JPH05303054A - Visual display device - Google Patents

Visual display device

Info

Publication number
JPH05303054A
JPH05303054A JP4106911A JP10691192A JPH05303054A JP H05303054 A JPH05303054 A JP H05303054A JP 4106911 A JP4106911 A JP 4106911A JP 10691192 A JP10691192 A JP 10691192A JP H05303054 A JPH05303054 A JP H05303054A
Authority
JP
Japan
Prior art keywords
display device
optical axis
visual display
display element
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4106911A
Other languages
Japanese (ja)
Other versions
JP3155335B2 (en
Inventor
Kokichi Kenno
研野孝吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP10691192A priority Critical patent/JP3155335B2/en
Publication of JPH05303054A publication Critical patent/JPH05303054A/en
Application granted granted Critical
Publication of JP3155335B2 publication Critical patent/JP3155335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a portable visual display device having an image display element the plane of which is perpendicular to the optical axis so that a wide angle of view can be observed. CONSTITUTION:This display device is equipped with a two-dimensional display element 1 to display an image to be observed, concave mirror 2, and supporting means to support the concave mirror 2 just in front of the eyeball of an user. The concave mirror 2 projects an enlarged image of the two-dimensional display element 1 or the projected image of the display element 1 and bends the optical axis. In this device, the concave mirror 2 is designed in a manner that the curvature in the plane where the optical axis of the visual display device is bent is smaller in the area from the position A to the farther side from the two-dimensional display element 1 and that the radius of curvature is larger in the area from the position A to the nearer side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポータブル型視覚表示
装置に関し、特に、観察者の頭部又は顔面に保持するこ
とを可能とする頭部又は顔面装着式視覚表示装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a portable visual display device, and more particularly to a head- or face-mounted visual display device that can be held on the head or face of an observer.

【0002】[0002]

【従来の技術】従来、顔面装着式視覚表示装置として、
図8に平面図を示したようなものが知られている(米国
特許第4026641号)。これは、CRTのような画
像表示素子46の像を画像伝達素子25で物体面12に
伝達し、この物体面12の像をトーリック反射面10に
よって空中に投影するようにしたものである。
2. Description of the Related Art Conventionally, as a face-mounted visual display device,
There is known one having a plan view shown in FIG. 8 (US Pat. No. 4,026,641). In this system, the image of the image display element 46 such as a CRT is transmitted to the object plane 12 by the image transmission element 25, and the image of the object plane 12 is projected into the air by the toric reflection surface 10.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
顔面装着式視覚表示装置にとって、装置全体の大きさを
小さくすることが、装着性を損なわなくするために重要
な点となる。また、大きな画角を確保することは、画像
観察時の臨場感を上げるために必要である。装置全体を
小さくするには、観察者の眼球前部に配置して像を空中
に投影する働きと画像表示素子からくる光軸を屈曲(角
度偏向)させる働きとを持つ接眼光学系、すなわち、眼
の前部に配置する凹面反射鏡と眼球との距離を短くする
必要がある。一方、大きな画角を確保するためには、こ
の凹面反射鏡が大きくなる。また、その反射面は、凹面
でない場合、画像表示素子を大きなものとしないと、大
きな画角を確保することが難しくなり、装置全体が大き
なものとなってしまう。
By the way, in such a face-mounted type visual display device, it is important to reduce the size of the entire device in order to prevent the wearability. In addition, it is necessary to secure a large angle of view in order to increase the sense of reality during image observation. In order to reduce the size of the entire device, an eyepiece optical system having a function of arranging it in front of the eyeball of an observer to project an image in the air and a function of bending (angle deflection) the optical axis coming from the image display element, that is, It is necessary to shorten the distance between the concave reflecting mirror arranged in the front part of the eye and the eyeball. On the other hand, in order to secure a large angle of view, this concave reflecting mirror becomes large. If the reflecting surface is not a concave surface, it becomes difficult to secure a large angle of view unless the image display element is made large, and the entire device becomes large.

【0004】以上の2点から、顔面装着式視覚表示装置
の光学的配置は、観察者の眼球直前に比較的大きな凹面
鏡を配置することが必要となる。
From the above two points, the optical arrangement of the face-mounted visual display device requires that a relatively large concave mirror be arranged immediately in front of the observer's eyes.

【0005】一方、上記の従来技術のように、光軸を観
察者眼球位置と偏心させて配置する光学系においては、
接眼光学系の焦点面は光軸に対して垂直にならず斜めに
なってしまい、焦点面から射出する光束の中のほんの一
部の光束しか観察者眼球位置に届かなくなってしまう。
On the other hand, in the optical system in which the optical axis is decentered from the observer's eyeball position, as in the above-mentioned prior art,
The focal plane of the eyepiece optical system is not perpendicular to the optical axis but is oblique, and only a part of the luminous flux emitted from the focal plane reaches the observer's eyeball position.

【0006】つまり、平面の2次元画像表示素子又は2
次元画像表示素子の投影像から構成される物体面を上記
の接眼光学系の焦点面に配置しただけでは、観察者虹彩
位置又は眼球回旋位置に達する光束は、物体面から射出
した光束の中の物体面から斜めに射出するものしか到達
しない。
That is, a flat two-dimensional image display device or two
The light flux reaching the observer's iris position or the eyeball rotation position can be obtained by simply arranging the object plane composed of the projected image of the three-dimensional image display element on the focal plane of the eyepiece optical system. Only those that emerge obliquely from the object plane arrive.

【0007】一方、一般的に、2次元画像表示素子又は
2次元画像表示素子の投影像から射出する光束は、表示
面と垂直方向に最も強くなる。そこで、上記従来技術の
ように、画像伝達素子を使って2次元画像表示面が斜め
になるように伝達させるか、2次元画像表示素子又は2
次元画像表示素子の投影像を斜めに配置した場合には、
強度が弱い大きな射出角をとる光線(物体面から斜めに
射出する光線)しか観察者眼球位置に届かないため、射
出する光束のほんの一部しか使用できなくなり、観察像
が非常に暗くなってしまい、明瞭に観察することができ
ない。
On the other hand, in general, the luminous flux emitted from the two-dimensional image display element or the projected image of the two-dimensional image display element becomes the strongest in the direction perpendicular to the display surface. Therefore, as in the above-mentioned conventional technique, an image transmitting element is used to transmit the two-dimensional image display surface so as to be inclined, or a two-dimensional image display element or two
When the projected image of the three-dimensional image display element is arranged diagonally,
Only light rays with a large exit angle (light rays that are obliquely emitted from the object plane) that are weak in intensity reach the observer's eyeball position, so only part of the emitted light flux can be used, and the observation image becomes very dark. , Can not be observed clearly.

【0008】本発明はこのような問題点を解決するため
になされたものであり、その目的は、特に広い画角を明
瞭に観察することができるポータブル型視覚表示装置を
提供することである。
The present invention has been made to solve the above problems, and an object thereof is to provide a portable visual display device capable of clearly observing a particularly wide angle of view.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明の視覚表示装置は、観察像を表示する2次元表示素子
と、該2次元表示素子又はその投影像を空中に拡大投影
すると共に光軸を屈曲させる接眼光学系と、その接眼光
学系を使用者の眼球直前に位置するように支持する支持
手段とを備えた視覚表示装置において、前記接眼光学系
の焦点距離を、該視覚表示装置の光軸が屈曲する面内に
おいて、該2次元表示素子からみて、光軸が屈曲される
位置より遠い側においてより長く、光軸が屈曲される位
置より近い側においてより短くなるように構成したこと
を特徴とするものである。
A visual display device of the present invention which achieves the above-mentioned object, comprises a two-dimensional display element for displaying an observation image, an enlarged projection of the two-dimensional display element or its projected image in the air, and a light display. In a visual display device comprising an eyepiece optical system for bending a shaft and a supporting means for supporting the eyepiece optical system so as to be positioned immediately in front of the eyeball of a user, the focal length of the eyepiece optical system is determined by the visual display device. In the plane in which the optical axis is bent, it is configured to be longer on the side farther from the position where the optical axis is bent and shorter on the side closer to the position where the optical axis is bent, as viewed from the two-dimensional display element. It is characterized by that.

【0010】この場合、接眼光学系を収斂作用を有する
反射面又は半透過面で構成し、その曲率を、視覚表示装
置の光軸が屈曲する面内において、2次元表示素子から
みて、光軸が屈曲される位置より遠い側においてより小
さく、光軸が屈曲される位置より近い側においてより大
きくなるように構成することが望ましい。また、接眼光
学系による光軸の屈曲角が20°以上であるように構成
し、接眼光学系の焦点距離が20〜150mmの範囲に
あるように構成することが望ましい。
In this case, the eyepiece optical system is composed of a reflecting surface or a semi-transmissive surface having a converging action, and its curvature is viewed from the two-dimensional display element in the plane in which the optical axis of the visual display device is bent. Is preferably smaller on the side farther from the position where the optical axis is bent and larger on the side closer to the position where the optical axis is bent. Further, it is desirable that the bending angle of the optical axis by the eyepiece optical system is 20 ° or more, and the focal length of the eyepiece optical system is in the range of 20 to 150 mm.

【0011】[0011]

【作用】以下、上記構成を採用した理由と作用について
説明する。本発明においては、図1に示すように、画像
表示素子1と凹面反射鏡2からなる観察者の頭部又は顔
面に装着する視覚表示装置において、画像表示素子1か
らほぼ垂直に出る光束が観察者眼球位置3に入射して観
察されるようにするため、凹面反射鏡2の光軸が屈曲す
る面内(図1の面内)において、画像表示素子1から見
て光軸を屈曲させる位置Aより遠い側の曲率半径をより
大きく、位置Aより近い側の曲率半径をより小さくす
る。このようにすると、位置Aより遠い領域の焦点距離
は長くなり、逆に、位置Aより近い領域の焦点距離は短
くなり、凹面反射鏡2の前側焦点面と焦点面を射出する
光束の角度がほぼ垂直になる。ただし、ここで言う光軸
とは、観察者眼球の虹彩中心又は眼球回旋中心を通過す
る光線で、2次元表示素子の表示中心を射出する、いわ
ゆる軸上光線を言う。
The function and operation of adopting the above configuration will be described below. In the present invention, as shown in FIG. 1, in a visual display device, which is composed of an image display element 1 and a concave reflecting mirror 2 and is worn on the head or face of an observer, a light flux emitted almost vertically from the image display element 1 is observed. A position where the optical axis of the concave reflecting mirror 2 is bent in the plane in which the optical axis of the concave reflecting mirror 2 is bent (in the plane of FIG. 1) so that the optical axis is bent when viewed from the image display element 1 so as to be observed by being incident on the human eyeball position 3. The radius of curvature on the side farther than A is made larger, and the radius of curvature on the side closer to position A is made smaller. By doing so, the focal length of the region farther than the position A becomes longer, and conversely, the focal length of the region closer to the position A becomes shorter, and the angle of the light flux exiting the front focal plane of the concave reflecting mirror 2 and the focal plane becomes smaller. It becomes almost vertical. However, the optical axis referred to here is a so-called on-axis light ray that is a light ray that passes through the iris center or the eyeball rotation center of the observer's eyeball and that exits the display center of the two-dimensional display element.

【0012】このようにすることにより、2次元画像表
示素子又は2次元画像表示素子の投影像を直接接眼光学
系の前側焦点面に配置することが可能になり、明るい観
察像が得られることになる。
By doing so, it becomes possible to dispose the two-dimensional image display element or the projected image of the two-dimensional image display element directly on the front focal plane of the eyepiece optical system and obtain a bright observation image. Become.

【0013】以下、この作用について、図2を用いてさ
らに説明する。1は2次元表示素子又は2次元表示素子
の空中投影像、2は接眼光学系である球面凹面反射鏡、
3は観察者眼球回旋中心又は虹彩位置である。一般的
に、球面凹面反射鏡2で無限遠の像を結像した場合に
は、凹面の曲率半径の半分が焦点距離になる。しかし、
図8に示した先行技術のように、凹面鏡の光軸と観察者
虹彩位置又は眼球回旋位置3が偏心している場合には、
接眼光学系2によって観察光束が屈曲するために、物体
面は屈曲後の光束に対して、図2に符号1で示したよう
に、斜めに傾いたものとなってしまう。そこで、本発明
では、図2において、2の反射面の左側の曲率を比較的
ゆるく(曲率半径を大きく)して焦点距離を長くし、1
に当たる焦点面を反射光軸に対してほぼ垂直となるよう
に配置し、かつ、良好な収差補正を実現し、広い画角に
対して高い解像力を持った観察像を観察者に対して提供
するようにしたものである。なお、凹面鏡2を球面鏡で
構成する場合の収差図を図9に示す(収差の取り方、表
記方法は、後記図4と同様である。)。
This operation will be further described below with reference to FIG. 1 is a two-dimensional display element or an aerial projection image of a two-dimensional display element, 2 is a spherical concave reflecting mirror which is an eyepiece optical system,
3 is the observer's eyeball rotation center or iris position. In general, when an image at infinity is formed by the spherical concave reflecting mirror 2, half the radius of curvature of the concave surface becomes the focal length. But,
As in the prior art shown in FIG. 8, when the optical axis of the concave mirror and the observer iris position or the eyeball rotation position 3 are eccentric,
Since the observation light beam is bent by the eyepiece optical system 2, the object plane becomes inclined with respect to the light beam after bending, as indicated by reference numeral 1 in FIG. Therefore, in the present invention, in FIG. 2, the curvature on the left side of the reflecting surface 2 is relatively loose (the radius of curvature is large) to increase the focal length, and
The focal plane that hits the lens is placed almost perpendicular to the reflected optical axis, good aberration correction is realized, and the observer is provided with an observation image with high resolution over a wide angle of view. It was done like this. An aberration diagram when the concave mirror 2 is formed of a spherical mirror is shown in FIG. 9 (the method of taking aberrations and the notation method are the same as those in FIG. 4 described later).

【0014】なお、光軸の屈曲角(後記θ)は、20°
以上が好ましく、20°以下の場合は、観察者眼球位置
3と2次元画像表示素子1との配置が近くなってしま
い、2次元画像表示素子1の配置が不可能となる。
The bending angle of the optical axis (θ described later) is 20 °.
The above is preferable, and in the case of 20 ° or less, the observer's eyeball position 3 and the two-dimensional image display element 1 are close to each other, and the two-dimensional image display element 1 cannot be arranged.

【0015】さらに、凹面鏡2である接眼光学系の焦点
距離は、20〜150mmの範囲が好ましく、その下限
を越えると、観察者眼球位置3と接眼光学系2との距離
が短くなりすぎ、観察者が本視覚表示装置を装着する場
合に圧迫感を感じると共に、広い画角が確保できなくな
る。一方、その上限を越えると、観察者眼球位置3と接
眼光学系2との距離が大きくなり、本装置からの接眼光
学系2の突出量が大きくなり、本視覚表示装置を装着し
たときの装着感が悪くなる。
Further, the focal length of the eyepiece optical system which is the concave mirror 2 is preferably in the range of 20 to 150 mm, and when the lower limit thereof is exceeded, the distance between the eyeball position 3 of the observer and the eyepiece optical system 2 becomes too short, and observation is performed. When a person wears this visual display device, he or she feels a feeling of pressure and cannot secure a wide angle of view. On the other hand, when the upper limit is exceeded, the distance between the observer's eyeball position 3 and the eyepiece optical system 2 becomes large, and the amount of protrusion of the eyepiece optical system 2 from the present device becomes large, so that the present visual display device is worn. Feeling bad.

【0016】[0016]

【実施例】以下、本発明の視覚表示装置の実施例1〜4
について説明する。 実施例1 この実施例の光学配置を図3に示す。図中、符号1は2
次元画像表示素子、2は凹面回転対称非球面反射鏡、3
は観察者の眼球虹彩位置又は眼球回旋点(以下、瞳と言
う。)を示す。凹面回転対称非球面反射鏡2の軸を2a
とし、瞳3中心から反射鏡2の軸2aまでの距離(偏心
量)をY1 、軸2aから2次元画像表示素子1中心まで
の距離(偏心量)をY2 とする。また、2次元画像表示
素子1中心と瞳3中心を通る光線が反射鏡2で反射され
て屈曲する角度をθとする。図1の座標系の場合、偏心
量Y1 、Y2 はそれぞれ負と正で与えられる。
EXAMPLES Examples 1 to 4 of the visual display device of the present invention will be described below.
Will be described. Example 1 The optical arrangement of this example is shown in FIG. In the figure, reference numeral 1 is 2
Dimensional image display device, 2 is a concave rotationally symmetric aspherical reflector, 3
Indicates an eyeball iris position or an eyeball turning point (hereinafter referred to as a pupil) of an observer. Set the axis of the concave rotationally symmetric aspherical reflecting mirror 2 to 2a.
The distance (eccentricity) from the center of the pupil 3 to the axis 2a of the reflecting mirror 2 is Y 1 , and the distance (eccentricity) from the axis 2a to the center of the two-dimensional image display element 1 is Y 2 . Further, the angle at which a light ray passing through the center of the two-dimensional image display element 1 and the center of the pupil 3 is reflected by the reflecting mirror 2 and bent is θ. In the case of the coordinate system of FIG. 1, the eccentricity amounts Y 1 and Y 2 are given as negative and positive, respectively.

【0017】以下、2次元画像表示素子1、凹面回転対
称非球面反射鏡2、観察者の瞳3相互の間隔、面形状、
偏心量等を示すが、面番号は、観察者の瞳3位置から2
次元画像表示素子1へ向かう逆追跡の面番号として示し
てある。また、非球面形状は、座標系を図示のようにと
り、Rを近軸曲率半径とするとき、次の式で表される。 Z=(h2/R)/[1+{ 1-(1+K) ( h2/R2)}1/2 ]+
Ah4 +Bh6 +Ch8 (h2 =X2 +Y2 ) ここで、Kは円錐係数、A、B、Cはそれぞれ4次、6
次、8次の非球面係数である。
Hereinafter, the two-dimensional image display element 1, the concave rotationally symmetric aspherical reflecting mirror 2, the distance between the pupils 3 of the observer, the surface shape,
Although the amount of eccentricity and the like is shown, the surface number is 2
It is shown as the surface number of the backward trace toward the three-dimensional image display element 1. Further, the aspherical shape is expressed by the following equation when the coordinate system is as shown and R is a paraxial radius of curvature. Z = (h 2 / R) / [1+ {1- (1 + K) (h 2 / R 2 )} 1/2 ] +
Ah 4 + Bh 6 + Ch 8 (h 2 = X 2 + Y 2 ), where K is the conical coefficient, A, B, and C are fourth-order and 6 respectively.
Next is the aspherical coefficient of the 8th order.

【0018】 面番号 曲率半径 面間隔 偏心量 1 瞳 (3) 47.394 Y1 −30.558 2 −63.224(2) −32.393 Y2 0.558 (非球面) 3 像面 (1) 非球面係数 K=0 A=0.751725×10-6 B=0 C=0 θ=50° この実施例の横収差図を図4に示す。図中、(a)は瞳
3中心を通り軸2aに平行な直線から左側(+Y方向)
15.0°にある像を見た時の左右方向及び上下方向の
収差、(b)はこの直線方向にある像を見た時の左右方
向及び上下方向の収差、(c)はこの直線から右側(−
Y方向)15.0°にある像を見た時の左右方向及び上
下方向の収差である。上記のように逆追跡した時の像面
1は、光軸にほぼ垂直になる。この実施例において、光
軸の屈曲角θは50°であり、θが50°以下の場合
は、この配置では、観察者の顔面と光学系が干渉するこ
とがある。
Surface number Radius of curvature Surface spacing Eccentricity 1 Pupil (3) 47.394 Y 1 -30.558 2 -63.224 (2) -32.393 Y 2 0.558 (aspherical) 3 Image plane ( 1) Aspherical surface coefficient K = 0 A = 0.7517225 × 10 −6 B = 0 C = 0 θ = 50 ° A lateral aberration diagram of this example is shown in FIG. In the figure, (a) is the left side (+ Y direction) from a straight line passing through the center of the pupil 3 and parallel to the axis 2a.
Horizontal and vertical aberrations when viewing an image at 15.0 °, (b) is horizontal and vertical aberrations when viewing an image in this linear direction, (c) is from this straight line Right side (-
These are aberrations in the left-right direction and the vertical direction when an image at 15.0 ° is viewed. The image plane 1 when the reverse tracking is performed as described above is substantially perpendicular to the optical axis. In this embodiment, the bending angle θ of the optical axis is 50 °, and when θ is 50 ° or less, the observer's face and the optical system may interfere with each other in this arrangement.

【0019】また、凹面回転対称非球面反射鏡2の焦点
距離は、31mmとなっており、これ以上短いと、やは
り観察者顔面との干渉が問題となり、逆にこれ以上長い
と、顔面からの観察系突出量が大きくなり、装置が大型
になって、装着感が悪くなる。
The focal length of the concave rotationally symmetric aspherical reflecting mirror 2 is 31 mm. If it is shorter than this, interference with the observer's face still poses a problem. The projection amount of the observation system becomes large, the device becomes large, and the wearing feeling becomes poor.

【0020】実施例2 この実施例は、基本的に実施例1と同じである。実施例
1と同様な記号を用いて光学系のパラメータを以下に示
す。
Example 2 This example is basically the same as Example 1. The parameters of the optical system are shown below using the same symbols as in Example 1.

【0021】 面番号 曲率半径 面間隔 偏心量 1 瞳 (3) 47.153 Y1 −29.938 2 −63.202(2) −32.153 Y2 0.062 (非球面) 3 像面 (1) 非球面係数 K=−1.0000 A= 0 B= 0 C= 0 θ=50° この実施例が実施例1と異なる点は、凹面鏡2が放物面
反射鏡からなる点だけである。この実施例の図4と同様
な横収差図を図5に示す。逆追跡した時の像面1は、光
軸にほぼ垂直になる。
Surface number Radius of curvature Surface spacing Eccentricity 1 Pupil (3) 47.153 Y 1 −29.938 2 −63.202 (2) −32.153 Y 2 0.062 (aspherical) 3 Image surface ( 1) Aspherical surface coefficient K = -1.0000 A = 0 B = 0 C = 0 θ = 50 ° This example differs from Example 1 only in that the concave mirror 2 is a parabolic reflector. .. FIG. 5 shows a lateral aberration diagram similar to FIG. 4 of this example. The image plane 1 when reversely traced is almost perpendicular to the optical axis.

【0022】実施例3 この実施例も、基本的に実施例1と同じである。実施例
1と同様な記号を用いて光学系のパラメータを以下に示
す。
Embodiment 3 This embodiment is basically the same as the first embodiment. The parameters of the optical system are shown below using the same symbols as in Example 1.

【0023】 面番号 曲率半径 面間隔 偏心量 1 瞳 (3) 47.178 Y1 −30.220 2 −65.559(2) −32.178 Y2 0.220 (非球面) 3 像面 (1) 非球面係数 K=−0.892737 A= 0 B= 0 C= 0 θ=50° この実施例が実施例1と異なる点は、凹面鏡2が回転楕
円反射鏡からなる点だけである。この実施例の図4と同
様な横収差図を図6に示す。逆追跡した時の像面1は、
光軸にほぼ垂直になる。
Surface number Radius of curvature Surface spacing Eccentricity 1 Pupil (3) 47.178 Y 1 -30.220 2 -65.559 (2) 32.178 Y 2 0.220 (aspherical) 3 Image surface ( 1) Aspherical surface coefficient K = -0.892737 A = 0 B = 0 C = 0 θ = 50 ° This example differs from Example 1 only in that the concave mirror 2 is a spheroidal mirror. FIG. 6 shows a lateral aberration diagram similar to FIG. 4 of this example. Image plane 1 at the time of reverse tracking is
It becomes almost perpendicular to the optical axis.

【0024】実施例4 この実施例も、基本的に実施例1と同じであるが、凹面
反射鏡2をアナモフィック非球面鏡で構成した点が異な
る。この場合、凹面反射鏡2の近軸の曲率半径は、上下
方向(X−Z面)をRx 、左右方向(Y−Z面)をRy
とすると、これらは相互に異なる。また、非球面形状
は、座標系を図示のようにとるとき、次の式で表され
る。 Z =[( X2/Rx )+ (Y2/Ry ) ]/[1+{ 1-(1+Kx ) ( X2/Rx 2) -(1+Ky ) ( Y2/Ry 2)}1/2 ] +AR[ (1-AP) X2+( 1+AP) Y2 2 +BR[ (1-BP) X2+( 1+BP) Y2 3 +CR[ (1-CP) X2+( 1+CP) Y2 4 ここで、Kx はX方向の円錐係数、Ky はY方向の円錐
係数、AR、BR、CRはそれぞれ回転対称な4次、6
次、8次の非球面係数、AP、BP、CPはそれぞれ非
対称な4次、6次、8次の非球面係数である。その他、
実施例1と同様な記号を用いて光学系のパラメータを以
下に示す。
Embodiment 4 This embodiment is basically the same as the embodiment 1 except that the concave reflecting mirror 2 is composed of an anamorphic aspherical mirror. In this case, the paraxial radius of curvature of the concave reflecting mirror 2 is Rx in the vertical direction (XZ plane) and Ry in the horizontal direction (YZ plane).
Then, these are different from each other. Further, the aspherical shape is expressed by the following equation when the coordinate system is as shown in the figure. Z = [(X 2 / R x) + (Y 2 / R y)] / [1+ {1- (1 + K x) (X 2 / R x 2) - (1 + K y) (Y 2 / R y 2 )} 1/2 ] + AR [(1-AP) X 2 + (1 + AP) Y 2 ] 2 + BR [(1-BP) X 2 + (1 + BP) Y 2 ] 3 + CR [ (1-CP) X 2 + (1 + CP) Y 2 ] 4 where K x is the conical coefficient in the X direction, K y is the conical coefficient in the Y direction, and AR, BR, and CR are rotationally symmetric fourth-order , 6
Next-order and eighth-order aspherical coefficients, AP, BP, and CP are asymmetrical fourth-order, sixth-order, and eighth-order aspherical coefficients, respectively. Other,
The parameters of the optical system are shown below using the same symbols as in Example 1.

【0025】 面番号 曲率半径 面間隔 偏心量 1 瞳 (3) 47.423 Y1 −31.580 2Rx −65.559(2) −32.423 Y2 1.580 Ry −56.752 (非球面) 3 像面 (1) 非球面係数 Ky =−0.708777 Kx =−2.694382 AR= 0 AP= 0 BR= 0 BP= 0 CR= 0 CP= 0 θ=50° この実施例の図4と同様な横収差図を図7に示す。逆追
跡した時の像面1は、光軸にほぼ垂直になる。
Surface Number Curvature Radius Surface Spacing Surface Eccentricity 1 Pupil (3) 47.423 Y 1 -31.580 2R x -65.559 (2) -32.424 Y 2 1.580 R y -56.752 ( aspherical) 3 image plane (1) aspheric coefficients K y = -0.708777 K x = -2.694382 AR = 0 AP = 0 BR = 0 BP = 0 CR = 0 CP = 0 θ = 50 ° this embodiment FIG. 7 shows a lateral aberration diagram similar to that of FIG. 4 of the example. The image plane 1 when reversely traced is almost perpendicular to the optical axis.

【0026】なお、上記各実施例において、凹面反射鏡
2は、全反射鏡のみでなく、半透過鏡で構成することも
できる。半透過鏡で構成する場合は、外界像との合成が
できることは周知の事実である。
In each of the above embodiments, the concave reflecting mirror 2 may be a semi-transmissive mirror as well as a total reflecting mirror. It is a well known fact that a semi-transmissive mirror can be combined with an external image.

【0027】以上、本発明の視覚表示装置をいくつかの
実施例について説明してきたが、本発明はこれら実施例
に限定されず、種々の変形が可能である。
Although the visual display device of the present invention has been described above with reference to some embodiments, the present invention is not limited to these embodiments and various modifications can be made.

【0028】[0028]

【発明の効果】以上の説明から明らかなように、本発明
の視覚表示装置のよると、2次元画像表示素子又は2次
元画像表示素子の投影像を光軸に対して垂直に配置する
ことができ、明るい観察像を得ることのできる。この視
覚表示装置は、ポータブル型の頭部又は顔面装着式視覚
表示装置に適したものである。
As is apparent from the above description, according to the visual display device of the present invention, the two-dimensional image display element or the projected image of the two-dimensional image display element can be arranged perpendicular to the optical axis. It is possible to obtain a bright observation image. This visual display device is suitable for a portable head- or face-mounted visual display device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の視覚表示装置の構成と作用を説明する
ための図である。
FIG. 1 is a diagram for explaining the configuration and operation of a visual display device of the present invention.

【図2】凹面反射鏡の構成と作用を説明するための図で
ある。
FIG. 2 is a diagram for explaining the configuration and action of a concave reflecting mirror.

【図3】実施例1の光学系の断面図である。FIG. 3 is a sectional view of the optical system of Example 1.

【図4】実施例1の横収差図である。FIG. 4 is a lateral aberration diagram for Example 1.

【図5】実施例2の横収差図である。5 is a lateral aberration diagram for Example 2. FIG.

【図6】実施例3の横収差図である。FIG. 6 is a lateral aberration diagram for Example 3.

【図7】実施例4の横収差図である。7 is a lateral aberration diagram for Example 4. FIG.

【図8】従来の顔面装着式視覚表示装置の平面図であ
る。
FIG. 8 is a plan view of a conventional face-mounted visual display device.

【図9】凹面反射鏡を球面鏡で構成した場合の横収差図
である。
FIG. 9 is a lateral aberration diagram when the concave reflecting mirror is formed of a spherical mirror.

【符号の説明】[Explanation of symbols]

1…画像表示素子 2…凹面反射鏡 3…観察者眼球虹彩位置又は眼球回旋点(瞳) 2a…凹面反射鏡の軸 A…光軸が屈曲する位置 DESCRIPTION OF SYMBOLS 1 ... Image display element 2 ... Concave reflecting mirror 3 ... Observer eye iris position or eyeball turning point (pupil) 2a ... Axis of concave reflecting mirror A ... Position where optical axis bends

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 観察像を表示する2次元表示素子と、該
2次元表示素子又はその投影像を空中に拡大投影すると
共に光軸を屈曲させる接眼光学系と、その接眼光学系を
使用者の眼球直前に位置するように支持する支持手段と
を備えた視覚表示装置において、前記接眼光学系の焦点
距離を、該視覚表示装置の光軸が屈曲する面内におい
て、該2次元表示素子からみて、光軸が屈曲される位置
より遠い側においてより長く、光軸が屈曲される位置よ
り近い側においてより短くなるように構成したことを特
徴とする視覚表示装置。
1. A two-dimensional display element for displaying an observation image, an eyepiece optical system for enlarging and projecting the two-dimensional display element or a projected image thereof in the air and bending an optical axis, and an eyepiece optical system for a user. In a visual display device including a supporting unit that supports the eyepiece optical system, the focal length of the eyepiece optical system is viewed from the two-dimensional display element in a plane in which the optical axis of the visual display device is bent. A visual display device characterized in that it is configured such that it is longer on the side farther from the position where the optical axis is bent and shorter on the side closer to the position where the optical axis is bent.
【請求項2】 前記接眼光学系を収斂作用を有する反射
面又は半透過面で構成し、その曲率を、該視覚表示装置
の光軸が屈曲する面内において、該2次元表示素子から
みて、光軸が屈曲される位置より遠い側においてより小
さく、光軸が屈曲される位置より近い側においてより大
きくなるように構成したことを特徴とする請求項1記載
の視覚表示装置。
2. The eyepiece optical system is composed of a reflecting surface or a semi-transmissive surface having a converging action, and its curvature is seen from the two-dimensional display element in a plane in which the optical axis of the visual display device is bent, 2. The visual display device according to claim 1, wherein the visual display device is configured such that it is smaller on the side farther from the position where the optical axis is bent and larger on the side closer to the position where the optical axis is bent.
【請求項3】 前記接眼光学系による光軸の屈曲角が2
0°以上であることを特徴とする請求項2記載の視覚表
示装置。
3. The bending angle of the optical axis by the eyepiece optical system is 2
The visual display device according to claim 2, wherein the visual display device is at least 0 °.
【請求項4】 前記接眼光学系の焦点距離が20〜15
0mmの範囲にあることを特徴とする特徴とする請求項
3記載の視覚表示装置。
4. The focal length of the eyepiece optical system is 20 to 15
The visual display device according to claim 3, wherein the visual display device is in a range of 0 mm.
JP10691192A 1992-04-24 1992-04-24 Visual display device Expired - Fee Related JP3155335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10691192A JP3155335B2 (en) 1992-04-24 1992-04-24 Visual display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10691192A JP3155335B2 (en) 1992-04-24 1992-04-24 Visual display device

Publications (2)

Publication Number Publication Date
JPH05303054A true JPH05303054A (en) 1993-11-16
JP3155335B2 JP3155335B2 (en) 2001-04-09

Family

ID=14445626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10691192A Expired - Fee Related JP3155335B2 (en) 1992-04-24 1992-04-24 Visual display device

Country Status (1)

Country Link
JP (1) JP3155335B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104209A (en) * 1993-10-05 1995-04-21 Canon Inc Display device
JPH07209601A (en) * 1994-01-24 1995-08-11 Pioneer Electron Corp Enlargement observation device
JPH08320451A (en) * 1995-05-25 1996-12-03 Olympus Optical Co Ltd Head-mounted display device
JPH0973005A (en) * 1995-07-03 1997-03-18 Canon Inc Optical element and observation system using the same
US5706136A (en) * 1995-02-28 1998-01-06 Canon Kabushiki Kaisha Optical system, and image observing apparatus and image pickup apparatus using it
US6292301B1 (en) 1998-06-19 2001-09-18 Canon Kabushiki Kaisha Optical viewing system for use in head-mounted display
US6310728B1 (en) 1998-06-19 2001-10-30 Canon Kabushiki Kaisha Image viewing apparatus
US7009775B2 (en) 2003-04-18 2006-03-07 Olympus Corporation Eyepiece optical system, and display device using the eyepiece optical system
US7136228B2 (en) 2002-09-25 2006-11-14 Minolta Co., Ltd. Optical system and display apparatus
WO2007108093A1 (en) 2006-03-20 2007-09-27 Olympus Corporation Information presentation device
JP2008009007A (en) * 2006-06-28 2008-01-17 Shikoku Res Inst Inc Face mounted type image viewing device
JP2009120080A (en) * 2007-11-16 2009-06-04 Nissan Motor Co Ltd Display for vehicle
JP2014505271A (en) * 2010-12-16 2014-02-27 ロッキード マーティン コーポレーション Collimating display with pixel lens
US9632315B2 (en) 2010-10-21 2017-04-25 Lockheed Martin Corporation Head-mounted display apparatus employing one or more fresnel lenses
US9939650B2 (en) 2015-03-02 2018-04-10 Lockheed Martin Corporation Wearable display system
US9995936B1 (en) 2016-04-29 2018-06-12 Lockheed Martin Corporation Augmented reality systems having a virtual image overlaying an infrared portion of a live scene
US10324296B2 (en) 2017-02-02 2019-06-18 Panasonic Intellectual Property Management Co., Ltd. Display device
US10359545B2 (en) 2010-10-21 2019-07-23 Lockheed Martin Corporation Fresnel lens with reduced draft facet visibility
US10684476B2 (en) 2014-10-17 2020-06-16 Lockheed Martin Corporation Head-wearable ultra-wide field of view display device
US10754156B2 (en) 2015-10-20 2020-08-25 Lockheed Martin Corporation Multiple-eye, single-display, ultrawide-field-of-view optical see-through augmented reality system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104209A (en) * 1993-10-05 1995-04-21 Canon Inc Display device
JPH07209601A (en) * 1994-01-24 1995-08-11 Pioneer Electron Corp Enlargement observation device
US5706136A (en) * 1995-02-28 1998-01-06 Canon Kabushiki Kaisha Optical system, and image observing apparatus and image pickup apparatus using it
JPH08320451A (en) * 1995-05-25 1996-12-03 Olympus Optical Co Ltd Head-mounted display device
JPH0973005A (en) * 1995-07-03 1997-03-18 Canon Inc Optical element and observation system using the same
US6292301B1 (en) 1998-06-19 2001-09-18 Canon Kabushiki Kaisha Optical viewing system for use in head-mounted display
US6310728B1 (en) 1998-06-19 2001-10-30 Canon Kabushiki Kaisha Image viewing apparatus
US7468843B2 (en) 2002-09-25 2008-12-23 Minolta Co., Ltd. Optical system and display apparatus
US7136228B2 (en) 2002-09-25 2006-11-14 Minolta Co., Ltd. Optical system and display apparatus
US7009775B2 (en) 2003-04-18 2006-03-07 Olympus Corporation Eyepiece optical system, and display device using the eyepiece optical system
WO2007108093A1 (en) 2006-03-20 2007-09-27 Olympus Corporation Information presentation device
JP2008009007A (en) * 2006-06-28 2008-01-17 Shikoku Res Inst Inc Face mounted type image viewing device
JP2009120080A (en) * 2007-11-16 2009-06-04 Nissan Motor Co Ltd Display for vehicle
US9632315B2 (en) 2010-10-21 2017-04-25 Lockheed Martin Corporation Head-mounted display apparatus employing one or more fresnel lenses
US10359545B2 (en) 2010-10-21 2019-07-23 Lockheed Martin Corporation Fresnel lens with reduced draft facet visibility
US10495790B2 (en) 2010-10-21 2019-12-03 Lockheed Martin Corporation Head-mounted display apparatus employing one or more Fresnel lenses
JP2014505271A (en) * 2010-12-16 2014-02-27 ロッキード マーティン コーポレーション Collimating display with pixel lens
US9720228B2 (en) 2010-12-16 2017-08-01 Lockheed Martin Corporation Collimating display with pixel lenses
US10684476B2 (en) 2014-10-17 2020-06-16 Lockheed Martin Corporation Head-wearable ultra-wide field of view display device
US9939650B2 (en) 2015-03-02 2018-04-10 Lockheed Martin Corporation Wearable display system
US10754156B2 (en) 2015-10-20 2020-08-25 Lockheed Martin Corporation Multiple-eye, single-display, ultrawide-field-of-view optical see-through augmented reality system
US9995936B1 (en) 2016-04-29 2018-06-12 Lockheed Martin Corporation Augmented reality systems having a virtual image overlaying an infrared portion of a live scene
US10324296B2 (en) 2017-02-02 2019-06-18 Panasonic Intellectual Property Management Co., Ltd. Display device

Also Published As

Publication number Publication date
JP3155335B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
US5384654A (en) Image observation device
US6008778A (en) Visual display apparatus
USRE37169E1 (en) Ocular optics system having at least four reflections occurring between curved surfaces
USRE37175E1 (en) Image display apparatus
JP3636240B2 (en) Optical system
US6317267B1 (en) Head or face mounted image display apparatus
JP3155360B2 (en) Visual display device
US6185045B1 (en) Image display apparatus with mechanism for modifying the appearance of the periphery of a display device
US6313950B1 (en) Image display apparatus
USRE37579E1 (en) Image display apparatus comprising an internally reflecting ocular optical system
US7420751B2 (en) Compact optical apparatus for head up display
JPH05303054A (en) Visual display device
USRE37292E1 (en) Optical system and optical apparatus
JPH07191274A (en) Image display device
JPH11125791A (en) Image display device
JPH08166541A (en) Picture display device
JPH05134208A (en) Image observation device
JP3155337B2 (en) Visual display device
US6464361B2 (en) Image display apparatus having three-dimensionally decentered optical path
US6501602B2 (en) Image display apparatus having three-dimensionally decentered optical path
JP3155341B2 (en) Visual display device
JPH05303055A (en) Visual display device
JP3542214B2 (en) Image display device
JP3542213B2 (en) Image display device
JP3683338B2 (en) Head-mounted image display device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees