JPH0363704A - Model norm type adaptive controller - Google Patents

Model norm type adaptive controller

Info

Publication number
JPH0363704A
JPH0363704A JP19897289A JP19897289A JPH0363704A JP H0363704 A JPH0363704 A JP H0363704A JP 19897289 A JP19897289 A JP 19897289A JP 19897289 A JP19897289 A JP 19897289A JP H0363704 A JPH0363704 A JP H0363704A
Authority
JP
Japan
Prior art keywords
plant
model
gain
input
zero point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19897289A
Other languages
Japanese (ja)
Inventor
Yoshiro Tsuchiyama
吉朗 土山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19897289A priority Critical patent/JPH0363704A/en
Publication of JPH0363704A publication Critical patent/JPH0363704A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34042Filter
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41011Adapt gain as function of followup error, model can be used
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42155Model

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To settle a problem of the model follow-up deterioration when there is a zero point by a simple constitution, and also, to adjust the model follow-up gain by providing a filter having the same pole as a zero point of a plant. CONSTITUTION:A filter 2 having a pole of a value being equal to a zero point of a plant 1 is inserted into this side of an input of the plant 1, and the zero point of the plant 1 is offset. Also, a means 7 for managing a follow-up state to a model 4 is provided, and the gain of an adaptive system is adjusted. In such a way, when the filter 2 having a pole of the same value as the zero point is inserted into the input of the plant 1, the zero point of the plant 1 is offset, and it becomes equivalent to the plant having no zero point. Also, when the model follow-up performance is insufficient, the gain is raised by the managing means 7, and as a result of raising the gain, when the model follow-up performance is deteriorated, the adjustment to correct gain is executed by lowering the gain by the managing means 7.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(上 制御対象(プラント)の特性が変動しても
制御可能な適応制御器の八 応答の規範モデルを定数 
対象が規範モデルに追従する方式の適応制御器に関する
ものであも 従来の技術 未知パラメータを含む制御対象に対して適応制御を行う
ものとして、モデル規範型適応制御器が提唱されていも
 ただし この方式には2通りあり、適応機構としてパ
ラメータを可変する機能を持ったものと、モデルマツチ
ングによりパラメータ可変なしでモデル追従させるもの
とがあも パラメータ可変による適応制御器は例えば 
市川邦彦はか「適応制御」 (昭晃i  1984)な
どに詳しく述べられているバ プラントの構造が既知で
なければならないし さらにプラントパラメータ変動が
比較的低速でなければならなし℃ 一方、モデルマツチ
ングによるものζ上 プラント構造が完全に判っている
必要は無く、かス プラントパラメータの変動が比較的
はやいプラントに対しても有効であも 第3図(a)(b)を上 モデルマツチングによる従来
の適応制御器の構成を示したものであもプラント11の
伝達関数P (s)、モデル14の伝達関数Pm(s)
、補償要素13の伝達関数H(s)を第3図(a)のご
とく接続する。すなわち目標値rはモデル14に入力さ
れるとともに 比較器15にも入力すも モデルプラン
ト14(上 その応答を比較器16に入力すも 一方比
較器15は目標値rと補償要素13の出力値と比較をし
 その結果をプラント11に送も プラント11の出力
yはモデルプラント出力7mと比較器16で比較されそ
の結果を補償要素13に人力すも 第3図(b)は同図
(a)のブロック図を1つにしたものであも 次に補償
要素13の構成について説明すも補償要素13(よ モ
デルプラント14の伝達特性P m(s)の逆数にゲイ
ン定数Kを掛けたものとする。
[Detailed description of the invention] Industrial application field of the present invention (Part 1) 8. Adaptive controller that can control even if the characteristics of the controlled object (plant) change.
Although it concerns an adaptive controller in which the target follows a reference model, a model-based adaptive controller has been proposed to perform adaptive control on a control target that includes parameters that are unknown to conventional technology. There are two types of controllers: one has the function of varying parameters as an adaptive mechanism, and the other uses model matching to follow the model without changing parameters.An example of an adaptive controller with variable parameters is
The structure of the plant, which is described in detail in Kunihiko Ichikawa's ``Adaptive Control'' (Shokoi 1984), must be known, and furthermore, the plant parameter fluctuations must be relatively slow. Model matching does not require a complete knowledge of the plant structure, and is effective even for plants where plant parameters change relatively quickly. The diagram shows the configuration of a conventional adaptive controller based on the transfer function P (s) of the plant 11 and the transfer function Pm (s) of the model 14.
, the transfer function H(s) of the compensation element 13 are connected as shown in FIG. 3(a). In other words, the target value r is input to the model 14 and is also input to the comparator 15. The output y of the plant 11 is compared with the model plant output 7m in the comparator 16, and the result is sent to the compensation element 13 manually. ) The configuration of the compensation element 13 will be explained next. shall be.

すなわ板 H(s)= K / P m(s) とおく。このとき、同図(b)の伝達特性(よy / 
r = (1+K) ・P(s)/ (1千に−P(S
)/Pm(s)) となも そして、K→■のとき、y/rの値(よ P′m(S)
となん すなわ−&Kを大きくして行けば 系の特性は
モデル14の特性P m(s)に近づく。すなわ板 プ
ラント11の特性P(s)に無関係な入出力の関係が得
られる。
In other words, the plate H(s) = K/P m(s). At this time, the transfer characteristic (y /
r = (1+K) ・P(s)/ (−P(S to 1,000)
)/Pm(s)) Then, when K→■, the value of y/r(yo P'm(S)
If we increase Tonan Sunawa - &K, the characteristics of the system will approach the characteristics P m (s) of model 14. In other words, an input/output relationship unrelated to the characteristic P(s) of the plate plant 11 is obtained.

発明が解決しようとする課題 以上説明した従来例で(よ 欠点も指摘されていも 例
え(工 井上他「受動的適応ループを用いた適応観測器
の構成」第31回自動制御連合講演会:講演番号106
8 (Oct、  、25、° 88)で(上 プラン
トに零点があるとき、モデルに対するプラントの応答に
誤差が出ることを指摘している。
Problems to be Solved by the Invention In the conventional example explained above (although some shortcomings have been pointed out) number 106
8 (Oct, , 25, ° 88) (top) points out that when a plant has a zero point, errors occur in the plant's response to the model.

まな 理論的には補償要素のゲインには無限大が理想で
ある力t 実際の制御系ではノイズなどにより、Kの値
をあまり大きくすることが好ましくないこともあり、適
正なゲインを与えることが必要であも 課題を解決するための手段 プラントの入力の手前に プラントの零点に等しい値の
極を有するフィルタを挿入し プラントの零点を相殺す
も モデルへの追従状態を管理する手段を設けて、適応系の
ゲインの調整を行う。
Theoretically, the ideal gain for the compensation element is the force t, which is infinite.In actual control systems, it may not be desirable to make the value of K too large due to noise, etc., and it is difficult to provide an appropriate gain. A method to solve the problem even if necessary is to insert a filter with a pole equal to the plant zero point before the plant input, cancel the plant zero point, and provide a means to manage the tracking state of the model. , adjust the gain of the adaptive system.

作   用 プラント入力に零点と同じ値の極を有するフィルタを挿
入すると、プラントの零点は相殺されて、零点を持たな
いプラントと等価になん さらに モデル追従性能が不十分な場合には管理手段に
よってゲインを上ば ゲインを上げた粘気 モデル追従
性能が悪化した場合は管理手段によってゲインを下げる
ことにより、適正なゲインへの調整が行われも 実施例 第1図は本発明の一実施例におけるモデル規範型適応制
御器の構成を示すブロック図であも 目標値rは比較器
5およびモデルプラント4に人力されも モデルプラン
ト4の出力ymは比較器6に送られも 比較器5では補
償要素3の出力と目標値rとの比較を行へ その結果を
フィルタ2へ送も フィルタ2の出力はプラント1に送
られもプラント1の出力yは比較器6に送られ モデル
プラント4の出力ymと比較され その結果を補償要素
3に入力すも 管理手段7は制御系の状態を調べて、制
御系のパラメータ調整を行うものであり、調整方法は後
述すも 管理手段7は例えばコンピュータにより構成す
ることができも次に補償要素3の構成について説明すも
 補償要素3はモデルプラント4の逆特性にゲイン1〈
+を乗じたもので構成する戟 一般にモデルプラント4
の特性のPm(s)逆特性は分母の次数より分子の次数
が高くなり、安定度の良いもので構成するのが難しいの
玄 モデルプラント4の極よりも十分に収束の速い極(
第1図ではPs(s)で与えている)を追加して、分子
の次数が分母より高くならないように構威すも 次にフィルタ2について説明すも プラントlが零点を
有するとき、プラント1の特性P (s)は次のように
記述できも P (s)= P ’(s)・(1+Ts)この時、フ
ィルタ2はプラントlの零点と同じ極(s=1/T)を
有するように設計する。
If a filter with poles of the same value as the zero points is inserted into the input of the working plant, the zero points of the plant will be canceled and the plant will become equivalent to a plant without zero points.In addition, if the model tracking performance is insufficient, the control means will increase the gain. If the viscosity model tracking performance deteriorates when the gain is increased, the gain can be adjusted to an appropriate level by lowering the gain using the management means. In the block diagram showing the configuration of the standard adaptive controller, the target value r is manually input to the comparator 5 and the model plant 4, and the output ym of the model plant 4 is sent to the comparator 6. In the comparator 5, the compensation element 3 The output of the filter 2 is sent to the plant 1, the output y of the plant 1 is sent to the comparator 6, and the output y of the model plant 4 is sent to the comparator 6. The results are compared and inputted into the compensation element 3.The management means 7 examines the state of the control system and adjusts the parameters of the control system, and the adjustment method will be described later.The management means 7 is configured by, for example, a computer. Next, we will explain the configuration of compensation element 3. Compensation element 3 has a gain of 1<
A sword composed of things multiplied by + Generally model plant 4
The inverse characteristic of Pm(s) is that the order of the numerator is higher than the order of the denominator, and it is difficult to construct one with good stability.
In Fig. 1, Ps(s) is added to prevent the order of the numerator from being higher than the denominator.Next, we will explain filter 2.When plant l has a zero point, plant 1 The characteristic P (s) can be written as follows: P (s) = P '(s) · (1 + Ts) In this case, filter 2 has the same pole as the zero point of plant l (s = 1/T). Design as follows.

また プラント1のゲインが不足してモデル追従が良く
ないときに(よ フィルタ2にゲインに2を与えも モ
デル追従が良好かどうか(よ 比較器6の出力信号を見
れば容易に判断することができも第2図はゲイン調整の
方法を示したフローチャートであん このフローチャー
トを実行する手段は第1図の管理手段7であん この実
行結果が第1図の補償要素3あるいはフィルタ2に送込
まれる。
Also, if the gain of plant 1 is insufficient and the model tracking is not good, you can easily determine whether the model tracking is good even if you give a gain of 2 to filter 2 (by looking at the output signal of comparator 6). However, Figure 2 is a flowchart showing a gain adjustment method.The means for executing this flowchart is the control means 7 in Figure 1.The execution result is sent to the compensation element 3 or filter 2 in Figure 1. .

このフローチャートで示される処理は一定時間毎に繰り
返し行われる。まず処理20において、モデルプラント
出力ymと実プラント出力yとの誤差の絶対量を求めも
 次に判断21に進み誤差の絶対量があるしきい値より
も大きいかどうかを調べも 誤差の絶対量がしきい値よ
りも大きい場合には判断22へ進へ 小さい場合には処
理25へ進払 処理25で(よ モデル追従が順調であ
ることに対応するので、現在のゲイン定数を保つように
すも 一方判断22で(上 前回調べたときの誤差の絶
対量と比較し 増加していれば処理23へ進へ 減少し
ていれば処理24へ進払 処理23ではゲインの修正方
向を切換え瓜 すなわ坂 これまでゲインを増加してい
た場合にはゲインを減少させ、ゲインを減少してきた場
合には逆にゲインを増加させるようにする。−大 処理
24に進んだ場合に(よ ゲインの修正の効果があった
ことになるので、引続きゲインの修正を行う。
The processing shown in this flowchart is repeated at regular intervals. First, in process 20, the absolute amount of error between the model plant output ym and the actual plant output y is determined.Next, the process proceeds to judgment 21, where it is checked whether the absolute amount of error is greater than a certain threshold value.Absolute amount of error If is larger than the threshold, proceed to judgment 22. If it is smaller, proceed to process 25. On the other hand, in judgment 22 (above), compare it with the absolute amount of error from the previous check, and if it has increased, proceed to process 23. If it has decreased, proceed to process 24. In process 23, change the direction of gain correction. Nawasaka: If the gain has been increasing so far, decrease the gain, and if the gain has been decreasing, increase the gain. This means that there was an effect, so we will continue to modify the gain.

以上の処理を繰返して行くことにより、適正な追従ゲイ
ンが得られも また ノイズ等が多くて、誤差の絶対量
がしきい値より少なくならない場合においてL ゲイン
調整は誤差の絶対量がもっとも少なくなる状態で微調整
を繰返すことになるので、やはり適正なゲインが得られ
ることになもな抵 上記実施例では零点が1つの場合に
ついて説明した力交 零点が複数個存在する場合にも本
発明を適用することができるのは勿論である。
By repeating the above process, an appropriate tracking gain can be obtained.Also, when there is a lot of noise and the absolute amount of error does not become less than the threshold value, L gain adjustment will minimize the absolute amount of error. Since the fine adjustment is repeated in each condition, it is difficult to obtain an appropriate gain. Of course, it can be applied.

発明の詳細 な説明したように 本発明は簡単な構成でありなが転 
従来の零点がある場合のモデル追従劣化の問題を解決す
ることができ、かス モデル追従ゲインの調整も可能で
あるモデル規範型適応制御器を提供することができる。
As described in detail, the present invention has a simple structure and is transferable.
It is possible to provide a model-based adaptive controller that can solve the conventional problem of model tracking deterioration when there is a zero point, and can also adjust the model tracking gain.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (2)

【特許請求の範囲】[Claims] (1)プラントに対して規範モデルを設定し、規範モデ
ルの応答とプラントの応答との差を規範モデルの逆特性
を基にした補償要素に入力し、補償要素の出力と目標値
との差をプラントの入力とするモデル規範型適応制御器
であって、前記補償要素の出力と目標値との差をプラン
トの零点と同じ極を持つフィルタに入力し、フィルタ出
力をプラント入力とするように構成したことを特徴とす
るモデル規範型適応制御器
(1) Set a reference model for the plant, input the difference between the response of the reference model and the response of the plant into a compensation element based on the inverse characteristics of the reference model, and calculate the difference between the output of the compensation element and the target value. is a model-based adaptive controller that takes as an input to the plant, the difference between the output of the compensation element and the target value is input to a filter having the same pole as the zero point of the plant, and the filter output is used as the plant input. A model-based adaptive controller characterized by the following configuration:
(2)プラントに対して規範モデルを設定し、規範モデ
ルの応答とプラントの応答との差を規範モデルの逆特性
を元にした補償要素に入力し、補償要素の出力と目標値
との差をプラントの入力とするモデル規範型適応制御器
であって、前記モデルの応答とプラントの応答との差の
絶対量を調べしきい値を越えている場合には前記補償要
素もしくは、プラント入力情報のゲインを変化させ、変
化させた結果前記誤差の絶対量が増加した場合にはゲイ
ンの変化の方向を反転させる管理手段を備えたことを特
徴とするモデル規範型適応制御器
(2) Set a reference model for the plant, input the difference between the response of the reference model and the response of the plant into a compensation element based on the inverse characteristic of the reference model, and calculate the difference between the output of the compensation element and the target value. is a model-based adaptive controller that takes as an input to a plant, the absolute amount of the difference between the model response and the plant response is checked, and if the difference exceeds a threshold, the compensation element or the plant input information is A model-based adaptive controller characterized by comprising: a management means for changing the gain of the controller and reversing the direction of the gain change if the absolute amount of the error increases as a result of the change.
JP19897289A 1989-07-31 1989-07-31 Model norm type adaptive controller Pending JPH0363704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19897289A JPH0363704A (en) 1989-07-31 1989-07-31 Model norm type adaptive controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19897289A JPH0363704A (en) 1989-07-31 1989-07-31 Model norm type adaptive controller

Publications (1)

Publication Number Publication Date
JPH0363704A true JPH0363704A (en) 1991-03-19

Family

ID=16399993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19897289A Pending JPH0363704A (en) 1989-07-31 1989-07-31 Model norm type adaptive controller

Country Status (1)

Country Link
JP (1) JPH0363704A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992018920A1 (en) * 1991-04-16 1992-10-29 Fanuc Ltd Adaptive pi control system
JPH05189010A (en) * 1992-01-09 1993-07-30 Nissan Motor Co Ltd Actuator controller
US5352961A (en) * 1991-09-20 1994-10-04 Hitachi, Ltd. Control method and apparatus for a servo-mechanism
US5444612A (en) * 1991-04-16 1995-08-22 Fanuc Ltd. Adaptive PI control system
JP2002287816A (en) * 2001-03-27 2002-10-04 Yaskawa Electric Corp Remote adjusting and diagnostic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448104A (en) * 1987-08-18 1989-02-22 Kiyoshi Oishi Robust controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448104A (en) * 1987-08-18 1989-02-22 Kiyoshi Oishi Robust controller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992018920A1 (en) * 1991-04-16 1992-10-29 Fanuc Ltd Adaptive pi control system
US5444612A (en) * 1991-04-16 1995-08-22 Fanuc Ltd. Adaptive PI control system
US5352961A (en) * 1991-09-20 1994-10-04 Hitachi, Ltd. Control method and apparatus for a servo-mechanism
US5497059A (en) * 1991-09-20 1996-03-05 Hitachi, Ltd. Control method and apparatus for a servo- mechanism
JPH05189010A (en) * 1992-01-09 1993-07-30 Nissan Motor Co Ltd Actuator controller
JP2002287816A (en) * 2001-03-27 2002-10-04 Yaskawa Electric Corp Remote adjusting and diagnostic device

Similar Documents

Publication Publication Date Title
JPS61226804A (en) Control device of multidegree-of-freedom nonlinear machine system
CN109725532B (en) Relative distance control and self-adaptive correction method applied to multiple intelligent agents
Zhang et al. A K-filter-based adaptive control for nonlinear systems with unknown parameters in state and output equations
JPH0363704A (en) Model norm type adaptive controller
JPH06119001A (en) Controller
CN115437425A (en) Temperature control method, device, equipment and storage medium
US20230324885A1 (en) Control assistance device, control system, and control assistance method
CN111338205B (en) Self-adaptive PID controller based on control deviation change partition and control method
JPS62113205A (en) Adaptive controller
CN112099344A (en) Hysteresis compensation method based on adaptive projection algorithm
Deniz et al. Experimental verification of lead-lag compensators on a twin rotor system
KR102005455B1 (en) Robust nonlinear control method with low-complexity
JPH0391801A (en) Controller for subject having nonlinear dynamic characteristic
JP2683543B2 (en) Automatic control method
CN112034715B (en) Motor servo system model-free feedback controller design method based on improved Q learning algorithm
JPH11154002A (en) Nonlinear 2-freedom degree pid controller
Tingting et al. Mixed Fractional Order Adaptive Control Based on a Scalar Update Law
JPH0527804A (en) Optimum process controller
JPH0570841B2 (en)
JPS58140807A (en) Controller with automatic control mechanism of integral limiter
JP2822427B2 (en) Process control method
SU805255A2 (en) Pneumatic device for delay compensation
JP2915220B2 (en) Process control equipment
JPH0342703A (en) Adaptive controller
CN114779632A (en) Trajectory tracking control method of life support robot system