JPH05257527A - Detection of position and direction of unmanned vehicle - Google Patents

Detection of position and direction of unmanned vehicle

Info

Publication number
JPH05257527A
JPH05257527A JP4055423A JP5542392A JPH05257527A JP H05257527 A JPH05257527 A JP H05257527A JP 4055423 A JP4055423 A JP 4055423A JP 5542392 A JP5542392 A JP 5542392A JP H05257527 A JPH05257527 A JP H05257527A
Authority
JP
Japan
Prior art keywords
unmanned vehicle
ceiling
light
light receiving
specified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4055423A
Other languages
Japanese (ja)
Other versions
JP3397336B2 (en
Inventor
Eiji Abe
栄司 阿部
Susumu Nakagawa
進 中川
Hiroshi Imabayashi
弘資 今林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP05542392A priority Critical patent/JP3397336B2/en
Publication of JPH05257527A publication Critical patent/JPH05257527A/en
Application granted granted Critical
Publication of JP3397336B2 publication Critical patent/JP3397336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the unmanned vehicle position and direction detecting method which requires only simple operation and detects the position of an unmanned vehicle with a high precision. CONSTITUTION:This detecting method has ceiling illumination lamps L1 to LN as position detection indexes of a guideless unmanned vehicle 20. Emitted light of each of ceiling illumination lamps L1 to LN has a peculiar modulation frequency, and the ceiling illumination lamp from which the light is received by a photodetector 22 is specified on the side of the unmanned vehicle 20 by the output frequency of the photodetector directed to the ceiling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘導線や磁気テープ等
のガイド線を設けない無人車システムにおいて用いられ
るガイドレス式無人車の位置・方向検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a guideless type unmanned vehicle position / direction detecting method used in an unmanned vehicle system having no guide wire such as a guide wire or a magnetic tape.

【0002】[0002]

【従来の技術】この種の無人車の現在位置および方向の
検出方法としては、例えば天井に光反射板を張りつけ、
無人車に搭載したレーザ発振器から上記光反射板へレー
ザスポットを投影し、このレーザスポットを地上に設け
たITVカメラ等の視覚装置で撮影してその画像データ
から無人車の現在位置および方向を検出する方法があ
る。
2. Description of the Related Art As a method of detecting the current position and direction of an unmanned vehicle of this type, for example, a light reflecting plate is attached to the ceiling,
A laser spot is projected from the laser oscillator mounted on the unmanned vehicle to the light reflecting plate, the laser spot is photographed by a visual device such as an ITV camera provided on the ground, and the current position and direction of the unmanned vehicle are detected from the image data. There is a way to do it.

【0003】しかし、この方法では、天井の全面に光反
射板を張りつけなくてはならない上、ITVカメラも複
数台配置する必要があるので、システムが高価になる欠
点がある。
However, this method has a drawback that the system becomes expensive because it is necessary to attach a light reflecting plate to the entire surface of the ceiling and it is necessary to dispose a plurality of ITV cameras.

【0004】[0004]

【発明が解決しようとする課題】この欠点を解消するた
め、例えば、特開昭60−89213号公報に記載され
ているように、天井照明灯を利用する検出方法が提案さ
れているが、この検出方法は、ITVカメラ等の視覚装
置で撮影した天井の一部の画像を、予めメモリに格納し
た天井全体の画像と比較するパターンマッチング方法で
あるため、既存の天井照明灯を利用できる利便さはある
が、ソフトウエア処理が複雑であり、天井照明灯の配列
が規則的である場合や視覚装置の視野に入る天井照明灯
の数が少ない場合には不正確になる恐れがある。
In order to solve this drawback, a detection method using a ceiling illumination lamp has been proposed as described in, for example, Japanese Patent Laid-Open No. 60-89213. The detection method is a pattern matching method that compares a partial image of the ceiling taken by a visual device such as an ITV camera with an image of the entire ceiling that is stored in memory in advance. However, it may be inaccurate if the software processing is complicated and the ceiling lighting is regularly arranged or the number of ceiling lighting in the visual field of the visual device is small.

【0005】本発明はこの問題を解消するためになされ
たもので、天井照明灯を利用してシステムを安価に構築
することができ、位置検出のための演算は簡単な演算で
済み、確実に、かつ高い精度をもって無人車の位置・方
向を検出することができる無人車の位置・方向検出方法
を提供することを目的とする。
The present invention has been made to solve this problem, and a system can be constructed at low cost by using a ceiling illumination lamp, and the calculation for position detection can be performed simply and reliably. An object of the present invention is to provide a position / direction detection method for an unmanned vehicle, which is capable of detecting the position / direction of the unmanned vehicle with high accuracy.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するため、請求項1では、天井照明灯をガイドレス式無
人車の位置検出指標とする無人車の位置検出方法におい
て、各天井照明灯がそれぞれ個別に識別可能な特徴を持
つ発光を行い、無人車側では、上記天井に向けた受光素
子の出力の上記特徴から当該受光素子が受光している天
井照明灯を特定する構成とした。
In order to achieve the above object, the present invention provides a position detecting method for an unmanned vehicle in which a ceiling illumination lamp is used as a position detection index for a guideless unmanned vehicle. Each light emits light with a characteristic that can be individually identified, and on the unmanned vehicle side, the ceiling illumination lamp that the light receiving element receives is determined from the above characteristics of the output of the light receiving element toward the ceiling. ..

【0007】検出方法。Detection method.

【0008】請求項2では、各天井照明灯の発光がそれ
ぞれ相異なる変調周波数を持つものとした。
In the second aspect, the light emission of each ceiling illumination lamp has a different modulation frequency.

【0009】請求項3では、天井の一部を無人車搭載の
視覚装置で撮影して画面内の天井照明灯画像の中心座標
から当該中心座標に対する上記無人車のチルト角とパン
角を演算し、当該チルト角とパン角に基づき上記無人車
上に設けた受光素子の姿勢を制御して対応する天井照明
灯の光を受光させ、この受光素子の出力周波数から上記
天井照明灯を特定し、照明灯番号と対応する座標を書き
込んだ照明灯データメモリから上記特定した天井照明灯
の位置を特定し、この位置と上記チルト角から上記無人
車の位置を演算により検出する構成とした。
According to a third aspect of the present invention, a part of the ceiling is photographed by a visual device mounted on an unmanned vehicle, and the tilt angle and pan angle of the unmanned vehicle with respect to the central coordinates are calculated from the central coordinates of the ceiling illumination image in the screen. , The attitude of the light receiving element provided on the unmanned vehicle is controlled based on the tilt angle and the pan angle to receive the light of the corresponding ceiling illumination lamp, and the ceiling illumination lamp is specified from the output frequency of the light receiving element, The position of the specified ceiling illuminating lamp is specified from the illuminating lamp data memory in which the coordinate corresponding to the illuminating lamp number is written, and the position of the unmanned vehicle is detected by calculation from this position and the tilt angle.

【0010】請求項4では、特定した天井照明灯の位置
の基準面への投影位置と検出した無人車の位置を結ぶ方
向が基準方向に対してなす角度と、パン角とから無人車
の基準方向に対する方向を検出するようにした。
According to another aspect of the present invention, the reference angle of the unmanned vehicle is determined from the angle formed by the direction connecting the projected position of the specified ceiling illumination lamp onto the reference plane and the detected position of the unmanned vehicle with respect to the reference direction, and the pan angle. The direction to the direction is detected.

【0011】請求項5では、無人車の向きはジャイロス
コープにより検出する構成とした。
In the fifth aspect, the orientation of the unmanned vehicle is detected by the gyroscope.

【0012】[0012]

【作用】本発明では、撮影した天井画像内の天井照明灯
像の画像データから当該天井照明灯の無人車に対するチ
ルト角とパン角が検出され、受光素子がこの天井照明灯
へ向けられ、その出力を索引にして天井照明灯の特定と
位置の検出が行なわれ、この位置とチルト角に基づき無
人車の位置が演算される。
In the present invention, the tilt angle and pan angle of the ceiling illumination lamp with respect to the unmanned vehicle are detected from the image data of the ceiling illumination lamp image in the captured ceiling image, and the light receiving element is directed to the ceiling illumination lamp. The output is used as an index to identify the ceiling illuminating lamp and detect the position, and the position of the unmanned vehicle is calculated based on this position and the tilt angle.

【0013】[0013]

【実施例】以下、本発明の1実施例を図面を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】図1において、10は工場の建屋、11は
建屋10の水平な天井、L1 〜LNは天井11の内面に
配設された蛍光灯である。20は建屋10内を走行する
ガイドレス方式の無人車であって、ITVカメラ21お
よび受光ユニット22を搭載している。
In FIG. 1, 10 is a building of a factory, 11 is a horizontal ceiling of the building 10, and L 1 to L N are fluorescent lamps arranged on the inner surface of the ceiling 11. Reference numeral 20 denotes a guideless type unmanned vehicle that travels in the building 10, and is equipped with an ITV camera 21 and a light receiving unit 22.

【0015】蛍光灯L1 〜LN はインバータ蛍光灯であ
って、各々が異なる周波数F1 〜FN で変調された変調
光を発生する。図4にその1例を示す。同図において、
12は電源、13はタイオード整流器、14は平滑コン
デンサ、15は発振回路、16は蛍光管である。
The fluorescent lamps L 1 to L N are inverter fluorescent lamps, and each generate a modulated light modulated at different frequencies F 1 to F N. FIG. 4 shows an example thereof. In the figure,
Reference numeral 12 is a power source, 13 is a rectifier, 14 is a smoothing capacitor, 15 is an oscillating circuit, and 16 is a fluorescent tube.

【0016】ITVカメラ21は天井11の一部を視野
に収めうるように、ある仰角をもって取付けられてお
り、また、受光ユニット22は、図2に示すように、受
光素子23、左右および上下回動駆動機構24および制
御装置25を有し、受光素子23の無人車20に対する
チルト角αおよびパン角β(図3に示す)を調整可能に
設けてある。
The ITV camera 21 is mounted at a certain elevation angle so that a part of the ceiling 11 can be accommodated in the field of view, and the light receiving unit 22 is provided with a light receiving element 23, right and left and up and down as shown in FIG. A dynamic drive mechanism 24 and a control device 25 are provided, and the tilt angle α and the pan angle β (shown in FIG. 3) of the light receiving element 23 with respect to the unmanned vehicle 20 are adjustable.

【0017】図4は、ITVカメラ21が撮影した画像
であり、ITVカメラ21からの画像信号は図2に示す
ように2値化回路31で2値データ(明〔1〕と暗
FIG. 4 shows an image taken by the ITV camera 21, and the image signal from the ITV camera 21 is binary data (bright [1] and dark [1] as shown in FIG.

〔0〕)に変換されたのち、画像メモリ32に格納され
る。図5の(A)はITVカメラ21の視野の縦断面を
示し、図3の(B)はITVカメラ21の視野の水平断
面を示す。図2の33は演算装置CPU、34は照明灯
データメモリである。この照明灯データメモリ34は蛍
光灯番号L1 〜LN 、周波数F1 〜FN および蛍光灯の
座標g1 〜gN のテーブルを格納している。34Aは演
算装置CPU33の演算結果を格納するデータメモリで
ある。
After being converted into [0]), it is stored in the image memory 32. 5A shows a vertical section of the field of view of the ITV camera 21, and FIG. 3B shows a horizontal section of the field of view of the ITV camera 21. In FIG. 2, reference numeral 33 is a processor CPU, and 34 is an illumination lamp data memory. The illumination lamp data memory 34 stores a table of fluorescent lamp numbers L 1 to L N , frequencies F 1 to F N, and fluorescent lamp coordinates g 1 to g N. 34A is a data memory for storing the calculation result of the arithmetic unit CPU 33.

【0018】(1)演算装置CPU33では、画像メモ
リ32に格納された1フレーム分の画像データの蛍光灯
像(明領域)L1 ' 〜L4 ' のうちの完全画像L1 '
2 'の像中心G1 、G2 の座標G1 (i1 ,j1 )、
座標G2 (i2 ,j2 )を演算する。像中心G1 、G2
の画素の位置は像中心G1 、G2 をずらすことによりず
れるので、像中心G1 、G2 の画素の、全画素中の位置
すなわち横方向画素アドレスおよび縦方向画素アドレ
ス)は無人車20から見たチルト角α1 、α2 およびパ
ン角β1 、β2 に対応する。このチルト角α1 、α2
よびパン角β1 、β2 はデータメモリ34Aに格納され
る。
(1) In the arithmetic unit CPU 33, the complete images L 1 ' and L 2 of the fluorescent lamp images (bright areas) L 1 ' to L 4 ' of the image data for one frame stored in the image memory 32 are stored. image center G 1, coordinates G 1 of G 2 of '(i 1, j 1) ,
The coordinates G 2 (i 2 , j 2 ) are calculated. Image center G 1 , G 2
Since the positions of the pixels of the image centers G 1 and G 2 are displaced by shifting the image centers G 1 and G 2 , the positions of the pixels of the image centers G 1 and G 2 in all the pixels, that is, the horizontal pixel address and the vertical pixel address) are unmanned. Corresponds to the tilt angles α 1 and α 2 and the pan angles β 1 and β 2 as viewed from above. The tilt angles α 1 and α 2 and the pan angles β 1 and β 2 are stored in the data memory 34A.

【0019】(2)このチルト角α1 とパン角β1 およ
びチルトα2 とパン角β2 を受光ユニット22の制御装
置25へ入力し、先ず、受光素子23をその受光面が蛍
光灯L1 に向く姿勢へ制御して、蛍光灯L1 からの光を
受光させ、受光素子23の出力を周波数検出回路35に
入力して変調周波数F1 を検出する。続いて、受光素子
23の受光面が蛍光灯L2 に向く姿勢へ当該受光素子2
3を制御し、受光素子23の出力を周波数検出回路35
に入力して変調周波数F2 を検出する。
(2) The tilt angle α 1 and pan angle β 1 and the tilt α 2 and pan angle β 2 are input to the control device 25 of the light receiving unit 22. First, the light receiving surface of the light receiving element 23 is a fluorescent lamp L. By controlling the posture toward 1 , the light from the fluorescent lamp L 1 is received, the output of the light receiving element 23 is input to the frequency detection circuit 35, and the modulation frequency F 1 is detected. Subsequently, the light receiving element 2 to the position in which the light receiving surface of the light receiving element 23 faces the fluorescent lamp L 2
3 and controls the output of the light receiving element 23 to the frequency detection circuit 35.
To the modulation frequency F 2 to be detected.

【0020】(3)演算回路CPU33は、このように
した求めた変調周波数F1 とF2 を照明灯データメモリ
34の上記テーブルと照合して、画像L1 ' とL2 '
対応する実像が蛍光灯L1 とL2 であることを特定す
る。
(3) The arithmetic circuit CPU 33 collates the thus obtained modulation frequencies F 1 and F 2 with the above table of the illuminating lamp data memory 34 to obtain real images corresponding to the images L 1 and L 2 ′. Are fluorescent lamps L 1 and L 2 .

【0021】(4)演算回路CPU33は、蛍光灯L1
とL2 の座標g1 2 を照明灯データメモリ34から読
み出し、座標g1 とデータメモリ34Aから読み出した
チルト角α1 とから図6に示す円O1 を演算し、同様
に、照明灯データメモリ34から読み出した座標g2
チルト角α2 とから図6に示す円O2 を演算する。無人
車20はこの2つの円O1 とO2 の周上の交点Aまたは
B上に位置していることになり、パン角β1 とβ2 の大
小関係(G1 とG2 の左右関係)で無人車20の位置P
を特定する。
(4) The arithmetic circuit CPU 33 uses the fluorescent lamp L 1
And reads out the coordinates g 1 g 2 of L 2 from the lighting data memory 34, calculates a circle O 1 shown in FIG. 6 from the tilt angle alpha 1 Metropolitan read from coordinates g 1 and the data memory 34A, similarly, lighting A circle O 2 shown in FIG. 6 is calculated from the coordinate g 2 read from the data memory 34 and the tilt angle α 2 . The unmanned vehicle 20 is located on the intersection A or B on the circumference of the two circles O 1 and O 2 , and the magnitude relationship between the pan angles β 1 and β 2 (the left-right relationship between G 1 and G 2 ). ) Is the position P of the unmanned vehicle 20
Specify.

【0022】(5)無人車20の方向(姿勢)δを検出
する場合には、このようにして特定した無人車20の位
置Pと蛍光灯L1 の位置g1 (もしくは蛍光灯L2 の位
置g2)から図7に示す基準方向Xに対する角度γを演
算し、角度γとパン角β1 (もしくはパン角β2 )との
和から、無人車20の方向δを演算する。
[0022] (5) when detecting a δ direction of the unmanned vehicle 20 (position) is thus positioned g 1 position P and the fluorescent lamp L 1 of the unmanned vehicle 20 identified by (or the fluorescent lamp L 2 The angle γ with respect to the reference direction X shown in FIG. 7 is calculated from the position g 2 ) and the direction δ of the unmanned vehicle 20 is calculated from the sum of the angle γ and the pan angle β 1 (or the pan angle β 2 ).

【0023】このように、本実施例では、各蛍光灯L1
〜LN に固有の変調周波数F1 〜FN を持たせたことに
より、位置検出指標となる蛍光灯L1 、L2 を容易に特
定することができ、この特定した蛍光灯の座標を用いて
無人車20の位置および方向を検出するので、前記従来
のパターンマッチング方法による場合に比して、簡単な
ソフトウエアで済み、しかも蛍光灯L1 、L2 の特定を
確実に行なうことができるので、検出失敗の恐れがな
く、確実に、かつ高精度に位置および方向を検出するこ
とができる。
As described above, in this embodiment, each fluorescent lamp L 1
˜L N have unique modulation frequencies F 1 to F N , it is possible to easily identify the fluorescent lamps L 1 and L 2 that serve as position detection indexes, and use the coordinates of the identified fluorescent lamps. Since the position and direction of the unmanned vehicle 20 are detected by using the conventional pattern matching method, simple software is required, and the fluorescent lamps L 1 and L 2 can be reliably identified. Therefore, there is no fear of detection failure, and the position and direction can be detected reliably and with high accuracy.

【0024】また、変調周波数から天井照明灯の位置を
特定するから、蛍光灯の配列方法に制約はない利点があ
る。
Further, since the position of the ceiling illumination lamp is specified from the modulation frequency, there is an advantage that the arrangement method of the fluorescent lamps is not limited.

【0025】なお、上記実施例では、無人車20の方向
を演算により求めているが、図8に示すように、無人車
20にジャイロスコープを搭載して当該ジャイロスコー
プにより無人車20の方向を検出させるようにしてもよ
い。
In the above embodiment, the direction of the unmanned vehicle 20 is calculated. However, as shown in FIG. 8, a gyroscope is mounted on the unmanned vehicle 20 and the direction of the unmanned vehicle 20 is determined by the gyroscope. You may make it detect.

【0026】受光素子23は、例えば数十KHZの周波
数に応答できる光電変換素子、具体的にはフォトダイオ
ードが用いられるが、ダイオードにメガフォン状のフー
ドをつけ、指向性をよくすれは、特定の周波数成分のみ
を強調され、後段の周波数検出回路35で弁別しやすく
なる。
As the light receiving element 23, for example, a photoelectric conversion element capable of responding to a frequency of several tens of KHZ, specifically, a photodiode is used. However, if the diode is provided with a megaphone hood and the directivity is improved, a specific Only the frequency component is emphasized, and it becomes easy to discriminate in the frequency detection circuit 35 in the subsequent stage.

【0027】また、上記周波数検出回路35は受光素子
23からの出力が含む複数の周波数成分の中から最も波
高値の高いものを抽出する。具体的には、フーリエ変換
の手法を用いたFFTアナライザ等があるが、上記した
方法で受光素子23の指向性を良くした場合には、単な
るバルスカウンタで間に合わせることができる。
Further, the frequency detection circuit 35 extracts the one having the highest peak value from the plurality of frequency components included in the output from the light receiving element 23. Specifically, there is an FFT analyzer using a Fourier transform method, but when the directivity of the light receiving element 23 is improved by the above method, it is possible to make do with a simple pulse counter.

【0028】また、ITVカメラ21がその視野の中に
1箇の蛍光灯しかを捉えられなかった場合には、ITV
カメラ21の角度を変えて最低もう1箇の蛍光灯の画像
を取り込む。この場合、ITVカメラ21の角度を変え
る場合、チルト角よりもパン角を優先させた方が演算時
間の面からは有利である。
If the ITV camera 21 can capture only one fluorescent lamp in its field of view, ITV
The image of at least another fluorescent lamp is captured by changing the angle of the camera 21. In this case, when changing the angle of the ITV camera 21, it is advantageous in terms of calculation time to prioritize the pan angle over the tilt angle.

【0029】高精度の位置決めが要求される場合には、
元の角度による画像と今回の角度の画像とを合成し、仮
想的に拡大された視野の画像を扱うようにする。さほど
の精度が要求されない場合は、1箇の視野の中に複数個
の蛍光灯が捉えられたら、その視野の画像だけで処理す
るようにすればよい。
When high precision positioning is required,
The image of the original angle and the image of the current angle are combined to handle the image of the virtually expanded field of view. If such accuracy is not required, when a plurality of fluorescent lamps are captured in one visual field, it is sufficient to process only the image in that visual field.

【0030】[0030]

【発明の効果】本発明は以上説明した通り、天井照明灯
をガイドレス無人車の位置(および方向)検出指標とす
る場合に、各天井照明灯の発光にそれぞれ固有の変調周
波数を持たせ、この変調周波数から天井照明灯の位置を
特定する構成としたことにより、天井照明灯を利用して
システムを安価に構築することができ、位置検出のため
の演算は簡単な演算で済み、確実に、高い精度をもって
無人車の位置および方向を検出することができる。
As described above, according to the present invention, when the ceiling illumination light is used as the position (and direction) detection index of the guideless unmanned vehicle, the light emission of each ceiling illumination light has its own modulation frequency, By configuring the position of the ceiling illuminator from this modulation frequency, the system can be constructed inexpensively using the ceiling illuminator, and the calculation for position detection can be performed easily and reliably. The position and direction of the unmanned vehicle can be detected with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of an exemplary embodiment of the present invention.

【図2】上記実施例における検出プロセスを説明するた
めの制御ブロック図である。
FIG. 2 is a control block diagram for explaining a detection process in the above embodiment.

【図3】上記実施例における蛍光灯の回路図である。FIG. 3 is a circuit diagram of the fluorescent lamp in the above embodiment.

【図4】上記実施例におけるITVカメラの撮影画像の
1例を示す図である。
FIG. 4 is a diagram showing an example of a captured image of the ITV camera in the above embodiment.

【図5】上記実施例におけるチルト角とパン角を説明す
るための図である。
FIG. 5 is a diagram for explaining a tilt angle and a pan angle in the above embodiment.

【図6】上記実施例におけ無人車の位置検出演算を説明
するための図である。
FIG. 6 is a diagram for explaining position detection calculation of an unmanned vehicle in the above embodiment.

【図7】上記実施例におけ無人車の方向検出演算を説明
するための図である。
FIG. 7 is a diagram for explaining the direction detection calculation of the unmanned vehicle in the above embodiment.

【図8】上記実施例におけ無人車の位置と方向を検出す
る他の例を説明するための図である。
FIG. 8 is a diagram for explaining another example of detecting the position and direction of the unmanned vehicle in the above embodiment.

【符号の説明】[Explanation of symbols]

10 建屋 11 天井 20 無人車 21 ITVカメラ 22 受光ユニット 31 2値化回路 32 画像メモリ 33 演算回路 34 照明灯データメモリ 34A データメモリ 35 周波数検出回路 L1 〜LN 天井照明灯である蛍光灯10 Building 11 Ceiling 20 Unmanned Vehicle 21 ITV Camera 22 Light-Receiving Unit 31 Binarization Circuit 32 Image Memory 33 Arithmetic Circuit 34 Lighting Data Memory 34A Data Memory 35 Frequency Detection Circuit L 1 to L N Fluorescent Lamp as Ceiling Lighting

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 天井照明灯をガイドレス式無人車の位置
検出指標とする無人車の位置検出方法において、各天井
照明灯がそれぞれ個別に識別可能な特徴を持つ発光を行
い、無人車側では、上記天井に向けた受光素子の出力の
上記特徴から当該受光素子が受光している天井照明灯を
特定することを特徴とする無人車の位置・方向検出方
法。
1. A method for detecting the position of an unmanned vehicle using a ceiling illumination light as a position detection index for a guideless type unmanned vehicle, wherein each ceiling illumination light emits light having a characteristic that can be individually identified, and on the unmanned vehicle side. A position / direction detecting method for an unmanned vehicle, characterized in that a ceiling illuminating light received by the light receiving element is specified from the characteristics of the output of the light receiving element toward the ceiling.
【請求項2】 各天井照明灯の発光がそれぞれ相異なる
変調周波数を持つことを特徴とする請求項1記載の無人
車の位置・方向検出方法。
2. The method for detecting the position / direction of an unmanned vehicle according to claim 1, wherein the respective lights emitted from the ceiling illumination lamps have different modulation frequencies.
【請求項3】 天井の一部を無人車搭載の視覚装置で撮
影して画面内の天井照明灯画像の中心座標から当該中心
座標に対する上記無人車のチルト角とパン角を演算し、
当該チルト角とパン角に基づき上記無人車上に設けた受
光素子の姿勢を制御して対応する天井照明灯の光を受光
させ、この受光素子の出力周波数から上記天井照明灯を
特定し、照明灯番号と対応する座標を書き込んだ照明灯
データメモリから上記特定した天井照明灯の位置を特定
し、この位置と上記チルト角から上記無人車の位置を演
算により検出することを特徴とする請求項2記載の無人
車の位置・方向検出方法。
3. The tilt angle and pan angle of the unmanned vehicle with respect to the center coordinates are calculated from the center coordinates of the ceiling illumination image in the screen by photographing a part of the ceiling with a visual device mounted on the unmanned vehicle,
Based on the tilt angle and the pan angle, the attitude of the light receiving element provided on the unmanned vehicle is controlled to receive the light of the corresponding ceiling illumination lamp, and the ceiling illumination lamp is specified from the output frequency of the light receiving element to perform illumination. The position of the specified ceiling illuminating lamp is specified from the illuminating lamp data memory in which the coordinates corresponding to the lamp number are written, and the position of the unmanned vehicle is detected by calculation from this position and the tilt angle. The method for detecting the position / direction of an unmanned vehicle as described in 2.
【請求項4】 特定した天井照明灯の位置の基準面への
投影位置と検出した無人車の位置を結ぶ方向が基準方向
に対してなす角度と、パン角とから無人車の基準方向に
対する方向を検出することを特徴とする請求項3記載の
無人車の位置・方向検出方法。
4. A direction with respect to the reference direction of the unmanned vehicle from an angle formed by a direction connecting a projection position of the specified position of the ceiling illumination lamp onto the reference plane and the detected position of the unmanned vehicle with respect to the reference direction and a pan angle to the reference direction of the unmanned vehicle. 4. The method for detecting the position / direction of an unmanned vehicle according to claim 3, wherein:
【請求項5】 無人車の向きはジャイロスコープにより
検出することを特徴とする請求項3記載の無人車の位置
・方向検出方法。
5. The position / direction detection method for an unmanned vehicle according to claim 3, wherein the orientation of the unmanned vehicle is detected by a gyroscope.
JP05542392A 1992-03-13 1992-03-13 Unmanned vehicle position / direction detection method Expired - Fee Related JP3397336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05542392A JP3397336B2 (en) 1992-03-13 1992-03-13 Unmanned vehicle position / direction detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05542392A JP3397336B2 (en) 1992-03-13 1992-03-13 Unmanned vehicle position / direction detection method

Publications (2)

Publication Number Publication Date
JPH05257527A true JPH05257527A (en) 1993-10-08
JP3397336B2 JP3397336B2 (en) 2003-04-14

Family

ID=12998172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05542392A Expired - Fee Related JP3397336B2 (en) 1992-03-13 1992-03-13 Unmanned vehicle position / direction detection method

Country Status (1)

Country Link
JP (1) JP3397336B2 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098475A1 (en) * 2004-03-29 2005-10-20 Evolution Robotics, Inc. Sensing device and method for measuring position and orientation relative to multiple light sources
WO2005098476A1 (en) * 2004-03-29 2005-10-20 Evolution Robotics, Inc. Method and apparatus for position estimation using reflected light sources
JP2006114004A (en) * 2004-10-12 2006-04-27 Samsung Kwangju Electronics Co Ltd Correction method of gyro sensor of robot cleaner
JP2007108188A (en) * 2005-01-12 2007-04-26 Matsushita Electric Works Ltd Line of flow measurement system
WO2009106440A1 (en) * 2008-02-29 2009-09-03 International Business Machines Corporation Providing position information to computing equipment installed in racks of a datacenter
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
JP2010261896A (en) * 2009-05-11 2010-11-18 Ntn Corp Position detector and position detecting method
JP2011196781A (en) * 2010-03-18 2011-10-06 Ricoh Co Ltd Apparatus for measurement of self-position, and service method using the same
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8632376B2 (en) 2007-09-20 2014-01-21 Irobot Corporation Robotic game systems and methods
JP2014038419A (en) * 2012-08-13 2014-02-27 Nec Commun Syst Ltd Electric vacuum cleaner, electric vacuum cleaner system and method of controlling electric vacuum cleaner
JP2014519597A (en) * 2011-04-12 2014-08-14 株式会社ソニー・コンピュータエンタテインメント Object tracking with projected reference patterns
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8966707B2 (en) 2005-02-18 2015-03-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US9002511B1 (en) 2005-10-21 2015-04-07 Irobot Corporation Methods and systems for obstacle detection using structured light
US9026302B2 (en) 2009-11-06 2015-05-05 Irobot Corporation Methods and systems for complete coverage of a surface by an autonomous robot
US9170581B2 (en) 2013-09-30 2015-10-27 Crown Equipment Limited Industrial vehicles with overhead light based localization
JP2015190931A (en) * 2014-03-28 2015-11-02 株式会社フジタ Position measuring system
US9174830B1 (en) 2014-09-29 2015-11-03 Crown Equipment Limited Industrial vehicles with point fix based localization
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
JP2016033457A (en) * 2014-07-30 2016-03-10 パナソニックIpマネジメント株式会社 Position estimation system and reception terminal
US9310806B2 (en) 2010-01-06 2016-04-12 Irobot Corporation System for localization and obstacle detection using a common receiver
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
JP2017026374A (en) * 2015-07-17 2017-02-02 国立大学法人 鹿児島大学 Position specifying system, position specifying method and program
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
JP2019500596A (en) * 2015-12-03 2019-01-10 オスラム・シルバニア・インコーポレイテッド Light-based vehicle localization for mobile communication systems
JP2020034973A (en) * 2018-08-27 2020-03-05 三菱ロジスネクスト株式会社 Unmanned transport system using unmanned aerial vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101248308B1 (en) * 2011-01-31 2013-03-27 고려대학교 산학협력단 Method for recognizing the self position of a mobile robot unit using the lamp directionality on the ceiling image/feature map and mobile robot unit using the method

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8295955B2 (en) 2004-03-29 2012-10-23 Evolutions Robotics, Inc. Methods and apparatus for position estimation using reflected light sources
US9360300B2 (en) 2004-03-29 2016-06-07 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US7996097B2 (en) 2004-03-29 2011-08-09 Evolution Robotics, Inc. Methods and apparatus for position estimation using reflected light sources
WO2005098475A1 (en) * 2004-03-29 2005-10-20 Evolution Robotics, Inc. Sensing device and method for measuring position and orientation relative to multiple light sources
US7720554B2 (en) 2004-03-29 2010-05-18 Evolution Robotics, Inc. Methods and apparatus for position estimation using reflected light sources
JP2007530978A (en) * 2004-03-29 2007-11-01 エヴォリューション ロボティクス インコーポレイテッド Position estimation method and apparatus using reflected light source
WO2005098476A1 (en) * 2004-03-29 2005-10-20 Evolution Robotics, Inc. Method and apparatus for position estimation using reflected light sources
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
JP2006114004A (en) * 2004-10-12 2006-04-27 Samsung Kwangju Electronics Co Ltd Correction method of gyro sensor of robot cleaner
JP4569565B2 (en) * 2005-01-12 2010-10-27 パナソニック電工株式会社 Flow line measurement system
JP2007108188A (en) * 2005-01-12 2007-04-26 Matsushita Electric Works Ltd Line of flow measurement system
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US10470629B2 (en) 2005-02-18 2019-11-12 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8966707B2 (en) 2005-02-18 2015-03-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US9002511B1 (en) 2005-10-21 2015-04-07 Irobot Corporation Methods and systems for obstacle detection using structured light
US9632505B2 (en) 2005-10-21 2017-04-25 Irobot Corporation Methods and systems for obstacle detection using structured light
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US8438695B2 (en) 2007-05-09 2013-05-14 Irobot Corporation Autonomous coverage robot sensing
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8632376B2 (en) 2007-09-20 2014-01-21 Irobot Corporation Robotic game systems and methods
US7667855B2 (en) 2008-02-29 2010-02-23 International Business Machines Corporation Providing position information to computing equipment installed in racks of a datacenter
WO2009106440A1 (en) * 2008-02-29 2009-09-03 International Business Machines Corporation Providing position information to computing equipment installed in racks of a datacenter
JP2010261896A (en) * 2009-05-11 2010-11-18 Ntn Corp Position detector and position detecting method
US11052540B2 (en) 2009-11-06 2021-07-06 Irobot Corporation Methods and systems for complete coverage of a surface by an autonomous robot
US9440354B2 (en) 2009-11-06 2016-09-13 Irobot Corporation Localization by learning of wave-signal distributions
US9188983B2 (en) 2009-11-06 2015-11-17 Irobot Corporation Methods and systems for complete coverage of a surface by an autonomous robot
US10583562B2 (en) 2009-11-06 2020-03-10 Irobot Corporation Methods and systems for complete coverage of a surface by an autonomous robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US9026302B2 (en) 2009-11-06 2015-05-05 Irobot Corporation Methods and systems for complete coverage of a surface by an autonomous robot
US9623557B2 (en) 2009-11-06 2017-04-18 Irobot Corporation Localization by learning of wave-signal distributions
US9895808B2 (en) 2009-11-06 2018-02-20 Irobot Corporation Methods and systems for complete coverage of a surface by an autonomous robot
US9310806B2 (en) 2010-01-06 2016-04-12 Irobot Corporation System for localization and obstacle detection using a common receiver
JP2011196781A (en) * 2010-03-18 2011-10-06 Ricoh Co Ltd Apparatus for measurement of self-position, and service method using the same
JP2014519597A (en) * 2011-04-12 2014-08-14 株式会社ソニー・コンピュータエンタテインメント Object tracking with projected reference patterns
JP2014038419A (en) * 2012-08-13 2014-02-27 Nec Commun Syst Ltd Electric vacuum cleaner, electric vacuum cleaner system and method of controlling electric vacuum cleaner
US9170581B2 (en) 2013-09-30 2015-10-27 Crown Equipment Limited Industrial vehicles with overhead light based localization
JP2015190931A (en) * 2014-03-28 2015-11-02 株式会社フジタ Position measuring system
JP2016033457A (en) * 2014-07-30 2016-03-10 パナソニックIpマネジメント株式会社 Position estimation system and reception terminal
US9340399B2 (en) 2014-09-29 2016-05-17 Crown Equipment Corporation Industrial vehicles with point fix based localization
US9174830B1 (en) 2014-09-29 2015-11-03 Crown Equipment Limited Industrial vehicles with point fix based localization
JP2017026374A (en) * 2015-07-17 2017-02-02 国立大学法人 鹿児島大学 Position specifying system, position specifying method and program
JP2019500596A (en) * 2015-12-03 2019-01-10 オスラム・シルバニア・インコーポレイテッド Light-based vehicle localization for mobile communication systems
US10891754B2 (en) 2015-12-03 2021-01-12 Osram Sylvania Inc. Light-based vehicle positioning for mobile transport systems
JP2020034973A (en) * 2018-08-27 2020-03-05 三菱ロジスネクスト株式会社 Unmanned transport system using unmanned aerial vehicle

Also Published As

Publication number Publication date
JP3397336B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
JP3397336B2 (en) Unmanned vehicle position / direction detection method
US5440391A (en) Method and device for determining a position of at least one lead of an electronic component
US6628445B2 (en) Coplanar camera scanning system
US5455647A (en) Optical apparatus in which image distortion is removed
JP2000161918A (en) Method and device for detecting position of moving body
JPS6089213A (en) Detecting method for position and direction of unmanned truck
US6856935B1 (en) Camera tracking system for a virtual television or video studio
JP2006313116A (en) Distance tilt angle detection device, and projector with detection device
JPH10256790A (en) Electronic component mounting apparatus
JP2005283527A (en) Apparatus for detecting foreign substance
JPS6220522B2 (en)
JP2001124521A (en) Optical position detector
KR100372621B1 (en) Projection system and projector
JP3114546B2 (en) Optical information reader
JP3156442B2 (en) Inspection device for solder joints
JP2000232564A (en) Optical system for compensating uneven illumination to object
JP2019016394A (en) Image processing device
JP2521156Y2 (en) Position measurement target
US20050122421A1 (en) Photographing apparatus with lighting function
JPH0791929A (en) Device for measuring three-dimensional shape with telecamera
JPS59197810A (en) Separation of detecting light of photosensor from background light
JP4024030B2 (en) Image recognition device, program, and recording medium
JPH08145637A (en) Method and apparatus for recognizing profile of pipe
JPH11328298A (en) Code reader
JPH04122879A (en) Position detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees