JP3632618B2 - Mobile work robot - Google Patents

Mobile work robot Download PDF

Info

Publication number
JP3632618B2
JP3632618B2 JP2001167999A JP2001167999A JP3632618B2 JP 3632618 B2 JP3632618 B2 JP 3632618B2 JP 2001167999 A JP2001167999 A JP 2001167999A JP 2001167999 A JP2001167999 A JP 2001167999A JP 3632618 B2 JP3632618 B2 JP 3632618B2
Authority
JP
Japan
Prior art keywords
main body
wheel
straight
angle
support shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001167999A
Other languages
Japanese (ja)
Other versions
JP2002355205A (en
Inventor
幹 保野
公軌 加藤
秀隆 藪内
宏 森
直行 尾原
博之 香山
雅代 土師
徹 小立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001167999A priority Critical patent/JP3632618B2/en
Publication of JP2002355205A publication Critical patent/JP2002355205A/en
Application granted granted Critical
Publication of JP3632618B2 publication Critical patent/JP3632618B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動床面掃除機、自動床面仕上げ装置等のように自動的に作業を行う移動作業ロボットに関するものである。
【0002】
【従来の技術】
近年、作業機器に走行駆動装置、センサ類および走行制御手段等を付加して、自動的に作業を行う各種の移動作業ロボットが開発されている。たとえば自走式掃除機は、清掃機能として本体底部に吸い込みノズルやブラシなどを備え、移動機能として走行および操舵手段と走行時の障害物を検知する障害物検知手段と位置を認識する位置認識手段とを備え、この障害物検知手段によって清掃場所の周囲の壁等に沿って移動しつつ、位置認識手段によって清掃区域を認識し、その清掃区域内を移動して清掃区域全体を清掃するものである。
【0003】
ここで、自走式掃除機に関連する絨毯目による影響について図10を参照しながら説明する。作業区域の床面が毛足の長いカットパイルカ−ペット等のように、絨毯目の強い絨毯で、しかも絨毯目が直進方向と直角方向にある場合には、走行中に本体が徐々に絨毯目方向に流されるという現象が起こる。図10において(1)は絨毯のない平坦なベアフロア上で直進した場合の本体11の移動軌跡を示す。このときは絨毯がないので、当然絨毯目の影響はなく、本体11に移動軌跡は走行開始時の本体の方向と一致した直線aになる。しかしながら、たとえば(2)に示すように床面を絨毯目が左から右の方向にある絨毯に変えて同条件で直進させると、本体は目標ラインL1に乗るように直進制御を行うが実際の移動軌跡は、本体は常に走行開始時の方向を向いているにもかかわらず目標ラインL1の方向から右へ角度θだけ傾いた直線bになる。この横ずれの度合いを示す角度偏差θは絨毯によってほぼ固有であり数度程度である。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の清掃機能を有する移動作業ロボットでは、あらかじめ作業前に絨毯目による横ずれの角度偏差を調べ、その情報を外部から人為的に与えて制御に組み込まない限り、作業のやり残しや作業効率の低下が生じるものである。またこの情報は絨毯目に経時変化が起きた場合や、絨毯を敷き変えた場合には対応できないものである。
【0005】
そこで本発明は、絨毯目による横ずれの角度偏差を自動的に検出できる移動作業ロボットを提供することを目的としている。
【0006】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の移動作業ロボットは、本体を移動させる駆動輪と前記駆動輪を駆動させる駆動モータからなる駆動手段と、本体に対して回転自由な支持軸と車輪からなる操舵手段と、前記駆動手段と操舵手段とを制御して本体の走行制御を行う走行制御手段と、本体の方向を計測する方向計測手段と、本体から外部の物体までの距離を測定する測距手段と、測距センサの出力に基づいて障害物を検知する障害物検知手段と、障害物検知手段の出力により本体の進行方向を180°旋回する旋回手段と、前記支持軸の回転角度を検出する角度検出手段と、作業を行う作業手段を備え、前記走行制御手段は、方向計測手段の出力に基づいて本体を目標方向に直進させるとともに、前記直進の目標方向に角度検出手段の出力角度に基づき修正を施して直進させ、かつ、前記障害物検知手段が障害物を検知すると旋回手段が前記本体の進行方向を180°旋回させた後直進させるとともに旋回手段動作中は角度検出手段を停止させ、更に旋回手段動作後安定して直進するまでは角度検出手段を停止する構成とするとともに、操舵手段は、車輪と、前記車輪を回転自在に支持する車輪軸と、前記車輪軸を両側より支持する車輪軸保持部と、前記車輪軸保持部の内側で上方向及び両側より車輪軸を付勢する支持軸固定部材と、前記支持軸固定部材を角度検出手段に連結させる支持軸から構成してある。
【0007】
これにより支持軸の回転角度により絨毯目の方向及び強さが検出でき、さらに絨毯目の影響を補正した直進走行が可能になり、しかも旋回時の車輪の回転を絨毯目の検知に含めないようにするとともに、旋回手段動作後安定して直進するまでは角度検出手段を停止するから、絨毯目の検知の精度を向上させることができる。
【0008】
【発明の実施の形態】
請求項1に記載の発明は、本発明の移動作業ロボットは、本体を移動させる駆動輪と前記駆動輪を駆動させる駆動モータからなる駆動手段と、本体に対して回転自由な支持軸と車輪からなる操舵手段と、前記駆動手段と操舵手段とを制御して本体の走行制御を行う走行制御手段と、本体の方向を計測する方向計測手段と、本体から外部の物体までの距離を測定する測距手段と、測距センサの出力に基づいて障害物を検知する障害物検知手段と、障害物検知手段の出力により本体の進行方向を180°旋回する旋回手段と、前記支持軸の回転角度を検出する角度検出手段と、作業を行う作業手段を備え、前記走行制御手段は、方向計測手段の出力に基づいて本体を目標方向に直進させるとともに、前記直進の目標方向に角度検出手段の出力角度に基づき修正を施して直進させ、かつ、前記障害物検知手段が障害物を検知すると旋回手段が前記本体の進行方向を180°旋回させた後直進させるとともに旋回手段動作中は角度検出手段を停止させ、更に旋回手段動作後安定して直進するまでは角度検出手段を停止する構成とするとともに、操舵手段は、車輪と、前記車輪を回転自在に支持する車輪軸と、前記車輪軸を両側より支持する車輪軸保持部と、前記車輪軸保持部の内側で上方向及び両側より車輪軸を付勢する支持軸固定部材と、前記支持軸 固定部材を角度検出手段に連結させる支持軸から構成してあり、絨毯目による横ずれの角度偏差を自動的に検出して修正するので作業のやり残しを生じたり作業効率が低下することなく作業が行える移動作業用ロボットが実現できる。
【0009】
請求項2に記載の発明は、支持軸と角度検出手段を直結したもので、衝撃を吸収するカップリング等の構成が不要なためコンパクトな構成で車輪の角度検知を実現させることができる。
【0010】
請求項3に記載の発明は、支持軸固定部材は弾性材料から形成されたもので、車輪の回転を確実に支持軸に伝え角度検出手段で確実に検知し絨毯目検知の精度を向上させると共に、段差、障害物等で車輪に対して上向きの外力が働いた場合であっても弾性力により吸収され、角度検出手段への衝撃を吸収することができる。
【0011】
請求項4に記載の発明は、操舵手段と角度検出手段は一体として本体から取り外し可能するもので、操舵手段の部品交換等のメンテナンスを容易にすることができる。
【0012】
請求項5に記載の発明は、車輪を駆動輪の後方に配するもので、絨毯目センサの検知感度を向上させることができる。
【0013】
請求項6に記載の発明は、本体の重心を車輪近傍に有するもので、絨毯目センサの検知感度を向上させることができる。
【0014】
【実施例】
(実施例1)
以下、本発明の実施例を自走式掃除機に応用した場合を例にとって、図1〜図9に基づいて説明する。
【0015】
図1は本実施例の自走式掃除機の全体構成を示す断面図、図2は本実施例の駆動兼操舵手段の構成を示す断面図、図3は操舵手段の構成を示す側断面図、図4は操舵手段の構成を示す正面断面図、図5は測距センサ及び方向計測手段の配置を示す内部透視図である。図において11は自走式掃除機の本体、12L、12Rはそれぞれ本体11の左右後方に設けた駆動輪で、駆動モ−タ13L、13Rで左右独立に駆動される。14L、14Rはそれぞれ13L、13Rに接続されたロ−タリエンコ−ダ等からなる回転検出器で、駆動モ−タ13L、13Rの軸回転数を検出する。15は本体11の重量を支える操舵手段であり、車輪16は車輪軸17を介して車輪軸保持部18に回動自在に取り付けられている。以上、駆動輪12L、12R、駆動モ−タ13L、13Rからなる駆動手段と操舵手段15で本体11を移動させている。
【0016】
19は車輪軸保持部を水平方向に回動自在に支持する回転支持部(ベアリング)である。21は車輪16を支持している支持軸固定部材で、車輪軸17を上下方向には移動可能であるとともに両側より支持する車輪軸保持部18の内側で、前記車輪軸保持部18の上方向および両側かつ車輪軸17を付勢していて、支持軸20によって角度検出手段22に直接固定している。前記角度検出手段保持板23上に固定させたロ−タリエンコ−ダまたはポテンショメ−タ等からなる角度検出手段22が支持軸20の回転を検知することで、車輪軸保持部18の回転角度を検知する。支持軸固定部材21はステンレス等のバネ材から形成されていることで、車輪軸保持部18を上方および両外側に、付勢しており車輪軸保持部18の微少な回転であっても支持軸20を介して角度検出手段22に正確に伝達可能である。
【0017】
また、支持軸固定部材21は上向きの力に対してたわむような構成にしているので車輪16、車輪軸17に外的要因(凸段差等の障害物)で上方に力が加えられても支持軸固定部材21が吸収するので角度検出手段22に直接衝撃が加えられることがないようになっている。このことにより支持軸20と角度検出手段22の結合には、衝撃を吸収するためのカップリング等が不要で直結可能であり、角度検出手段の小型化が実現している。
【0018】
操舵手段15(車輪16、車輪軸17、車輪軸保持部18、回転支持部19、支持軸20、支持軸固定部材21からなる)と角度検出手段22は、角度検出手段保持板23に固定した後本体11に取り付けられる構成になっているので、操舵手段15及び角度検出手段22の保守点検、部品交換は角度検出手段保持板23を本体11から取り外すだけで行うことができる。
【0019】
駆動輪12L、12R、駆動モ−タ13L、13Rは、本体中央付近に配され、操舵手段15は駆動輪12L、12Rの後方に設けられと共に、全体に電力を供給する充電可能な電池24を操舵手段15上方に配設しているので、全体の重心25は操舵手段15近傍になる。このため操舵手段15の車輪16は絨毯からの力を受けやすく角度検出手段の感度が向上する。
【0020】
26は電動送風機、27は本体11の底部に設けられ、床面の塵埃を前記電動送風機26が発する吸引力により吸引することで清掃作業を行う作業手段である吸込部で、接続パイプ(図示せず)を介して集塵室(図示せず)と接続している。30は本体11の方向を計測する方向計測手段で、ジャイロおよびこの出力を積分する積分器とからなる。31は本体11の周囲に設けられた超音波センサ等からなる測距センサで、本体11の前方、左右側方および後方にある物体までの距離を測定して障害物を検出する障害物検手段を構成している。32は方向計測手段30および障害物検知手段31からのデ−タに基づいて駆動モ−タ13L、13Rを制御し、本体の走行制御を行う走行制御手段である。
【0021】
図6は本実施例の制御ブロック図で、方向計測手段30、測距センサ31、回転検出器14および角度検出手段15は走行制御手段32にその出力を入力している。走行制御手段32は、これらのデ−タを判断して駆動モ−タ13L、13Rに制御信号を出力する。本実施例では、この駆動モ−タ13L、13Rの回転速度を制御することにより、左右の駆動輪12L、12Rの回転速度を独立に制御し本体11の駆動および操舵を行っている。
【0022】
さて、ここで絨毯上を直進走行する場合の絨毯目の影響について図7を用いて説明する。図において(1)は、走行床面が絨毯のないベアフロアの場合の本体11の移動軌跡を示す。従来の技術で述べたように、このとき絨毯がないので当然絨毯目の影響はなく、本体11は走行制御手段32の直進手段により直進制御を行い、その移動軌跡は走行開始時の本体11の方向と一致した直線aになる。しかしながら、たとえば(2)に示すように、床面を絨毯目が左から右の方向にある絨毯に変えて同条件で直進走行させると、本体11は走行制御手段32が有する直進モードである直進手段により目標ラインL1に乗るように直進制御を行うが、実際の移動軌跡は、本体11が常に走行開始時の方向を向いているにもかかわらず目標ラインL1の方向から右へ角度θだけ傾いた直線bになる。すなわち、本発明者らは、本体11が絨毯上を直進走行する場合には、本体11の直進距離に比例して本体11が絨毯目の方向に横すべりすることを見出し、この横すべりの度合いを表す角度偏差θは絨毯によってほぼ固有であり、数度程度であることを確認している。そこで、たとえば図7(3)に示すように角度偏差θを最初の走行時にあらかじめ測定した絨毯上で直進手段の目標ラインを走行開始時の方向から左に角度θ傾いた直線L2として(2)と同条件で直進走行させると、そのときの移動軌跡は走行開始時の本体11の方向と一致した直線cになる。同様に(4)に示すように、走行開始方向を(3)と反対方向に直進走行させる場合には、直進手段の目標ラインを走行開始時の方向から右に角度θ傾いたL3として直進走行させれば、移動軌跡は走行開始時の本体11の方向と一致した直線dになる。このように絨毯上を直進走行する場合は、絨毯目の方向とその目の強さに応じて直進手段の目標ラインの方向を変えることにより本体11の移動軌跡が補正できることがわかっている。
【0023】
また、絨毯目検出手段の操舵手段15の車輪16は、車輪軸保持部18と回転支持部19により本体11に対して水平方向に回動自在に支持されているので、本体11の走行時には常に走行方向を向くことになる。すなわち、図7の(1)の例では、車輪16は直線aの方向を向き、(2)の例では、車輪16は直線bの方向を向くことになる。
【0024】
図8は本実施例の走行制御手段32における制御方法を示すフロ−チャ−トである。34は角度検出手段22の出力の平均角度を演算する絨毯ずれ演算手段である。35は絨毯ずれ演算手段34の値を入力し直進制御の補正目標ラインを設定する走行補正手段である。36は方向計測手段30で計測した本体11の方向デ−タ及び回転検出器14L、14Rの出力に基づき、本体11が走行補正手段35で設定された補正目標ラインに乗るように駆動モ−タ13L、13Rを制御して直進走行させる直進手段である。また、直進走行中に測距センサにより本体11の前方に障害物を検知しかつ清掃作業が終了でなければ所定の作業幅だけ作業方向に変位した位置に反転する様になっている。
【0025】
図9を用いて自走式掃除機の移動軌跡について説明する。本体11で清掃する床面は、絨毯目が左から右にあるとする。本体11を開始点Sにおいてスタ−トすると、直進走行を開始し図7の(2)で示した場合と同様に、本体11は走行開始時の方向に直進制御を行うが、実際の移動軌跡は絨毯目の影響で右にずれた方向に流される。既に説明した様に絨毯目検出手段の車輪16は、車輪軸保持部18と回転支持部19により本体11に対して水平方向に回動自在に支持されているので、本体11の走行時には常に走行方向を向く。前方の壁W1に近づき障害物検知手段31がこれを検知すると、作業方向Aの方向に障害物があるかどうかを見る。この場合は障害物がないので、地点P1で作業方向Aの方向すなわち本体11の右方向へ所定の作業幅だけ変位した位置に方向計測手段30を用いて正確に180°反転する。このとき、絨毯ずれ演算手段34は地点P1で反転開始するまでの角度検出手段22の出力角度の平均値θ1を演算している。地点P1での反転後、この演算結果をもとに、走行補正手段35は補正目標ライン(本体11の右へ角度θ1だけ傾いた直線)を設定し、直進手段36により本体11が目標ラインに乗るように直進制御を行う。直進制御を開始して方向計測手段の出力が安定すると壁W2に近づいた地点P2で180°反転するまで絨毯ずれ演算手段34は新たに角度検出手段の出力角度の平均値θ2を演算する。地点P2での反転後、この演算結果をもとに、走行方正手段35は補正目標ライン(本体11の左へ角度θ2だけ傾いた直線)を設定し、直進手段36により本体11が目標ラインに乗るように直進制御を行う。
【0026】
以上の動作を繰り返し、点Fにきて壁W2を本体11の前方で検知すると、このときは作業方向Aすなわち本体11の右方向には壁W3があるので清掃終了と判断し作業を終了する。
【0027】
絨毯ずれ演算手段34は本体11が壁(もしくは障害物)を検知して180°反転する際と、反転後の車輪16が進行方向を向いていない間の角度検出手段22の出力を用いずに絨毯目によるずれを計算しているので正確に絨毯目による影響を補正できている。
【0028】
このように本実施例によれば、操舵手段15の車輪16の本体11に対する方向を回転支持部19を介して角度検出手段22により検出し、絨毯ずれ演算手段34により絨毯目によるずれ角度を演算し、この演算結果をもとに走行補正手段35は直進制御の目標ラインを補正目標ラインに設定し直進制御するので、本体11の往復の直進軌跡は平行になり、走行中に作業幅が変化することが無くなるから、清掃のやり残しが生じたり清掃効率が低下することが無くなるものである。
【0029】
【発明の効果】
本発明によれば、絨毯目による横ずれの角度偏差を自動的に検出するもので、清掃のやり残しや清掃効率が低下を防止することができる移動作業用ロボットが実現できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す自走式掃除機の断面図
【図2】同駆動兼操舵手段の構造を示す断面図
【図3】同操舵手段の構成を示す側断面図
【図4】同操舵手段の構成を示す正面断面図
【図5】同測距センサ及び方向計測手段の配置を示す内部透視図
【図6】同制御ブロック図
【図7】同移動作業ロボットが絨毯上を直進走行する場合の影響について説明した説明図
【図8】同制御方法を示すフロ−チャ−ト
【図9】同移動作業ロボットの動作説明図
【図10】従来の移動作業ロボットの動作説明図
【符号の説明】
11 本体
12L 左駆動輪
12R 右駆動輪
13L 左駆動モ−タ
13R 右駆動モ−タ
14L 左回転検出器
14R 右回転検出器
15 操舵手段
16 車輪
17 車輪軸
18 車輪軸保持部
20 支持軸
21 支持軸固定部材
22 角度検出手段
26 電動送風機
27 吸込部
30 方向計測手段
31 測距センサ
32 走行制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mobile work robot that automatically performs work such as an automatic floor cleaner, an automatic floor finisher, and the like.
[0002]
[Prior art]
In recent years, various mobile work robots have been developed that perform work automatically by adding a travel drive device, sensors, travel control means, and the like to the work equipment. For example, a self-propelled cleaner is provided with a suction nozzle, a brush or the like at the bottom of the main body as a cleaning function, and an obstacle detection means for detecting an obstacle during traveling and steering means and an obstacle as a moving function, and a position recognition means for recognizing the position. And moving along the wall around the cleaning place by the obstacle detection means, recognizing the cleaning area by the position recognition means, and moving in the cleaning area to clean the entire cleaning area. is there.
[0003]
Here, the influence by the carpet eyes related to the self-propelled cleaner will be described with reference to FIG. If the floor of the work area is a carpet with a strong carpet, such as a cut-pile carpet with a long bristle, and the carpet is in a direction perpendicular to the straight direction, the body gradually moves while driving. The phenomenon of flowing in the eye direction occurs. In FIG. 10, (1) shows the movement trajectory of the main body 11 when going straight on a flat bare floor without a carpet. At this time, since there is no carpet, there is no influence of the carpet, and the movement trajectory of the main body 11 is a straight line a that matches the direction of the main body at the start of traveling. However, for example, as shown in (2), if the floor surface is changed to a carpet with the carpet eyes in the direction from left to right, and the vehicle goes straight under the same conditions, the main body performs straight-ahead control so as to ride on the target line L1. The movement trajectory is a straight line b that is inclined rightward from the direction of the target line L1 by an angle θ, although the main body always faces the direction at the start of traveling. The angle deviation θ indicating the degree of lateral deviation is almost unique to the carpet and is about several degrees.
[0004]
[Problems to be solved by the invention]
However, in the mobile work robot having the above-mentioned conventional cleaning function, the angle deviation of the lateral deviation due to the carpet is checked in advance and the remaining work or work is not performed unless the information is artificially given from the outside and incorporated into the control. A decrease in efficiency occurs. In addition, this information cannot be dealt with when a time-dependent change occurs in the carpet or when the carpet is relaid.
[0005]
Accordingly, an object of the present invention is to provide a mobile work robot that can automatically detect an angular deviation of a lateral deviation due to a carpet.
[0006]
[Means for Solving the Problems]
In order to solve the above-described conventional problems, a mobile work robot according to the present invention includes a driving means including a driving wheel for moving a main body and a driving motor for driving the driving wheel, a support shaft and a wheel that are rotatable with respect to the main body. A steering means comprising: a driving control means for controlling the driving means and the steering means to control the driving of the main body; a direction measuring means for measuring the direction of the main body; and a distance from the main body to an external object. Distance measurement means, obstacle detection means for detecting an obstacle based on the output of the distance measurement sensor, turning means for turning the traveling direction of the main body by 180 ° by the output of the obstacle detection means, and the rotation angle of the support shaft an angle detecting means for detecting comprises a working unit for performing operations, said running control means may be straight body target direction based on the output of the direction measuring means, the angle detecting means to the target direction of the straight Is straight subjected to modification on the basis of the force angle, and the obstacle detection means pivoting means operates in the angle detection means with the the turning means for detecting an obstacle to straight After 180 ° turning the traveling direction of the body And the angle detecting means is stopped until the vehicle travels straight after the turning means is operated, and the steering means includes a wheel, a wheel shaft that rotatably supports the wheel, and the wheel shaft. A wheel shaft holding portion that is supported from both sides, a support shaft fixing member that urges the wheel shaft from the upper side and both sides inside the wheel shaft holding portion, and a support shaft that connects the support shaft fixing member to the angle detection means. It is configured.
[0007]
This makes it possible to detect the direction and strength of the carpet according to the rotation angle of the support shaft, and to make a straight run that corrects the influence of the carpet , and to prevent the rotation of the wheel during turning from being included in the detection of the carpet. In addition, since the angle detecting means is stopped until the straight traveling is stably performed after the turning means is operated, the accuracy of detecting the carpet can be improved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
According to a first aspect of the present invention, a mobile work robot according to the present invention includes a driving means including a driving wheel for moving a main body, a driving motor for driving the driving wheel, a support shaft and a wheel that are rotatable with respect to the main body. Steering means, a driving control means for controlling the driving of the main body by controlling the driving means and the steering means, a direction measuring means for measuring the direction of the main body, and a measurement for measuring the distance from the main body to an external object. Distance means, obstacle detection means for detecting an obstacle based on the output of the distance measuring sensor, turning means for turning the traveling direction of the main body by 180 ° by the output of the obstacle detection means, and the rotation angle of the support shaft comprising a detection angle detecting means, a work unit for performing work, the travel control means may be straight body target direction based on the output of the direction measuring means, the output angle of the angle detection unit to the target direction of the straight Is straight subjected to modification based, and turning means operate with linearly moving after the has a pivoting mechanism obstacle detecting means detects an obstacle was 180 ° turning the traveling direction of the body stops the angle detection means In addition, the angle detecting means is stopped until the vehicle travels straight after the turning means, and the steering means supports the wheel, the wheel shaft that rotatably supports the wheel, and the wheel shaft from both sides. A wheel shaft holding portion, a support shaft fixing member that urges the wheel shaft from the upper side and both sides inside the wheel shaft holding portion, and a support shaft that connects the support shaft fixing member to the angle detection means. In addition, since the angular deviation of the lateral deviation due to the carpet is automatically detected and corrected, it is possible to realize a mobile work robot that can perform work without causing any unfinished work or lowering work efficiency.
[0009]
According to the second aspect of the present invention, since the support shaft and the angle detecting means are directly connected, and the configuration such as the coupling for absorbing the impact is unnecessary, the angle detection of the wheel can be realized with a compact configuration.
[0010]
According to a third aspect of the present invention, the support shaft fixing member is made of an elastic material, and the rotation of the wheel is reliably transmitted to the support shaft and reliably detected by the angle detection means, thereby improving the accuracy of the carpet eye detection. Even when an upward external force is applied to the wheel due to a step, an obstacle, etc., it is absorbed by the elastic force and can absorb the impact on the angle detection means.
[0011]
According to a fourth aspect of the invention, the steering means and the angle detecting means intended to be removable from the main body integrally, it is possible to facilitate the maintenance of the parts such as replacement of the steering means.
[0012]
According to the fifth aspect of the present invention, the wheels are arranged behind the drive wheels, and the detection sensitivity of the carpet sensor can be improved.
[0013]
The invention according to claim 6 has the center of gravity of the main body in the vicinity of the wheel, and can improve the detection sensitivity of the carpet sensor.
[0014]
【Example】
(Example 1)
Hereinafter, the case where the embodiment of the present invention is applied to a self-propelled cleaner will be described as an example with reference to FIGS.
[0015]
FIG. 1 is a cross-sectional view showing the overall configuration of the self-propelled cleaner of this embodiment, FIG. 2 is a cross-sectional view showing the configuration of the driving and steering means of this embodiment, and FIG. 3 is a side cross-sectional view showing the configuration of the steering means. 4 is a front sectional view showing the structure of the steering means, and FIG. 5 is an internal perspective view showing the arrangement of the distance measuring sensor and the direction measuring means. In the figure, 11 is a main body of the self-propelled cleaner, and 12L and 12R are drive wheels provided on the left and right rear sides of the main body 11, respectively, and are independently driven left and right by the drive motors 13L and 13R. Reference numerals 14L and 14R are rotation detectors composed of a rotary encoder or the like connected to 13L and 13R, respectively, and detect the shaft rotational speeds of the drive motors 13L and 13R. Reference numeral 15 denotes steering means for supporting the weight of the main body 11, and the wheel 16 is rotatably attached to the wheel shaft holding portion 18 via the wheel shaft 17. As described above, the main body 11 is moved by the driving means and the steering means 15 including the driving wheels 12L and 12R and the driving motors 13L and 13R.
[0016]
Reference numeral 19 denotes a rotation support portion (bearing) that supports the wheel shaft holding portion so as to be rotatable in the horizontal direction. Reference numeral 21 denotes a support shaft fixing member that supports the wheel 16. The support shaft fixing member 21 can move the wheel shaft 17 in the vertical direction and supports the wheel shaft 17 from both sides. The wheel shaft 17 is urged on both sides and is directly fixed to the angle detection means 22 by the support shaft 20. The angle detection means 22 comprising a rotary encoder or a potentiometer fixed on the angle detection means holding plate 23 detects the rotation of the support shaft 20, whereby the rotation angle of the wheel shaft holding portion 18 is determined. Detect. Since the support shaft fixing member 21 is formed of a spring material such as stainless steel, the wheel shaft holding portion 18 is urged upward and outward, so that even if the wheel shaft holding portion 18 is slightly rotated. It can be accurately transmitted to the angle detection means 22 via the shaft 20.
[0017]
Further, since the support shaft fixing member 21 is configured to bend with respect to an upward force, it is supported even if an upward force is applied to the wheel 16 and the wheel shaft 17 due to an external factor (an obstacle such as a convex step). Since the shaft fixing member 21 absorbs, no impact is directly applied to the angle detection means 22. As a result, the coupling between the support shaft 20 and the angle detection means 22 can be directly coupled without requiring a coupling for absorbing an impact, and the size of the angle detection means can be reduced.
[0018]
Steering means 15 (comprising wheel 16, wheel shaft 17, wheel shaft holding section 18, rotation support section 19, support shaft 20, support shaft fixing member 21) and angle detection means 22 are fixed to angle detection means holding plate 23. After that, since it is configured to be attached to the main body 11, maintenance inspection and part replacement of the steering means 15 and the angle detection means 22 can be performed simply by removing the angle detection means holding plate 23 from the main body 11.
[0019]
The drive wheels 12L and 12R and the drive motors 13L and 13R are arranged near the center of the main body, and the steering means 15 is provided behind the drive wheels 12L and 12R, and a rechargeable battery 24 that supplies electric power to the whole is provided. Since it is disposed above the steering means 15, the entire center of gravity 25 is in the vicinity of the steering means 15. For this reason, the wheel 16 of the steering means 15 is easy to receive the force from a carpet, and the sensitivity of an angle detection means improves.
[0020]
26 is an electric blower, 27 is provided at the bottom of the main body 11, and is a suction portion which is a working means for performing cleaning work by sucking dust on the floor surface by the suction force generated by the electric blower 26. Connected to a dust collection chamber (not shown). Reference numeral 30 denotes direction measuring means for measuring the direction of the main body 11, and includes a gyro and an integrator for integrating the output. 31 is a distance measuring sensor consisting of an ultrasonic sensor or the like provided around the main body 11, the front of the main body 11, left and right sides and the obstacle detecting an obstacle by measuring the distance to an object located behind detection Intellectual Means. Reference numeral 32 denotes a travel control means for controlling the drive motors 13L and 13R based on data from the direction measuring means 30 and the obstacle detection means 31 to control the travel of the main body.
[0021]
FIG. 6 is a control block diagram of this embodiment. The direction measuring means 30, the distance measuring sensor 31, the rotation detector 14 and the angle detecting means 15 input their outputs to the traveling control means 32. The traveling control means 32 judges these data and outputs a control signal to the drive motors 13L and 13R. In this embodiment, the rotational speeds of the drive motors 13L and 13R are controlled to independently control the rotational speeds of the left and right drive wheels 12L and 12R, thereby driving and steering the main body 11.
[0022]
Now, the influence of the carpet when traveling straight on the carpet will be described with reference to FIG. In the figure, (1) shows the movement trajectory of the main body 11 when the traveling floor is a bare floor without a carpet. As described in the prior art, since there is no carpet at this time, there is naturally no influence of the carpet, and the main body 11 performs straight-ahead control by the straight-ahead means of the travel control means 32, and the movement trajectory of the main body 11 at the start of travel is It becomes a straight line a that coincides with the direction. However, for example, as shown in (2), when the floor surface is changed to a carpet whose carpet is in the direction from left to right, and the vehicle travels straight under the same conditions, the main body 11 is a straight traveling mode that the traveling control means 32 has. However, the actual movement trajectory is inclined to the right by the angle θ from the direction of the target line L1 despite the fact that the main body 11 always faces the direction at the start of traveling. A straight line b is obtained. That is, the present inventors have found that when the main body 11 travels straight on the carpet, the main body 11 slides in the direction of the carpet in proportion to the rectilinear distance of the main body 11, and represents the degree of this side slip. It is confirmed that the angle deviation θ is almost unique depending on the carpet and is about several degrees. Therefore, for example, as shown in FIG. 7 (3), the straight line L2 is defined as a straight line L2 inclined at an angle θ to the left from the direction at the start of traveling on the carpet in which the angle deviation θ is measured in advance during the first traveling. When the vehicle travels straight under the same conditions, the movement locus at that time becomes a straight line c that coincides with the direction of the main body 11 at the start of traveling. Similarly, as shown in (4), when the vehicle travels straight in the direction opposite to (3), the target line of the straight traveling means is set to L3 inclined at an angle θ to the right from the direction at the start of travel. By doing so, the movement locus becomes a straight line d that coincides with the direction of the main body 11 at the start of traveling. As described above, when the vehicle travels straight on the carpet, it is known that the movement trajectory of the main body 11 can be corrected by changing the direction of the target line of the straight traveling means in accordance with the direction of the carpet and the strength of the eyes.
[0023]
Further, the wheel 16 of the steering means 15 of the carpet eye detection means is supported by the wheel shaft holding portion 18 and the rotation support portion 19 so as to be rotatable in the horizontal direction with respect to the main body 11, so that the main body 11 always travels. It will turn in the direction of travel. That is, in the example of (1) of FIG. 7, the wheel 16 faces the direction of the straight line a, and in the example of (2), the wheel 16 faces the direction of the straight line b.
[0024]
FIG. 8 is a flowchart showing a control method in the traveling control means 32 of this embodiment. Reference numeral 34 denotes carpet displacement calculation means for calculating the average angle of the output of the angle detection means 22. Reference numeral 35 denotes a travel correction unit that inputs the value of the carpet deviation calculation unit 34 and sets a correction target line for straight-ahead control. Reference numeral 36 denotes a driving motor based on the direction data of the main body 11 measured by the direction measuring means 30 and the outputs of the rotation detectors 14L and 14R so that the main body 11 gets on the correction target line set by the travel correction means 35. It is a straight traveling means for controlling 13L and 13R to travel straight ahead. Further, an obstacle is detected in front of the main body 11 by a distance measuring sensor during straight traveling, and if the cleaning operation is not completed, the position is reversed to a position displaced in the work direction by a predetermined work width.
[0025]
The movement locus of the self-propelled cleaner will be described with reference to FIG. It is assumed that the floor surface to be cleaned by the main body 11 has carpet eyes from left to right. When the main body 11 is started at the start point S, the vehicle 11 starts to travel straight, and as in the case of (2) in FIG. Will be swept to the right due to the carpet. As already described, the wheel 16 of the carpet detection means is supported by the wheel shaft holding portion 18 and the rotation support portion 19 so as to be rotatable in the horizontal direction with respect to the main body 11. Turn to the direction. When the obstacle detection means 31 approaches the front wall W1 and detects this, it is checked whether there is an obstacle in the direction of the working direction A. In this case, since there is no obstacle, the direction measuring means 30 is used to invert exactly 180 ° at a position displaced by a predetermined working width in the working direction A, that is, to the right of the body 11 at the point P1. At this time, the carpet deviation calculation means 34 calculates the average value θ1 of the output angle of the angle detection means 22 until the inversion starts at the point P1. After the inversion at the point P1, based on this calculation result, the travel correction means 35 sets a correction target line (a straight line inclined to the right of the main body 11 by the angle θ1), and the straight movement means 36 sets the main body 11 to the target line. Perform straight-ahead control to get on. When the straight-ahead control is started and the output of the direction measuring means is stabilized, the carpet deviation calculating means 34 newly calculates the average value θ2 of the output angle of the angle detecting means until it is turned 180 ° at the point P2 approaching the wall W2. After inversion at the point P2, based on the calculation result, the traveling direction correcting means 35 sets a correction target line (a straight line inclined by the angle θ2 to the left of the main body 11), and the straight traveling means 36 makes the main body 11 the target line. Perform straight-ahead control to get on.
[0026]
When the above operation is repeated and the wall W2 is detected in front of the main body 11 at the point F, the wall W3 is present in the working direction A, that is, in the right direction of the main body 11, so that it is determined that the cleaning is finished and the work is finished. .
[0027]
The carpet displacement calculation means 34 does not use the output of the angle detection means 22 when the main body 11 detects a wall (or an obstacle) and reverses 180 ° and when the wheel 16 after the reverse is not facing the traveling direction. Since the displacement due to the carpet eyes is calculated, the influence due to the carpet eyes can be accurately corrected.
[0028]
As described above, according to this embodiment, the direction of the steering means 15 relative to the main body 11 of the wheel 16 is detected by the angle detection means 22 via the rotation support portion 19, and the deviation angle due to the carpet is calculated by the carpet deviation calculation means 34. On the basis of this calculation result, the travel correction means 35 sets the target line for straight-ahead control as the correction target line and performs straight-ahead control. Therefore, the reciprocal straight-ahead trajectory of the main body 11 becomes parallel, and the working width changes during travel. Therefore, there is no possibility of leaving uncleaned or reducing cleaning efficiency.
[0029]
【The invention's effect】
According to the present invention, it is possible to automatically detect a lateral deviation angle deviation due to a carpet, and it is possible to realize a mobile work robot that can prevent uncleaning and cleaning efficiency from being lowered.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a self-propelled vacuum cleaner showing a first embodiment of the present invention. FIG. 2 is a cross-sectional view showing the structure of the drive and steering means. FIG. 4 is a front sectional view showing the configuration of the steering means. FIG. 5 is an internal perspective view showing the arrangement of the distance measuring sensor and the direction measuring means. FIG. 6 is the control block diagram. FIG. 8 is a flow chart showing the control method. FIG. 9 is an operation explanatory diagram of the mobile work robot. FIG. 10 is a conventional mobile work robot. Explanation of operation [Explanation of symbols]
11 Main body 12L Left drive wheel 12R Right drive wheel 13L Left drive motor 13R Right drive motor 14L Left rotation detector 14R Right rotation detector 15 Steering means 16 Wheel 17 Wheel shaft 18 Wheel shaft holder 20 Support shaft 21 Support Shaft fixing member 22 Angle detection means 26 Electric blower 27 Suction part 30 Direction measurement means 31 Distance sensor 32 Travel control means

Claims (6)

本体を移動させる駆動輪と前記駆動輪を駆動させる駆動モータからなる駆動手段と、本体に対して回転自由な支持軸と車輪からなる操舵手段と、前記駆動手段と操舵手段とを制御して本体の走行制御を行う走行制御手段と、本体の方向を計測する方向計測手段と、本体から外部の物体までの距離を測定する測距手段と、測距センサの出力に基づいて障害物を検知する障害物検知手段と、障害物検知手段の出力により本体の進行方向を180°旋回する旋回手段と、前記支持軸の回転角度を検出する角度検出手段と、作業を行う作業手段を備え、前記走行制御手段は、方向計測手段の出力に基づいて本体を目標方向に直進させるとともに、前記直進の目標方向に角度検出手段の出力角度に基づき修正を施して直進させ、かつ、前記障害物検知手段が障害物を検知すると旋回手段が前記本体の進行方向を180°旋回させた後直進させるとともに旋回手段動作中は角度検出手段を停止させ、更に旋回手段動作後安定して直進するまでは角度検出手段を停止する構成とするとともに、操舵手段は、車輪と、前記車輪を回転自在に支持する車輪軸と、前記車輪軸を両側より支持する車輪軸保持部と、前記車輪軸保持部の内側で上方向及び両側より車輪軸を付勢する支持軸固定部材と、前記支持軸固定部材を角度検出手段に連結させる支持軸から構成した移動作業ロボット。A drive means comprising a drive wheel for moving the main body, a drive motor for driving the drive wheel, a steering means comprising a support shaft and wheels that are free to rotate with respect to the main body, and the drive means and the steering means to control the main body A traveling control means for performing the traveling control, a direction measuring means for measuring the direction of the main body, a distance measuring means for measuring the distance from the main body to an external object, and an obstacle based on the output of the distance measuring sensor An obstacle detection means; a turning means for turning the direction of travel of the main body by 180 ° by an output of the obstacle detection means; an angle detection means for detecting a rotation angle of the support shaft; control means may be straight body target direction based on the output of the direction measuring means, to travel straight with modification based on the output angle of the angle detecting means to the target direction of the straight, and the obstacle detection hand When the obstacle detects an obstacle, the turning means turns straight after turning the direction of travel of the main body by 180 °, stops the angle detection means while the turning means is operating, and further detects the angle until it moves straight after the turning means is operated. The steering means includes a wheel, a wheel shaft that rotatably supports the wheel, a wheel shaft holding portion that supports the wheel shaft from both sides, and an inner side of the wheel shaft holding portion. A mobile work robot comprising a support shaft fixing member that urges a wheel shaft from above and from both sides, and a support shaft that connects the support shaft fixing member to an angle detection means . 支持軸と角度検出手段を直結してなる請求項1記載の移動作業ロボット。The mobile work robot according to claim 1, wherein the support shaft and the angle detection means are directly connected. 支持軸固定部材は弾性材料から形成された請求項1または2記載の移動作業ロボット。The mobile work robot according to claim 1, wherein the support shaft fixing member is made of an elastic material. 操舵手段と角度検出手段は一体として本体から取り外し可能な請求項1〜3のいずれか1項に記載の移動作業ロボット。The mobile work robot according to any one of claims 1 to 3, wherein the steering means and the angle detection means are integrally removable from the main body. 車輪を駆動輪の後方に配する請求項1〜4のいずれか1項に記載の移動作業ロボット。The mobile work robot according to any one of claims 1 to 4, wherein the wheels are arranged behind the drive wheels. 本体の重心を車輪近傍に有する請求項5に記載の移動作業ロボット。The mobile work robot according to claim 5, wherein the center of gravity of the main body is located near the wheel.
JP2001167999A 2001-06-04 2001-06-04 Mobile work robot Expired - Lifetime JP3632618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001167999A JP3632618B2 (en) 2001-06-04 2001-06-04 Mobile work robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001167999A JP3632618B2 (en) 2001-06-04 2001-06-04 Mobile work robot

Publications (2)

Publication Number Publication Date
JP2002355205A JP2002355205A (en) 2002-12-10
JP3632618B2 true JP3632618B2 (en) 2005-03-23

Family

ID=19010297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001167999A Expired - Lifetime JP3632618B2 (en) 2001-06-04 2001-06-04 Mobile work robot

Country Status (1)

Country Link
JP (1) JP3632618B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2623920T3 (en) * 2005-12-02 2017-07-12 Irobot Corporation Robot system
EP2270619B1 (en) 2005-12-02 2013-05-08 iRobot Corporation Modular robot
JP2020062158A (en) * 2018-10-16 2020-04-23 シャープ株式会社 Auxiliary wheel support structure of self-traveling electronic apparatus
JP7407421B2 (en) 2019-08-09 2024-01-04 パナソニックIpマネジメント株式会社 Mobile robot, control method, and control program

Also Published As

Publication number Publication date
JP2002355205A (en) 2002-12-10

Similar Documents

Publication Publication Date Title
KR101840149B1 (en) Autonomous travel body and vacuum cleaner
JP2003310509A (en) Mobile cleaner
JPH0732751B2 (en) Self-propelled vacuum cleaner
CN108604097B (en) Self-propelled electronic device and method for moving self-propelled electronic device
JP2006260161A (en) Self-propelled working robot
JPS62152424A (en) Self-propelling cleaner
JP2006113952A (en) Charging type travel system
JPH0732752B2 (en) Self-propelled vacuum cleaner
JP2004310385A (en) Self-propelled cleaning device and self-propelled cleaning method
JPH09319432A (en) Mobile robot
JPH0561545A (en) Mobile work robot
JP3632618B2 (en) Mobile work robot
JP3079686B2 (en) Mobile work robot
JP2004318721A (en) Autonomous travel vehicle
JP3227710B2 (en) Mobile work robot
JP3227758B2 (en) Mobile work robot
JP2005346477A (en) Autonomous travelling body
JP3191334B2 (en) Mobile work robot
JP3922126B2 (en) Carpet eye detection device and mobile robot using the same
JP3003260B2 (en) Carpet detection device and mobile work robot having the same
JP2021089673A (en) Autonomous travel device, and positional deviation correction method
KR101489512B1 (en) A Robot cleaner with enhanced steering ability and the driving method
JP4583070B2 (en) Self-propelled vacuum cleaner
JP3319107B2 (en) Mobile work robot
JP3036863B2 (en) Traveling robot

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

R151 Written notification of patent or utility model registration

Ref document number: 3632618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

EXPY Cancellation because of completion of term