JP2006317161A - Tracking system - Google Patents

Tracking system Download PDF

Info

Publication number
JP2006317161A
JP2006317161A JP2005137008A JP2005137008A JP2006317161A JP 2006317161 A JP2006317161 A JP 2006317161A JP 2005137008 A JP2005137008 A JP 2005137008A JP 2005137008 A JP2005137008 A JP 2005137008A JP 2006317161 A JP2006317161 A JP 2006317161A
Authority
JP
Japan
Prior art keywords
ultrasonic
phase
receivers
ultrasonic wave
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005137008A
Other languages
Japanese (ja)
Inventor
Takehiko Suginouchi
剛彦 杉ノ内
Masahiko Hashimoto
雅彦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005137008A priority Critical patent/JP2006317161A/en
Publication of JP2006317161A publication Critical patent/JP2006317161A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tracking system of high reliability capable of highly reliable tracking by highly precisely measuring the relative position of a moving body, and a self-propelled body used for it. <P>SOLUTION: The tracking system is composed of the ultrasonic transmission source 20 arranged on the moving body 2 and the self-propelled body 1 for tracking the ultrasonic transmission source 20. The tracking system is provided with four ultrasonic receivers in a line on the self-propelled body 1, wherein two receivers among the four receivers are arranged near by positions and the remaining two receivers are arranged near by positions but apart from the former two receivers. The position estimation process is composed of the steps: (i) the ultrasonic transmission source 20 is transmitting the ultrasound in a certain interval; (ii) the self-propelled body 1 is obtaining a phase after receiving ultrasound; (iii) extracting the optimum phase information from among the phase data; (vi) estimating the correct position from the phase differences of two pairs of receivers. The time zone when the optimum phase information is existing is obtained by each ultrasonic receiver separately. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は超音波を利用した追従システムおよびそれに用いられる自走体に関する。   The present invention relates to a tracking system using ultrasonic waves and a self-propelled body used therefor.

搬送ロボットなどの自律移動体(以後、「自走体」という場合がある)の動きを制御して、人などの移動体を追尾するシステムが、工場などで使用されている。このような追尾システムの一例として、超音波を用いて移動体の位置を計測する追尾装置が知られている。   Systems that control the movement of autonomous mobile bodies such as transport robots (hereinafter sometimes referred to as “self-propelled bodies”) and track mobile bodies such as people are used in factories and the like. As an example of such a tracking system, a tracking device that measures the position of a moving body using ultrasonic waves is known.

基本的には超音波の伝搬時間を使って移動体の位置を計測している。自走体のみが超音波送受信装置を備え、自走体から移動体に向かって超音波を送信し、移動体によって反射された超音波を自走体側で受信することによって、移動体の相対位置を計測する方法や、移動体および自走体のそれぞれが超音波送受信装置を備え、相互に超音波の送受信を行うことによって、移動体の相対位置を計測する方法がある。   Basically, the position of a moving object is measured using the propagation time of ultrasonic waves. Only the self-propelled body is equipped with an ultrasonic transmission / reception device, transmits ultrasonic waves from the self-propelled body to the moving body, and receives the ultrasonic waves reflected by the moving body on the self-propelled body side. And a method of measuring the relative position of the moving body by transmitting and receiving ultrasonic waves to and from each other.

しかしながら自走体の周囲に移動体以外の物体が多数存在する場合、自走体から移動体に向けて超音波を送信すると、移動体からの反射超音波に加えて周囲に存在する物体(反射体)からの反射超音波が受信される。特に、移動体付近に反射体が存在すると、移動体による反射超音波と他の反射体による反射超音波とが重畳されて、移動体の相対位置の計測に大きな誤差が生じる場合がある。   However, when there are many objects other than the moving body around the self-propelled body, if ultrasonic waves are transmitted from the self-propelled body to the moving body, objects existing in the surroundings (reflection) The reflected ultrasound from the body is received. In particular, if there is a reflector near the moving body, the reflected ultrasonic waves from the moving body and the reflected ultrasonic waves from other reflectors may be superimposed, resulting in a large error in measurement of the relative position of the moving body.

そこで、移動体に超音波送信装置を備え、自走体には超音波受信装置を備え、超音波を送信した時刻を電波、または赤外など音よりも高速な手段(無線信号)で自走体に知らせ、移動体の相対位置を計測する方法がある。超音波の伝搬方向が1方向のみであるため、周囲に存在する物体からの反射超音波による影響は少ない。   Therefore, the mobile body is equipped with an ultrasonic transmission device, the self-propelled body is equipped with an ultrasonic reception device, and the time at which the ultrasonic wave is transmitted is self-propelled by means of radio waves or infrared (high-speed) means (radio signals) There is a method to inform the body and measure the relative position of the moving body. Since the propagation direction of ultrasonic waves is only one direction, the influence of reflected ultrasonic waves from surrounding objects is small.

しかしながら、例えば電波であれば、電波の使えない環境では使用できない。赤外などの光であれば、外光などが直接入射している環境では使用できない。   However, for example, radio waves cannot be used in environments where radio waves cannot be used. If it is light such as infrared, it cannot be used in an environment where external light or the like is directly incident.

そこで、移動体に超音波送信装置を備え、自走体には超音波受信装置を複数備え、受信した超音波の到着時刻差を使って、移動体の相対位置を計測する方法がある。特に到着時刻差を正確に測るために、受信した超音波の位相差から換算する方式が用いられる(特許文献1および特許文献2)。   Therefore, there is a method in which the moving body is provided with an ultrasonic transmission device, the self-propelled body is provided with a plurality of ultrasonic reception devices, and the relative position of the moving body is measured using the arrival time difference of the received ultrasonic waves. In particular, in order to accurately measure the arrival time difference, a method of converting from the received ultrasonic phase difference is used (Patent Document 1 and Patent Document 2).

図7に、従来例を模式的に示す。超音波発信源78から送信された超音波を、受波装置79にて受信する。超音波発信源78は、超音波送信装置71を備える。超音波送信装置71は、超音波送信器71aと送信回路71bとを備える。これらの装置は、送信信号発生器76に接続される。受波装置79は、超音波受信装置72を備える。超音波受信装置72は、2つの超音波受信器72aおよび72bと、それらに接続された受信回路72cおよび72dとを備える。超音波受信器72aおよび72bは、モータ73の回転軸に、お互いが離れた場所になるように固定されている。電力増幅器77によって、受信した超音波の位相差に応じた電力をモータ73に印加することにより、超音波受信器72aおよび72bが超音波発信源78の方向を向くことができる。これは超音波発信源78の方位によって、超音波受信器72aと超音波受信器72bで受信した超音波に位相差が生じることを利用している。また、超音波送信器71aから送信される超音波は、送信信号発生器76において周波数変調されている。このため、超音波受信装置72で受信された超音波を復調器74において復調し、復調された信号の位相差を、位相差検出器75にて求めている。これは、位相差の範囲−πからπを、広い範囲の方位に1対1に対応させるために、変調および復調することによって、超音波信号よりも低い周波数にて位相を比較している。
特開昭56−76066号公報 特開昭56−137173号公報
FIG. 7 schematically shows a conventional example. The ultrasonic wave transmitted from the ultrasonic wave transmission source 78 is received by the wave receiving device 79. The ultrasonic transmission source 78 includes an ultrasonic transmission device 71. The ultrasonic transmission device 71 includes an ultrasonic transmitter 71a and a transmission circuit 71b. These devices are connected to a transmission signal generator 76. The wave receiving device 79 includes an ultrasonic wave receiving device 72. The ultrasonic receiving device 72 includes two ultrasonic receivers 72a and 72b and receiving circuits 72c and 72d connected to them. The ultrasonic receivers 72 a and 72 b are fixed to the rotating shaft of the motor 73 so that they are separated from each other. By applying electric power according to the phase difference of the received ultrasonic waves to the motor 73 by the power amplifier 77, the ultrasonic receivers 72 a and 72 b can face the ultrasonic transmission source 78. This utilizes the fact that a phase difference occurs in the ultrasonic waves received by the ultrasonic receiver 72a and the ultrasonic receiver 72b depending on the direction of the ultrasonic transmission source 78. The ultrasonic wave transmitted from the ultrasonic transmitter 71 a is frequency-modulated by the transmission signal generator 76. For this reason, the ultrasonic wave received by the ultrasonic wave receiving device 72 is demodulated by the demodulator 74, and the phase difference of the demodulated signal is obtained by the phase difference detector 75. This compares the phase at a frequency lower than that of the ultrasonic signal by modulating and demodulating the phase difference range −π to π in a one-to-one correspondence with a wide range of directions.
JP 56-76066 A JP-A-56-137173

しかしながら、上記従来の方法は、周波数変調された超音波を送受信するための広帯域な送信器および受信器が必要となる。また、到達時間の違う受信波から、正確な位相差を求めるためには、必要な位相情報を有する時間帯をオーバラップさせる必要がある。さらに復調して低い周波数の位相を用いるため、周波数が低くなることによって、送信信号は必然的に時間的に長い信号となる。信号が長くなると、超音波送信装置のために大きな電源が必要になることや、周囲の障害物からの反射超音波が干渉しやすく、誤った結果が生じる可能性が大きくなる。また受信した超音波の到着時刻差を2つの受信器間の位相差を用いて求める際、空気のゆらぎによる屈折の影響が場所によって異なることや、超音波が広帯域の場合はそれに含まれる周波数成分ごとに指向性が異なるなどの理由から、各受信器間での相関が低くなるため、位相差の測定精度が悪化するという課題が生じてしまう。   However, the conventional method requires a broadband transmitter and receiver for transmitting and receiving frequency-modulated ultrasonic waves. In addition, in order to obtain an accurate phase difference from received waves having different arrival times, it is necessary to overlap time zones having necessary phase information. Further, since a low-frequency phase is demodulated and the frequency is lowered, the transmission signal is inevitably a long signal. When the signal becomes long, a large power source is required for the ultrasonic transmission device, and reflected ultrasonic waves from surrounding obstacles are likely to interfere with each other, which increases the possibility of an erroneous result. Also, when the arrival time difference of the received ultrasonic waves is determined using the phase difference between the two receivers, the influence of refraction due to air fluctuations varies depending on the location, and if the ultrasonic waves are broadband, the frequency components included in them Since the directivity is different for each receiver, the correlation between the receivers is lowered, which causes a problem that the measurement accuracy of the phase difference is deteriorated.

このような状況において、本発明は、広帯域な超音波送受信器を使用せず、さらに短い送信信号を用いても移動体の相対位置を高精度に計測して信頼性の高い追尾が可能な追尾システム、およびそれに用いられる自走体を提供することを目的の1つとする。   Under such circumstances, the present invention does not use a broadband ultrasonic transmitter / receiver, and enables tracking with high reliability by accurately measuring the relative position of a moving object even with a shorter transmission signal. An object is to provide a system and a self-propelled body used for the system.

上記目的を達成するために、本発明の追尾システムは、移動体に配置された超音波発信源と前記超音波発信源の位置を推定して前記超音波発信源を追尾する自走体とを含む追尾システムにおいて、前記超音波発信源は超音波送信装置を備える。前記自走体は帯域の狭い超音波受信器で構成された超音波受信装置を4個直線上に備え、前記超音波受信装置のうち2個は近接した位置に配置され、残りの2個は前記2個から離れた位置で近接して配置され、
(a)前記移動体は、短いバースト超音波を前記超音波送信装置から送信し、
(b)前記自走体は、前記超音波を前記超音波受信装置で受信し、
(c)各超音波受信装置の受信信号から、位相信号を求め、
(d)前記位相信号から受信信号と送信駆動信号の周波数が同一である時間帯を決定し、
(e)前記時間帯の位相の代表値を求め、
(f)前記近接した位置に配置された超音波受信装置間での位相差を求め、
(g)前記位相差と超音波受信器の位置関係から前記超音波発信源の位置を推定する、というステップを含む位置推定処理が行われ、前記位相差は、近接した超音波受信器間で求めることと、前記時間帯は、超音波受信装置ごとに独立して求めることを特徴とする。
In order to achieve the above object, a tracking system of the present invention includes an ultrasonic transmission source arranged on a moving body and a self-propelled body that estimates the position of the ultrasonic transmission source and tracks the ultrasonic transmission source. In the tracking system including, the ultrasonic transmission source includes an ultrasonic transmission device. The self-propelled body is provided with four ultrasonic receivers configured by narrow-band ultrasonic receivers on a straight line, two of the ultrasonic receivers are arranged in close proximity, and the remaining two are Arranged close to each other at a position away from the two,
(A) The moving body transmits a short burst ultrasonic wave from the ultrasonic transmission device,
(B) The self-propelled body receives the ultrasonic waves with the ultrasonic receiver,
(C) obtaining a phase signal from the received signal of each ultrasonic receiving device;
(D) determining a time zone in which the frequency of the reception signal and the transmission drive signal is the same from the phase signal;
(E) obtaining a representative value of the phase of the time zone;
(F) obtaining a phase difference between the ultrasonic receivers disposed in the adjacent positions;
(G) A position estimation process including a step of estimating the position of the ultrasonic transmission source from the positional relationship between the phase difference and the ultrasonic receiver is performed, and the phase difference is determined between adjacent ultrasonic receivers. Obtaining and the time zone are obtained independently for each ultrasonic receiver.

なお、この明細書において、「超音波」とは、周波数が20kHz以上の音波を意味する。   In this specification, “ultrasonic wave” means a sound wave having a frequency of 20 kHz or more.

本発明の追尾システムによれば、狭帯域で短い送信駆動信号を用いても高精度に位相差を計測することができる。このため、本発明によれば移動体の相対位置を高精度に計測して信頼性の高い追尾が可能な追尾システム、およびそれに用いられる自走体が得られる。本発明のシステムは、自走体の周囲に反射体が多く存在する場合に効果的である。また、本発明のシステムは、空気のゆらぎなどの環境変化が大きい状況において効果的である。   According to the tracking system of the present invention, a phase difference can be measured with high accuracy even when a short transmission drive signal is used in a narrow band. For this reason, according to this invention, the relative position of a mobile body is measured with high precision, and the tracking system which can track with high reliability and the self-propelled body used for it are obtained. The system of the present invention is effective when there are many reflectors around the self-propelled body. In addition, the system of the present invention is effective in a situation where environmental changes such as air fluctuation are large.

以下本発明の実施の形態について、例を挙げて説明する。   Hereinafter, embodiments of the present invention will be described with reference to examples.

本発明の追尾システムは、移動体に配置された超音波発信源と超音波発信源の位置を推定して超音波発信源を追尾する自走体とを含む。超音波発信源は、超音波送信装置を備える。自走体は4個の超音波受信装置を備える。超音波受信装置は帯域の狭い超音波受信器で構成され、すべて直線上に備え、そのうち2個は近接した位置に配置され、残りの2個は前記2個から離れた位置で近接して配置される。さらにこのシステムでは、以下のステップを含む位置推定処理が行われる。   The tracking system of the present invention includes an ultrasonic transmission source arranged on a moving body and a self-propelled body that estimates the position of the ultrasonic transmission source and tracks the ultrasonic transmission source. The ultrasonic transmission source includes an ultrasonic transmission device. The self-propelled body includes four ultrasonic receiving devices. The ultrasonic receiver is composed of an ultrasonic receiver with a narrow band, all provided on a straight line, two of which are arranged close to each other, and the other two are arranged close to each other at a position away from the two. Is done. Further, in this system, a position estimation process including the following steps is performed.

(a)移動体は、短いバースト超音波を超音波送信装置から送信する。周波数は単一とし、バースト超音波の長さは、各超音波受信器への到達時刻差による位相情報の時間的重なりの違いを考慮して長くする必要はない。   (A) The moving body transmits a short burst ultrasonic wave from the ultrasonic transmission device. The frequency is single, and the length of the burst ultrasonic wave does not need to be increased in consideration of the temporal overlap of phase information due to the arrival time difference to each ultrasonic receiver.

(b)自走体は、前記超音波を前記超音波受信装置で受信する。   (B) The self-propelled body receives the ultrasonic waves by the ultrasonic receiver.

(c)各超音波受信装置の受信信号から、位相信号を求める。位相信号は超音波送信器を駆動した周波数を使って求める。   (C) A phase signal is obtained from the received signal of each ultrasonic receiver. The phase signal is obtained using the frequency at which the ultrasonic transmitter is driven.

(d)前記位相信号から受信信号と送信駆動信号の周波数が同一である時間帯を決定する。位相信号の特徴から送信駆動信号と同じ周波数の位相情報を表している時間帯を抽出する。前記時間帯は受信装置ごと異なっていてもよい。   (D) A time zone in which the frequency of the reception signal and the transmission drive signal is the same is determined from the phase signal. A time zone representing phase information of the same frequency as the transmission drive signal is extracted from the characteristics of the phase signal. The said time slot | zone may differ for every receiver.

(e)前記時間帯の位相の代表値を求める。位相の代表値は前記時間帯の位相の平均値でもよいし、中央値でもよい。また、前記時間帯の位相のバラツキを評価して、位相の信頼性を評価してもよい。   (E) A representative value of the phase in the time zone is obtained. The representative value of the phase may be an average value of the phase in the time zone or a median value. Further, the phase reliability may be evaluated by evaluating the variation of the phase in the time zone.

(f)前記近接した位置に配置された超音波受信装置間での位相差を求める。位相差は前記時間帯の位相の代表値を比較して求める。   (F) The phase difference between the ultrasonic receivers arranged at the adjacent positions is obtained. The phase difference is obtained by comparing the representative values of the phase in the time zone.

(g)前記位相差と超音波受信器の位置関係から前記超音波発信源の位置を推定する。   (G) The position of the ultrasonic transmission source is estimated from the positional relationship between the phase difference and the ultrasonic receiver.

このような処理によって推定された超音波発信源の位置に基づき、自走体は、自走装置を制御して移動体を追尾する。なお、自走装置に特に限定はないが、たとえば、エンジンやモータなどの駆動装置と、それによって駆動される車輪とを備える。   Based on the position of the ultrasonic wave transmission source estimated by such processing, the self-propelled body tracks the moving body by controlling the self-propelled device. In addition, although there is no limitation in particular in a self-propelled apparatus, it is provided with drive devices, such as an engine and a motor, and the wheel driven by it, for example.

上記超音波送信装置は、超音波を送信するための装置であり、超音波送信器を含み、それを駆動するための送信回路をさらに含んでもよい。超音波受信装置は超音波受信器を含み、それを駆動するための受信回路をさらに含んでもよい。なお、自走体は、超音波受信器が近接して配置された2個の超音波受信装置を2組含む(たとえば、超音波受信器の中心間距離が8.5mm〜17mm)。さらにこの2組は、一定の距離を置いて配置される(たとえば、10cm〜1m程度)。近接して配置された2個の超音波受信装置を用いることによって、その位相差を求め、位相差より到達した超音波の方向を特定できる。そして一定の間隔をおいて配置された別の組の位相差と、2組の位置関係より超音波発信源までの距離を特定できる。その2組の超音波受信装置は、通常、お互いを結ぶ直線が床面とほぼ平行となるように配置される。   The ultrasonic transmission device is a device for transmitting ultrasonic waves, includes an ultrasonic transmitter, and may further include a transmission circuit for driving the ultrasonic transmitter. The ultrasonic receiver includes an ultrasonic receiver and may further include a receiving circuit for driving the ultrasonic receiver. The self-propelled body includes two sets of two ultrasonic receivers in which the ultrasonic receivers are arranged close to each other (for example, the distance between the centers of the ultrasonic receivers is 8.5 mm to 17 mm). Further, the two sets are arranged at a certain distance (for example, about 10 cm to 1 m). By using two ultrasonic receivers arranged close to each other, the phase difference can be obtained, and the direction of the ultrasonic wave that has reached can be identified from the phase difference. And the distance to an ultrasonic wave transmission source can be specified from the phase difference of another set arranged at a fixed interval and the positional relationship of two sets. The two sets of ultrasonic receivers are usually arranged such that the straight line connecting each other is substantially parallel to the floor surface.

本発明の追尾システムでは、移動体が人であり、自走体がカートであってもよい。このようなシステムは、工場、ショッピングセンター、空港、駅など、人とともに荷物を搬送する必要がある状況で使用できる。   In the tracking system of the present invention, the moving body may be a person and the self-propelled body may be a cart. Such a system can be used in situations such as factories, shopping centers, airports, stations, etc. where it is necessary to transport packages with people.

(実施の形態1)
実施形態1における追尾システムの構成を図1に模式的に示す。移動体(人)2には、超音波発信源20が配置されている。自走体1は、超音波発信源20の位置を推定し、推定された位置に基づいて移動体2を追尾する。自走体1は、超音波発信源20の位置を推定するための追尾装置10を備える。追尾装置10および超音波発信源20の構成を、図2に模式的に示す。
(Embodiment 1)
The configuration of the tracking system in the first embodiment is schematically shown in FIG. An ultrasonic transmission source 20 is disposed on the moving body (person) 2. The self-propelled body 1 estimates the position of the ultrasonic transmission source 20 and tracks the moving body 2 based on the estimated position. The self-propelled body 1 includes a tracking device 10 for estimating the position of the ultrasonic transmission source 20. The configurations of the tracking device 10 and the ultrasonic transmission source 20 are schematically shown in FIG.

追尾装置10は、超音波受信装置11を備える。超音波受信装置11は、4つの超音波受信器11a、11b、11cおよび11dと、それらに接続された受信回路11e、11f、11gおよび11hとを備える。超音波受信器11a、11b、11cおよび11dは、それらを結ぶ直線が床面とほぼ平行になるように一定の間隔をおいて配置される。それらの装置は、位相検出器12a、12b、12cおよび12dに接続される。また、受信回路11e、11f、11gまたは11hのいずれかひとつは、コンパレータ14に接続される。位相検出器12およびコンパレータ14は、演算処理装置(CPU)13に接続される。演算処理装置13は、所定のパラメータや測定された信号をA−D変換し、デジタルデータとして記憶するための記憶手段(メモリ)を内部に備えるか、あるいは外部の記憶装置に接続されている。A−D変換するためのA−Dコンバータのサンプリング周波数は、超音波W1の周波数よりも高いほうがよい。仮に超音波W1が40kHzの場合、200kHz〜1MHz程度でよい。演算処理装置13は、受信された超音波信号を用いて超音波発信源20の相対位置を推定する。また、演算処理装置13は、受信された超音波信号の位相信号の分析を行い、位相差演算に使用する位相信号の時間帯を決定する。   The tracking device 10 includes an ultrasonic receiving device 11. The ultrasonic receiver 11 includes four ultrasonic receivers 11a, 11b, 11c and 11d, and receiving circuits 11e, 11f, 11g and 11h connected to them. The ultrasonic receivers 11a, 11b, 11c, and 11d are arranged at regular intervals so that the straight line connecting them is substantially parallel to the floor surface. These devices are connected to phase detectors 12a, 12b, 12c and 12d. In addition, any one of the receiving circuits 11e, 11f, 11g, or 11h is connected to the comparator 14. The phase detector 12 and the comparator 14 are connected to an arithmetic processing unit (CPU) 13. The arithmetic processing unit 13 internally includes storage means (memory) for A / D converting predetermined parameters and measured signals and storing them as digital data, or is connected to an external storage device. The sampling frequency of the A / D converter for A / D conversion is preferably higher than the frequency of the ultrasonic wave W1. If the ultrasonic wave W1 is 40 kHz, it may be about 200 kHz to 1 MHz. The arithmetic processing unit 13 estimates the relative position of the ultrasonic transmission source 20 using the received ultrasonic signal. The arithmetic processing device 13 analyzes the phase signal of the received ultrasonic signal and determines the time zone of the phase signal used for the phase difference calculation.

超音波発信源20は、超音波送信装置21を備える。超音波送信装置21は、超音波送信器21aと送信回路21bとを備える。これらの装置は、演算処理装置22に接続される。   The ultrasonic transmission source 20 includes an ultrasonic transmission device 21. The ultrasonic transmission device 21 includes an ultrasonic transmitter 21a and a transmission circuit 21b. These devices are connected to the arithmetic processing unit 22.

演算処理装置22は、ある一定の周期で送信回路21bに対して送信駆動命令を与える。送信回路21bは送信駆動信号を発生し、超音波送信器21aから超音波W1が周囲環境に放射される。送信駆動信号はバースト波で、単一の周波数とする。波数は超音波送信器および超音波受信器の特性に依存するが、例えば超音波送信器および超音波受信器に共振周波数40kHz、帯域5〜10%程度のものを使用する場合、波数としては30波程度でよい。   The arithmetic processing unit 22 gives a transmission drive command to the transmission circuit 21b at a certain period. The transmission circuit 21b generates a transmission drive signal, and the ultrasonic wave W1 is radiated from the ultrasonic transmitter 21a to the surrounding environment. The transmission drive signal is a burst wave and has a single frequency. The wave number depends on the characteristics of the ultrasonic transmitter and the ultrasonic receiver. For example, when the ultrasonic transmitter and the ultrasonic receiver having a resonance frequency of 40 kHz and a bandwidth of about 5 to 10% are used, the wave number is 30. A wave is enough.

放射された超音波の一部は、自走体の超音波受信器11a、11b、11cおよび11dに到達する。前記一定の周期は、周囲に障害物がなければ、超音波受信装置11において到達した超音波が、次の周期に送信した超音波と重ならない程度(約3ms〜10ms)としてよい。ただし、図2に示すように、超音波を反射する物体3が追尾装置10(自走体1)の周囲に存在すると、物体3で反射された超音波W1は、超音波受信器11a、11b、11cおよび11dで受信される。すると到達した超音波W1が、超音波発信源20から直接伝搬してきたものか、物体3で反射したものであるのか区別ができなくなる。そこで到達した超音波追尾装置10が計測できる最大距離を5m、音速を340m/秒とすると、超音波発信源20から追尾装置10に超音波が到達するまでに約15ミリ秒かかる。この値に少し余裕をみて前記一定の周期は、約20ミリ秒程度とするのが望ましい。   A part of the emitted ultrasonic waves reaches the ultrasonic receivers 11a, 11b, 11c and 11d of the self-propelled body. If there is no obstacle in the surroundings, the fixed period may be such that the ultrasonic wave that arrives at the ultrasonic receiver 11 does not overlap with the ultrasonic wave transmitted in the next period (about 3 ms to 10 ms). However, as shown in FIG. 2, when the object 3 that reflects ultrasonic waves exists around the tracking device 10 (self-propelled body 1), the ultrasonic wave W1 reflected by the object 3 is converted into ultrasonic receivers 11a and 11b. , 11c and 11d. Then, it is impossible to distinguish whether the arrived ultrasonic wave W1 is directly propagated from the ultrasonic wave transmission source 20 or reflected by the object 3. If the maximum distance that can be measured by the reached ultrasonic tracking device 10 is 5 m and the sound velocity is 340 m / second, it takes about 15 milliseconds for the ultrasonic wave to reach the tracking device 10 from the ultrasonic transmission source 20. It is desirable that the certain period is about 20 milliseconds with a slight margin in this value.

超音波W1の周波数に特に限定はなく、測定環境に応じて好ましい周波数が選択される。移動体2が人である場合、通常の速度は時速4km程度であり、最高速度は時速6km程度(約1.6m/s)であると設定できる。その場合、自走体1の移動速度もほぼ人並みであればよく、追尾開始時の静止状態から自走体1が動き出す際の時間遅れ等を考慮すると、自走体1と移動体2との間の最大相対距離(測定限界)を5m〜10m程度に設定すれば、スムースな追尾動作が可能である。この測定限界と大気中における超音波の減衰特性などを考慮すると、使用する超音波の周波数としては、100kHz以下が適している。   The frequency of the ultrasonic wave W1 is not particularly limited, and a preferable frequency is selected according to the measurement environment. When the moving body 2 is a person, the normal speed can be set to about 4 km / h, and the maximum speed can be set to about 6 km / h (about 1.6 m / s). In that case, the traveling speed of the self-propelled vehicle 1 may be almost equal to the human body, and considering the time delay when the self-propelled vehicle 1 starts moving from the stationary state at the start of tracking, the self-propelled vehicle 1 and the mobile vehicle 2 If the maximum relative distance (measurement limit) is set to about 5 m to 10 m, a smooth tracking operation is possible. Considering this measurement limit and the attenuation characteristics of ultrasonic waves in the atmosphere, the frequency of ultrasonic waves to be used is suitably 100 kHz or less.

超音波送信器および超音波受信器としては、圧電セラミックのたわみ振動を用いた超音波送信器および超音波受信器、あるいはPVDF圧電高分子膜の超音波送信器および超音波受信器などが利用できる。   As an ultrasonic transmitter and an ultrasonic receiver, an ultrasonic transmitter and an ultrasonic receiver using a piezoelectric ceramic flexural vibration, or an PVDF piezoelectric polymer film ultrasonic transmitter and an ultrasonic receiver can be used. .

超音波受信装置11は、近接して配置された2つの超音波受信器11aおよび11bとこちらも近接して配置された2つの超音波受信器11cおよび11dを備える。   The ultrasonic receiving device 11 includes two ultrasonic receivers 11a and 11b arranged close to each other and two ultrasonic receivers 11c and 11d arranged close to each other.

2つの超音波受信器11aおよび11bの超音波の到達時間差より、超音波受信器11aおよび11bからの超音波発信源20の方位が算出できる。同様に2つの超音波受信器11cおよび11dの超音波の到達時間差より、超音波受信器11cおよび11dからの超音波発信源20の方位が算出できる。2つの方位が分かれば、追尾装置10に対する超音波発信源20の距離および方位を算出できる。超音波送信器21aとの位置関係の一例を図3に示す。   The direction of the ultrasonic transmission source 20 from the ultrasonic receivers 11a and 11b can be calculated from the difference between the arrival times of the ultrasonic waves of the two ultrasonic receivers 11a and 11b. Similarly, the direction of the ultrasonic transmission source 20 from the ultrasonic receivers 11c and 11d can be calculated from the difference in the arrival times of the ultrasonic waves of the two ultrasonic receivers 11c and 11d. If the two orientations are known, the distance and orientation of the ultrasonic transmission source 20 with respect to the tracking device 10 can be calculated. An example of the positional relationship with the ultrasonic transmitter 21a is shown in FIG.

図3において、超音波発信源20の超音波送信器21aと、自走体1の超音波受信器11aおよび11bと、超音波受信器11cおよび11dによって三角形が構成されている。超音波受信器11aと11bは、所定の距離aだけ離れて配置されている。超音波受信器11cと11dは、所定の距離aだけ離れて配置されている。超音波受信器11aおよび11bと、超音波受信器11cおよび11dとは、所定の距離Lだけ離されて配置されている。超音波送信器21aが超音波受信器11aと11bの中心から角度θ1の方向にあり、超音波送信器21aが超音波受信器11cと11dの中心から角度θ2の方向にあると仮定する。角度θ1およびθ2は、それぞれ、超音波の到達時間差と、空中の音速とを用いて推定される。これは十分遠い音源からの超音波を二つの超音波受信器で検出した時間差をΔT、超音波の音速をvとすると、二つの超音波受信器間の距離aを用いて、超音波送信器21aの方向を示す角度θ1およびθ2は、次式より求められることが知られている。   In FIG. 3, the ultrasonic transmitter 21a of the ultrasonic transmission source 20, the ultrasonic receivers 11a and 11b of the self-propelled body 1, and the ultrasonic receivers 11c and 11d form a triangle. The ultrasonic receivers 11a and 11b are arranged apart from each other by a predetermined distance a. The ultrasonic receivers 11c and 11d are arranged apart from each other by a predetermined distance a. The ultrasonic receivers 11a and 11b and the ultrasonic receivers 11c and 11d are arranged apart from each other by a predetermined distance L. It is assumed that the ultrasonic transmitter 21a is in the direction of angle θ1 from the center of the ultrasonic receivers 11a and 11b, and the ultrasonic transmitter 21a is in the direction of angle θ2 from the center of the ultrasonic receivers 11c and 11d. The angles θ1 and θ2 are estimated using the difference in arrival time of ultrasonic waves and the sound speed in the air, respectively. This is an ultrasonic transmitter using a distance a between two ultrasonic receivers, where ΔT is the time difference when ultrasonic waves from a sufficiently far sound source are detected by two ultrasonic receivers, and v is the sound velocity of the ultrasonic waves. It is known that the angles θ1 and θ2 indicating the direction of 21a can be obtained from the following equation.

Figure 2006317161
Figure 2006317161

超音波の到達時間差ΔTは、隣り合う超音波受信器間の位相差より算出される。仮に超音波が40kHzであると、1波長が25μs(=1/40kHz)であり、この位相2π(1波長)が25μsに相当することから、位相差を時間差に換算することができる。また、音速を340m/秒とすると、1波長は8.5mmであり、位相差と角度θ1およびθ2を1対1に対応させるためには、数式1より、aは、8.5mm以下にする必要がある。   The ultrasonic arrival time difference ΔT is calculated from the phase difference between adjacent ultrasonic receivers. If the ultrasonic wave is 40 kHz, one wavelength is 25 μs (= 1/40 kHz), and this phase 2π (one wavelength) corresponds to 25 μs. Therefore, the phase difference can be converted into a time difference. If the sound speed is 340 m / sec, one wavelength is 8.5 mm, and in order to make the phase difference and the angles θ1 and θ2 correspond one-to-one, a is set to 8.5 mm or less from Equation 1. There is a need.

角度θ1、θ2およびLが明らかになると、超音波送信器21aと、超音波受信器11aおよび11bと、超音波受信器11cおよび11dとによって形成される三角形は一義的に決まる。そのため、追尾装置10に対する超音波発信源20の距離および相対方位が、三角関数を用いて簡単に求められる。   When the angles θ1, θ2, and L are clarified, the triangle formed by the ultrasonic transmitter 21a, the ultrasonic receivers 11a and 11b, and the ultrasonic receivers 11c and 11d is uniquely determined. Therefore, the distance and relative orientation of the ultrasonic transmission source 20 with respect to the tracking device 10 can be easily obtained using a trigonometric function.

追尾装置10の動作の概略を図4のフローチャートに示す。追尾装置10が起動すると、演算処理装置13では超音波受信器11a、11b、11cおよび11dによって、超音波発信源20からの超音波W1が受信されたかどうかを判断し、超音波W1より位相情報を抽出する(S41)。S41の動作の詳細は後で述べる。抽出された位相情報を使って、超音波受信器11aと11bにおける位相情報の差および超音波受信器11cと11dにおける位相情報の差を演算し、数1を用いて超音波発信源20の方位を求める(S42)。そして図3に示した通り、超音波発信源20の方位および距離を求める(S43)。   An outline of the operation of the tracking device 10 is shown in the flowchart of FIG. When the tracking device 10 is activated, the arithmetic processing unit 13 determines whether or not the ultrasonic wave W1 from the ultrasonic wave transmission source 20 has been received by the ultrasonic wave receivers 11a, 11b, 11c, and 11d, and phase information from the ultrasonic wave W1. Is extracted (S41). Details of the operation of S41 will be described later. Using the extracted phase information, the difference in phase information in the ultrasonic receivers 11a and 11b and the difference in phase information in the ultrasonic receivers 11c and 11d are calculated, and the azimuth of the ultrasonic transmission source 20 is calculated using Equation 1. Is obtained (S42). Then, as shown in FIG. 3, the azimuth and distance of the ultrasonic transmission source 20 are obtained (S43).

S41の動作の概略を図5のフローチャートに示す。   An outline of the operation of S41 is shown in the flowchart of FIG.

追尾装置10が起動すると、演算処理装置13では超音波受信器11a、11b、11cおよび11dによって、超音波発信源20からの超音波W1が受信されたかどうかを判断する受信待ちモードになる。受信信号が一定レベルを超えると、受信ありと判断される(S51)。   When the tracking device 10 is activated, the arithmetic processing device 13 enters a reception waiting mode in which the ultrasonic receivers 11a, 11b, 11c, and 11d determine whether the ultrasonic wave W1 from the ultrasonic transmission source 20 has been received. If the received signal exceeds a certain level, it is determined that there is reception (S51).

受信信号の有無の判断およびそれに伴う到達時刻計測には、従来方式に用いられる受信信号の振幅に対してしきい値を設定し、しきい値を超えた場合に受信したと判断する方式や、各受信信号の包絡線検波を行い、検波波形に対してしきい値を設定し、しきい値を超えた場合に受信したと判断する方式や、各受信信号と送信駆動信号との相互相関処理を行い、相関のピーク値から判断する方式が適用できる。   In the determination of the presence or absence of the received signal and the arrival time measurement associated therewith, a threshold is set for the amplitude of the received signal used in the conventional method, and when it exceeds the threshold, it is determined that the signal has been received, Envelope detection of each received signal, setting a threshold for the detected waveform, and determining that the signal has been received when the threshold is exceeded, and cross-correlation between each received signal and the transmission drive signal And a method of judging from the peak value of the correlation can be applied.

受信待ちモードの間、位相検出器12の出力はA−D変換された後、演算処理装置13内にあるリング型のメモリに位相データとして蓄積される。   During the reception waiting mode, the output of the phase detector 12 is A / D converted and then stored as phase data in a ring memory in the arithmetic processing unit 13.

受信ありと判断された時刻の一定時間前から一定時間後までの前記位相データをメモリから読み出す(S52)。そして位相データが正方向に急激に変化した後、一定値をとり、また変化している範囲がメモリの何番から何番までかを記録する(S53)。そしてこの範囲を用いて、位相の平均値を求める(S54)。   The phase data from a predetermined time before and after a time determined to be received is read from the memory (S52). Then, after the phase data suddenly changes in the positive direction, it takes a constant value and records from what number to what number in the memory the changing range (S53). Then, using this range, the average value of the phases is obtained (S54).

図6に、超音波W1が追尾装置10に到達した波形と、その位相信号の一例を示す。図6(a)は、受信回路11eの出力波形61とコンパレータ14の基準信号63を示す。このコンパレータ14の基準信号63と出力波形61を比較し、出力波形61がコンパレータ14の基準信号63を超えた時点で受信信号ありと判断する。図6(c)は、受信回路11fの出力波形62を示す。   FIG. 6 shows an example of the waveform of the ultrasonic wave W1 reaching the tracking device 10 and its phase signal. FIG. 6A shows the output waveform 61 of the receiving circuit 11 e and the reference signal 63 of the comparator 14. The reference signal 63 of the comparator 14 is compared with the output waveform 61, and when the output waveform 61 exceeds the reference signal 63 of the comparator 14, it is determined that there is a received signal. FIG. 6C shows an output waveform 62 of the receiving circuit 11f.

図6(b)は、位相検出器12a後の位相信号64の一例を示す。図6(d)は、位相検出器12b後の位相信号65の一例を示す。前記受信信号ありと判断された時刻から、メモリから読み出す位相データの範囲66および67が決定される。   FIG. 6B shows an example of the phase signal 64 after the phase detector 12a. FIG. 6D shows an example of the phase signal 65 after the phase detector 12b. From the time when the received signal is determined to be present, the phase data ranges 66 and 67 to be read from the memory are determined.

次に、位相データの範囲66および67の中から、送信駆動信号と同じ周波数の位相情報を抽出する。これは超音波受信器の持つ共振周波数および、超音波受信信号の立ち上がり部の周波数は、送信駆動信号の周波数よりも低いので、送信駆動信号の周波数における位相は見かけ上徐々に大きくなるという性質を利用して送信駆動信号と同じ周波数の位相情報を示す時間帯68および時間帯69を抽出する。   Next, phase information having the same frequency as that of the transmission drive signal is extracted from the phase data ranges 66 and 67. This is because the resonance frequency of the ultrasonic receiver and the frequency of the rising edge of the ultrasonic reception signal are lower than the frequency of the transmission drive signal, so that the phase at the frequency of the transmission drive signal appears to gradually increase. Utilizing this, a time zone 68 and a time zone 69 indicating phase information having the same frequency as the transmission drive signal are extracted.

位相信号の中で、送信駆動信号と同じ周波数の位相情報がある領域は平坦である。位相の平坦部は周囲の雑音による干渉や、空気のゆらぎが大きかった場合に平坦部の平坦度が落ちる。平坦度が落ちることによって、そこから求める角度の精度は悪化する。そこで、位相がなるべく平坦な時間帯のみを抽出するようにしている。また、この時間帯の幅も受信信号ごとに最適な範囲に決定される。しかし平坦な時間帯が小さければそれだけデータの母数が減るため、精度は悪化する。このことを利用して、演算に用いた位相の平坦部の時間的長さや、位相の平坦度から、データの信頼度を求めてもよい。信頼度を用いることによって、信頼度が低い場合には繰り返し方位と距離を求めて平均化するなど、自走体1の制御において有効な情報となる。   In the phase signal, a region having phase information of the same frequency as that of the transmission drive signal is flat. In the flat part of the phase, the flatness of the flat part is lowered when interference due to ambient noise or air fluctuation is large. As the flatness is lowered, the accuracy of the angle obtained therefrom is deteriorated. Therefore, only a time zone in which the phase is as flat as possible is extracted. Further, the width of this time zone is also determined within an optimum range for each received signal. However, if the flat time zone is small, the data parameter decreases accordingly, and the accuracy deteriorates. By utilizing this fact, the reliability of data may be obtained from the time length of the flat portion of the phase used in the calculation or the flatness of the phase. By using the reliability, when the reliability is low, it becomes effective information in the control of the self-propelled body 1 such as repeatedly obtaining and averaging the azimuth and distance.

超音波受信器11aと11bは、空気のゆらぎによって超音波のバラツキの影響を少なくするためになるべく近接して配置されている。よって超音波の伝搬経路がほぼ等しい位置で受信しているため、伝搬経路中の空気のゆらぎや、超音波送信器21aの指向性による受信位置での波形の違いがほとんどなく、本発明の追尾システムは、位相差計測に適した条件を整えることができている。超音波受信器11cと11dも同様である。しかし超音波受信器11aと11bの間および超音波受信器11cと11dの間には個体バラツキ程度の違いが存在する。そのため超音波受信信号は異なってくる。よって位相信号についても同様に異なってくる。   The ultrasonic receivers 11a and 11b are arranged as close to each other as possible in order to reduce the influence of ultrasonic fluctuations due to air fluctuations. Therefore, since the ultrasonic wave propagation paths are received at substantially the same position, there is almost no difference in the waveform at the reception position due to the air fluctuation in the propagation path and the directivity of the ultrasonic transmitter 21a. The system can prepare conditions suitable for phase difference measurement. The same applies to the ultrasonic receivers 11c and 11d. However, there is a difference of individual variation between the ultrasonic receivers 11a and 11b and between the ultrasonic receivers 11c and 11d. Therefore, the ultrasonic reception signal is different. Therefore, the phase signal is similarly different.

位相信号は、超音波受信信号が信号の立ち上がり部では超音波受信器の共振周波数よりも低く、その後、送信駆動信号による強制的な振動により、送信駆動信号の周波数にて振動する。しかしその後は超音波受信器の持つ共振周波数による振動の影響が現れる。   The phase signal is lower than the resonance frequency of the ultrasonic receiver when the ultrasonic reception signal rises, and then vibrates at the frequency of the transmission drive signal due to forced vibration caused by the transmission drive signal. However, after that, the influence of vibration due to the resonance frequency of the ultrasonic receiver appears.

位相検出器は送信駆動信号と同じ周波数に対する位相を求めている。よって、受信信号の周波数が送信駆動信号と異なる場合には、位相に誤差を生じる。従来はこれを避けるために送信駆動信号を長くとり、さらに受信信号を狭帯域なバンドパスフィルタに通すことで信号を引き伸ばし、位相が安定している時間を長くすることで単純な位相の差分で精度が確保できるようにしていた。こうすることで、到達時刻差による位相信号の時間的ずれも吸収していた。しかし、送信駆動信号を長くしたり、受信信号を狭帯域なバンドパスフィルタに通したりすると、移動体2と自走体1の間に障害物3があるような場合に、超音波送信装置10からの超音波が障害物3に反射し、この信号が干渉する確率が大きくなってしまう。   The phase detector obtains the phase for the same frequency as the transmission drive signal. Therefore, when the frequency of the received signal is different from the transmission drive signal, an error occurs in the phase. Conventionally, in order to avoid this, the transmission drive signal is lengthened, and the received signal is passed through a narrow band-pass filter to stretch the signal, and the phase stabilization time is lengthened to make a simple phase difference. The accuracy was ensured. By doing so, the time shift of the phase signal due to the arrival time difference was absorbed. However, if the transmission drive signal is lengthened or the reception signal is passed through a narrow band-pass filter, the ultrasonic transmission device 10 can be used when there is an obstacle 3 between the mobile body 2 and the self-propelled body 1. Is reflected on the obstacle 3, and the probability that this signal interferes increases.

よって、本発明の追尾システムは、
(1)位相差を求める超音波受信器間の距離を短くすることで、空気のゆらぎの場所による違いの影響を受けにくく、変復調処理によって低い周波数の位相を用いる必要もない。
Therefore, the tracking system of the present invention is
(1) By shortening the distance between the ultrasonic receivers for obtaining the phase difference, it is difficult to be affected by the difference depending on the location of the air fluctuation, and it is not necessary to use a low-frequency phase by modulation / demodulation processing.

(2)変復調処理を使用しないので、狭帯域の超音波送受信器で実現可能である。   (2) Since modulation / demodulation processing is not used, this can be realized with a narrow-band ultrasonic transceiver.

(3)送信駆動信号の周波数にて振動している範囲を各超音波受信信号から独立に抽出するので、送信駆動信号は短くてよく、それによって障害物の多い環境においても干渉の影響を受けにくい。
という効果があり、良好な追尾特性を実現できる。
(3) Since the range oscillating at the frequency of the transmission drive signal is extracted independently from each ultrasonic reception signal, the transmission drive signal may be short, and it is affected by interference even in an environment with many obstacles. Hateful.
It is possible to realize a good tracking characteristic.

本発明の追尾システムは、短いバースト波より正確な位相情報を抽出する手段を有し、障害物の影響を軽減することができるため、鉄道駅や空港などの搬送用ロボット等として有用である。またスーパーやホームセンタなど量販店における買い物用カートなどの用途にも応用できる。   The tracking system according to the present invention has means for extracting accurate phase information from a short burst wave, and can reduce the influence of an obstacle. Therefore, the tracking system is useful as a transport robot in a railway station or an airport. It can also be used for shopping carts in mass retailers such as supermarkets and home centers.

本発明の追尾システムの概略を模式的に示す図The figure which shows the outline of the tracking system of this invention typically 本発明の追尾システムにおける追尾装置および超音波発信源の構成の一例を模式的に示す図The figure which shows typically an example of a structure of the tracking apparatus and ultrasonic transmission source in the tracking system of this invention 超音波発信源の位置を推定する方法の一例を模式的に示す図The figure which shows typically an example of the method of estimating the position of an ultrasonic transmission source 本発明の追尾システムにおける自走体側の処理の一例を示すフローチャートThe flowchart which shows an example of the process by the side of the self-propelled body in the tracking system of the present invention 図4のフローチャート内のS41の処理の詳細を示すフローチャートThe flowchart which shows the detail of the process of S41 in the flowchart of FIG. 本発明の追尾システムにおける波形解析の方法を模式的に示す図The figure which shows typically the method of the waveform analysis in the tracking system of this invention 超音波発信源の位置を推定する従来例を模式的に示す図The figure which shows typically the conventional example which estimates the position of an ultrasonic transmission source

符号の説明Explanation of symbols

1 自走体
2 移動体
3 物体(反射体)
10 追尾装置
11 超音波受信装置
12 位相検出器
13 演算処理装置
14 コンパレータ
20 超音波発信源
21 超音波送信装置
22 演算処理装置
61 超音波受信信号
62 超音波受信信号
63 コンパレータ14の基準信号
64 位相信号
65 位相信号
66 メモリに保存された位相信号
67 メモリに保存された位相信号
68 送信駆動信号と同じ周波数の位相信号
69 送信駆動信号と同じ周波数の位相信号
71 超音波送信装置
72 超音波受信装置
73 モータ
74 復調器
75 位相差検出器
76 送信信号発生器
77 電力増幅器
78 超音波発信源
79 受波装置
W1 超音波
1 Self-propelled object 2 Moving object 3 Object (reflector)
DESCRIPTION OF SYMBOLS 10 Tracking apparatus 11 Ultrasonic receiver 12 Phase detector 13 Computation processing apparatus 14 Comparator 20 Ultrasonic transmission source 21 Ultrasonic transmission apparatus 22 Arithmetic processing apparatus 61 Ultrasonic reception signal 62 Ultrasonic reception signal 63 Reference signal 64 of comparator 14 Phase Signal 65 Phase signal 66 Phase signal stored in memory 67 Phase signal stored in memory 68 Phase signal having the same frequency as the transmission drive signal 69 Phase signal having the same frequency as the transmission drive signal 71 Ultrasonic transmitter 72 Ultrasonic receiver 73 Motor 74 Demodulator 75 Phase difference detector 76 Transmission signal generator 77 Power amplifier 78 Ultrasonic transmission source 79 Receiving device W1 Ultrasonic

Claims (6)

移動体に取り付けられた超音波発信源からの超音波を、複数の超音波受信装置で受信し、受信した超音波の受信器間の位相差より、移動体の位置を推定して前記移動体を追尾する自走体とを含む追尾システムにおいて、前記超音波受信装置は、2個をユニットとして近接した位置に配置され、ユニットごとに求めた、受信した超音波の位相差と、複数のユニットの配置関係から移動体の位置を求めることを特徴とする追尾システム。 The ultrasonic wave from the ultrasonic wave transmission source attached to the moving body is received by a plurality of ultrasonic receiving devices, and the position of the moving body is estimated from the phase difference between the received ultrasonic wave receivers. In the tracking system including the self-propelled body that tracks the ultrasonic wave, the ultrasonic receiving device is disposed at a position close to each other as a unit, and the phase difference of the received ultrasonic wave obtained for each unit and a plurality of units A tracking system, characterized in that the position of a moving object is obtained from the arrangement relationship of. 移動体に取り付けられた超音波発信源からの超音波を、複数の超音波受信装置で受信し、受信した超音波の受信器間の位相差より、移動体の位置を推定して前記移動体を追尾する自走体とを含む追尾システムにおいて、超音波受信装置ごとに位相波形から抽出する位相値の時刻が異なってもよいことを特徴とする追尾システム。 The ultrasonic wave from the ultrasonic wave transmission source attached to the moving body is received by a plurality of ultrasonic receiving devices, and the position of the moving body is estimated from the phase difference between the received ultrasonic wave receivers. In the tracking system including the self-propelled body that tracks the phase, the time of the phase value extracted from the phase waveform may be different for each ultrasonic receiving device. 前記位相波形の時間帯を、位相波形の傾きが正である領域から傾きが小さくなった時点と、次の位相波形の傾きが変化する時点との間とすることを特徴とした請求項2に記載の追尾システム。 The time zone of the phase waveform is between a time point when the slope of the phase waveform is positive from a region where the slope of the phase waveform is positive and a time point when the slope of the next phase waveform changes. The tracking system described. 前記超音波受信装置の受信時刻差を超音波受信信号の位相差の平坦度を用いて、平坦であるほどデータの信頼性が高いと評価することを特徴とした請求項2から3に記載の追尾システム。 4. The reception time difference of the ultrasonic receiving apparatus is evaluated by using the flatness of the phase difference of the ultrasonic reception signal, and the higher the flatness, the higher the reliability of the data. Tracking system. 前記超音波受信装置の受信時刻差を超音波受信信号の位相差の平坦度を用いて、平坦である範囲が大きいほどデータの信頼性が高いと評価することを特徴とした請求項2から3に記載の追尾システム。 4. The reception time difference of the ultrasonic receiving apparatus is evaluated by using the flatness of the phase difference of the ultrasonic reception signal, and it is evaluated that the reliability of the data is higher as the flat range is larger. Tracking system described in. 移動体に取り付けられた超音波発信源からの超音波を、複数の超音波受信装置で受信し、受信した超音波の受信器間の位相差より、移動体の位置を推定して前記移動体を追尾する自走体とを含む追尾システムにおいて、前記超音波受信装置は、2個をユニットとして近接した位置に配置され、ユニットごとに異なってもよい時間帯より求めた、受信した超音波の位相差と、複数のユニットの配置関係から移動体の位置を求めることを特徴とする請求項1から5に記載の追尾システム。 The ultrasonic wave from the ultrasonic wave transmission source attached to the moving body is received by a plurality of ultrasonic receiving devices, and the position of the moving body is estimated from the phase difference between the received ultrasonic wave receivers. In the tracking system including the self-propelled body that tracks the ultrasonic wave, the ultrasonic receiving device is disposed at a position close to each other as a unit, and the received ultrasonic wave is obtained from a time zone that may be different for each unit. 6. The tracking system according to claim 1, wherein the position of the moving body is obtained from the phase difference and the arrangement relationship of the plurality of units.
JP2005137008A 2005-05-10 2005-05-10 Tracking system Pending JP2006317161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005137008A JP2006317161A (en) 2005-05-10 2005-05-10 Tracking system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005137008A JP2006317161A (en) 2005-05-10 2005-05-10 Tracking system

Publications (1)

Publication Number Publication Date
JP2006317161A true JP2006317161A (en) 2006-11-24

Family

ID=37537985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137008A Pending JP2006317161A (en) 2005-05-10 2005-05-10 Tracking system

Country Status (1)

Country Link
JP (1) JP2006317161A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127663A (en) * 2005-01-12 2007-05-24 Matsushita Electric Works Ltd Flow line measuring system
CN105182757A (en) * 2015-06-05 2015-12-23 普天智能照明研究院有限公司 Mobile intelligent housekeeper robot control method
CN105891774A (en) * 2016-03-29 2016-08-24 北京九星智元科技有限公司 Dynamic tracking positioning system and method for robot dolly
WO2023106237A1 (en) * 2021-12-06 2023-06-15 徹 石井 Spatial position calculation device
WO2024082450A1 (en) * 2022-10-21 2024-04-25 苏州触达信息技术有限公司 Ultrasonic loss-prevention tracker and system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127663A (en) * 2005-01-12 2007-05-24 Matsushita Electric Works Ltd Flow line measuring system
JP4569564B2 (en) * 2005-01-12 2010-10-27 パナソニック電工株式会社 Flow line measurement system
CN105182757A (en) * 2015-06-05 2015-12-23 普天智能照明研究院有限公司 Mobile intelligent housekeeper robot control method
CN105891774A (en) * 2016-03-29 2016-08-24 北京九星智元科技有限公司 Dynamic tracking positioning system and method for robot dolly
WO2023106237A1 (en) * 2021-12-06 2023-06-15 徹 石井 Spatial position calculation device
WO2024082450A1 (en) * 2022-10-21 2024-04-25 苏州触达信息技术有限公司 Ultrasonic loss-prevention tracker and system

Similar Documents

Publication Publication Date Title
US8949012B2 (en) Automated multi-vehicle position, orientation and identification system and method
US7363125B2 (en) Tracking system and autonomous mobile unit
US9058039B2 (en) Method and apparatus for reckoning position of moving robot
KR102252251B1 (en) Distance measurement and positioning system and method using it
US20080018879A1 (en) Beacon to measure distance, positioning system using the same, and method of measuring distance
US20110026364A1 (en) Apparatus and method for estimating position using ultrasonic signals
JP2006317161A (en) Tracking system
Lian et al. Echospot: Spotting your locations via acoustic sensing
CN112835045A (en) Radar detection method and device, storage medium and electronic equipment
CN108267740B (en) Information processing method, ultrasonic device, mobile device, and storage medium
WO2019239983A1 (en) Propagation environment recognition method and propagation environment recognition device
JP5103793B2 (en) Obstacle detection device and position identification method
JP4863679B2 (en) Position measuring device
JP2006214992A (en) Tracking system and self-traveling body used therefor
KR20160057533A (en) Nosie detecting device of ultrasonic sensor for vehicle and noise detecting method thereof
KR102075427B1 (en) Wireless inducememt system for driving vehicle, auto driving apparatus and driving method thereof
CA2773363C (en) An automated multi-vehicle position, orientation and identification system and method
KR100752584B1 (en) Method of correcting distance errors
JPH11231039A (en) Multi-user underwater positioning device
EP1779136B1 (en) System and device used to automatically determine the position of an entity with respect to two or more reference entities in real time
JP2007101295A (en) Tracking system and self-propelled body
WO2016047204A1 (en) Ultrasonic detection device
JPH0915328A (en) Vehicle-borne measuring equipment
WO2023282095A1 (en) Object detection system and object detection device
JP3045332B2 (en) Moving object speed detector