JPH03189805A - Method and device for automatic steering vehicle - Google Patents

Method and device for automatic steering vehicle

Info

Publication number
JPH03189805A
JPH03189805A JP1330078A JP33007889A JPH03189805A JP H03189805 A JPH03189805 A JP H03189805A JP 1330078 A JP1330078 A JP 1330078A JP 33007889 A JP33007889 A JP 33007889A JP H03189805 A JPH03189805 A JP H03189805A
Authority
JP
Japan
Prior art keywords
vehicle
deviation
set course
azimuth
steering angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1330078A
Other languages
Japanese (ja)
Inventor
Masaaki Ito
公明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP1330078A priority Critical patent/JPH03189805A/en
Publication of JPH03189805A publication Critical patent/JPH03189805A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the guidance control of a vehicle, and also, to execute it with high accuracy by deriving a position deviation and an azimuth deviation of a target set course and the actual position and azimuth of the vehicle, setting the linear coupling of those position deviation and azimuth deviation as a steering angle and executing the steering angle control of the vehicle. CONSTITUTION:In the case a vehicle deviates from a set course, a position deviation D and an azimuth deviation DELTAtheta of the present spot and the set course in that case are detected, and by setting the sum (=K1.AD+K2.DELTAtheta) of a value (K1.AD) and (K2.DELTAtheta) obtained by multiplying the position deviation D and the azimuth deviation DELTAtheta by prescribed coefficients K1, K2 as a steering angle, the vehicle is run. In such a way, the processing for correcting the vehicle from the shifted spot to the set course is obtained by a simple arithmetic processing, and also, the free correction can be executed with high accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、現在地点から他の目的地点までの設定コース
に沿って、車両を速やかに誘導するための自動操舵方法
及びその方法による自動操舵装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an automatic steering method for quickly guiding a vehicle along a set course from a current point to another destination point, and an automatic steering method using the method. Regarding equipment.

[従来の技術] 従来、この種の自動操舵方法としては、特開昭59−1
11508号に開示されたものがある。
[Prior Art] Conventionally, this type of automatic steering method has been disclosed in Japanese Patent Application Laid-open No. 59-1.
There is one disclosed in No. 11508.

この従来技術は、車両が設定コースを外れた場合に、車
両の現在地点と目的地点との間に適当数の目標点を設定
し、車両の現在地点と目標地点の間を3次曲線で結んで
、その3次曲線上を走行するための舵角を算出し、その
舵角で車両を単位時間走行させ、更に、単位時間走行し
た後の車両位置を現在地点として、その現在地点と上記
目的地点との間を再び3次曲線で結び、その3次曲線上
を走行するための舵角を算出して、その舵角で再び車両
を単位時間走行させる。
This conventional technology sets an appropriate number of target points between the vehicle's current location and the destination point, and connects the vehicle's current location and the target location with a cubic curve when the vehicle deviates from the set course. Then, calculate the steering angle for traveling on the cubic curve, make the vehicle travel for a unit time with that steering angle, and then set the vehicle position after traveling for the unit time as the current location, and calculate the current location and the above purpose. The vehicle is again connected to the point by a cubic curve, the steering angle for traveling on the cubic curve is calculated, and the vehicle is made to travel for a unit time again at that steering angle.

そして、単位時間走行する毎に新たな舵角を算出する処
理を目的地点に到達するまで繰り返すことによって、車
両を目的地点に誘導しようとするものである。・・ [発明が解決しようとする課題] しかしながら、このような従来の自動誘導方法にあって
は、車両の現在地点と目的地点との間に適当な数の目標
点を設定することが困難であるという問題があった。
Then, the process of calculating a new steering angle every time the vehicle travels for a unit time is repeated until the vehicle reaches the destination, thereby attempting to guide the vehicle to the destination. ... [Problem to be solved by the invention] However, in such conventional automatic guidance methods, it is difficult to set an appropriate number of target points between the current location of the vehicle and the destination location. There was a problem.

即ち、車両の実際の走行コースを可能な限り設定コース
に合致させようとすれば、車両の現在地点と最終目的地
点との間に、多数の目標点を高密度に設定する必要があ
り、処理が極めて煩雑となる問題があった。
In other words, in order to match the actual driving course of the vehicle with the set course as much as possible, it is necessary to set a large number of target points at a high density between the vehicle's current location and the final destination point. The problem was that it was extremely complicated.

又、車両の現在地点と最終目的地点との間の目標点の設
定について、コースに応じて最適の目標点数を設定する
手法が開示されていないため、最適な目標点の数を勘に
頼って設定しなければならないという問題があった。
In addition, regarding the setting of target points between the vehicle's current location and the final destination point, there is no method disclosed for setting the optimal number of target points depending on the course, so it is difficult to determine the optimal number of target points by relying on intuition. There was a problem that I had to set it up.

本発明はこのような課題に鑑みて成されたものであり、
車両の誘導制御をより簡素化し且つ高精度化することが
できる車両の自動操舵方法及びその方法を適用した自動
操舵装置を提供することを目的とする。
The present invention has been made in view of such problems,
It is an object of the present invention to provide an automatic steering method for a vehicle that can further simplify and improve the accuracy of guidance control of a vehicle, and an automatic steering device to which the method is applied.

[課題を解決するための手段] このような目的を達成するために本発明は、車両が設定
コースを外れた場合に、その時の現在地点と設定コース
との位置偏差り及び方位偏差Δθを検出し、該位置偏差
りと方位偏差Δθに夫々所定の係数Kl、に2を乗算し
て得られる値(Kl・ΔD)と(K2・Δθ)の和(=
に1・D+に2・Δθ)を舵角αとして、車両を走行さ
せることとした。
[Means for Solving the Problem] In order to achieve such an object, the present invention detects the position deviation and azimuth deviation Δθ between the current location and the set course when the vehicle deviates from the set course. Then, the sum of (Kl・ΔD) and (K2・Δθ) (=
The vehicle was run with the steering angle α set to 1·D+2·Δθ).

又、この方法による自動操舵装置として、方位測定手段
と、距離測定手段と、設定コースのデータを予め記憶す
る記憶手段を備えると共に、方位測定手段と距離測定手
段から出力される方位と距離の測定データから上記位置
偏差及び方位偏差を求め、これらのデータに所定の係数
を乗算して加算演算することによって舵角を求める演算
手段を設けた。
Further, an automatic steering device according to this method is provided with a direction measuring means, a distance measuring means, and a storage means for storing data of a set course in advance, and also capable of measuring the direction and distance outputted from the direction measuring means and the distance measuring means. Calculating means is provided for determining the positional deviation and azimuth deviation from the data, multiplying these data by a predetermined coefficient, and performing an addition operation to determine the steering angle.

[作用] このような方法及び装置による本発明にあっては、ずれ
た地点から設定コースへ車両を修正するための処理を、
極めて簡単な演算処理及び演算処理のための装置によっ
て実現することができ、且つ高い精度で自動修正を行な
うことが可能となる。
[Operation] In the present invention using such a method and device, the process for correcting the vehicle from the deviated point to the set course is performed by:
This can be realized with extremely simple arithmetic processing and a device for arithmetic processing, and automatic correction can be performed with high precision.

[実施例] 以下、本発明の一実施例を図面と共に説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

まず、本発明の操舵方法に基づく自動操舵装置の構成を
第1図に示す。第1図において、自動操舵袋W1は、車
両の走行方位θを逐次測定する方位測定手段2と、走行
距離1を逐次測定する距離測定手段3と、車両が走行す
べき設定コースのデータを予め記憶する記憶手段4を備
え、方位測定手段2としては例えばジャイロを使用し、
距離測定手段3としては例えば車輪の回転数を計数する
ことによって走行距離を測定するエンコーダを使用する
First, FIG. 1 shows the configuration of an automatic steering system based on the steering method of the present invention. In FIG. 1, the automatic steering bag W1 includes a direction measuring means 2 for sequentially measuring the traveling direction θ of the vehicle, a distance measuring means 3 for sequentially measuring the traveling distance 1, and data on a set course on which the vehicle should travel in advance. It is equipped with a storage means 4 for storing information, and uses, for example, a gyro as the direction measuring means 2,
As the distance measuring means 3, for example, an encoder is used which measures the traveling distance by counting the number of rotations of the wheels.

又、車両の進路即ち設定コースのデータを予め記憶する
記憶手段4を有し、続出専用メモリ(ROM)や、図示
しないインターフェースを介して設定コースのデータを
再書き込み可能とするランダムアクセスメモリ(RAM
)で構成されている。
It also has a storage means 4 for pre-storing data on the course of the vehicle, that is, a set course, and includes a read-only memory (ROM) and a random access memory (RAM) in which data on the set course can be rewritten via an interface (not shown).
).

更に、マイクロプロセッサ等から成る演算手段5を備え
、方位測定手段2と距離測定手段3からの夫々の実測デ
ータを入力して、記憶手段4に記憶されている設定コー
スのデータと実測データを比較することによって、車両
の設定コースからのズレ、即ち位置偏差りと方位偏差Δ
θを算出し、更に、これらの位置偏差りと方位偏差Δθ
に対して後述する所定の演算を行うことによって、車両
位置のズレを修正するための車両の舵角αを演算し、該
舵角αのデータを操舵機構(図示せず)へ出力する。
Furthermore, it is equipped with a calculation means 5 consisting of a microprocessor, etc., which inputs the actual measurement data from the direction measurement means 2 and the distance measurement means 3, and compares the actual measurement data with the data of the set course stored in the storage means 4. By doing this, the deviation from the set course of the vehicle, that is, position deviation and azimuth deviation Δ
θ is calculated, and further, these position deviations and azimuth deviations Δθ
By performing a predetermined calculation, which will be described later, on the steering angle α, a steering angle α of the vehicle for correcting the deviation in the vehicle position is calculated, and data on the steering angle α is output to a steering mechanism (not shown).

次に、かかる構成の自動操舵装置1の作動を説明する。Next, the operation of the automatic steering system 1 having such a configuration will be explained.

第2図に示すように、車両6はXY座標系を移動するも
のとし、車両6の運動は式(1)〜(3)%式% () (2) ここで、d x / d tはX方向の単位時間の変化
、dy/dtはY方向の単位時間の変化、Lは前後輪の
距離、θは車両の方位、αは前輪の進行角即ち、舵角を
表す。
As shown in Fig. 2, the vehicle 6 is assumed to move in the XY coordinate system, and the motion of the vehicle 6 is expressed by equations (1) to (3)% () (2) where d x / d t is dy/dt is the change in unit time in the X direction, dy/dt is the change in unit time in the Y direction, L is the distance between the front and rear wheels, θ is the direction of the vehicle, and α is the advancing angle of the front wheels, that is, the steering angle.

そして、この実施例では、車輪の舵角は演算手段5で演
算した舵角αに従って設定し、車両が設定コースから外
れた場合に、舵角αを設定することによって車両の設定
コースへの復帰を図ろうとするものである。
In this embodiment, the steering angle of the wheels is set according to the steering angle α calculated by the calculation means 5, and when the vehicle deviates from the set course, the steering angle α is set to allow the vehicle to return to the set course. This is what we are trying to achieve.

例えば、第3図に示すように、車両が設定コース(同図
では、X軸上にあるものとする)から、Dの位置偏差及
び、Δθの方位偏差が検出された場合、制御すべき舵角
αは、次式(4)による位置偏差りと方位偏差Δθの線
形結合で決定する。
For example, as shown in Fig. 3, when a positional deviation of D and an azimuth deviation of Δθ are detected from the vehicle's set course (assumed to be on the X-axis in the figure), the steering wheel to be controlled The angle α is determined by a linear combination of the positional deviation and the azimuth deviation Δθ according to the following equation (4).

α=に1・ΔD+に2・Δθ   ・・・(4)ここで
、係数に1とに2は、適宜の値に設定される。
α=1・ΔD+2・Δθ (4) Here, the coefficients 1 and 2 are set to appropriate values.

次に、上記式(4)の演算処理で求めた舵角αの方向へ
車両6の前輪を操舵して走行させることによって、車両
6が設定コースへ復帰する原理を説明する。
Next, the principle of returning the vehicle 6 to the set course by steering the front wheels of the vehicle 6 in the direction of the steering angle α determined by the calculation process of equation (4) above will be explained.

設定コースは今X軸に一致させて設定するものとする。The setting course is now set to match the X axis.

したがって、位置偏差りはY軸の値、方位偏差Δθはθ
と等価とすることができ、上記式(2) %式%() (5) となり、θが小さいものとすると更に上記式(5)は、 D dt =V・ θ ・・・ (6) となる。
Therefore, the positional deviation is the Y-axis value, and the azimuth deviation Δθ is θ
It can be made equivalent to the above formula (2) %Formula%() (5) If θ is small, the above formula (5) becomes D dt =V・θ... (6) Become.

又、舵角αが小さいものとすると、上記式(3)%式%
(7) となる。更に、上記式(7)に上記式(4)を代入する
と、 do −二 (Kl・D+に2・θ) ・・・(8)d
t      L となり、更に上記式(8)を、車両速度Vが一定(v=
const)という条件下で時間微分して、上記式(6
)を代入すると、 2 dt      L                
   dt・・・ (9) となる。そして、上記式(9)は2次の微分方程式であ
るから、係数に1とに2について、K1く0、K2〈0
の条件を満足する値に設定すれば、θは減衰振動又は指
数関数的に減衰して、零に収束する。
Also, assuming that the rudder angle α is small, the above formula (3)% formula%
(7) becomes. Furthermore, by substituting the above equation (4) into the above equation (7), do −2 (2・θ for Kl・D+) ... (8) d
t L , and further convert the above equation (8) into a constant vehicle speed V (v=
const), the above equation (6
), we get 2 dt L
dt... (9) Since the above equation (9) is a second-order differential equation, for coefficients 1 and 2, K1 × 0, K2 <0
If set to a value that satisfies the condition, θ oscillates or decays exponentially and converges to zero.

したがって、制御する車両の大きさに応じて、最適な係
数に1とに2を予め設定し、第1図の演算手段5におい
てこれらの係数に1とに2を適用した上記式(4)の演
算処理を行うことによって、最適な舵角αを決定するこ
とができ、そして、この舵角αに基づいて車両を制御す
ることで、車両の設定コースへの復帰を完全に自動化す
ることが可能となる。
Therefore, depending on the size of the vehicle to be controlled, the optimum coefficients 1 and 2 are set in advance, and the calculation means 5 in FIG. By performing calculation processing, it is possible to determine the optimal steering angle α, and by controlling the vehicle based on this steering angle α, it is possible to completely automate the return of the vehicle to the set course. becomes.

第4図は、この原理に基づいて車両を制御した場合のシ
ミュレーション結果を示す。即ち、具体的な数値とし、
車両速度をv=50cm/see 、初期方位ズレΔθ
=10°、初期位置ズレD=10cm、に1=−0,0
2、K2=−5、前後輪の距離L=100cmに設定し
た場合である。
FIG. 4 shows simulation results when a vehicle is controlled based on this principle. In other words, as a specific numerical value,
Vehicle speed is v=50cm/see, initial direction deviation Δθ
= 10°, initial position deviation D = 10cm, 1 = -0,0
2. This is the case where K2=-5 and the distance L between the front and rear wheels is set to 100 cm.

又、第5図はこの原理に基づいて車両を制御した場合の
他のシミュレーション結果を示す。即ち、具体的な数値
として、車両速度をv = 50 cm/5ec1初期
方位ズレΔθ=−10°、初期位置ズレD=20cm、
に1=−0,02、K2=−5、前後輪の距離L=10
0 cmに設定した場合である。
Further, FIG. 5 shows other simulation results when a vehicle is controlled based on this principle. That is, as specific numerical values, the vehicle speed is v = 50 cm/5ec1, initial azimuth deviation Δθ = -10°, initial position deviation D = 20 cm,
1=-0,02, K2=-5, distance between front and rear wheels L=10
This is the case where it is set to 0 cm.

これらのシミュレーション結果から明らかなように、車
両が設定コースの進行方向(X軸方向)に対して、正の
方位又は負の方位にずれても、滑らかに設定コースへ復
帰させることができる。
As is clear from these simulation results, even if the vehicle deviates in a positive direction or a negative direction with respect to the traveling direction (X-axis direction) of the set course, it can be smoothly returned to the set course.

尚、このシミュレーションでは、実際の車両の舵角に即
して、α=±45°でリミットを設けている。即ち、第
1図の演算手段5から出力された舵角α信号を、更に選
択手段(図示せず)で予め設定されてる最大舵角α□、
8と比較し、舵角αが一45″<α〈+45°の範囲外
の値と成った場合に、舵角αをαmatとする。
In this simulation, a limit is set at α=±45° in accordance with the actual steering angle of the vehicle. That is, the steering angle α signal outputted from the calculation means 5 in FIG.
8, when the steering angle α has a value outside the range of -45″<α<+45°, the steering angle α is set to αmat.

次に、本発明による自動操舵方法を利用することによっ
て、車両の進路を変更する場合の方法を第6図と共に説
明する。
Next, a method for changing the course of a vehicle by using the automatic steering method according to the present invention will be explained with reference to FIG.

尚、第61fflにおいて、進路変更の目標点をPとし
て、8点からT点へ進行するものとする。ここで、第1
の通過目標点Sの座標が(Xi、Yl)、進路変更目標
点Sの座標が(X2.Y2) 、第2の通過目標点Tの
座標が(X3.Y3)であるとすると、演算処理手段5
が次に述べる演算式の処理を行うことで進行方向の変更
制御を行う。
It is assumed that in the 61st ffl, the target point for changing course is P, and the vehicle advances from point 8 to point T. Here, the first
Assuming that the coordinates of the passing target point S are (Xi, Yl), the coordinates of the course change target point S are (X2.Y2), and the coordinates of the second passing target point T are (X3.Y3), the calculation process Means 5
The direction of travel is controlled by processing the following arithmetic expressions.

まず、点Sと点Pを結ぶ設定コースL1は次式%式%) 同様に、点Pと点Tを結ぶ設定コースL2は次式(11
)で表される。
First, the set course L1 connecting points S and P is calculated by the following formula (% formula %) Similarly, the set course L2 connecting points P and T is calculated by the following formula (11
).

そして、点Sから設定コースLl上を走行し、点Pから
一定距離R内に入ったときに、設定コースト2上へと進
路を変更するための操舵制御を行う。
Then, when the vehicle travels on the set course Ll from point S and enters within a certain distance R from point P, steering control is performed to change the course to the set course 2.

即ち、点Pから一定距離Rに入る以前で、設定コースL
l上を走行しているときの位置誤差りと方位誤差Δθは
、 但し、上記式(13)において、 Al=  Y2−YI 2−Xi B1−1、 (:l−Yl−YI 2−Xi ・X 1− Y J− であり、φは車両の現在の方位、(x、 y)は現在の
座標である。
That is, before entering a certain distance R from point P, the set course L
The position error and azimuth error Δθ when traveling on l are, however, in the above formula (13), Al= Y2-YI 2-Xi B1-1, (:l-Yl-YI 2-Xi ・X1-YJ-, φ is the current orientation of the vehicle, and (x, y) are the current coordinates.

そして、上記式(12)と(13)を上記式(4)へ代
入することによって、舵角αを求めて車両の進路を制御
する。
Then, by substituting the above equations (12) and (13) into the above equation (4), the steering angle α is determined and the course of the vehicle is controlled.

更に、車両が点Pから距離Rの範囲内に入ったとき、即
ち、 R−X−X2   + (Y−Y2  ’≧0の関係が
成り立つと、設定コースをL]からB2へ変更させる制
御を行う。
Furthermore, when the vehicle enters within the range of distance R from point P, that is, when the relationship R-X-X2 + (Y-Y2'≧0 holds true), control is performed to change the set course from L] to B2. conduct.

この位置での方位誤差Δθと位置誤差りは、Δθ=φ−
tan−I Y3−Y2   ・・・(14)3−X2 但し、上記式(15)において、 A 2 ==  Y 3  Y 2    B 2 =
= 1、3−X2 C2−Y3−Y2 ・X2−Y2 3−X2 であり、φは車両の現在の方位、(x、 y)は現在の
座標である。
The orientation error Δθ and position error at this position are Δθ=φ−
tan-I Y3-Y2 ... (14) 3-X2 However, in the above formula (15), A 2 == Y 3 Y 2 B 2 =
= 1, 3-X2 C2-Y3-Y2 .X2-Y2 3-X2, φ is the current direction of the vehicle, and (x, y) are the current coordinates.

そして、上記式(14)と(15)を上記式(4)へ代
入することによって、舵角αを求めて車両の進路を制御
する。
Then, by substituting the above equations (14) and (15) into the above equation (4), the steering angle α is determined and the course of the vehicle is controlled.

このように、本発明の舵角制御方法に従って、車両の進
行方向の変更も可能となる。
In this way, according to the steering angle control method of the present invention, it is also possible to change the traveling direction of the vehicle.

[発明の効果] 以上説明したように、本発明によれば、目標とする設定
コースと実際の車両の位置及び方位との位置偏差及び方
位偏差を求め、それらの位置偏差及び方位偏差の線形結
合を舵角として、車両の舵角制御を行うこととしたので
、制御が極めて簡素となり、更に高精度で完全な自動制
御を実現することができる。
[Effects of the Invention] As explained above, according to the present invention, the positional deviation and azimuth deviation between the target set course and the actual position and azimuth of the vehicle are determined, and a linear combination of the positional deviation and azimuth deviation is calculated. Since the steering angle of the vehicle is controlled using the steering angle as the steering angle, the control becomes extremely simple and it is possible to realize complete automatic control with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による舵角制御装置の一実施例の構成を
示す実施例構成説明図、 第2図は実施例の作動を説明するための説明図、第3図
は本発明の詳細な説明するための説明図、第4図及び第
5図は実施例の作動のシミュレーション結果を示す説明
図、 第6図は本発明による操舵制御に従って車両の進行方向
を変更させる場合の説明図である。 図中の符号: 1;自動操舵装置 2;方位測定手段 3;距離測定手段 4;記憶手段 5;演算手段 6;車両 S・第1の通過目標点 P;進路変更の目標点 T;第2の通過目標点
FIG. 1 is an explanatory diagram showing the configuration of an embodiment of the steering angle control device according to the present invention, FIG. 2 is an explanatory diagram for explaining the operation of the embodiment, and FIG. 3 is a detailed diagram of the present invention. FIG. 4 and FIG. 5 are explanatory diagrams showing the simulation results of the operation of the embodiment. FIG. 6 is an explanatory diagram when the traveling direction of the vehicle is changed according to the steering control according to the present invention. . Symbols in the figure: 1; Automatic steering device 2; Direction measuring means 3; Distance measuring means 4; Storage means 5; Calculating means 6; Vehicle S/first passing target point P; Course change target point T; Second passing target point

Claims (2)

【特許請求の範囲】[Claims] (1)車両の走行方位を測定する方位測定手段と、車両
の走行距離を測定する距離測定手段と、予め設定された
設定コースのデータを記憶する記憶手段とから出力され
る出力信号を演算処理することによって、車両を設定コ
ースに追従するように制御する車両の自動操舵方法にお
いて、 前記記憶手段に記憶された設定コースの方位データに対
する前記方位測定手段から出力される実測値との方位偏
差及び、前記記憶手段に記憶された設定コースの位置デ
ータに対する前記距離測定手段から出力される実測値と
の位置偏差を求め、該方位偏差と位置偏差の線形結合の
値に従って、車両の舵角を制御することを特徴とする車
両の自動操舵方法。
(1) Arithmetic processing of output signals output from a direction measuring means for measuring the running direction of the vehicle, a distance measuring means for measuring the distance traveled by the vehicle, and a storage means for storing data of a preset set course In a vehicle automatic steering method for controlling a vehicle to follow a set course by , find a positional deviation between the positional data of the set course stored in the storage means and the actual measurement value output from the distance measuring means, and control the steering angle of the vehicle according to the value of the linear combination of the azimuth deviation and the positional deviation. An automatic vehicle steering method characterized by:
(2)車両を予め設定された設定コースに追従するよう
に制御する車両の自動操舵装置において、車両の走行方
位を測定する方位測定手段と、車両の走行距離を測定す
る距離測定手段と、予め設定された設定コースのデータ
を記憶する記憶手段と、 該記憶手段に記憶された設定コースの方位データに対す
る前記方位測定手段から出力される実測値との方位偏差
及び、前記記憶手段に記憶された設定コースの位置デー
タに対する前記距離測定手段から出力される実測値との
位置偏差を求め、該方位偏差と位置偏差の線形結合の値
に従って、車両の舵角を制御する演算手段を備えること
を特徴とする車両の自動操舵装置。
(2) In an automatic steering system for a vehicle that controls the vehicle to follow a preset set course, a direction measuring means for measuring the traveling direction of the vehicle, a distance measuring means for measuring the traveling distance of the vehicle, and a distance measuring means for measuring the traveling distance of the vehicle; a storage means for storing the data of the set course that has been set; and an azimuth deviation between the azimuth data of the set course stored in the storage means and the actual measured value output from the azimuth measurement means, and the azimuth deviation stored in the storage means. It is characterized by comprising calculation means for calculating the positional deviation between the positional data of the set course and the actual measurement value output from the distance measuring means, and controlling the steering angle of the vehicle according to a value of a linear combination of the azimuth deviation and the positional deviation. Automatic steering system for vehicles.
JP1330078A 1989-12-20 1989-12-20 Method and device for automatic steering vehicle Pending JPH03189805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1330078A JPH03189805A (en) 1989-12-20 1989-12-20 Method and device for automatic steering vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1330078A JPH03189805A (en) 1989-12-20 1989-12-20 Method and device for automatic steering vehicle

Publications (1)

Publication Number Publication Date
JPH03189805A true JPH03189805A (en) 1991-08-19

Family

ID=18228537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1330078A Pending JPH03189805A (en) 1989-12-20 1989-12-20 Method and device for automatic steering vehicle

Country Status (1)

Country Link
JP (1) JPH03189805A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036217A1 (en) * 1996-03-22 1997-10-02 Hitachi, Ltd. Method and apparatus for controlling operation of moving mechanism
JP2010117804A (en) * 2008-11-12 2010-05-27 Nippon Yusoki Co Ltd Unmanned vehicle of traveling wheel independent steering and travel control method therefor
JP2017177937A (en) * 2016-03-29 2017-10-05 日野自動車株式会社 Steering control apparatus
US20190270451A1 (en) * 2018-03-01 2019-09-05 Neusoft Corporation Method and device for automatically reversing vehicle
CN112644984A (en) * 2019-10-10 2021-04-13 松下知识产权经营株式会社 Control method, control system, conveying device and component mounting system
JP2021064070A (en) * 2019-10-10 2021-04-22 パナソニックIpマネジメント株式会社 Control method, program, control system, carrier device, and component mounting system
EP3932781A1 (en) * 2020-06-30 2022-01-05 Beijing Baidu Netcom Science and Technology Co., Ltd Reverse trajectory tracking method and apparatus, electronic device and storage medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036217A1 (en) * 1996-03-22 1997-10-02 Hitachi, Ltd. Method and apparatus for controlling operation of moving mechanism
JP2010117804A (en) * 2008-11-12 2010-05-27 Nippon Yusoki Co Ltd Unmanned vehicle of traveling wheel independent steering and travel control method therefor
JP2017177937A (en) * 2016-03-29 2017-10-05 日野自動車株式会社 Steering control apparatus
US20190270451A1 (en) * 2018-03-01 2019-09-05 Neusoft Corporation Method and device for automatically reversing vehicle
US10821979B2 (en) * 2018-03-01 2020-11-03 Neusoft Reach Automotive Technology (Shanghai) Co., Ltd. Method and device for automatically reversing vehicle
CN112644984A (en) * 2019-10-10 2021-04-13 松下知识产权经营株式会社 Control method, control system, conveying device and component mounting system
JP2021064070A (en) * 2019-10-10 2021-04-22 パナソニックIpマネジメント株式会社 Control method, program, control system, carrier device, and component mounting system
EP3932781A1 (en) * 2020-06-30 2022-01-05 Beijing Baidu Netcom Science and Technology Co., Ltd Reverse trajectory tracking method and apparatus, electronic device and storage medium

Similar Documents

Publication Publication Date Title
US5073749A (en) Mobile robot navigating method
JP2665738B2 (en) Guidance Method of Unmanned Mobile Machine by Point Tracking Method
JPH0646364B2 (en) How to guide an autonomous vehicle
US5781870A (en) Vehicle steering angle control device
JPH02105904A (en) Method and device for guiding moving body
Yin et al. Combinatorial inertial guidance system for an automated guided vehicle
JPH03189805A (en) Method and device for automatic steering vehicle
JP3024964B1 (en) Vehicle running control device and vehicle using the same
JPS61278912A (en) Method for guiding unmanned moving machine by spot following system
US5668742A (en) Apparatus for determining position of moving body
JP3034121B2 (en) Unmanned vehicle control device
JPS59111508A (en) Automatic car guiding method using point follow-up system
CN112947487B (en) Automatic guided vehicle and curve path tracking method and control device thereof
JPH1195837A (en) Method for determining initial truck position and attitude angle of gyro guide type automated guided vehicle, and method for improving travel stability at position correction
JP2022180938A (en) Apparatus for setting travel route
CN116974290B (en) Method and device for calibrating steering wheel angle of double-steering-wheel AGV
JP2000132229A (en) Travel controlling method for movable body
JP2983527B1 (en) Vehicle measuring device
CN117724504B (en) Unmanned vehicle path tracking control method and device based on projection area
JP2840943B2 (en) Mobile robot guidance device
JPS63149265A (en) Actual rear wheel steering angle control device for vehicle
JPS62221707A (en) Gyro-guide type unmanned carrier
JPS6274107A (en) Teaching method for running course of unmanned vehicle
JP2741411B2 (en) Precise stopping method for omnidirectional vehicles
JPH01295312A (en) Guiding device for unmanned vehicle