JP5980084B2 - Error detection method for robot hand - Google Patents

Error detection method for robot hand Download PDF

Info

Publication number
JP5980084B2
JP5980084B2 JP2012225573A JP2012225573A JP5980084B2 JP 5980084 B2 JP5980084 B2 JP 5980084B2 JP 2012225573 A JP2012225573 A JP 2012225573A JP 2012225573 A JP2012225573 A JP 2012225573A JP 5980084 B2 JP5980084 B2 JP 5980084B2
Authority
JP
Japan
Prior art keywords
vector
error
joint
robot hand
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012225573A
Other languages
Japanese (ja)
Other versions
JP2014076517A (en
Inventor
坂幸 石川
坂幸 石川
勇志 松井
勇志 松井
浩臣 山田
浩臣 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiwa eTec Co Ltd
Original Assignee
Meiwa eTec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiwa eTec Co Ltd filed Critical Meiwa eTec Co Ltd
Priority to JP2012225573A priority Critical patent/JP5980084B2/en
Publication of JP2014076517A publication Critical patent/JP2014076517A/en
Application granted granted Critical
Publication of JP5980084B2 publication Critical patent/JP5980084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Description

本発明はロボットハンドの誤差検出方法に関し、特に、多関節ロボットハンドの誤差検出に好適に使用できる誤差検出方法に関する。   The present invention relates to an error detection method for a robot hand, and more particularly to an error detection method that can be suitably used for error detection of an articulated robot hand.

多関節ロボットハンドでは各関節に生じた誤差が、工具等を把持して作業を行うロボットハンド先端の誤差となって現れる。そこで、各関節に生じた誤差を特定するための誤差検出方法が提案されており、例えば特許文献1においては、ロボットハンド先端に装着したカメラでロボットのベース近傍の固定被写点を撮影し、ロボットハンドを複数の異なる姿勢にした際の、各姿勢において撮影された固定被写点像の位置と理論上の位置との差を算出して、これらの差より各関節に生じた誤差を検出する方法が示されている。   In an articulated robot hand, an error generated in each joint appears as an error at the tip of the robot hand that performs a work while holding a tool or the like. Therefore, an error detection method for specifying an error occurring in each joint has been proposed. For example, in Patent Document 1, a fixed object point near the base of the robot is photographed with a camera attached to the tip of the robot hand, When the robot hand is in different postures, it calculates the difference between the position of the fixed object image captured in each posture and the theoretical position, and detects the error in each joint based on these differences. How to do is shown.

特開平5−8185JP-A-5-8185

しかし、上記従来の誤差検出方法では、各関節のアームの角度ずれ(誤差角度)の絶対値を検出することができないという問題があった。   However, the above-described conventional error detection method has a problem that the absolute value of the angle deviation (error angle) between the arms of each joint cannot be detected.

そこで、本発明はこのような課題を解決するもので、ロボットハンドを構成する各関節におけるアームの角度ずれ(誤差角度)の絶対値を検出することが可能なロボットハンドの誤差検出方法を提供することを目的とする。   Therefore, the present invention solves such a problem, and provides a robot hand error detection method capable of detecting the absolute value of the angle deviation (error angle) of the arm at each joint constituting the robot hand. For the purpose.

上記目的を達成するために、本第1発明は、関節(P1〜P6)によって相対回転可能に互いに直列に連結された複数のアーム(L1〜L6)より構成されるロボットハンド(1)の誤差検出方法であって、前記各アーム(L1〜L6)を単独で回転させた際のロボットハンド先端(P7)の先端位置ベクトルをそれぞれ三点測定して、これら測定された先端位置ベクトル(P7An*,P7Bn*,P7Cn*)に基づいて前記各アーム(L1〜L6)の回転時における回転軸ベクトル(kn*)と回転面の中心ベクトル(On*)をそれぞれ算出するステップと、前記回転軸ベクトル(kn*)および前記中心ベクトル(On*)より前記各関節(P1〜P6)の関節位置ベクトル(Pn*)と前記各アーム(L1〜L6)のアーム長ベクトル(Ln*)を算出するステップと、算出された前記関節位置ベクトルと予め記憶されたマスタ関節位置ベクトルの差である関節位置誤差ベクトル(ΔPn*)を算出するステップと、前記関節位置誤差ベクトル(ΔPn*)、前記回転軸ベクトル(kn*)およびアーム長ベクトル(Ln*)より、各アーム(L1〜L6)の角度と予め記憶されたマスタ角度との誤差角度(Δθn)を算出するステップとを具備する。   In order to achieve the above object, the first invention provides an error of a robot hand (1) composed of a plurality of arms (L1 to L6) connected in series so as to be relatively rotatable by joints (P1 to P6). In this detection method, the tip position vector of the tip (P7) of the robot hand when each of the arms (L1 to L6) is independently rotated is measured at three points, and the measured tip position vector (P7An *) is measured. , P7Bn *, P7Cn *), respectively, calculating the rotation axis vector (kn *) and the center vector (On *) of the rotation surface when the arms (L1 to L6) are rotated, and the rotation axis vector. calculating a joint position vector (Pn *) of each joint (P1 to P6) and an arm length vector (Ln *) of each arm (L1 to L6) from (kn *) and the center vector (On *) And the calculated function Calculating a joint position error vector (ΔPn *), which is a difference between the position vector and a master joint position vector stored in advance, the joint position error vector (ΔPn *), the rotation axis vector (kn *), and the arm length Calculating an error angle (Δθn) between the angle of each arm (L1 to L6) and the master angle stored in advance from the vector (Ln *).

本第1発明によれば、ロボットハンドを構成する各関節のアームの角度ずれ(誤差角度)の絶対値を正確に検出することができる。   According to the first aspect of the present invention, it is possible to accurately detect the absolute value of the angular deviation (error angle) of the arms of each joint constituting the robot hand.

本第2発明では、前記誤差角度(Δθn)を使用して前記関節位置ベクトル(Pn*)、前記アーム長ベクトル(Ln*)、前記関節位置誤差ベクトル(ΔPn*)の少なくとも一つを補償するステップをさらに備える。   In the second invention, the error angle (Δθn) is used to compensate at least one of the joint position vector (Pn *), the arm length vector (Ln *), and the joint position error vector (ΔPn *). The method further includes a step.

本第2発明によれば、各関節のアームの誤差角度に基づいて、関節位置ベクトル、アーム長ベクトル、関節位置誤差ベクトルの少なくとも一つを良好に補償することができる。   According to the second aspect of the present invention, at least one of the joint position vector, the arm length vector, and the joint position error vector can be favorably compensated based on the arm error angle of each joint.

以上のように、本発明のロボットハンドの誤差検出方法によれば、ロボットハンドを構成する各関節におけるアームの角度ずれ(誤差角度)の絶対値を精度良く検出することができる。   As described above, according to the error detection method of the robot hand of the present invention, the absolute value of the angle deviation (error angle) of the arm in each joint constituting the robot hand can be detected with high accuracy.

本発明方法を実施する装置の構成を示す図である。It is a figure which shows the structure of the apparatus which implements the method of this invention. 多関節ロボットハンドの概念図である。It is a conceptual diagram of an articulated robot hand. 基準座標系と平面座標系の関係を示す図である。It is a figure which shows the relationship between a reference | standard coordinate system and a plane coordinate system. 平面座標系上での幾何学的位置関係を示す図である。It is a figure which shows the geometric positional relationship on a plane coordinate system. 平面座標系上での幾何学的位置関係を示す図である。It is a figure which shows the geometric positional relationship on a plane coordinate system. ロボットハンドの一部の概念図である。It is a conceptual diagram of a part of a robot hand.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。   The embodiment described below is merely an example, and various design improvements made by those skilled in the art without departing from the gist of the present invention are also included in the scope of the present invention.

図1は本発明を実施する装置の構成を示すもので、多関節ロボットハンド1の先端に装着された測定用治具2を、カメラ3で撮像する。カメラ3はコンピュータ4に接続されており、コンピュータ4のプログラムによって、以下に説明する誤差検出および誤差補償の手順が実行される。コンピュータ4はカメラ3を介し、必要に応じて、固定された基準点St(基準座標系の原点となる)を撮像して3次元認識の精度を維持する。   FIG. 1 shows a configuration of an apparatus for carrying out the present invention. A measuring jig 2 attached to the tip of an articulated robot hand 1 is imaged by a camera 3. The camera 3 is connected to a computer 4, and error detection and error compensation procedures described below are executed by a program of the computer 4. The computer 4 captures a fixed reference point St (which becomes the origin of the reference coordinate system) via the camera 3 as necessary, and maintains the accuracy of three-dimensional recognition.

図2には多関節ロボットハンド1の一例を概念的に示す。ロボットハンド1の各関節P1〜P6は地上側から6箇所にあり、P7はロボットハンド1の先端である。各関節P1〜P6および先端P7(測定用治具の先端)はアームL1〜L6で連結されており、本実施形態では、P1は固定関節、P2,P3,P5はそれぞれアームL2,L3,L5を旋回回転させる関節、P4,P6はそれぞれアームL4,L6をその軸周りに回転させる関節となっている。   FIG. 2 conceptually shows an example of the articulated robot hand 1. The joints P1 to P6 of the robot hand 1 are at six locations from the ground side, and P7 is the tip of the robot hand 1. The joints P1 to P6 and the tip P7 (tips of the measurement jig) are connected by arms L1 to L6. In this embodiment, P1 is a fixed joint, and P2, P3, and P5 are arms L2, L3, and L5, respectively. , P4 and P6 are joints that rotate the arms L4 and L6 around their axes, respectively.

(旋回回転する関節の誤差検出)
最初に各関節Pn(n=2〜6)をそれぞれ回転させて、その時の、先端P7の軌跡のうちから3点のベクトル座標P7An*,P7Bn*,P7Cn*を得る。なお、以下、*印を付した記号はベクトルであることを示す。続いて下式(1)〜(3)で示される3点G1(n)*,G2(n)*,G3(n)*を通る旋回軌跡の回転半径dnを算出する。回転半径dnは旋回回転する関節Pn(n=2,3,5)についてのみ算出することができる。また、下式(1)〜(3)においてm>nである。
(Error detection of swiveling and rotating joints)
First, each joint Pn (n = 2 to 6) is rotated, and three vector coordinates P7An *, P7Bn *, P7Cn * are obtained from the locus of the tip P7 at that time. In the following, symbols marked with * indicate that they are vectors. Subsequently, the turning radius dn of the turning trajectory passing through the three points G1 (n) *, G2 (n) *, G3 (n) * represented by the following equations (1) to (3) is calculated. The turning radius dn can be calculated only for the joint Pn (n = 2, 3, 5) that rotates. In the following formulas (1) to (3), m> n.

Figure 0005980084
Figure 0005980084

上記回転半径dnの算出は以下の手順で行う。
最初に上記3点G1(n)*,G2(n)*,G3(n)*を通る回転軌跡が存在する回転面の、中心ベクトルOn*を以下のように計算する。
The rotation radius dn is calculated according to the following procedure.
First, the center vector On * of the rotation surface where the rotation trajectory passing through the three points G1 (n) *, G2 (n) *, G3 (n) * exists is calculated as follows.

図3に示すように、上記3点G1(n)*,G2(n)*,G3(n)*(図中は(n)を省略している)が含まれる平面(平面座標系)の原点をG1(n)*とし、点G1(n)*,G2(n)*間のベクトルをV1*、点G1(n)*,G3(n)*間のベクトルをV2*とすると、平面座標系の単位ベクトルi*,j*,k*は下式(4)〜(6)で求められる。ここでk*は上記平面に垂直な、回転軸の向きを示す単位方向ベクトルである。   As shown in FIG. 3, a plane (planar coordinate system) including the three points G1 (n) *, G2 (n) *, and G3 (n) * ((n) is omitted in the figure). If the origin is G1 (n) *, the vector between points G1 (n) * and G2 (n) * is V1 *, and the vector between points G1 (n) * and G3 (n) * is V2 * The unit vectors i *, j *, k * of the coordinate system are obtained by the following equations (4) to (6). Here, k * is a unit direction vector indicating the direction of the rotation axis perpendicular to the plane.

Figure 0005980084
Figure 0005980084

点G1(n)*の、基準座標系での座標値を(X1,Y1,Z1)とし、単位ベクトルi*,j*,k*の各座標値をそれぞれ(ix,iy,iz)(jx,jy,jz)(kx,ky,kz)とすると、変換行列Tpは下式(7)のようになる。   The coordinate value of the point G1 (n) * in the reference coordinate system is (X1, Y1, Z1), and the coordinate values of the unit vectors i *, j *, k * are respectively (ix, ii, iz) (jx , jy, jz) (kx, ky, kz), the transformation matrix Tp is expressed by the following equation (7).

Figure 0005980084
Figure 0005980084

これにより、点G2(n)*,G3(n)*は下式(8),(9)によって平面座標系上の点G2(n)*´,G3(n)*´に変換される(図3)。   Thereby, the points G2 (n) *, G3 (n) * are converted into points G2 (n) * ′, G3 (n) * ′ on the plane coordinate system by the following equations (8), (9) ( FIG. 3).

Figure 0005980084
Figure 0005980084

上記3点G1(n)*´, G2(n)*´, G3(n)*´,を通る円(旋回軌跡)の平面座標系上での中心On*´の座標(uc,vc,0)は図4に示す幾何学的位置関係より、下式(10)のようなものとなる。   The coordinates (uc, vc, 0) of the center On * 'on the plane coordinate system of the circle (turning trajectory) passing through the three points G1 (n) *', G2 (n) * ', G3 (n) *' ) Is represented by the following equation (10) from the geometric positional relationship shown in FIG.

Figure 0005980084
Figure 0005980084

なお、中心On*´から各点G1(n)*´,G2(n)*´,G3(n)*´へのベクトルを、図5に示す(図中は(n)を省略している)ようにそれぞれVcG1*´,VcG2*´,VcG*3´とすると、点G1(n)*´,G2(n)*´間の角度θ12、およびG2(n)*´,G3(n)*´間の角度θ23は下式(11),(12)で表される。   The vectors from the center On * ′ to the points G1 (n) * ′, G2 (n) * ′, G3 (n) * ′ are shown in FIG. 5 ((n) is omitted in the figure). ) VcG1 * ′, VcG2 * ′, and VcG * 3 ′, respectively, the angle θ12 between the points G1 (n) * ′ and G2 (n) * ′, and G2 (n) * ′ and G3 (n) The angle θ23 between * ′ is expressed by the following equations (11) and (12).

Figure 0005980084
Figure 0005980084

平面座標系上で位置が特定された中心On*´は下式(13)によって基準座標系上の中心On*に変換される。
On*=Tp・On*´…(13)
これにより、回転半径dnがdn=|G1*−On*|で算出される。
The center On * ′ whose position is specified on the plane coordinate system is converted into the center On * on the reference coordinate system by the following equation (13).
On * = Tp · On * ′ (13)
Thus, the rotation radius dn is calculated by dn = | G1 * -On * |.

続いて、各アームL2,L3,L5のアーム長Ln(n=2,3,5)を、各アームのその回転軸に対する設計上の角度φn(φn≠0)と上記回転半径dnより、下式(14)で算出する。
Ln=dn/sinφn…(14)
なお、φn=0の場合のLn(n=4,6)は予め測定しておく。
Subsequently, the arm length Ln (n = 2, 3, 5) of each arm L2, L3, L5 is lower than the design angle φn (φn ≠ 0) with respect to the rotation axis of each arm and the rotation radius dn. It calculates with Formula (14).
Ln = dn / sinφn (14)
Note that Ln (n = 4, 6) when φn = 0 is measured in advance.

その後、各関節の位置ベクトルPn*(n=1〜6)および各アームの長さベクトルLn*を下式(15),(16)によって算出する。   Thereafter, the position vector Pn * (n = 1 to 6) of each joint and the length vector Ln * of each arm are calculated by the following equations (15) and (16).

Figure 0005980084
Figure 0005980084

上式(15)中のkn*は関節Pnの回転軸の単位方向ベクトルである。また上式(15),(16)の算出はn=6→1の順で行う。
ロボットハンド1の設置初期等に上記手順で算出されたPn*、Ln*の値はマスタ値として予めコンピュータ4内に記憶される。
In the above equation (15), kn * is a unit direction vector of the rotation axis of the joint Pn. The above equations (15) and (16) are calculated in the order of n = 6 → 1.
The values of Pn * and Ln * calculated in the above procedure at the initial installation of the robot hand 1 are stored in the computer 4 in advance as master values.

ロボットハンド1を使用している過程で、上記と同様の手順で各関節P1〜P6の位置ベクトルPn*(n=1〜6)が算出され、位置ベクトルPn*の上記マスタ値との誤差ΔPn*が算出される。そして、下式(17),(18)によって各関節Pn(n=1〜3)について、その回転軸の、マスタ角度との誤差(ずれ)角度Δθnが検出(算出)される。検出された誤差角度Δθnが所定値よりも大きい場合には、ロボットハンド1の異常として該当する関節Pn(n=1〜6)を報知する。検出された誤差角度Δθnが所定値よりも小さい場合には、後述する誤差補償が行なわれる。   In the process of using the robot hand 1, the position vectors Pn * (n = 1 to 6) of the joints P1 to P6 are calculated in the same procedure as described above, and the error ΔPn between the position vector Pn * and the master value is calculated. * Is calculated. Then, the following formulas (17) and (18) detect (calculate) an error (deviation) angle Δθn of the rotation axis of each joint Pn (n = 1 to 3) from the master angle. When the detected error angle Δθn is larger than a predetermined value, the corresponding joint Pn (n = 1 to 6) is notified as an abnormality of the robot hand 1. When the detected error angle Δθn is smaller than a predetermined value, error compensation described later is performed.

Figure 0005980084
Figure 0005980084

ここで、上式(17)中、ΔPmn*は、n番目の関節Pnの、位置誤差の影響を受けたm番目の関節Pmの位置誤差ベクトルを示す。また、m>n≧1である。   In the above equation (17), ΔPmn * represents the position error vector of the mth joint Pm affected by the position error of the nth joint Pn. Further, m> n ≧ 1.

(誤差補償)
次に、n=1〜3の各Ln*,kn*,Pn*,ΔPn*について、Δθnの影響を取り除く(誤差補償)。これは下式(19)で示される回転行列Rot(k*,θ)を使用して以下のように行われる。
Rot(k*,θ)=cosθ・I3+(1−cosθ)k*・tk*+sinθ[k*×]…(19)
ここで、I3は3次の単位行列、tk*は単位ベクトルk*の転置ベクトル、[k*×]は単位ベクトルk*の外積行列である。
(Error compensation)
Next, the influence of Δθn is removed from each Ln *, kn *, Pn *, ΔPn * where n = 1 to 3 (error compensation). This is performed as follows using a rotation matrix Rot (k *, θ) represented by the following equation (19).
Rot (k *, θ) = cos θ · I 3 + (1−cos θ) k * · tk * + sin θ [k * ×] (19)
Here, I3 is a cubic unit matrix, tk * is a transposed vector of the unit vector k *, and [k * ×] is an outer product matrix of the unit vector k *.

すなわち、誤差補償後のLn*,kn*,Pn*,ΔPn*をそれぞれLm*´,km*´,Pm*´,ΔPm*´とすると、これらは下式(20)〜(23)を使用して算出(補償)できる。
Lm*´=Rot(kn*,−Δθn) Lm*…(20)
km*´=Rot(kn*,−Δθn) km*…(21)
Pm*´=Rot(kn*,−Δθn) (Pm*−Pn*)+Pn*…(22)
ΔPm*´=Rot(kn*,−Δθn)ΔPm*…(23)
That is, assuming that Ln *, kn *, Pn *, and ΔPn * after error compensation are Lm * ′, km * ′, Pm * ′, and ΔPm * ′, respectively, the following equations (20) to (23) are used. Can be calculated (compensated).
Lm * ′ = Rot (kn *, −Δθn) Lm * (20)
km * ′ = Rot (kn *, −Δθn) km * (21)
Pm * ′ = Rot (kn *, −Δθn) (Pm * −Pn *) + Pn * (22)
ΔPm * ′ = Rot (kn *, −Δθn) ΔPm * (23)

(軸回りに回転する関節の誤差検出・補償)
上式(20)〜(23)を使用するに際して、Pn(n=4,6)の関節はそれぞれアームLn(n=4,6)をその軸周りに回転させるものであり、これら関節Pn(n=4,6)では回転軸とアームが平行であるから、上式(18)における|kn*×Ln*|=0となってΔθnが算出できない。
(Error detection and compensation for joints rotating around the axis)
When using the above equations (20) to (23), the joints of Pn (n = 4, 6) rotate the arms Ln (n = 4, 6) around their axes, respectively. In the case of n = 4, 6), since the rotation axis and the arm are parallel, | kn * × Ln * | = 0 in the above equation (18), and Δθn cannot be calculated.

そこでこの場合、図6で、|P5*−P4*|はアームL4の回転で変化せず、また|O6*−P5*|がアームL6の回転で変化しないこと、およびO6*にはΔθn(n=1〜3)の影響がないので|O6*−P4*|にはΔθ5以外のΔθnの影響がないこと、を考慮すると、図6に示す幾何学的な関係からΔθ5は下式(24)で算出される。

Figure 0005980084
Therefore, in this case, in FIG. 6, | P5 * −P4 * | does not change with the rotation of the arm L4, and | O6 * −P5 * | does not change with the rotation of the arm L6. In view of the fact that | O6 * −P4 * | is not affected by Δθn other than Δθ5 because there is no influence of n = 1 to 3), Δθ5 is expressed by the following equation (24) from the geometrical relationship shown in FIG. ).
Figure 0005980084

算出(検出)されたΔθ5により上式(20)〜(23)によってL5*,k5*,P5*,ΔP5*の誤差補償が行われ、あるいは当該関節P6の異常が報知される。   Error compensation of L5 *, k5 *, P5 *, and ΔP5 * is performed by the above equations (20) to (23) based on the calculated (detected) Δθ5, or the abnormality of the joint P6 is notified.

次にΔθ4を算出(検出)する。O6*にはΔθ4以外のΔθnの影響は無いから、下式(25)によってΔθ4が算出され、上式(20)〜(23)によってL4*,k4*,P4*,ΔP4*の誤差補償が行われ、あるいは当該関節P4の異常が報知される。
|ΔO6*|2=2|R4*×(O6*−P4*)|2(1−cosΔθ4)…(25)
Next, Δθ4 is calculated (detected). Since O6 * is not affected by Δθn other than Δθ4, Δθ4 is calculated by the following equation (25), and error compensation of L4 *, k4 *, P4 *, ΔP4 * is performed by the above equations (20) to (23). Or the abnormality of the joint P4 is notified.
| ΔO6 * | 2 = 2 | R4 * × (O6 * −P4 *) | 2 (1-cosΔθ4) (25)

Δθ6については、P7*とO6*が重ならないように測定治具を予め調節しておく(図6参照)ことによって、上式(1)〜(18)によってΔθ6が算出(検出)され、その後、上式(20)〜(23)によってL6*,k6*,P6*,ΔP6*の誤差補償が行われ、あるいは当該関節P4の異常が報知される。   For Δθ6, by adjusting the measurement jig in advance so that P7 * and O6 * do not overlap (see FIG. 6), Δθ6 is calculated (detected) by the above equations (1) to (18), and then Then, error compensation of L6 *, k6 *, P6 *, ΔP6 * is performed by the above equations (20) to (23), or the abnormality of the joint P4 is notified.

1…ロボットハンド、2…測定用治具、3…カメラ、4…コンピュータ、P1,P2,P3,P4,P5,P6…関節、L1,L2,L3,L4,L5,L6…アーム。 DESCRIPTION OF SYMBOLS 1 ... Robot hand, 2 ... Measuring jig, 3 ... Camera, 4 ... Computer, P1, P2, P3, P4, P5, P6 ... Joint, L1, L2, L3, L4, L5, L6 ... Arm.

Claims (2)

関節によって相対回転可能に互いに直列に連結された複数のアームより構成されるロボットハンドの誤差検出方法であって、前記各アームを単独で回転させた際のロボットハンド先端の先端位置ベクトルをそれぞれ三点測定して、これら測定された先端位置ベクトルに基づいて前記各アームの回転時における回転軸ベクトルと回転面の中心ベクトルをそれぞれ算出するステップと、前記回転軸ベクトルおよび前記中心ベクトルより前記各関節の関節位置ベクトルと前記各アームのアーム長ベクトルを算出するステップと、算出された前記関節位置ベクトルと予め記憶されたマスタ関節位置ベクトルの差である関節位置誤差ベクトルを算出するステップと、前記関節位置誤差ベクトル、前記回転軸ベクトルおよびアーム長ベクトルより、各アームの角度と予め記憶されたマスタ角度との誤差角度を算出するステップとを具備するロボットハンドの誤差検出方法。 An error detection method for a robot hand composed of a plurality of arms connected in series with each other so as to be relatively rotatable by a joint, wherein three tip position vectors of the robot hand tip when each of the arms is rotated independently Performing point measurement and calculating a rotation axis vector and a center vector of the rotation surface at the time of rotation of each arm based on the measured tip position vectors, and each joint from the rotation axis vector and the center vector Calculating a joint position vector and an arm length vector of each arm, calculating a joint position error vector that is a difference between the calculated joint position vector and a pre-stored master joint position vector, and From the position error vector, the rotation axis vector and the arm length vector, Angle and error detecting method of a robot hand and a step of calculating an error angle between the pre-stored master angle. 前記誤差角度を使用して前記関節位置ベクトル、前記アーム長ベクトル、前記関節位置誤差ベクトルの少なくとも一つを補償するステップをさらに備える請求項1に記載のロボットハンドの誤差検出方法。 The robot hand error detection method according to claim 1, further comprising the step of compensating at least one of the joint position vector, the arm length vector, and the joint position error vector using the error angle.
JP2012225573A 2012-10-11 2012-10-11 Error detection method for robot hand Active JP5980084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012225573A JP5980084B2 (en) 2012-10-11 2012-10-11 Error detection method for robot hand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012225573A JP5980084B2 (en) 2012-10-11 2012-10-11 Error detection method for robot hand

Publications (2)

Publication Number Publication Date
JP2014076517A JP2014076517A (en) 2014-05-01
JP5980084B2 true JP5980084B2 (en) 2016-08-31

Family

ID=50782282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012225573A Active JP5980084B2 (en) 2012-10-11 2012-10-11 Error detection method for robot hand

Country Status (1)

Country Link
JP (1) JP5980084B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017112911A1 (en) 2017-06-12 2018-12-13 Otto Bock Healthcare Products Gmbh joint device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295115A (en) * 1986-06-13 1987-12-22 Komatsu Ltd Control method for robot
JPH08376B2 (en) * 1987-10-01 1996-01-10 ファナック株式会社 Robot controller capable of switching position correction methods
JP2682763B2 (en) * 1991-06-29 1997-11-26 ファナック株式会社 Automatic measurement method of operation error of robot body
JPH0768480A (en) * 1993-09-06 1995-03-14 Mitsubishi Heavy Ind Ltd Method for controlling articular angle of manipulator
JP2774939B2 (en) * 1994-09-16 1998-07-09 株式会社神戸製鋼所 Robot tool parameter derivation method and calibration method
JP5083194B2 (en) * 2008-12-18 2012-11-28 株式会社デンソーウェーブ Robot calibration method and robot control apparatus

Also Published As

Publication number Publication date
JP2014076517A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
CN107995885B (en) Coordinate system calibration method, system and device
JP5815761B2 (en) Visual sensor data creation system and detection simulation system
JP5365379B2 (en) Robot system and robot system calibration method
JP6180087B2 (en) Information processing apparatus and information processing method
US9889565B2 (en) Method for calibrating a robot and a robot system
EP2381214B1 (en) Optical measurement system
CN111300481B (en) Robot grabbing pose correction method based on vision and laser sensor
JP6025386B2 (en) Image measuring apparatus, image measuring method, and image measuring program
JP6324025B2 (en) Information processing apparatus and information processing method
US20140340508A1 (en) Method for calibrating camera measurement system
WO2009123956A1 (en) Robot parts assembly on a workpiece moving on an assembly line
US11230011B2 (en) Robot system calibration
CN109834710B (en) Robot and robot system
JP6614805B2 (en) Gear mechanism assembling apparatus and assembling method
CN109000558A (en) A kind of big visual field non-contact three-dimensional point coordinate measurement method and apparatus
CN108458710B (en) Pose measuring method
CN112712565A (en) Unmanned aerial vehicle winding positioning method for aircraft skin damage based on fusion of vision and IMU
US20110118876A1 (en) Teaching line correcting apparatus, teaching line correcting method, and program thereof
TW201313415A (en) System and method for adjusting mechanical arm
JP6410411B2 (en) Pattern matching apparatus and pattern matching method
CN109406525B (en) Bridge apparent disease detection system and detection method thereof
CN109983299A (en) The measuring system and method for industrial robot
JP5980084B2 (en) Error detection method for robot hand
TWI504475B (en) Compensation controlling method for a multi-axes machine
JP3754340B2 (en) Position detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160726

R150 Certificate of patent or registration of utility model

Ref document number: 5980084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250