JP2004198330A - Method and apparatus for detecting position of subject - Google Patents

Method and apparatus for detecting position of subject Download PDF

Info

Publication number
JP2004198330A
JP2004198330A JP2002369325A JP2002369325A JP2004198330A JP 2004198330 A JP2004198330 A JP 2004198330A JP 2002369325 A JP2002369325 A JP 2002369325A JP 2002369325 A JP2002369325 A JP 2002369325A JP 2004198330 A JP2004198330 A JP 2004198330A
Authority
JP
Japan
Prior art keywords
laser
robot
spot
coordinate system
point receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002369325A
Other languages
Japanese (ja)
Other versions
JP3731123B2 (en
Inventor
Yukinobu Tanaka
幸悦 田中
Shintaro Sakamoto
晋太郎 酒本
Makoto Kajitani
誠 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Original Assignee
Shinryo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp filed Critical Shinryo Corp
Priority to JP2002369325A priority Critical patent/JP3731123B2/en
Publication of JP2004198330A publication Critical patent/JP2004198330A/en
Application granted granted Critical
Publication of JP3731123B2 publication Critical patent/JP3731123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable absorption of errors due to unevenness of a floor face by accurately detecting the position of a moving subject in a certain area without installing a great number of marks. <P>SOLUTION: Two laser lights are irradiated toward two known points to the subject from a laser pointer robot installed in the area, received with a point receiver of the inside of the subject, a centroid position of a first laser spot and a second laser spot on the point receiver is measured in the subject inside coordinate system, and the position in the area coordinate system of the subject is detected. The point receiver has a horizontal screen receiving spot irradiation of the laser light; a CCD camera for photographing the laser spot on the horizontal screen; an image processing mechanism; and a control mechanism for calculating the position, and further has a height measuring mechanism for measuring a height by receiving horizontal laser irradiation from the laser pointer robot and correcting an irradiating position on the horizontal screen. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ロボットを用いて移動物体の位置を検出する方法と装置に関し、特に一定のエリア内にある対象物体に向けてロボットからレーザ光を照射することにより、その対象物体の正確な現在位置を測定する方法及び装置に関する。
【0002】
【従来の技術】
移動物体の現在位置を検出するには、移動経路中の要所に各種のランドマーク(誘導標識)を設置しておいて移動物体側からそのランドマークを見て現在位置を検出する方法と、固定位置に設置した観測装置から移動物体を見て移動物体の現在位置を検出する方法とがある。
【0003】
特開平11−183174号「移動体の位置計測装置」では、2個以上の反射物体を移動経路の周囲に配置し、移動体からレーザ光などを投射し、その反射光などから相対距離・進行方向・相対角度などを計測し演算している。この場合、2個以上の反射物体は既知の位置に正確に設置する必要があるから、設置の手間が煩雑で、基準の数が増えるほど作業量が多くなる。また測角と測距の2つの手段が必要となる。
特開平8−150582号「移動ロボット走行システム」では、2つの光学装置からそれぞれレーザ光を照射し、各光学系の光軸と規準線とのなす角度及び規準線の長さを用いて、三角測量の原理により位置を求めている。この場合、レーザ照射装置を2カ所に正確に設置する必要がある。
【0004】
特開平7−5242号「移動体の位置計測装置」では、反射手段を有する標識位置から位置計測装置までの距離及び方位を光ビームと画像処理手段を用いて算出しており、特に移動体の近傍に障害物があった場合でも、赤外線発光ダイオードとビデオカメラを用いて物体を検出している。この場合、ビデオカメラによる画像が複雑となるため、制御手段が高度な構成となる。
本発明者等の先願である特開平9−128041号(特許第3340606号)「移動ロボットの誘導方法と誘導システム」では、1枚の標識に複数の基準点を設定し移動体の位置計測を行っている。このように基準点間の角度を参照して位置計測する方法では、基準点間距離が大きければ大きいほど位置計測誤差は小さくなるが、1枚の標識に採用できる基準点間距離は通常200mm程度であり、精度を上げることが難しい。
【0005】
一般にレーザ光を用いて位置を検出する方法では、レーザ光などを検出するためにPSD(Position Sensitive Device )などの半導体位置検出素子を用いているが、PSDの大きさが小さいので(最大で20×20mm程度)、レーザ光を素子に当てるための制御が複雑になるという欠点がある。
【0006】
【発明が解決しようとする課題】
本発明の主たる目的は、多数の標識を設置することなく、一定のエリア内における移動物体の位置を正確に検出する方法と装置を提供することにある。
本発明の他の目的は、床面の凹凸による誤差を吸収して正確な位置検出を可能とする位置検出装置を提供することにある。
【0007】
【課題を解決するための手段】
前述した目的を達成するため、本発明はその第1の態様において、一定のエリア内に存在する物体の位置を検出する方法であって、エリア内の基準位置に設置したレーザポインタロボットから、対象とする物体に対してエリア座標系における既知の2点に向けて2本のレーザ光を照射し、それら2本のレーザ光を前記物体内部のポイントレシーバで受け、前記ポイントレシーバ上の第1のレーザスポットと第2のレーザスポットとの重心位置を前記物体の物体内座標系で測定し、これにより対象物体のエリア座標系での位置を検出する物体の位置検出方法を提供する。
【0008】
【作用】
本発明の方法によれば次のような作用効果が得られる。
1 多数のマーカーを設置する必要がない。基準が1つであり、設置の手間が少ない。また、測距手段が無く装置が簡略化できる
2 基準の設置は1カ所でよいので手間が少ない
3 標識に相当する基準点がアクティブにレーザ光を照射して位置を示すので、移動物体から標識を選び出す必要が無く装置が簡略化できる
4 標識を大きくする必要がない
5 スクリーンから距離をとってCCDカメラを配置すれば、レーザスポットの検出範囲は大きくとれる(実施例で100×100mm)。これにより、概略座標データと実座標データとに誤差が生じても、レーザスポットを検出することができる。
【0009】
さらに本発明はその第2の態様として、物体の位置検出装置を提供する。この装置は、一定のエリア内でレーザ光を水平下方又は水平上方に向けて照射可能なレーザポインタロボットと、位置を検出する対象物体上に搭載可能なポイントレシーバとを備え、前記ポイントレシーバは、レーザ光のスポット照射を受けるための水平スクリーンと、この水平スクリーン上のレーザスポットを撮影するCCDカメラと、前記CCDカメラの映像から対象物体の物体内座標系におけるレーザスポットの位置を計測する画像処理機構と、前記画像処理機構により測定された値に基づいて対象物体のエリア座標系における位置を計算する制御機構とを有しており、前記レーザポインタロボットから照射される複数のレーザ光が前記スクリーンに照射する位置を計測することにより対象物体の位置を検出する。
【0010】
このような装置を実際に使用する際に問題となるのが、床面の凹凸によって生じる移動体のZ軸方向の位置の変化、すなわちレーザポインタロボットとポイントレシーバの床面のレベルが変化した際の測定誤差の問題である。そこで本発明では、前記ポイントレシーバにさらに、前記レーザポインタロボットからの水平レーザ照射を受けて高さを計測し水平スクリーン上へ照射する位置を補正するための高さ測定機構を設けることができる。この高さ測定機構は受光板とCCDカメラを包含することが好適である。
【0011】
本発明による方法及び装置は測定対象物体とレーザポインタロボットで構成される。測定対象物体は、ワイヤレスモデム、コンピュータ、傾斜計、レーザポインタロボットからのレーザ光を受光する測定対象物体に水平に設置されたスクリーン、スクリーンからの反射光を検出するCCDカメラからなるポイントレシーバ、高さ測定装置、などから構成されている。
レーザポインタロボット(LPR)は、ワイヤレスモデム、コンピュータ、レーザポインタ、レーザポインタを水平・垂直方向に回転させる機構及び実際のレーザ光投射角度を測定するための機構などから構成されている。
レーザポインタロボットは、レーザ光源を水平(α:レーザ光源の含まれる水平面(X−Y平面)上において、レーザ光軸がx軸となす角)・垂直(β:レーザ光軸が水平面となす角)方向に回転させて、2次元平面における任意の位置をレーザスポットで指し示すことができる。
上記2台はそれぞれコンピュータで制御され、2つのコンピュータは無線による通信ができる。
【0012】
このシステムを用いて測定対象物体の自己位置検出を行う過程を以下に示す
(1)レーザポインタロボットを基準位置に設置する
(2)測定対象物体をエリア内に置く
(3)測定対象物体の位置における概略の座標データ(x,y)をレーザポインタロボットに入力する
(4)レーザポインタロボットから水平方向にレーザ光を照射する。測定対象物体は高さ測定装置によりレーザ光を受光し、レーザ光の高さを測定する
(5)測定対象物体の傾斜(高さのずれ)を前記レーザ光の高さから計算して高さの補正を行い、測定対象物体の正しい高さを計算し、そのデータをレーザポインタロボットへ送信する
(6)レーザポインタロボットは、測定対象物体の既知の概略の座標データと正しい高さから、測定対象物体の床面高さの補正を行った概略座標位置に対するレーザ光照射角α1,β1を算出する
【0013】
(7)レーザポインタロボットは、算出された角α1,β1に向けてレーザ光を照射する
(8)測定対象物体はレーザ光をスクリーンで受光し、受光したことをレーザポインタロボットに送信する。スクリーン上の第1受光ポイントの位置をコンピュータに記録する
(9)レーザポインタロボットは概略位置から規定値だけ離れた近傍の位置に対する照射角α2,β2を計算し、その角度にレーザ光を照射する
(10)測定対象物体は、スクリーン上に第2受光ポイントを検出し、受光したことをレーザポインタロボットに送信する。スクリーン上の第2受光ポイントの位置をコンピュータに記録する
(11)測定対象物体は、記録された第1受光ポイントと第2受光ポイントの記録データから、自己の正確な位置をコンピュータで検出する。
【0014】
さらに具体的には、レーザスポットの位置を検出するために、広い面積を有するスクリーンを測定対象物体に水平に取り付け、スクリーン内で受光したレーザスポットを撮像できるようにCCDカメラを取り付け、画像処理装置を用いてスポットの重心位置を計測する。
以下、本発明による好適な実施形態を添付図面を参照しながら説明する。
【0015】
【発明の実施の形態】
まず本発明による自己位置計測法の基本原理について説明する。
図1に示すように本発明は、レーザ光により目標位置を示すレーザポインタロボット(LPR)12と、レーザ光を受光して自己位置を算出するポイントレシーバ(PRV)14を搭載した測定対象物体10とで構成される。測定対象物体10は一定のエリアS内を移動し、レーザポインタロボット12は原則として一定の位置S1に設置される。
【0016】
図2はレーザポインタロボット12が床面へレーザ光を照射して投射位置Tを指示する様子を示している。ここでは、レーザポインタロボットのxy平面は床面のXY平面と平行であり、x軸y軸はそれぞれ対応するX軸Y軸と平行とする。レーザポインタロボットのレーザ光照射部の回転中心は、床面から高さHのところにある。レーザ光照射部を水平角α,仰角βの方向に向けると、床面上の投射位置T(x,y)にレーザスポットを照射して位置を指示することができる。これらの関係式は次式で表される。
x=r・cosα
y=r・sinα
r=h/tanβ
【0017】
ポイントレシーバ(PRV)は一定の大きさのスクリーンを持ち、スクリーンに照射されたレーザ光(これをレーザポイントと呼ぶ)の座標を測定する装置である。ここでは、原理を簡単に説明するために、レーザ光が照射される床面とポイントレシーバのスクリーンは同一平面にあるものとする。図3に示すようにエリアの床面の座標系(XY座標系)において、レーザポインタロボットによって床面に照射されたスポットA(xA ,yA )は測定対象物体上のスクリーン(UV座標系)ではスポットA(uA ,vA )と測定される。ロボット位置R(xR,yR )と姿勢θR は2点A,Bから以下の手順で求めることができる。
【0018】
まず、姿勢θR は、スポットを通る直線と2つの座標系とのなす角θAB,φABとの関係により、次式から求められる。負の値は絶対値とする。
θR =θAB−φAB
ここで、θABとφABはそれぞれ次式で与えられる。
【数1】

Figure 2004198330
【0019】
次に、位置R(xR ,yR )は次式から求められる。
R =xA −rA cos(θR +φA
R =yA −rA sin(θR +φA
ここで、φA はロボットから見たスポットAの方向、rA はロボット中心とスポットAとの距離で、それぞれ次式で与えられる。
【数2】
Figure 2004198330
【0020】
【実施例】
一般にレーザ光などを検出するためにPSD(Position Sensitive Device )などの半導体位置検出素子を用いるが、PSDの大きさが小さいので(最大で20×20mm程度)、レーザ光を素子に当てるための制御が複雑になる。
本発明では、レーザスポットの位置を検出するために、スクリーン内で受光したレーザスポットをCCDカメラで撮像して、画像処理装置を用いてスポットの重心位置を計測する。
本発明のように、スクリーンから距離をとってCCDカメラを配置すれば、レーザスポットの検出範囲は大きくとれる(実施例で100×100Amm)。これにより、オドメトリ情報(自動車の走行距離計に対応する走行距離データ)での移動の際に誤差が生じても、レーザスポットを検出することができる。
【0021】
レーザポインタロボット(LPR)は、レーザ光を水平方向(回転角α)と垂直方向(回転角β)に回転させて、作業領域内にレーザ光を投射する機能を持つ投光部とその制御装置で構成される。
図4はレーザポインタロボット12の投光部の外観を表している。レーザ光源26には素子出力5mW、波長670nmの半導体レーザを使用し、コリメータレンズを用いて距離5mでスポット径5mmにしている。レーザ光源26は垂直回転軸に取り付けられている。投光部の各軸は、減速機付きDCサーボモータ28,29とスチールベルトによる減速機構(減速比1/300)により駆動される。位置決め分解能は軸換算で1.07”(0.0003°)である。レーザ光の投射角度の測定には、各軸に直接取り付けたエンコーダ32,33(目盛本数18000本)を使用し、波形成形回路(内挿回路)とカウンタ回路により測定分解能は1.8”(0.0005°)である。投光部のベース36は、水平調整を行うため3点支持機構(図示せず)とした。
制御装置24は、無線モデムを通じて移動ロボットや他のシステムと通信し、レーザを投射している方向の情報(α,β)を提供したり、指令を受けて指定された方向へレーザ光を位置決めする機能を持つ。
【0022】
図5に示すように、移動体10には、レーザポインタロボット12により照射されたレーザポイントを受光して自己位置を算出するためのポイントレシーバ14が搭載されている。本システムの自己位置計測法は、レーザポインタロボットが指示した目標位置まで移動体がオドメトリ情報(走行距離データ)のみで移動し、レーザポイントを受光した後に正確な自己位置を算出するという方法である。従って、PSDなどの受光面積の小さなセンサを用いると、移動体には高い移動精度が要求されることになり、オドメトリのみの自律移動性能と床面の状況を考えると実用的ではない。そこで、移動体にレーザポイントを受光するスクリーンを用意し、この反射光をCCDカメラにより画像計測するポイントレシーバシステムを構築している。
【0023】
図5に示すように、レーザポイントの検出部は、スクリーン40(反射板)とCCDカメラ42で構成されている。スクリーン40に対して斜めに入射するレーザ光はレーザポインタロボット12からの距離が長くなるに従ってポイントの長軸が長くなる。ここではポイントレシーバの受光範囲をレーザポインタロボットから10mと設定し、そのために必要なカメラ視野が得られるように設計した。このときのカメラレンズの焦点距離は16mm、有効画素は512×480の正方格子配列で、スクリーン上での検出範囲は約100mm四方、カメラの測定分解能は0.22mm/ピクセルとした。画像処理装置では、二値化、平滑化、ノイズ除去、面積フィルタの前処理を行い、ポイントの重心位置と面積を測定する。
【0024】
本システムを実際に使用する際に問題となるのが、床面の凹凸によって生じる移動体のZ軸方向の位置の変化、すなわちレーザポインタロボット(LPR)とポイントレシーバ(PRV)との高度差dの変化である(図6参照)。これを測定して補正するために、図7に示すように移動体10上に高さ測定装置(機構)50を装備している。この高さ測定装置50は、レーザポインタロボット12から水平に照射されたレーザ光を受光板52で受光し、それをCCDカメラ54で検出してレーザポイントの位置を計測する。あらかじめ床面からの距離hLPR の位置を高さ測定装置の座標系で求めているので、dは装置内の高度差Δdにより以下の式で求められる。
d=(hLPR −hPRV )+Δd
測定装置50の測定分解能は0.153mm/ピクセルである。
【0025】
上述したように、自己位置を求めるためには、ポイントレシーバ面上に照射された投射位置Tの座標(X,Y)(LPR座標系)と、ロボットから見たポイントレシーバ面上のTの座標(U,V)(移動体=PRV座標系)が必要である。ここで床面の凹凸の影響などで移動体10が傾くとポイントレシーバ14も傾くので、レーザポインタロボット12の指示した投射位置Tを正しく測定することができなくなる。そこで、傾きによる誤差を補正するために、移動体のピッチング方向(V軸回り)とローリング方向(U軸回り)に取り付けた傾斜計で傾き角を測定し、測定座標(U,V)を補正する。
【0026】
本システムによる自己位置検出の手順と各装置の動作は次の通りである。
(1)レーザポインタロボットから移動体へ、移動体の現在位置座標と移動目標位置座標を無線モデムで送信する
(2)移動体はオドメトリ情報により目標位置へ移動し、レーザポインタロボットへ移動完了メッセージを送信する
(3)レーザポインタロボットは高さ測定のためにα軸を水平にして、レーザ光を移動体へ向けて照射する
(4)移動体は高さ測定装置によりレーザポイントの位置を測定する。次に、計測したロボットの傾斜角度に基づいて高さ測定値を補正し、その結果をレーザポインタロボットに送信する
【0027】
(5)レーザポインタロボットは、補正された高さ測定情報に基づいてα,β角度を計算し、移動目標位置にレーザ光を照射する。その後、照射完了メッセージを移動体へ送信する
(6)移動体はポイントレシーバにより照射されたレーザポイントの位置を測定する。第1点目の測定が完了したことをレーザポインタロボットに送信する
(7)レーザポインタロボットは移動目標位置のX座標Y座標にそれぞれ10mm加えた位置に第2点目のレーザ光を照射する。その後、照射完了メッセージを移動体へ送信する
(8)移動体は第2点目をポイントレシーバにより測定する。1点目と2点目の測定結果から自己位置を計算する。自己位置測定結果は、現在位置座標情報としてレーザポインタロボットに送信する。
【0028】
もし移動体が何らかの原因で目標位置へ移動できず、ポイントレシーバでレーザポイントが受光できなかった場合は、移動体側で判断してサーチモードに入る。同時に、無線モデムでレーザポインタロボットにサーチモードに入るよう指示する。サーチモードでは、レーザポインタロボットはレーザ光の走査を行い、移動体はポイントレシーバにポイントの検出を連続して行わせる。ポイントレシーバがポイントを捕捉した時、レーザポインタロボットの指示した座標とポイントレシーバが測定したポイント座標より移動体の位置のずれを算出し、目標位置へ復帰する。以降(3)から制御を行う。
【0029】
図8は、移動体10及びレーザポインタロボット12のそれぞれに搭載されるコンピュータ制御通信システム60,70を含む制御装置24の概略接続図を表している。これらのシステムは周知のワイヤレスモデム、RS232C回路、コンピュータ、A/D変換器、傾斜計、画像処理装置、CCDカメラ、モータコントローラ、エンコーダ、DCサーボモータ、カウンタボード、波形成形回路などで構成される。
【0030】
【発明の効果】
以上詳細に説明した如く、本発明によれば、多数のマーカーを設置する必要がなく、基準の設置は1カ所でよく、測距手段が無いので装置が簡略化できる。標識に相当する基準点がアクティブにレーザ光を照射して位置を示すので、移動物体から標識を選び出す必要が無く、標識を大きくする必要もない。スクリーンから距離をとってCCDカメラを配置すれば、レーザスポットの検出範囲は大きくとれるので、概略座標データと実座標データとに誤差が生じても、レーザスポットを検出することができる等の利点が得られ、その技術的効果には極めて顕著なものがある。
【図面の簡単な説明】
【図1】本発明による測定装置の概略斜視図である。
【図2】レーザ光の照射角度と距離の測定原理を表す概略図である。
【図3】2つの座標系における測定原理を表す概略図である。
【図4】レーザポインタロボットの正面図である。
【図5】ポイントレシーバの一部破断側面図である。
【図6】高さ測定の原理説明図である。
【図7】高さ測定装置の概略斜視図である。
【図8】2つの装置間でのデータ送信システムを表す概略図である。
【符号の説明】
S エリア
10 測定対象物体
12 レーザポインタロボット
14 ポイントレシーバ
24 制御装置
26 レーザ光源
28,29 DCサーボモータ
40 スクリーン
42,54 CCDカメラ
50 高さ測定装置
52 受光板
60,70 通信システム[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for detecting the position of a moving object using a robot, and in particular, by irradiating a laser beam from a robot toward a target object within a certain area, thereby detecting the exact current position of the target object. And a method and apparatus for measuring
[0002]
[Prior art]
In order to detect the current position of the moving object, various landmarks (guidance signs) are installed at key points in the moving route, and a method of detecting the current position by viewing the landmark from the moving object side, There is a method of detecting the current position of a moving object by viewing the moving object from an observation device installed at a fixed position.
[0003]
Japanese Patent Application Laid-Open No. H11-183174 discloses a "position measuring apparatus for a moving object" in which two or more reflecting objects are arranged around a moving path, a laser beam or the like is projected from the moving object, and a relative distance / progress is calculated from the reflected light or the like. The direction and relative angle are measured and calculated. In this case, since two or more reflecting objects need to be accurately set at a known position, the time and effort required for setting are complicated, and the amount of work increases as the number of references increases. Further, two means of angle measurement and distance measurement are required.
In Japanese Patent Application Laid-Open No. 8-150582, "mobile robot traveling system", laser light is irradiated from two optical devices, and an angle between the optical axis of each optical system and a reference line and the length of the reference line are used. The position is determined by the principle of surveying. In this case, it is necessary to accurately install laser irradiation devices at two locations.
[0004]
In Japanese Patent Application Laid-Open No. 7-5242, "distance measurement device for moving object" calculates the distance and direction from the marker position having the reflection means to the position measurement device using a light beam and image processing means. Even if there is an obstacle nearby, the object is detected using the infrared light emitting diode and the video camera. In this case, since the image obtained by the video camera is complicated, the control means has a sophisticated configuration.
In Japanese Patent Application Laid-Open No. Hei 9-128041 (Patent No. 3340606) "Mobile Robot Guidance Method and Guidance System", which is a prior application of the present inventors, a plurality of reference points are set on one sign to measure the position of a moving body. It is carried out. In the method of measuring the position with reference to the angle between the reference points as described above, the larger the distance between the reference points is, the smaller the position measurement error is. However, the distance between the reference points that can be adopted for one sign is usually about 200 mm. It is difficult to increase the accuracy.
[0005]
In general, in a method of detecting a position using a laser beam, a semiconductor position detecting element such as a PSD (Position Sensitive Device) is used to detect a laser beam or the like. (Approximately × 20 mm), and there is a disadvantage that control for applying the laser beam to the element becomes complicated.
[0006]
[Problems to be solved by the invention]
A main object of the present invention is to provide a method and an apparatus for accurately detecting the position of a moving object in a certain area without installing many signs.
It is another object of the present invention to provide a position detecting device capable of absorbing an error due to unevenness of a floor surface to enable accurate position detection.
[0007]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a method for detecting a position of an object present in a certain area, the method comprising: The object is irradiated with two laser beams toward two known points in the area coordinate system, the two laser beams are received by a point receiver inside the object, and a first laser beam on the point receiver Provided is an object position detection method for measuring the position of the center of gravity of a laser spot and a second laser spot in an object coordinate system of the object, thereby detecting the position of the target object in an area coordinate system.
[0008]
[Action]
According to the method of the present invention, the following effects can be obtained.
1. There is no need to install many markers. There is only one criterion, and installation time is low. In addition, since there is no distance measuring means and the apparatus can be simplified, only one place is required for setting the reference. Therefore, there is little trouble. 3 The reference point corresponding to the sign indicates the position by actively irradiating the laser beam. 4 can be used to simplify the apparatus 4 It is not necessary to increase the size of the marker 5 If the CCD camera is arranged at a distance from the screen, the detection range of the laser spot can be increased (100 × 100 mm in the embodiment). Thus, even if an error occurs between the approximate coordinate data and the actual coordinate data, a laser spot can be detected.
[0009]
The present invention further provides, as a second aspect thereof, an object position detecting device. This device includes a laser pointer robot capable of irradiating laser light horizontally downward or horizontally upward within a certain area, and a point receiver mountable on a target object whose position is to be detected, and the point receiver includes: A horizontal screen for receiving laser beam spot irradiation, a CCD camera for photographing the laser spot on the horizontal screen, and image processing for measuring the position of the laser spot in the coordinate system within the object from the image of the CCD camera And a control mechanism for calculating the position of the target object in the area coordinate system based on the value measured by the image processing mechanism, and a plurality of laser lights emitted from the laser pointer robot are transmitted to the screen. The position of the target object is detected by measuring the position of irradiation of the object.
[0010]
A problem when actually using such a device is that a change in the position of the moving body in the Z-axis direction caused by unevenness of the floor surface, that is, a change in the level of the floor surface of the laser pointer robot and the point receiver. This is a problem of measurement error. Therefore, in the present invention, the point receiver may be further provided with a height measuring mechanism for measuring the height by receiving the horizontal laser irradiation from the laser pointer robot and correcting the irradiation position on the horizontal screen. This height measuring mechanism preferably includes a light receiving plate and a CCD camera.
[0011]
The method and the device according to the invention comprise an object to be measured and a laser pointer robot. The object to be measured is a wireless modem, a computer, an inclinometer, a screen horizontally installed on the object to be measured that receives laser light from a laser pointer robot, a point receiver including a CCD camera that detects reflected light from the screen, Measurement device.
The laser pointer robot (LPR) includes a wireless modem, a computer, a laser pointer, a mechanism for rotating the laser pointer in horizontal and vertical directions, a mechanism for measuring an actual laser beam projection angle, and the like.
The laser pointer robot sets the laser light source horizontally (α: the angle between the laser optical axis and the x-axis on the horizontal plane (XY plane) containing the laser light source) and perpendicular (β: the angle between the laser optical axis and the horizontal plane) ) Direction, an arbitrary position in a two-dimensional plane can be indicated by a laser spot.
Each of the two computers is controlled by a computer, and the two computers can communicate wirelessly.
[0012]
The process of detecting the self-position of the object to be measured using this system will be described below. (1) Install the laser pointer robot at the reference position (2) Place the object to be measured in the area (3) Position of the object to be measured Input the approximate coordinate data (x, y) in (4) to the laser pointer robot to irradiate the laser beam in the horizontal direction. The object to be measured receives the laser beam by the height measuring device and measures the height of the laser beam. (5) The height (deviation of the height) of the object to be measured is calculated from the height of the laser beam and the height is measured. Is corrected, the correct height of the object to be measured is calculated, and the data is transmitted to the laser pointer robot. (6) The laser pointer robot performs measurement from the known approximate coordinate data of the object to be measured and the correct height. Calculate the laser beam irradiation angles α1 and β1 with respect to the approximate coordinate position where the floor height of the target object has been corrected.
(7) The laser pointer robot irradiates the laser light toward the calculated angles α1 and β1. (8) The object to be measured receives the laser light on the screen, and transmits the received light to the laser pointer robot. The position of the first light receiving point on the screen is recorded in the computer. (9) The laser pointer robot calculates the irradiation angles α2 and β2 with respect to a nearby position separated from the approximate position by a specified value, and irradiates the laser beam to the angle. (10) The object to be measured detects the second light receiving point on the screen, and transmits the fact that the light receiving point is received to the laser pointer robot. Recording the position of the second light receiving point on the screen in the computer (11) The computer detects the exact position of the object to be measured from the recorded data of the first light receiving point and the recorded data of the second light receiving point.
[0014]
More specifically, in order to detect the position of the laser spot, a screen having a large area is horizontally mounted on the object to be measured, and a CCD camera is mounted so that the laser spot received in the screen can be imaged. Is used to measure the position of the center of gravity of the spot.
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the basic principle of the self-position measurement method according to the present invention will be described.
As shown in FIG. 1, the present invention provides a measurement object 10 having a laser pointer robot (LPR) 12 for indicating a target position by a laser beam and a point receiver (PRV) 14 for receiving a laser beam and calculating a self-position. It is composed of The measurement object 10 moves within a certain area S, and the laser pointer robot 12 is installed at a certain position S1 in principle.
[0016]
FIG. 2 shows a state where the laser pointer robot 12 irradiates the floor surface with a laser beam and indicates the projection position T. Here, the xy plane of the laser pointer robot is parallel to the XY plane of the floor, and the x-axis and y-axis are respectively parallel to the corresponding X-axis and Y-axis. The center of rotation of the laser beam irradiation part of the laser pointer robot is at a height H from the floor surface. When the laser beam irradiating unit is directed in the directions of the horizontal angle α and the elevation angle β, a laser spot can be irradiated on the projection position T (x, y) on the floor surface to designate the position. These relational expressions are represented by the following expressions.
x = r · cosα
y = r · sin α
r = h / tanβ
[0017]
A point receiver (PRV) is a device that has a screen of a fixed size and measures the coordinates of a laser beam applied to the screen (this is called a laser point). Here, in order to briefly explain the principle, it is assumed that the floor surface irradiated with the laser beam and the screen of the point receiver are on the same plane. The coordinate system of the floor area as shown in FIG. 3 at (XY coordinate system), Spot A (x A, y A) irradiated on the floor surface by a laser pointer robot screen (UV coordinate system on the measurement object )) Is measured as spot A (u A , v A ). Robot position R (x R, y R) and orientation theta R can be obtained two points A, from B by the following procedure.
[0018]
First, the attitude θ R is obtained from the following equation based on the relationship between the angles θ AB and φ AB formed between the straight line passing through the spot and the two coordinate systems. Negative values are absolute values.
θ R = θ AB −φ AB
Here, θ AB and φ AB are respectively given by the following equations.
(Equation 1)
Figure 2004198330
[0019]
Then, the position R (x R, y R) is determined from the following equation.
x R = x A -r A cos (θ R + φ A)
y R = y A -r A sin (θ R + φ A)
Here, φ A is the direction of the spot A viewed from the robot, and r A is the distance between the center of the robot and the spot A, and is given by the following equations.
(Equation 2)
Figure 2004198330
[0020]
【Example】
In general, a semiconductor position detecting element such as a PSD (Position Sensitive Device) is used to detect laser light and the like. However, since the size of the PSD is small (up to about 20 × 20 mm), control for applying laser light to the element is performed. Becomes complicated.
In the present invention, in order to detect the position of the laser spot, the laser spot received on the screen is imaged by a CCD camera, and the center of gravity of the spot is measured using an image processing device.
If the CCD camera is arranged at a distance from the screen as in the present invention, the detection range of the laser spot can be increased (100 × 100 Amm in the embodiment). Thus, even if an error occurs when moving with odometry information (distance data corresponding to the odometer of the vehicle), a laser spot can be detected.
[0021]
A laser pointer robot (LPR) has a function of projecting a laser beam into a work area by rotating a laser beam in a horizontal direction (rotation angle α) and a vertical direction (rotation angle β), and a control device therefor. It consists of.
FIG. 4 shows the appearance of the light projecting unit of the laser pointer robot 12. A semiconductor laser having an element output of 5 mW and a wavelength of 670 nm is used as the laser light source 26, and a spot diameter of 5 mm is set at a distance of 5 m using a collimator lens. The laser light source 26 is mounted on a vertical rotation axis. Each axis of the light emitting section is driven by a speed reduction mechanism (reduction ratio 1/300) using DC servo motors 28 and 29 with speed reducers and a steel belt. The positioning resolution is 1.07 "(0.0003 °) in terms of an axis. For measuring the projection angle of the laser beam, encoders 32 and 33 (18,000 scales) directly attached to each axis are used to measure the waveform. The measurement resolution is 1.8 ″ (0.0005 °) by the shaping circuit (interpolation circuit) and the counter circuit. The base 36 of the light emitting section was a three-point support mechanism (not shown) for performing horizontal adjustment.
The control device 24 communicates with the mobile robot and other systems through the wireless modem to provide information (α, β) of the direction in which the laser is projected, and to position the laser beam in the designated direction in response to a command. With the ability to
[0022]
As shown in FIG. 5, the moving body 10 is equipped with a point receiver 14 for receiving a laser point irradiated by the laser pointer robot 12 and calculating its own position. The self-position measurement method of the present system is a method in which a moving body moves to a target position designated by a laser pointer robot using only odometry information (travel distance data), and calculates an accurate self-position after receiving a laser point. . Therefore, when a sensor having a small light receiving area such as a PSD is used, a high moving accuracy is required for the moving body, which is not practical considering the autonomous moving performance of only the odometry and the condition of the floor surface. Therefore, a screen for receiving a laser point is prepared on a moving body, and a point receiver system for measuring an image of the reflected light with a CCD camera is being constructed.
[0023]
As shown in FIG. 5, the laser point detection unit includes a screen 40 (reflection plate) and a CCD camera 42. The longer axis of the laser light obliquely incident on the screen 40 becomes longer as the distance from the laser pointer robot 12 becomes longer. Here, the light receiving range of the point receiver was set to be 10 m from the laser pointer robot, and a design was made so that a camera view required for that purpose could be obtained. At this time, the focal length of the camera lens was 16 mm, the effective pixels were a square lattice array of 512 × 480, the detection range on the screen was about 100 mm square, and the measurement resolution of the camera was 0.22 mm / pixel. The image processing apparatus performs binarization, smoothing, noise removal, and pre-processing of an area filter, and measures the position of the center of gravity and the area of the point.
[0024]
A problem when actually using this system is a change in the position of the moving body in the Z-axis direction caused by unevenness of the floor surface, that is, an altitude difference d between the laser pointer robot (LPR) and the point receiver (PRV). (See FIG. 6). In order to measure and correct this, a height measuring device (mechanism) 50 is provided on the moving body 10 as shown in FIG. The height measuring device 50 receives a laser beam emitted horizontally from the laser pointer robot 12 with a light receiving plate 52, detects the laser beam with a CCD camera 54, and measures the position of the laser point. Since the position of the distance h LPR from the floor surface is determined in advance in the coordinate system of the height measuring device, d can be obtained by the following equation using the altitude difference Δd in the device.
d = (h LPR −h PRV ) + Δd
The measurement resolution of the measurement device 50 is 0.153 mm / pixel.
[0025]
As described above, in order to determine the self-position, the coordinates (X, Y) (LPR coordinate system) of the projected position T irradiated on the point receiver surface and the coordinates of T on the point receiver surface as viewed from the robot (U, V) (moving body = PRV coordinate system) is required. Here, when the moving body 10 is tilted due to the unevenness of the floor surface or the like, the point receiver 14 is also tilted, so that the projection position T indicated by the laser pointer robot 12 cannot be correctly measured. Therefore, in order to correct the error due to the inclination, the inclination angle is measured by an inclinometer attached in the pitching direction (around the V axis) and the rolling direction (around the U axis) of the moving body, and the measurement coordinates (U, V) are corrected. I do.
[0026]
The procedure of the self-position detection by this system and the operation of each device are as follows.
(1) The current position coordinates and the movement target position coordinates of the moving object are transmitted from the laser pointer robot to the moving object by the wireless modem. (2) The moving object moves to the target position based on the odometry information, and a movement completion message to the laser pointer robot. (3) The laser pointer robot radiates the laser beam toward the moving body with the α axis horizontal for height measurement. (4) The moving body measures the position of the laser point by the height measuring device. I do. Next, the height measurement value is corrected based on the measured inclination angle of the robot, and the result is transmitted to the laser pointer robot.
(5) The laser pointer robot calculates α and β angles based on the corrected height measurement information, and irradiates the movement target position with laser light. Thereafter, an irradiation completion message is transmitted to the mobile unit (6). The mobile unit measures the position of the laser point irradiated by the point receiver. The completion of the measurement at the first point is transmitted to the laser pointer robot. (7) The laser pointer robot irradiates the laser light at the second point to a position obtained by adding 10 mm to the X coordinate and the Y coordinate of the movement target position. Thereafter, the irradiation completion message is transmitted to the mobile unit (8). The mobile unit measures the second point by the point receiver. The self-position is calculated from the measurement results of the first point and the second point. The self-position measurement result is transmitted to the laser pointer robot as current position coordinate information.
[0028]
If the moving body cannot move to the target position for some reason and the laser beam cannot be received by the point receiver, the moving body determines and enters the search mode. At the same time, the wireless modem instructs the laser pointer robot to enter the search mode. In the search mode, the laser pointer robot scans the laser beam, and the moving object causes the point receiver to continuously detect points. When the point receiver captures the point, the displacement of the position of the moving body is calculated from the coordinates indicated by the laser pointer robot and the point coordinates measured by the point receiver, and the point returns to the target position. Thereafter, control is performed from (3).
[0029]
FIG. 8 is a schematic connection diagram of the control device 24 including the computer control communication systems 60 and 70 mounted on the moving object 10 and the laser pointer robot 12, respectively. These systems include a well-known wireless modem, RS232C circuit, computer, A / D converter, inclinometer, image processing device, CCD camera, motor controller, encoder, DC servomotor, counter board, waveform shaping circuit, and the like. .
[0030]
【The invention's effect】
As described in detail above, according to the present invention, it is not necessary to install a large number of markers, the reference can be installed in one place, and the apparatus can be simplified since there is no distance measuring means. Since the reference point corresponding to the sign indicates the position by actively irradiating the laser beam, there is no need to select the sign from the moving object, and it is not necessary to enlarge the sign. By arranging the CCD camera at a distance from the screen, the detection range of the laser spot can be increased, so that the laser spot can be detected even if an error occurs between the approximate coordinate data and the actual coordinate data. The technical effects obtained are very remarkable.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a measuring device according to the present invention.
FIG. 2 is a schematic view illustrating a measurement principle of an irradiation angle and a distance of a laser beam.
FIG. 3 is a schematic diagram illustrating a measurement principle in two coordinate systems.
FIG. 4 is a front view of the laser pointer robot.
FIG. 5 is a partially cutaway side view of the point receiver.
FIG. 6 is a diagram illustrating the principle of height measurement.
FIG. 7 is a schematic perspective view of a height measuring device.
FIG. 8 is a schematic diagram illustrating a data transmission system between two devices.
[Explanation of symbols]
S Area 10 Object to be measured 12 Laser pointer robot 14 Point receiver 24 Controller 26 Laser light source 28, 29 DC servo motor 40 Screen 42, 54 CCD camera 50 Height measuring device 52 Light receiving plate 60, 70 Communication system

Claims (3)

一定のエリア内に存在する物体の位置を検出する方法であって、
エリア内の基準位置に設置したレーザポインタロボットから、対象とする物体に対してエリア座標系における既知の2点に向けて2本のレーザ光を照射し、
それら2本のレーザ光を前記物体内部のポイントレシーバで受け、
前記ポイントレシーバ上の第1のレーザスポットと第2のレーザスポットとの重心位置を前記物体の物体内座標系で測定し、
これにより対象物体のエリア座標系での位置を検出することを特徴とする物体の位置検出方法。
A method for detecting the position of an object present in a certain area,
A laser pointer robot installed at a reference position in the area irradiates a target object with two laser beams toward two known points in the area coordinate system,
The two laser beams are received by a point receiver inside the object,
Measuring the position of the center of gravity of the first laser spot and the second laser spot on the point receiver in a coordinate system within the object of the object,
An object position detection method characterized by detecting a position of the target object in an area coordinate system.
一定のエリア内でレーザ光を水平下方又は水平上方に向けて照射可能なレーザポインタロボットと、
位置を検出する対象物体上に搭載可能なポイントレシーバとを備え、
前記ポイントレシーバは、レーザ光のスポット照射を受けるための水平スクリーンと、この水平スクリーン上のレーザスポットを撮影するCCDカメラと、前記CCDカメラの映像から対象物体の物体内座標系におけるレーザスポットの位置を計測する画像処理機構と、前記画像処理機構により測定された値に基づいて対象物体のエリア座標系における位置を計算する制御機構とを有しており、
前記レーザポインタロボットから照射される複数のレーザ光が前記スクリーンに照射する位置を計測することにより対象物体の位置を検出することを特徴とする物体の位置検出装置。
A laser pointer robot capable of irradiating laser light horizontally downward or horizontally upward within a certain area,
With a point receiver that can be mounted on the target object whose position is to be detected,
The point receiver includes a horizontal screen for receiving a laser beam spot irradiation, a CCD camera for photographing the laser spot on the horizontal screen, and a position of the laser spot in the coordinate system within the object of the target object from an image of the CCD camera. An image processing mechanism that measures the position of the target object in the area coordinate system based on the value measured by the image processing mechanism,
An object position detecting device, wherein a position of a target object is detected by measuring positions at which a plurality of laser beams emitted from the laser pointer robot irradiate the screen.
前記ポイントレシーバはさらに前記レーザポインタロボットからの水平レーザ照射を受けて高さを計測し前記水平スクリーン上へ照射する位置を補正するための高さ測定機構を有し、この高さ測定機構は受光板とCCDカメラを包含している請求項2記載の位置検出装置。The point receiver further has a height measuring mechanism for measuring the height by receiving the horizontal laser irradiation from the laser pointer robot and correcting the irradiation position on the horizontal screen, and the height measuring mechanism receives light. 3. The position detecting device according to claim 2, comprising a plate and a CCD camera.
JP2002369325A 2002-12-20 2002-12-20 Object position detection method and apparatus Expired - Fee Related JP3731123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002369325A JP3731123B2 (en) 2002-12-20 2002-12-20 Object position detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002369325A JP3731123B2 (en) 2002-12-20 2002-12-20 Object position detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2004198330A true JP2004198330A (en) 2004-07-15
JP3731123B2 JP3731123B2 (en) 2006-01-05

Family

ID=32765577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002369325A Expired - Fee Related JP3731123B2 (en) 2002-12-20 2002-12-20 Object position detection method and apparatus

Country Status (1)

Country Link
JP (1) JP3731123B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100948947B1 (en) 2008-01-16 2010-03-23 한국생산기술연구원 Localization apparatus of autonomous vehicle and method thereof
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
KR101157117B1 (en) 2009-12-28 2012-06-22 한국기초과학지원연구원 pointer using Omi-mirror and laser
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
JP2013072691A (en) * 2011-09-27 2013-04-22 Vri Inc Distance marker projection device and distance measuring apparatus including the same
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
JP2014522064A (en) * 2011-08-09 2014-08-28 ザ・ボーイング・カンパニー Beam guided motion control system
CN104029207A (en) * 2013-03-08 2014-09-10 科沃斯机器人科技(苏州)有限公司 Laser-guided walking operation system for self-moving robot and control method for same
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
KR20150110866A (en) * 2014-03-20 2015-10-05 (주)와이앤지 Thermo-graphic camera apparatus, terminal, method, recording medium, and system for displaying thermo-graphic image
CN109405795A (en) * 2018-11-26 2019-03-01 深圳市启玄科技有限公司 A kind of adjusting method and adjusting machine of multi-path laser distance-measuring equipment
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
JP2019109155A (en) * 2017-12-19 2019-07-04 鹿島建設株式会社 Autonomous movement method and autonomous movement device
JP2020101371A (en) * 2018-12-19 2020-07-02 株式会社竹中工務店 Moving body, positioning method, and positioning system
CN113050113A (en) * 2021-03-10 2021-06-29 广州南方卫星导航仪器有限公司 Laser point positioning method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117041982B (en) * 2023-06-26 2024-01-23 中国软件评测中心(工业和信息化部软件与集成电路促进中心) System and method for detecting correctness of air interface transmission data

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8478442B2 (en) 2000-01-24 2013-07-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8761935B2 (en) 2000-01-24 2014-06-24 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8565920B2 (en) 2000-01-24 2013-10-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US8686679B2 (en) 2001-01-24 2014-04-01 Irobot Corporation Robot confinement
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8671507B2 (en) 2002-01-03 2014-03-18 Irobot Corporation Autonomous floor-cleaning robot
US8656550B2 (en) 2002-01-03 2014-02-25 Irobot Corporation Autonomous floor-cleaning robot
US8516651B2 (en) 2002-01-03 2013-08-27 Irobot Corporation Autonomous floor-cleaning robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8461803B2 (en) 2004-01-21 2013-06-11 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8749196B2 (en) 2004-01-21 2014-06-10 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8456125B2 (en) 2004-01-28 2013-06-04 Irobot Corporation Debris sensor for cleaning apparatus
US8598829B2 (en) 2004-01-28 2013-12-03 Irobot Corporation Debris sensor for cleaning apparatus
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8634958B1 (en) 2004-07-07 2014-01-21 Irobot Corporation Celestial navigation system for an autonomous robot
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8634956B1 (en) 2004-07-07 2014-01-21 Irobot Corporation Celestial navigation system for an autonomous robot
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8594840B1 (en) 2004-07-07 2013-11-26 Irobot Corporation Celestial navigation system for an autonomous robot
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8774966B2 (en) 2005-02-18 2014-07-08 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8670866B2 (en) 2005-02-18 2014-03-11 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
US8954192B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Navigating autonomous coverage robots
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US9149170B2 (en) 2005-12-02 2015-10-06 Irobot Corporation Navigating autonomous coverage robots
US9599990B2 (en) 2005-12-02 2017-03-21 Irobot Corporation Robot system
US8761931B2 (en) 2005-12-02 2014-06-24 Irobot Corporation Robot system
US8606401B2 (en) 2005-12-02 2013-12-10 Irobot Corporation Autonomous coverage robot navigation system
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US8528157B2 (en) 2006-05-19 2013-09-10 Irobot Corporation Coverage robots and associated cleaning bins
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US11072250B2 (en) 2007-05-09 2021-07-27 Irobot Corporation Autonomous coverage robot sensing
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US8438695B2 (en) 2007-05-09 2013-05-14 Irobot Corporation Autonomous coverage robot sensing
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
KR100948947B1 (en) 2008-01-16 2010-03-23 한국생산기술연구원 Localization apparatus of autonomous vehicle and method thereof
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
KR101157117B1 (en) 2009-12-28 2012-06-22 한국기초과학지원연구원 pointer using Omi-mirror and laser
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush
JP2014522064A (en) * 2011-08-09 2014-08-28 ザ・ボーイング・カンパニー Beam guided motion control system
JP2013072691A (en) * 2011-09-27 2013-04-22 Vri Inc Distance marker projection device and distance measuring apparatus including the same
CN104029207A (en) * 2013-03-08 2014-09-10 科沃斯机器人科技(苏州)有限公司 Laser-guided walking operation system for self-moving robot and control method for same
KR20150110866A (en) * 2014-03-20 2015-10-05 (주)와이앤지 Thermo-graphic camera apparatus, terminal, method, recording medium, and system for displaying thermo-graphic image
KR101579577B1 (en) * 2014-03-20 2015-12-23 (주)와이앤지 Thermo-graphic camera apparatus, terminal, method, recording medium, and system for displaying thermo-graphic image
JP2019109155A (en) * 2017-12-19 2019-07-04 鹿島建設株式会社 Autonomous movement method and autonomous movement device
CN109405795A (en) * 2018-11-26 2019-03-01 深圳市启玄科技有限公司 A kind of adjusting method and adjusting machine of multi-path laser distance-measuring equipment
JP2020101371A (en) * 2018-12-19 2020-07-02 株式会社竹中工務店 Moving body, positioning method, and positioning system
JP7115684B2 (en) 2018-12-19 2022-08-09 株式会社竹中工務店 Mobile body, positioning method, and positioning system
CN113050113A (en) * 2021-03-10 2021-06-29 广州南方卫星导航仪器有限公司 Laser point positioning method and device
CN113050113B (en) * 2021-03-10 2023-08-01 广州南方卫星导航仪器有限公司 Laser spot positioning method and device

Also Published As

Publication number Publication date
JP3731123B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP3731123B2 (en) Object position detection method and apparatus
US20170010356A1 (en) 3d measuring machine
US9758239B2 (en) System and method for controlling an unmanned air vehicle
CA2832956C (en) System and method for controlling an unmanned aerial vehicle
CN111521161B (en) Method of determining a direction to a target, surveying arrangement and machine-readable carrier
US4862047A (en) Apparatus for guiding movement of an unmanned moving body
KR100264719B1 (en) Measuring system for testing the position of a vehicle and sensing device therefore
US9482524B2 (en) Measuring system for determining 3D coordinates of an object surface
US10495456B2 (en) Method for calibrating a detection device, and detection device
US20170082748A1 (en) Polygon mirror, fan beam output device, and survey system
JP2017150902A (en) On-vehicle laser radar device
US9866322B2 (en) Laser receiver
KR100948947B1 (en) Localization apparatus of autonomous vehicle and method thereof
KR102343020B1 (en) Apparatus for calibrating position signal of autonomous vehicle using road surface image information
JP2002213920A (en) Method and device for confirming position of moving body
US20230135740A1 (en) Distance measurement device, and mounting orientation sensing method and mounting orientation sensing program for same
JPH07139942A (en) Surveying apparatus
EP3929613A1 (en) A method for navigating a movable device along an inclined surface
JPH0626859A (en) Distance measuring apparatus of unmanned running vehicle
JP7115684B2 (en) Mobile body, positioning method, and positioning system
JPH112521A (en) Position-measuring plotting device with inclination sensor
JP2003240546A (en) Elevation difference measurement system
US20230137329A1 (en) Attachment orientation sensing device, attachment orientation sensing method, and attachment orientation sensing program
US20230140321A1 (en) Distance measurement system
US20230098171A1 (en) Marking apparatus, control method for marking apparatus, and storage medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent or registration of utility model

Ref document number: 3731123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees