JP6606672B2 - Multi-axis rotating structure and omnidirectional moving body - Google Patents

Multi-axis rotating structure and omnidirectional moving body Download PDF

Info

Publication number
JP6606672B2
JP6606672B2 JP2015099821A JP2015099821A JP6606672B2 JP 6606672 B2 JP6606672 B2 JP 6606672B2 JP 2015099821 A JP2015099821 A JP 2015099821A JP 2015099821 A JP2015099821 A JP 2015099821A JP 6606672 B2 JP6606672 B2 JP 6606672B2
Authority
JP
Japan
Prior art keywords
axis
rotating
torus
base
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015099821A
Other languages
Japanese (ja)
Other versions
JP2016215713A (en
Inventor
建二郎 多田隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2015099821A priority Critical patent/JP6606672B2/en
Publication of JP2016215713A publication Critical patent/JP2016215713A/en
Application granted granted Critical
Publication of JP6606672B2 publication Critical patent/JP6606672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manipulator (AREA)

Description

本発明は、複数の回転軸を有する多軸回転構造体及び全方向移動体に関する。   The present invention relates to a multi-axis rotating structure having a plurality of rotating shafts and an omnidirectional moving body.

従来、車輪を支持する水平軸をステアリング軸周りに旋回させて方向変換を可能にした移動体が知られている。この種の移動体は、車輪が1個であるため瞬時の方向転換が不可能という難点を有する。かかる難点を克服するものとして、従来、受動回転する小径の複数の車輪を回転方向に連続配設した大型車輪を形成し、大型車輪の軸周りの他に小径の車輪の軸周りの回転も可能にして方向転換を瞬時に行えるようにした移動体も知られている。この種の移動体は、小径の車輪のサイズが機構全体に対して小さいため、段差乗り越え能力が低いという問題を有する。   2. Description of the Related Art Conventionally, there has been known a moving body in which a horizontal axis that supports a wheel is turned around a steering axis to change the direction. This type of moving body has a drawback that it cannot change the direction instantly because it has one wheel. In order to overcome this difficulty, conventionally, a large wheel is formed by continuously arranging a plurality of small-diameter wheels that rotate passively in the rotational direction, and rotation around the axis of a small-diameter wheel is possible in addition to the circumference of the large-wheel axis. In addition, there is also known a moving body that can change direction instantly. This type of moving body has a problem that the ability to climb over a step is low because the size of the small-diameter wheel is smaller than the entire mechanism.

これらの問題点を克服するものとして、例えば特許文献1には、対向配置された半割状の半球状車輪を所定距離だけ隙間を置いて配置すると共に、両者の中心を貫通する半球状車輪支持体周りに個別に回転可能に支持した全方向移動体が記載されている。全方向移動体は、対向する半球状車輪の隙間に水平方向の径方向外側から半球状車輪支持体に連結される回転駆動部を備え、この回転駆動部周り、及び半球状車輪支持体周りに回転可能にされている。また、各半球状車輪の頂部に凹部を形成し、この凹部に、回転駆動部及び半球状車輪支持体の軸と直交する軸周りに軸支された、軸方向における半径が半球状車輪の球面に一致する寸法の小車輪が設けられている。かかる構造を備えることで、瞬時の方向転換と、一対の半球状車輪のサイズが機構全体に対して同等となって高い段差乗り越え性能を確保するものとしている。   In order to overcome these problems, for example, Patent Document 1 discloses that hemispherical wheels arranged opposite to each other are spaced apart by a predetermined distance, and a hemispherical wheel supporting through both centers is supported. An omnidirectional mobile body is described that is individually rotatably supported around the body. The omnidirectional mobile body includes a rotary drive unit connected to the hemispherical wheel support body from the outside in the horizontal direction in the gap between the opposing hemispherical wheels, and around the rotary drive unit and the hemispherical wheel support body. It is made rotatable. Further, a concave portion is formed at the top of each hemispherical wheel, and a spherical surface of the hemispherical wheel having a radius in the axial direction that is supported around the axis perpendicular to the axis of the rotational drive unit and the hemispherical wheel support in this concave portion. A small wheel having a size corresponding to is provided. By providing such a structure, the instantaneous direction change and the size of the pair of hemispherical wheels are equal to the entire mechanism to ensure high step overcoming performance.

また、特許文献2には、対向する半球状車輪の対向面に対称な傾斜面を採用し、隙間の広い部位に回転駆動部を挿入して連結した特許文献1の変形例の全方向移動体が記載されている。   Further, in Patent Document 2, an omnidirectional mobile body according to a modified example of Patent Document 1 in which a symmetrical inclined surface is adopted for the facing surface of the opposing hemispherical wheels and a rotational drive unit is inserted and connected to a wide gap portion. Is described.

特許第5057130号公報Japanese Patent No. 5057130 W02013/164327 A1W02013 / 164327 A1

特許文献1,2に記載の全方向移動体は、対向する半球状車輪間に隙間を有する分、回転の一部分において僅かながら不連続を生じる。この隙間は、挿入される回転駆動部の軸径、すなわち耐荷重性確保を考慮して適宜な寸法に設計する上で一定の制約を伴う。また、特許文献2では、隙間に傾斜面を採用することで、対向する半球状車輪間の隙間が多少なりとも狭くなる一方、半球状車輪間の隙間の端縁が回転方向と交差しているため、回転中に隙間が接地する度に、接地面に対して回転方向とは異なる方向の抵抗成分を生み、直進性や効率性が悪くなる。また、接地面が変形容易な、例えばカーペットや絨毯等の場合、皺や撚れを発生させることが考えられる。   The omnidirectional moving bodies described in Patent Documents 1 and 2 have a slight discontinuity in a part of the rotation because there is a gap between the opposing hemispherical wheels. This gap is accompanied by certain restrictions in designing to an appropriate dimension in consideration of securing the shaft diameter of the rotational drive unit to be inserted, that is, ensuring load resistance. Further, in Patent Document 2, by adopting an inclined surface for the gap, the gap between the opposing hemispherical wheels is somewhat narrowed, while the edge of the gap between the hemispherical wheels intersects the rotation direction. For this reason, each time the gap contacts the ground during rotation, a resistance component in a direction different from the rotation direction is generated with respect to the ground surface, and straightness and efficiency are deteriorated. Further, in the case where the ground contact surface is easily deformed, for example, in the case of a carpet or a carpet, it is considered that wrinkles or twists are generated.

本発明は、上記に鑑みてなされたもので、3軸周りの回転が可能な、耐荷重性を備えた多重回転構造体及び全方向移動体を提供するものである。さらに、本発明は、回転の滑らかさが実現可能な多重回転構造体及び全方向移動体、乃至は高い段差乗り越え性能がさらに確保できる全方向移動体を提供するものである。   The present invention has been made in view of the above, and provides a multi-rotating structure and an omnidirectional moving body having load resistance capable of rotating around three axes. Furthermore, the present invention provides a multi-rotating structure and an omnidirectional mobile body that can realize smooth rotation, or an omnidirectional mobile body that can further ensure high step overcoming performance.

本発明に係る多軸回転構造体は、基部の周囲に円形の外周面を有する基体と、球面の左右部位が対称に切断された、中央の所定幅からなる環状の外周面を有し、前記基体の外周面に軸受を介して同心状に外嵌された円環体と、互いに連結された取付部と軸心部とを有し、前記取付部は前記基体の軸の外方から前記基部の側部に固設され、前記軸心部は前記円環体を幅方向に対称に区切る平面上で、かつ径方向外方に延設された支持体と、前記基部の両側部にそれぞれ軸支された一対の回転体であって、前記軸心部の軸と前記円環体の軸とで構成される面に平行な面内で回転する回転体とを含むものである。   The multi-axis rotating structure according to the present invention has a base body having a circular outer peripheral surface around the base, and an annular outer peripheral surface having a predetermined width at the center, in which the left and right parts of the spherical surface are cut symmetrically, An annular body fitted concentrically on the outer peripheral surface of the base via a bearing, and an attachment part and a shaft center part connected to each other, the attachment part being formed from the outside of the base shaft to the base part; The shaft center portion is formed on a plane that divides the torus symmetrically in the width direction and extends radially outward, and shafts are respectively provided on both sides of the base portion. A pair of supported rotating bodies, including a rotating body that rotates in a plane parallel to a plane formed by the axis of the axial center and the axis of the torus.

本発明によれば、多軸回転構造体は、軸心部、円環体及び回転体の3軸周りに少なくとも受動回転可能となる。回転体が、軸心部の軸と円環体の軸とで構成される面に平行な面内で回転することによって、多軸回転構造体は全方向に対して回転可能となる。しかも、取付部を外方から基体の側部に固設するので、取付部を自由な太さに設定することが可能となり、より高い耐荷重性が確保される。   According to the present invention, the multiaxial rotating structure can be passively rotated at least around the three axes of the shaft center, the torus, and the rotating body. The rotating body rotates in a plane parallel to the plane formed by the axis of the axial center portion and the axis of the torus, so that the multiaxial rotating structure can rotate in all directions. In addition, since the attachment portion is fixed to the side portion of the base body from the outside, the attachment portion can be set to an arbitrary thickness, and higher load resistance is ensured.

また、多軸回転構造体は、軸心部、円環体及び回転体の3軸周りに少なくとも受動回転可能となるため、移動体その他に適用された場合、全方向への能動乃至は受動回転が可能となる。また、軸心部、円環体及び回転体の3軸のうち、少なくとも1軸以上に対して駆動源を設けて適宜能動回転可能にすることで、移動体その他、種々の用途に適用可能となる。なお、回転体は、軸心部の軸と円環体の軸とで構成される面に平行な面内で回転するものであれば、前記軸心部の軸と円環体の軸とで構成される面に平行な方向に長尺な紡錘型の円筒体の他、種々の形態が採用可能である。例えば、前記軸心部の軸と円環体の軸とで構成される面に平行な方向に、1個乃至は複数個の円筒、球体(楕円球体)を数珠つなぎしてなる回転体、あるいは蛇腹のフレキシブルチューブ(円筒体の一態様)を回転可能に支持する態様でもよい。   In addition, since the multi-axis rotating structure can be rotated at least passively around the three axes of the axial center, the torus, and the rotating body, when applied to a moving body or the like, active or passive rotation in all directions is possible. Is possible. In addition, by providing a drive source for at least one of the three axes of the shaft center portion, the torus, and the rotating body so as to enable active rotation as appropriate, the moving body and other various applications can be applied. Become. If the rotating body rotates in a plane parallel to the plane formed by the axis of the shaft center and the axis of the torus, the axis of the shaft center and the axis of the torus Various forms can be adopted in addition to a spindle-shaped cylindrical body that is long in a direction parallel to the surface to be formed. For example, a rotating body formed by connecting one or more cylinders, spheres (elliptical spheres) in a direction parallel to a plane formed by the axis of the shaft center and the axis of the torus, or An embodiment in which the bellows flexible tube (one aspect of the cylindrical body) is rotatably supported may be employed.

また、前記回転体は、前記円環体が前記軸心部周りに回転したときに前記円環体の環状の外周面が形成する球面の回転軌跡の内、前記円環体の中空部分内の所定の特異点を含む円周上を回転面とするものであることを特徴とする。この構成によれば、前記球面の回転軌跡のうちの前記所定の特異点を含む円周上に回転面が一致乃至は近似することで、3軸周りの回転が可能となる。前記した軸心部の軸と円環体の軸とで構成される面に平行な面内で回転する軸は、前記円周上に沿ったあるいは直線状の軸を設け、その軸に、1又は複数の球体(楕円球含む)を回転可能に支持し、あるいは1又は複数の円筒体を直列に配置した態様でもよい。かかる構成で、回転面を前記円周上に沿うよう一致させてもよいし、例えば軸方向に等径の円筒体のように、近似した態様としてもよい。   Further, the rotating body includes a spherical rotation locus formed by an annular outer peripheral surface of the annular body when the annular body rotates around the axial center portion, and is in a hollow portion of the annular body. The rotation surface is a circumference including a predetermined singular point. According to this configuration, rotation about three axes is possible by matching or approximating the rotation surface on the circumference including the predetermined singular point in the rotation locus of the spherical surface. The axis that rotates in a plane parallel to the plane constituted by the axis of the shaft center and the axis of the torus is provided along the circumference or a linear axis, and the axis is 1 Alternatively, a plurality of spheres (including elliptic spheres) may be rotatably supported, or one or a plurality of cylinders may be arranged in series. With such a configuration, the rotation surfaces may coincide with each other on the circumference, or may be approximated like a cylindrical body having an equal diameter in the axial direction, for example.

また、前記回転体は、前記基部の両側部にそれぞれ軸支された回転軸を有し、前記回転軸は、前記軸心部の軸方向及び前記円環体の軸方向と直交し、前記回転体の軸方向における半径は、前記円環体が前記軸心部周りに回転したときに前記円環体の環状の外周面が形成する球面の回転軌跡の内、前記円環体の中空部分内の所定の特異点を含む円周上まで、前記回転体の軸から径方向に下ろした寸法に設定された紡錘状であることを特徴とする。   In addition, the rotating body has rotating shafts that are respectively supported on both sides of the base portion, and the rotating shaft is orthogonal to the axial direction of the axial center portion and the axial direction of the torus, and the rotation The radius in the axial direction of the body is within the hollow trajectory of the spherical ring formed by the annular outer peripheral surface of the annular body when the annular body rotates around the axial center. The spindle has a spindle shape set to a dimension that is radially lowered from the axis of the rotating body up to a circumference including a predetermined singular point.

この構成によれば、回転体の外周面は、軸心部周りの回転によって円環体の外周面で形成される球面上の回転軌跡のうちの、所定の特異点を通る円周上と一致する半径に設定されるので、円環体の軸心部周りの回転時に、特異点を通る回転軌跡が円周となり、不連続点がなくなる。さらに、多軸回転構造体が移動体その他に適用された場合、全方向への能動乃至は受動回転が可能となり、かつ特異点が円周と一致することで、滑らかな回転が実現される。移動体への適用では、従来のような、隙間による回転移動時の不連続がなくなり、極めて滑らかな回転移動が実現される。また、軸心部、円環体及び回転体の3軸のうち、少なくとも1軸以上に対して駆動源を設けて適宜能動回転可能にすることで、移動体その他、種々の用途に適用可能となる。   According to this configuration, the outer peripheral surface of the rotating body coincides with the circumference passing through a predetermined singular point in the rotation trajectory on the spherical surface formed by the outer peripheral surface of the torus by rotating around the axis. Therefore, when rotating around the axial center of the torus, the rotation trajectory passing through the singular point becomes a circle, and there are no discontinuous points. Furthermore, when the multi-axis rotating structure is applied to a moving body or the like, active or passive rotation in all directions is possible, and the singular point coincides with the circumference, so that smooth rotation is realized. Application to a moving body eliminates the discontinuity at the time of rotational movement due to a gap as in the prior art, and realizes extremely smooth rotational movement. In addition, by providing a drive source for at least one of the three axes of the shaft center, the torus, and the rotator so that it can be actively rotated as appropriate, it can be applied to various applications such as moving objects. Become.

また、前記取付部は、2分割された第1、第2取付部を有し、前記基体は、前記両側部で前記第1、第2取付部に取り付けられていることを特徴とするものである。この構成によれば、基体と支持体との固定を基体の両側から固設するようにしたので、より強固になり、高い耐荷重性が確保される。   The mounting portion includes first and second mounting portions which are divided into two parts, and the base is mounted to the first and second mounting portions at both side portions. is there. According to this configuration, the base and the support are fixed from both sides of the base, so that the base becomes stronger and high load resistance is ensured.

また、本発明は、前記支持体に外嵌された主軸受を有することを特徴とするものである。この構成によれば、多軸回転構造体を装備する本体側に対して、主軸受を介して相対回転可能に支持可能となる。   In addition, the present invention is characterized by having a main bearing externally fitted to the support. According to this configuration, the main body side equipped with the multi-axis rotating structure can be supported so as to be relatively rotatable via the main bearing.

また、前記基部の側部における前記取付部の取付位置は、前記基体の軸の位置よりも前記支持体側であり、前記基部の側部における前記回転体の取付位置は、前記基体の軸を挟んで前記取付部の取付位置の反対側となるようにしたものである。この構成によれば、回転体を取付けるためのスペースを充分に確保することが可能となる。従って、特異点を適宜の円周上に設定することが可能にする。   The mounting position of the mounting portion on the side of the base is closer to the support than the position of the shaft of the base, and the mounting position of the rotating body on the side of the base sandwiches the shaft of the base. It is made to become the other side of the attachment position of the said attachment part. According to this configuration, a sufficient space for mounting the rotating body can be secured. Therefore, the singular point can be set on an appropriate circumference.

また、本発明は、前記基体と前記円環体との間に介設された第1回転力伝達機構と、前記基体に内装され、前記第1回転力伝達機構に回転力を出力する第1駆動源とを備えたことを特徴とするものである。この構成によれば、円環体を能動回転させることが可能となる。   The present invention also provides a first rotational force transmission mechanism interposed between the base body and the torus, and a first body that is built in the base body and outputs rotational force to the first rotational force transmission mechanism. And a drive source. According to this configuration, the torus can be actively rotated.

また、本発明は、前記基体と前記回転体との間に介設された第2回転力伝達機構と、前記回転体及び前記基体の一方に内装され、前記第2回転力伝達機構に回転力を出力する第2駆動源とを備えたことを特徴とするものである。この構成によれば、回転体を能動回転させることが可能となる。   Further, the present invention includes a second rotational force transmission mechanism interposed between the base body and the rotating body, and one of the rotating body and the base body, and the second rotational force transmission mechanism includes a rotational force. And a second drive source for outputting the above. According to this configuration, the rotating body can be actively rotated.

また、本発明に係る全方向移動体は、前記多軸回転構造体の前記支持体を前記特異点を含む円周が接地する角度に傾斜して支持する本体を有するものである。この構成によれば、特異点が床面に接地するように支持体を傾斜して本体に支持することで、全方向移動体は、各軸周りに回転して全方向への滑らかな回転移動が可能となる。また、高い耐荷重性が確保できることで、大小種々のサイズ、かつ各種用途の全方向移動体を提供することが可能となる。   Moreover, the omnidirectional mobile body which concerns on this invention has a main body which inclines and supports the said support body of the said multi-axial rotation structure at the angle which the circumference containing the said singular point grounds. According to this configuration, the omnidirectional mobile body rotates around each axis and smoothly rotates in all directions by tilting the support body and supporting the main body so that the singular point contacts the floor surface. Is possible. In addition, since high load resistance can be ensured, it is possible to provide omnidirectional moving bodies of various sizes, various sizes and various uses.

また、本発明に係る全方向移動体において、前記取付部に支持され、外周面が前記取付部の外方に露出した段差乗り越え用回転体を備えたことを特徴とする。この構成によれば、全方向移動体が段差乗り越えを行う際に、取付部が段差部に当接する前に段差乗り越え用回転体が当接し、回転する。従って、円滑に段差を乗り越えることができ、取付部が段差乗り越え時の障害となることが緩和乃至は解消される。   Further, the omnidirectional mobile body according to the present invention is characterized by comprising a rotating body for stepping over a step supported by the mounting portion and having an outer peripheral surface exposed to the outside of the mounting portion. According to this configuration, when the omnidirectional mobile body moves over the step, the step-overcoming rotating body contacts and rotates before the attachment portion contacts the step. Therefore, it is possible to smoothly get over the step, and the mounting part becomes an obstacle when getting over the step is alleviated or eliminated.

本発明によれば、3軸周りの回転を可能にした、耐荷重性を備えた多重回転構造体及び全方向移動体を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the multiple rotation structure body and the omnidirectional mobile body provided with load resistance which enabled the rotation of 3 axis | shafts can be provided.

本発明に係る多軸回転構造体の一実施形態を示す外観斜視図である。1 is an external perspective view showing an embodiment of a multi-axis rotating structure according to the present invention. 多軸回転構造体が所定の回転位相位置にある状態の外観図である。It is an external view in a state where the multi-axis rotating structure is at a predetermined rotational phase position. 図2の回転位相位置における縦断面図である。It is a longitudinal cross-sectional view in the rotation phase position of FIG. 回転体が支持される前の状態の円柱体10の斜視図である。It is a perspective view of the cylindrical body 10 of the state before a rotary body is supported. 図4に示す円柱体の外観図で、(a)は平面図、(b)は左側面図、(c)は正面図、(d)は右側面図、(e)は底面図である。4A and 4B are external views of the cylindrical body shown in FIG. 4, where FIG. 4A is a plan view, FIG. 4B is a left side view, FIG. 4C is a front view, FIG. 4D is a right side view, and FIG. 回転体が支持された状態の円柱体10の斜視図である。It is a perspective view of the cylindrical body 10 in the state where the rotating body is supported. 図6に示す円柱体の外観図で、(a)は平面図、(b)は左側面図、(c)は正面図、(d)は右側面図、(e)は底面図である。It is an external view of the cylindrical body shown in FIG. 6, (a) is a top view, (b) is a left side view, (c) is a front view, (d) is a right side view, and (e) is a bottom view. 円環体の外周面が接地している回転位相位置にある状態の外観図である。It is an external view in the state which exists in the rotation phase position where the outer peripheral surface of a torus is earth | grounded. 多軸回転構造体を移動体に装備した一例の外観斜視図である。It is an external appearance perspective view of an example which equipped the moving body with the multiaxial rotating structure. 円柱体、円環体及び回転体を能動的に駆動する場合の構成の一例を示す機能構成図である。It is a functional block diagram which shows an example of a structure in the case of driving a cylindrical body, a torus, and a rotary body actively. 多軸回転構造体を物体を把持する把持装置に適用した場合の説明図である。It is explanatory drawing at the time of applying a multiaxial rotating structure to the holding apparatus which hold | grips an object. 多軸回転構造体を移動体に適用した場合における段差乗り越え円滑構造を採用した斜視図である。It is the perspective view which employ | adopted the smooth structure over a level | step difference at the time of applying a multi-axial rotating structure to a moving body. 図12に示す構造図で、(a)は側面図、(b)は平面図である。FIG. 13A is a side view and FIG. 12B is a plan view. 多軸回転構造体を移動体に適用した場合における他の段差乗り越え円滑構造を採用した斜視図で、(a)は取付部の両側に1対の回転体を設けた場合の図、(b)は取付部の両側に複数対の回転体を設けた場合の図である。FIG. 7A is a perspective view that adopts another step-over smooth structure when a multi-axis rotating structure is applied to a moving body, and FIG. 9A is a view in which a pair of rotating bodies are provided on both sides of an attachment portion; These are figures at the time of providing a plurality of pairs of rotating bodies on both sides of the mounting portion.

図1は、本発明に係る多軸回転構造体の一実施形態を示す外観斜視図である。図2は、多軸回転構造体が所定の回転位相位置にある状態の外観図である。図1、図2は、説明の便宜上、構成の一部である円環体を半透明で示している。図3は、図2の回転位相位置における縦断面図である。なお、以降においては、説明の便宜上、図2、図3に示すように、軸L1方向をX方向とし、円柱体10(円環体30)の軸方向をY方向とし、XY平面に直交する方向である、図2の紙面奥行き方向をZ方向とする。多軸回転構造体1は、後述するように種々の用途に適用可能であるが、以下では、床面を全方向に走行可能な移動体への適用例で説明する。   FIG. 1 is an external perspective view showing an embodiment of a multi-axis rotating structure according to the present invention. FIG. 2 is an external view of a state in which the multiaxial rotating structure is at a predetermined rotational phase position. 1 and 2 show a torus that is a part of the structure in a translucent manner for convenience of explanation. FIG. 3 is a longitudinal sectional view at the rotational phase position of FIG. In the following, for convenience of explanation, as shown in FIGS. 2 and 3, the direction of the axis L1 is the X direction, the axial direction of the cylindrical body 10 (ring 30) is the Y direction, and is orthogonal to the XY plane. The depth direction in FIG. 2 as the direction is the Z direction. The multi-axis rotating structure 1 can be applied to various uses as will be described later. Hereinafter, an example of application to a moving body capable of traveling on the floor surface in all directions will be described.

多軸回転構造体1は、基体の一例としての円柱体10と、円柱体10を支持するための支持体20と、円柱体10に相対回転可能に支持された所定幅を有する円環体30と、円柱体10に軸支された一対の回転体50とを有する。   The multi-axis rotating structure 1 includes a cylindrical body 10 as an example of a base, a support 20 for supporting the cylindrical body 10, and an annular body 30 having a predetermined width supported by the cylindrical body 10 so as to be relatively rotatable. And a pair of rotating bodies 50 supported by the cylindrical body 10.

円柱体10は、Y方向に所定幅を有する円形の外周面11を少なくとも有すると共に、平面状の両側面12を有する。支持体20は、互いに連結された軸心部21と取付部22とを有する。軸心部21は、円環体30の幅方向(Y方向)中間の平面上を通り、円環体30の径方向(X方向)の外方に延びる軸L1と同心である。取付部22は、本実施形態では、軸心部21の先端部でY軸方向に2分割され、対称に屈曲形成された形状を有し、その各先端が円柱体10の径外方向から円柱体10の側面12に固設されている。取付部22による側面12上の取付位置220(図4参照)は、円柱体10の軸L2位置より軸心部21側に設定されている。このように取付位置220を軸心部21側にずらすことで、後述するように回転体50の取付スペースの一例である凹部14の領域を確保している。凹部14は、円柱体10の側面12及びX方向の下側の外周面13(図3の右下側)を切り欠いた状態で形成されている。凹部14の詳細は後述する。   The cylindrical body 10 has at least a circular outer peripheral surface 11 having a predetermined width in the Y direction, and has both planar side surfaces 12. The support 20 includes an axial center portion 21 and an attachment portion 22 that are connected to each other. The shaft center portion 21 is concentric with an axis L1 that passes through an intermediate plane in the width direction (Y direction) of the torus 30 and extends outward in the radial direction (X direction) of the torus 30. In this embodiment, the attachment portion 22 is divided into two in the Y-axis direction at the distal end portion of the shaft center portion 21 and has a shape that is bent symmetrically, and each distal end is a cylinder from the radially outer side of the cylindrical body 10. It is fixed to the side surface 12 of the body 10. A mounting position 220 (see FIG. 4) on the side surface 12 by the mounting portion 22 is set closer to the axial center portion 21 than the position of the axis L2 of the cylindrical body 10. By shifting the mounting position 220 to the axial center 21 side in this way, a region of the concave portion 14 which is an example of a mounting space for the rotating body 50 is secured as will be described later. The recess 14 is formed in a state where the side surface 12 of the cylindrical body 10 and the lower outer peripheral surface 13 (lower right side in FIG. 3) in the X direction are cut out. Details of the recess 14 will be described later.

軸心部21には、多軸回転構造体1を他の部材、例えば移動体60(図8参照)に回転可能に取り付ける場合に必要となる軸受部200が必要に応じて外嵌されている。なお、多軸回転構造体1を能動的に回転させる態様では、移動体60側に内装された、モータ等の駆動源M1から回転力を伝達されるようにすればよい。また、多軸回転構造体1は、移動体60の下部側に向けて少なくとも1個以上取り付けられる場合、例えば図8のように4方向に合計4個取り付ける場合、支持体20を下方に傾斜させて取り付けることで、円環体30及び回転体50の外周面が軸L1の傾斜角度で床面FLと接地するようにしている。   A bearing portion 200 that is required when the multiaxial rotating structure 1 is rotatably attached to another member, for example, the moving body 60 (see FIG. 8) is externally fitted to the shaft center portion 21 as necessary. . In the aspect in which the multi-axis rotating structure 1 is actively rotated, the rotational force may be transmitted from a driving source M1 such as a motor built in the moving body 60 side. When at least one multi-axis rotating structure 1 is attached toward the lower side of the moving body 60, for example, when a total of four multi-axis rotating structures 1 are attached in four directions as shown in FIG. 8, the support body 20 is inclined downward. The outer peripheral surfaces of the torus 30 and the rotating body 50 are in contact with the floor surface FL at an inclination angle of the axis L1.

円環体30は、球面の左右部位を対称に切断し、残った中央の所定幅からなる環状の外周面31を有する。円環体30は、内周面32が円柱体10の外周面11に軸受40を介して外嵌されて、円柱体10に対し、軸L2周りに相対回転可能にされている。軸受40は1個でもよいが、用途や耐荷重性を考慮して、図3のように2個、乃至はそれ以上の個数を並設することが好ましい。円環体30は、軸L1が外周面31の幅方向(Y方向)の中央平面上を通るように、Y方向における円柱体10との位置決めがなされている。これによって、支持体20が、能動的あるいは受動的に軸心部21(軸L1)周りに回転するとき、円環体30の外周面31の回転軌跡は、球面CA(図3参照)となる。   The annular body 30 has an annular outer peripheral surface 31 having a predetermined center width that is obtained by symmetrically cutting the left and right portions of the spherical surface. The annular body 30 has an inner peripheral surface 32 fitted on the outer peripheral surface 11 of the cylindrical body 10 via a bearing 40 so as to be rotatable relative to the cylindrical body 10 about the axis L2. Although one bearing 40 may be used, it is preferable to arrange two or more bearings in parallel as shown in FIG. 3 in consideration of application and load resistance. The annular body 30 is positioned with the cylindrical body 10 in the Y direction so that the axis L1 passes on the central plane in the width direction (Y direction) of the outer peripheral surface 31. As a result, when the support 20 is actively or passively rotated around the shaft center 21 (axis L1), the rotation locus of the outer peripheral surface 31 of the torus 30 is a spherical surface CA (see FIG. 3). .

円柱体10の両側面12,12には、回転体50を回転可能に支持する凹部14が対称に形成されている。凹部14の形成位置は、取付部22の取付位置220を除く位置であって、X方向に対しては支持体20側とは反対側に設定されている。   Concave portions 14 are formed symmetrically on both side surfaces 12 and 12 of the cylindrical body 10 so as to rotatably support the rotating body 50. The formation position of the recess 14 is a position excluding the attachment position 220 of the attachment part 22 and is set on the opposite side to the support 20 side with respect to the X direction.

図4は、回転体50が支持される前の状態の円柱体10の斜視図である。図5は、図4に示す円柱体10の外観図で、(a)は平面図、(b)は左側面図、(c)は正面図、(d)は右側面図、(e)は底面図である。凹部14は、回転体50が一部を残して収容されるような、Z方向(図2及び図5(d)参照)に穿設された円柱状の空間を有する。凹部14のZ方向両側には、外周面11側の一部に切欠部151を穿設して形成された一対の側壁15が対向するように形成されている。側壁15は、軸受部として機能するもので、対称位置にそれぞれ軸支孔16が形成されている。軸支孔16は、後述するように回転体50の回転軸51の両端を軸支する。側壁15を切欠部151によって外周面11の内側位置に形成することで、回転体50の回転軸51を軸支する構造部品等が外周面11の内側に収まるようにしている。   FIG. 4 is a perspective view of the cylindrical body 10 in a state before the rotating body 50 is supported. 5 is an external view of the cylindrical body 10 shown in FIG. 4, (a) is a plan view, (b) is a left side view, (c) is a front view, (d) is a right side view, and (e) is a side view. It is a bottom view. The concave portion 14 has a columnar space that is perforated in the Z direction (see FIGS. 2 and 5D) such that the rotating body 50 is accommodated with some remaining portions. On both sides in the Z direction of the recess 14, a pair of side walls 15 formed by drilling a notch 151 in a part on the outer peripheral surface 11 side are formed so as to face each other. The side wall 15 functions as a bearing portion, and a shaft support hole 16 is formed at each symmetrical position. The shaft support hole 16 supports both ends of the rotating shaft 51 of the rotating body 50 as described later. By forming the side wall 15 at the inner position of the outer peripheral surface 11 by the notch portion 151, the structural components that support the rotating shaft 51 of the rotating body 50 are accommodated inside the outer peripheral surface 11.

図6は、回転体50が支持された状態の円柱体10の斜視図である。図7は、図6に示す円柱体10の外観図で、(a)は平面図、(b)は左側面図、(c)は正面図、(d)は右側面図、(e)は底面図である。回転体50は、所定長の回転軸51を有すると共に、後述するように軸方向の中央側が太径となる紡錘形状の外周面52を有する。   FIG. 6 is a perspective view of the cylindrical body 10 in a state where the rotating body 50 is supported. 7 is an external view of the cylindrical body 10 shown in FIG. 6, (a) is a plan view, (b) is a left side view, (c) is a front view, (d) is a right side view, and (e) is a side view. It is a bottom view. The rotating body 50 has a rotating shaft 51 having a predetermined length, and has a spindle-shaped outer peripheral surface 52 having a large diameter at the axial center as described later.

回転軸51は、軸L1(X方向)及び軸L2(Y方向)と直交、すなわちZ方向に一致する。また、回転体50の半径は、円環体30が軸L1周りに回転したときに円環体30の環状の外周面31が形成する球面CAを形成する回転軌跡のうち、予め設定された接地点Po(図3参照)を含む軸L1周りの円周CPo上まで、回転体50の回転軸51から径方向に下ろした線分Rの長さ寸法に設定されている。回転体50の回転軸51方向の各点における半径を線分Rの長さ寸法に設定することで、回転体50の軸方向における外周面52は、常に円周CPo上に一致する。従って、軸L1周りに円柱体10を回転させた場合、円環体30の外周面31と回転体50の外周面52とで円周CPo上に沿った回転が実現されて、多軸回転構造体1は床面FLに常に接して転動を行う。なお、側壁15の端縁部分うち、円周CPoに対応する部位を円周CPoに一致させるようにしてもよい。   The rotation shaft 51 is orthogonal to the axis L1 (X direction) and the axis L2 (Y direction), that is, coincides with the Z direction. In addition, the radius of the rotating body 50 is set to a predetermined contact among the rotation trajectories that form the spherical surface CA formed by the annular outer peripheral surface 31 of the annular body 30 when the annular body 30 rotates around the axis L1. It is set to the length dimension of the line segment R drawn down from the rotating shaft 51 of the rotating body 50 in the radial direction up to the circumference CPo around the axis L1 including the point Po (see FIG. 3). By setting the radius at each point in the direction of the rotation axis 51 of the rotating body 50 to the length dimension of the line segment R, the outer peripheral surface 52 in the axial direction of the rotating body 50 always coincides with the circumference CPo. Therefore, when the cylindrical body 10 is rotated around the axis L1, rotation along the circumference CPo is realized by the outer peripheral surface 31 of the torus 30 and the outer peripheral surface 52 of the rotating body 50, and the multi-axis rotating structure The body 1 always rolls in contact with the floor surface FL. In addition, you may make it make the site | part corresponding to the circumference CPo correspond to the circumference CPo among the edge parts of the side wall 15. FIG.

次に、多軸回転構造体1の全方向移動動作について説明する。なお、多軸回転構造体1は、軸受部200を介して図略の移動体(本体)に、軸L1の傾斜姿勢で支持されているものとする。   Next, the omnidirectional movement operation of the multi-axis rotating structure 1 will be described. The multi-axis rotating structure 1 is assumed to be supported on a movable body (main body) (not shown) via the bearing portion 200 in an inclined posture of the axis L1.

(1)軸L1周りの能動回転による移動
多軸回転構造体1は、駆動源M1からの回転力を受けて軸L1周りに能動回転する場合、円柱体10及び円環体30が回転する。その結果、多軸回転構造体1は、床面FL上との接地点Poを含む円周CPo上で転動し、転動方向(図3の場合、紙面奥行き方向)に移動する。
(1) Movement by Active Rotation around the Axis L1 When the multi-axis rotating structure 1 receives the rotational force from the drive source M1 and actively rotates around the axis L1, the cylindrical body 10 and the torus 30 rotate. As a result, the multi-axis rotating structure 1 rolls on the circumference CPo including the contact point Po with the floor surface FL, and moves in the rolling direction (in the case of FIG. 3, the depth direction on the paper surface).

軸L1周りの能動回転中に、他の方向への外力が作用した場合、床面FLに円環体30の外周面31が接地している期間は、外力のうちの円環体30の外周面31の受動回転方向の移動成分が軸L1周りの転動方向に合成されて移動する。また、床面FLに回転体50の外周面52が接地している期間は、外力のうちの回転体50の外周面52の受動回転方向の移動成分が軸L1周りの転動方向に合成されて移動する。   When an external force in another direction is applied during active rotation around the axis L1, the outer periphery of the torus 30 of the external force is in a period during which the outer periphery 31 of the torus 30 is in contact with the floor surface FL. The movement component of the surface 31 in the passive rotation direction is synthesized and moved in the rolling direction around the axis L1. Further, during the period in which the outer peripheral surface 52 of the rotating body 50 is in contact with the floor surface FL, the movement component in the passive rotation direction of the outer peripheral surface 52 of the rotating body 50 out of the external force is synthesized in the rolling direction around the axis L1. Move.

(2)軸L1と直交する方向と同一方向への外力を受けた場合の受動回転による移動
多軸回転構造体1に、軸L1周りの能動回転による転動方向と同一方向に外力が作用した場合、円環体30の外周面31及び回転体50の外周面52が床面FLから摩擦を受けて軸L1周りに受動回転する。従って、多軸回転構造体1は、床面FL上との接地点Poを含む円周CPo上で転動し、転動方向(図3の場合、紙面奥行き方向)に移動する。
(2) Movement by passive rotation when receiving external force in the same direction as the direction orthogonal to axis L1 External force is applied to multi-axis rotating structure 1 in the same direction as the rolling direction by active rotation around axis L1. In this case, the outer peripheral surface 31 of the torus 30 and the outer peripheral surface 52 of the rotating body 50 receive friction from the floor surface FL and passively rotate around the axis L1. Therefore, the multi-axis rotating structure 1 rolls on the circumference CPo including the contact point Po with the floor surface FL, and moves in the rolling direction (in the case of FIG. 3, the depth direction on the paper surface).

(3)その他の方向への外力を受けた場合の受動回転による移動
まず、図8に示すような円環体30が完全に立直している(軸L2が床面FLと平行な)回転位相位置で停止している多軸回転構造体1に、円環体30の回転方向に一致する外力Fが作用すると、円環体30は床面FLから摩擦を受けて、外周面31が軸L2周りに受動回転を生じる。従って、多軸回転構造体1は、円環体30の回転方向に移動する。
(3) Movement by passive rotation when receiving external force in other directions First, the torus 30 as shown in FIG. 8 is completely upright (the axis L2 is parallel to the floor surface FL). When an external force F coinciding with the rotation direction of the torus 30 is applied to the multi-axis rotating structure 1 stopped at the position, the torus 30 receives friction from the floor surface FL, and the outer peripheral surface 31 moves to the axis L2. A passive rotation occurs around. Therefore, the multi-axis rotating structure 1 moves in the rotation direction of the torus 30.

次いで、回転位相位置の如何を問わず、任意の方向への外力Fが作用した場合、円環体30,回転体50及び軸L1周りの受動回転が発生する。まず、円環体30の外周面31が床面FLに接地している期間では、外力のうちの円環体30の回転方向への成分によって円環体30が軸L2周りに回転し、外力Fのうちの軸L1周りの方向への成分によって軸L1周りの回転が発生する。次に、回転体50の外周面52が床面FLに接地している期間では、外力のうちの回転体5の回転方向への成分によって回転体50が回転軸51周りに回転し、外力Fのうちの軸L1周りの方向への成分によって軸L1周りの回転が発生する。従って、多軸回転構造体1は、外力Fの作用する方向へ移動する。   Next, when an external force F is applied in any direction regardless of the rotational phase position, passive rotation around the torus 30, the rotating body 50, and the axis L1 occurs. First, during the period in which the outer peripheral surface 31 of the torus 30 is in contact with the floor surface FL, the torus 30 rotates around the axis L2 due to the component of the external force in the rotation direction of the torus 30 and the external force A component around F in the direction around axis L1 causes rotation around axis L1. Next, during a period in which the outer peripheral surface 52 of the rotating body 50 is in contact with the floor surface FL, the rotating body 50 rotates around the rotation shaft 51 by the component of the external force in the rotating direction of the rotating body 5, and the external force F The rotation around the axis L1 is generated by the component in the direction around the axis L1. Therefore, the multi-axis rotating structure 1 moves in the direction in which the external force F acts.

(4)回転体50の受動回転による移動
図8とは異なり、図3(図2)に示すように回転体50の外周面52が床面FLに接地している状態で停止している多軸回転構造体1に、図3の左右方向に矢印で示すように外力Fが作用する場合を想定する。この場合、軸L1周りの回転力成分は存在しないため、回転体50が回転軸51周りに回転可能でなければ、多軸回転構造体1は、図3(図2)の左右方向への移動が不可能となる。
(4) Movement of Rotating Body 50 by Passive Rotation Unlike FIG. 8, as shown in FIG. 3 (FIG. 2), the outer peripheral surface 52 of the rotating body 50 is stopped while being in contact with the floor surface FL. It is assumed that an external force F acts on the shaft rotating structure 1 as indicated by arrows in the left-right direction in FIG. In this case, since there is no rotational force component around the axis L1, if the rotary body 50 is not rotatable around the rotary axis 51, the multiaxial rotary structure 1 moves in the left-right direction in FIG. Is impossible.

そこで、図3の回転位相位置を含む、外周面52が床面FLに接地している状態において、回転体50の外周面52に接地点Poを確保し、かつ回転体50に回転軸51を設けて回転体50を受動回転可能にして、図3の左右方向への移動を可能にしている。なお、外力Fが、図3の左右方向成分を有する、すなわち紙面と交差する方向の力である場合には、前記(3)のケースと同様となり、多軸回転構造体1は、軸L1,L2の受動回転及び回転軸51の受動回転によって直進を継続することになる。   Therefore, in the state where the outer peripheral surface 52 is in contact with the floor surface FL including the rotational phase position of FIG. 3, a grounding point Po is secured on the outer peripheral surface 52 of the rotating body 50, and the rotating shaft 51 is attached to the rotating body 50. The rotating body 50 is provided so as to be passively rotatable so as to be movable in the left-right direction in FIG. In the case where the external force F has the left-right direction component of FIG. 3, that is, a force in a direction intersecting with the paper surface, the multi-axis rotating structure 1 has the axis L1, The straight traveling is continued by the passive rotation of L2 and the passive rotation of the rotating shaft 51.

以上の結果、多軸回転構造体1は、複数の軸、すなわち軸L1周りの回転、円環体30の軸L2周りの回転、及び回転体50の回転軸51周りの回転が実現され、移動体に装備した場合、初期の回転位相位置の如何を問わず、全方向への移動が可能となる。   As a result of the above, the multi-axis rotating structure 1 realizes a plurality of axes, that is, rotation around the axis L1, rotation around the axis L2 of the annular body 30, and rotation around the rotation axis 51 of the rotating body 50. When equipped on the body, it can move in all directions regardless of the initial rotational phase position.

図9は、多軸回転構造体1を移動体60に装備した一例の外観斜視図を示す。移動体60としては、工場内、病院内その他、屋内外を問わず全方向移動可能な自走ロボット、車椅子、車両等への適用が想定される。なお、図9では、移動体60としての基本概念を示したもので、多軸回転構造体1が装備される中央の基本部位の構成は、用途に応じて適宜変更されるものである。   FIG. 9 shows an external perspective view of an example in which the multi-axis rotating structure 1 is mounted on the moving body 60. The moving body 60 is assumed to be applied to a self-propelled robot, a wheelchair, a vehicle, etc. that can move in all directions regardless of whether it is in a factory, in a hospital, or inside or outside. In addition, in FIG. 9, the basic concept as the moving body 60 is shown, and the configuration of the central basic portion on which the multiaxial rotating structure 1 is equipped is appropriately changed according to the application.

自走の移動体60に適用する場合、多軸回転構造体1を3個以上装備すれば姿勢安定上好適となる。なお、バランス用の補助車輪等を採用する形態とすれば、2個でもよい。また、平地の他、起伏のある不整地の場合、移動体の立体角の全方向に対して6軸乃至はそれ以上の所定数を装備することで、高い移動性能を発揮でき、災害地その他の現場での活動にも適用可能となる。また、サイズも小型式から、人間が搭乗可能なサイズ、あるいはそれ以上のサイズ、例えば部品、機器あるいは物資の運搬用にも応用可能である。   When applied to the self-propelled moving body 60, it is preferable for posture stability if three or more multi-axis rotating structures 1 are provided. In addition, if it is set as the form which employ | adopts the auxiliary wheel for balance etc., two pieces may be sufficient. Also, in the case of rough terrain other than flat land, high mobility performance can be demonstrated by installing a predetermined number of 6 axes or more in all directions of the solid angle of the moving body, It can also be applied to on-site activities. Further, since the size is small, it can be applied to a size that can be carried by humans, or a size larger than that, for example, for carrying parts, equipment, or goods.

図9の形態では、左右に一対、前後に一対の合計4個の多軸回転構造体1が装備されている。移動体60内には、走行制御する回路構成及び、各多軸回転構造体1を能動回転させる駆動源たるモータが内装されている。移動制御は、例えば前後方向に移動させる場合、左右一対の多軸回転構造体1を同方向に同速度で能動回転させればよく、左右方向に移動させる場合、前後一対の多軸回転構造体1を同方向に同速度で能動回転させればよい。合成方向に移動させる場合には、一対の多軸回転構造体1のそれぞれに所定の回転速度を設定すればよい。一対の多軸回転構造体1の回転方向を切換えたり、回転速度を変更したりすることで、方向転換、曲線移動等の直進以外の各種の動きを実現することが可能となる。   In the form of FIG. 9, a total of four multi-axis rotating structures 1, which are paired on the left and right and paired on the front and back, are provided. In the moving body 60, a circuit configuration for running control and a motor as a driving source for actively rotating each multi-axis rotating structure 1 are incorporated. For example, when moving in the front-rear direction, the movement control may be performed by actively rotating the pair of left and right multi-axis rotating structures 1 at the same speed in the same direction. When moving in the left-right direction, the pair of front and rear multi-axis rotating structures 1 may be actively rotated at the same speed in the same direction. In the case of moving in the synthesis direction, a predetermined rotation speed may be set for each of the pair of multiaxial rotating structures 1. By changing the rotation direction of the pair of multi-axis rotating structures 1 or changing the rotation speed, it is possible to realize various movements other than straight movement such as direction change and curve movement.

図10は、円柱体10、円環体30及び回転体50を能動的に駆動する場合の構成の一例を示す機能構成図である。図10において、モータ等の駆動源M2は、円柱体10に内装され、回転力伝達機構71を介して円環体30を能動回転可能にしている。回転力伝達機構71は、典型的には互いに噛合する2個のギアを有する。回転力伝達機構71を構成する2個のギアの一方は、円柱体10に取付けられ、一部が外周面11から露出し、他方のギアは、円環体30の内周面32に沿って設けられるリング状ギアで、互いに噛合している。円柱体10側のギアは、駆動源M2の出力回転軸に供回り可能に連結されて、回転力を円環体30に伝達する。円環体30は軸受40を介して回転駆動される。   FIG. 10 is a functional configuration diagram illustrating an example of a configuration when the cylindrical body 10, the annular body 30, and the rotating body 50 are actively driven. In FIG. 10, a drive source M <b> 2 such as a motor is built in the cylindrical body 10, and enables the annular body 30 to be actively rotated via a rotational force transmission mechanism 71. The rotational force transmission mechanism 71 typically has two gears that mesh with each other. One of the two gears constituting the rotational force transmission mechanism 71 is attached to the cylindrical body 10, a part is exposed from the outer peripheral surface 11, and the other gear is along the inner peripheral surface 32 of the torus 30. The ring-shaped gears that are provided mesh with each other. The gear on the cylindrical body 10 side is connected to the output rotation shaft of the drive source M <b> 2 so as to be able to rotate, and transmits the rotational force to the torus 30. The torus 30 is rotationally driven via a bearing 40.

また、モータ等の駆動源M3は、円柱体10に内装され、回転力伝達機構72を介して回転体50を能動回転可能にしている。回転力伝達機構72は、典型的には互いに噛合する2個のギアを有する。回転力伝達機構72を構成する2個のギアの一方は、円柱体10に取付けられ、一部が凹部14の内面に露出し、他方のギアは、回転体50の外周面52の周囲に設けられたリング状ギアで、互いに噛合している。円柱体10側のギアは、駆動源M3の出力回転軸に供回り可能に連結されて、回転力を回転体50に伝達する。回転体50は回転軸51周りに回転駆動される。なお、駆動源M2,M3は円環体30、回転体50側に内装する形態でもよい。また、静止側から回転側の駆動源M2、M3への電力線は、公知のように例えば支持体20の内部に孔を穿設し、軸心部21の適所に軸L1と同心に設けたスリップリングを介して孔内を通って円柱体10まで這わすようにすればよい。   Further, a drive source M3 such as a motor is built in the cylindrical body 10 and enables the rotary body 50 to be actively rotated via the rotational force transmission mechanism 72. The rotational force transmission mechanism 72 typically has two gears that mesh with each other. One of the two gears constituting the rotational force transmission mechanism 72 is attached to the cylindrical body 10, a part is exposed on the inner surface of the recess 14, and the other gear is provided around the outer peripheral surface 52 of the rotating body 50. The ring-shaped gears meshed with each other. The gear on the cylindrical body 10 side is connected to the output rotation shaft of the drive source M <b> 3 so as to be able to rotate, and transmits the rotational force to the rotating body 50. The rotating body 50 is driven to rotate around the rotating shaft 51. The drive sources M2 and M3 may be provided on the annular body 30 and the rotating body 50 side. As is well known, for example, a power line from the stationary side to the driving sources M2 and M3 on the rotating side is provided with a hole in the inside of the support 20, and a slip provided concentrically with the shaft L1 at an appropriate position of the shaft portion 21. What is necessary is just to make it pass to the cylindrical body 10 through a hole through a ring.

このように、多軸回構造体1は、円柱体10の外方から側面に支持体20を取り付けるので、従来のような、隙間の存在による回転の不連続がなくなって移動(走行)の滑らかさが確保でき、かつ、従来のように回転駆動部を小径に制限する必要がないため、支持体20を構成する軸心部21及び取付部22を太径とすることができ、耐荷重性を確保することができる。さらに、多軸回構造体1は、多軸回構造体1のサイズと円環体30のサイズとを同等としたことで、高い段差乗り越え性能も確保される。   Thus, since the multiaxial structure 1 attaches the support body 20 to the side surface from the outside of the cylindrical body 10, there is no rotation discontinuity due to the presence of a gap as in the conventional case, and the movement (running) is smooth. Since it is not necessary to limit the rotational drive portion to a small diameter as in the prior art, the shaft center portion 21 and the mounting portion 22 constituting the support body 20 can be made large in diameter, and load resistance is ensured. Can be secured. Further, the multi-axis rotating structure 1 ensures high step-over performance by making the size of the multi-axis rotating structure 1 and the size of the torus 30 equal.

図11では、円柱体10、円環体30及び回転体50の全て、少なくとも円柱体10、円環体30を能動回転可能にし、これによって、図11に示すように、多軸回転構造体1を移動体ではなく、他の用途、例えば物体を把持する把持装置に適用することが可能となる。図11は、2個の多軸回転構造体1をロボットハンド乃至はロボットハンドの指部として想定し、両者間に把持対象物Obを把持し、また必要に応じて回転可能にした状態を示している。円環体30を互いに逆向きとなるR1,R2方向に所定量だけ能動回転させることで、例えば円筒状乃至は円柱状をなした把持対象物Obを引き込むようにして把持状態とする。さらに、把持した状態で両円環体30を同方向に同一速度で 回転させることで、把持対象物Obの把持位置を変更することが可能となる。なお、多軸回転構造体1の個数は2個の他、3個あるいはそれ以上でもよい。例えば3個の場合、多軸回転構造体1への駆動を選択的に制御することで、例えば把持対象物が球体であれば、球体を全方向に向けて把持することが可能となる。5個設ける態様では、人の五指を模擬したものとすることができる。   In FIG. 11, all of the cylindrical body 10, the annular body 30 and the rotating body 50, at least the cylindrical body 10 and the annular body 30, can be actively rotated. As a result, as shown in FIG. 11, as shown in FIG. Can be applied not to a moving body but to other uses, for example, a gripping device for gripping an object. FIG. 11 shows a state in which two multi-axis rotating structures 1 are assumed to be robot hands or finger parts of a robot hand, the object to be grasped Ob is held between them, and can be rotated as necessary. ing. The annular body 30 is actively rotated by a predetermined amount in directions R1 and R2 that are opposite to each other, so that the gripping object Ob having a cylindrical shape or a columnar shape is drawn, for example. Furthermore, the gripping position of the gripping object Ob can be changed by rotating the two toric bodies 30 in the same direction at the same speed while gripping. Note that the number of the multi-axis rotating structure 1 may be two, three, or more. For example, in the case of three, by selectively controlling the drive to the multi-axis rotating structure 1, for example, if the object to be grasped is a sphere, the sphere can be grasped in all directions. In the aspect of providing five, it is possible to simulate a person's five fingers.

一方、駆動源M1〜M3を使用せず、全てを受動回転の形態とするようにしてもよい。この場合、例えばキャスターに適用することが可能となる。キャスターに適用する態様では、多軸回転構造体1の個数に限らず、複数個から構成されるものとしてもよい。   On the other hand, the drive sources M1 to M3 may not be used, and all may be configured to be passively rotated. In this case, it can be applied to casters, for example. In the aspect applied to a caster, it is good not only as the number of the multi-axial rotating structure 1 but being comprised from two or more.

また、図12、図13は、多軸回転構造体1が移動体に適用される場合における他の実施形態を示す図で、段差乗り越えを円滑に行うための構造を採用した状態の図である。この実施形態では、取付部22aに回転体、例えばリング体23を設けたものである。取付部22aは、所定の幅を有し、側面視(図12の軸La方向)で円弧状の本体部221と、本体部221の円弧状の両先端から延設された連結部222とを備えている。連結部222は、本体部221の円弧状の両先端の幅方向の左右端から一対の平行な棒状体として延設され、一対の棒状体の先端がそれぞれの側面12に固定されている。また、本体部221は、幅方向の中央部分であって、側面視で円弧状の貫通孔223が形成されている。貫通孔223には、リング体23が内嵌されている。リング体23は、低摩擦性材料あるいは表面が低摩擦処理されて形成されたもので、軸L1及び軸L2と直交する軸に平行な軸La周りに摺動回転するように貫通孔223に嵌合される。   FIGS. 12 and 13 are diagrams showing another embodiment in the case where the multi-axis rotating structure 1 is applied to a moving body, and is a diagram showing a state in which a structure for smoothly overcoming a step is adopted. . In this embodiment, a rotating body, for example, a ring body 23 is provided on the attachment portion 22a. The attachment portion 22a has a predetermined width, and includes a main body portion 221 having an arc shape in a side view (in the direction of the axis La in FIG. 12), and a connecting portion 222 extending from both ends of the main body portion 221 having an arc shape. I have. The connecting portion 222 is extended as a pair of parallel rod-shaped bodies from the left and right ends in the width direction of both arc-shaped tips of the main body portion 221, and the tips of the pair of rod-shaped bodies are fixed to the side surfaces 12. Moreover, the main-body part 221 is a center part of the width direction, Comprising: The circular-arc through-hole 223 is formed by side view. A ring body 23 is fitted in the through hole 223. The ring body 23 is formed of a low-friction material or a surface subjected to low-friction processing, and is fitted into the through hole 223 so as to slide and rotate around an axis La parallel to an axis perpendicular to the axis L1 and the axis L2. Combined.

また、円柱体10の両側面12間を貫通するように、前記貫通孔223と同一曲率を有する円弧状の貫通孔17が形成されている。貫通孔23と貫通孔17とは、円周の一部を形成する円弧に対応する。リング体23は、本体部221の貫通孔223に内嵌されると共に、円柱体10の貫通孔17にも内嵌されている。また、リング体23の外周は、少なくとも本体部221及び連結部222よりも上下方向に対して外方に位置する。多軸回転構造体1が床面を移動中に、例えば段差部分に差し掛かると、取付部22aよりも先にリング体23が当接して回転する。従って、円滑に段差を乗り越えることができ、取付部22aが段差乗り越え時の障害となることが緩和乃至は解消される。なお、図13では、作図上乃至は説明上、軸心部21が水平に示されているが、実際は所定の傾斜角度を有しているものである。   An arcuate through-hole 17 having the same curvature as the through-hole 223 is formed so as to penetrate between both side surfaces 12 of the cylindrical body 10. The through hole 23 and the through hole 17 correspond to an arc that forms part of the circumference. The ring body 23 is fitted in the through hole 223 of the main body 221 and is also fitted in the through hole 17 of the cylindrical body 10. Further, the outer periphery of the ring body 23 is located outward from at least the main body portion 221 and the connecting portion 222 with respect to the vertical direction. When the multi-axis rotating structure 1 moves on the floor surface, for example, when it reaches a stepped portion, the ring body 23 comes into contact with and rotates before the mounting portion 22a. Therefore, it is possible to smoothly get over the step, and the mounting portion 22a becomes an obstacle when stepping over the step is alleviated or eliminated. In FIG. 13, the shaft center portion 21 is shown horizontally for drawing or explanation, but actually has a predetermined inclination angle.

図14は、円滑段差乗り越えのための回転体の他の実施形態を示すもので、図12に対応する図である。図14(a)は取付部の両側に1対の回転体を設けた場合の図、図14(b)は取付部の両側に複数対の回転体を設けた場合の図である。図14(a)において、回転体部23aは、取付部22の両側に1対設けられている。回転体部23aは、取付部22の両端側の外側面に、軸L1及び軸L2と直交する軸に平行な軸Laに取り付けられた軸受231aと、軸受231aの、軸La方向の両側に軸支された所定径を有するコロ等の回転体232aとを備えている。回転体232aの外周は、取付部22の外側面より外側に露出している。従って、取付部22が段差部に当接しようとすると、先に回転体232aが段差に当接して回転することで、取付部22が段差乗り越え時の障害となることが解消される。また、図14(b)において、回転体部23bは、取付部22の両側に複数対、ここでは2対設けられている。各対の回転体部23bは、取付部22の両端側の外側面に、軸L1及び軸L2と直交する軸に平行な軸La、軸La’に取り付けられた軸受231bと、軸受231bの、軸方向の両側に軸支された、所定径を有するコロ等の回転体232bとを備えている。回転体232bの外周は、取付部22の外側面より外側に露出している。取付部22が段差部に当接しようとすると、先に回転体232bが段差に当接して回転することで、取付部22が段差乗り越え時の障害となることが緩和乃至は解消される。なお、回転体232a、232bは、コロの他、ローラやリング体でもよい。   FIG. 14 is a view corresponding to FIG. 12, showing another embodiment of a rotating body for overcoming a smooth step. FIG. 14A is a view when a pair of rotating bodies are provided on both sides of the mounting portion, and FIG. 14B is a view when a plurality of pairs of rotating bodies are provided on both sides of the mounting portion. In FIG. 14A, a pair of rotating body portions 23 a is provided on both sides of the attachment portion 22. The rotating body portion 23a has bearings 231a attached to shafts La parallel to the axes orthogonal to the shafts L1 and L2 on the outer surfaces of both ends of the mounting portion 22, and shafts on both sides of the bearing 231a in the direction of the shaft La. And a rotating body 232a such as a roller having a predetermined diameter supported. The outer periphery of the rotating body 232a is exposed to the outside from the outer surface of the attachment portion 22. Therefore, when the attachment portion 22 tries to come into contact with the stepped portion, the rotating body 232a first comes into contact with the stepped portion and rotates, so that the attachment portion 22 becomes an obstacle at the time of overcoming the step. In FIG. 14B, a plurality of pairs of rotating body portions 23 b are provided on both sides of the attachment portion 22, two pairs here. Each pair of rotating body portions 23b includes, on the outer side surfaces of both ends of the attachment portion 22, an axis La parallel to an axis orthogonal to the axis L1 and the axis L2, a bearing 231b attached to the axis La ′, and a bearing 231b. And a rotating body 232b such as a roller having a predetermined diameter that is pivotally supported on both sides in the axial direction. The outer periphery of the rotating body 232b is exposed to the outside from the outer surface of the attachment portion 22. When the attachment portion 22 tries to come into contact with the stepped portion, the rotating body 232b first comes into contact with the step and rotates, so that the attachment portion 22 becomes an obstacle at the time of overcoming the step is alleviated or eliminated. The rotating bodies 232a and 232b may be rollers or ring bodies in addition to rollers.

さらに、本発明は以下の態様を採用することが可能である。   Furthermore, the present invention can employ the following aspects.

(1)本実施形態では、基体としての円柱体10を中実構造としたが、少なくとも円形の外周面11と、両側部に支持体20を固設される構造と、回転体50の支持構造とを備えていれば、中実である必要はない。基体としては、強度を満たせば、両側部を有する基部と、基部の周囲に外周面11を備える構造であればよい。これによって、設計の自由度や軽量化が図れる。   (1) In this embodiment, the columnar body 10 as the base body has a solid structure, but at least a circular outer peripheral surface 11, a structure in which the support body 20 is fixed to both sides, and a support structure of the rotating body 50 Need to be solid. As long as strength is satisfied, the base may have a structure including a base portion having both side portions and an outer peripheral surface 11 around the base portion. As a result, design freedom and weight reduction can be achieved.

(2)回転体50の接地点PoのX方向上の位置は、用途その他の要因によって設定される軸L1の傾斜角度に依存し、例えば図3を用いて説明すると、軸L2の位置(軸L1が床面FLと平行)と、回転体50の取り付け前にY方向が鉛直面上にあるときの円環体30の外周面31の幅方向端縁が床面FLと接する位置との範囲Laであればよい。なお、円環体30の外周面31の幅方向寸法は、接地点Poの設定位置に対応して変更されることが好ましく、図3において、外周面31の幅方向端縁が、接地点Poの近傍位置に対応するように設定される。   (2) The position in the X direction of the ground point Po of the rotator 50 depends on the inclination angle of the axis L1 set depending on the application and other factors. For example, referring to FIG. L1 is parallel to the floor surface FL) and the range between the position where the edge in the width direction of the outer peripheral surface 31 of the torus 30 is in contact with the floor surface FL when the Y direction is on the vertical surface before the rotating body 50 is attached. What is necessary is just La. In addition, it is preferable that the width direction dimension of the outer peripheral surface 31 of the toric body 30 is changed corresponding to the setting position of the grounding point Po. In FIG. It is set so as to correspond to the vicinity position of.

(3)多軸回転構造体1を移動体に適用する態様では、回転体50の外周面52が床面FLと接するように回転軸51方向における半径を球面CAの円周CPoに一致させて、接地点Poを確保した。しかし、多軸回転構造体1を移動体以外の用途に適用する態様では、接地点Poとの用語は馴染まない。この場合、接地点Poに対応する用語として特異点なる用語を採用する。特異点は、用途に応じて適宜設定可能であり、また、球面CA上で他の円周CPoに切換えることも可能である。   (3) In the aspect in which the multi-axis rotating structure 1 is applied to the moving body, the radius in the direction of the rotating shaft 51 is made to coincide with the circumference CPo of the spherical surface CA so that the outer peripheral surface 52 of the rotating body 50 is in contact with the floor surface FL. The grounding point Po was secured. However, in the aspect in which the multi-axis rotating structure 1 is applied to uses other than the moving body, the term “contact point Po” is not familiar. In this case, the term “singular point” is adopted as the term corresponding to the contact point Po. The singular point can be appropriately set according to the application, and can be switched to another circumference CPo on the spherical surface CA.

(4)回転体50の外周面52は、紡錘型に限定されず、少なくとも不連続点をなくすべく接地点Poの位置で回転可能にするものであれば種々の形態が採用可能である。例えば、回転軸51に相当する軸に、同形の1個、乃至は全体として紡錘型になるように順次形状の異なる複数個の球体(楕円球含む)、あるいは円筒体等を数珠つなぎしたものとしてもよい。同形のものを複数繋ぐ婆場合、軸自体の形状を円周CPoに一致乃至は近似したものとしてもよい。   (4) The outer peripheral surface 52 of the rotating body 50 is not limited to the spindle type, and various forms can be adopted as long as it can be rotated at the position of the ground contact point Po so as to eliminate at least discontinuous points. For example, it is assumed that a plurality of spheres (including elliptical spheres) or cylinders having different shapes are connected to a shaft corresponding to the rotating shaft 51 in order to form one spindle of the same shape or a spindle shape as a whole. Also good. When connecting a plurality of the same shape, the shape of the shaft itself may be the same or approximate to the circumference CPo.

(5)回転体も中実である必要はなく、強度を満たせば、両端部に回転軸を有する紡錘型の筒体として、軽量化を図ってもよい。   (5) The rotating body does not need to be solid, and as long as the strength is satisfied, the spindle can be reduced in weight as a spindle-shaped cylinder having rotating shafts at both ends.

(6)円環体30及び回転体50の外周面は、用途に応じて所定の摩擦係数を有する材料で製造し、また表面加工あるいは被服処理されていることが好ましい。   (6) It is preferable that the outer peripheral surfaces of the toric body 30 and the rotating body 50 are made of a material having a predetermined coefficient of friction depending on the application, and are subjected to surface processing or clothing treatment.

(7)取付部22は左右に対称に分割した構造を採用したが、これに限定されず、用途その他によっては、一方の側面12側のみに軸心部21から屈曲した片持ち状の取付構造としてもよい。また、取付部22の取付位置220(図4参照)は、軸L2よりも軸心部21側としたが、凹部14のスペースが確保可能であれば、軸L2と対応する位置、あるいは側面12の外周領域を利用するものでもよい。   (7) The mounting portion 22 has a symmetrically divided structure, but is not limited to this. Depending on the application and the like, a cantilevered mounting structure bent from the shaft portion 21 only on one side surface 12 side. It is good. Further, the mounting position 220 (see FIG. 4) of the mounting portion 22 is on the shaft center 21 side with respect to the shaft L2, but if the space of the concave portion 14 can be secured, the position corresponding to the shaft L2 or the side surface 12 is provided. The outer peripheral area may be used.

1 多軸回転構造体
10 円柱体(基体)
11 外周面
12 側面
20 支持体
21 軸心部
22 取付部
23 リング体(回転体)
23a,23b 回転体部(回転体)
200 軸受部(主軸受)
30 円環体
31 外周面
40 軸受
50 回転体
52 外周面
60 移動体
71 回転力伝達機構(第1回転力伝達機構)
72 回転力伝達機構(第2回転力伝達機構)
M1 駆動源
M2 駆動源(第1駆動源)
M3 駆動源(第2駆動源)
FL 床面
Po 接地点(特異点)
1 Multi-axis rotating structure 10 Cylinder (base)
DESCRIPTION OF SYMBOLS 11 Outer peripheral surface 12 Side surface 20 Support body 21 Axis center part 22 Attachment part 23 Ring body (rotary body)
23a, 23b Rotating body (Rotating body)
200 Bearing section (main bearing)
30 toroid 31 outer peripheral surface 40 bearing 50 rotating body 52 outer peripheral surface 60 moving body 71 rotational force transmission mechanism (first rotational force transmission mechanism)
72 Rotational force transmission mechanism (second rotational force transmission mechanism)
M1 drive source M2 drive source (first drive source)
M3 drive source (second drive source)
FL Floor Po Contact point (singular point)

Claims (9)

円柱状をなし、その中心軸である第1の軸周りの円周面及び前記円周面の両側の側面を有する基体と、
前記基体の前記円周面に軸受を介して外嵌された円環体であって、環状の外周面が、球面のうち前記第1の軸の方向における両側部位が対称に切断されて残った表面部分からなる円環体と、
互いに連結された取付部と軸心部とを有し、前記取付部は前記基体の前記両側の側面の少なくとも一方側に固設され、前記軸心部は前記円環体の前記第1の軸の方向における中間点を通り、かつ前記第1の軸と直交する第2の軸の方向の外方に延びる支持体と、
前記基前記側面にそれぞれ軸支された一対の回転体であって、前記第1の軸と前記第2の軸とで構成される面に平行な面内で回転する回転体とを含み、
前記基体の前記側面における前記取付部の取付位置は、前記第1の軸の位置よりも前記軸心部側であり、
前記基体の前記側面における前記回転体の取付位置は、前記第1の軸を挟んで前記取付部の取付位置の反対側である多軸回転構造体。
Forms a cylindrical, a substrate having a side surface on both sides of the circumferential surface and the circumferential surface around the first axis which is the central axis,
An annular body that is externally fitted to the circumferential surface of the base body via a bearing, and the annular outer peripheral surface remains on both sides of the spherical surface in the direction of the first axis being cut symmetrically A torus consisting of a surface portion ;
And a mounting portion and a shaft center portion connected to each other, wherein the mounting section is fixed to at least one side of the side surface of the opposite sides of the base, the axis portion, said first of said torus A support that passes through an intermediate point in the direction of the axis and extends outward in the direction of the second axis perpendicular to the first axis ;
A pair of rotating bodies which are respectively pivotally supported on the side surface of the base body, including a rotating member that rotates in a plane parallel to the plane constituted by the said first axis and said second axis See
The mounting position of the mounting portion on the side surface of the base is closer to the axial center than the position of the first shaft,
The multi-axis rotating structure in which the mounting position of the rotating body on the side surface of the base is opposite to the mounting position of the mounting portion across the first shaft .
前記回転体は、前記円環体が前記第2の軸周りに回転したときに前記円環体の環状の外周面が形成する球面の回転軌跡の内、前記円環体の中空部分内の所定の特異点を含む円周上を回転面とするものであることを特徴とする請求項1に記載の多軸回転構造体。 The rotating body has a predetermined rotational path of a spherical surface formed by an annular outer peripheral surface of the annular body when the annular body rotates around the second axis. The multi-axis rotating structure according to claim 1, wherein the rotating surface is a circumference including a singular point. 前記回転体は、前記基前記両側の側面にそれぞれ軸支された回転軸を有し、前記回転軸は、前記第1の軸及び前記第2の軸と直交し、前記回転体の軸方向における半径は、前記円環体が前記第2の軸周りに回転したときに前記円環体の環状の外周面が形成する球面の回転軌跡の内、前記円環体の中空部分内の所定の特異点を含む円周上まで、前記回転体の軸から径方向に下ろした寸法に設定された紡錘状であることを特徴とする請求項1に記載の多軸回転構造体。 The rotating body has a rotary shaft which is respectively pivotally supported on the side surface of the opposite sides of the base body, wherein the rotation axis is perpendicular to the first axis and the second axis, the axis of the rotating body The radius in the direction is a predetermined radius within a hollow portion of the torus, in a rotational locus of a spherical surface formed by the annular outer peripheral surface of the torus when the torus rotates around the second axis. 2. The multiaxial rotating structure according to claim 1, wherein the multiaxial rotating structure has a spindle shape set to a dimension that is radially lowered from an axis of the rotating body up to a circumference including the singular point. 前記取付部は、2分割された第1、第2取付部を有し、前記基体は、前記両側の側面で前記第1、第2取付部に取り付けられていることを特徴とする請求項1〜3のいずれかに記載の多軸回転構造体。 The said attachment part has the 1st, 2nd attachment part divided into two, and the said base | substrate is attached to the said 1st, 2nd attachment part by the side surface of the said both sides. The multiaxial rotating structure according to any one of? 前記支持体に外嵌された主軸受を有することを特徴とする請求項1〜4のいずれかに記載の多軸回転構造体。   The multi-axis rotating structure according to claim 1, further comprising a main bearing externally fitted to the support. 前記基体と前記円環体との間に介設された第1回転力伝達機構と、前記基体に内装され、前記第1回転力伝達機構に回転力を出力する第1駆動源とを備えたことを特徴とする請求項1〜5いずれかに記載の多軸回転構造体。 A first torque transmitting mechanism which is interposed between the annular body and the base body, being furnished to the substrate, and a first driving source that outputs a rotational force to the first torque transmitting mechanism polyaxial rotation structure according to claim 5 or you characterized in that the. 前記基体と前記回転体との間に介設された第回転力伝達機構と、前記回転体及び前記基体の一方に内装され、前記第2回転力伝達機構に回転力を出力する第2駆動源とを備えたことを特徴とする請求項1〜5のいずれかに記載の多軸回転構造体。 A second torque transmitting mechanism which is interposed between the rotary member and the base, is furnished on one of the rotating body and the base, second drive for outputting a rotational force to the second rotating force transmission mechanism The multiaxial rotating structure according to claim 1, further comprising a source. 請求項2又は3に記載の多軸回転構造体の前記支持体を前記所定の特異点を含む円周が接地する角度に傾斜して支持する本体を有する全方向移動体 The omnidirectional mobile body which has a main body which inclines and supports the said support body of the multi-axial rotating structure of Claim 2 or 3 to the angle which the circumference containing the said specific point is grounded . 前記取付部に支持され、外周面が前記取付部の外方に露出した段差乗り越え用回転体を備えたことを特徴とする請求項8に記載の全方向移動体。 The omnidirectional mobile body according to claim 8, further comprising a step-overcoming rotating body supported by the mounting portion and having an outer peripheral surface exposed to the outside of the mounting portion .
JP2015099821A 2015-05-15 2015-05-15 Multi-axis rotating structure and omnidirectional moving body Active JP6606672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015099821A JP6606672B2 (en) 2015-05-15 2015-05-15 Multi-axis rotating structure and omnidirectional moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015099821A JP6606672B2 (en) 2015-05-15 2015-05-15 Multi-axis rotating structure and omnidirectional moving body

Publications (2)

Publication Number Publication Date
JP2016215713A JP2016215713A (en) 2016-12-22
JP6606672B2 true JP6606672B2 (en) 2019-11-20

Family

ID=57579238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015099821A Active JP6606672B2 (en) 2015-05-15 2015-05-15 Multi-axis rotating structure and omnidirectional moving body

Country Status (1)

Country Link
JP (1) JP6606672B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102415855B1 (en) * 2015-06-30 2022-07-01 엘지전자 주식회사 Omni-directionally movable wheel and robot using the same
EP3537769B1 (en) 2016-11-02 2021-10-06 Ntt Docomo, Inc. User device and access control method
JP6942332B2 (en) * 2017-03-31 2021-09-29 国立大学法人東北大学 Omni-directional rotating body, omnidirectional driving wheel and omnidirectional moving body
TWI761728B (en) 2019-11-21 2022-04-21 緯創資通股份有限公司 Walker and omnidirectional wheel thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888333B2 (en) * 2003-07-02 2005-05-03 Intouch Health, Inc. Holonomic platform for a robot
FR2981008B1 (en) * 2011-10-06 2013-11-29 Commissariat Energie Atomique MOTORIZABLE OMNIDIRECTIONAL WHEEL AND VEHICLE EQUIPPED WITH SAME
FR2989935B1 (en) * 2012-04-30 2016-04-15 Aldebaran Robotics SPHERICAL WHEEL AND VEHICLE IMPLEMENTING THE WHEEL
JP2016124348A (en) * 2014-12-26 2016-07-11 学校法人東京電機大学 Omni wheel
KR102415855B1 (en) * 2015-06-30 2022-07-01 엘지전자 주식회사 Omni-directionally movable wheel and robot using the same
KR101752340B1 (en) * 2016-09-30 2017-06-29 (주)리페이퍼 Paper coating material having environment-friendly, water-proof and oil-proof properties, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2016215713A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6606672B2 (en) Multi-axis rotating structure and omnidirectional moving body
JP5292283B2 (en) Omnidirectional drive device and omnidirectional vehicle using the same
JP5396398B2 (en) Friction type driving device and omnidirectional moving body using the same
US8708068B2 (en) Frictional drive device and traction wheel
JP6729855B2 (en) Multi-directional driving device, robot joint mechanism, and multi-directional driving method
JP6424131B2 (en) Friction type traveling device
EP1942046A2 (en) Drive type of spherical roller
JP2007210576A (en) Spherical wheel for omnidirectional moving body and omnidirectional moving body
JP2009113135A (en) Biped mobile mechanism
JP3421290B2 (en) Wheels for omnidirectional vehicles
JP6659035B2 (en) Multi-directional drive and automatic camera
US10513145B2 (en) Omnidirectionally moving wheel and robot using same
JP6262193B2 (en) Link actuator
JP2003127605A (en) Wheel structure for omni-directional moving vehicle
JP5812395B2 (en) Trochoid drive mechanism and moving body
WO2016084685A1 (en) Work apparatus using parallel link mechanism
JP2013088852A (en) Armrest type remote control device
JP2011173187A (en) Three-degree-of-freedom active rotation joint
JP6692626B2 (en) Working device using parallel link mechanism
JP5798006B2 (en) Link actuator
KR101740945B1 (en) Omni-directional Motion Generation Device Using Roller Belt and Omni Wheel
JP5702256B2 (en) Link actuator
KR100493214B1 (en) Omni-directional vehicle with continuous variable transmission
JP2005059758A (en) Propulsion device based on principle of screw and propulsion unit used for it
JP6942332B2 (en) Omni-directional rotating body, omnidirectional driving wheel and omnidirectional moving body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190924

R150 Certificate of patent or registration of utility model

Ref document number: 6606672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250