JP2004204173A - Coating for forming infrared light-shading film and substrate having infrared light-shading film - Google Patents

Coating for forming infrared light-shading film and substrate having infrared light-shading film Download PDF

Info

Publication number
JP2004204173A
JP2004204173A JP2002377716A JP2002377716A JP2004204173A JP 2004204173 A JP2004204173 A JP 2004204173A JP 2002377716 A JP2002377716 A JP 2002377716A JP 2002377716 A JP2002377716 A JP 2002377716A JP 2004204173 A JP2004204173 A JP 2004204173A
Authority
JP
Japan
Prior art keywords
fine particles
silica
shielding film
coated
infrared shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002377716A
Other languages
Japanese (ja)
Inventor
Masayuki Matsuda
田 政 幸 松
Toshiharu Hirai
井 俊 晴 平
Michio Komatsu
松 通 郎 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2002377716A priority Critical patent/JP2004204173A/en
Publication of JP2004204173A publication Critical patent/JP2004204173A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating for forming an infrared light-shading film, capable of being used for forming an ultraviolet light-shading film having a high transparency, excellent in infrared light-shading performance, having an ultraviolet light-shading performance as necessary, if needed and excellent in close adhesion with a substrate and hardness of the film, and the substrate having the infrared light-shading film formed by using the coating. <P>SOLUTION: This coating for forming the infrared light-shading film is characterized by containing (A) oxide fine particles, (B) boride fine particles and a resin for coating, wherein, the oxide fine particles (A) is an oxide or a compounded oxide of ≥1 kind of an element selected from In, Sn, Sb, Zn and Ti, and the boride fine particles (B) is ≥1 kind of boride of an element selected from the IIIa group, IVa group, Va group and VIa group of the Periodic table, and the oxide fine particles (A) and boride fine particles (B) are each covered with silica. The mean particle diameters of the silica-covered (A) oxide fine particles and the silica-covered (B) boride fine particles are each in 2-100 nm range. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、赤外線遮蔽膜形成用塗料および該塗料を用いて形成された赤外線遮蔽膜付基材に関する。
【0002】
【発明の技術的背景】
従来、波長領域が約700〜1800nmの赤外線、近赤外線を遮蔽するために、ガラス、プラスチックシート、プラスチックレンズ等に赤外線遮蔽剤を配合・組み込んだり、ガラス等の基材の表面に赤外線遮蔽剤からなる膜を形成したり、赤外線遮蔽剤を含む樹脂膜等を貼り付けることが行われていた。また、紫外線を遮蔽するために、紫外線遮蔽剤を用いて同様のことが行われていた。なお、このとき、車両、ビル、事務所、一般住宅等の窓、ショーウィンドーなどでは透明性すなわち高い可視光透過率が求められていた。
【0003】
可視光透過率が高い赤外線遮蔽剤として、アンチモンドープ酸化錫(ATO)や、錫ドープ酸化インジウム(ITO)、アルミニウムドープ酸化亜鉛(AZO)等が知られている。
また、特開平10−120946号公報(特許文献1)には、錫ドープ酸化インジウム(ITO)に還元処理等を施して用いると、より透明性および赤外線遮蔽能に優れた膜が得られることが開示されている。
【0004】
しかしながら、これらの赤外線遮蔽剤は可視光反射率が比較的低く、ギラギラした外観を与えることはないものの、可視光に近い近赤外線域における遮蔽(反射および/または吸収)効果が充分ではなかった。また、これら赤外線遮蔽剤は導電性が高く、電波を反射して電波障害の原因となることがあった。
このため、可視光透過率が高く、電波障害のない程度に導電性が低い熱線(赤外線、近赤外線)遮蔽材として6ホウ化物粒子、あるいは6ホウ化物粒子にアンチモンドープ酸化錫(ATO)や、錫ドープ酸化インジウム(ITO)等を配合し遮蔽剤、これら遮蔽剤を分散した日射遮蔽膜用塗布液が開示されている。(特開2000−72484号公報(特許文献2)、特開2000−96034号公報(特許文献3))
さらに、これらの特許文献2および3には、塗布液には微粒子の分散安定性を向上させるために、あるいは導電性を制御するために界面活性剤、カップリング剤、各種金属アルコキシド、各種金属アルコキシドの部分加水分解物などを添加することも開示されている。
【0005】
しかしながら、塗布液中での6ホウ化物粒子は必ずしも安定性が充分ではなく、得られる膜は、硬度、基材との密着性、外観ムラ、ヘーズ等が不充分であった。
特に、6ホウ化物粒子にアンチモンドープ酸化錫(ATO)や、錫ドープ酸化インジウム(ITO)等を配合した塗布液、さらには紫外線遮蔽剤を配合した塗布液はポットライフが短く、硬度、基材との密着性、外観ムラ、ヘーズ等に優れた赤外線遮蔽膜を得ることが困難であった。また、導電性を制御するために各種金属アルコキシド、各種金属アルコキシドの部分加水分解物などを多用すると赤外線遮蔽能が低下し、また、膜厚を厚くすると透明性が低下するなどの問題があった。
【0006】
【特許文献1】
特開平10−120946号公報
【特許文献2】
特開2000−72484号公報
【特許文献3】
特開2000−96034号公報
【0007】
【発明の目的】
本発明は、シリカで被覆された酸化物微粒子(A)と、シリカで被覆されたホウ化物微粒子(B)と塗料用樹脂からなる赤外線遮蔽膜形成用塗料および該赤外線遮蔽膜形成用塗料を用いて形成された赤外線遮蔽膜付基材を提供することを目的としている。
【0008】
さらに詳しくは、透明性が高く、赤外線遮蔽能に優れ、必要に応じて紫外線遮蔽能を有し、基材との密着性、膜の硬度にも優れた紫外線遮蔽膜の形成に用いることのできる赤外線遮蔽膜形成用塗料および該赤外線遮蔽膜形成用塗料を用いて形成された赤外線遮蔽膜付基材を提供することを目的としている。
【0009】
【発明の概要】
本発明に係る赤外線遮蔽膜形成用塗料は、
酸化物微粒子(A)と、ホウ化物微粒子(B)と、塗料用樹脂とを含み、
酸化物微粒子(A)がIn、Sn、Sb、Zn、Tiから選ばれる元素の1種以上の酸化物または複合酸化物であり、ホウ化物微粒子(B)が周期律表のIIIa族、IVa族、Va族、VIa族から選ばれる元素の1種以上のホウ化物であり、
酸化物微粒子(A)およびホウ化物微粒子(B)がそれぞれシリカで被覆されていることを特徴としている。
【0010】
前記シリカで被覆された酸化物微粒子(A)およびシリカで被覆されたホウ化物微粒子(B)の平均粒子径が、それぞれ2〜100nmの範囲にあることが好ましい。
さらに、Tiおよび/またはCeの酸化物および/または複合酸化物またはこれらの混合物からなり、シリカで被覆された酸化物微粒子(C)を含んでいてもよい。
【0011】
前記シリカで被覆された酸化物微粒子(C)の平均粒子径が2〜100nmの範囲にあることが好ましい。
本発明に係る赤外線遮蔽膜付基材は、前記記載の赤外線遮蔽膜形成用塗料を用いて形成されてなる赤外線遮蔽膜を有することを特徴としている。本発明の赤外線遮蔽膜付基材はさらに表面に反射防止膜を有していてもよい。
【0012】
【発明の具体的な説明】
まず、本発明に係る赤外線遮蔽膜形成用塗料について説明する。(なお、本発明では、特別に区別しない限り、赤外線とは近赤外を含んで意味する。)
赤外線遮蔽膜形成用塗料
本発明に係る赤外線遮蔽膜形成用塗料は、酸化物微粒子(A)と、ホウ化物微粒子(B)と塗料用樹脂とを含む。
【0013】
酸化物微粒子 (A)
本発明に用いられる酸化物微粒子(A)はIn、Sn、Sb、Zn、Tiから選ばれる元素の1種の酸化物、または2種以上の複合酸化物、これらの混合物からなっている。
具体的には、酸化錫、Sb、FまたはPをドープした酸化錫、酸化インジウム、SnまたはFをドープした酸化インジウム、酸化アンチモン、酸化亜鉛、低次酸化チタン(着色)および、これらの混合物等の従来公知の導電性を有する酸化物微粒子が挙げられる。
【0014】
本発明では、これら酸化物微粒子は表面がシリカで被覆されている。シリカで被覆されていると、塗布液中で酸化物微粒子の表面が負に帯電してコロイド的な特性を有し、単分散性に優れた分散液や塗料が得られる。このようなシリカ系複合酸化物の被覆量は、前記コロイド的な特性を有する分散液や塗料が得られれば特に制限はないが、シリカ被覆酸化物微粒子(A)中のシリカの量が酸化物として1〜40重量%、好ましくは2〜30重量%の範囲にあることが好ましい。
【0015】
シリカ被覆酸化物微粒子(A)中のシリカの量が酸化物として前記した範囲にあれば、導電性を有する酸化物微粒子同士が直接接触することがないので、得られる赤外線遮蔽膜は導電性が低く、電波障害などを起こすことがない。
シリカ被覆酸化物粒子(A)中のシリカの量が少ないと、酸化物微粒子(A)の表面を完全に被覆することができない場合があり、分散安定性に優れた分散液や塗料を得ることができない場合がある。シリカ被覆酸化物微粒子(A)中のシリカの量が多すぎると、粒子(A)中に含まれる酸化物の割合が少なくなるので赤外線遮蔽効果が不充分となることがあり、充分な遮蔽効果を得ようとすると膜厚を厚くする必要があり、さらに透明性が低下したり着色したりすることがある。
【0016】
このようなシリカ被覆酸化物微粒子(A)の調製方法としては、分散安定性に優れたシリカ被覆酸化物微粒子(A)が得られれば特に制限はないが、例えば分散液のpHを概ね9〜12の範囲に調整しながら、酸化物微粒子の分散液に、珪酸塩および/または酸性珪酸液を添加されることで、コアの酸化物粒子表面にシリカ被覆層を形成すればよい。
【0017】
珪酸塩としては、アルカリ金属珪酸塩、アンモニウム珪酸塩および有機塩基の珪酸塩から選ばれる1種以上の珪酸塩が好ましく用いられる。アルカリ金属珪酸塩としては、珪酸ナトリウム(水ガラス)や珪酸カリウムが、有機塩基としては、テトラエチルアンモニウム塩などの第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類を挙げることができ、アンモニウムの珪酸塩または有機塩基の珪酸塩には、珪酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物などを添加したアルカリ性溶液も含まれる。
【0018】
酸性珪酸液としては、珪酸アルカリ水溶液を陽イオン交換樹脂で処理すること等によって、アルカリを除去して得られ、特に、pH2〜pH4、SiO2濃度が約7重量%以下の酸性珪酸液が好ましい。
また、前記珪酸塩または酸性珪酸液の代わりに、下記式(1)で表される加水分解性有機ケイ素化合物の加水分解物を酸化物微粒子(A)表面に析出させることによってもシリカ被覆を行うことができる。
【0019】
nSiX4-n (1)
〔ただし、R:炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲン、水素、n:0〜3の整数〕
このような式(1)で表される加水分解性有機基含有ケイ素化合物としては、具体的に、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3-トリフルオロプロピルトリメトキシシラン、メチル-3,3,3-トリフルオロプロピルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシトリプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、ビニルトリクロルシラン、トリメチルブロモシラン、ジエチルシラン等が挙げられる。
【0020】
また、前記式(1)において、n=1〜3の加水分解性有機ケイ素化合物を用いると、後述する塗料用樹脂が有機樹脂の場合、シリカ系複合酸化物被覆酸化物微粒子(A)の分散性が向上し、得られる赤外線遮蔽膜は概観ムラ、ヘーズ、遮蔽膜表面平滑性等に優れている。
さらに、本発明に用いるシリカ被覆酸化物微粒子(A)は、前記珪酸塩および/または酸性珪酸液を添加してシリカ被覆を行った後、さらに前記シリカ被覆層に前記式(1)で表される加水分解性有機ケイ素化合物の加水分解物を析出させることによって得ることが好ましい。
【0021】
前記珪酸塩および/または酸性珪酸液をのみを添加してシリカ被覆を行う方法では得られるシリカ被覆酸化物微粒子(A)の単分散性が不充分となることがあり、凝集することがある。また、前記式(1)で表される加水分解性有機ケイ素化合物の加水分解物のみを酸化物微粒子(A)表面に析出させる方法では、加水分解物が酸化物微粒子表面に選択的に析出しない場合があり、シリカ被覆が不充分となったり、被覆効率が低下することがある。
【0022】
このとき、前記珪酸塩および/または酸性珪酸液によるシリカ被覆量は、酸化物微粒子(A)を被覆できる量であればよく、概ね0.5〜10重量%、さらには1〜5重量%の範囲にあればよい。また、式(1)で表される加水分解性有機ケイ素化合物の加水分解物による被覆量は、シリカ被覆酸化物微粒子(A)中の被覆シリカ(シリカ換算)が1〜40重量%、好ましくは2〜30重量%の範囲となるようにすればよい。また被覆層の形成は繰り返して行うこともできる。
【0023】
なお、式(1)で表される加水分解性有機ケイ素化合物の加水分解物による被覆を行う場合は、予め、珪酸塩および/または酸性珪酸液で被覆する代わり、酸化チタン、酸化ジルコニウム、アルミナ等の酸化物(水酸化物を含む)を被覆してもよく、さらに前記珪酸塩および/または酸性珪酸液によるシリカ被覆と、さらに、組合せてもよく、その被覆順序は特に制限されない。酸化チタン、酸化ジルコニウム、アルミナ等で被覆する場合、被覆量は酸化物として概ね0.5〜10重量%、さらには1〜5重量%の範囲にあればよい。このようにして予め被覆しておくと有機ケイ素化合物加水分解物によるシリカ被覆を均一に行うことができる。
【0024】
さらに、本発明に用いるシリカ被覆酸化物微粒子(A)は、前記シリカ被覆を行う際に、特に珪酸塩および/または酸性珪酸液によるシリカ被覆を行う際に、酸化物微粒子の分散液を強く撹拌しながら、あるいは酸化物微粒子をサンドミル、ボールミル等で粉砕しながら、必要に応じて超音波を照射することが望ましい。このような方法を採用すると酸化物微粒子表面上に均一にシリカを被覆することができる。
【0025】
このようにして得られたシリカ被覆酸化物微粒子(A)は通常分散液として調製される。この分散液は、必要に応じて限外濾過膜法等で有機溶媒に溶媒置換して用いることができる。有機溶媒としてはアルコール、エーテル、エステル、ケトン等が挙げられ、具体的には、メタノール、エタノール、nプロパノール、イソプロパノール、ブタノール、エチレングリコールモノメチルアセテート、メチルエチルケトン、メチルイソブチルケトン、イソホロン、トルエン、キシレン等が挙げられる。
【0026】
ホウ化物微粒子 (B)
本発明に用いるホウ化物微粒子(B)は周期律表のIIIa族、IVa族、Va族、VIa族から選ばれる元素の1種または2種以上のホウ化物およびこれらの混合物からなっている。
具体的には、LaB6、CeB6、PrB6、NdB6、SmB6、GdB6、TbB6、DyB6、SrB6、CaB6等およびこれらの混合物を挙げることができる。また、これら6ホウ化物粒子以外のホウ化物微粒子を用いることもできる。
【0027】
本発明では、これらホウ化物微粒子は表面がシリカで被覆されている。シリカで被覆されていると分散液や塗料中でホウ化物微粒子の表面が負に帯電してコロイド的な特性を有し、単分散性に優れた分散液・塗料が得られる。このようなシリカの被覆量は、前記コロイド的な特性を有する分散液・塗料が得られれば特に制限はないが、シリカ被覆ホウ化物微粒子(B)中のシリカの量が酸化物として1〜40重量%、好ましくは2〜30重量%の範囲にあることが好ましい。
【0028】
シリカ被覆ホウ化物微粒子(B)中のシリカの量が少ないと、ホウ化物微粒子(B)の表面を完全に被覆することができない場合があり、分散安定性に優れた分散液・塗料を得ることができない場合がある。
シリカ被覆ホウ化物微粒子(B)中のシリカの量が多すぎると、ホウ化物微粒子の割合が少なくなるので赤外線遮蔽効果が不充分となることがあり、充分な遮蔽効果を得ようとすると膜厚を厚くする必要があり、さらに透明性やヘーズが低下したり、膜自体が着色したりすることがある。
【0029】
このようなシリカ被覆ホウ化物微粒子(B)は、分散安定性に優れたシリカ被覆ホウ化物微粒子(B)が得られれば特に制限はなく、前記酸化物微粒子(A)のシリカ被覆と同様のケイ素化合物および方法でシリカ被覆層を形成することで調製することができる。なお、式(1)で表される加水分解性有機ケイ素化合物の加水分解物による被覆を行う場合は、予め、前記珪酸塩および/または酸性珪酸液を添加してシリカ被覆を行う以外に、珪酸塩および/または酸性珪酸液の代わりに、酸化チタン、酸化ジルコニウム、アルミナ等の酸化物(水酸化物を含む)を被覆してもよい。さらに、両者で被覆してもよく、その被覆順序は特に制限されない。酸化チタン、酸化ジルコニウム、アルミナ等で被覆する場合、被覆量は酸化物として概ね0.5〜10重量%、さらには1〜5重量%の範囲にあればよい。
【0030】
また、このようにして得られたシリカ被覆ホウ化物微粒子(B)の分散液は、必要に応じて限外濾過膜法等で有機溶媒に溶媒置換して用いることができる。有機溶媒としてはアルコール、エーテル、エステル、ケトン等が挙げられ、具体的には、メタノール、エタノール、nプロパノール、イソプロパノール、ブタノール、エチレングリコールモノメチルアセテート、メチルエチルケトン、メチルイソブチルケトン、イソホロン、トルエン、キシレン等が挙げられる。
【0031】
塗料用樹脂
本発明に用いる塗料用樹脂としては、従来公知の熱硬化性樹脂、熱可塑性樹脂等のいずれも採用することができる。このような樹脂として、例えば、従来から用いられているポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、ケイ素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性アクリル樹脂などの熱硬化性樹脂などが挙げられる。さらにはこれら樹脂の2種以上の共重合体や変性体であってもよい。
【0032】
これらの樹脂は、エマルジョン樹脂、水溶性樹脂、親水性樹脂であってもよい。さらに、熱硬化性樹脂の場合、紫外線硬化型のものであっても、電子線硬化型のものであってもよく、熱硬化性樹脂の場合、硬化触媒が含まれていてもよい。本発明では、特に、熱硬化性樹脂、紫外線硬化樹脂は前記酸化物微粒子(A)、ホウ化物微粒子(B)を配合した場合に基材との密着性、膜強度および耐擦傷性の向上効果が得られる。
【0033】
分散媒
本発明に係る赤外線遮蔽膜形成用塗料には、必要に応じて分散媒を用いることができる。例えば、塗料用樹脂の種類によっても異なるが、水、アルコール、エーテル、エステル、ケトン等が挙げられ、具体的には、メタノール、エタノール、nプロパノール、イソプロパノール、ブタノール、エチレングリコールモノメチルアセテート、メチルエチルケトン、メチルイソブチルケトン、イソホロン、トルエン、キシレン等がある。
【0034】
このような分散媒を用いることによって、塗工性がよく、得られる膜の白化がなく、表面平滑性等に優れた赤外線遮蔽膜を得ることができる。
赤外線遮蔽膜形成用塗料
本発明に係る赤外線遮蔽膜形成用塗料は、シリカ被覆酸化物微粒子(A)とシリカ被覆ホウ化物微粒子(B)と塗料用樹脂と、必要に応じて前記分散媒とからなっている。
【0035】
赤外線遮蔽膜形成用塗料中のシリカ被覆酸化物微粒子(A)の含有量は赤外線遮蔽膜中の含有量が固形分として5〜80重量%、さらには10〜70重量%の範囲となるように含まれていることが好ましい。
赤外線遮蔽膜中のシリカ被覆酸化物微粒子(A)の含有量が酸化物として5重量%未満の場合は、赤外線波長域が1500〜2500nmの赤外線遮蔽性能が充分得られず、赤外線遮蔽膜中のシリカ被覆酸化物微粒子(A)の含有量が酸化物として80重量%を越えると、膜の表面平滑性が低下するとともに膜内部に微小空隙が生じてヘーズが高くなることがあり、さらに膜の硬度や基材との密着性が低下することがある。
【0036】
また、赤外線遮蔽膜形成用塗料中のシリカ被覆ホウ化物微粒子(B)の含有量は赤外線遮蔽膜中の含有量が固形分として5〜60重量%、さらには10〜50重量%の範囲にあることが好ましい。
赤外線遮蔽膜中のシリカ被覆ホウ化物微粒子(B)の含有量が固形分として5重量%未満の場合は、赤外線波長域が800〜1500nmの赤外線遮蔽性能が充分得られず、赤外線遮蔽膜中のシリカ被覆ホウ化物微粒子(B)の含有量が固形分として60重量%を越えると、膜の表面平滑性が低下するとともに膜内部に微小空隙が生じヘーズが高くなることがあり、さらに膜の硬度や基材との密着性が低下し、また赤外線波長域が1500〜2500nmの赤外線遮蔽性能が低下する傾向にある。
【0037】
赤外線遮蔽膜中のシリカ被覆酸化物微粒子(A)とシリカ被覆ホウ化物微粒子(B)との合計の含有量は固形分として10〜80重量%、さらには20〜70重量%の範囲にあることが好ましい。
合計の含有量が10重量%未満の場合は、赤外線波長域が800〜2500nmの赤外線遮蔽性能が充分得られず、合計の含有量が80重量%を越えると、膜の表面平滑性が低下するとともに膜内部に微小空隙が生じヘーズが高くなることがあり、さらに膜の硬度や基材との密着性が低下する。
【0038】
このとき、シリカ被覆酸化物微粒子(A)の含有量WAとシリカ被覆ホウ化物微粒子(B)の含有量WBとの重量比WB/WAは0.4〜2.5、さらには0.5〜1.0の範囲にあることが好ましい。
B/WAが上記範囲にあれば、波長800〜2500nmの広い範囲にわたって赤外線を効率的に遮蔽することができる。
【0039】
B/WAが0.4未満の場合は、赤外線波長域が800〜1500nmの赤外線遮蔽性能が充分得られず、WB/WAが2.5を越えると、赤外線波長域が1500〜2500nmの赤外線遮蔽性能が充分得られない。
このとき、赤外線遮蔽膜形成用塗料中の塗料用樹脂の含有量は、赤外線遮蔽膜中の塗料用樹脂の含有量が20〜90重量%、さらには30〜80重量%の範囲にあることが好ましい。
【0040】
赤外線遮蔽膜中の塗料用樹脂の含有量が20重量%未満の場合は、赤外線遮蔽膜の基材との密着性、硬度が低下し、赤外線遮蔽膜表面の平滑性が不充分となる。
赤外線遮蔽膜中の塗料用樹脂の含有量が90重量%を越えると、赤外線遮蔽成分が少なく充分な赤外線遮蔽性能が得られない。
【0041】
赤外線遮蔽膜形成用塗料には必要に応じて前記した分散媒(溶剤)を含むが、塗料中の分散媒の使用割合は、樹脂の種類や含有量によっても異なるが90重量%以下、さらには80重量%以下の範囲にあることが好ましい。
赤外線遮蔽膜形成用塗料中の分散媒の使用割合が90重量%を越えると、1回の塗布で厚膜の形成ができない場合があり、また乾燥時の溶媒の蒸発に伴い塗膜のムラや気泡に伴いボイドが発生しヘーズが高くなることがある。
【0042】
本発明に用いるシリカ被覆酸化物微粒子(A)とシリカ被覆ホウ化物微粒子(B)は、平均粒子径が2〜100nm、さらには5〜80nmの範囲にあることが好ましい。
各粒子の平均粒子径が2nm未満の場合は、基材との密着性や耐擦傷性、膜硬度が不充分となることがあり、粒子が凝集することがあり、このためヘーズが高くなることがある。また、粒子が凝集した場合、光の通り抜けが生じ赤外線遮蔽効率が低下することがある。
【0043】
各粒子の平均粒子径が100nmを越えると、膜の平滑性が低下したり、また可視光の散乱により透明性が低下したりヘーズが高くなることがある。
紫外線遮蔽剤
さらに、本発明に係る赤外線遮蔽用塗料には、紫外線遮蔽剤としてTiおよび/またはCeの酸化物および/または複合酸化物またはこれらの混合物からなり、シリカで被覆された酸化物微粒子(C)を含んでいてもよい。
【0044】
特に、基材がガラスの場合は、紫外線遮蔽能を付与することができるので特に、好適である。
Tiおよび/またはCeの酸化物および/または複合酸化物粒子としては従来公知の紫外線遮蔽能を有する粒子を用いることができ、具体的にはTiO2、CeO2、TiO2・CeO2等の微粒子およびこれらの混合物が挙げられる。
【0045】
これら酸化物粒子(C)も表面がシリカで被覆されていることが望ましい。シリカで被覆されていると、塗料中で酸化物粒子の表面が負に帯電してコロイド的な特性を有し、前記シリカで被覆した酸化物微粒子(A)、シリカで被覆したホウ化物微粒子(B)と同様に負に帯電し、各微粒子を混合して用いても微粒子は容易に凝集することはなく、単分散性に優れた塗料が得られる。さらに、シリカで被覆されているので樹脂バインダー等を劣化させることがなく、得られる赤外線遮蔽膜は耐候性に優れている。加えて、シリカ被覆酸化物粒子(C)が含まれていると、紫外線遮蔽能をさらに付与できるとともに、赤外線遮蔽膜の屈折率を高く調節することができるので、必要に応じて後述する反射防止膜を設けた場合に、反射防止性能に優れた赤外線遮蔽膜付基材を得ることができる。
【0046】
シリカ被覆酸化物微粒子(C)のシリカの被覆量は、前記コロイド的な特性を有する安定な分散液、塗布液が得られ、さらに得られる赤外線遮蔽膜が耐候性を有していれば特に制限はなく、シリカ被覆酸化物微粒子(C)中のシリカの量がSiO2として1〜40重量%、好ましくは2〜30重量%の範囲にあることが望ましい。シリカ被覆酸化物微粒子(C)中のシリカの量が少ないと、分散安定性に優れた塗料を得ることができない場合がある。また、前記耐候性が不充分となることがある。シリカ被覆酸化物微粒子(C)中のシリカの量が多すぎると、酸化物微粒子の割合が少なくなるので紫外線遮蔽効果が不充分となることがある。
【0047】
このようなシリカ被覆酸化物微粒子(C)の製造方法は特に制限はなく、前記酸化物粒子(A)、ホウ化物微粒子(B)のシリカ被覆と同様にして調製することができる。
このようなシリカで被覆された酸化物微粒子(C)の平均粒子径が2〜100nm、さらには5〜80nmの範囲にあることが好ましい。粒子の(C)の平均粒子径が小さいと、基材との密着性や耐擦傷性、膜硬度が不充分となることがあり、また粒子の凝集によりヘーズが高くなることがある。さらに光の通り抜けにより紫外線遮蔽効率が低下することがある。粒子(C)の平均粒子径が大きいと、粒子の含有量にもよるが、膜の平滑性が低下したり、また可視光の散乱により透明性が低下したりヘーズが高くなることがある。さらに、大きいとその分、光が隙間を通りやすくなり、紫外線の通り抜けが起こるようになり紫外線遮蔽効率が低下することがある。
【0048】
赤外線遮蔽膜形成用塗料中のシリカ被覆酸化物微粒子(C)の含有量は、赤外線遮蔽膜中のシリカ被覆酸化物微粒子(C)の含有量が固形分として0.2〜10重量%、さらには0.5〜5重量%の範囲にあることが好ましい。赤外線遮蔽膜中のシリカ被覆酸化物微粒子(C)の含有量が少ないと、紫外線遮蔽効果が不充分となりシリカ被覆酸化物微粒子(C)を用いる効果が発現されず、シリカ被覆酸化物微粒子(C)の含有量が多すぎると、膜自体が着色することがある。
【0049】
このようなシリカ被覆酸化物微粒子(C)を含む場合、赤外線遮蔽膜中のシリカ被覆酸化物微粒子(A)、シリカ被覆ホウ化物微粒子(B)およびシリカ被覆酸化物微粒子(C)の合計の含有量は、固形分として20〜90重量%、さらには30〜80重量%の範囲にあることが好ましい。
このような範囲で(A)〜(C)を含んでいると、広範囲にわたる赤外線遮蔽能および紫外線遮蔽能を有する赤外線遮蔽膜を形成することができる。粒子の含有量が多すぎると、膜の表面平滑性が低下するとともに膜内部に微小空隙が生じヘーズが高くなることがあり、さらに膜の硬度や基材との密着性が低下することがある。また、粒子の含有量が少なすぎると、効果が充分に発現されないことがある。また シリカ被覆酸化物微粒子(C)を用いる場合も赤外線遮蔽膜形成用塗料には必要に応じて前記した分散媒を含むが、塗料中の分散媒の使用割合は、シリカ被覆酸化物微粒子(C)を含まない場合と同様90重量%以下、さらには80重量%以下の範囲にあることが好ましい。
【0050】
赤外線遮蔽膜付基材
つぎに、本発明に係る赤外線遮蔽膜付基材は、前記赤外線遮蔽膜形成用塗料を用いて形成されたことを特徴としている。
基材
本発明に用いる基材としては、車両、ビル、事務所、一般住宅等の窓、ショーウィンドー等に用いられるガラス、ポリカーボネート、アクリル樹脂、PET、TAC等のプラスチックシート、プラスチックフィルム等、プラスチックパネル等があげられる。
【0051】
赤外線遮蔽膜付基材の製造
本発明に係る赤外線遮蔽膜付基材の製造方法は、前記塗布液をディップ法、スプレー法、スピナー法、ロールコート法等の周知の方法で基材に塗布し、乾燥し、熱硬化性樹脂の場合は硬化させた後、熱可塑性樹脂の場合は、さらに必要に応じて基材の軟化点未満の温度で加熱処理することによって得ることができる。
【0052】
このときの赤外線遮蔽膜の厚さは0.5〜20μm、さらには2〜10μmの範囲にあることが好ましい。
赤外線遮蔽膜の厚さが0.5μm未満の場合は、赤外線遮蔽能が充分得られず、赤外線遮蔽膜の厚さが20μmを越えると、膜の厚さが均一になるように塗布したり、均一に乾燥することが困難となり、このためクラックやボイドの発生により得られる膜の強度や透明性が不充分となることがある。
【0053】
本発明の赤外線遮蔽膜付基材には、必要に応じて赤外線遮蔽膜上に反射防止膜が設けられていてもよい。
反射防止膜
本発明に用いる反射防止膜としては、反射防止性能を有していれば特に制限はなく従来公知の反射防止膜を用いることができる。具体的には、前記赤外線遮蔽膜よりも屈折率が低いものであれば反射防止性能を具備している。
【0054】
このような反射防止膜は、反射防止膜形成用マトリックスと、必要に応じて低屈折率成分とからなっている。
反射防止膜形成用マトリックスとは、赤外線遮蔽膜表面に被膜を形成し得る成分をいい、赤外線遮蔽膜との密着性や硬度および塗工性等の条件に適合する樹脂等から選択して用いることができ、前記赤外線遮蔽膜に用いたと同様の塗料用樹脂を用いることができる。
【0055】
反射防止膜中に含まれる低屈折率成分としては、CaF2、NaF、NaAlF6、MgF等の低屈折率物質の他、シリカ系粒子(シリカ粒子、シリカ中空粒子、シリカ・アルミナ複合酸化物粒子)多孔質シリカ系粒子等が挙げられる。
例えば、本願出願人の出願による特開平7−133105号公報に開示した多孔性の無機酸化物微粒子の表面をシリカで被覆した複合酸化物微粒子を用いると屈折率が低く反射防止性能に優れた反射防止膜を得ることができる。
【0056】
また、マトリックスとして加水分解性有機珪素化合物を用いることも可能である。具体的には、例えば、アルコキシシランとアルコールの混合液に、水および触媒としての酸またはアルカリを加えることにより、アルコキシシランの部分加水分解物が好適に使用される。
加水分解性有機珪素化合物としては、一般式RnSi(OR')4-n[R、R':アルキル基、アリール基、ビニル基、アクリル基、等の炭化水素基、n=0,1,2,または3]で表されるアルコキシシランを用いることができる。特にテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシランなどのテトラアルコキシシランが好ましく用いられる。
【0057】
反射防止膜中の低屈折率成分の含有量は90重量%以下、さらには50重量%以下であることが好ましい。低屈折率成分の含有量を多くしすぎると、被膜の強度や赤外線遮蔽膜との密着性が不足し、実用性に欠けることがある。
反射防止膜の厚さは50〜300nm、さらには80〜200nmの範囲にあることが好ましい。
【0058】
反射防止膜の厚さが50nm未満の場合は、膜の強度、反射防止性能等が劣ることがある。
反射防止膜の厚さが300nmを越えると、膜にクラックが発生したり、このため膜の強度が低下したり、また膜が厚すぎて反射防止性能が不充分となることがある。
【0059】
このような反射防止膜の屈折率は、低屈折率成分と樹脂等マトリックスとの混合比率および使用する樹脂等の屈折率によっても異なるが、通常1.28〜1.50の範囲にあることが好ましい。反射防止膜の屈折率が1.50を越えると基材の屈折率にもよるが、反射防止性能が不充分となることがあり、屈折率が1.28未満のものは得ることが困難である。
【0060】
反射防止膜は、上記した反射防止膜形成用マトリックスと、必要に応じて低屈折率成分と溶媒とを含む反射防止膜形成用塗布液を塗布することで形成される。使用される溶媒としては、いずれも容易に蒸散し、得られる反射防止膜に悪影響を及ぼすことの無いものであれば特に制限はない。
反射防止膜の形成方法としては、特に制限されるものではなく、前記した赤外線遮蔽膜の形成と同様に、ディップ法、スプレー法、スピナー法、ロールコート法などの周知の方法で赤外線遮蔽膜上に塗布し、乾燥すればよく、特にマトリックス形成成分が熱硬化性樹脂の場合は加熱処理、紫外線照射処理、電子線照射処理などにより、反射防止膜の硬化を促進させてもよく、またマトリックス形成成分に加水分解性有機ケイ素化合物が含まれている場合は、加水分解性有機ケイ素化合物の加水分解・重縮合を促進させて用いてもよい。
【0061】
【発明の効果】
本発明では、可視光遮蔽性が高く、特に選択的に、1500〜2500nmの赤外線波長域の赤外線を遮蔽できる酸化物微粒子(A)および800〜1500nmの赤外線波長域の赤外線を遮蔽できるホウ化物微粒子(B)とがシリカで被覆されているので、安定性に優れた赤外線遮蔽膜形成用塗料を提供することができる。このため、本発明に係る赤外線遮蔽膜形成用塗料を用いることによって、広範囲に赤外線を有効に遮蔽できるとともに透明性、ヘーズ、基材との密着性、膜強度、耐久性等に優れた赤外線遮蔽膜付基材を提供することができる。
【0062】
さらに、必要に応じてシリカで被覆された酸化物粒子(C)を配合することによって、耐候性に優れかつ紫外線遮蔽能を付与することも可能である。
【0063】
【実施例】
以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
【0064】
【製造実施例】
シリカ被覆酸化物微粒子 (A-1) の分散液の調製
塩化錫57.7gと塩化アンチモン7.0gとをメタノール100gに溶解して混合溶液を調製した。ついで、混合溶液を90℃の純水1,000gに4時間かけて添加して加水分解を行い、生成した沈殿物を濾別洗浄した後、再び純水に分散させ、固形分濃度10重量%の金属酸化物前駆体水酸化物の分散液を調製した。
【0065】
この分散液を温度100℃で噴霧乾燥して金属酸化物前駆体水酸化物の粉体を調製した。ついで、この粉体を窒素ガス雰囲気下、550℃で2時間加熱処理することにより金属酸化物粉末(ATO:Sbドープ錫酸化物)を得た。
この粉末300gを濃度3重量%の水酸化カリウム水溶液70gに加え、30℃に保持しながらサンドミルで3時間粉砕して金属酸化物のゾルを調製した。
【0066】
ついで、この金属酸化物のゾルをイオン交換樹脂で処理して脱アルカリし、純水を加えて酸化物としての濃度が20重量%の金属酸化物微粒子(RA-1)の分散ゾルを調製した。このとき、金属酸化物微粒子の平均粒子径は30nmであった。ついで、この金属酸化物微粒子分散ゾル100gとエタノール100gとの混合液を調製し、50℃に加温した後、テトラエトキシシラン(多摩化学(株)製:正珪酸エチル、SiO2濃度28.8%)13.9gを6時間で添加し、この分散液を12時間熟成した後、限外濾過膜に通し分散媒の水とエタノールをエタノールに置換し、固形分濃度30重量%のシリカ被覆酸化物微粒子(A-1)の分散液を調製した。シリカ被覆酸化物微粒子(A-1)の平均粒子径は33nmであった。
【0067】
シリカ被覆酸化物微粒子 (A-2) の分散液の調製
硝酸インジウム79.9gを純水686.0gに溶解して得られた溶液と、錫酸カリウム12.7gを濃度10重量%の水酸化カリウム溶液に溶解して得られた溶液とを調製し、これらの溶液を、50℃の純水1,000gに2時間かけて添加した。この間、系内のpHを11に保持した。得られた金属酸化物前駆体水酸化物分散液から金属酸化物前駆体水酸化物を濾別、洗浄した後、乾燥し、ついで、空気中、350℃で3時間加熱処理し、さらに600℃で2時間加熱処理して金属酸化物粉末(ITO:Snドープインジウム酸化物)を得た。
【0068】
この金属酸化物粉末を濃度が30重量%となるように純水に分散させ、さらに硝酸水溶液でpHを3.5に調製した後、分散液を30℃に保持しながらサンドミルで3時間粉砕して金属酸化物のゾルを調製した。ついで、この金属酸化物のゾルをイオン交換樹脂で処理して硝酸イオンを除去し、純水を加えて酸化物としての濃度が20重量%の金属酸化物微粒子(RA-2)分散ゾルを調整した。このとき、金属酸化物微粒子の平均粒子径は50nmであった。
【0069】
ついで、金属酸化物微粒子分散ゾル100gとエタノール100gとの混合液を調製し、50℃に加温した後、テトラエトキシシラン(多摩化学(株)製:正珪酸エチル、SiO2濃度28.8%)13.9gを6時間で添加し、この分散液を12時間熟成した後、限外濾過膜に通し分散媒の水とエタノールをエタノールに置換し、固形分濃度30重量%のシリカ被覆酸化物微粒子(A-2)の分散液を調製した。シリカ被覆酸化物微粒子(A-2)の平均粒子径は55nmであった。
【0070】
シリカ被覆ホウ化物微粒子 (B-1) の分散液の調製
純水250gに六ホウ化ランタン粉末(日本新金属(株)製:LaB6−F)9.0gとジルコニウムテトラアルコキシド(日本曹達製ZR-181:ZrO2換算15重量%)1.8gとを混合後、1時間攪拌混合を行った。ついで、濃度2重量%の硝酸水溶液1.8gを加え、30℃に保ちながらサンドミルで3時間粉砕して、固形分濃度3.5重量%の酸化ジルコニウム被覆六ホウ化ランタン微粒子(RB-1)分散液を得た。このとき、酸化ジルコニウム被覆六ホウ化ランタン微粒子の平均粒子径は70nmであった。
【0071】
ついで酸化ジルコニウム被覆六ホウ化ランタン微粒子分散液250gとエタノール250gとの混合液を調製し、50℃に加温した後、テトラエトキシシラン(多摩化学(株)製:正珪酸エチル、SiO2濃度28.8重量%)6gを6時間で添加した。この分散液を12時間熟成した後、限外濾過膜に通し分散媒の水とエタノールをエタノールに置換し、固形分濃度20重量%のシリカ被覆ホウ化物微粒子(B-1)の分散液を調製した。シリカ被覆ホウ化物微粒子(B-1)の平均粒子径は75nmであった。
【0072】
シリカ被覆ホウ化物微粒子 (B-2) の分散液の調製
純水250gに六ホウ化ランタン粉末(日本新金属(株)製:LaB6−F)9.0gとテトラエトキシシラン(多摩化学(株)製:正珪酸エチル、SiO2濃度28.8重量%)1.8gを混合後、1時間攪拌混合を行った。ついで濃度2重量%の硝酸水溶液1.8gを加え、30℃に保ちながらサンドミルで3時間粉砕して、固形分濃度3.5重量%のシリカ被覆六ホウ化ランタン微粒子(RB-2)分散液を得た。このとき、シリカ被覆六ホウ化ランタン微粒子の平均粒子径は75nmであった。
【0073】
ついでシリカ被覆六ホウ化ランタン微粒子分散液250gとエタノール250gとの混合液を調製し、50℃に加温した後、テトラエトキシシラン(多摩化学(株)製:正珪酸エチル、SiO2濃度28.8重量%)6gを6時間で添加した。この分散液を12時間熟成した後、限外濾過膜に通し分散媒の水とエタノールをエタノールに置換し、固形分濃度20重量%のシリカ被覆ホウ化物微粒子(B-2)の分散液を調製した。シリカ被覆ホウ化物微粒子(B-2)の平均粒子径は80nmであった。
【0074】
シリカ被覆酸化物微粒子 (C-1) の分散液の調製
酸化チタンゾル(触媒化成工業(株)製:オプトレイク1130Z、平均粒子径20nm、固形分濃度20重量%)250gに濃アンモニア水を添加してゾルのpHを10.5に調整し、これにエタノール250gを加え、この混合液を50℃に加温した後、テトラエトキシシラン(多摩化学(株)製:正珪酸エチル、SiO2濃度28.8%)15gを18時間で添加し、ついで、限外濾過膜に通し分散媒の水とエタノールをエタノールに置換し、固形分濃度20重量%のシリカ被覆酸化物微粒子(C-1)の分散液を調製した。シリカ被覆酸化物微粒子(C-1)の平均粒子径は25nmであった。
【0075】
低屈折率複合酸化物微粒子分散ゾル (D-1) の製造
メチルトリメトキシシラン27.4gを濃度0.65重量%の水酸化ナトリウム水溶液872.6gに混合し室温で1時間攪拌して、CH3SiO3/2として1.5重量%の無色透明な部分加水分解物を調製した。
次で、種粒子として平均粒子径5nm、SiO2濃度20重量%のシリカゾル20gと純水380gとの混合物を80℃に加温した。この反応母液のpHは10.5であり、同母液にSiO2として1.5重量%の珪酸ナトリウム水溶液900gと、上記部分加水分解物の水溶液900gと、Al23として濃度0.5重量%のアルミン酸ナトリウム水溶液1800gとを6時間掛けて同時に添加した。その間、反応母液の温度を80℃に維持した。反応母液のpHは添加直後、12.7に上昇し、その後ほとんど変化しなかった。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度20重量%のメチル基含有SiO2・Al23複合酸化物微粒子の分散液(D-1-1)を得た。
【0076】
ついで、複合酸化物微粒子(D-1-1)の分散液250gに純水550gを加えて98℃に加温し、この温度を維持しながら、珪酸ナトリウム水溶液を陽イオン交換樹脂で脱アルカリして得た珪酸液(SiO2濃度3.5重量%)1,000gを5時間で添加して、シリカで被覆したメチル基含有SiO2・Al23複合酸化物微粒子(D-1-2)の分散液を得た。ついで、限外濾過膜を用いて洗浄し、固形分濃度13重量%とした分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、微粒子からアルミニウムを除去する処理を行った。
【0077】
ついで、pH3.0の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜を用いて溶解したアルミニウム塩を洗浄除去するとともに、濃縮して固形分濃度13重量%のシリカで被覆したメチル基含有SiO2・Al23複合酸化物微粒子(D-1-3)の分散液を得た。
ついで複合酸化物微粒子(D-1-3)の分散液1,500gと純水500g、エタノール1,750gおよび濃度28重量%のアンモニア水626との混合液を35℃に加温した後、テトラエトキシシラン(多摩化学(株)製:正珪酸エチル、SiO2濃度28.8%)104gを添加し、前記シリカで被覆した。これをエバポレーターで固形分濃度5重量%まで濃縮した後、濃度15重量%のアンモニア水を加えてpH10とし、オートクレーブで180℃、2時間加熱処理し、ついで限外濾過膜で濃縮して固形分濃度10重量%のシリカで完全に被覆したメチル基含有SiO2・Al23複合酸化物微粒子(D-1)の分散液を得た。
【0078】
このシリカ被覆複合酸化物微粒子(D-1)のSiO2/Al23モル比は278、平均粒子径は34nm、屈折率は1.36であった。
なお、粒子の屈折率は、次のようにして測定した。
(1)複合酸化物微粒子(D-1)の分散液をエバポレーターに採り、分散液を蒸発させる。
(2)これを120℃で乾燥し、粉末とする。
(3)屈折率が既知である標準屈折液を2、3滴ガラス板上に滴下し、これに上記粉末を混合する。
(4)上記(3)の操作を種々の標準屈折液で行い、混合液(多くの場合はペースト状)が透明になったときの標準屈折液の屈折率を微粒子の屈折率とする。
【0079】
【実施例1】
赤外線遮蔽膜形成用塗料 (P-1) の調製
上記で得たシリカ被覆酸化物微粒子(A-1)の分散液12.0gと、シリカ被覆ホウ化物微粒子(B-1)の分散液2.0gと、紫外線硬化樹脂(大日本インキ(株)製:ユニディックV-5500)1.2gと、イソプロパノール2.4g、ブチルセロソルブ0.3gとを充分混合して赤外線遮蔽膜形成用塗料(P-1)を調製した。
【0080】
赤外線遮蔽膜付基材 (F-1) の製造
赤外線遮蔽膜形成用塗料(P-1)をPETフィルム(厚さ188μm、屈折率1.65)にバーコーターで塗布し、80℃で1分間乾燥した後、高圧水銀灯(80W/cm)を1分間照射して硬化させて、赤外線遮蔽膜付基材(F-1)を得た。このとき、赤外線遮蔽膜の膜厚は5μmであった。
【0081】
得られた赤外線遮蔽膜付基材(F-1)の赤外線遮蔽性、可視光遮蔽性、紫外線遮蔽性を分光光度計(日本分光(株)製:U-570)で、透明性をヘーズメーター(日本電色(株)製:NDH2000)で測定した。また、以下の方法で密着性、鉛筆硬度、耐擦傷性を測定した。
結果を表1に示す。
【0082】
なお、PETフィルム自体のヘーズ(波長550nm)は2%であった。また、反射率は反射率計(大塚電子(株)製:MCPD-2000)を用いてJIS Z8727に準じて測定し、波長400〜700nmの範囲で反射率が最も低い波長での反射率とし、これをボトム反射率として表に示した。
また、赤外線遮蔽性は赤外線波長1000nmと2500nmにおける透過率で示した。
【0083】
可視光遮蔽性は可視光波長550nmにおける透過率で示した。
紫外線遮蔽性は波長380nmにおける透過率で示した。
密着性
赤外線遮蔽膜付基材(F-1)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付け100個の升目を作り、これに粘着テープ(セロハンテープ、商標)を接着し、ついで、セロハンテープを剥離したときに被膜が剥離せず残存している升目の数を、以下の4段階に分類することにより密着性を評価した。
【0084】
残存升目の数95個以上 :◎
残存升目の数90〜94個 :○
残存升目の数85〜89個 :△
残存升目の数84個以下 :×
鉛筆硬度
JIS-K-5400に準じて鉛筆硬度試験器により測定した。
【0085】
耐擦傷性
#0000スチールウールを用い、荷重500g/cm2で50回摺動し、膜の表面を目視観察し、以下の基準で評価した。
筋条の傷が認められない :◎
筋条に傷が僅かに認められる :○
筋条に傷が多数認められる :△
面全体的に削られている :×
【0086】
【実施例2】
赤外線遮蔽膜形成用塗料 (P-2) の調製
実施例1において、シリカ被覆酸化物微粒子(A-2)の分散液を用いた以外は同様にして赤外線遮蔽膜形成用塗料(P-2)を調製した。
赤外線遮蔽膜付基材 (F-2) の製造
実施例1において、赤外線遮蔽膜形成用塗料(P-2)を用いた以外は同様にして赤外線遮蔽膜付基材(F-2)を得た。このとき、赤外線遮蔽膜の膜厚は5μmであった。
【0087】
得られた赤外線遮蔽膜付基材(F-2)の赤外線遮蔽性、可視光遮蔽性、紫外線遮蔽性ヘーズを測定し、また、密着性、鉛筆硬度、耐擦傷性を測定した。
結果を表1に示す。
【0088】
【実施例3】
赤外線遮蔽膜形成用塗料 (P-3) の調製
シリカ被覆酸化物微粒子(A-2)の分散液12.0gと、シリカ被覆ホウ化物微粒子(B-2)の分散液6.0gと、紫外線硬化樹脂(大日本インキ(株)製:ユニディックV-5500)1.5gと、イソプロパノール2.4g、ブチルセロソルブ0.3gとを充分混合して赤外線遮蔽膜形成用塗料(P-3)を調製した。
【0089】
赤外線遮蔽膜付基材 (F-3) の製造
実施例1において、赤外線遮蔽膜形成用塗料(P-3)を用いた以外は同様にして赤外線遮蔽膜付基材(F-3)を得た。このとき、赤外線遮蔽膜の膜厚は5μmであった。
得られた赤外線遮蔽膜付基材(F-3)の赤外線遮蔽性、可視光遮蔽性、紫外線遮蔽性ヘーズを測定し、また、密着性、鉛筆硬度、耐擦傷性を測定した。
【0090】
結果を表1に示す。
【0091】
【実施例4】
赤外線遮蔽膜形成用塗料 (P-4) の調製
シリカ被覆酸化物微粒子(A-2)の分散液12.0gと、シリカ被覆ホウ化物微粒子(B-1)の分散液18.0gと、紫外線硬化樹脂(大日本インキ(株)製:ユニディックVー5500)2.2gと、イソプロパノール2.4g、ブチルセロソルブ0.3gとを充分混合して赤外線遮蔽膜形成用塗料(P-4)を調製した。
【0092】
赤外線遮蔽膜付基材 (F-4) の製造
実施例1において、赤外線遮蔽膜形成用塗料(P-4)を用いた以外は同様にして赤外線遮蔽膜付基材(F-4)を得た。このとき、赤外線遮蔽膜の膜厚は5μmであった。
得られた赤外線遮蔽膜付基材(F-4)の赤外線遮蔽性、可視光遮蔽性、紫外線遮蔽性ヘーズを測定し、また、密着性、鉛筆硬度、耐擦傷性を測定した。
【0093】
結果を表1に示す。
【0094】
【実施例5】
赤外線遮蔽膜形成用塗料 (P-5) の調製
シリカ被覆酸化物微粒子(A-2)の分散液12.0gと、シリカ被覆ホウ化物微粒子(B-2)の分散液6.0gと、シリカ被覆酸化物微粒子(C-1)の分散液6.0gと、紫外線硬化樹脂(大日本インキ(株)製:ユニディックV-5500)1.8gと、イソプロパノール2.4g、ブチルセロソルブ0.3gとを充分混合して赤外線遮蔽膜形成用塗料(P-5)を調製した。
【0095】
赤外線遮蔽膜付基材 (F-5) の製造
実施例1において、赤外線遮蔽膜形成用塗料(P-5)を用いた以外は同様にして赤外線遮蔽膜付基材(F-5)を得た。このとき、赤外線遮蔽膜の膜厚は5μmであった。
得られた赤外線遮蔽膜付基材(F-5)の赤外線遮蔽性、可視光遮蔽性、紫外線遮蔽性ヘーズを測定し、また、密着性、鉛筆硬度、耐擦傷性を測定した。
【0096】
結果を表1に示す。
【0097】
【実施例6】
反射防止膜形成用塗布液 (R-1) の調製
複合酸化物微粒子(D-1)の分散液を限外濾過膜に通し、分散媒の水をエタノールに置換した。このエタノールゾル(固形分濃度5重量%)50gと紫外線硬化樹脂(大日本インキ(株)製:ユニデックV-5500)3gおよびイソプロパノールとn-ブタノールの1/1(重量比)混合溶媒47gとを充分に混合して反射防止形成用塗布液(R-1)を調製した。
【0098】
赤外線遮蔽膜・反射防止膜付基材 (F-6) の製造
実施例2と同様にして赤外線遮蔽膜付基材(F-1)を製造した。ついで、反射防止膜形成塗布液(R-1)を赤外線遮蔽膜付基材(F-1)の上にバーコーター法で塗布し、80℃で、1分間乾燥した後、高圧水銀灯(80W/cm)を1分間照射して硬化させ、赤外線遮蔽膜・反射防止膜付基材(F-6)を調製した。このときの反射防止膜の厚さは80nmであった。
【0099】
得られた赤外線遮蔽膜付基材(F-6)の赤外線遮蔽性、可視光遮蔽性、紫外線遮蔽性ヘーズを測定し、また、密着性、鉛筆硬度、耐擦傷性を測定した。
結果を表1に示す。
【0100】
【比較例1】
酸化物微粒子 (RA-1) の分散液の調製
製造実施例における酸化物微粒子(A-1)と同様にして固形分濃度20重量%のアンチモンドープ酸化錫(ATO)からなる金属酸化物微粒子(RA-1)の分散ゾルを調製した。
【0101】
ついで、この金属酸化物微粒子(RA-1)分散ゾルを限外濾過膜に通し分散媒をエタノールに置換し、固形分濃度30重量%の酸化物微粒子(RA-1)の分散液を調製した。
酸化物微粒子(RA-1)の平均粒子径は30nmであった。
赤外線遮蔽膜形成用塗料 (RP-1) の調製
酸化物微粒子(RA-1)の分散液12gとイソプロパノール3gとブチルセロソルブ0.4gとを用いて実施例と同様にして赤外線遮蔽膜形成用塗料(RP-1)を調製した。
【0102】
赤外線遮蔽膜付基材 (RF-1) の製造
実施例1において、赤外線遮蔽膜形成用塗料(RP-1)を用いた以外は同様にして赤外線遮蔽膜付基材(RF-1)を得た。このとき、赤外線遮蔽膜の膜厚は5μmであった。
得られた赤外線遮蔽膜付基材(RF-1)の赤外線遮蔽性、可視光遮蔽性、紫外線遮蔽性ヘーズを測定し、また、密着性、鉛筆硬度、耐擦傷性を測定した。
【0103】
結果を表1に示す。
【0104】
【比較例2】
酸化物微粒子 (RA-2) の分散液の調製
製造実施例におけると酸化物微粒子(A-2)と同様にして固形分濃度20重量%の錫ドープ酸化インジウム(ITO)からなる金属酸化物微粒子(RA-2)の分散ゾルを調製した。
【0105】
ついで、この金属酸化物微粒子(RA-2)分散ゾルを限外濾過膜に通し分散媒をエタノールに置換し、固形分濃度30重量%の酸化物微粒子(RA-2)の分散液を調製した。
酸化物微粒子(RA-2)の平均粒子径は50nmであった。
赤外線遮蔽膜形成用塗料 (RP-2) の調製
酸化物微粒子(RA-2)の分散液12gとイソプロパノール3gとブチルセロソルブ0.4gとを用いて実施例1と同様にして赤外線遮蔽膜形成用塗料(RP-2)を調製した。
【0106】
赤外線遮蔽膜付基材 (RF-2) の製造
実施例1において、赤外線遮蔽膜形成用塗料(RP-2)を用いた以外は同様にして赤外線遮蔽膜付基材(RF-2)を得た。このとき、赤外線遮蔽膜の膜厚は5μmであった。
得られた赤外線遮蔽膜付基材(RF-2)の赤外線遮蔽性、可視光遮蔽性、紫外線遮蔽性ヘーズを測定し、また、密着性、鉛筆硬度、耐擦傷性を測定した。
【0107】
結果を表1に示す。
【0108】
【比較例3】
ホウ化物微粒子 (RB-1) の分散液の調製
製造実施例のシリカ被覆ホウ化物微粒子(B-1)の分散液の調製と同様にして固形分濃度3.5重量%の酸化ジルコニウム被覆六ホウ化ランタン微粒子(RB-1)分散液を得た。ついで、限外濾過膜に通し分散媒をエタノールに置換し、固形分濃度20重量%の酸化ジルコニウム被覆ホウ化物微粒子(RB-1)の分散液を調製した。酸化ジルコニウム被覆ホウ化物微粒子(RB-1)の平均粒子径は70nmであった。
【0109】
赤外線遮蔽膜形成用塗料 (RP-3) の調製
実施例1において、シリカ被覆酸化物微粒子(A-1)の分散液12.0gとシリカ被覆ホウ化物微粒子(B-1)の分散液2.0gとの代わりに、酸化ジルコニウム被覆ホウ化物微粒子(RB-1)の分散液187.1gを用いた以外は同様にして赤外線遮蔽膜形成用塗料(RP-3)を調製した。
【0110】
赤外線遮蔽膜付基材 (RF-3) の製造
実施例1において、赤外線遮蔽膜形成用塗料(RP-3)を用いた以外は同様にして赤外線遮蔽膜付基材(RF-3)を得た。このとき、赤外線遮蔽膜の膜厚は5μmであった。
得られた赤外線遮蔽膜付基材(RF-3)の赤外線遮蔽性、可視光遮蔽性、紫外線遮蔽性ヘーズを測定し、また、密着性、鉛筆硬度、耐擦傷性を測定した。
【0111】
結果を表1に示す。
【0112】
【表1】

Figure 2004204173
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a paint for forming an infrared shielding film and a substrate with an infrared shielding film formed using the paint.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
Conventionally, in order to shield infrared rays and near infrared rays having a wavelength range of about 700 to 1800 nm, an infrared shielding agent is blended and incorporated into glass, a plastic sheet, a plastic lens, or the like, or an infrared shielding agent is applied to the surface of a base material such as glass. In some cases, such a film is formed, or a resin film or the like containing an infrared shielding agent is attached. Further, in order to shield ultraviolet rays, the same has been performed using an ultraviolet shielding agent. At this time, transparency, that is, high visible light transmittance was required for windows of vehicles, buildings, offices, general houses, and show windows.
[0003]
Antimony-doped tin oxide (ATO), tin-doped indium oxide (ITO), aluminum-doped zinc oxide (AZO), and the like are known as infrared shielding agents having high visible light transmittance.
Japanese Patent Application Laid-Open No. 10-120946 (Patent Document 1) discloses that when tin-doped indium oxide (ITO) is subjected to a reduction treatment or the like and used, a film having more excellent transparency and infrared shielding ability can be obtained. It has been disclosed.
[0004]
However, although these infrared shielding agents have a relatively low visible light reflectance and do not give a glare-like appearance, they do not have a sufficient shielding (reflection and / or absorption) effect in a near infrared region close to visible light. In addition, these infrared shielding agents have high conductivity and may reflect radio waves to cause radio interference.
For this reason, 6-boride particles, or antimony-doped tin oxide (ATO) or 6-boride particles as a heat ray (infrared ray, near-infrared ray) shielding material having a high visible light transmittance and low electric conductivity so as not to cause radio interference, There is disclosed a shielding agent containing tin-doped indium oxide (ITO) and the like, and a coating liquid for a solar radiation shielding film in which these shielding agents are dispersed. (JP-A-2000-72484 (Patent Document 2), JP-A-2000-96034 (Patent Document 3))
Further, Patent Documents 2 and 3 disclose surfactants, coupling agents, various metal alkoxides, and various metal alkoxides in the coating liquid in order to improve the dispersion stability of fine particles or to control conductivity. It is also disclosed to add a partial hydrolyzate of the above.
[0005]
However, hexaboride particles in the coating solution were not always sufficiently stable, and the resulting film was insufficient in hardness, adhesion to a substrate, uneven appearance, haze, and the like.
In particular, coating liquids containing antimony-doped tin oxide (ATO) or tin-doped indium oxide (ITO) mixed with hexaboride particles, and coating liquids containing an ultraviolet shielding agent have a short pot life, hardness, It was difficult to obtain an infrared shielding film having excellent adhesion to the film, uneven appearance, haze, and the like. Further, in order to control conductivity, various metal alkoxides, a partial hydrolyzate of various metal alkoxides and the like are often used, and infrared ray shielding ability is reduced, and when the film thickness is increased, transparency is reduced. .
[0006]
[Patent Document 1]
JP-A-10-120946
[Patent Document 2]
JP-A-2000-72484
[Patent Document 3]
JP 2000-96034 A
[0007]
[Object of the invention]
The present invention uses an oxide fine particle coated with silica (A), a boride fine particle coated with silica (B) and an infrared shielding film forming paint comprising a coating resin and the infrared shielding film forming paint. It is an object of the present invention to provide a substrate with an infrared shielding film formed by the above method.
[0008]
More specifically, it can be used for forming an ultraviolet shielding film having high transparency, excellent infrared shielding ability, and optionally having ultraviolet shielding ability, adhesion to a substrate, and excellent film hardness. An object of the present invention is to provide a coating material for forming an infrared shielding film and a substrate provided with an infrared shielding film formed using the coating material for forming an infrared shielding film.
[0009]
Summary of the Invention
Infrared shielding film forming paint according to the present invention,
Oxide fine particles (A), and boride fine particles (B), including a resin for paint,
The oxide fine particles (A) are oxides or composite oxides of one or more elements selected from In, Sn, Sb, Zn and Ti, and the boride fine particles (B) are groups IIIa and IVa of the periodic table. , Va, a boride of at least one element selected from the group consisting of VIa,
The oxide fine particles (A) and the boride fine particles (B) are each coated with silica.
[0010]
Preferably, the oxide fine particles (A) coated with silica and the boride fine particles (B) coated with silica have an average particle diameter in the range of 2 to 100 nm, respectively.
Further, it may contain oxide fine particles (C) composed of an oxide of Ti and / or Ce and / or a composite oxide or a mixture thereof, and coated with silica.
[0011]
The average particle diameter of the oxide fine particles (C) coated with silica is preferably in the range of 2 to 100 nm.
The substrate with an infrared shielding film according to the present invention is characterized by having an infrared shielding film formed using the above-mentioned coating material for forming an infrared shielding film. The substrate with an infrared shielding film of the present invention may further have an antireflection film on the surface.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
First, the paint for forming an infrared shielding film according to the present invention will be described. (In the present invention, the term “infrared rays” includes near infrared rays unless otherwise specified.)
Paint for forming infrared shielding film
The paint for forming an infrared shielding film according to the present invention contains oxide fine particles (A), boride fine particles (B), and a resin for coating.
[0013]
Oxide fine particles (A)
The oxide fine particles (A) used in the present invention are composed of one kind of oxide of an element selected from In, Sn, Sb, Zn, and Ti, or two or more kinds of composite oxides, and a mixture thereof.
Specifically, tin oxide, tin oxide doped with Sb, F or P, indium oxide, indium oxide doped with Sn or F, antimony oxide, zinc oxide, lower titanium oxide (colored), and mixtures thereof, and the like Oxide fine particles having a known conductivity.
[0014]
In the present invention, the surface of these oxide fine particles is coated with silica. When coated with silica, the surface of the oxide fine particles is negatively charged in the coating solution, and has a colloidal property, so that a dispersion or coating material having excellent monodispersibility can be obtained. The coating amount of such a silica-based composite oxide is not particularly limited as long as a dispersion or a coating material having the above-mentioned colloidal properties can be obtained. Is preferably in the range of 1 to 40% by weight, preferably 2 to 30% by weight.
[0015]
If the amount of silica in the silica-coated oxide fine particles (A) is within the above-described range as an oxide, the conductive oxide fine particles do not directly contact each other, so that the obtained infrared shielding film has conductivity. It is low and does not cause radio interference.
If the amount of silica in the silica-coated oxide particles (A) is small, the surface of the oxide fine particles (A) may not be able to be completely coated, and a dispersion or paint having excellent dispersion stability may be obtained. May not be possible. If the amount of silica in the silica-coated oxide fine particles (A) is too large, the ratio of the oxide contained in the particles (A) becomes small, so the infrared shielding effect may be insufficient, and the sufficient shielding effect In order to obtain, it is necessary to increase the film thickness, and further, the transparency may be reduced or coloring may be caused.
[0016]
The method for preparing such silica-coated oxide fine particles (A) is not particularly limited as long as silica-coated oxide fine particles (A) having excellent dispersion stability can be obtained. The silica coating layer may be formed on the surface of the oxide particles of the core by adding a silicate and / or an acidic silicate solution to the dispersion liquid of the oxide fine particles while adjusting to the range of 12.
[0017]
As the silicate, one or more silicates selected from alkali metal silicates, ammonium silicates and organic base silicates are preferably used. Examples of the alkali metal silicate include sodium silicate (water glass) and potassium silicate, and examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt and amines such as monoethanolamine, diethanolamine and triethanolamine. The ammonium silicate or the organic base silicate includes an alkaline solution obtained by adding ammonia, a quaternary ammonium hydroxide, an amine compound, or the like to a silicic acid solution.
[0018]
The acidic silicate solution is obtained by removing an alkali by treating an alkali silicate aqueous solution with a cation exchange resin or the like.TwoAcidic silicate solutions having a concentration of about 7% by weight or less are preferred.
Further, instead of the silicate or acidic silicate solution, the silica coating is performed by depositing a hydrolyzate of a hydrolyzable organic silicon compound represented by the following formula (1) on the surface of the oxide fine particles (A). be able to.
[0019]
RnSix4-n             (1)
[However, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, which may be the same or different. X: an alkoxy group having 1 to 4 carbon atoms, a silanol group, halogen, hydrogen, n: an integer of 0 to 3]
Specific examples of the hydrolyzable organic group-containing silicon compound represented by the formula (1) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, and phenyltrimethoxysilane. Silane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, 3 , 3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxytripropyltrimethoxysilane Methoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxy Silane, γ-methacryloxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ- Aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, trimethylsilanol, methyltrichlorosilane, Chill dichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, diphenyldichlorosilane, vinyltrichlorosilane, trimethylbromosilane, diethylsilane, and the like.
[0020]
In the above formula (1), when a hydrolyzable organosilicon compound with n = 1 to 3 is used, when the coating resin described below is an organic resin, the dispersion of the silica-based composite oxide-coated oxide fine particles (A) is reduced. The infrared shielding film obtained is improved in appearance, unevenness in appearance, haze, surface smoothness of the shielding film, and the like.
Further, the silica-coated oxide fine particles (A) used in the present invention are coated with silica by adding the silicate and / or the acidic silicate solution, and then the silica-coated layer is represented by the formula (1). It is preferably obtained by precipitating a hydrolyzate of the hydrolyzable organosilicon compound.
[0021]
In the method in which the silica coating is performed by adding only the silicate and / or the acidic silicate solution, the obtained silica-coated oxide fine particles (A) may have insufficient monodispersibility and may be aggregated. In the method of depositing only the hydrolyzate of the hydrolyzable organosilicon compound represented by the formula (1) on the surface of the oxide fine particles (A), the hydrolyzate does not selectively precipitate on the surface of the oxide fine particles. In some cases, the silica coating may be insufficient or the coating efficiency may decrease.
[0022]
At this time, the silica coating amount by the silicate and / or acidic silicate solution may be an amount capable of coating the oxide fine particles (A), and is approximately 0.5 to 10% by weight, more preferably 1 to 5% by weight. It only has to be in the range. Further, the coating amount of the hydrolyzable organosilicon compound represented by the formula (1) by the hydrolyzate is 1 to 40% by weight, preferably 1 to 40% by weight, in terms of the coated silica (in terms of silica) in the silica-coated oxide fine particles (A). What is necessary is just to make it into the range of 2 to 30 weight%. The formation of the coating layer can be repeated.
[0023]
When coating with a hydrolyzate of the hydrolyzable organosilicon compound represented by the formula (1), titanium oxide, zirconium oxide, alumina, etc. are used instead of coating with a silicate and / or acidic silicate solution in advance. (Including hydroxides), and may be further combined with the silica coating with the silicate and / or acidic silicate solution, and the coating order is not particularly limited. When coating with titanium oxide, zirconium oxide, alumina or the like, the coating amount may be in the range of approximately 0.5 to 10% by weight, and more preferably 1 to 5% by weight as an oxide. By coating in advance in this way, the silica coating with the hydrolyzate of the organosilicon compound can be uniformly performed.
[0024]
Further, the silica-coated oxide fine particles (A) used in the present invention are strongly stirred at the time of performing the silica coating, particularly when performing the silica coating with a silicate and / or an acidic silicate solution. It is desirable to irradiate ultrasonic waves as necessary while crushing the oxide fine particles with a sand mill, a ball mill or the like. By employing such a method, it is possible to uniformly coat silica on the surface of the oxide fine particles.
[0025]
The silica-coated oxide fine particles (A) thus obtained are usually prepared as a dispersion. This dispersion can be used after the solvent is replaced with an organic solvent by an ultrafiltration membrane method or the like, if necessary. Examples of the organic solvent include alcohols, ethers, esters, and ketones. Specific examples include methanol, ethanol, n-propanol, isopropanol, butanol, ethylene glycol monomethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, isophorone, toluene, and xylene. No.
[0026]
Boride particles (B)
The boride fine particles (B) used in the present invention are composed of one or more borides of an element selected from Group IIIa, IVa, Va, and VIa of the periodic table, and a mixture thereof.
Specifically, LaB6, CeB6, PrB6, NdB6, SmB6, GdB6, TbB6, DyB6, SrB6, CaB6And mixtures thereof. Also, boride fine particles other than these hexaboride particles can be used.
[0027]
In the present invention, these boride fine particles have a surface coated with silica. When coated with silica, the surface of the boride fine particles is negatively charged in the dispersion or the coating material, has a colloidal property, and a dispersion or coating material excellent in monodispersibility can be obtained. The amount of such silica coating is not particularly limited as long as the dispersion / coating having the above-mentioned colloidal properties can be obtained, but the amount of silica in the silica-coated boride fine particles (B) is 1 to 40 as an oxide. %, Preferably in the range of 2 to 30% by weight.
[0028]
If the amount of silica in the silica-coated boride microparticles (B) is small, the surface of the boride microparticles (B) may not be completely covered, and a dispersion / paint having excellent dispersion stability may be obtained. May not be possible.
If the amount of silica in the silica-coated boride microparticles (B) is too large, the ratio of the boride microparticles becomes small, so that the infrared shielding effect may be insufficient. Needs to be thickened, and the transparency and haze may be reduced, and the film itself may be colored.
[0029]
Such silica-coated boride microparticles (B) are not particularly limited as long as silica-coated boride microparticles (B) having excellent dispersion stability can be obtained, and silicon similar to the silica-coated oxide microparticles (A) may be used. It can be prepared by forming a silica coating layer using a compound and a method. When the hydrolyzable organosilicon compound represented by the formula (1) is coated with a hydrolyzate, the silicate and / or acidic silicate solution is added in advance to perform silica coating. Instead of the salt and / or the acidic silicate solution, an oxide (including a hydroxide) such as titanium oxide, zirconium oxide, or alumina may be coated. Furthermore, both may be coated, and the coating order is not particularly limited. When coating with titanium oxide, zirconium oxide, alumina or the like, the coating amount may be in the range of approximately 0.5 to 10% by weight, and more preferably 1 to 5% by weight as an oxide.
[0030]
Further, the dispersion liquid of the silica-coated boride fine particles (B) thus obtained can be used by substituting an organic solvent by an ultrafiltration membrane method or the like, if necessary. Examples of the organic solvent include alcohols, ethers, esters, and ketones. Specific examples include methanol, ethanol, n-propanol, isopropanol, butanol, ethylene glycol monomethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, isophorone, toluene, and xylene. No.
[0031]
Paint resin
As the coating resin used in the present invention, any of conventionally known thermosetting resins, thermoplastic resins and the like can be employed. Such resins include, for example, conventionally used thermoplastic resins such as polyester resins, polycarbonate resins, polyamide resins, polyphenylene oxide resins, thermoplastic acrylic resins, vinyl chloride resins, fluorine resins, vinyl acetate resins, and silicone rubbers. And thermosetting resins such as urethane resins, melamine resins, silicon resins, butyral resins, reactive silicone resins, phenolic resins, epoxy resins, unsaturated polyester resins, and thermosetting acrylic resins. Furthermore, copolymers or modified products of two or more of these resins may be used.
[0032]
These resins may be emulsion resins, water-soluble resins, or hydrophilic resins. Further, in the case of a thermosetting resin, it may be an ultraviolet-curing type or an electron beam-curing type, and in the case of a thermosetting resin, a curing catalyst may be contained. In the present invention, particularly, the thermosetting resin, the ultraviolet-curable resin, the oxide fine particles (A), when the boride fine particles (B) is blended, the adhesion to the substrate, the effect of improving the film strength and scratch resistance. Is obtained.
[0033]
Dispersion medium
In the paint for forming an infrared shielding film according to the present invention, a dispersion medium can be used as necessary. For example, water, alcohol, ether, ester, ketone, etc. are mentioned although it varies depending on the type of coating resin. Specifically, methanol, ethanol, n-propanol, isopropanol, butanol, ethylene glycol monomethyl acetate, methyl ethyl ketone, methyl There are isobutyl ketone, isophorone, toluene, xylene and the like.
[0034]
By using such a dispersion medium, it is possible to obtain an infrared shielding film having good coatability, no whitening of the resulting film, and excellent surface smoothness and the like.
Paint for forming infrared shielding film
The coating material for forming an infrared shielding film according to the present invention comprises silica-coated oxide fine particles (A), silica-coated boride fine particles (B), a coating resin, and, if necessary, the dispersion medium.
[0035]
The content of the silica-coated oxide fine particles (A) in the coating material for forming an infrared shielding film is adjusted so that the content in the infrared shielding film is in the range of 5 to 80% by weight, more preferably 10 to 70% by weight as a solid content. Preferably, it is included.
When the content of the silica-coated oxide fine particles (A) in the infrared shielding film is less than 5% by weight as an oxide, infrared shielding performance in an infrared wavelength range of 1500 to 2500 nm cannot be sufficiently obtained, and When the content of the silica-coated oxide fine particles (A) exceeds 80% by weight as an oxide, the surface smoothness of the film is reduced and fine voids are formed inside the film, which may increase the haze. Hardness and adhesion to a substrate may be reduced.
[0036]
In addition, the content of the silica-coated boride fine particles (B) in the coating material for forming an infrared shielding film is such that the content in the infrared shielding film is in the range of 5 to 60% by weight, more preferably 10 to 50% by weight as a solid content. Is preferred.
When the content of the silica-coated boride microparticles (B) in the infrared shielding film is less than 5% by weight as a solid content, the infrared wavelength range of 800 to 1500 nm cannot provide sufficient infrared shielding performance, and the infrared shielding film has When the content of the silica-coated boride fine particles (B) exceeds 60% by weight as a solid content, the surface smoothness of the film is reduced, and fine voids are formed inside the film, and the haze may be increased. And the adhesiveness with the base material and the infrared shielding performance in the infrared wavelength range of 1500 to 2500 nm tend to decrease.
[0037]
The total content of the silica-coated oxide fine particles (A) and the silica-coated boride fine particles (B) in the infrared shielding film is in the range of 10 to 80% by weight, and more preferably 20 to 70% by weight as solid content. Is preferred.
When the total content is less than 10% by weight, infrared ray shielding performance in the infrared wavelength range of 800 to 2500 nm cannot be sufficiently obtained, and when the total content exceeds 80% by weight, the surface smoothness of the film decreases. At the same time, microvoids may be formed inside the film, and the haze may be increased, and the hardness of the film and the adhesion to the substrate may be further reduced.
[0038]
At this time, the content W of the silica-coated oxide fine particles (A)AAnd content W of silica-coated boride fine particles (B)BWeight ratio withB/ WAIs preferably in the range of 0.4 to 2.5, more preferably 0.5 to 1.0.
WB/ WAIs in the above range, infrared rays can be efficiently shielded over a wide range of wavelengths from 800 to 2500 nm.
[0039]
WB/ WAIs less than 0.4, sufficient infrared shielding performance in the infrared wavelength range of 800 to 1500 nm cannot be obtained.B/ WAExceeds 2.5, sufficient infrared shielding performance in the infrared wavelength range of 1500 to 2500 nm cannot be obtained.
At this time, the content of the coating resin in the coating material for forming an infrared shielding film is such that the content of the coating resin in the infrared shielding film is in the range of 20 to 90% by weight, and more preferably 30 to 80% by weight. preferable.
[0040]
If the content of the coating resin in the infrared shielding film is less than 20% by weight, the adhesion and hardness of the infrared shielding film to the substrate are reduced, and the surface of the infrared shielding film becomes insufficient in smoothness.
If the content of the coating resin in the infrared shielding film exceeds 90% by weight, the infrared shielding component is small and sufficient infrared shielding performance cannot be obtained.
[0041]
The coating material for forming an infrared shielding film contains the above-mentioned dispersion medium (solvent) as necessary. The use ratio of the dispersion medium in the paint varies depending on the type and content of the resin, but is 90% by weight or less, It is preferably in the range of 80% by weight or less.
If the use ratio of the dispersion medium in the coating material for forming an infrared shielding film exceeds 90% by weight, it may not be possible to form a thick film by one application, and unevenness of the coating film due to evaporation of the solvent during drying may occur. In some cases, voids are generated due to bubbles and haze is increased.
[0042]
The silica-coated oxide fine particles (A) and the silica-coated boride fine particles (B) used in the present invention preferably have an average particle diameter of 2 to 100 nm, more preferably 5 to 80 nm.
When the average particle diameter of each particle is less than 2 nm, adhesion to the substrate, scratch resistance, and film hardness may be insufficient, and the particles may aggregate, thereby increasing the haze. There is. In addition, when the particles are aggregated, light may pass through and the infrared shielding efficiency may decrease.
[0043]
If the average particle diameter of each particle exceeds 100 nm, the smoothness of the film may be reduced, or the transparency may be reduced or haze may be increased due to scattering of visible light.
UV shielding agent
Further, the infrared shielding paint according to the present invention contains oxide fine particles (C) comprising Ti and / or Ce oxides and / or composite oxides or a mixture thereof and coated with silica as an ultraviolet shielding agent. May be included.
[0044]
In particular, when the substrate is glass, it is particularly preferable because it can impart ultraviolet shielding ability.
As the oxide and / or composite oxide particles of Ti and / or Ce, conventionally known particles having an ultraviolet shielding ability can be used.Two, CeOTwo, TiOTwo・ CeOTwoAnd a mixture thereof.
[0045]
It is desirable that the surface of these oxide particles (C) is also coated with silica. When coated with silica, the surface of the oxide particles in the paint is negatively charged and has colloidal properties, the oxide fine particles coated with silica (A), the boride fine particles coated with silica ( As in B), the particles are negatively charged, and the particles are not easily agglomerated even when the respective particles are mixed and used, so that a paint having excellent monodispersity can be obtained. Furthermore, since it is coated with silica, the resin binder and the like do not deteriorate, and the obtained infrared shielding film is excellent in weather resistance. In addition, when the silica-coated oxide particles (C) are contained, the ultraviolet ray shielding ability can be further provided, and the refractive index of the infrared ray shielding film can be adjusted to be high. When a film is provided, a substrate with an infrared shielding film having excellent antireflection performance can be obtained.
[0046]
The coating amount of silica of the silica-coated oxide fine particles (C) is particularly limited as long as a stable dispersion having the above-mentioned colloidal properties and a coating liquid are obtained, and the obtained infrared shielding film has weather resistance. No, the amount of silica in the silica-coated oxide fine particles (C) was SiO 2TwoIs in the range of 1 to 40% by weight, preferably 2 to 30% by weight. If the amount of silica in the silica-coated oxide fine particles (C) is small, a coating having excellent dispersion stability may not be obtained. Further, the weather resistance may be insufficient. If the amount of silica in the silica-coated oxide fine particles (C) is too large, the ratio of the oxide fine particles is reduced, so that the ultraviolet ray shielding effect may be insufficient.
[0047]
The method for producing such silica-coated oxide fine particles (C) is not particularly limited, and the silica-coated oxide fine particles (C) can be prepared in the same manner as the silica coating of the oxide particles (A) and the boride fine particles (B).
The average particle diameter of the oxide fine particles (C) coated with such silica is preferably in the range of 2 to 100 nm, more preferably 5 to 80 nm. If the average particle diameter of the particles (C) is small, adhesion to the substrate, scratch resistance, and film hardness may be insufficient, and haze may increase due to aggregation of the particles. Further, the passage of light may lower the ultraviolet shielding efficiency. When the average particle diameter of the particles (C) is large, depending on the content of the particles, the smoothness of the film may be reduced, or the transparency may be reduced due to scattering of visible light, or the haze may be increased. Further, when the size is large, light is more likely to pass through the gap, so that ultraviolet rays may pass through, and the ultraviolet ray shielding efficiency may decrease.
[0048]
The content of the silica-coated oxide fine particles (C) in the coating material for forming an infrared shielding film is such that the content of the silica-coated oxide fine particles (C) in the infrared shielding film is 0.2 to 10% by weight as a solid content. Is preferably in the range of 0.5 to 5% by weight. When the content of the silica-coated oxide fine particles (C) in the infrared shielding film is small, the effect of using the silica-coated oxide fine particles (C) is not sufficient because the ultraviolet shielding effect is insufficient, and the silica-coated oxide fine particles (C If the content of ()) is too large, the film itself may be colored.
[0049]
When including such silica-coated oxide fine particles (C), the total content of silica-coated oxide fine particles (A), silica-coated boride fine particles (B) and silica-coated oxide fine particles (C) in the infrared shielding film The amount is preferably in the range of 20 to 90% by weight as solid content, more preferably 30 to 80% by weight.
When (A) to (C) are contained in such a range, an infrared shielding film having a wide range of infrared shielding ability and ultraviolet shielding ability can be formed. When the content of the particles is too large, the surface smoothness of the film is reduced, and fine voids are generated inside the film, the haze may be increased, and the hardness of the film and the adhesion to the substrate may be further reduced. . When the content of the particles is too small, the effect may not be sufficiently exhibited. Also, when using silica-coated oxide fine particles (C), the coating material for forming an infrared shielding film may contain the above-described dispersion medium as necessary. ) Is preferably 90% by weight or less, more preferably 80% by weight or less.
[0050]
Substrate with infrared shielding film
Next, the substrate with an infrared shielding film according to the present invention is characterized in that it is formed using the paint for forming an infrared shielding film.
Base material
Examples of the base material used in the present invention include plastics such as glass, polycarbonate, acrylic resin, PET, TAC, etc., plastic films, plastic panels, and the like, which are used for windows of vehicles, buildings, offices, general houses, etc. And the like.
[0051]
Manufacture of substrate with infrared shielding film
The method for producing a substrate with an infrared shielding film according to the present invention comprises applying the coating solution to a substrate by a known method such as a dipping method, a spray method, a spinner method, a roll coating method, and drying, and then drying the thermosetting resin. In the case of the above, after curing, in the case of a thermoplastic resin, it can be obtained by further performing a heat treatment at a temperature lower than the softening point of the base material, if necessary.
[0052]
At this time, the thickness of the infrared shielding film is preferably in the range of 0.5 to 20 μm, more preferably 2 to 10 μm.
When the thickness of the infrared shielding film is less than 0.5 μm, sufficient infrared shielding ability cannot be obtained, and when the thickness of the infrared shielding film exceeds 20 μm, coating is performed so that the film thickness becomes uniform, It becomes difficult to dry uniformly, and therefore, the strength and transparency of the obtained film may be insufficient due to generation of cracks and voids.
[0053]
In the substrate with an infrared shielding film of the present invention, an antireflection film may be provided on the infrared shielding film as needed.
Anti-reflective coating
The antireflection film used in the present invention is not particularly limited as long as it has antireflection performance, and a conventionally known antireflection film can be used. Specifically, a material having a lower refractive index than the infrared shielding film has antireflection performance.
[0054]
Such an anti-reflection film comprises an anti-reflection film forming matrix and, if necessary, a low refractive index component.
The matrix for forming an anti-reflection film refers to a component capable of forming a film on the surface of the infrared shielding film, and is used by selecting a resin or the like that conforms to conditions such as adhesion to the infrared shielding film, hardness, and coating properties. And the same coating resin as that used for the infrared shielding film can be used.
[0055]
As the low refractive index component contained in the antireflection film, CaFTwo, NaF, NaAlF6And silica-based particles (silica particles, silica hollow particles, silica-alumina composite oxide particles) and porous silica-based particles in addition to low refractive index substances such as MgF and MgF.
For example, when a composite oxide fine particle in which the surface of a porous inorganic oxide fine particle is coated with silica as disclosed in Japanese Patent Application Laid-Open No. Hei 7-133105 filed by the applicant of the present application is used, the reflection having a low refractive index and excellent antireflection performance A protective film can be obtained.
[0056]
It is also possible to use a hydrolyzable organic silicon compound as the matrix. Specifically, for example, a partial hydrolyzate of alkoxysilane is suitably used by adding water and an acid or alkali as a catalyst to a mixture of alkoxysilane and alcohol.
The hydrolyzable organosilicon compound has a general formula RnSi (OR ')4-nAn alkoxysilane represented by [R, R ': a hydrocarbon group such as an alkyl group, an aryl group, a vinyl group, an acryl group, etc., n = 0, 1, 2, or 3] can be used. In particular, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.
[0057]
The content of the low refractive index component in the antireflection film is preferably 90% by weight or less, more preferably 50% by weight or less. If the content of the low refractive index component is too large, the strength of the coating and the adhesion to the infrared shielding film may be insufficient, and the practicability may be lacking.
The thickness of the antireflection film is preferably in the range of 50 to 300 nm, more preferably 80 to 200 nm.
[0058]
When the thickness of the antireflection film is less than 50 nm, the strength, antireflection performance and the like of the film may be inferior.
If the thickness of the antireflection film exceeds 300 nm, cracks may occur in the film, the strength of the film may be reduced, and the antireflection performance may be insufficient due to the film being too thick.
[0059]
The refractive index of such an antireflection film varies depending on the mixing ratio of the low refractive index component and the matrix such as a resin and the refractive index of the resin or the like to be used, but is usually in the range of 1.28 to 1.50. preferable. If the refractive index of the antireflection film exceeds 1.50, the antireflection performance may be insufficient depending on the refractive index of the base material, and it is difficult to obtain a film having a refractive index of less than 1.28. is there.
[0060]
The anti-reflection film is formed by applying the above-described anti-reflection film forming matrix and, if necessary, an anti-reflection film forming coating solution containing a low refractive index component and a solvent. The solvent to be used is not particularly limited as long as it easily evaporates and does not adversely affect the obtained antireflection film.
The method for forming the anti-reflection film is not particularly limited, and may be formed on the infrared shielding film by a known method such as a dipping method, a spray method, a spinner method, and a roll coating method, similarly to the formation of the infrared shielding film described above. It is only necessary to apply and dry the coating, especially when the matrix forming component is a thermosetting resin, heat treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, etc., may accelerate the curing of the antireflection film, or form the matrix. When a hydrolyzable organosilicon compound is contained in the component, the hydrolyzable organosilicon compound may be used after accelerating hydrolysis and polycondensation.
[0061]
【The invention's effect】
In the present invention, the oxide fine particles (A) which have high visible light shielding properties and can selectively block infrared rays in the infrared wavelength range of 1500 to 2500 nm and the boride fine particles which can block infrared rays in the infrared wavelength range of 800 to 1500 nm are particularly selective. Since (B) is coated with silica, it is possible to provide a coating for forming an infrared shielding film having excellent stability. For this reason, by using the coating material for forming an infrared shielding film according to the present invention, it is possible to effectively shield infrared rays over a wide range, and at the same time, it is excellent in transparency, haze, adhesion to a substrate, film strength, durability and the like. A substrate with a film can be provided.
[0062]
Further, if necessary, by blending oxide particles (C) coated with silica, it is possible to impart excellent weather resistance and impart ultraviolet shielding ability.
[0063]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[0064]
[Production Examples]
Silica-coated oxide fine particles (A-1) Preparation of a dispersion of
57.7 g of tin chloride and 7.0 g of antimony chloride were dissolved in 100 g of methanol to prepare a mixed solution. Subsequently, the mixed solution was added to 1,000 g of pure water at 90 ° C. over 4 hours to carry out hydrolysis, and the formed precipitate was separated by filtration and washed, and then dispersed again in pure water to obtain a solid content of 10% by weight. A dispersion of the metal oxide precursor hydroxide was prepared.
[0065]
This dispersion was spray-dried at a temperature of 100 ° C. to prepare a powder of a metal oxide precursor hydroxide. Next, this powder was heated at 550 ° C. for 2 hours in a nitrogen gas atmosphere to obtain a metal oxide powder (ATO: Sb-doped tin oxide).
300 g of this powder was added to 70 g of a 3% by weight aqueous solution of potassium hydroxide, and the mixture was pulverized with a sand mill for 3 hours while maintaining the temperature at 30 ° C. to prepare a metal oxide sol.
[0066]
Then, the metal oxide sol was treated with an ion exchange resin to remove alkali, and pure water was added to prepare a dispersion sol of metal oxide fine particles (RA-1) having a concentration as an oxide of 20% by weight. . At this time, the average particle diameter of the metal oxide fine particles was 30 nm. Then, a mixed solution of 100 g of the metal oxide fine particle dispersed sol and 100 g of ethanol was prepared and heated to 50 ° C., and then tetraethoxysilane (manufactured by Tama Chemical Co., Ltd .: ethyl orthosilicate, SiO 2)Two13.9 g was added in 6 hours, the dispersion was aged for 12 hours, and then passed through an ultrafiltration membrane to replace water and ethanol in the dispersion medium with ethanol, and the solid concentration was 30% by weight. Of silica-coated oxide fine particles (A-1) was prepared. The average particle diameter of the silica-coated oxide fine particles (A-1) was 33 nm.
[0067]
Silica-coated oxide fine particles (A-2) Preparation of a dispersion of
A solution obtained by dissolving 79.9 g of indium nitrate in 686.0 g of pure water and a solution obtained by dissolving 12.7 g of potassium stannate in a 10% by weight potassium hydroxide solution were prepared. These solutions were added to 1,000 g of pure water at 50 ° C. over 2 hours. During this time, the pH in the system was maintained at 11. From the obtained metal oxide precursor hydroxide dispersion liquid, the metal oxide precursor hydroxide was separated by filtration, washed, dried, and then heat-treated at 350 ° C. for 3 hours in air. For 2 hours to obtain a metal oxide powder (ITO: Sn-doped indium oxide).
[0068]
This metal oxide powder was dispersed in pure water so as to have a concentration of 30% by weight, the pH was adjusted to 3.5 with an aqueous nitric acid solution, and the dispersion was pulverized with a sand mill for 3 hours while maintaining the dispersion at 30 ° C. To prepare a metal oxide sol. Next, this metal oxide sol is treated with an ion exchange resin to remove nitrate ions, and pure water is added to prepare a metal oxide fine particle (RA-2) dispersion sol having a concentration as an oxide of 20% by weight. did. At this time, the average particle diameter of the metal oxide fine particles was 50 nm.
[0069]
Then, a mixed solution of 100 g of the metal oxide fine particle dispersed sol and 100 g of ethanol was prepared and heated to 50 ° C., and then tetraethoxysilane (manufactured by Tama Chemical Co., Ltd .: ethyl orthosilicate, SiO 2)Two13.9 g was added in 6 hours, the dispersion was aged for 12 hours, and then passed through an ultrafiltration membrane to replace water and ethanol in the dispersion medium with ethanol, and the solid content concentration was 30% by weight. Of silica-coated oxide fine particles (A-2) was prepared. The average particle diameter of the silica-coated oxide fine particles (A-2) was 55 nm.
[0070]
Silica-coated boride particles (B-1) Preparation of a dispersion of
In 250 g of pure water, 9.0 g of lanthanum hexaboride powder (LaB6-F, manufactured by Nippon Shinmetal Co., Ltd.) and zirconium tetraalkoxide (ZR-181: ZrO manufactured by Nippon Soda)TwoThen, the mixture was stirred and mixed for 1 hour. Then, 1.8 g of a 2% by weight aqueous nitric acid solution was added, and the mixture was pulverized with a sand mill for 3 hours while maintaining the temperature at 30 ° C. to obtain a zirconium oxide-coated lanthanum hexaboride fine particle having a solid content of 3.5% by weight (RB-1). A dispersion was obtained. At this time, the zirconium oxide-coated lanthanum hexaboride fine particles had an average particle size of 70 nm.
[0071]
Then, a mixed solution of 250 g of zirconium oxide-coated lanthanum hexaboride fine particle dispersion and 250 g of ethanol was prepared and heated to 50 ° C., and then tetraethoxysilane (manufactured by Tama Chemical Co., Ltd .: ethyl orthosilicate, SiO 2)Two6 g) (concentration 28.8% by weight) was added in 6 hours. This dispersion was aged for 12 hours, passed through an ultrafiltration membrane, and water and ethanol as the dispersion medium were replaced with ethanol to prepare a dispersion of silica-coated boride fine particles (B-1) having a solid content concentration of 20% by weight. did. The average particle diameter of the silica-coated boride fine particles (B-1) was 75 nm.
[0072]
Silica-coated boride particles (B-2) Preparation of a dispersion of
In 250 g of pure water, 9.0 g of lanthanum hexaboride powder (LaB6-F, manufactured by Nippon Shinmetal Co., Ltd.) and tetraethoxysilane (ethyl silicate, SiO, manufactured by Tama Chemical Co., Ltd.)TwoAfter mixing 1.8 g, the mixture was stirred and mixed for 1 hour. Then, 1.8 g of a 2% by weight aqueous nitric acid solution was added, and the mixture was pulverized with a sand mill for 3 hours while maintaining the temperature at 30 ° C. to obtain a dispersion of silica-coated lanthanum hexaboride fine particles (RB-2) having a solids concentration of 3.5% by weight. Got. At this time, the average particle diameter of the silica-coated lanthanum hexaboride fine particles was 75 nm.
[0073]
Then, a mixed solution of 250 g of silica-coated lanthanum hexaboride fine particle dispersion and 250 g of ethanol was prepared and heated to 50 ° C., and then tetraethoxysilane (manufactured by Tama Chemical Co., Ltd .: ethyl orthosilicate, SiO 2)Two6 g) (concentration 28.8% by weight) was added in 6 hours. This dispersion was aged for 12 hours, passed through an ultrafiltration membrane, and water and ethanol as the dispersion medium were replaced with ethanol to prepare a dispersion of silica-coated boride fine particles (B-2) having a solid content concentration of 20% by weight. did. The average particle size of the silica-coated boride fine particles (B-2) was 80 nm.
[0074]
Silica-coated oxide fine particles (C-1) Preparation of a dispersion of
Concentrated ammonia water was added to 250 g of titanium oxide sol (manufactured by Catalyst Chemical Industry Co., Ltd .: Opt Lake 1130Z, average particle diameter 20 nm, solid content concentration 20% by weight) to adjust the pH of the sol to 10.5, and ethanol was added thereto. 250 g was added, the mixture was heated to 50 ° C., and then tetraethoxysilane (manufactured by Tama Chemical Co., Ltd .: ethyl orthosilicate, SiO 2Two(28.8% concentration) in 15 hours, and then passed through an ultrafiltration membrane to replace water and ethanol as a dispersion medium with ethanol, thereby obtaining silica-coated oxide fine particles (C-1) having a solid content of 20% by weight. ) Was prepared. The average particle diameter of the silica-coated oxide fine particles (C-1) was 25 nm.
[0075]
Low refractive index composite oxide fine particle dispersed sol (D-1) Manufacturing of
27.4 g of methyltrimethoxysilane was mixed with 872.6 g of an aqueous solution of sodium hydroxide having a concentration of 0.65% by weight, and the mixture was stirred at room temperature for 1 hour.ThreeSiO3/2And a colorless transparent partial hydrolyzate of 1.5% by weight was prepared.
Next, as the seed particles, an average particle diameter of 5 nm, SiOTwoA mixture of 20 g of a silica sol having a concentration of 20% by weight and 380 g of pure water was heated to 80 ° C. The pH of this reaction mother liquor was 10.5, and the mother liquor contained SiO 2Two900 g of a 1.5% by weight aqueous solution of sodium silicate, 900 g of an aqueous solution of the above partial hydrolyzate,TwoOThreeAnd 1800 g of an aqueous solution of sodium aluminate having a concentration of 0.5% by weight were simultaneously added over 6 hours. Meanwhile, the temperature of the reaction mother liquor was maintained at 80 ° C. The pH of the reaction mother liquor rose to 12.7 immediately after addition, and hardly changed thereafter. After completion of the addition, the reaction solution was cooled to room temperature, washed with an ultrafiltration membrane, and washed with a methyl group-containing SiO 2 having a solid content concentration of 20% by weight.Two・ AlTwoOThreeA dispersion (D-1-1) of composite oxide fine particles was obtained.
[0076]
Then, 550 g of pure water was added to 250 g of the dispersion of composite oxide fine particles (D-1-1), and the mixture was heated to 98 ° C. While maintaining this temperature, the aqueous sodium silicate solution was dealkalized with a cation exchange resin. Silicate solution (SiOTwo(Concentration 3.5% by weight) 1,000 g was added in 5 hours, and methyl group-containing SiO 2 coated with silica was added.Two・ AlTwoOThreeA dispersion of the composite oxide fine particles (D-1-2) was obtained. Then, the solid was washed with an ultrafiltration membrane, 500 g of the dispersion having a solid content of 13% by weight was added with 1,125 g of pure water, and concentrated hydrochloric acid (concentration of 35.5% by weight) was added dropwise to adjust the pH to 1.0. Then, a treatment for removing aluminum from the fine particles was performed.
[0077]
Then, while adding 10 L of a hydrochloric acid aqueous solution having a pH of 3.0 and 5 L of pure water, the dissolved aluminum salt is washed away using an ultrafiltration membrane, and the resulting mixture is concentrated and coated with silica having a solid concentration of 13% by weight. SiOTwo・ AlTwoOThreeA dispersion of composite oxide fine particles (D-1-3) was obtained.
Then, a mixture of 1,500 g of the dispersion of the composite oxide fine particles (D-1-3), 500 g of pure water, 1,750 g of ethanol, and 28% by weight of aqueous ammonia 626 was heated to 35 ° C. Ethoxysilane (Tama Chemical Co., Ltd .: Ethyl silicate, SiOTwo104 g (concentration 28.8%) were added and coated with the silica. After concentrating this to a solid content concentration of 5% by weight with an evaporator, ammonia water having a concentration of 15% by weight was added to adjust the pH to 10, and the mixture was heated in an autoclave at 180 ° C. for 2 hours, and then concentrated by an ultrafiltration membrane to concentrate the solid content. Methyl group-containing SiO completely coated with 10% by weight silicaTwo・ AlTwoOThreeA dispersion of the composite oxide fine particles (D-1) was obtained.
[0078]
SiO of the silica-coated composite oxide fine particles (D-1)Two/ AlTwoOThreeThe molar ratio was 278, the average particle diameter was 34 nm, and the refractive index was 1.36.
The refractive index of the particles was measured as follows.
(1) The dispersion of the composite oxide fine particles (D-1) is taken in an evaporator, and the dispersion is evaporated.
(2) This is dried at 120 ° C. to obtain a powder.
(3) A few drops of a standard refraction liquid having a known refractive index are dropped on a glass plate, and the above powder is mixed with this.
(4) The above operation (3) is performed with various standard refraction liquids, and the refractive index of the standard refraction liquid when the mixed liquid (often paste) becomes transparent is defined as the refractive index of the fine particles.
[0079]
Embodiment 1
Paint for forming infrared shielding film (P-1) Preparation of
12.0 g of the dispersion of the silica-coated oxide fine particles (A-1) obtained above, 2.0 g of the dispersion of the silica-coated boride fine particles (B-1), and an ultraviolet-curable resin (Dainippon Ink Co., Ltd.) (Unidick V-5500), 2.4 g of isopropanol and 0.3 g of butyl cellosolve were sufficiently mixed to prepare a coating material for forming an infrared shielding film (P-1).
[0080]
Substrate with infrared shielding film (F-1) Manufacturing of
The coating material for forming an infrared shielding film (P-1) was applied to a PET film (thickness: 188 μm, refractive index: 1.65) using a bar coater, dried at 80 ° C. for 1 minute, and then heated with a high-pressure mercury lamp (80 W / cm). Irradiated for 10 minutes and cured to obtain a substrate with an infrared shielding film (F-1). At this time, the thickness of the infrared shielding film was 5 μm.
[0081]
The base material (F-1) with the infrared shielding film obtained was measured for infrared shielding property, visible light shielding property, and ultraviolet shielding property with a spectrophotometer (manufactured by JASCO Corporation: U-570) and with a haze meter for transparency. (NDH2000 manufactured by Nippon Denshoku Co., Ltd.). Further, adhesion, pencil hardness and scratch resistance were measured by the following methods.
Table 1 shows the results.
[0082]
The haze (wavelength: 550 nm) of the PET film itself was 2%. In addition, the reflectance is measured according to JIS Z8727 using a reflectance meter (manufactured by Otsuka Electronics Co., Ltd .: MCPD-2000), and the reflectance at the wavelength having the lowest reflectance in the wavelength range of 400 to 700 nm is defined as: This is shown in the table as the bottom reflectance.
Further, the infrared shielding property was shown by transmittance at infrared wavelengths of 1000 nm and 2500 nm.
[0083]
The visible light shielding property was indicated by a transmittance at a visible light wavelength of 550 nm.
The ultraviolet shielding property was indicated by the transmittance at a wavelength of 380 nm.
Adhesion
11 parallel scratches were made on the surface of the base material (F-1) with an infrared shielding film with a knife at an interval of 1 mm vertically and horizontally to make 100 squares, and an adhesive tape (cellophane tape, trademark) was adhered to this, Then, the adhesion was evaluated by classifying the number of squares remaining without peeling off the coating when the cellophane tape was peeled off into the following four stages.
[0084]
Number of remaining squares 95 or more: ◎
Number of remaining squares 90-94: ○
Number of remaining squares: 85 to 89: △
Number of remaining squares 84 or less: ×
Pencil hardness
It was measured with a pencil hardness tester according to JIS-K-5400.
[0085]
Scratch resistance
Using # 0000 steel wool, load 500g / cmTwo, And the surface of the film was visually observed and evaluated according to the following criteria.
No streak damage: ◎
Slight scratches on streaks: ○
Many streaks are found: △
The whole surface is shaved: ×
[0086]
Embodiment 2
Paint for forming infrared shielding film (P-2) Preparation of
In the same manner as in Example 1, except that the dispersion liquid of the silica-coated oxide fine particles (A-2) was used, a coating material for forming an infrared shielding film (P-2) was prepared.
Substrate with infrared shielding film (F-2) Manufacturing of
A substrate with an infrared shielding film (F-2) was obtained in the same manner as in Example 1, except that the coating material for forming an infrared shielding film (P-2) was used. At this time, the thickness of the infrared shielding film was 5 μm.
[0087]
The infrared-shielding property, visible-light shielding property, and ultraviolet-shielding haze of the obtained substrate with an infrared-shielding film (F-2) were measured, and the adhesion, pencil hardness, and scratch resistance were also measured.
Table 1 shows the results.
[0088]
Embodiment 3
Paint for forming infrared shielding film (P-3) Preparation of
12.0 g of a dispersion of silica-coated oxide fine particles (A-2), 6.0 g of a dispersion of silica-coated boride fine particles (B-2), and an ultraviolet-curable resin (Dainippon Ink Co., Ltd .: Unidick) V-5500), 2.4 g of isopropanol and 0.3 g of butyl cellosolve were sufficiently mixed to prepare a coating for forming an infrared shielding film (P-3).
[0089]
Substrate with infrared shielding film (F-3) Manufacturing of
A substrate with an infrared shielding film (F-3) was obtained in the same manner as in Example 1, except that the coating material for forming an infrared shielding film (P-3) was used. At this time, the thickness of the infrared shielding film was 5 μm.
The infrared-shielding property, visible-light shielding property, and ultraviolet-shielding haze of the obtained substrate with an infrared-shielding film (F-3) were measured, and adhesion, pencil hardness, and scratch resistance were measured.
[0090]
Table 1 shows the results.
[0091]
Embodiment 4
Paint for forming infrared shielding film (P-4) Preparation of
12.0 g of a dispersion of silica-coated oxide fine particles (A-2), 18.0 g of a dispersion of silica-coated boride fine particles (B-1), and an ultraviolet curable resin (Dainippon Ink Co., Ltd .: Unidick) V-5500), 2.4 g of isopropanol, and 0.3 g of butyl cellosolve were sufficiently mixed to prepare a coating material for forming an infrared shielding film (P-4).
[0092]
Substrate with infrared shielding film (F-4) Manufacturing of
A substrate with an infrared shielding film (F-4) was obtained in the same manner as in Example 1 except that the coating material for forming an infrared shielding film (P-4) was used. At this time, the thickness of the infrared shielding film was 5 μm.
The infrared shielding property, visible light shielding property, and ultraviolet shielding haze of the obtained substrate with an infrared shielding film (F-4) were measured, and adhesion, pencil hardness, and scratch resistance were measured.
[0093]
Table 1 shows the results.
[0094]
Embodiment 5
Paint for forming infrared shielding film (P-5) Preparation of
12.0 g of a dispersion of silica-coated oxide fine particles (A-2), 6.0 g of a dispersion of silica-coated boride fine particles (B-2), and a dispersion 6 of silica-coated oxide fine particles (C-1) 2.0 g, an ultraviolet curable resin (manufactured by Dainippon Ink Co., Ltd .: Unidick V-5500) (1.8 g), 2.4 g of isopropanol and 0.3 g of butyl cellosolve are sufficiently mixed, and a coating material for forming an infrared shielding film (P -5) was prepared.
[0095]
Substrate with infrared shielding film (F-5) Manufacturing of
A substrate with an infrared shielding film (F-5) was obtained in the same manner as in Example 1, except that the coating material for forming an infrared shielding film (P-5) was used. At this time, the thickness of the infrared shielding film was 5 μm.
The infrared-shielding property, visible-light shielding property, and ultraviolet-shielding haze of the obtained substrate with an infrared shielding film (F-5) were measured, and the adhesion, pencil hardness, and scratch resistance were measured.
[0096]
Table 1 shows the results.
[0097]
Embodiment 6
Coating solution for anti-reflective coating (R-1) Preparation of
The dispersion of the composite oxide fine particles (D-1) was passed through an ultrafiltration membrane, and the water of the dispersion medium was replaced with ethanol. 50 g of this ethanol sol (solid content concentration 5% by weight), 3 g of an ultraviolet curable resin (Unidec V-5500, manufactured by Dainippon Ink Co., Ltd.) and 47 g of a mixed solvent of 1/1 (weight ratio) of isopropanol and n-butanol were used. The mixture was sufficiently mixed to prepare an antireflection coating solution (R-1).
[0098]
Substrate with infrared shielding film and anti-reflection film (F-6) Manufacturing of
A substrate with an infrared shielding film (F-1) was produced in the same manner as in Example 2. Then, the coating liquid for forming an antireflection film (R-1) is applied onto the substrate with an infrared shielding film (F-1) by a bar coater method, dried at 80 ° C. for 1 minute, and then subjected to a high-pressure mercury lamp (80 W / cm) for 1 minute to cure, thereby preparing a substrate (F-6) having an infrared shielding film and an antireflection film. At this time, the thickness of the antireflection film was 80 nm.
[0099]
The infrared-shielding property, visible-light shielding property, and ultraviolet-shielding haze of the obtained substrate with an infrared-shielding film (F-6) were measured, and adhesion, pencil hardness, and scratch resistance were measured.
Table 1 shows the results.
[0100]
[Comparative Example 1]
Oxide fine particles (RA-1) Preparation of a dispersion of
A dispersion sol of metal oxide fine particles (RA-1) composed of antimony-doped tin oxide (ATO) having a solid content of 20% by weight was prepared in the same manner as in the oxide fine particles (A-1) in Production Examples.
[0101]
Then, the metal oxide fine particle (RA-1) dispersion sol was passed through an ultrafiltration membrane, and the dispersion medium was replaced with ethanol to prepare a dispersion of oxide fine particles (RA-1) having a solid content concentration of 30% by weight. .
The average particle size of the oxide fine particles (RA-1) was 30 nm.
Paint for forming infrared shielding film (RP-1) Preparation of
A coating material for forming an infrared shielding film (RP-1) was prepared in the same manner as in the Example using 12 g of the dispersion liquid of the oxide fine particles (RA-1), 3 g of isopropanol, and 0.4 g of butyl cellosolve.
[0102]
Substrate with infrared shielding film (RF-1) Manufacturing of
A substrate with an infrared shielding film (RF-1) was obtained in the same manner as in Example 1, except that the coating material for forming an infrared shielding film (RP-1) was used. At this time, the thickness of the infrared shielding film was 5 μm.
The infrared-shielding property, visible-light shielding property, and ultraviolet-shielding haze of the obtained substrate with an infrared shielding film (RF-1) were measured, and adhesion, pencil hardness, and scratch resistance were measured.
[0103]
Table 1 shows the results.
[0104]
[Comparative Example 2]
Oxide fine particles (RA-2) Preparation of a dispersion of
A dispersion sol of metal oxide fine particles (RA-2) composed of tin-doped indium oxide (ITO) having a solid content of 20% by weight was prepared in the same manner as in the production examples in the same manner as the oxide fine particles (A-2).
[0105]
Then, the dispersion sol of the metal oxide fine particles (RA-2) was passed through an ultrafiltration membrane, and the dispersion medium was replaced with ethanol to prepare a dispersion of oxide fine particles (RA-2) having a solid content concentration of 30% by weight. .
The average particle size of the oxide fine particles (RA-2) was 50 nm.
Paint for forming infrared shielding film (RP-2) Preparation of
A coating material for forming an infrared shielding film (RP-2) was prepared in the same manner as in Example 1 using 12 g of the dispersion liquid of oxide fine particles (RA-2), 3 g of isopropanol, and 0.4 g of butyl cellosolve.
[0106]
Substrate with infrared shielding film (RF-2) Manufacturing of
A substrate with an infrared shielding film (RF-2) was obtained in the same manner as in Example 1, except that the coating material for forming an infrared shielding film (RP-2) was used. At this time, the thickness of the infrared shielding film was 5 μm.
The infrared-shielding property, visible-light shielding property, and ultraviolet-shielding haze of the obtained substrate with an infrared shielding film (RF-2) were measured, and the adhesion, pencil hardness, and scratch resistance were measured.
[0107]
Table 1 shows the results.
[0108]
[Comparative Example 3]
Boride particles (RB-1) Preparation of a dispersion of
A dispersion of zirconium oxide-coated lanthanum hexaboride fine particles (RB-1) having a solid content of 3.5% by weight was obtained in the same manner as in the preparation of the dispersion of silica-coated boride fine particles (B-1) in Production Examples. . Then, the dispersion medium was replaced with ethanol through an ultrafiltration membrane to prepare a dispersion of zirconium oxide-coated boride fine particles (RB-1) having a solid concentration of 20% by weight. The average particle diameter of the zirconium oxide-coated boride fine particles (RB-1) was 70 nm.
[0109]
Paint for forming infrared shielding film (RP-3) Preparation of
In Example 1, instead of 12.0 g of the dispersion of the silica-coated oxide fine particles (A-1) and 2.0 g of the dispersion of the silica-coated boride fine particles (B-1), zirconium oxide-coated boride fine particles ( A coating for forming an infrared shielding film (RP-3) was prepared in the same manner except that 187.1 g of the dispersion of RB-1) was used.
[0110]
Substrate with infrared shielding film (RF-3) Manufacturing of
A substrate with an infrared shielding film (RF-3) was obtained in the same manner as in Example 1, except that the coating material for forming an infrared shielding film (RP-3) was used. At this time, the thickness of the infrared shielding film was 5 μm.
The infrared-shielding property, visible-light shielding property, and ultraviolet-shielding haze of the obtained substrate with an infrared-shielding film (RF-3) were measured, and adhesion, pencil hardness, and scratch resistance were measured.
[0111]
Table 1 shows the results.
[0112]
[Table 1]
Figure 2004204173

Claims (6)

酸化物微粒子(A)と、ホウ化物微粒子(B)と、塗料用樹脂とを含み、
酸化物微粒子(A)がIn、Sn、Sb、Zn、Tiから選ばれる元素の1種以上の酸化物または複合酸化物であり、ホウ化物微粒子(B)が周期律表のIIIa族、IVa族、Va族、VIa族から選ばれる元素の1種以上のホウ化物であり、
酸化物微粒子(A)およびホウ化物微粒子(B)がそれぞれシリカで被覆されていることを特徴とする赤外線遮蔽膜形成用塗料。
Oxide fine particles (A), boride fine particles (B), including a resin for paint,
The oxide fine particles (A) are oxides or composite oxides of one or more elements selected from In, Sn, Sb, Zn and Ti, and the boride fine particles (B) are groups IIIa and IVa of the periodic table. , Va, a boride of at least one element selected from the group consisting of VIa,
A coating material for forming an infrared shielding film, wherein the oxide fine particles (A) and the boride fine particles (B) are each coated with silica.
前記シリカで被覆された酸化物微粒子(A)およびシリカで被覆されたホウ化物微粒子(B)の平均粒子径が、それぞれ2〜100nmの範囲にあることを特徴とする請求項1に記載の赤外線遮蔽膜形成用塗料。The infrared ray according to claim 1, wherein the oxide fine particles (A) coated with silica and the boride fine particles (B) coated with silica have an average particle diameter in a range of 2 to 100 nm, respectively. Paint for forming shielding film. さらに、Tiおよび/またはCeの酸化物および/または複合酸化物またはこれらの混合物からなり、シリカで被覆された酸化物微粒子(C)を含むことを特徴とする請求項1または2に記載の赤外線遮蔽膜形成用塗料。The infrared ray according to claim 1 or 2, further comprising oxide fine particles (C) comprising an oxide and / or a composite oxide of Ti and / or Ce and a mixture thereof. Paint for forming shielding film. 前記シリカで被覆された酸化物微粒子(C)の平均粒子径が2〜100nmの範囲にあることを特徴とする請求項1〜3のいずれかに記載の赤外線遮蔽膜形成用塗料。The coating material for forming an infrared shielding film according to any one of claims 1 to 3, wherein the oxide fine particles (C) coated with silica have an average particle diameter in a range of 2 to 100 nm. 請求項1〜4のいずれかに記載の赤外線遮蔽膜形成用塗料を用いて形成された赤外線遮蔽膜を有する赤外線遮蔽膜付基材。A substrate with an infrared shielding film having an infrared shielding film formed using the coating material for forming an infrared shielding film according to claim 1. さらに表面に、反射防止膜を有することを特徴とする請求項5に記載の赤外線遮蔽膜付基材。The substrate with an infrared shielding film according to claim 5, further comprising an antireflection film on the surface.
JP2002377716A 2002-12-26 2002-12-26 Coating for forming infrared light-shading film and substrate having infrared light-shading film Pending JP2004204173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377716A JP2004204173A (en) 2002-12-26 2002-12-26 Coating for forming infrared light-shading film and substrate having infrared light-shading film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377716A JP2004204173A (en) 2002-12-26 2002-12-26 Coating for forming infrared light-shading film and substrate having infrared light-shading film

Publications (1)

Publication Number Publication Date
JP2004204173A true JP2004204173A (en) 2004-07-22

Family

ID=32814809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377716A Pending JP2004204173A (en) 2002-12-26 2002-12-26 Coating for forming infrared light-shading film and substrate having infrared light-shading film

Country Status (1)

Country Link
JP (1) JP2004204173A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202971A (en) * 2005-01-20 2006-08-03 New Japan Radio Co Ltd Semiconductor optical sensor
JP2007201137A (en) * 2006-01-26 2007-08-09 New Japan Radio Co Ltd Semiconductor photosensor
JP2007308341A (en) * 2006-05-19 2007-11-29 Sumitomo Metal Mining Co Ltd Method for producing surface-coated hexaboride particle
WO2009050946A1 (en) 2007-10-19 2009-04-23 Sumitomo Metal Mining Co., Ltd. Process for production of surface-coated hexaboride particle precursor, surface-coated hexaboride particle precursor, surface-coated hexaboride particles, dispersion of the particles, and structures and articles made by using the particles
JP5113302B1 (en) * 2012-04-13 2013-01-09 浩司 岡本 Ultraviolet / infrared shielding coating agent and ultraviolet / infrared shielding coating film
US8558106B2 (en) 2009-10-20 2013-10-15 Industrial Technology Research Institute Solar cell device and method for fabricating the same
EP2682991A2 (en) 2005-11-30 2014-01-08 Daikin Industries, Limited Coating composition for protection cover of solar cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202971A (en) * 2005-01-20 2006-08-03 New Japan Radio Co Ltd Semiconductor optical sensor
EP2682991A2 (en) 2005-11-30 2014-01-08 Daikin Industries, Limited Coating composition for protection cover of solar cell
JP2007201137A (en) * 2006-01-26 2007-08-09 New Japan Radio Co Ltd Semiconductor photosensor
JP2007308341A (en) * 2006-05-19 2007-11-29 Sumitomo Metal Mining Co Ltd Method for producing surface-coated hexaboride particle
WO2009050946A1 (en) 2007-10-19 2009-04-23 Sumitomo Metal Mining Co., Ltd. Process for production of surface-coated hexaboride particle precursor, surface-coated hexaboride particle precursor, surface-coated hexaboride particles, dispersion of the particles, and structures and articles made by using the particles
JP2009096696A (en) * 2007-10-19 2009-05-07 Sumitomo Metal Mining Co Ltd Method for manufacturing precursor of surface-coated hexaboride particle, precursor of surface-coated hexaboride particle, surface-coated hexaboride particle and its dispersion, and structure and article using surface-coated hexaboride particle
US8558106B2 (en) 2009-10-20 2013-10-15 Industrial Technology Research Institute Solar cell device and method for fabricating the same
JP5113302B1 (en) * 2012-04-13 2013-01-09 浩司 岡本 Ultraviolet / infrared shielding coating agent and ultraviolet / infrared shielding coating film

Similar Documents

Publication Publication Date Title
JP5328101B2 (en) Method for producing silica-based fine particles
US6713170B1 (en) Hard coating material and film comprising the same
KR101416610B1 (en) Paint for transparent film and transparent film coated substrate
JP4428923B2 (en) Method for producing silica-based hollow fine particles
JP2003202406A (en) Antireflection film and display device
JP5546239B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5096666B2 (en) Method for producing chain conductive oxide fine particles, chain conductive oxide fine particles, transparent conductive film-forming coating material, and substrate with transparent conductive film
JP6016548B2 (en) Coating liquid for forming transparent film and substrate with transparent film
JP2009035573A (en) Surface treatment method for metal oxide particle, dispersion liquid containing the surface treated metal oxide particle, coating liquid for forming transparent coating film, and substrate with transparent coating film
JP4409169B2 (en) Paint containing colored pigment particles, substrate with visible light shielding film
JP2005119909A (en) Antimony oxide coated silica particulate, manufacturing method thereof and substrate having coating film containing the particulate
JP2018123043A (en) Method for producing silica-based particle dispersion, silica-based particle dispersion, coating liquid for forming transparent coating film, and substrate with transparent coating film
JP4540979B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5480743B2 (en) Substrate with transparent film and paint for forming transparent film
JP5084122B2 (en) Film-coated substrate and coating solution for film formation
JP4979876B2 (en) Base material with hard coat film
JP5875367B2 (en) Substrate with transparent colored film and coating liquid for forming transparent colored film
JP5642535B2 (en) Novel silica-based hollow fine particles, base material with transparent film, and paint for forming transparent film
JP2004204173A (en) Coating for forming infrared light-shading film and substrate having infrared light-shading film
JP2014228728A (en) Base material with antireflection film, and method for producing the same
JP5554904B2 (en) Paint for forming transparent film and substrate with transparent film
JP4731137B2 (en) Method for producing silica-based fine particles
JP3955971B2 (en) Base material with antireflection film
JP2008114544A (en) Substrate with transparent coating
JP5404568B2 (en) Silica-based fine particles, coating material for coating formation and substrate with coating