JPH0560049A - Pumping device for hydraulic power generation using compressed air - Google Patents

Pumping device for hydraulic power generation using compressed air

Info

Publication number
JPH0560049A
JPH0560049A JP3242345A JP24234591A JPH0560049A JP H0560049 A JPH0560049 A JP H0560049A JP 3242345 A JP3242345 A JP 3242345A JP 24234591 A JP24234591 A JP 24234591A JP H0560049 A JPH0560049 A JP H0560049A
Authority
JP
Japan
Prior art keywords
water
air
container
compressed air
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3242345A
Other languages
Japanese (ja)
Inventor
Tsuguo Nagata
二生 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3242345A priority Critical patent/JPH0560049A/en
Publication of JPH0560049A publication Critical patent/JPH0560049A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

PURPOSE:To feed water at a low position to a high position under a pressure by using expanding action of compressed air. CONSTITUTION:A closed container 3 is disposed between an upstream aquarium 1 at a high position and a downstream aquarium 2 at a low position. The inside of the closed container 3 is composed of a closed water chamber 5 and an air expansion chamber 6. A water inflow tube 7 for letting water from the downstream aquarium 2 flow into the closed water chamber is connected with the closed water chamber 5. A feed tube 8 for feeding water in the closed water chamber 5 to the upstream aquarium 1 under a pressure is also connected. At the air expansion chamber 6, a compressed air container 9 where compressed air for expanding the inner volume of the air expansion chamber is inserted under pressure is installed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧縮空気の膨張作用を
利用した水力発電における揚水装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pumping system for hydroelectric power generation utilizing the expansion action of compressed air.

【0002】[0002]

【従来の技術】産業上エネルギーは種々の分野で必要で
す。圧縮空気は大気圧まで降下する過程で外力に抗して
容積を拡大するので、力学で言う仕事をする能力即ちエ
ネルギーを持っています。圧縮空気はエネルギーを保有
しているのでほとんどの産業に利用でき、現在、圧縮高
圧空気は種々の産業分野で使われています。
2. Description of the Related Art Industrial energy is required in various fields. Compressed air expands its volume against external forces in the process of falling to atmospheric pressure, so it has the ability or energy to do the work in dynamics. Because compressed air has energy, it can be used in most industries, and currently compressed high pressure air is used in various industrial fields.

【0003】[0003]

【発明が解決しようとする課題】本発明は、この圧縮空
気のもつエネルギー、すなわち外力に抗して容積を拡大
する膨張作用を利用して、低位置にある水を高位置に圧
送し、水のエネルギーとして利用できる状態にする装置
を提供するものである。この装置は初めの水と圧縮空気
があれば何度でも繰り返すことが可能であり現在使われ
ている化石燃料や原子力をもとにしたエネルギーの代替
えとなり得るもので、環境問題とエネルギー問題解決の
有力な手段となりえるものである。
DISCLOSURE OF THE INVENTION The present invention utilizes the energy of compressed air, that is, the expansion effect of expanding the volume against an external force, to pump water in a low position to a high position, It is intended to provide a device that can be used as energy of the. This device can be repeated any number of times if there is initial water and compressed air, and it can replace the energy based on fossil fuels and nuclear power currently used, and it can solve environmental problems and energy problems. It can be a powerful tool.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明の揚水装置においては、高位置にある上流貯
水池と低位置にある下流貯水池との間に、密閉容器を配
設し、この密閉容器内を上下または左右に摺動されるピ
ストンを介してピストンの片方にある密閉水室とピスト
ンの他方にある空気膨張室とに隔てて構成し、前記密閉
水室にはこの密閉水室内に前記下流貯水池からの水を流
入するための水流入管を連結し、また密閉水室内の水を
前記上流貯水池に圧送する送水管を連結し、これらの管
には水の流量を制御する制御弁を設けてあり、さらに前
記空気膨張室にはこの空気膨張室の内容積を拡大させて
ピストンを押しやるための圧縮空気を放出できるように
した圧縮空気圧入容器を流量制御弁を介して取付けたも
のである。
In order to solve the above problems, in the pumping apparatus of the present invention, a closed container is provided between the upstream reservoir at a high position and the downstream reservoir at a low position, The sealed container is divided into a sealed water chamber on one side of the piston and an air expansion chamber on the other side of the piston via a piston that is slid vertically or horizontally, and the sealed water chamber contains the sealed water. Control for connecting a water inflow pipe for inflowing water from the downstream reservoir to the room, and connecting a water pipe for pumping the water in the closed water chamber to the upstream reservoir, and controlling the flow rate of water to these pipes A valve is provided, and a compressed air pressurizing container capable of discharging compressed air for pushing the piston by expanding the internal volume of the air expansion chamber is attached to the air expansion chamber via a flow control valve. It is a thing.

【0005】また、上記課題を解決するために、本発明
の他の揚水装置においては、高位置にある上流貯水池と
低位置にある下流貯水池との間に、密閉容器を配設し、
この密閉容器内を下方が開放された隔壁を介して密閉水
室と空気膨張室とに区分けして構成し、前記密閉水室に
はこの密閉水室内に前記下流貯水池からの水を流入する
ための水流入管を連結し、また密閉水室内の水を前記上
流貯水池に圧送する送水管を連結し、これらの管には水
の流量を制御する制御弁を設けてあり、さらに前記空気
膨張室の下方位置には圧縮空気の放出により気泡を空気
膨張室内に貯めて空気膨張室の内容積を拡大するための
圧縮空気を放出できるようにした圧縮空気圧入容器を流
量制御弁を介して取付けたものである。
In order to solve the above-mentioned problems, in another pumping apparatus of the present invention, a closed container is provided between an upstream reservoir at a high position and a downstream reservoir at a low position,
The inside of this closed container is divided into a closed water chamber and an air expansion chamber through a partition wall whose lower part is opened, and the water from the downstream reservoir flows into the closed water chamber. Connected to the water inflow pipe of, and also connected to the water supply pipe for pressure-feeding the water in the closed water chamber to the upstream reservoir, these pipes are provided with a control valve for controlling the flow rate of water, and further, the air expansion chamber At the lower position, a compressed air pressurizing container is attached via a flow control valve that is capable of storing bubbles in the air expansion chamber by discharging compressed air and discharging compressed air to expand the internal volume of the air expansion chamber. Is.

【0006】また、上記課題を解決するために、本発明
の他の揚水装置においては、高位置にある上流貯水池と
低位置にある下流貯水池との間に、密閉容器を配設し、
この密閉容器内に、内部を空気膨張室とし、この空気膨
張室の内容積を増減可能なよう伸縮自在な構造をもつ膨
張空気収納容器を設けてなり、前記密閉容器にはこの密
閉容器内に前記下流貯水池からの水を流入するための水
流入管を連結し、また密閉容器内の水を前記上流貯水池
に圧送する送水管を連結し、これらの管には水の流量を
制御する制御弁を設けてあり、前記膨張空気収納容器に
は、この容器内部の空気膨張室の内容積を拡大するため
の圧縮空気を放出できるようにした圧縮空気圧入容器
と、膨張空気を排出するための空気抜き管を流量制御弁
を介して取付けたものである。
In order to solve the above problems, in another pumping apparatus of the present invention, a closed container is provided between an upstream reservoir at a high position and a downstream reservoir at a low position,
In this closed container, an inside is made an air expansion chamber, and an expanded air storage container having a structure capable of expanding and contracting so as to increase or decrease the internal volume of this air expansion chamber is provided. A water inflow pipe for inflowing water from the downstream reservoir is connected, and a water pipe for pumping the water in the closed container to the upstream reservoir is connected, and a control valve for controlling the flow rate of water is connected to these pipes. The expanded air storage container is provided with a compressed air pressurizing container capable of releasing compressed air for expanding the internal volume of the air expansion chamber inside the container, and an air vent pipe for discharging the expanded air. Is attached via a flow control valve.

【0007】[0007]

【実施例】図1に示した揚水装置は、高位置にある上流
貯水池1と低位置にある水を貯めた下流貯水池2との間
に、密閉容器3を配設し、この密閉容器3内を上下に摺
動するピストン4を介してその片方にある密閉水室5と
他方にある空気膨張室6とに隔てて構成し、前記密閉水
室5にはこの密閉水室5内に前記下流貯水池2からの水
を流入するための水流入管7を連結し、また密閉水室5
内の水を前記上流貯水池1に圧送する送水管8を連結
し、さらに前記空気膨張室6にはピストン4を押して空
気膨張室6の内容積を拡大するための圧縮空気を圧入し
た圧縮空気圧入容器9を取り付けてある。この圧縮空気
は、本発明者によって既に提案された特願平2−174
532号、特願平3−210462号及び特願平3−2
10463号の圧縮空気の作成方法及び作成装置で得ら
れた圧縮空気が用いられる。この圧縮空気圧入容器9と
前記空気膨張室6との間には第1制御バルブ11を設け
てあり、この第1制御バルブ11を調節することによ
り、圧縮空気圧入容器9から前記空気膨張室6内へと放
出される圧縮空気の放出量を制御している。図中、符号
12は前記水流入管7に設けられた第2制御バルブ、符
号13は送水管8に設けられた第3制御バルブ、符号1
4は空気抜き管10に設けられた第4制御バルブであ
り、これらのバルブは水または空気の流れを制御してい
る。なお、特に図示してないがピストン4の運動方向は
水平であっても良いものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the pumping apparatus shown in FIG. 1, a closed container 3 is arranged between an upstream reservoir 1 at a high position and a downstream reservoir 2 at a low position for storing water. Is separated into a closed water chamber 5 on one side and an air expansion chamber 6 on the other side through a piston 4 that slides up and down. The water inflow pipe 7 for inflowing water from the reservoir 2 is connected, and the closed water chamber 5 is also connected.
Compressed air press-fitting in which a water supply pipe 8 for pumping water in the upstream reservoir 1 is connected, and compressed air for pressing the piston 4 into the air expansion chamber 6 to expand the internal volume of the air expansion chamber 6 is pressed. A container 9 is attached. This compressed air corresponds to the Japanese Patent Application No. 2-174 already proposed by the present inventor.
No. 532, Japanese Patent Application No. 3-210462 and Japanese Patent Application No. 3-2
The compressed air obtained by the method and apparatus for producing compressed air of No. 10463 is used. A first control valve 11 is provided between the compressed air press-fitting container 9 and the air expansion chamber 6, and by adjusting the first control valve 11, the compressed air press-fitting container 9 is removed from the air expansion chamber 6. It controls the amount of compressed air released into the interior. In the figure, reference numeral 12 is a second control valve provided in the water inflow pipe 7, reference numeral 13 is a third control valve provided in the water supply pipe 8, and reference numeral 1
Reference numeral 4 is a fourth control valve provided in the air vent pipe 10, and these valves control the flow of water or air. It should be noted that although not particularly shown, the movement direction of the piston 4 may be horizontal.

【0008】図2に示した揚水装置は、前記圧縮空気圧
入容器9を密閉容器3の上部に取り付けてある。このよ
うに、この実施例では圧縮空気圧入容器9を密閉容器3
の上部に取り付けてあるため、図1に示した装置に比
べ、ピストン4や密閉水室5内の水の重力がかからず、
よって容器9から放出される圧縮空気によってピストン
4を押し空気膨張室6の内容積を拡大する工程が効率良
く行われる。図中、符号15は下方が開放された隔壁で
あるが、この隔壁15は、前記したように圧縮空気圧入
容器9を密閉容器3の上部に取り付け、且つ水流入管7
と送水管8を密閉容器3の上部側に取り付けた構成とし
たため、この水流入管7と送水管8に連結される前記密
閉水室5を密閉容器3の上部側にも形成するためであ
る。なお、この隔壁15は水流入管7と送水管8をピス
トン4の最大下降位置より下部に設けておけば必要ない
ものである。この実施例におけるその他の構成は図1の
実施例と同様である。
In the water pumping apparatus shown in FIG. 2, the compressed air pressurizing container 9 is attached to the upper part of the closed container 3. As described above, in this embodiment, the compressed air press-fitting container 9 is replaced by the closed container 3.
Since it is attached to the upper part of the device, the gravity of water in the piston 4 and the closed water chamber 5 is not applied compared to the device shown in FIG.
Therefore, the process of pushing the piston 4 by the compressed air discharged from the container 9 and expanding the inner volume of the air expansion chamber 6 is efficiently performed. In the figure, reference numeral 15 is a partition wall whose lower part is opened. This partition wall 15 has the compressed air pressurizing container 9 attached to the upper part of the closed container 3 and the water inflow pipe 7 as described above.
This is because the water supply pipe 8 is attached to the upper side of the closed container 3 so that the closed water chamber 5 connected to the water inflow pipe 7 and the water supply pipe 8 is also formed on the upper side of the closed container 3. The partition wall 15 is not necessary if the water inflow pipe 7 and the water supply pipe 8 are provided below the maximum descending position of the piston 4. Other configurations in this embodiment are the same as those in the embodiment of FIG.

【0009】図3に示した揚水装置は、高位置にある上
流貯水池1と低位置にある下流貯水池2との間に、密閉
容器3を配設し、この密閉容器3内を下方が開放された
隔壁15を介して密閉水室5と空気膨張室6とに構成
し、前記密閉水室5にはこの密閉水室5内に前記下流貯
水池2からの水を流入するための水流入管7を連結し、
また密閉水室5内の水を前記上流貯水池1に圧送する送
水管8を連結し、さらに前記空気膨張室6にこの空気膨
張室6の内容積を拡大するための圧縮空気を圧入した圧
縮空気圧入容器9を取り付けてある。図3の装置は、圧
縮空気圧入容器9から密閉容器3内へと放出される圧縮
空気の気泡が浮力により上昇して隔壁15によって隔て
られた空気膨張室6内に溜るようにしてある。なお、符
号16は第2空気膨張室であり、この第2空気膨張室1
6は前記空気膨張室6で捕捉しきれなかった圧縮空気の
気泡を貯める空気室である。それ以外は図1の装置と同
様である。
In the pumping apparatus shown in FIG. 3, a closed container 3 is arranged between an upstream reservoir 1 at a high position and a downstream reservoir 2 at a low position, and the inside of this sealed container 3 is opened downward. The closed water chamber 5 and the air expansion chamber 6 are configured through a partition wall 15, and a water inflow pipe 7 for flowing water from the downstream reservoir 2 into the closed water chamber 5 is provided in the closed water chamber 5. Connect
Further, a compressed air pressure is formed by connecting a water pipe 8 for pumping the water in the closed water chamber 5 to the upstream reservoir 1 and further pressurizing compressed air for expanding the inner volume of the air expansion chamber 6 into the air expansion chamber 6. A container 9 is attached. In the apparatus of FIG. 3, the compressed air bubbles discharged from the compressed air pressurizing container 9 into the closed container 3 rise by buoyancy and collect in the air expansion chamber 6 separated by the partition wall 15. Reference numeral 16 is a second air expansion chamber, and the second air expansion chamber 1
Reference numeral 6 is an air chamber for storing bubbles of compressed air that could not be captured in the air expansion chamber 6. Other than that is the same as the apparatus of FIG.

【0010】図4に示した揚水装置は、高位置にある上
流貯水池1と低位置にある下流貯水池2との間に、密閉
容器3を配設し、この密閉容器3内を隔壁15を介して
密閉水室5と膨張空気収納容器収容室17とに構成し、
前記密閉水室5にはこの密閉水室5内に前記下流貯水池
2からの水を流入するための水流入管7を連結し、また
密閉水室5内の水を前記上流貯水池1に圧送する送水管
8を連結してある。前記膨張空気収納容器収容室17に
は内部を空気膨張室6とし、内部空気圧力によりこの空
気膨張室6の内容積を増減可能なよう伸縮自在な構造を
もつ膨張空気収納容器18を設けてある。この膨張空気
収納容器18には圧縮空気圧入容器9が第1制御バルブ
11を介して取り付けられると共に膨張後の空気を排出
する空気抜き管10が第4制御バルブ14を介して取付
けられている。図4の装置は図3に示した装置を改良し
たもので、前記膨張空気収納容器18によって圧縮空気
圧入容器9から放出された圧縮空気を空気膨張室6内に
効率良く捕捉できるようにしたものである。
In the pumping system shown in FIG. 4, a closed container 3 is arranged between an upstream reservoir 1 at a high position and a downstream reservoir 2 at a low position, and the inside of this closed container 3 is separated by a partition wall 15. To form a closed water chamber 5 and an expanded air storage container storage chamber 17,
A water inflow pipe 7 for inflowing water from the downstream reservoir 2 into the closed water chamber 5 is connected to the closed water chamber 5, and the water in the closed water chamber 5 is sent under pressure to the upstream reservoir 1. The water pipe 8 is connected. The inside of the expanded air storage container storage chamber 17 is provided with an air expansion chamber 6, and an expanded air storage container 18 having a stretchable structure is provided so that the internal volume of the air expansion chamber 6 can be increased or decreased by the internal air pressure. .. A compressed air press-fitting container 9 is attached to the expanded air storage container 18 via a first control valve 11, and an air vent pipe 10 for discharging the expanded air is attached via a fourth control valve 14. The apparatus shown in FIG. 4 is an improved version of the apparatus shown in FIG. 3, and the compressed air released from the compressed air pressurizing container 9 by the expanded air storage container 18 can be efficiently captured in the air expansion chamber 6. Is.

【0011】図1乃至図4の装置の作用について説明す
れば、初めに下流貯水池2から水流入管7を通して図示
しない発電装置による発電後の使用済の水を密閉水室5
内に流入し、この密閉水室5内を水で満たしておく。空
気膨張室6の空気は第4制御バルブ14を開いて空気抜
き管10から全部抜いておく。第2制御バルブ12と第
4制御バルブ14を閉じ、第3制御バルブ13を開けて
おく。空気膨張室6には圧縮空気圧入容器9の第1制御
バルブ11を僅かに開いて取り付ける。図1と図2の装
置はピストン4を使用した場合で、圧縮空気圧入容器9
から放出された圧縮空気の圧力は密閉水室5内の水圧よ
りはるかに大きいからピストン4を押し水を押し上げ
る。図3の装置はピストンを使用しない場合で、圧縮空
気圧入容器9から放出された圧縮空気の気泡は容積を拡
大しながら密閉水室5内の水中を上昇し空気膨張室6に
溜る。その容積だけ水を押し上げる。図4の装置は圧縮
空気圧入容器9から放出した空気は内部を空気膨張室6
とした伸縮自在な膨張空気収納容器18の中に進入し、
空気膨張室6の容積を増大しその容積だけ水を押し上げ
る。いずれの場合も高圧の圧縮空気が膨張した容積分だ
け水は送水管8を上昇し管が水で満たされると上流貯水
池1に流入する。圧縮空気圧入容器9からの空気の放出
が殆ど止まったら第3制御バルブ13を閉じ、空気抜き
管10の第4制御バルブ14を開けて空気を抜き、第2
制御バルブ12を開けて下流貯水池2の発電後の水を密
閉水室5内に導く。空気膨張室6の空気が全部抜けたら
第2制御バルブ12と第4制御バルブ14を閉め、新し
い圧縮空気圧入容器9を取り付けて第3制御バルブ13
を開けて前と同じことを繰り返すことにより、発電後に
使用した水を上流貯水池1に送り、繰り返し発電に利用
できるようになる。この方法は、高圧空気のもつ空気膨
張エネルギーで、低い位置にある水のもつ重力による位
置のエネルギーを高所に押し上げただけ増加させること
により再び発電に利用できるようにしたことになる。
The operation of the apparatus shown in FIGS. 1 to 4 will be described. First, used water after power generation by a power generator (not shown) from the downstream reservoir 2 through the water inflow pipe 7 is closed water chamber 5.
The inside of the closed water chamber 5 is filled with water. All the air in the air expansion chamber 6 is removed from the air vent pipe 10 by opening the fourth control valve 14. The second control valve 12 and the fourth control valve 14 are closed, and the third control valve 13 is opened. The first control valve 11 of the compressed air press-fitting container 9 is attached to the air expansion chamber 6 by slightly opening it. 1 and 2 is the case where the piston 4 is used, the compressed air pressurizing container 9
Since the pressure of the compressed air released from is much larger than the water pressure in the closed water chamber 5, the piston 4 is pushed and the water is pushed up. The apparatus of FIG. 3 does not use a piston, and the bubbles of the compressed air discharged from the compressed air pressurizing container 9 rise in the water in the sealed water chamber 5 and accumulate in the air expansion chamber 6 while expanding the volume. Push up the water by that volume. In the device shown in FIG. 4, the air discharged from the compressed air pressurizing container 9 has an air expansion chamber 6 inside.
Enter into the expandable air storage container 18
The volume of the air expansion chamber 6 is increased and water is pushed up by that volume. In any case, water rises in the water supply pipe 8 by the volume of the compressed high-pressure air, and flows into the upstream reservoir 1 when the pipe is filled with water. When the release of air from the compressed air pressurizing container 9 is almost stopped, the third control valve 13 is closed, and the fourth control valve 14 of the air vent pipe 10 is opened to release the air.
The control valve 12 is opened to guide the water after power generation in the downstream reservoir 2 into the sealed water chamber 5. When all the air in the air expansion chamber 6 is released, the second control valve 12 and the fourth control valve 14 are closed, a new compressed air pressurizing container 9 is attached, and the third control valve 13 is attached.
By opening and repeating the same procedure as before, the water used after power generation can be sent to the upstream reservoir 1 and repeatedly used for power generation. This method means that the air expansion energy of the high-pressure air increases the energy of the gravity position of the water in the low position to the high place so that it can be used again for power generation.

【0012】図5乃至図8は本装置の応用例を示したも
のである。図5はビルの屋上の上流貯水槽1と地下貯水
槽2を設け、図2と同様な装置により小規模な発電を実
施している例である。水は下水処理水などが利用でき
る。また、図6は都市の洪水を一時溜める地下貯水池2
の水を地上貯水池1に押し上げてから河川で自然流下さ
せている例である。また、図7は河川または潅漑用水路
の水を耕地に潅漑するために耕地に設けられた用水路に
揚水している例である。また、図8は海または湖沼を下
流貯水池2とし、近くの山の谷部にダムを築造して造ら
れた貯水池を上流貯水池1として利用した水力発電の例
である。図5、図8において符号20は発電機を示して
いる。また図5乃至図8における符号の説明は図2と同
様である。
5 to 8 show application examples of the present apparatus. FIG. 5 is an example in which an upstream water storage tank 1 and an underground water storage tank 2 are provided on the roof of a building and a small-scale power generation is performed by the same device as in FIG. Sewage treated water can be used as water. In addition, Figure 6 shows an underground reservoir 2 that temporarily stores floods in the city.
This is an example in which the above water is pushed up to the surface reservoir 1 and then naturally flowed down by the river. Further, FIG. 7 shows an example of pumping water from a river or an irrigation canal into an irrigation canal provided in the cultivated land in order to irrigate the arable land. Further, FIG. 8 is an example of hydroelectric power generation in which the ocean or lake is used as the downstream reservoir 2 and a reservoir constructed by constructing a dam in the valley of a nearby mountain is used as the upstream reservoir 1. In FIGS. 5 and 8, reference numeral 20 indicates a generator. The description of the reference numerals in FIGS. 5 to 8 is the same as in FIG.

【0013】[0013]

【発明の効果】本発明は、圧縮空気のエネルギーを利用
して、低位置にある水を高位置に押し上げることにより
水のもつ位置のエネルギーを増加させたものである。水
力発電の使用済の水を再び上流貯水池に戻すことによ
り、同じ水を何度でも発電することは一つの応用例であ
り、例えば下水処理水等を利用して都市部のビル等で小
規模の水力発電施設を設けた場合にも勿論利用可能であ
る。特に図8に示した海水湖沼水の利用は発電に適した
地点の選択の幅を大きく拡大したものである。発電以外
にも例えば低平地で水を高所に揚水したいときは揚水ポ
ンプと同様な使い方ができるので電力の代用になる等広
範囲に応用可能である。エネルギー源として地球環境の
汚染の問題や文明社会の成長の限界の要因となり得るエ
ネルギー問題の解決に有力な手段となるであろう。
According to the present invention, the energy of the position of water is increased by pushing the water in the low position to the high position by using the energy of compressed air. It is one application example to generate the same water over and over again by returning the used water from the hydroelectric power generation to the upstream reservoir again. Of course, it can also be used when the hydroelectric power generation facility is installed. In particular, the use of seawater lake water shown in FIG. 8 greatly expands the range of selection of points suitable for power generation. In addition to power generation, for example, when it is desired to pump water to a high place in a low-lying area, it can be used in the same way as a pump, so it can be used in a wide range of applications such as a substitute for electric power. As an energy source, it will be a powerful tool for solving the problems of pollution of the global environment and the energy problems that can be the limiting factor for the growth of civilized society.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の揚水装置を概略的に示す縦断面図であ
る。
FIG. 1 is a vertical sectional view schematically showing a water pumping device of the present invention.

【図2】本発明の揚水装置の他例を概略的に示す縦断面
図である。
FIG. 2 is a vertical sectional view schematically showing another example of the water pumping device of the present invention.

【図3】本発明の揚水装置の他例を概略的に示す縦断面
図である。
FIG. 3 is a vertical sectional view schematically showing another example of the water pumping apparatus of the present invention.

【図4】本発明の揚水装置の他例を概略的に示す縦断面
図である。
FIG. 4 is a vertical cross-sectional view schematically showing another example of the water pumping device of the present invention.

【図5】本発明の揚水装置の応用例を概略的に示す縦断
面図である。
FIG. 5 is a vertical cross-sectional view schematically showing an application example of the water pumping device of the present invention.

【図6】本発明の揚水装置の他の応用例を概略的に示す
縦断面図である。
FIG. 6 is a vertical sectional view schematically showing another application example of the water pumping apparatus of the present invention.

【図7】本発明の揚水装置の他の応用例を概略的に示す
縦断面図である。
FIG. 7 is a vertical sectional view schematically showing another application example of the water pumping apparatus of the present invention.

【図8】本発明の揚水装置の他の応用例を概略的に示す
縦断面図である。
FIG. 8 is a vertical sectional view schematically showing another application example of the water pumping apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 上流貯水池 2 下流貯水池 3 密閉容器 4 ピストン 5 密閉水室 6 空気膨張室 7 水流入管 8 送水管 9 圧縮空気圧入容器 10 空気抜き管 11 第1制御バルブ 12 第2制御バルブ 13 第3制御バルブ 14 第4制御バルブ 15 隔壁 16 第2空気膨張室 17 膨張空気収納容器収容室 18 膨張空気収納容器 1 Upstream Reservoir 2 Downstream Reservoir 3 Closed Container 4 Piston 5 Closed Water Chamber 6 Air Expansion Chamber 7 Water Inflow Pipe 8 Water Transmission Pipe 9 Compressed Air Pressurizing Container 10 Air Vent Pipe 11 1st Control Valve 12 2nd Control Valve 13 3rd Control Valve 14th 4 Control Valve 15 Partition 16 Second Air Expansion Chamber 17 Expansion Air Storage Container Storage Chamber 18 Expansion Air Storage Container

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高位置にある上流貯水池と低位置にある
下流貯水池との間に、密閉容器を配設し、この密閉容器
内を上下または左右に摺動されるピストンを介してピス
トンの片方にある密閉水室とピストンの他方にある空気
膨張室とに隔てて構成し、前記密閉水室にはこの密閉水
室内に前記下流貯水池からの水を流入するための水流入
管を連結し、また密閉水室内の水を前記上流貯水池に圧
送する送水管を連結し、これらの管には水の流量を制御
する制御弁を設けてあり、さらに前記空気膨張室にはこ
の空気膨張室の内容積を拡大させてピストンを押しやる
ための圧縮空気を放出できるようにした圧縮空気圧入容
器を流量制御弁を介して取付けたことを特徴とする、圧
縮空気を利用した水力発電における揚水装置。
1. A closed container is provided between an upstream reservoir located at a high position and a downstream reservoir located at a low position, and one of the pistons is provided via a piston that is slid up and down or left and right in the enclosed container. And an air expansion chamber on the other side of the piston, and a water inflow pipe for flowing water from the downstream reservoir into the closed water chamber is connected to the closed water chamber. A water supply pipe for pumping water in the closed water chamber to the upstream reservoir is connected, and a control valve for controlling the flow rate of water is provided in these pipes, and the air expansion chamber has an internal volume of this air expansion chamber. A pumping device for hydraulic power generation using compressed air, characterized in that a compressed air pressurizing container capable of releasing compressed air for pushing the piston is attached via a flow control valve.
【請求項2】 高位置にある上流貯水池と低位置にある
下流貯水池との間に、密閉容器を配設し、この密閉容器
内を下方が開放された隔壁を介して密閉水室と空気膨張
室とに区分けして構成し、前記密閉水室にはこの密閉水
室内に前記下流貯水池からの水を流入するための水流入
管を連結し、また密閉水室内の水を前記上流貯水池に圧
送する送水管を連結し、これらの管には水の流量を制御
する制御弁を設けてあり、さらに前記空気膨張室の下方
位置には圧縮空気の放出により気泡を空気膨張室内に貯
めて空気膨張室の内容積を拡大するための圧縮空気を放
出できるようにした圧縮空気圧入容器を流量制御弁を介
して取付けたことを特徴とする、圧縮空気を利用した水
力発電における揚水装置。
2. A closed container is provided between an upstream reservoir located at a high position and a downstream reservoir located at a low position, and the inside of this sealed container is expanded with a sealed water chamber via a partition wall opened downward. The closed water chamber is connected to a water inflow pipe for flowing water from the downstream reservoir into the closed water chamber, and the water in the sealed water chamber is pumped to the upstream reservoir. A water supply pipe is connected, and a control valve for controlling the flow rate of water is provided in these pipes. Further, air bubbles are stored in the air expansion chamber at a position below the air expansion chamber by discharging compressed air. A pumping apparatus for hydroelectric power generation using compressed air, characterized in that a compressed air pressurizing container capable of discharging compressed air for expanding the internal volume of is installed via a flow control valve.
【請求項3】 高位置にある上流貯水池と低位置にある
下流貯水池との間に、密閉容器を配設し、この密閉容器
内に、内部を空気膨張室とし、この空気膨張室の内容積
を増減可能なよう伸縮自在な構造をもつ膨張空気収納容
器を設けてなり、前記密閉容器にはこの密閉容器内に前
記下流貯水池からの水を流入するための水流入管を連結
し、また密閉容器内の水を前記上流貯水池に圧送する送
水管を連結し、これらの管には水の流量を制御する制御
弁を設けてあり、前記膨張空気収納容器には、この容器
内部の空気膨張室の内容積を拡大するための圧縮空気を
放出できるようにした圧縮空気圧入容器と、膨張空気を
排出するための空気抜き管を流量制御弁を介して取付け
たことを特徴とする、圧縮空気を利用した水力発電にお
ける揚水装置。
3. An airtight container is provided between an upstream reservoir at a high position and a downstream reservoir at a low position, and the inside of the airtight container is an air expansion chamber, and the internal volume of this air expansion chamber. An expandable air storage container having a structure capable of expanding and contracting is provided so that the closed container is connected to a water inflow pipe for inflowing water from the downstream reservoir into the closed container, and the closed container is also provided. Water pipes for pumping the water in the upstream to the upstream reservoir are connected, and control pipes for controlling the flow rate of water are provided in these pipes, and the expansion air storage container is provided with an air expansion chamber inside the container. Utilizing compressed air, which is characterized in that a compressed air pressurizing container capable of releasing compressed air for expanding the internal volume and an air vent pipe for discharging expanded air are attached through a flow control valve. Pumping equipment for hydropower.
JP3242345A 1991-08-29 1991-08-29 Pumping device for hydraulic power generation using compressed air Pending JPH0560049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3242345A JPH0560049A (en) 1991-08-29 1991-08-29 Pumping device for hydraulic power generation using compressed air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3242345A JPH0560049A (en) 1991-08-29 1991-08-29 Pumping device for hydraulic power generation using compressed air

Publications (1)

Publication Number Publication Date
JPH0560049A true JPH0560049A (en) 1993-03-09

Family

ID=17087821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3242345A Pending JPH0560049A (en) 1991-08-29 1991-08-29 Pumping device for hydraulic power generation using compressed air

Country Status (1)

Country Link
JP (1) JPH0560049A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113247A (en) * 2011-11-30 2013-06-10 Hiroshi Morichi Regional lift type hydraulic power generation system
JP2013201873A (en) * 2012-03-26 2013-10-03 Toshiba Corp Thermoelectric power generation device and thermoelectric power generation system
US8755543B2 (en) 2010-03-23 2014-06-17 Dolby Laboratories Licensing Corporation Techniques for localized perceptual audio
JP2016517923A (en) * 2013-05-10 2016-06-20 オーウェン マッケルロイMcELROY, Owen Submersible hydroelectric generator device and method for draining water from such device
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US10158958B2 (en) 2010-03-23 2018-12-18 Dolby Laboratories Licensing Corporation Techniques for localized perceptual audio
US10200804B2 (en) 2015-02-25 2019-02-05 Dolby Laboratories Licensing Corporation Video content assisted audio object extraction

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US8755543B2 (en) 2010-03-23 2014-06-17 Dolby Laboratories Licensing Corporation Techniques for localized perceptual audio
US9172901B2 (en) 2010-03-23 2015-10-27 Dolby Laboratories Licensing Corporation Techniques for localized perceptual audio
US9544527B2 (en) 2010-03-23 2017-01-10 Dolby Laboratories Licensing Corporation Techniques for localized perceptual audio
US10158958B2 (en) 2010-03-23 2018-12-18 Dolby Laboratories Licensing Corporation Techniques for localized perceptual audio
US10499175B2 (en) 2010-03-23 2019-12-03 Dolby Laboratories Licensing Corporation Methods, apparatus and systems for audio reproduction
JP2013113247A (en) * 2011-11-30 2013-06-10 Hiroshi Morichi Regional lift type hydraulic power generation system
JP2013201873A (en) * 2012-03-26 2013-10-03 Toshiba Corp Thermoelectric power generation device and thermoelectric power generation system
JP2016517923A (en) * 2013-05-10 2016-06-20 オーウェン マッケルロイMcELROY, Owen Submersible hydroelectric generator device and method for draining water from such device
US10200804B2 (en) 2015-02-25 2019-02-05 Dolby Laboratories Licensing Corporation Video content assisted audio object extraction

Similar Documents

Publication Publication Date Title
US7059123B2 (en) Buoyancy pump power system
US7952218B2 (en) Buoyancy pump power system
US7735317B2 (en) Buoyancy pump power system
US5411377A (en) Mass displacement wave energy conversion system
US6953328B2 (en) Buoyancy pump device
US3587227A (en) Power generating means
US4091618A (en) Ocean motion power generating system
EP0599196B1 (en) A water pumping apparatus
JP2006502343A5 (en)
US8234861B2 (en) Free flow hydro-powered hydraulic ram
JPH0560049A (en) Pumping device for hydraulic power generation using compressed air
WO2007049288A1 (en) A system for generating continuous energy
US20020159892A1 (en) Ocean water pressure energy generation system
WO2010076797A2 (en) Apparatus with buoyant and sinkable piston
US20230417213A1 (en) Multistage Concentrative Wave Energy Rectifier
JP3214471U (en) Reservoir type hydroelectric generator
JPH0429088Y2 (en)
US20040201222A1 (en) Power station utilizing potential energy of sea water pressure
CA2224054C (en) Water pumping apparatus utilizing compressed air
KR101002086B1 (en) Apparatus for generating compressed air using tidal forces
WO2012039629A1 (en) Pressure differential system extracting energy in various forms including, motion, temperature and pressure
NZ588176A (en) Method and apparatus for energy generation using the flow of water into a high pressure sealed chamber
AU2011213774A1 (en) Buoyancy Pump Power System
KR20070084992A (en) The hydraulic pressure and gravity utilization a hydroelectric power plant