JP2005352707A - Self-travelling cleaner - Google Patents

Self-travelling cleaner Download PDF

Info

Publication number
JP2005352707A
JP2005352707A JP2004171985A JP2004171985A JP2005352707A JP 2005352707 A JP2005352707 A JP 2005352707A JP 2004171985 A JP2004171985 A JP 2004171985A JP 2004171985 A JP2004171985 A JP 2004171985A JP 2005352707 A JP2005352707 A JP 2005352707A
Authority
JP
Japan
Prior art keywords
travel
wall
determination
obstacle
random
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004171985A
Other languages
Japanese (ja)
Other versions
JP4163150B2 (en
Inventor
Yuko Okada
祐子 岡田
Saku Egawa
索 柄川
Ritsu Teramoto
律 寺本
Minoru Arai
穣 荒井
Atsushi Koseki
篤志 小関
Yasuhiro Asa
康博 朝
Hirobumi Tanaka
博文 田中
Takuya Kawabe
拓也 川邊
Taiji Tajima
泰治 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2004171985A priority Critical patent/JP4163150B2/en
Publication of JP2005352707A publication Critical patent/JP2005352707A/en
Application granted granted Critical
Publication of JP4163150B2 publication Critical patent/JP4163150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electric Suction Cleaners (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self-travelling cleaner of which travelling is appropriately selected between a regular travelling mode and a random travelling mode depending on the situations of a room to be cleaned. <P>SOLUTION: The self-travelling cleaner that cleans a surface of a floor of the space to be cleaned while self-travelling comprises a regular travelling mode generating means 8 that generates a regular travelling mode for enabling travelling along a predetermined travelling course, a random travelling mode generating means 9 that generates a random travelling mode for enabling changing travelling directions randomly, a switching device 10 that provides respective outputs selectively from the regular travelling mode generating means and the random travelling mode generating means to a travelling mechanism, and a one round along a wall determination means 6 that determines success or failure of travelling one round along a wall, that is, travelling one round along a wall surface in the space to be cleaned. The cleaner is first made to make a trial of the travelling one round along a wall, of which success or failure is determined by the one round along a wall determination means 6. According to the result, the cleaner is made to selectively implement regular travelling and random travelling. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、掃除対象空間の床面上を自走しながら掃除を行う自走式掃除機に関する。   The present invention relates to a self-propelled cleaner that performs cleaning while self-propelled on a floor surface of a space to be cleaned.

自走式掃除機の走行様式には規則走行とランダム走行がある。規則走行は、予め定められた走行経路に従って掃除対象空間(掃除対象の部屋)の床面上を満遍なく走行する走行様式であり、部屋の形状寸法に応じて定まる走行時間または走行距離だけ規則的な走行を行わせることで掃除の完了とする。一方、ランダム走行は、掃除対象の部屋における壁面や障害物に接触しあるいは接触しそうになると、それらからランダムな角度方向に反射するように走行方向を変化させることを繰り返しながら部屋の床面上を走行する走行様式であり、規則走行の場合のような掃除完了の基準がないため、適宜に設定される走行時間または走行距離だけ走行を行わせることで掃除完了とする。   There are regular and random driving modes for self-propelled cleaners. Regular travel is a travel mode in which the vehicle travels uniformly on the floor of the space to be cleaned (the room to be cleaned) according to a predetermined travel route, and is regular only for the travel time or travel distance determined according to the shape and dimensions of the room. Cleaning is completed by running. On the other hand, in the case of random running, when a person touches or is about to touch a wall or an obstacle in the room to be cleaned, the running direction is repeatedly changed so as to be reflected in a random angle direction from the room floor surface. Since this is a traveling mode and there is no standard for completion of cleaning as in regular traveling, the cleaning is completed by traveling for a travel time or travel distance set as appropriate.

上記のような規則走行を行わせるには、部屋の形状寸法に応じた掃除完了までの走行様式を設定する必要がある。これについては、部屋の3次元形状データを予め取得し、そのデータに基づいて走行様式を生成する方法が考えられる。しかし部屋の3次元形状データを作成するには手間がかかり、またデータ量が多いなどの問題もあり、あまり現実的ではない。これに対して、部屋の壁面を基準とし、初めに部屋の壁面に沿って自走式掃除機を一周させることで部屋の形状寸法を取得し、それから壁沿い一周走行で得られた部屋の形状寸法に基づいて規則走行を行わせる方法(例えば特許文献1)は、より現実的である。   In order to perform the regular traveling as described above, it is necessary to set a traveling manner until the completion of cleaning according to the shape and dimension of the room. For this, it is possible to obtain a three-dimensional shape data of a room in advance and generate a driving style based on the data. However, it takes time and effort to create the three-dimensional shape data of the room, and there are problems such as a large amount of data, which is not practical. On the other hand, based on the wall surface of the room, the shape of the room is obtained by first making a round of the self-propelled vacuum cleaner along the wall surface of the room, and then the shape of the room obtained by traveling around the wall A method (for example, Patent Document 1) for performing regular traveling based on the dimensions is more realistic.

特開平5−46239号公報Japanese Patent Laid-Open No. 5-46239

規則走行とランダム走行を掃除の効率からみると、ランダム走行では重複して掃除する部分が発生する可能性が高いことから、規則走行のほうが優れているといえる。ただ、規則走行には一つの問題がある。すなわち規則走行による場合、上記のように、まず掃除対象の部屋の壁面に沿って自走式掃除機を一周させることで部屋の形状寸法を取得し、それから規則的な走行を行わせる方法がより現実的である。しかしこの場合、部屋の壁面などを検知するために自走式掃除機に設けられているセンサの累積誤差などの要因あるいは部屋を仕切るドアが開いていてそこから自走式掃除機が部屋の外に逸走するなどすることで、壁沿い一周走行を完結しない事態が発生し得る。また、掃除対象の部屋の内部構造が複雑であると壁面沿い一周を完結するのに多大な時間を要する事態もあり得る。そしてこのような事態となった場合、現実的には壁沿い一周走行後の規則走行を行うことができず、掃除を中断せざるを得なくなる。   From the viewpoint of the efficiency of cleaning between regular running and random running, it can be said that regular running is better because random running is more likely to have duplicate cleaning parts. However, there is one problem with regular driving. That is, in the case of regular running, as described above, first, the self-propelled vacuum cleaner makes a round along the wall surface of the room to be cleaned, and the shape and dimensions of the room are acquired. Realistic. However, in this case, factors such as the accumulated error of sensors provided in the self-propelled vacuum cleaner to detect the wall surface of the room, etc., or the door that partitions the room is open and the self-propelled vacuum cleaner is outside the room. If you run away, you may not be able to complete the round trip along the wall. Further, if the internal structure of the room to be cleaned is complicated, it may take a long time to complete one round along the wall surface. In such a situation, in reality, regular travel after traveling around the wall cannot be performed, and cleaning must be interrupted.

そこで、掃除対象の部屋の状況に応じて規則走行とランダム走行を適切に使い分けできるようにすることにより、できるだけ効率よく掃除できるようにすることが望まれる。またランダム走行については上記のような掃除効率の問題があり、重複掃除部分をできるだけ発生させないようにして掃除効率を高めることが望まれる。またランダム走行には掃除効率の問題の他に、掃除し残し部分を発生させ易いという問題もある。すなわち、例えば掃除対象の部屋に設置されている家具などの障害物に凹部がある場合に、その凹部の角でランダムな角度方向に反射してしまって凹部の内側に入り込めなくなることにより凹部の内側が掃除し残しになる可能性があるという問題であり、こうした掃除し残しを有効に防止できるようにすることが望まれる。   Therefore, it is desired that cleaning can be performed as efficiently as possible by appropriately using regular driving and random driving depending on the situation of the room to be cleaned. In addition, there is a problem of the cleaning efficiency as described above for the random running, and it is desired to improve the cleaning efficiency by generating as few overlapping cleaning portions as possible. In addition to the problem of cleaning efficiency, there is also a problem that it is easy to generate uncleaned parts in random running. That is, for example, when there is a recess in an obstacle such as furniture installed in the room to be cleaned, it is reflected in a random angle direction at the corner of the recess and cannot enter the interior of the recess. There is a possibility that the inside may be left uncleaned, and it is desired to effectively prevent such uncleaned residue.

本発明は以上のような事情を背景になされたものであり、掃除対象の部屋の状況に応じて規則走行とランダム走行を適切に使い分ける走行制御を可能とする自走式掃除機の提供を目的とし、またランダム走行における掃除し残しを有効に防止できるようにした自走式掃除機の提供を目的としている。   The present invention has been made in the background of the circumstances as described above, and it is an object of the present invention to provide a self-propelled cleaner that enables traveling control to properly use regular traveling and random traveling according to the condition of a room to be cleaned. In addition, an object of the present invention is to provide a self-propelled cleaner that can effectively prevent unclean leftovers in random running.

上記目的のために本発明では、掃除対象空間の床面上を走行機構により自走しながら掃除を行う自走式掃除機において、予め定められた走行経路に従って走行を行わせる規則走行様式を生成する規則走行生成手段、走行方向をランダムに変化させる走行を行わせるランダム走行様式を生成するランダム走行生成手段、前記規則走行生成手段と前記ランダム走行生成手段それぞれからの出力を前記走行機構に選択的に出力する切替器、および前記掃除対象空間をその壁面に沿って一周する壁沿い一周走行の成否を判定する壁沿い一周判定手段を備え、そして前記壁沿い一周走行をまず試行させてその成否を前記壁沿い一周判定手段で判定させ、その結果に応じ、前記壁沿い一周走行が成功であった場合には前記切替器により前記規則走行生成手段からの出力を前記走行機構へ出力して前記規則走行様式で走行を行わせ、前記壁沿い一周走行が不成功であった場合には前記切替器により前記ランダム走行生成手段からの出力を前記走行機構へ出力して前記ランダム走行様式で走行を行わせるようにされていることを特徴としている。   For the above purpose, in the present invention, in a self-propelled cleaner that performs cleaning while traveling on the floor surface of the space to be cleaned by a traveling mechanism, a regular traveling mode is generated that allows traveling according to a predetermined traveling route. Regular travel generating means, random travel generating means for generating a random travel mode for performing travel in which the travel direction is changed at random, and outputs from the regular travel generating means and the random travel generating means are selectively transmitted to the travel mechanism. And a switching means for outputting to the wall, and means for determining the success or failure of the one-round traveling along the wall that goes around the wall to be cleaned along the wall surface. The round trip along the wall is determined by the means, and according to the result, when the round trip along the wall is successful, the switch generates the regular run generation To output the output from the random travel generation means by the switch when the round travel along the wall is unsuccessful. It outputs to a mechanism and it is made to drive | work by the said random driving | running | working mode, It is characterized by the above-mentioned.

また本発明では上記のような自走式掃除機について、前記壁沿い一周判定手段は、走行開始時点からの走行の経過時間に基づいて壁沿い一周走行の成否を判定する第1の判定方式、走行開始時点からの回転方向角を予め設定の基準回転角度αと比較してなす判定と走行開始時点からの走行距離を予め設定の基準走行距離と比較してなす判定とを組み合わせて壁沿い一周走行の成否を判定する第2の判定方式、および走行中の現在位置と走行開始位置との間の距離に基づく判定と走行開始時点からの回転方向角を前記基準回転角度αよりも大きく予め設定の基準回転角度βと比較してなす判定、それに走行開始時点からの走行距離を予め設定の基準走行距離と比較してなす判定とを組み合わせて壁沿い一周走行の成否を判定する第3の判定方式の何れか一つまたはこれら各判定方式の組み合わせを含むものとしている。   Further, in the present invention, for the self-propelled cleaner as described above, the first determination method along the wall determines the success or failure of the one-round traveling along the wall based on the elapsed time from the start of traveling. A round trip along the wall combining the determination made by comparing the rotation direction angle from the start of travel with a preset reference rotation angle α and the determination made by comparing the travel distance from the start of travel with a preset reference travel distance Second determination method for determining success or failure of travel, determination based on the distance between the current position during travel and the travel start position, and a rotation direction angle from the travel start time are set in advance larger than the reference rotation angle α. The third determination for determining the success or failure of the one-round travel along the wall by combining the determination made by comparing with the reference rotation angle β and the determination made by comparing the travel distance from the travel start time with a preset reference travel distance. Formula One or are intended to include combinations of each of these determination methods or Re.

また本発明では上記のような自走式掃除機について、前記ランダム走行に際してランダムな走行方向転換を生じさせる障害物に対して当該障害物の周面に倣うように走行を行わせるならい走行様式を生成するならい走行生成手段を備えるとともに、前記障害物に対する既通過と未通過を判定する既通過/未通過判定手段を備え、前記既通過/未通過判定手段で未通過と判定された障害物に対しては前記ならい走行生成手段からの出力を前記走行機構へ出力して前記ならい走行様式で走行を行わせるようにしている。   Further, in the present invention, for the self-propelled cleaner as described above, a traveling mode that causes the obstacle to cause a random traveling direction change at the time of the random traveling so as to follow the peripheral surface of the obstacle is used. In addition to the travel generation means that is to be generated, the vehicle is provided with a passage / non-passage determination means that determines whether the obstacle has already passed and has not passed, and the obstacle that has been determined not to pass by the passage / non-passage determination means. On the other hand, the output from the follow travel generating means is output to the travel mechanism so as to travel in the follow travel mode.

また本発明では上記のような自走式掃除機について、前記既通過/未通過判定手段は、前記障害物に関して作成される地図情報を用いて前記障害物に関する既通過/未通過の判定を行う判定方式、および走行中に検出した前記障害物に関して当該障害物を中心にして撮像して得られる周囲画像の比較で前記障害物に関する既通過/未通過の判定を行う判定方式の何れか一つまたはこれら各判定方式の組み合わせを含むものとしている。   Further, in the present invention, for the self-propelled cleaner as described above, the already passed / not-passed determining means performs the passed / not-passed determination regarding the obstacle using the map information created for the obstacle. Any one of a determination method and a determination method for determining whether the obstacle has passed or not passed by comparing surrounding images obtained by imaging the obstacle with the obstacle as a center. Alternatively, a combination of these determination methods is included.

本発明では、まず壁沿い一周走行を試行させ、その成否を所定の判定方式で判定することで掃除対象の部屋が規則走行に適しているか否かを判定し、その結果に応じて規則走行とランダム走行を選択して掃除をさせるようにしている。このため本発明によれば、掃除対象の部屋の状況に応じて規則走行とランダム走行を適切に使い分ける走行制御が可能となり、より効率的に掃除を行えるようになる。   In the present invention, first, a round trip along the wall is tried, and whether or not the room to be cleaned is suitable for regular running is determined by determining the success or failure by a predetermined determination method. Random driving is selected for cleaning. For this reason, according to the present invention, it is possible to perform traveling control that properly uses regular traveling and random traveling according to the state of the room to be cleaned, and it is possible to perform cleaning more efficiently.

また本発明では、ランダム走行に際して障害物に関する既通過/未通過の判定を行い、未通過と判定された障害物に対してのみ障害物の凹部にまで確実に入り込んで掃除することのできるならい走行を行わせるようにしている。このため本発明によれば、ランダム走行における掃除し残しを有効に防止でき、しかも掃除の重複も有効に避けて掃除の効率を高めることができる。   Also, in the present invention, it is determined whether or not the obstacle has been passed / not passed during random running, and only the obstacle that has been judged as not passing can be surely entered into the recess of the obstacle and cleaned. I am trying to do. For this reason, according to the present invention, it is possible to effectively prevent uncleaned leftovers in random running, and to effectively avoid the overlap of cleaning and increase the efficiency of cleaning.

以下、本発明を実施する上で好ましい形態について説明する。図1に、第1の実施形態による自走式掃除機における走行制御系の構成をブロック図にして示す。なお自走式掃除機は、吸引により掃除を行う吸引掃除機構系や自走のための走行機構系などの機構要素を備えているが、それらには周知の構成を用いることができる。したがって以下ではそれらについての説明は省略している。   Hereinafter, preferred embodiments for carrying out the present invention will be described. FIG. 1 is a block diagram showing the configuration of a travel control system in the self-propelled cleaner according to the first embodiment. The self-propelled cleaner includes mechanical elements such as a suction cleaning mechanism system for cleaning by suction and a traveling mechanism system for self-propulsion, and a known configuration can be used for them. Therefore, description thereof is omitted below.

走行制御系は、位置/方向角計測手段1、現在位置/方向角演算手段2、時間計測手段3、壁沿い一周判定手段6、走行経路記憶手段7、規則走行生成手段8、ランダム走行生成手段9および切替器10を備えている。   The travel control system includes a position / direction angle measuring means 1, a current position / direction angle calculating means 2, a time measuring means 3, a wall-around round determining means 6, a travel route storage means 7, a regular travel generating means 8, and a random travel generating means. 9 and the switch 10 are provided.

位置/方向角計測手段1は、例えば走行機構系の走行用モータに取り付けられるエンコーダが用いられる位置計測手段と、例えば自走式掃除機に取り付けられるジャイロセンサが用いられる方向角計測手段を組み合わせて構成されており、自走式掃除機の走行に従ってその位置と走行方向角の検出信号を発生する。現在位置/方向角演算手段2は、位置/方向角計測手段1で検出した自走式掃除機の位置と方向角の検出データを受け取り、自走式掃除機の現在位置と方向角を演算する。時間計測手段3は、自走式掃除機が走行を開始した時点からの走行時間を累積的に計測する。壁沿い一周判定手段6は、現在位置/方向角演算手段2、時間計測手段3および走行経路記憶手段7それぞれからの出力を受け、後述するような掃除対象の部屋の壁面に沿う自走式掃除機の壁沿い一周走行の成否を判定する。走行経路記憶手段7は、時間計測手段3の出力と現在位置/方向角演算手段2から出力される現在位置/方向角とから、自走式掃除機の位置/方向角の時系列の値を記憶する。規則走行生成手段8は、自走式掃除機を規則走行様式で走行させるためのサーボ指令値を生成する。ランダム走行生成手段9は、自走式掃除機をランダム走行様式で走行させるためのサーボ指令値を生成する。切替器10は、サーボ駆動系11に出力するサーボ指令値の切り替えを行う。すなわち規則走行生成手段8が生成する規則走行のサーボ指令値またはランダム走行生成手段9が生成するランダム走行のサーボ指令値を壁沿い一周判定手段6による判定結果に応じて切り替えてサーボ駆動系11に出力し、これを受けたサーボ駆動系11による制御の下で走行機構系12が規則走行またはランダム走行を自走式掃除機になさせる。   The position / direction angle measuring means 1 is a combination of a position measuring means using an encoder attached to a traveling motor of a traveling mechanism system and a direction angle measuring means using a gyro sensor attached to a self-propelled cleaner, for example. According to the traveling of the self-propelled cleaner, a detection signal of its position and traveling direction angle is generated. The current position / direction angle calculation means 2 receives the detection data of the position and direction angle of the self-propelled cleaner detected by the position / direction angle measurement means 1, and calculates the current position and direction angle of the self-propelled cleaner. . The time measuring means 3 cumulatively measures the traveling time from the time when the self-propelled cleaner starts traveling. The round-around-around determination means 6 receives outputs from the current position / direction angle calculation means 2, the time measurement means 3 and the travel route storage means 7, and performs self-propelled cleaning along the wall surface of the room to be cleaned as described later. The success or failure of the round trip along the aircraft wall is judged. The travel route storage means 7 obtains the time series value of the position / direction angle of the self-propelled cleaner from the output of the time measurement means 3 and the current position / direction angle output from the current position / direction angle calculation means 2. Remember. The regular travel generation means 8 generates a servo command value for causing the self-propelled cleaner to travel in the regular travel mode. The random travel generation means 9 generates a servo command value for causing the self-propelled cleaner to travel in a random travel mode. The switch 10 switches the servo command value output to the servo drive system 11. That is, the servo command value for the regular travel generated by the regular travel generation means 8 or the servo command value for the random travel generated by the random travel generation means 9 is switched according to the determination result by the one-round determination means 6 along the wall to the servo drive system 11. The traveling mechanism system 12 causes the self-propelled cleaner to perform regular traveling or random traveling under the control of the servo drive system 11 that receives the output.

図2に、四角形の部屋における規則走行とランダム走行それぞれの走行パターンの例を示す。図2のaが規則走行の例で、この例の規則走行は、部屋の壁に平行する方向での直線走行と90度の方向転換の組み合わせによるジグザグ的な折り返しを規則的に繰り返すような走行パターンで予め定められた走行経路で走行するようになっている。このような規則走行の場合では、部屋の形状寸法に応じて定まる走行時間または走行距離だけ規則的な走行を行わせることで自走式掃除機が掃除開始の始点に重なる位置ないし始点のすぐ近くの位置の終点に戻る状態となって掃除の完了となる。一方、図2のbは、ランダム走行の例である。ランダム走行では、掃除対象の部屋における壁面や障害物に接触しあるいは接触しそうになると、それらからランダムな角度方向に反射するように走行方向を転換させることを繰り返しながら部屋の床面上を走行することになる。このようなランダム走行では、適宜に設定される走行時間または走行距離だけ走行し終えた位置が終点となって掃除完了となる。   FIG. 2 shows an example of traveling patterns for regular traveling and random traveling in a rectangular room. FIG. 2a shows an example of regular running. In this example, regular running is a run that regularly repeats zigzag wrapping by a combination of straight running in the direction parallel to the wall of the room and 90 ° direction change. The vehicle travels along a travel route predetermined by the pattern. In the case of such regular driving, the self-propelled vacuum cleaner overlaps the starting point of the cleaning start or close to the starting point by performing regular driving for the driving time or driving distance determined according to the shape and dimension of the room. It will be in the state which returns to the end point of the position of, and cleaning is completed. On the other hand, b in FIG. 2 is an example of random running. In random running, when you touch or are about to touch a wall or obstacle in the room to be cleaned, you run on the floor of the room repeatedly changing the direction of travel so that it reflects in a random angular direction. It will be. In such random travel, the position where the travel is completed for the travel time or travel distance set appropriately is the end point and the cleaning is completed.

次に、壁沿い一周判定手段6による壁沿い一周走行の成否判定について説明する。図3に壁沿い一周走行の成否判定における処理の流れを示す。壁沿い一周走行とは、掃除対象の部屋をその壁に沿って一周するように走行させる走行様式である。ただし、部屋の壁に沿って固定的に設置されている家具などがある場合には、この家具などの外周面も壁沿い一周走行における「部屋の壁」に含まれるものとする。このような壁沿い一周走行の成否判定には第1〜第3の判定方式がある。第1〜第3の判定は、いずれもまず壁沿い一周走行の不成功を判定し、不成功でない場合には成功であると判定する論理をとっており、これらのいずれか一つまたは組み合わせで壁沿い一周走行の成否判定がなされる。   Next, the success / failure determination of the round trip along the wall by the round trip judgment means 6 along the wall will be described. FIG. 3 shows the flow of processing in the success / failure determination of the one-round travel along the wall. The one-round traveling along the wall is a traveling mode in which the room to be cleaned travels around the wall along the wall. However, when there is furniture or the like that is fixedly installed along the wall of the room, the outer peripheral surface of the furniture or the like is also included in the “room wall” in the round traveling along the wall. There are first to third determination methods for determining whether or not the vehicle travels along the wall. Each of the first to third determinations is based on the logic of first determining unsuccessful one-round travel along the wall and determining successful if not unsuccessful. The success / failure judgment of the round trip along the wall is made.

第1の判定は、判定ブロック(処理ステップ)101で行う。判定ブロック101では、走行開始時点からの走行の経過時間に基づいて判定処理を行う。具体的には時間計測手段3により走行開始時点からの経過時間をカウントし、その経過時間が一定値つまり予め部屋の大きさに応じて壁沿い一周走行に要するものとして設定してある基準時間以上である場合には、壁沿い一周走行に必要なだけ走行したはずなのに未だ走行しているということで、壁沿い一周走行に成功しなかたものとし、一周判定を否とする。壁沿い一周判定手段6が一周判定を否とした場合には、切替器10がランダム走行生成手段9からのサーボ指令値をサーボ駆動系11に出力させ、これによって自走式掃除機はランダム走行により部屋の掃除を行う。一方、経過時間が基準時間を越えていなければ、壁沿い一周走行が不成功ではないので、一周判定を成とする。そして第1の判定だけによる場合には、この一周判定成をもとに切替器10が規則走行生成手段8からのサーボ指令値をサーボ駆動系11に出力させ、これによって自走式掃除機は規則走行により部屋の掃除を行う。   The first determination is made in a determination block (processing step) 101. In the determination block 101, a determination process is performed based on the elapsed time of travel from the travel start time. Specifically, the elapsed time from the travel start time is counted by the time measuring means 3, and the elapsed time is a fixed value, that is, a reference time which is set in advance as required for one round travel along the wall according to the size of the room. In this case, it is assumed that the vehicle has traveled as much as necessary to travel around the wall, but has not yet succeeded in traveling around the wall. When the round turn along the wall judging means 6 rejects the round turn judgment, the switch 10 outputs the servo command value from the random running generating means 9 to the servo drive system 11, whereby the self-propelled vacuum cleaner runs randomly. To clean the room. On the other hand, if the elapsed time does not exceed the reference time, the round trip along the wall is not unsuccessful. In the case of only the first determination, the switch 10 outputs the servo command value from the regular travel generation means 8 to the servo drive system 11 based on this one-round determination, whereby the self-propelled cleaner is Clean the room by regular driving.

第2の判定は、判定ブロック102と判定ブロック103で行う。判定ブロック102では、走行開始時点からの自走式掃除機の方向角、つまり走行中に自走式掃除機が走行方向転換のためになす方向回転動作による走行開始時点から現在までの回転角度量の判定を行う。具体的には走行開始時点から現在までの積算回転角度(方向角)を予め部屋の形状に応じて壁沿い一周走行でなすはずとして設定してある基準回転角度(基準方向角)αと比較し、回転角度が基準回転角度α以上である場合には一周判定を成とする。そして第2の判定だけまたは第1の判定と第2の判定の組み合わせだけによる場合には、この一周判定成をもとに切替器10が規則走行生成手段8からのサーボ指令値をサーボ駆動系11に出力させる。なお基準回転角度αは、上記のように部屋の形状に応じて壁沿い一周走行でなすはずとして設定されるものであるが、コーナーが4箇所ある一般的な四角い部屋の場合であれば、360度未満の範囲で任意に設定すればよい。また自走式掃除機の積算回転角度は、図4に示すように、進行方向に対して反時計回りを正、時計周りを負として走行中の方向転換における回転角度を積算する。こうすることにより、図4の例のように部屋の壁面に凹凸がある場合でも、壁沿い一周走行をした後の積算回転角度が理想的には360度になる。   The second determination is performed by the determination block 102 and the determination block 103. In the determination block 102, the direction angle of the self-propelled cleaner from the start of travel, that is, the amount of rotation angle from the start of travel to the present by the direction rotation operation that the self-propelled cleaner performs to change the travel direction during travel. Judgment is made. Specifically, the accumulated rotation angle (direction angle) from the start of travel to the present is compared with a reference rotation angle (reference direction angle) α that is set in advance according to the shape of the room. When the rotation angle is equal to or larger than the reference rotation angle α, the round determination is made. When only the second determination or only the combination of the first determination and the second determination is performed, the switch 10 converts the servo command value from the regular travel generation means 8 to the servo drive system based on this one-round determination. 11 to output. Note that the reference rotation angle α is set so as to travel around the wall according to the shape of the room as described above. However, in the case of a general square room having four corners, 360 is 360. What is necessary is just to set arbitrarily in the range of less than degree. Further, as shown in FIG. 4, the cumulative rotation angle of the self-propelled cleaner is integrated with the rotation angle in the direction change during traveling, with the counterclockwise direction being positive with respect to the traveling direction and the clockwise direction being negative. By doing so, even when the wall surface of the room is uneven as in the example of FIG. 4, the integrated rotation angle after traveling around the wall is ideally 360 degrees.

判定ブロック102において回転角度が基準回転角度αに達していないと判定された場合には、続いて判定ブロック103による判定を行う。判定ブロック103では、走行開始時点からの走行距離に基づいて判定する。具体的には走行開始時点から積算した走行距離が一定値、つまり予め部屋の大きさに応じて壁沿い一周走行に要するものとして設定してある基準走行距離以上ある場合は、基準回転角度αの回転をなしていないのに壁沿い一周走行に必要な距離以上の走行をなしているということで、壁沿い一周走行に成功しなかたものとし、一周判定を否とする。一周判定否とされた場合にランダム走行が選択されるのは上での説明と同様である。判定ブロック103での判定で走行距離が基準走行距離以下とされた場合には判定ブロック101に戻る。   If it is determined in the determination block 102 that the rotation angle has not reached the reference rotation angle α, the determination by the determination block 103 is subsequently performed. In the determination block 103, the determination is made based on the travel distance from the travel start time. Specifically, when the travel distance accumulated from the start of travel is a fixed value, that is, a reference travel distance that is set in advance as required for one round travel along the wall according to the size of the room, the reference rotation angle α Although it is not rotating, it has traveled more than the distance necessary for a round trip along the wall, so that it has not succeeded in a round trip along the wall, and the round judgment is rejected. As described above, the random running is selected when it is determined that the one-round determination is rejected. If it is determined in the determination block 103 that the travel distance is equal to or less than the reference travel distance, the process returns to the determination block 101.

第3の判定は判定ブロック104〜106で行う。判定ブロック104では、自走式掃除機の現在位置と走行開始位置との間の距離に基づいた判定を行う。具体的には現在位置/走行開始位置間距離が一定値以下つまり予め設定の基準距離以下ならば壁沿い一周走行を終えて走行開始位置に戻ったものとして一周判定を成とする。そして後述の判定ブロック107による判定を省略する場合には、この一周判定成をもとに切替器10が規則走行生成手段8からのサーボ指令値をサーボ駆動系11に出力させる。一方、現在位置/走行開始位置間距離が基準距離以上ならば、続いて判定ブロック105による判定を行う。   The third determination is made in determination blocks 104-106. In the determination block 104, determination based on the distance between the current position of the self-propelled cleaner and the travel start position is performed. Specifically, if the distance between the current position / travel start position is equal to or less than a predetermined value, that is, equal to or less than a preset reference distance, it is determined that the travel has been completed along the wall and returned to the travel start position. When the determination by the determination block 107 described later is omitted, the switch 10 causes the servo drive system 11 to output the servo command value from the regular travel generation means 8 based on this one-round determination. On the other hand, if the distance between the current position and the travel start position is equal to or greater than the reference distance, the determination by the determination block 105 is subsequently performed.

判定ブロック105では、判定ブロック102と同様な判定を行う。ただし判定ブロック105における基準回転角度は判定ブロック102における基準回転角度αとは異なる基準回転角度βが用いられ、走行開始時点からの回転角度が基準回転角度β以上であれば、走行開始位置から遠く離れているのに基準回転角度β以上の回転を既になしていることから壁沿い一周走行に成功しなかったものとし、一周判定を否とする。一方、走行開始時点からの回転角度が基準回転角度βに達していない場合は、続いて判定ブロック106による判定を行う。なお、基準回転角度βは基準回転角度αよりも大きな角度として任意に設定すればよい。   In the determination block 105, the same determination as in the determination block 102 is performed. However, if the reference rotation angle β different from the reference rotation angle α in the determination block 102 is used as the reference rotation angle in the determination block 105 and the rotation angle from the start of travel is equal to or greater than the reference rotation angle β, it is far from the travel start position. Although it is away, it has already made a rotation of the reference rotation angle β or more, so it is assumed that it has not succeeded in the one-round traveling along the wall, and the one-round determination is denied. On the other hand, if the rotation angle from the start of traveling has not reached the reference rotation angle β, the determination by the determination block 106 is subsequently performed. The reference rotation angle β may be arbitrarily set as a larger angle than the reference rotation angle α.

判定ブロック106では、判定ブロック103と同様に、走行開始時点からの走行距離を判定する。走行距離が基準走行距離以上ある場合は、基準回転角度βの回転をなしていないのに壁沿い一周走行に必要な距離以上の走行をなしているということで、壁沿い一周走行に成功しなかったものとし、一周判定を否とする。判定ブロック106での判定で走行距離が基準走行距離以下とされた場合には判定ブロック101に戻る。   In the determination block 106, similarly to the determination block 103, the travel distance from the travel start time is determined. If the mileage is greater than or equal to the reference mileage, it does not succeed in making a round trip along the wall because it does not rotate at the reference rotation angle β, but runs more than the distance required for a round trip along the wall. It is assumed that it is a round and the round is not judged. If it is determined in the determination block 106 that the travel distance is equal to or less than the reference travel distance, the process returns to the determination block 101.

以上のような第3の判定については、さらに判定ブロック107による判定を付加することで判定精度を高めることができる。判定ブロック107は、自走式掃除機の現在における方向角と走行開始時の初期方向角との偏差に基づいて判定を行い、判定ブロック104で一周判定を成とされた条件の下でさらに壁沿い一周走行の成否を判定する。具体的には自走式掃除機の現在における方向角と走行開始時の初期方向角との方向角偏差が予め設定の基準偏差以下であることを壁沿い一周走行の成功の条件とし、これを満たしていれば一周判定を成とし、満たしていなければ一周判定を否とする。   For the third determination as described above, the determination accuracy can be improved by adding a determination by the determination block 107. The determination block 107 makes a determination based on the deviation between the current direction angle of the self-propelled cleaner and the initial direction angle at the start of the travel. The success or failure of the round trip along the road is judged. Specifically, the direction angle deviation between the current direction angle of the self-propelled vacuum cleaner and the initial direction angle at the start of traveling is equal to or less than a preset reference deviation as a condition for successful round-the-wall traveling. If it is satisfied, the round determination is made, and if it is not satisfied, the round determination is denied.

図5と図6に、壁沿い一周走行が成功する場合と失敗する場合それぞれの走行状態の例を示す。図5のaは成功の例である。この図の例のように壁沿い一周走行が成功する場合には、壁沿いに一周して戻ってきた自走式掃除機の終点位置は走行開始点と重なり、またその時点での方向角は360度+微小角Δであって、初期方向角0度との差は微小角Δであるので、上述の判定処理により壁沿い一周走行が成功であると判定される。   FIG. 5 and FIG. 6 show examples of running states when the round trip along the wall succeeds and fails. FIG. 5a is an example of success. As shown in the example in this figure, when the round trip along the wall is successful, the end point position of the self-propelled cleaner that has returned around the wall overlaps with the trip start point, and the direction angle at that time is 360 degrees + a minute angle Δ, and the difference from the initial direction angle 0 degree is a minute angle Δ, so that it is determined that the one-round traveling along the wall is successful by the determination process described above.

図5のbは、上述の判定処理において壁沿い一周走行不成功と判定される場合の例である。図5のbの例では、方向角は355度であり第2の判定における判定ブロック102で例えば基準回転角度αが350度と設定されていれば、これを超えていることから一周判定を成とされるものの、方向角が355度となった時点での現在位置/走行開始位置間距離がdとなっており、この現在位置/走行開始位置間距離dが基準距離を超えていることから一周判定を否と判定される。このような壁沿い一周走行の不成功は、位置や方向角を検出するセンサの累積誤差が大きかったり、自走式掃除機本体と床面との間で大きな滑りが発生したような場合に起こり得る。   FIG. 5B shows an example of a case where it is determined that the vehicle has made an unsuccessful round trip along the wall in the determination process described above. In the example of FIG. 5b, the direction angle is 355 degrees, and if the reference rotation angle α is set to 350 degrees in the determination block 102 in the second determination, for example, the round is determined because it exceeds this. However, the distance between the current position / travel start position when the direction angle becomes 355 degrees is d, and the distance d between the current position / travel start position exceeds the reference distance. It is determined that the one-round determination is negative. Such unsuccessful round trips along the wall occur when the accumulated error of the sensors that detect the position and direction angle is large, or when a large slip occurs between the self-propelled cleaner body and the floor. obtain.

図5のcは、上述の判定処理において壁沿い一周走行不成功と判定される場合の他の例である。図3のcは、掃除対象の部屋が複雑な配置の仕切りで部分的に仕切られており、この仕切りも部屋の壁とし、壁沿い一周走行に際してその仕切りに沿う走行もなす場合である。この例の場合には、位置X1ですでに方向角は370度になった後も走行を続け走行開始点からの走行距離が位置X2でLとなった時点でもまだ走行を続けている状態となっている。したがって、判定ブロック102における基準回転角度αを350度、判定ブロック104における現在位置/走行開始位置間距離についての基準距離を位置X2での現在位置/走行開始位置間距離Dより小さい値、判定ブロック105における基準回転角度βを400度、判定ブロック106における基準走行距離を走行距離Lより小さい値にそれぞれ設定してあれば、上述の判定処理において一周判定否と判定される。   FIG. 5c is another example of the case where it is determined that the one-round traveling along the wall is unsuccessful in the determination process described above. FIG. 3c shows a case where the room to be cleaned is partly partitioned by a partition having a complicated arrangement, and this partition is also used as a wall of the room, and traveling along the partition is also performed when traveling around the wall. In this example, the vehicle continues to travel even after the directional angle is already 370 degrees at the position X1, and the vehicle is still traveling even when the travel distance from the travel start point becomes L at the position X2. It has become. Therefore, the reference rotation angle α in the determination block 102 is 350 degrees, and the reference distance for the current position / travel start position distance in the determination block 104 is smaller than the current position / travel start position distance D at the position X2, If the reference rotation angle β in 105 is set to 400 degrees and the reference travel distance in the determination block 106 is set to a value smaller than the travel distance L, it is determined that the one-round determination is not made in the determination process described above.

図6は、上述の判定処理において壁沿い一周走行不成功と判定される場合のさらなる他の例である。図6の例では、本来ドアを閉めた状態で四角形の部屋Aを掃除させるつもりの場合に、ドアが開いて、自走式掃除機が壁沿い一周走行中に部屋Aの外に出てしまった場合である。この場合、現在の方向角は判定ブロック102における基準回転角度αよりも小さい180度であるが、走行開始からの経過時間が判定ブロック101における基準時間を超過し、また走行開始からの走行距離が判定ブロック103における基準走行距離を超過する状況となる。したがって上述の判定処理での第1の判定または第2の判定で一周判定否と判定される。   FIG. 6 is still another example in the case where it is determined in the above-described determination processing that unsuccessful traveling around the wall is unsuccessful. In the example of FIG. 6, when the rectangular room A is intended to be cleaned with the door closed, the door opens and the self-propelled cleaner goes out of the room A while traveling around the wall. This is the case. In this case, the current direction angle is 180 degrees smaller than the reference rotation angle α in the determination block 102, but the elapsed time from the start of travel exceeds the reference time in the determination block 101, and the travel distance from the start of travel is This is a situation in which the reference travel distance in the determination block 103 is exceeded. Therefore, it is determined that the one-round determination is rejected in the first determination or the second determination in the determination process described above.

以上のように本発明では、まず壁沿い一周走行を試行させ、その成否を所定の判定方式で判定することで掃除対象の部屋が規則走行に適している否かを判定し、その結果に応じて規則走行とランダム走行を選択して掃除をさせるようにしている。このため本発明によれば、掃除対象の部屋の状況に応じて規則走行とランダム走行を適切に使い分ける走行制御が可能となり、より効率的に掃除を行えるようになる。   As described above, in the present invention, first, a round trip along the wall is attempted, and whether or not the room to be cleaned is suitable for regular running is determined by determining whether or not its success or failure is determined by a predetermined determination method. In this way, regular driving and random driving are selected for cleaning. For this reason, according to the present invention, it is possible to perform traveling control that properly uses regular traveling and random traveling according to the state of the room to be cleaned, and it is possible to perform cleaning more efficiently.

以下では第2の実施形態について説明する。図7に、第2の実施形態による自走式掃除機における走行制御系の構成をブロック図にして示す。本実施形態の自走式掃除機における走行制御系は、第1の実施形態での自走式掃除機における走行制御系に障害物に関する要素を付加した構成となっており、図7ではその付加部分だけを示してあり、第1の実施形態と共通する構成については図示を省略してある。   Hereinafter, a second embodiment will be described. FIG. 7 is a block diagram showing the configuration of the travel control system in the self-propelled cleaner according to the second embodiment. The travel control system in the self-propelled cleaner according to the present embodiment has a configuration in which elements related to obstacles are added to the travel control system in the self-propelled cleaner according to the first embodiment. Only the portion is shown, and the illustration of the configuration common to the first embodiment is omitted.

障害物に関する走行制御系は、掃除対象の部屋の壁や部屋に置かれている家具など自走式掃除機の走行に対して障害となるものを障害物として扱い、特に凹部を有しており、ランダム走行を行わせる場合にその凹部の角でランダムな角度方向に反射してしまうことにより凹部の内側を掃除し残してしまう可能性のある障害物に関して、凹部の内側も確実に掃除し、しかもそこを重複して掃除することも有効に避けて掃除効率を高めるようにする走行制御を行う。   The travel control system for obstacles treats obstacles such as walls of the room to be cleaned and furniture placed in the room as obstacles, especially with recesses. In the case of performing random running, with respect to an obstacle that may leave the inside of the recess cleaned by reflecting in the direction of the random angle at the corner of the recess, the inside of the recess is surely cleaned, In addition, running control is performed so as to effectively avoid the redundant cleaning and increase the cleaning efficiency.

以上のような走行制御機能を負う障害物用走行制御系は、障害物検出手段21、障害物位置演算手段22、障害物位置記憶手段23、地図生成手段24、地図記憶手段25、位置比較手段26、撮像手段27、画像処理手段28、画像データベース作成手段29、画像データベース30、画像比較手段31、同一障害物通過判定手段32、切替器33およびならい走行生成手段34を備えており、第1の実施形態での走行制御系における位置/方向角演算手段2からデータを取り込むとともに、第1の実施形態での走行制御系におけるランダム走行生成手段9が生成するランダム走行用のサーボ指令値も取り込むようにされている。   The obstacle traveling control system having the traveling control function as described above includes an obstacle detecting means 21, an obstacle position calculating means 22, an obstacle position storing means 23, a map generating means 24, a map storing means 25, and a position comparing means. 26, an imaging means 27, an image processing means 28, an image database creation means 29, an image database 30, an image comparison means 31, an identical obstacle passage determination means 32, a switch 33 and a follow travel generation means 34. The data is taken in from the position / direction angle calculation means 2 in the travel control system in the embodiment, and the random travel servo command value generated by the random travel generation means 9 in the travel control system in the first embodiment is also taken in. Has been.

障害物検出手段21は、例えば超音波センサや赤外線センサなどの非接触型の位置検出センサ、あるいは障害物と接触すると信号を発する接触型のタッチセンサなどを適宜に組み合わせて構成され、障害物を検出すると信号を発生する。障害物位置演算手段22は、障害物検出手段21で検出したデータから障害物の位置を求め、これで求められた障害物の位置は障害物位置記憶手段23に記憶する。   The obstacle detection means 21 is configured by appropriately combining, for example, a non-contact type position detection sensor such as an ultrasonic sensor or an infrared sensor, or a contact type touch sensor that emits a signal when contacted with an obstacle. When detected, a signal is generated. The obstacle position calculation means 22 obtains the position of the obstacle from the data detected by the obstacle detection means 21 and stores the obtained obstacle position in the obstacle position storage means 23.

地図生成手段24は、位置/方向角演算手段2で求められる自走式掃除機の現在位置/方向角と障害物位置記憶手段から得られる障害物の位置とから、走行経路上にある障害物に関する地図情報を生成する。この障害物地図情報は、例えば、走行経路つまり掃除対象の部屋の床面を一定サイズの区画に区切り、その各区画内に障害物が存在しているかどうか、また障害物がある場合に、その障害物が部屋の壁や壁沿いに置かれている障害物であるのか、あるいは壁から離して置かれている障害物(内部障害物)であるのかなどの情報を記述して構成される。そのような障害物地図情報の構成例を図8に示す。この例では、区画名として各区画にM1、M2、M3…Mnを与え、そして各区画にそれぞれの区画中心位置を座標値(X1,Y1)、(X2,Y2)、(X3,Y3)…(Xn,Yn)で記録するとともに各区画について障害物がある場合にはその属性(部屋壁、内部障害物など)を、障害物が無い場合には「なし」をそれぞれ記録したテーブルの形態で障害物地図情報を構成している。地図生成手段24で生成されたこのような障害物地図情報は地図記憶手段25に記憶される。   The map generation means 24 is configured to detect obstacles on the travel route from the current position / direction angle of the self-propelled cleaner obtained by the position / direction angle calculation means 2 and the position of the obstacle obtained from the obstacle position storage means. Generate map information about. This obstacle map information is, for example, divided into a route of travel, that is, the floor of the room to be cleaned, into sections of a certain size, whether there are obstacles in each section, and if there are obstacles, It is configured by describing information such as whether the obstacle is an obstacle placed along the wall of the room or along the wall, or an obstacle (internal obstacle) placed away from the wall. A configuration example of such obstacle map information is shown in FIG. In this example, M1, M2, M3,... Mn are given to the sections as the section names, and the respective center positions of the sections are assigned coordinate values (X1, Y1), (X2, Y2), (X3, Y3),. (Xn, Yn) is recorded in the form of a table that records the attributes (room walls, internal obstacles, etc.) when there are obstacles for each section, and “none” when there are no obstacles. Obstacle map information is configured. Such obstacle map information generated by the map generation means 24 is stored in the map storage means 25.

位置比較手段26は、障害物の既通過/未通過を判定する手段の一つであり、地図記憶手段25からの障害物地図情報を用いて障害物に関する既通過/未通過の判定を行う。その判定は以下のようにしてなされる。今、自走式掃除機が走行中に障害物を検出し、その障害物について位置座標(xi,yi)が得られたとする。そしたら障害物地図情報で参照し、位置座標(xi,yi)にもっとも近い中心位置座標(Xi,Yi)を持つ区画Miについて障害物の記録を調べる。そしてその結果が障害物なしであれば、検出障害物が未通過の障害物であるとして走行条件フラグに「ならい走行」を設定する。一方、障害物が記録されていた場合には、検出障害物が既通過の障害物であるとして走行条件フラグに「ランダム走行」を設定する。なお障害物地図情報は、位置/方向角計測手段1による位置/方向角の計測に累積誤差があると精度が低下する。そこで、適切な時間間隔で障害物地図情報を常に更新して判定のための対象範囲を限定することにより、判定の正確性を高めるようにするのが好ましい。このことは後述の画像比較手段31による判定についても同様である。   The position comparison means 26 is one of the means for determining whether the obstacle has already passed or not, and uses the obstacle map information from the map storage means 25 to determine whether the obstacle has passed or not passed. The determination is made as follows. Now, it is assumed that the self-propelled cleaner detects an obstacle while traveling and the position coordinates (xi, yi) are obtained for the obstacle. Then, referring to the obstacle map information, the record of the obstacle is examined for the section Mi having the center position coordinate (Xi, Yi) closest to the position coordinate (xi, yi). If the result is that there is no obstacle, it is determined that the detected obstacle is an unpassed obstacle, and “following traveling” is set in the traveling condition flag. On the other hand, when an obstacle has been recorded, “random traveling” is set in the traveling condition flag on the assumption that the detected obstacle is an already-passed obstacle. The accuracy of the obstacle map information decreases if there is a cumulative error in the position / direction angle measurement by the position / direction angle measurement means 1. Therefore, it is preferable to improve the accuracy of the determination by constantly updating the obstacle map information at appropriate time intervals to limit the target range for the determination. The same applies to the determination by the image comparison means 31 described later.

撮像手段27は、例えばCCDカメラなどにより構成され、走行中の自走式掃除機の周囲について画像を取得する。撮像手段27で取得された周囲画像は、画像処理手段28で2値化などの処理をなされた後、画像データベース作成手段29において位置/方向角演算手段2からの撮像地点に関する位置/方向角データと組み合わせて画像データベース化されて画像データベース30に保存される。画像データベース30に保存される画像データの例を図9に示す。この例では、画像名として各画像にPict1、Pict2、…などを与え、そして各画像にそれぞれの撮像地点に関する位置/方向角データ(Rx1,Ry1,Rθ1)、(Rx2,Ry2,Rθ2)、…などを記録したテーブルの形態で画像データを構成している。   The imaging unit 27 is configured by, for example, a CCD camera and acquires an image about the periphery of the traveling self-propelled cleaner. The surrounding image acquired by the imaging unit 27 is subjected to processing such as binarization by the image processing unit 28, and then the position / direction angle data regarding the imaging point from the position / direction angle calculation unit 2 in the image database creation unit 29. The image database is combined with the image data and stored in the image database 30. An example of image data stored in the image database 30 is shown in FIG. In this example, Pict1, Pict2,... Are given to each image as image names, and position / direction angle data (Rx1, Ry1, Rθ1), (Rx2, Ry2, Rθ2),. The image data is configured in the form of a table recording such as.

画像比較手段31は、障害物の既通過/未通過を判定する手段の他の一つであり、画像データベース30からのデータを用いて障害物に関する既通過/未通過の判定を行う。その判定は以下のようにしてなされる。自走式掃除機は走行中に障害物を検出するとその障害物を中心にした周囲画像を撮像手段27で撮像するとともに、その撮像地点での自走式掃除機の位置/方向角を位置/方向角演算手段2から取得する。それからこの障害物検出時取得周囲画像を画像データベース30に保存の周囲画像と比較する。具体的には、障害物検出時取得周囲画像における位置/方向角にもっとも近い位置/方向角の既保存周囲画像を画像データベース30から選出し、この既保存周囲画像と障害物検出時取得周囲画像を重ね合わせてパターンマッチングを行う。そして所定の誤差範囲で両画像のパターンが一致していれば、検出障害物が既通過の障害物であるとして走行条件フラグに「ランダム走行」を設定する。一方、両画像のパターンが一致していなかった場合には、回転、縮小、拡大などの処理を画像に施した後に再度パターンマッチングを行う。この再度のパターンマッチングで両画像のパターンが一致すれば、上の場合と同様に、検出障害物が既通過の障害物であるとして走行条件フラグに「ランダム走行」を設定し、再度のパターンマッチングでもパターンが一致しなかった場合には、検出障害物が未通過の障害物であるとして走行条件フラグに「ならい走行」を設定する。また同時に、この未通過の障害物に関する障害物検出時取得周囲画像をそれの位置/方向角とともに画像データベース30に保存する。   The image comparison means 31 is another means for determining whether an obstacle has already passed or not, and uses the data from the image database 30 to determine whether the obstacle has passed or not passed. The determination is made as follows. When the self-propelled cleaner detects an obstacle while traveling, the imager 27 captures an image around the obstacle, and the position / direction angle of the self-propelled cleaner at the imaging point is determined to be a position / Obtained from the direction angle calculation means 2. Then, the surrounding image acquired when the obstacle is detected is compared with the surrounding image stored in the image database 30. Specifically, an already-stored surrounding image having a position / direction angle closest to the position / direction angle in the surrounding image acquired at the time of obstacle detection is selected from the image database 30, and this already-stored surrounding image and the surrounding image acquired at the time of obstacle detection are selected. Are matched and pattern matching is performed. If the patterns of both images coincide with each other within a predetermined error range, “random running” is set in the running condition flag, assuming that the detected obstacle is an already passed obstacle. On the other hand, if the patterns of the two images do not match, pattern matching is performed again after the image is subjected to processing such as rotation, reduction, and enlargement. If the pattern matches both images in this second pattern matching, “Random driving” is set in the driving condition flag on the assumption that the detected obstacle is an obstacle that has already passed, and pattern matching is performed again. However, if the patterns do not match, “following running” is set in the running condition flag, assuming that the detected obstacle is an unpassed obstacle. At the same time, the surrounding image acquired at the time of obstacle detection regarding the obstacle that has not passed is stored in the image database 30 together with the position / direction angle thereof.

同一障害物通過判定手段32は、自走式掃除機が走行中に検出した障害物が既通過であるか未通過であるかの判定を位置比較手段26と画像比較手段31それぞれから送られて来る走行条件フラグに基づいて判定し、その結果を切替器33に出力する。これを受けた切替器10は、サーボ駆動系11に出力するサーボ指令値の切り替えを行う。すなわちならい走行生成手段34が生成するならい走行のサーボ指令値またはランダム走行生成手段9が生成するランダム走行のサーボ指令値を同一障害物通過判定手段32による判定結果に応じて切り替えてサーボ駆動系11に出力し、これを受けたサーボ駆動系11による制御の下で走行機構系12(図1)がならい走行またはランダム走行を自走式掃除機になさせる。なお同一障害物通過判定手段32において障害物を未通過と判定するには、位置比較手段26と画像比較手段31それぞれから送られて来る走行条件フラグがともに「ならい走行」となっていることを条件とするのが判定精度の上で好ましいが必ずしもそのようにする必要はない。   The same obstacle passage determination means 32 is sent from each of the position comparison means 26 and the image comparison means 31 to determine whether the obstacle detected during the traveling of the self-propelled cleaner is already passed or not passed. A determination is made based on the coming travel condition flag, and the result is output to the switch 33. Upon receiving this, the switch 10 switches the servo command value output to the servo drive system 11. That is, the servo drive system 11 is switched by switching the servo command value for the follow travel generated by the follow travel generation unit 34 or the servo command value for the random travel generated by the random travel generation unit 9 according to the determination result by the same obstacle passage determination unit 32. In response to this, under the control of the servo drive system 11, the traveling mechanism system 12 (FIG. 1) causes the self-propelled cleaner to perform traveling or random traveling. In order to determine that the obstacle has not passed in the same obstacle passage determination means 32, it is determined that both of the traveling condition flags sent from the position comparison means 26 and the image comparison means 31 are “following traveling”. The condition is preferable in terms of determination accuracy, but it is not always necessary to do so.

ここで、ならい走行とは、図10のaに示す例のように、障害物Sにある凹部Srなどの周面の凹凸構造などに倣うようにする走行を所定距離または所定時間だけ行った後にランダム走行に戻る走行様式であり、この走行様式とすることで掃除し残し部分の発生を極力減らすことができる。すなわちランダム走行だけであると、障害物に凹部(これは障害物の側面における図10のaの例のような凹部Srだけでなく、例えばテーブルや椅子などのように下部空間を有する障害物におけるその下部空間も含むものとする)がある場合に、その凹部の角でランダムな角度方向に反射してしまうことにより凹部の内側を掃除し残しにする可能性が高くなるが、ならい走行とすることにより、確実に凹部の内部まで入り込んで掃除を行うことができるようになり、掃除し残し部分の発生を極力減らすことができる。ただ、ランダム走行では同一の障害物が行き当たる可能性があり、その場合にならい走行を同一の障害物について繰り返すと掃除の重複となって掃除効率を低下させることになる。これを防ぐのが上述の障害物に関する既通過/未通過の判定とこれに基づくならい走行とランダム走行の切替である。すなわちこの切替操作により、ならい走行は初めて行き当たる障害物についてのみ行わせるようにし、既に行き当たっている障害物については、図10のbに示す例のように、ランダム走行を行わせるようにすることで掃除の重複が発生するのを有効に防止することができる。   Here, “following traveling” means that after traveling for a predetermined distance or a predetermined time so as to follow the uneven structure of the peripheral surface such as the concave portion Sr in the obstacle S as in the example shown in FIG. This is a driving mode that returns to random driving. By using this driving mode, it is possible to reduce the generation of uncleaned parts as much as possible. That is, when only random driving is performed, the obstacle has a concave portion (this is not only in the concave portion Sr as in the example of FIG. 10a on the side of the obstacle, but also in an obstacle having a lower space such as a table or a chair. If there is a lower space), there is a high possibility that the inside of the recess will be cleaned and left behind by reflecting in a random angular direction at the corner of the recess. Thus, it is possible to surely enter the inside of the recess and perform cleaning, and it is possible to reduce the generation of a portion left uncleaned as much as possible. However, there is a possibility that the same obstacle will hit in random driving, and if the driving is repeated for the same obstacle in that case, cleaning will be duplicated and the cleaning efficiency will be reduced. To prevent this, the above-mentioned obstacle passing / non-passing judgment regarding the obstacle and switching between the following traveling and the random traveling based on the determination. That is, by this switching operation, the following traveling is performed only for the obstacle that is first encountered, and for the obstacle that has already been encountered, random traveling is performed as in the example shown in FIG. Thus, it is possible to effectively prevent the occurrence of repeated cleaning.

本発明は、自走式掃除機について掃除対象の部屋の状況に応じて規則走行とランダム走行を適切に使い分けて掃除効率を高めることができる。このような本発明は、自走式掃除機の分野に有用なものとして広く適用することができる。   The present invention can improve cleaning efficiency by properly using regular traveling and random traveling according to the situation of the room to be cleaned for the self-propelled cleaner. The present invention as described above can be widely applied as useful in the field of self-propelled cleaners.

第1の実施形態による自走式掃除機における走行制御系の構成をブロック図にして示す図である。It is a figure showing the composition of the run control system in the self-propelled cleaner by a 1st embodiment in the form of a block diagram. 四角形の部屋における規則走行とランダム走行それぞれの走行パターンの例を示す図である。It is a figure which shows the example of each driving | running pattern of regular driving | running | working and random driving | running | working in a square room. 壁沿い一周走行の成否判定における処理の流れを示す図である。It is a figure which shows the flow of the process in the success-and-failure determination of a round trip along a wall. 壁沿い一周走行における回転角度の積算について説明する図である。It is a figure explaining the integration | accumulation of the rotation angle in one round run along a wall. 壁沿い一周走行における走行状態の例を示す図である。It is a figure which shows the example of the driving | running | working state in a round run along a wall. 壁沿い一周走行における走行状態の他の例を示す図である。It is a figure which shows the other example of the driving | running | working state in a round run along a wall. 第1の実施形態による自走式掃除機における走行制御系の構成をブロック図にして示す図である。It is a figure showing the composition of the run control system in the self-propelled cleaner by a 1st embodiment in the form of a block diagram. 障害物地図情報の構成例を示す図である。It is a figure which shows the structural example of obstacle map information. 画像データの例を示す図である。It is a figure which shows the example of image data. ならい走行とランダム走行の切替について説明する図である。It is a figure explaining the switching of follow driving and random running.

符号の説明Explanation of symbols

1 位置/方向角計測手段
2 現在位置/方向角演算手段
3 時間計測手段
6 壁沿い一周判定手段
7 走行経路記憶手段
8 規則走行生成手段
9 ランダム走行生成手段
10 切替器
11 サーボ駆動系
12 走行機構系
21 障害物検出手段
22 障害物位置演算手段
23 障害物位置記憶手段
25 地図記憶手段
26 位置比較手段
27 撮像手段
28 画像処理手段
29 画像データベース作成手段
30 画像データベース
31 画像比較手段
32 同一障害物通過判定手段
33 切替器
34 ならい走行生成手段
DESCRIPTION OF SYMBOLS 1 Position / direction angle measurement means 2 Current position / direction angle calculation means 3 Time measurement means 6 Round circumference determination means 7 Travel route storage means 8 Regular travel generation means 9 Random travel generation means 10 Switch 11 Servo drive system 12 Travel mechanism System 21 Obstacle detection means 22 Obstacle position calculation means 23 Obstacle position storage means 25 Map storage means 26 Position comparison means 27 Imaging means 28 Image processing means 29 Image database creation means 30 Image database 31 Image comparison means 32 Same obstacle passing Determining means 33 Switch 34 Profiling generation means

Claims (4)

掃除対象空間の床面上を走行機構により自走しながら掃除を行う自走式掃除機において、
予め定められた走行経路に従って走行を行わせる規則走行様式を生成する規則走行生成手段、走行方向をランダムに変化させる走行を行わせるランダム走行様式を生成するランダム走行生成手段、前記規則走行生成手段と前記ランダム走行生成手段それぞれからの出力を前記走行機構に選択的に出力する切替器、および前記掃除対象空間をその壁面に沿って一周する壁沿い一周走行の成否を判定する壁沿い一周判定手段を備え、そして前記壁沿い一周走行をまず試行させてその成否を前記壁沿い一周判定手段で判定させ、その結果に応じ、前記壁沿い一周走行が成功であった場合には前記切替器により前記規則走行生成手段からの出力を前記走行機構へ出力して前記規則走行様式で走行を行わせ、前記壁沿い一周走行が不成功であった場合には前記切替器により前記ランダム走行生成手段からの出力を前記走行機構へ出力して前記ランダム走行様式で走行を行わせるようにされていることを特徴とする自走式掃除機。
In the self-propelled vacuum cleaner that cleans the floor of the space to be cleaned while traveling on its own by the traveling mechanism,
Regular travel generation means for generating a regular travel mode for traveling according to a predetermined travel route, random travel generation means for generating a random travel mode for performing travel that randomly changes the travel direction, and the regular travel generation means; A switch that selectively outputs the output from each of the random travel generation means to the travel mechanism, and a wall-by-wall determination unit that determines success or failure of the one-round travel along the wall that goes around the cleaning target space along the wall surface. And the first round trip along the wall is tried and the success or failure is judged by the round trip judgment means along the wall, and according to the result, when the round trip along the wall is successful, the switching device makes the rule. When the output from the travel generation means is output to the travel mechanism to travel in the regular travel mode, and when the round travel along the wall is unsuccessful Self-propelled cleaner, characterized in that the are output from the random travel generating means outputs to the driving mechanism so as to perform a travel in the random movement pattern by the switch.
前記壁沿い一周判定手段は、走行開始時点からの走行の経過時間に基づいて壁沿い一周走行の成否を判定する第1の判定方式、走行開始時点からの回転方向角を予め設定の基準回転角度αと比較してなす判定と走行開始時点からの走行距離を予め設定の基準走行距離と比較してなす判定とを組み合わせて壁沿い一周走行の成否を判定する第2の判定方式、および走行中の現在位置と走行開始位置との間の距離に基づく判定と走行開始時点からの回転方向角を前記基準回転角度αよりも大きく予め設定の基準回転角度βと比較してなす判定、それに走行開始時点からの走行距離を予め設定の基準走行距離と比較してなす判定とを組み合わせて壁沿い一周走行の成否を判定する第3の判定方式の何れか一つまたはこれら各判定方式の組み合わせを含むようにされている請求項1に記載の自走式掃除機。   The one-round determination means along the wall is a first determination method for determining success or failure of the one-round travel along the wall based on the elapsed time from the travel start time, and a reference rotation angle in which the rotation direction angle from the travel start time is set in advance. a second determination method for determining the success / failure of the round trip along the wall by combining a determination made by comparing with α and a determination made by comparing the travel distance from the start of travel with a preset reference travel distance; A determination based on the distance between the current position and the travel start position, a determination made by comparing the rotation direction angle from the travel start time point with a reference rotation angle β that is greater than the reference rotation angle α and a preset reference rotation angle β, and travel start Includes any one of the third determination methods for determining the success or failure of the round trip along the wall by combining the determination made by comparing the travel distance from the time with a preset reference travel distance, or a combination of these determination methods. Self-propelled cleaner according to claim 1 that is so. 前記ランダム走行に際してランダムな走行方向転換を生じさせる障害物に対して当該障害物の周面に倣うように走行を行わせるならい走行様式を生成するならい走行生成手段を備えるとともに、前記障害物に対する既通過と未通過を判定する既通過/未通過判定手段を備え、前記既通過/未通過判定手段で未通過と判定された障害物に対しては前記ならい走行生成手段からの出力を前記走行機構へ出力して前記ならい走行様式で走行を行わせるようにされている請求項1または請求項2に記載の自走式掃除機。   Travel generation means for generating a travel mode for causing the obstacle to cause a random travel direction change at the time of the random travel so as to follow the peripheral surface of the obstacle; Passing / non-passing determining means for determining whether the vehicle has passed or not passed, and for the obstacle determined to be non-passing by the passing / non-passing determining means, the output from the follow travel generating means is output to the traveling mechanism. The self-propelled cleaner according to claim 1, wherein the self-propelled vacuum cleaner is configured to output to the vehicle and cause the vehicle to travel in the same traveling manner. 前記既通過/未通過判定手段は、前記障害物に関して作成される地図情報を用いて前記障害物に関する既通過/未通過の判定を行う判定方式、および走行中に検出した前記障害物に関して当該障害物を中心にして撮像して得られる周囲画像の比較で前記障害物に関する既通過/未通過の判定を行う判定方式の何れか一つまたはこれら各判定方式の組み合わせを含むようにされている請求項3に記載の自走式掃除機。
The passing / non-passing determining means uses a map information created for the obstacle to determine whether the obstacle has already passed / not passed, and the obstacle detected for the obstacle detected during traveling. Claims include a determination method for determining whether the obstacle has passed or not passed by comparing surrounding images obtained by imaging an object as a center, or a combination of these determination methods. Item 4. The self-propelled vacuum cleaner according to item 3.
JP2004171985A 2004-06-10 2004-06-10 Self-propelled vacuum cleaner Expired - Fee Related JP4163150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004171985A JP4163150B2 (en) 2004-06-10 2004-06-10 Self-propelled vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004171985A JP4163150B2 (en) 2004-06-10 2004-06-10 Self-propelled vacuum cleaner

Publications (2)

Publication Number Publication Date
JP2005352707A true JP2005352707A (en) 2005-12-22
JP4163150B2 JP4163150B2 (en) 2008-10-08

Family

ID=35587150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004171985A Expired - Fee Related JP4163150B2 (en) 2004-06-10 2004-06-10 Self-propelled vacuum cleaner

Country Status (1)

Country Link
JP (1) JP4163150B2 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097088A (en) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd Self-propelled type equipment and program thereof
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
JP2013034687A (en) * 2011-08-09 2013-02-21 Mitsubishi Electric Building Techno Service Co Ltd Cleaning system and method for controlling the same
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
JP2013510377A (en) * 2009-11-06 2013-03-21 エボリューション ロボティックス インコーポレイテッド Method and system for completely covering a surface with an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US8584307B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8800107B2 (en) 2010-02-16 2014-08-12 Irobot Corporation Vacuum brush
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
KR20160123494A (en) * 2015-04-16 2016-10-26 삼성전자주식회사 Cleaning robot and controlling method thereof
US9519289B2 (en) 2014-11-26 2016-12-13 Irobot Corporation Systems and methods for performing simultaneous localization and mapping using machine vision systems
KR101741583B1 (en) 2009-11-16 2017-05-30 엘지전자 주식회사 Robot cleaner and controlling method thereof
WO2017141535A1 (en) * 2016-02-16 2017-08-24 東芝ライフスタイル株式会社 Autonomous traveling device
US9744670B2 (en) 2014-11-26 2017-08-29 Irobot Corporation Systems and methods for use of optical odometry sensors in a mobile robot
US9751210B2 (en) 2014-11-26 2017-09-05 Irobot Corporation Systems and methods for performing occlusion detection
JP2020140324A (en) * 2019-02-27 2020-09-03 東芝ライフスタイル株式会社 Autonomous electric cleaner
JP2021168158A (en) * 2013-01-18 2021-10-21 アイロボット・コーポレーション Mobile robot, method, and system
US11648685B2 (en) 2013-01-18 2023-05-16 Irobot Corporation Mobile robot providing environmental mapping for household environmental control

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8565920B2 (en) 2000-01-24 2013-10-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8478442B2 (en) 2000-01-24 2013-07-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8761935B2 (en) 2000-01-24 2014-06-24 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US8659255B2 (en) 2001-01-24 2014-02-25 Irobot Corporation Robot confinement
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US8686679B2 (en) 2001-01-24 2014-04-01 Irobot Corporation Robot confinement
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US8659256B2 (en) 2001-01-24 2014-02-25 Irobot Corporation Robot confinement
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8656550B2 (en) 2002-01-03 2014-02-25 Irobot Corporation Autonomous floor-cleaning robot
US8763199B2 (en) 2002-01-03 2014-07-01 Irobot Corporation Autonomous floor-cleaning robot
US8671507B2 (en) 2002-01-03 2014-03-18 Irobot Corporation Autonomous floor-cleaning robot
US8516651B2 (en) 2002-01-03 2013-08-27 Irobot Corporation Autonomous floor-cleaning robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8461803B2 (en) 2004-01-21 2013-06-11 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8749196B2 (en) 2004-01-21 2014-06-10 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8456125B2 (en) 2004-01-28 2013-06-04 Irobot Corporation Debris sensor for cleaning apparatus
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8598829B2 (en) 2004-01-28 2013-12-03 Irobot Corporation Debris sensor for cleaning apparatus
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US9360300B2 (en) 2004-03-29 2016-06-07 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8670866B2 (en) 2005-02-18 2014-03-11 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8774966B2 (en) 2005-02-18 2014-07-08 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US10470629B2 (en) 2005-02-18 2019-11-12 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8782848B2 (en) 2005-02-18 2014-07-22 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US9599990B2 (en) 2005-12-02 2017-03-21 Irobot Corporation Robot system
US8761931B2 (en) 2005-12-02 2014-06-24 Irobot Corporation Robot system
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US8950038B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Modular robot
US8954192B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Navigating autonomous coverage robots
US8606401B2 (en) 2005-12-02 2013-12-10 Irobot Corporation Autonomous coverage robot navigation system
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US8661605B2 (en) 2005-12-02 2014-03-04 Irobot Corporation Coverage robot mobility
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
US10524629B2 (en) 2005-12-02 2020-01-07 Irobot Corporation Modular Robot
US9149170B2 (en) 2005-12-02 2015-10-06 Irobot Corporation Navigating autonomous coverage robots
US8584307B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8528157B2 (en) 2006-05-19 2013-09-10 Irobot Corporation Coverage robots and associated cleaning bins
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8572799B2 (en) 2006-05-19 2013-11-05 Irobot Corporation Removing debris from cleaning robots
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
JP2008097088A (en) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd Self-propelled type equipment and program thereof
US11072250B2 (en) 2007-05-09 2021-07-27 Irobot Corporation Autonomous coverage robot sensing
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US8438695B2 (en) 2007-05-09 2013-05-14 Irobot Corporation Autonomous coverage robot sensing
US8726454B2 (en) 2007-05-09 2014-05-20 Irobot Corporation Autonomous coverage robot
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
JP2013510377A (en) * 2009-11-06 2013-03-21 エボリューション ロボティックス インコーポレイテッド Method and system for completely covering a surface with an autonomous robot
KR101741583B1 (en) 2009-11-16 2017-05-30 엘지전자 주식회사 Robot cleaner and controlling method thereof
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US8800107B2 (en) 2010-02-16 2014-08-12 Irobot Corporation Vacuum brush
JP2013034687A (en) * 2011-08-09 2013-02-21 Mitsubishi Electric Building Techno Service Co Ltd Cleaning system and method for controlling the same
JP2021168158A (en) * 2013-01-18 2021-10-21 アイロボット・コーポレーション Mobile robot, method, and system
US11648685B2 (en) 2013-01-18 2023-05-16 Irobot Corporation Mobile robot providing environmental mapping for household environmental control
US10705535B2 (en) 2014-11-26 2020-07-07 Irobot Corporation Systems and methods for performing simultaneous localization and mapping using machine vision systems
US9744670B2 (en) 2014-11-26 2017-08-29 Irobot Corporation Systems and methods for use of optical odometry sensors in a mobile robot
US10611023B2 (en) 2014-11-26 2020-04-07 Irobot Corporation Systems and methods for performing occlusion detection
US10222805B2 (en) 2014-11-26 2019-03-05 Irobot Corporation Systems and methods for performing simultaneous localization and mapping using machine vision systems
US9519289B2 (en) 2014-11-26 2016-12-13 Irobot Corporation Systems and methods for performing simultaneous localization and mapping using machine vision systems
US10391630B2 (en) 2014-11-26 2019-08-27 Irobot Corporation Systems and methods for performing occlusion detection
US9751210B2 (en) 2014-11-26 2017-09-05 Irobot Corporation Systems and methods for performing occlusion detection
KR102326479B1 (en) 2015-04-16 2021-11-16 삼성전자주식회사 Cleaning robot and controlling method thereof
KR20160123494A (en) * 2015-04-16 2016-10-26 삼성전자주식회사 Cleaning robot and controlling method thereof
JP2017143983A (en) * 2016-02-16 2017-08-24 東芝ライフスタイル株式会社 Autonomous travel body
WO2017141535A1 (en) * 2016-02-16 2017-08-24 東芝ライフスタイル株式会社 Autonomous traveling device
JP2020140324A (en) * 2019-02-27 2020-09-03 東芝ライフスタイル株式会社 Autonomous electric cleaner
JP7280712B2 (en) 2019-02-27 2023-05-24 東芝ライフスタイル株式会社 Autonomous vacuum cleaner

Also Published As

Publication number Publication date
JP4163150B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP4163150B2 (en) Self-propelled vacuum cleaner
JP7374547B2 (en) Exploration methods, devices, mobile robots and storage media
EP3048502B1 (en) Robot cleaner and method for controlling robot cleaner
US9527212B2 (en) Method for automatically triggering a self-positioning process
JP4532280B2 (en) Method and apparatus for forming a graph structure describing a surface having a free surface and an occupied surface, and a computer program and computer program product having program code means
US8195331B2 (en) Method, medium, and apparatus for performing path planning of mobile robot
US8463436B2 (en) Apparatus, method and medium for simultaneously performing cleaning and creation of map for mobile robot
US9149167B2 (en) Robot cleaner and control method thereof
JP4181477B2 (en) Self-propelled vacuum cleaner
EP2413772B1 (en) Mobile robot with single camera and method for recognizing 3d surroundings of the same
JP6711138B2 (en) Self-position estimating device and self-position estimating method
JP2005135400A (en) Self-propelled working robot
KR20070106864A (en) The control method of cleaning action for cleaning robot
JP2007213236A (en) Method for planning route of autonomously traveling robot and autonomously traveling robot
JP2006164223A (en) Method and apparatus for recognizing object position of moving robot
JP2008198191A (en) Robot cleaner using edge detection and its control method
KR20170029424A (en) Method for detecting a measurement error in a robotic cleaning device
KR20110092158A (en) Robot cleaner and controlling method thereof
JP2012194860A (en) Traveling vehicle
JP2005211367A (en) Autonomous traveling robot cleaner
JP2004326692A (en) Autonomous travelling robot
JP2017204132A (en) Self-propelled electronic apparatus
KR100549042B1 (en) The control method of cleaning action for cleaning robot
JP2008003979A (en) Self-propelled equipment and program therefor
CN115500737B (en) Ground medium detection method and device and cleaning equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060911

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4163150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees