in FIG. 6C, the other drive wheel is rotated by the same amount to rotate the caster first. As a result, the car body moves to the 1 "position.

【0042】図5において、 駆動輪2a,2bの間隔を PW(mm) 駆動輪の中心とキャスター5軸中心との距離を H(mm) キャスター5軸中心と取付け軸中心の距離を e(mm) 旋回による車体の旋回角を θa 車体の前へのずれを x(mm) 車体の左(右)へのずれを y(mm)とすると、 θa=arccos(H/(h−e)) x=PW−PWcosθa y=PWsinθa これにより、方向転換時の車体1のずれx,yが計算で
求められ、それ以降走行するときに補正することによ
り、正確な位置制御が可能になる。
In FIG. 5, the distance between the drive wheels 2a and 2b is PW (mm) The distance between the center of the drive wheels and the center of the caster axis is H (mm) The distance between the center of the caster axis and the center of the mounting axis is e (mm ) The turning angle of the vehicle body due to turning is θa. The deviation of the vehicle body to the front is x (mm), and the deviation of the vehicle body to the left (right) is y (mm). Θa = arccos (H / (he)) x = PW-PW cos θa y = PW sin θa Thus, the displacements x and y of the vehicle body 1 at the time of changing the direction are calculated, and corrective control can be performed by correcting the displacements when traveling thereafter.

【0043】この方法は、ベッド・ワゴン等比較的簡単
な移動装置に採用すると、前輪制御が不要であるため
に、低コスト化ができると共に、小電力化が実現できる
ため、様々な用途で利用可能である。
When this method is applied to a relatively simple moving device such as a bed and a wagon, front wheel control is not required, so that the cost can be reduced and the power consumption can be reduced, so that it can be used in various applications. It is possible.

【0044】なお、本発明は前輪駆動方式の無人搬送車
にも適用できることは言うまでもない。
Needless to say, the present invention can also be applied to a front wheel drive type automatic guided vehicle.

【0045】[0045]

【発明の効果】本発明によれば、車体の前後方向に中心
線に左右対称な位置に取り付けられた一対の駆動輪を駆
動させるための直流モ−タ−及び前記駆動輪の回転数を
検出するエンコ−ダを有するものにおいて、車体の基準
点を所定距離離れた目的位置へ正確に移動させることが
できる。特に、方向転換時の車体のずれx,yが計算で
求められ、それ以降走行するときに補正することによ
り、正確な位置制御が可能になる。
According to the present invention, a DC motor for driving a pair of drive wheels mounted symmetrically with respect to the center line in the front-rear direction of the vehicle body and the rotational speeds of the drive wheels are detected. In a vehicle having an encoder, the reference point of the vehicle body can be accurately moved to a target position separated by a predetermined distance. In particular, accurate position control becomes possible by calculating the displacements x and y of the vehicle body at the time of turning, and correcting the displacements when traveling thereafter.

【0046】この方法は、ベッド・ワゴン等比較的簡単
な移動装置に採用すると、前輪制御が不要であるため
に、低コスト化ができると共に、小電力化が実現できる
ため、様々な用途で利用可能である。
When this method is applied to a relatively simple moving device such as a bed and a wagon, front wheel control is not required, so that the cost can be reduced and the power consumption can be reduced. It is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る無人搬送車の車体1の
裏面を概念的に示す図である。
FIG. 1 is a view conceptually showing a back surface of a vehicle body 1 of an automated guided vehicle according to an embodiment of the present invention.

【図2】図1のコントローラの構成を示す図である。FIG. 2 is a diagram showing a configuration of a controller shown in FIG.

【図3】図1のコントローラによる車体の制御動作を説
明するための車体位置関係図である。
3 is a vehicle body positional relationship diagram for explaining a vehicle body control operation by the controller of FIG. 1. FIG.

【図4】図1のコントローラによる車体の制御動作を示
す制御フローである。
FIG. 4 is a control flow showing a control operation of a vehicle body by the controller of FIG.

【図5】進行方向を前進・後退いずれかに切り替えると
きの車体位置のずれ補正の説明図である。
FIG. 5 is an explanatory diagram of vehicle body position deviation correction when switching the traveling direction to either forward or backward.

【図6】図5の車体位置のずれ補正の動作説明図であ
る。
FIG. 6 is an explanatory diagram of an operation for correcting the displacement of the vehicle body position in FIG.

【符号の説明】[Explanation of symbols]

1…車体、2a,2b…駆動輪、3a,3b…直流モ−
タ−、4a、4b…ロータリーエンコ−ダ、5…自在キ
ャスター(補助輪)、6…コントローラ
1 ... vehicle body, 2a, 2b ... drive wheels, 3a, 3b ... direct current mode
4a, 4b ... Rotary encoder, 5 ... Flexible casters (auxiliary wheels), 6 ... Controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】車体の左右対称位置に取付けられた一対の
駆動輪と、補助輪と、バッテリーを動力源とし該駆動輪
を駆動させるため直流モ−タ−と、前記駆動輪の回転数
を検出するロータリーエンコ−ダと、制御情報及び前記
エンコーダの出力信号に基づき前記直流モ−タ−の回転
パルス及び回転方向を指令値として出力するコントロー
ラとを備えた自律走行式無人搬送車における走行制御方
法おいて、 前記コントローラは、前記車体を基準点から目的位置ま
で移動させるとき、該進行方向が前進から後退あるいは
後退から前進のように途中で切り替わるものである場
合、前記左右いずれかの駆動輪を先に前記補助輪がほぼ
真横の向きになるまで回転させ、その後、もう一方の駆
動輪を同じだけ回転させ前記補助輪を先に回転させて前
記車体の位置を最初の位置と平行な状態とし、該方向転
換時における前記車体のずれ量x,yを演算で求め、該
ずれ量x,yを補正するように前記直流モ−タ−を制御
して、前記基準点を前記目的位置に移動させることを特
徴とする自走行式無人搬送車における走行制御方法。
1. A pair of drive wheels mounted at symmetrical positions on a vehicle body, an auxiliary wheel, a DC motor for driving the drive wheels using a battery as a power source, and the rotational speeds of the drive wheels. Travel control in an autonomous guided vehicle that includes a rotary encoder for detection and a controller that outputs a rotation pulse and a rotation direction of the DC motor as command values based on control information and an output signal of the encoder. In the method, when the controller moves the vehicle body from a reference point to a target position, when the traveling direction is switched between forward and backward or backward and forward, the drive wheel on either the left or right side is changed. First until the auxiliary wheel is oriented almost laterally, then the other drive wheel is rotated by the same amount to rotate the auxiliary wheel first, and The position is made parallel to the initial position, the displacement amounts x and y of the vehicle body at the time of the direction change are calculated, and the DC motor is controlled so as to correct the displacement amounts x and y. A traveling control method in a self-propelled automatic guided vehicle, wherein the reference point is moved to the target position.
【請求項2】請求項1記載の自走行式無人搬送車におけ
る走行制御方法において、 前記コントローラは、前記制御情報として車体の進行方
向の移動角度θ及び移動距離Mを入手し、前記制御情報
に基づいて前記車体上の基準点の旋回中心Zの位置を求
め、次に、前記制御情報及び前記車体のずれ量x,yに
基づいて前記基準点を目的位置まで移動させるために必
要な前記駆動輪の回転量R、Lを演算により求め、該回
転量の多い方を主輪、少ない方を従輪とし、従輪/主輪
の回転割合を予め計算により求め、該主輪、従輪を設定
速度で回転させ、さらに、前記従輪の回転量を検出し、
これを前記回転割合と比較して該割合より多いときは前
記従輪の回転を停止、少ないときは回転させ、この処理
を前記主輪が前記設定の回転量に達するまで繰り返し、
前記主輪が前記設定の回転量に達したら該主輪を停止さ
せ、続いて、前記従輪を回転させ、該従輪が前記設定量
だけ回転したら該従輪を停止させることを特徴とする自
走行式無人搬送車における走行制御方法。
2. The traveling control method for a self-propelled automatic guided vehicle according to claim 1, wherein the controller obtains a traveling angle θ and a traveling distance M of the vehicle body in the traveling direction as the control information, and stores the control information in the control information. Based on the control information and the displacement amounts x and y of the vehicle body, the position of the turning center Z of the reference point on the vehicle body is obtained based on the drive, and the drive required to move the reference point to the target position. The rotation amounts R and L of the wheels are obtained by calculation, the one having the larger rotation amount is the main wheel and the one having the smaller rotation amount is the slave wheel, the rotation ratio of the slave wheel / main wheel is previously calculated, and the main wheel and the slave wheel are set at the set speed. Rotate, and further detect the amount of rotation of the driven wheel,
When this is compared with the rotation ratio and is larger than the ratio, the rotation of the slave wheel is stopped, and when it is small, it is rotated, and this process is repeated until the main wheel reaches the set rotation amount,
A self-propelled type characterized in that when the main wheel reaches the set rotation amount, the main wheel is stopped, then the slave wheel is rotated, and when the slave wheel rotates by the set amount, the slave wheel is stopped. Driving control method for automatic guided vehicle.
JP7236284A 1995-09-14 1995-09-14 Method for controlling traveling of autonomously traveling automated guided vehicle Pending JPH0981240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7236284A JPH0981240A (en) 1995-09-14 1995-09-14 Method for controlling traveling of autonomously traveling automated guided vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7236284A JPH0981240A (en) 1995-09-14 1995-09-14 Method for controlling traveling of autonomously traveling automated guided vehicle

Publications (1)

Publication Number Publication Date
JPH0981240A true JPH0981240A (en) 1997-03-28

Family

ID=16998513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7236284A Pending JPH0981240A (en) 1995-09-14 1995-09-14 Method for controlling traveling of autonomously traveling automated guided vehicle

Country Status (1)

Country Link
JP (1) JPH0981240A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8380396B2 (en) 2004-11-09 2013-02-19 Honda Motor Co., Ltd. Travel control method for self-propelled carriage
KR101990266B1 (en) * 2019-01-29 2019-06-17 이명효 Trackless truck
CN110150259A (en) * 2019-07-01 2019-08-23 上海海事大学 A kind of intelligence plant protection trolley and its method
CN110150259B (en) * 2019-07-01 2024-05-14 上海海事大学 Intelligent plant protection trolley and method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8380396B2 (en) 2004-11-09 2013-02-19 Honda Motor Co., Ltd. Travel control method for self-propelled carriage
KR101990266B1 (en) * 2019-01-29 2019-06-17 이명효 Trackless truck
CN110150259A (en) * 2019-07-01 2019-08-23 上海海事大学 A kind of intelligence plant protection trolley and its method
CN110150259B (en) * 2019-07-01 2024-05-14 上海海事大学 Intelligent plant protection trolley and method thereof

Similar Documents

Publication Publication Date Title
US5073749A (en) Mobile robot navigating method
JP4264399B2 (en) Automated guided vehicle
JP3025604B2 (en) Unmanned vehicle steering control method
JP4984831B2 (en) Automated guided vehicle and control method thereof
JP3368704B2 (en) Unmanned vehicle steering control method
JP3034121B2 (en) Unmanned vehicle control device
JPH0981240A (en) Method for controlling traveling of autonomously traveling automated guided vehicle
JP2940300B2 (en) Direction indication method for autonomous guided vehicle
JPH0981238A (en) Method for controlling travelling of autonomously traveling automated guided vehicle
JP2907512B2 (en) Control device for omnidirectional vehicles
JP2011123822A (en) Transfer vehicle and program
JP2000148247A (en) Three-wheel steered unmanned carrier
JPH10222225A (en) Unmanned travel body and its travel method
JP2733924B2 (en) Travel control device for moving objects
Bohlmann et al. Automated odometry self-calibration for car-like robots with four-wheel-steering
JP3846829B2 (en) Steering angle control device for moving body
JPH0445042Y2 (en)
JP3846828B2 (en) Steering angle control device for moving body
JPS6339923B2 (en)
KR100188447B1 (en) Automatic guide vehicle
CN117601902A (en) Dual PID tracking control method suitable for front and rear axle independent steering AGVs
JPH08272443A (en) Attitude control method for unmanned carrier using front and back wheels
JP2741411B2 (en) Precise stopping method for omnidirectional vehicles
JP3804235B2 (en) Automated guided vehicle
Adachi et al. Study on a new four-wheel-steering control method at low speeds-front-end path memorizing method