JP3545958B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP3545958B2
JP3545958B2 JP36540098A JP36540098A JP3545958B2 JP 3545958 B2 JP3545958 B2 JP 3545958B2 JP 36540098 A JP36540098 A JP 36540098A JP 36540098 A JP36540098 A JP 36540098A JP 3545958 B2 JP3545958 B2 JP 3545958B2
Authority
JP
Japan
Prior art keywords
air
solid oxide
oxide fuel
fuel cell
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36540098A
Other languages
Japanese (ja)
Other versions
JP2000188124A (en
Inventor
和正 丸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP36540098A priority Critical patent/JP3545958B2/en
Publication of JP2000188124A publication Critical patent/JP2000188124A/en
Application granted granted Critical
Publication of JP3545958B2 publication Critical patent/JP3545958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解質型燃料電池に関し、特に、燃焼室仕切板を用いて燃焼室および反応室を形成した固体電解質型燃料電池に関する。
【0002】
【従来技術】
従来の固体電解質型燃料電池は、図6に示すように、反応容器51内に、空気室仕切板53、燃焼室仕切板55、燃料ガス室仕切板57を用いて空気室A、燃焼室B、反応室C、燃料ガス室Dが形成されている。
【0003】
反応容器51内に収容された複数の有底筒状の固体電解質型燃料電池セル59は燃焼室仕切板55に形成された複数のセル挿入孔60にそれぞれ挿入固定され、その開口部61は燃焼室仕切板55から燃焼室B内に突出しており、その内部には空気室仕切板53に固定された空気導入管63の一端が挿入されている。
【0004】
燃焼室仕切板55には、余剰の燃料ガスを燃焼室Bに導入するための余剰燃料ガス噴出孔64が形成されており、燃料ガス室仕切板57には、燃料ガスを反応室C内に供給するための供給孔が形成されている。
【0005】
また、反応容器51には、例えば水素からなる燃料ガスを導入する燃料ガス導入口65、空気を導入する空気導入口67、燃焼室B内で燃焼したガスを排出するための排気口69が形成されている。
【0006】
固体電解質型燃料電池セル59は、円筒状のポーラスな空気極の表面に固体電解質層が形成され、この固体電解質層の表面に燃料極層が形成され、さらに、集電体層が空気極層と固体電解質層に接合されて構成されている。
【0007】
このような固体電解質型燃料電池は、空気室Aからの空気を、空気導入管63を介して固体電解質型燃料電池セル59内にそれぞれ供給し、かつ、燃料ガス室Dからの燃料ガスを複数の固体電解質型燃料電池セル59間に供給し、反応室Cにて反応させ、余剰の空気と余剰の燃料ガスを燃焼室Bにて燃焼させ、燃焼したガスが排気口69から外部に排出される。
【0008】
反応室C内の反応は、固体電解質型燃料電池セル59内に供給された空気がポーラスな空気極層を固体電解質層に向けて拡散し、また燃料ガスが固体電解質型燃料電池セル59の外側から固体電解質層に向けて拡散し、この固体電解質にて生じる。
【0009】
【発明が解決しようとする課題】
しかしながら、従来の固体電解質型燃料電池は、固体電解質型燃料電池セル59内に挿入される空気導入管63の外径が、前記セル59の内径の50%〜60%と小さかったため、空気が空気極層内を充分に拡散せず、空気極層と固体電解質層の界面に空気を効率よく供給できず、空気の多くが空気導入管63とセル59の間の空間を、発電反応に寄与することなく素通りしていた。
【0010】
このため、発電反応に必要とされる空気中の酸素の供給が、空気極層と固体電解質層の間の発電反応界面で不足し、これにより分極抵抗が増大し、発電性能を著しく劣化する虞があった。
【0011】
本発明は、空気極層と固体電解質層の界面に空気を効率よく供給できる固体電解質型燃料電池を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者は、上記の課題に検討を加えた結果、固体電解質型燃料電池セル内に空気を供給する空気導入管とセルの間の、空気の流れ抵抗の小さい、即ち空気が反応に寄与せずに素通りする空間を小さくすることにより、空気が空気極層内に効率よく拡散され、空気極層と固体電解質層の間の反応界面に酸素を充分に供給できることを見い出し、本発明に至ったのである。
【0013】
即ち、本発明の固体電解質型燃料電池は、反応容器内に燃焼室仕切板を用いて燃焼室と反応室を形成し、複数の有底筒状の固体電解質型燃料電池セルを、前記燃焼室仕切板に形成された複数のセル挿入孔に、開口部が前記燃焼室仕切板から前記燃焼室側に突出するようにそれぞれ挿入し固定するとともに、前記固体電解質型燃料電池セル内に空気導入管をそれぞれ挿入してなり、空気を前記空気導入管により前記固体電解質型燃料電池セル内にそれぞれ供給し、かつ、燃料ガスを前記反応室内の前記固体電解質型燃料電池セル間に供給して反応させる固体電解質型燃料電池であって、前記空気導入管の外径が、前記固体電解質型燃料電池セルの内径の80%以上のものである。
【0014】
ここで、空気導入管の肉厚は1mm以下であることが望ましい。
【0015】
【作用】
本発明の固体電解質型燃料電池では、空気導入管の外径が、固体電解質型燃料電池セルの内径の80%以上としたので、空気を供給する空気導入管と固体電解質型燃料電池セルの間の、空気の流れ抵抗を大きくでき、即ち空気が反応に寄与せずに素通りする空間を小さくでき、比較的抵抗の大きい多孔質な空気極層内にも効率よく空気が拡散し、固体電解質層と空気極層の間の発電反応界面に充分な酸素を供給でき、酸素の供給律速に起因する濃度過電圧、即ち分極抵抗が低減され、効率的な発電ができ、発電性能を向上することができる。
【0016】
また、空気導入管の肉厚を1mm以下とすることにより、効率的な熱伝達ができるとともに、空気導入管の内径が大きくなるため管内の流速が小さくなり、管内を流れる空気の予熱が充分にできるようになる。このため、更に発電性能を向上することができる。
【0017】
【発明の実施の形態】
本発明の固体電解質型燃料電池は、図1に示すように、反応容器1内に、空気室仕切板3、燃焼室仕切板5、燃料ガス室仕切板7を用いて空気室A、燃焼室B、反応室C、燃料ガス室Dが形成されている。
【0018】
反応容器1内に収容された複数の有底筒状の固体電解質型燃料電池セル9は、燃焼室仕切板5に形成された複数のセル挿入孔6にそれぞれ挿入固定され、その開口部10は燃焼室仕切板5から燃焼室B内に突出しており、その内部には、空気室仕切板3に挿入固定された空気導入管11の一端が挿入されている。
【0019】
燃焼室仕切板5には、図2に示すように、余剰の燃料ガスを燃焼室Bに導入するための多数の余剰燃料ガス噴出孔12が形成されており、図1に示したように、燃料ガス室仕切板7には、燃料ガスを反応室C内に供給するための多数の供給孔14が形成されている。
【0020】
また、反応容器1には、例えば水素からなる燃料ガスを導入する燃料ガス導入口13、空気を導入する空気導入口17、燃焼室B内で燃焼したガスを排出するための排気口19が形成されている。
【0021】
セル9は、図3に示すように、例えば、支持管としてのLaMnO系空気極層25と、この空気極層25の表面に形成されたY安定化ZrOからなる固体電解質層26と、固体電解質層26の表面に形成されたNi−ジルコニア系の燃料極層27と、空気極層25と電気的に接続されるLaCrO系よりなるインターコネクタ28とから構成されている。
【0022】
そして、図4に示すように、一方のセル9のインターコネクタ28を、他方のセル9の燃料極層27にNi金属繊維等の接続部材31を介して、他方のセル9の燃料極層27に接続して、複数のセル9が電気的に接続され、スタック33が構成されており、このようなスタック33が、図1に示したように、反応容器1内に収容されて固体電解質型燃料電池が構成されている。反応容器1内には、一つのセル9のインターコネクタ28に接続された電極35と、他方のセル9の燃料極層27に接続された電極37が配置されており、これらの電極35、37を介して電力が取り出される。
【0023】
このような固体電解質型燃料電池は、空気を空気導入口17から空気導入管11を介してセル9内に導入するとともに、燃料ガス導入口13から水素を導入し、燃料ガス室仕切板7の分散孔で分散してセル9の外部に導入することにより行われ、余剰の空気と燃料ガスは燃焼室B内で燃焼させられ、排気口19から外部に排出される。
【0024】
図5に固体電解質型燃料電池セル一本のガスの流れを示す。水素ガス(燃料ガス)はセル下方から導入され、発電により酸化されながら上方へと進む。一方空気(酸化ガス)は空気導入管11を介してセル上方よりセル内部下方へ導入される。そしてセル内部下方より上部へと流れる。セル上部より排出された空気は発電で消費されなかった水素ガスと反応し、燃焼室B内で燃焼する。
【0025】
そして、本発明の固体電解質型燃料電池では、図2(c)に示すように、空気導入管11の外径Rがセル9の内径Rの80%以上とされている。ここで、空気導入管11の肉厚tは1mm以下であることが、空気導入管11内を流れる空気の予熱を充分にするという点から望ましい。
【0026】
以上のように構成された固体電解質型燃料電池では、空気導入管11の外径Rを、セル9の内径Rの80%以上としたので、空気を供給する空気導入管11とセル9の間の空気の流れ抵抗を大きくでき、即ち空気が反応に寄与せずに素通りする空間を小さくでき、比較的抵抗の大きい多孔質な空気極層25内にも効率よく空気が拡散し、固体電解質層26と空気極層25の間の発電反応界面に充分な酸素を供給でき、酸素の供給律速に起因する濃度過電圧、即ち分極抵抗が低減され、効率的な発電ができ、発電性能を向上することができる。
【0027】
また、空気導入管11の肉厚tを1mm以下とすることにより、効率的な熱伝達ができるとともに、空気導入管11の内径が大きくなるため、管内の流速が小さくなり、管内を流れる空気の予熱を充分にでき、このような予熱された空気をセル9内に導入でき、このため、さらに発電性能を向上することができる。
【0028】
【実施例】
空気極材料として純度99.9%で平均粒径が5μmのLa0.9 Sr0.1 MnOを、固体電解質材料として純度が99.9%の平均粒径が0.7μmの10モル%Yを含有したZrOを、インターコネクタ材料として純度99.9%、平均粒径が1μmのLa0.8 Ca0.22CrO粉末を、燃料極材料として80重量%NiまたはRuを含有するZrOをそれぞれ準備した。
【0029】
La0.9 Sr0.1 MnO粉末を押し出し成形にて、焼結後、外径が18mm、厚みが2.3mm、長さが300mmになるような中空円筒状の空気極成形体を作製した。この後、10モル%Yを含有したZrO粉末と、La0.8 Ca0.22CrO粉末を用いてドクターブレード法にて厚み150μmの固体電解質シートおよびインターコネクタシートを作製した後、それぞれのシートを上記の空気極成形体に巻き付け、1500℃で3時間焼成した。
【0030】
さらに、固体電解質層の表面に80重量%NiOまたはRuを含有するZrO粉末からなるスラリーを塗布し、1400℃で2時間焼き付けを行い、図3に示したような固体電解質型燃料電池セルを作製した。固体電解質層の厚みは100μmであった。
【0031】
16本の円筒状固体電解質型燃料電池セルを4直4並列に接続してスタックを形成し、このスタックを図1に示すような反応容器内に配置した。尚、燃焼室仕切板からのセルの突出高さは15mmであった。そして、空気導入管の外径をセルの内径の80%、90%とした本発明の固体電解質型燃料電池と、60%とした従来の固体電解質型燃料電池を作製した。ここで、空気導入管の肉厚は全て1mmとした。
【0032】
そして、空気極内部に40SLMの空気を、燃料極側に6.3SLMの水素ガスを流して、発電炉の温度設定を1000℃として発電した。この発電試験において、出力密度を測定したところ、従来の固体電解質型燃料電池では、0.1W/cmであり、本発明の固体電解質型燃料電池では、空気導入管の外径とセルの内径比が80%のもので0.13W/cm、前記比が90%のもので0.14W/cmであった。このことから、分極抵抗が効果的に低減できたことが判る。
【0033】
【発明の効果】
本発明の固体電解質型燃料電池では、空気を供給する空気導入管と固体電解質型燃料電池セルの間の、空気の流れ抵抗を大きくでき、即ち空気が反応に寄与せずに素通りする空間を小さくでき、比較的抵抗の大きい多孔質な空気極層内にも効率よく空気が拡散し、固体電解質層と空気極層の間の発電反応界面に充分な酸素を供給でき、酸素の供給律速に起因する濃度過電圧、即ち分極抵抗が低減され、効率的な発電ができ、発電性能を向上することができる。
【図面の簡単な説明】
【図1】本発明の固体電解質型燃料電池の模式図である。
【図2】燃焼室仕切板およびその近傍を示すもので、(a)は側面図、(b)は平面図、(c)はセルと空気導入管との関係を示す平面図である。
【図3】固体電解質型燃料電池セルの断面図である。
【図4】スタックを示す平面図である。
【図5】固体電解質型燃料電池セルのガスの流れを説明するための説明図である。
【図6】従来の固体電解質型燃料電池の模式図である。
【符号の説明】
1・・・反応容器
5・・・燃焼室仕切板
6・・・セル挿入孔
9・・・固体電解質型燃料電池セル
10・・・開口部
11・・・空気導入管
B・・・燃焼室
C・・・反応室
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid oxide fuel cell, and more particularly to a solid oxide fuel cell in which a combustion chamber and a reaction chamber are formed using a combustion chamber partition plate.
[0002]
[Prior art]
As shown in FIG. 6, the conventional solid oxide fuel cell uses an air chamber A, a combustion chamber B and a fuel chamber partition plate 57 in a reaction vessel 51 using an air chamber partition plate 53, a combustion chamber partition plate 55, and a fuel gas chamber partition plate 57. , A reaction chamber C and a fuel gas chamber D are formed.
[0003]
The plurality of bottomed cylindrical solid oxide fuel cells 59 housed in the reaction vessel 51 are respectively inserted and fixed in a plurality of cell insertion holes 60 formed in the combustion chamber partition plate 55, and the opening 61 thereof is used for combustion. One end of an air introduction pipe 63 fixed to the air chamber partition plate 53 is inserted into the combustion chamber B, protruding from the chamber partition plate 55.
[0004]
An excess fuel gas ejection hole 64 for introducing excess fuel gas into the combustion chamber B is formed in the combustion chamber partition plate 55, and the fuel gas is introduced into the reaction chamber C in the fuel gas chamber partition plate 57. A supply hole for supplying is formed.
[0005]
Further, the reaction vessel 51 has a fuel gas inlet 65 for introducing a fuel gas composed of, for example, hydrogen, an air inlet 67 for introducing air, and an exhaust port 69 for discharging gas burned in the combustion chamber B. Have been.
[0006]
In the solid oxide fuel cell 59, a solid electrolyte layer is formed on the surface of a cylindrical porous air electrode, a fuel electrode layer is formed on the surface of the solid electrolyte layer, and a current collector layer is formed on the air electrode layer. And a solid electrolyte layer.
[0007]
Such a solid oxide fuel cell supplies air from the air chamber A to the solid oxide fuel cell 59 via the air introduction pipe 63, and supplies a plurality of fuel gases from the fuel gas chamber D. Is supplied between the solid oxide fuel cells 59 and reacted in the reaction chamber C, and excess air and excess fuel gas are burned in the combustion chamber B, and the burned gas is discharged to the outside through the exhaust port 69. You.
[0008]
In the reaction in the reaction chamber C, the air supplied into the solid oxide fuel cell 59 diffuses the porous air electrode layer toward the solid electrolyte layer, and the fuel gas flows outside the solid oxide fuel cell 59. From the solid electrolyte layer, and is generated in the solid electrolyte.
[0009]
[Problems to be solved by the invention]
However, in the conventional solid oxide fuel cell, the outside diameter of the air introduction pipe 63 inserted into the solid oxide fuel cell 59 is as small as 50% to 60% of the inside diameter of the cell 59. The air does not diffuse sufficiently in the electrode layer, air cannot be efficiently supplied to the interface between the air electrode layer and the solid electrolyte layer, and most of the air contributes to the power generation reaction in the space between the air introduction pipe 63 and the cell 59. He was passing without any.
[0010]
For this reason, supply of oxygen in the air required for the power generation reaction may be insufficient at the power generation reaction interface between the air electrode layer and the solid electrolyte layer, thereby increasing polarization resistance and significantly deteriorating power generation performance. was there.
[0011]
An object of the present invention is to provide a solid oxide fuel cell capable of efficiently supplying air to an interface between an air electrode layer and a solid electrolyte layer.
[0012]
[Means for Solving the Problems]
As a result of studying the above problem, the present inventor has found that the air flow resistance between the air introduction pipe for supplying air into the solid oxide fuel cell and the cell is small, that is, air contributes to the reaction. The present inventors have found that by reducing the space through which the air passes, the air can be efficiently diffused into the air electrode layer and oxygen can be sufficiently supplied to the reaction interface between the air electrode layer and the solid electrolyte layer, leading to the present invention. It is.
[0013]
That is, the solid oxide fuel cell of the present invention comprises a combustion chamber and a reaction chamber formed in a reaction vessel using a combustion chamber partition plate, and a plurality of bottomed cylindrical solid oxide fuel cells are formed in the combustion chamber. A plurality of cell insertion holes formed in the partition plate are inserted and fixed so that the openings protrude from the combustion chamber partition plate to the combustion chamber side, and the air introduction pipe is inserted into the solid oxide fuel cell unit. And air is supplied into the solid oxide fuel cells by the air introduction pipe, and fuel gas is supplied between the solid oxide fuel cells in the reaction chamber to cause a reaction. In a solid oxide fuel cell, the outside diameter of the air introduction pipe is 80% or more of the inside diameter of the solid oxide fuel cell.
[0014]
Here, it is desirable that the thickness of the air introduction pipe is 1 mm or less.
[0015]
[Action]
In the solid oxide fuel cell according to the present invention, the outer diameter of the air inlet pipe is set to 80% or more of the inner diameter of the solid oxide fuel cell, so that the air inlet pipe for supplying air and the solid oxide fuel cell are separated. However, the air flow resistance can be increased, that is, the space through which the air passes without contributing to the reaction can be reduced, and the air can be efficiently diffused into the porous air electrode layer having a relatively high resistance. Sufficient oxygen can be supplied to the power generation reaction interface between the air electrode layer and the air electrode layer, the concentration overvoltage caused by the oxygen supply rate-limiting, that is, the polarization resistance is reduced, efficient power generation can be performed, and the power generation performance can be improved. .
[0016]
In addition, by making the thickness of the air introduction pipe 1 mm or less, efficient heat transfer is possible, and the inside diameter of the air introduction pipe is increased, so that the flow velocity in the pipe is reduced, and the preheating of the air flowing in the pipe is sufficiently performed. become able to. For this reason, the power generation performance can be further improved.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, the solid oxide fuel cell of the present invention comprises an air chamber A, a combustion chamber partition plate 7, a combustion chamber partition plate 5, and a fuel gas chamber partition plate 7 in a reaction vessel 1. B, a reaction chamber C, and a fuel gas chamber D are formed.
[0018]
The plurality of bottomed cylindrical solid oxide fuel cells 9 housed in the reaction vessel 1 are inserted and fixed in a plurality of cell insertion holes 6 formed in the combustion chamber partition plate 5, respectively. One end of an air introduction pipe 11 inserted into and fixed to the air chamber partition plate 3 is inserted into the combustion chamber B from the combustion chamber partition plate 5.
[0019]
As shown in FIG. 2, the combustion chamber partition plate 5 is formed with a large number of surplus fuel gas ejection holes 12 for introducing surplus fuel gas into the combustion chamber B. As shown in FIG. A large number of supply holes 14 for supplying fuel gas into the reaction chamber C are formed in the fuel gas chamber partition plate 7.
[0020]
Further, the reaction vessel 1 has a fuel gas inlet 13 for introducing a fuel gas composed of, for example, hydrogen, an air inlet 17 for introducing air, and an exhaust port 19 for discharging gas burned in the combustion chamber B. Have been.
[0021]
As shown in FIG. 3, the cell 9 includes, for example, a LaMnO 3 -based air electrode layer 25 as a support tube, and a solid electrolyte layer made of Y 2 O 3 stabilized ZrO 2 formed on the surface of the air electrode layer 25. 26, a fuel electrode layer 27 of Ni- zirconia formed on the surface of the solid electrolyte layer 26, and an interconnector 28. consisting LaCrO 3 system connected air electrode layer to 25 electrically.
[0022]
Then, as shown in FIG. 4, the interconnector 28 of one cell 9 is connected to the fuel electrode layer 27 of the other cell 9 via a connecting member 31 such as Ni metal fiber or the like. And a plurality of cells 9 are electrically connected to each other to form a stack 33. Such a stack 33 is housed in the reaction vessel 1 as shown in FIG. A fuel cell is configured. In the reaction vessel 1, an electrode 35 connected to the interconnector 28 of one cell 9 and an electrode 37 connected to the fuel electrode layer 27 of the other cell 9 are arranged. Power is extracted via
[0023]
In such a solid oxide fuel cell, air is introduced from the air inlet 17 into the cell 9 through the air inlet pipe 11, and hydrogen is introduced from the fuel gas inlet 13, and the fuel gas chamber partition plate 7 This is performed by dispersing the gas in the dispersion holes and introducing the gas to the outside of the cell 9. The surplus air and fuel gas are burned in the combustion chamber B and discharged to the outside from the exhaust port 19.
[0024]
FIG. 5 shows a gas flow of one solid oxide fuel cell unit. Hydrogen gas (fuel gas) is introduced from below the cell and proceeds upward while being oxidized by power generation. On the other hand, air (oxidizing gas) is introduced from above the cell to below the cell via the air introduction pipe 11. Then, it flows upward from the lower part inside the cell. The air discharged from the upper part of the cell reacts with the hydrogen gas not consumed by the power generation and burns in the combustion chamber B.
[0025]
Then, in the solid oxide fuel cell of the present invention, as shown in FIG. 2 (c), the outer diameter R 1 of the air inlet tube 11 is a more than 80% of the inner diameter R 2 of the cell 9. Here, it is desirable that the thickness t of the air introduction pipe 11 be 1 mm or less in order to sufficiently heat the air flowing through the air introduction pipe 11.
[0026]
The solid oxide fuel cell configured as described above, the outer diameter R 1 of the air inlet tube 11, since 80% or more of the inner diameter R 2 of the cell 9, the air inlet tube 11 for supplying air and the cell 9 The air flow resistance can be increased, that is, the space through which the air passes without contributing to the reaction can be reduced, and the air can be efficiently diffused into the porous air electrode layer 25 having a relatively high resistance, and Sufficient oxygen can be supplied to the power generation reaction interface between the electrolyte layer 26 and the air electrode layer 25, and the concentration overvoltage caused by the oxygen supply rate-limiting, that is, the polarization resistance is reduced, thereby enabling efficient power generation and improving power generation performance. can do.
[0027]
Further, by setting the thickness t of the air introduction pipe 11 to 1 mm or less, efficient heat transfer can be performed, and the inner diameter of the air introduction pipe 11 increases, so that the flow velocity in the pipe decreases, and Preheating can be sufficiently performed, and such preheated air can be introduced into the cell 9, so that the power generation performance can be further improved.
[0028]
【Example】
La 0.9 Sr 0.1 MnO 3 having a purity of 99.9% and an average particle size of 5 μm as an air electrode material, and 10 mol% of an purity of 99.9% and an average particle size of 0.7 μm as a solid electrolyte material ZrO 2 containing Y 2 O 3 was used as an interconnector material, La 0.8 Ca 0.22 CrO 3 powder having a purity of 99.9% and an average particle diameter of 1 μm, and 80 wt% Ni or Ru as a fuel electrode material. the ZrO 2 containing the prepared.
[0029]
After sintering La 0.9 Sr 0.1 MnO 3 powder by extrusion molding, a hollow cylindrical air electrode molded body having an outer diameter of 18 mm, a thickness of 2.3 mm, and a length of 300 mm is produced. did. Thereafter, using a ZrO 2 powder containing 10 mol% Y 2 O 3 and La 0.8 Ca 0.22 CrO 3 powder, a solid electrolyte sheet and an interconnector sheet having a thickness of 150 μm were produced by a doctor blade method. Thereafter, each sheet was wound around the above air electrode molded body and fired at 1500 ° C. for 3 hours.
[0030]
Further, a slurry made of ZrO 2 powder containing 80% by weight of NiO or Ru was applied to the surface of the solid electrolyte layer and baked at 1400 ° C. for 2 hours to obtain a solid oxide fuel cell as shown in FIG. Produced. The thickness of the solid electrolyte layer was 100 μm.
[0031]
Sixteen cylindrical solid oxide fuel cells were connected in four-by-four parallel to form a stack, and this stack was placed in a reaction vessel as shown in FIG. In addition, the projecting height of the cell from the combustion chamber partition plate was 15 mm. Then, a solid oxide fuel cell according to the present invention in which the outer diameter of the air inlet tube was 80% and 90% of the inner diameter of the cell, and a conventional solid oxide fuel cell in which the outer diameter was 60% were produced. Here, the thickness of all the air introduction pipes was 1 mm.
[0032]
Then, 40 SLM of air was flown into the air electrode, and 6.3 SLM of hydrogen gas was flowed to the fuel electrode side, and power was generated at a temperature setting of the power generating furnace of 1000 ° C. In this power generation test, when the output density was measured, it was 0.1 W / cm 2 in the conventional solid oxide fuel cell, and in the solid oxide fuel cell of the present invention, the outer diameter of the air introduction tube and the inner diameter of the cell were measured. ratio 0.13 W / cm 2 at those 80%, the ratio was 0.14 W / cm 2 at of 90%. This indicates that the polarization resistance was effectively reduced.
[0033]
【The invention's effect】
In the solid oxide fuel cell of the present invention, the flow resistance of air between the air supply pipe for supplying air and the solid oxide fuel cell can be increased, that is, the space where air does not pass through without contributing to the reaction is reduced. Air can be efficiently diffused into the porous air electrode layer with relatively high resistance, and sufficient oxygen can be supplied to the power generation reaction interface between the solid electrolyte layer and the air electrode layer. The concentration overvoltage, that is, the polarization resistance, is reduced, efficient power generation can be performed, and power generation performance can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic view of a solid oxide fuel cell according to the present invention.
FIGS. 2A and 2B show a combustion chamber partition plate and the vicinity thereof, wherein FIG. 2A is a side view, FIG. 2B is a plan view, and FIG. 2C is a plan view showing a relationship between a cell and an air introduction pipe.
FIG. 3 is a sectional view of a solid oxide fuel cell.
FIG. 4 is a plan view showing a stack.
FIG. 5 is an explanatory diagram for explaining a gas flow in a solid oxide fuel cell.
FIG. 6 is a schematic view of a conventional solid oxide fuel cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reaction container 5 ... Combustion chamber partition plate 6 ... Cell insertion hole 9 ... Solid oxide fuel cell 10 ... Opening 11 ... Air introduction pipe B ... Combustion chamber C: Reaction chamber

Claims (1)

反応容器内に燃焼室仕切板を用いて燃焼室と反応室を形成し、複数の有底筒状の固体電解質型燃料電池セルを、前記燃焼室仕切板に形成された複数のセル挿入孔に、開口部が前記燃焼室仕切板から前記燃焼室側に突出するようにそれぞれ挿入し固定するとともに、前記固体電解質型燃料電池セル内に空気導入管をそれぞれ挿入してなり、空気を前記空気導入管により前記固体電解質型燃料電池セル内にそれぞれ供給し、かつ、燃料ガスを前記反応室内の前記固体電解質型燃料電池セル間に供給して反応させる固体電解質型燃料電池であって、前記空気導入管の外径が、前記固体電解質型燃料電池セルの内径の80%以上であることを特徴とする固体電解質型燃料電池。A combustion chamber and a reaction chamber are formed using a combustion chamber partition plate in the reaction vessel, and a plurality of bottomed cylindrical solid oxide fuel cells are inserted into a plurality of cell insertion holes formed in the combustion chamber partition plate. An opening is inserted and fixed so that the opening protrudes from the combustion chamber partition plate toward the combustion chamber, and an air introduction pipe is inserted into the solid oxide fuel cell, respectively, so that the air is introduced into the air. A solid oxide fuel cell which supplies the gas into the solid oxide fuel cells by a pipe, and supplies and reacts a fuel gas between the solid oxide fuel cells in the reaction chamber, wherein the air introduction; A solid oxide fuel cell, wherein an outer diameter of the tube is 80% or more of an inner diameter of the solid oxide fuel cell.
JP36540098A 1998-12-22 1998-12-22 Solid oxide fuel cell Expired - Fee Related JP3545958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36540098A JP3545958B2 (en) 1998-12-22 1998-12-22 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36540098A JP3545958B2 (en) 1998-12-22 1998-12-22 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2000188124A JP2000188124A (en) 2000-07-04
JP3545958B2 true JP3545958B2 (en) 2004-07-21

Family

ID=18484168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36540098A Expired - Fee Related JP3545958B2 (en) 1998-12-22 1998-12-22 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3545958B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813836B2 (en) 2003-12-09 2010-10-12 Intouch Technologies, Inc. Protocol for a remotely controlled videoconferencing robot
US8077963B2 (en) 2004-07-13 2011-12-13 Yulun Wang Mobile robot with a head-based movement mapping scheme
JP5285253B2 (en) * 2007-09-14 2013-09-11 三菱重工業株式会社 Fuel cell module
US10875182B2 (en) 2008-03-20 2020-12-29 Teladoc Health, Inc. Remote presence system mounted to operating room hardware
JP5188236B2 (en) * 2008-03-28 2013-04-24 東邦瓦斯株式会社 Gas supply / discharge manifold and solid oxide fuel cell bundle
US9193065B2 (en) 2008-07-10 2015-11-24 Intouch Technologies, Inc. Docking system for a tele-presence robot
US9842192B2 (en) 2008-07-11 2017-12-12 Intouch Technologies, Inc. Tele-presence robot system with multi-cast features
US8340819B2 (en) 2008-09-18 2012-12-25 Intouch Technologies, Inc. Mobile videoconferencing robot system with network adaptive driving
US8996165B2 (en) 2008-10-21 2015-03-31 Intouch Technologies, Inc. Telepresence robot with a camera boom
US8463435B2 (en) 2008-11-25 2013-06-11 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
US8849680B2 (en) 2009-01-29 2014-09-30 Intouch Technologies, Inc. Documentation through a remote presence robot
US8670017B2 (en) 2010-03-04 2014-03-11 Intouch Technologies, Inc. Remote presence system including a cart that supports a robot face and an overhead camera
US10343283B2 (en) 2010-05-24 2019-07-09 Intouch Technologies, Inc. Telepresence robot system that can be accessed by a cellular phone
US10769739B2 (en) 2011-04-25 2020-09-08 Intouch Technologies, Inc. Systems and methods for management of information among medical providers and facilities
CN102600788B (en) * 2012-03-14 2014-07-09 江苏揽山环境科技有限公司 Multi-stage spray reaction tower

Also Published As

Publication number Publication date
JP2000188124A (en) 2000-07-04

Similar Documents

Publication Publication Date Title
JP3545958B2 (en) Solid oxide fuel cell
US6893762B2 (en) Metal-supported tubular micro-fuel cell
US7157169B2 (en) Fuel cell
JP2965275B2 (en) Fuel cell generator
US6440596B1 (en) Solid-oxide fuel cell hot assembly
JPS63110560A (en) Electrochemical battery
US5336569A (en) Power generating equipment
KR20010030874A (en) Integrated solid oxide fuel cell and reformer
CN1685554A (en) Solid oxide fuel cell system
US5158837A (en) Solid oxide fuel cells
JP3317535B2 (en) Fuel cell
JP2005100687A (en) Fuel cell
US20060134489A1 (en) Compact solid oxide fuel cell stack
KR20090063802A (en) Tube type solid oxide fuel cell
JP2003282101A (en) Fuel cell
JP2698482B2 (en) Power generator
JPH0359955A (en) Fuel battery generator
JP2816476B2 (en) Solid oxide fuel cell module
JP3585363B2 (en) Solid oxide fuel cell
US6528197B1 (en) Bipolar plate with porous wall for a fuel cell stack
JP3389481B2 (en) Solid oxide fuel cell
JP4018916B2 (en) Fuel cell, cell stack and fuel cell
JPH0758618B2 (en) Solid oxide fuel cell
JPH11162499A (en) Solid electrolyte fuel cell
JP2816473B2 (en) Solid oxide fuel cell module

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees