JP2003262520A - Direction detecting device and self-traveling cleaner loaded with it - Google Patents

Direction detecting device and self-traveling cleaner loaded with it

Info

Publication number
JP2003262520A
JP2003262520A JP2002062815A JP2002062815A JP2003262520A JP 2003262520 A JP2003262520 A JP 2003262520A JP 2002062815 A JP2002062815 A JP 2002062815A JP 2002062815 A JP2002062815 A JP 2002062815A JP 2003262520 A JP2003262520 A JP 2003262520A
Authority
JP
Japan
Prior art keywords
light
light receiving
moving body
self
detecting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002062815A
Other languages
Japanese (ja)
Other versions
JP3812463B2 (en
Inventor
Minoru Arai
穣 荒井
Ikuo Takeuchi
郁雄 竹内
Atsushi Koseki
篤志 小関
Saku Egawa
索 柄川
Taiji Tajima
泰治 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002062815A priority Critical patent/JP3812463B2/en
Publication of JP2003262520A publication Critical patent/JP2003262520A/en
Application granted granted Critical
Publication of JP3812463B2 publication Critical patent/JP3812463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve the reliability of a direction detecting device used for a self-traveling moving body by simplifying the means. <P>SOLUTION: The direction detecting device of the self-traveling moving body has an optical sensor unit 1, an arithmetic means 7, and a storing means 9, all of which are loaded in the moving body. On the outside or the moving body, a light emitting means 5 is provided in a fixed state. A plurality of photoreceptor elements 2, 2, etc., is attached to the optical sensor unit 1. The light receivable ranges of adjacent photoreceptor elements partially overlap each other. The arithmetic means 7 detects the direction to the light emitting means 5 by comparing the intensities of the light rays received by means of the photoreceptor elements 2 with each other. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は方向検出装置に係
り、特に自走式掃除機や自走式台車に好適な方向検出装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direction detecting device, and more particularly to a direction detecting device suitable for a self-propelled cleaner or a self-propelled carriage.

【0002】[0002]

【従来の技術】自走式移動体に用いる従来の位置検出装
置の例が、特開平7−311041号公報に記載されて
いる。この位置検出装置は、自律的に現在位置を把握す
るために、駆動輪を有する移動体の上面に平面的に所定
距離離れた位置に2つの受光部を取り付けている。これ
らの受光部は旋回可能になっている。それとともに基準
局の側面には、平面的に所定距離離れた位置に2つの発
光部を取付けている。移動体上の受光部が旋回しながら
サンプリングすると受光量が変化する。受光量のピーク
となった旋回角に基づいて、相対位置と相対的な姿勢角
を求めている。
2. Description of the Related Art An example of a conventional position detecting device used for a self-propelled moving body is described in Japanese Patent Application Laid-Open No. 7-311041. In this position detecting device, in order to autonomously grasp the current position, two light receiving units are attached to a top surface of a moving body having driving wheels at positions separated by a predetermined distance in plan view. These light receiving parts are rotatable. At the same time, two light emitting parts are attached to the side surface of the reference station at positions separated by a predetermined distance in plan view. The amount of light received changes when the light receiving unit on the moving body turns while sampling. The relative position and the relative attitude angle are obtained based on the turning angle at which the amount of received light is the peak.

【0003】[0003]

【発明が解決しようとする課題】上記公報に記載の位置
検出方法では、移動体に2組の旋回可能な受光軸を設け
ているので、受光部の構成が複雑になっている。そのた
め、家庭用の掃除機等にこれらの受光体を搭載するとき
には、小型化の阻害要因となっている。
In the position detecting method described in the above publication, since the movable body is provided with two sets of rotatable light receiving shafts, the structure of the light receiving portion is complicated. Therefore, when these photoreceptors are mounted on a household vacuum cleaner or the like, this is an obstacle to miniaturization.

【0004】本発明は、上記従来技術の不具合に鑑みな
されたものであり、その目的は移動体に搭載する方向検
出装置を小型化することにある。本発明の他の目的は、
安価な方向検出装置を実現することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to miniaturize a direction detecting device mounted on a moving body. Another object of the present invention is to
It is to realize an inexpensive direction detection device.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明の特徴は、光を発光し固設された発光体と、移
動体に搭載された光センサユニットとを備えた方向検出
装置において、光センサユニットに、発光体から発光さ
れた光を受光する複数の第1の受光手段と、この第1の
受光手段よりも受光可能な入射範囲が狭い第2の受光手
段と、これら第1および第2の受光手段が受光した受光
量を評価する演算手段と、予め求めた受光量を記憶する
記憶手段とを設け、記憶手段に記憶された受光量と演算
手段が演算した受光量とに基づいて移動体と発光体との
相対方向を検出ものである。
A feature of the present invention for achieving the above-mentioned object is that a direction detecting device is provided with a light-emitting body that emits light and is fixedly installed, and an optical sensor unit mounted on a moving body. In the optical sensor unit, a plurality of first light receiving means for receiving the light emitted from the light emitting body, second light receiving means having a narrower incident range than the first light receiving means, and these second light receiving means are provided. An arithmetic means for evaluating the amount of light received by the first and second light receiving means and a storage means for storing the amount of received light which is obtained in advance are provided, and the amount of light received stored in the storage means and the amount of light received calculated by the arithmetic means are provided. The relative direction between the moving body and the light emitting body is detected based on.

【0006】そしてこの特徴において、光センサユニッ
トでは、周方向についてはいずれの方向からの光も受光
可能なように複数の第1の受光手段を周方向に配置し、
第2の受光手段からの入力を演算手段が判別して光セン
サユニットと発光体との相対方向を判断することが望ま
しい。また、移動体に移動体の移動量を検出する手段を
設けるようにしてもよく、移動体を回動させて、記憶手
段に記憶された第1および第2の受光手段の受光データ
を更新するようにしてもよい。さらに、第1および第2
の受光手段を、略円筒上に形成された受光面の外周部に
設け、第2の受光手段を移動体の進行方向またはその逆
方向に設けてもよい。
In this feature, in the optical sensor unit, a plurality of first light receiving means are arranged in the circumferential direction so that light from any direction can be received in the circumferential direction.
It is desirable that the arithmetic means determines the input from the second light receiving means to determine the relative direction between the optical sensor unit and the light emitter. Further, the moving body may be provided with means for detecting the moving amount of the moving body, and the moving body is rotated to update the light reception data of the first and second light receiving means stored in the storage means. You may do it. Further, the first and second
The light receiving means may be provided on the outer peripheral portion of the light receiving surface formed in a substantially cylindrical shape, and the second light receiving means may be provided in the traveling direction of the moving body or in the opposite direction.

【0007】上記目的を達成するための他の特徴とし
て、移動体を自走式掃除機とし、上記いずれかの特徴の
方向検出装置を搭載したものである。
As another feature to achieve the above object, the moving body is a self-propelled cleaner and the direction detecting device having any one of the above features is mounted.

【0008】[0008]

【発明の実施の形態】以下本発明に係る方向検出装置の
一実施例を、自走式掃除機に搭載した例について図面を
用いて説明する。図1に、自走式掃除機の模式図を示
す。自走式掃除機4の上部には、赤外線を発光する光セ
ンサユニット1が取り付けられている。自走式掃除機4
から離れた位置に、発光体5が固定されている。光セン
サユニット1は、発光体5から照射される変調された赤
外線11を受けるために、広指向角の受光素子2と狭指
向角の受光素子3とを備えている。これらの受光素子
2、3の個々の受光強度情報は、自走式掃除機4内部に
設けた演算手段7に送られる。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a direction detecting device according to the present invention, which is mounted on a self-propelled cleaner, will be described below with reference to the drawings. FIG. 1 shows a schematic diagram of a self-propelled vacuum cleaner. An optical sensor unit 1 that emits infrared rays is attached to the top of the self-propelled cleaner 4. Self-propelled cleaner 4
The light emitting body 5 is fixed at a position away from. The optical sensor unit 1 includes a light receiving element 2 having a wide directional angle and a light receiving element 3 having a narrow directional angle in order to receive the modulated infrared ray 11 emitted from the light emitting body 5. The light reception intensity information of each of the light receiving elements 2 and 3 is sent to the calculation means 7 provided inside the self-propelled cleaner 4.

【0009】演算手段7は、自走式掃除機4を駆動する
駆動系の制御部6に接続されている。駆動系は一対の駆
動輪10を有しており、演算手段7は、駆動輪10の回
転速度と回転量を駆動系制御部6に指令する。演算手段
7の指令に応じた回転速度と回転量で駆動輪10が回転
すると、駆動系制御部6から演算手段7に実際の駆動輪
10の回転速度と回転量の情報が送られる。自走式掃除
機4の前下部には掃除機部8が設けられており、自走式
掃除機4の移動とともに床面に散乱したごみ等を吸い込
む。演算手段7はこの掃除機部8にも接続されており、
掃除機部8の運転と停止を制御する。演算手段7はさら
に、記憶手段9と接続されている。記憶手段9は、広指
向角の受光素子2の受光強度と、発光体5に対する光セ
ンサユニット1の姿勢角の関係についての情報を記憶す
る。演算手段7の指令情報および記憶手段に記憶される
情報は、この自走式掃除機4に設けた図示しない入力手
段または、この自走式掃除機4とは別体に設けたリモコ
ンから入力される。
The calculation means 7 is connected to the control unit 6 of the drive system for driving the self-propelled cleaner 4. The drive system has a pair of drive wheels 10, and the calculation means 7 commands the drive system control unit 6 to determine the rotation speed and rotation amount of the drive wheels 10. When the drive wheels 10 rotate at the rotation speed and the rotation amount according to the command of the calculation means 7, the drive system control unit 6 sends information about the actual rotation speed and rotation amount of the drive wheels 10 to the calculation means 7. A cleaner unit 8 is provided at the lower front portion of the self-propelled cleaner 4, and sucks dust and the like scattered on the floor surface as the self-propelled cleaner 4 moves. The calculation means 7 is also connected to this cleaner section 8,
The operation and stop of the cleaner unit 8 are controlled. The calculation means 7 is further connected to the storage means 9. The storage unit 9 stores information about the relationship between the light receiving intensity of the light receiving element 2 having a wide directional angle and the attitude angle of the optical sensor unit 1 with respect to the light emitting body 5. The command information of the calculation means 7 and the information stored in the storage means are input from an input means (not shown) provided in the self-propelled cleaner 4 or a remote controller provided separately from the self-propelled cleaner 4. It

【0010】このように構成した自走式掃除機に搭載さ
れる光センサユニットの詳細を、図2および図3に示
す。図2は、光センサユニットの斜視図である。光セン
サユニット1は、円筒形状をしており、その外周部に広
指向角の受光素子2と狭指向角の受光素子3が配置され
ている。図3に、光センサユニット1の横断面図を示
す。広指向角の受光素子2を、円周方向60度おきに6
個配置する。各受光素子2の受光可能な入射角範囲は、
光軸から左右にそれぞれ60度以上になっており、入射
角で120度以上の範囲については、発光体5からの赤
外光11を検出できる。これにより、360度どの方向
に発光体5が存在しても、いずれかの隣り合う2個の広
指向角の受光素子2が、赤外光11を検出できる。
2 and 3 show the details of the optical sensor unit mounted on the self-propelled vacuum cleaner configured as described above. FIG. 2 is a perspective view of the optical sensor unit. The optical sensor unit 1 has a cylindrical shape, and a light receiving element 2 having a wide directional angle and a light receiving element 3 having a narrow directional angle are arranged on the outer peripheral portion thereof. FIG. 3 shows a cross-sectional view of the optical sensor unit 1. The light receiving element 2 having a wide directional angle is set at 60 degrees in the circumferential direction by 6 degrees.
Place them individually. The incident angle range in which each light receiving element 2 can receive light is
The infrared light 11 from the light-emitting body 5 can be detected in the range of an incident angle of 120 degrees or more, which is 60 degrees or more on each side from the optical axis. As a result, the infrared light 11 can be detected by any two adjacent light receiving elements 2 having a wide directional angle, regardless of the direction of the light emitter 5 in any direction of 360 degrees.

【0011】狭指向角の受光素子3は、円周方向に1か
所だけ設けられており、広指向角の受光素子2、2の中
間に位置している。狭指向角の受光素子3の前面には図
示しないスリットが形成されている。このスリットは、
発光体5が発光する赤外光11の受光可能な範囲、すな
わち入射角の方向と広さを調整する。これにより、狭指
向角の受光素子3の受光範囲を、広指向角の受光素子2
の受光範囲に比べて狭くしている。
The light receiving element 3 having a narrow directional angle is provided at only one location in the circumferential direction, and is located between the light receiving elements 2 and 2 having a wide directional angle. A slit (not shown) is formed on the front surface of the light receiving element 3 having a narrow directional angle. This slit is
The range in which the infrared light 11 emitted by the light emitting body 5 can be received, that is, the direction and width of the incident angle is adjusted. As a result, the light receiving range of the light receiving element 3 having a narrow directional angle is set to the light receiving element 2 having a wide directional angle.
It is narrower than the light receiving range of.

【0012】図4に、図1に示した自走式掃除機4の上
面図を示す。光センサユニット1は、2個の駆動輪10
の中央部の真上に位置している。駆動輪10の一方を正
転させ、もう一方を同じ速度で逆転させると、自走式掃
除機は光センサユニット1を中心に、その場で回転す
る。
FIG. 4 shows a top view of the self-propelled cleaner 4 shown in FIG. The optical sensor unit 1 includes two drive wheels 10
It is located right above the center of the. When one of the drive wheels 10 is rotated in the normal direction and the other is rotated in the reverse direction at the same speed, the self-propelled cleaner rotates on the spot around the optical sensor unit 1.

【0013】広指向角の受光素子2の赤外線11に対す
る感度Sと入射角θの関係を、図5に示す。受光素子2
の感度は、受光素子2に垂直な方向からの入射時にピー
クとなり、入射角が垂直方向からずれるにつれて急激に
感度が低くなる。図6および図7を用いて、光センサユ
ニット1の受光範囲を説明する。図6の位置に発光体5
が位置した場合には、広指向角の受光素子2a、2bの
2つの受光素子が受光可能である。このときの受光素子
2a、bの感度S2a、S2bを示したのが、図5であ
る。
FIG. 5 shows the relationship between the sensitivity S of the light receiving element 2 having a wide directional angle to the infrared rays 11 and the incident angle θ. Light receiving element 2
The sensitivity has a peak when it is incident on the light receiving element 2 in a direction perpendicular to it, and the sensitivity sharply decreases as the incident angle deviates from the vertical direction. The light receiving range of the optical sensor unit 1 will be described with reference to FIGS. 6 and 7. At the position shown in FIG.
When is positioned, the two light receiving elements 2a and 2b having a wide directional angle can receive light. FIG. 5 shows the sensitivities S 2a and S 2b of the light receiving elements 2a and 2b at this time.

【0014】光センサユニット1と発光体5との距離が
充分に離れている場合は、各受光素子2a、2bから発
光体5までの距離はほぼ等しいとみなされる。そこで、
発光体5までの距離が略等しい関係から各受光素子2
a、2bが光センサユニット1の中央にあると摸擬す
る。そして、各受光素子2a、2bの受光強度の比を用
いて光センサユニット1の中央部における受光強度を求
め、光センサユニット1に対する発光体5の方向を求め
る。
When the distance between the optical sensor unit 1 and the light emitter 5 is sufficiently large, it is considered that the distances from the respective light receiving elements 2a and 2b to the light emitter 5 are substantially equal. Therefore,
Since the distances to the light emitters 5 are substantially equal, each light receiving element 2
It is assumed that a and 2b are in the center of the optical sensor unit 1. Then, using the ratio of the light receiving intensities of the respective light receiving elements 2a and 2b, the light receiving intensity at the central portion of the optical sensor unit 1 is obtained, and the direction of the light emitting body 5 with respect to the optical sensor unit 1 is obtained.

【0015】本方法を用いれば、発光体5がどの方向に
あっても広指向角の受光素子2のうち2個以上が受光可
能となる。したがって、受光量が上位2個の素子を選ん
で受光量の比を求めれば、発光体5の方向を定めること
ができる。さらに円周上に配置した全部の広指向角の受
光素子2の受光強度を同時に検出できるようにすれば、
自走式掃除機4の走行中にも、発光体5の位置を検出で
きる。
Using this method, two or more of the light receiving elements 2 having a wide directional angle can receive light regardless of the direction of the light emitter 5. Therefore, the direction of the light emitting body 5 can be determined by selecting the two elements having the highest received light amounts and obtaining the ratio of the received light amounts. Furthermore, if it is possible to simultaneously detect the light receiving intensities of all the light receiving elements 2 having a wide directional angle arranged on the circumference,
The position of the light emitter 5 can be detected even while the self-propelled cleaner 4 is running.

【0016】狭指向角の受光素子3の感度特性を、図8
に示す。図8の細い実線は、スリットを形成しないとき
の感度分布特性であり、太い実線はスリットを形成した
場合である。図7にこの狭指向角の受光素子3で発光体
5を検出する様子を示す。スリットを形成したことによ
り、狭指向角の受光素子3は略垂直に入射する発光素子
5bからの赤外光しか受光できない。すなわち図7に示
すように、発光体5が狭指向角の受光素子3の垂直面か
ら離れた方向にある発光体5aのときは、感度は図8に
示すように略0となる。
The sensitivity characteristic of the light receiving element 3 having a narrow directional angle is shown in FIG.
Shown in. The thin solid line in FIG. 8 shows the sensitivity distribution characteristics when the slit is not formed, and the thick solid line shows the case where the slit is formed. FIG. 7 shows the manner in which the light emitting element 5 is detected by the light receiving element 3 having the narrow directional angle. By forming the slit, the light receiving element 3 having a narrow directional angle can receive only the infrared light from the light emitting element 5b which is incident substantially vertically. That is, as shown in FIG. 7, when the light emitting body 5 is the light emitting body 5a located in the direction away from the vertical plane of the light receiving element 3 having a narrow directional angle, the sensitivity is substantially 0 as shown in FIG.

【0017】なお、狭指向角の受光素子2が赤外線11
を検出したかどうかにより、発光体5が光センサユニッ
ト1の所定方向にあるかどうかを判別する。狭指向角の
受光素子2の分解能は、受光素子2の検出可能な入射角
の範囲により定まる。また、受光素子の特性が図8にお
いて細線で示したように左右対称であっても、受光可能
な入射角の範囲はスリットにより定まる。
The light receiving element 2 having a narrow directional angle is the infrared ray 11
It is determined whether the light emitter 5 is in the predetermined direction of the optical sensor unit 1 depending on whether or not is detected. The resolution of the light receiving element 2 having a narrow directional angle is determined by the range of the incident angle that can be detected by the light receiving element 2. Further, even if the characteristics of the light receiving element are symmetrical as shown by the thin line in FIG. 8, the range of incident angles at which light can be received is determined by the slit.

【0018】図9に、自走式掃除機4が狭指向角の受光
素子3を用いて発光体5を検出する例を示す。自走式掃
除機4をその場で回転させ、狭指向角の受光素子3が赤
外線11を検出した方向を発光体5の方向とみなす。狭
指向角の受光素子3の受光可能範囲が要求される分解能
よりも広い場合には、自走式掃除機4をその場で回転さ
せる際に、狭指向角の受光素子3が赤外線11を検出し
始めた方向と赤外線11を検出できなくなった方向との
2つの方向の中間の方向を発光体5の方向とみなす。
FIG. 9 shows an example in which the self-propelled cleaner 4 detects the light emitter 5 by using the light receiving element 3 having a narrow directional angle. The self-propelled cleaner 4 is rotated on the spot, and the direction in which the light receiving element 3 having a narrow directional angle detects the infrared rays 11 is regarded as the direction of the light emitter 5. When the light receiving range of the light receiving element 3 with a narrow directional angle is wider than the required resolution, the light receiving element 3 with a narrow directional angle detects the infrared rays 11 when the self-propelled cleaning device 4 is rotated on the spot. The intermediate direction between the two directions, the direction in which the infrared rays 11 cannot be detected and the direction in which the infrared rays 11 cannot be detected, is regarded as the direction of the light emitting body 5.

【0019】図10に、発光体5の方向を検出する際の
情報の流れを示す。狭指向性の受光素子3の受光量に基
づいて演算手段7が受光の有無を判定する。受光素子3
が受光していると判定したときは、そのときの発光体5
の方向を角度情報として記憶し、走行経路を計画すると
きに用いる。一方、広指向性の受光素子2の受光強度
を、記憶手段9に記憶されている方向検出データベース
と比較するために、比較可能な形に変換する。つまり、
広指向性の受光素子2のなかで最も受光強度が強い素子
と、2番目に受光強度が強い素子の受光強度の比から評
価関数を決定し、データベースの記憶値と比較する。評
価関数は受光強度の比と1対1に対応するものであれば
良い。
FIG. 10 shows the flow of information when detecting the direction of the light emitter 5. The calculation means 7 determines the presence or absence of light reception based on the amount of light received by the light receiving element 3 having a narrow directivity. Light receiving element 3
When it is determined that the light is being received, the light-emitting body 5 at that time
The direction of is stored as angle information and is used when planning a travel route. On the other hand, the received light intensity of the light receiving element 2 having wide directivity is converted into a comparable form for comparison with the direction detection database stored in the storage means 9. That is,
An evaluation function is determined from the ratio of the light receiving intensity of the element having the highest light receiving intensity among the light receiving elements 2 having wide directivity and the element having the second highest light receiving intensity, and compared with the stored value in the database. The evaluation function may be one having a one-to-one correspondence with the ratio of the received light intensity.

【0020】評価関数の値と評価関数を求めるためにど
の素子の受光強度を用いたかの情報とを、方向検出デー
タベースと照合する。方向検出データベースには、発光
体5が各方向に存在するときの評価関数の値と評価関数
を求めるためにどの素子を用いたかが記録されている。
方向検出データベースと評価関数を照合するときは、評
価関数の値を求めるのに用いた素子のデータを、データ
ベースから検索する。次に検索されたデータを補間もし
くは外挿する。これにより、評価関数の値に対応する方
向が求められる。この方向は走行経路を計画するときに
用いられる。
The value of the evaluation function and the information of which element the received light intensity was used to obtain the evaluation function are collated with the direction detection database. The direction detection database records the value of the evaluation function when the light emitter 5 is present in each direction and which element is used to obtain the evaluation function.
When collating the direction detection database with the evaluation function, the data of the element used for obtaining the value of the evaluation function is searched from the database. Next, the retrieved data is interpolated or extrapolated. Thereby, the direction corresponding to the value of the evaluation function is obtained. This direction is used when planning the travel route.

【0021】広指向角の受光素子2は方向検出データベ
ースのデータに基づいて発光体5の方向を検出する。経
年変化や光学系の汚れなどで素子の特性が変化したとき
は、方向検出データベースを再構築する。図11に、方
向検出データベースの再構築のフローチャートを示す。
The wide-angle light receiving element 2 detects the direction of the light emitter 5 based on the data in the direction detection database. When the characteristics of the element change due to aging or dirt on the optical system, the direction detection database is rebuilt. FIG. 11 shows a flowchart for reconstructing the direction detection database.

【0022】ステップ100で再構築を開始する。狭指
向角の受光素子3を用いて、正確な発光体5の方向を検
出する(ステップ110)。次に上述した評価関数を計算
する(ステップ120)。発光体5の方向、評価関数の値
および評価関数の値を求めるのに用いた広指向角の受光
素子2の番号を記憶手段9に記憶する(ステップ13
0)。
In step 100, reconstruction is started. The light receiving element 3 having a narrow directional angle is used to detect the correct direction of the light emitter 5 (step 110). Next, the above evaluation function is calculated (step 120). The direction of the light-emitting body 5, the value of the evaluation function, and the number of the light-receiving element 2 having the wide directional angle used for obtaining the value of the evaluation function are stored in the storage means 9 (step 13).
0).

【0023】所定の角度だけ自走式掃除機4を、その場
で回転させる。このときの回転の角度は駆動輪10に取
り付けたエンコーダから求める(ステップ140)。方
向検出データベースの再構築を始めてから、自走式掃除
機4を合計360度以上回転したか否かを判断する(ス
テップ150)。360度以上回転していれば方向検出
データベースの再構築を終了する(ステップ160)。
自走式掃除機4の回転が360度に満たない場合は、ス
テップ120に戻る。以下、上述したステップを繰り返
す。
The self-propelled cleaner 4 is rotated on the spot by a predetermined angle. The angle of rotation at this time is obtained from the encoder attached to the drive wheel 10 (step 140). After starting the reconstruction of the direction detection database, it is determined whether or not the self-propelled cleaning device 4 has rotated 360 degrees or more in total (step 150). If it has rotated 360 degrees or more, the reconstruction of the direction detection database is terminated (step 160).
When the rotation of the self-propelled cleaner 4 is less than 360 degrees, the process returns to step 120. Hereinafter, the steps described above are repeated.

【0024】以上の動作を実行すると、広指向角のセン
サ2が発光体5の方向を正確に検出できる。方向検出デ
ータベースをユーザが任意に再構築することもできる
し、自走式掃除機4を起動するごとに再構築しても良
い。また、狭指向角の受光素子3が発光体5の方向を検
出し、広指向角の受光素子2も発光体5の方向を検出し
たときであって、2種の受光素子2、3の検出角度の差
が大きくなったときに自動的に実行するようにしても良
い。なお、この場合、データベースを再構築せずに、ユ
ーザに対してデータベースの再構築を促す表示をするよ
うにしてもよい。
When the above operation is executed, the sensor 2 having a wide directional angle can accurately detect the direction of the light emitter 5. The direction detection database may be rebuilt by the user at will, or may be rebuilt every time the self-propelled cleaner 4 is activated. Further, when the light receiving element 3 having a narrow directional angle detects the direction of the light emitting body 5 and the light receiving element 2 having a wide directional angle also detects the direction of the light emitting body 5, the two types of light receiving elements 2 and 3 are detected. It may be automatically executed when the angle difference becomes large. In this case, a display prompting the user to rebuild the database may be displayed without rebuilding the database.

【0025】図12に、発光体5を基準にして位置を検
出する方法を示す。発光体5c、5dを自走式掃除機4
の使用環境に設置する。発光体5c、5dが発する赤外
線11、11は、それぞれ異なる変調周波数で変調され
ている。この変調周波数の違いにより、発光源を区別で
きる。自走式掃除機4は、図の左方であるAの位置で発
光体5c、5dの方向を検出する。この点Aから距離L
だけ右方に離れた位置Bまで自走式掃除機4が走行した
ことを計測するのに、自走式掃除機4の駆動輪10に取
り付けたエンコーダ(図示せず)を使用する。
FIG. 12 shows a method of detecting the position with reference to the light emitter 5. Self-propelled vacuum cleaner 4 with luminous bodies 5c and 5d
Install in the environment of use. The infrared rays 11 and 11 emitted from the light emitters 5c and 5d are modulated with different modulation frequencies. The light emitting sources can be distinguished by the difference in the modulation frequency. The self-propelled cleaner 4 detects the direction of the light emitters 5c and 5d at the position A on the left side of the drawing. Distance L from this point A
An encoder (not shown) attached to the drive wheel 10 of the self-propelled cleaner 4 is used to measure that the self-propelled cleaner 4 has traveled to the position B that is distant to the right only.

【0026】位置Bで、再度発光体5c、5dの方向を
検出する。この動作により、自走式掃除機4の移動方向
に対する発光体5c、5dの方向が求められる。すなわ
ち、発光体5cの位置Aにおける方向はθAcであり、発
光体5dの位置Aにおける方向はθAdであり、発光体5
cの位置Bにおける方向はθBcであり、発光体5dの位
置Bにおける方向はθBdである。これらの角度と、自走
式掃除機4の移動距離Lとから、三角測量の原理を用い
て、発光体5c、5dと自走式掃除機4の相対的な位置
関係が求められる。なお、発光体5c、5dの座標が既
知であれば、位置A、Bの座標を求めることもできる。
At the position B, the directions of the light emitters 5c and 5d are detected again. By this operation, the directions of the light emitters 5c and 5d with respect to the moving direction of the self-propelled cleaner 4 are obtained. That is, the direction of the light emitter 5c at the position A is θAc, and the direction of the light emitter 5d at the position A is θAd.
The direction of c at position B is θBc, and the direction of the light-emitting body 5d at position B is θBd. From these angles and the moving distance L of the self-propelled cleaner 4, the relative positional relationship between the light emitters 5c and 5d and the self-propelled cleaner 4 can be obtained using the principle of triangulation. If the coordinates of the light emitters 5c and 5d are known, the coordinates of the positions A and B can be obtained.

【0027】なお、上記実施例では移動体として自走式
掃除機を例に取り説明したが、工場内で使用される無人
搬送車や各種自走ロボットに本発明を適用できることは
言うまでもない。無人搬送車の場合、発光体位置を求め
るのが容易であり、かつ通常搬送路は概略定まっている
ので、高精度に搬送車の位置決め等が可能になる。
In the above-mentioned embodiment, the self-propelled vacuum cleaner is taken as an example of the moving body, but it goes without saying that the present invention can be applied to an automatic guided vehicle and various self-propelled robots used in a factory. In the case of an unmanned guided vehicle, it is easy to find the position of the light emitting body, and the transport path is usually fixed, so that the guided vehicle can be positioned with high accuracy.

【0028】[0028]

【発明の効果】以上述べたように本発明によれば、予め
設定した発光体の移動体に対する方向角度を三角測量の
原理を用いて求めることができるので、方向検出装置の
可動部品数を低減でき、方向検出装置の信頼性を高める
とともに、安価に方向検出装置を実現できる。
As described above, according to the present invention, since the preset direction angle of the luminous body with respect to the moving body can be obtained by using the principle of triangulation, the number of movable parts of the direction detecting device can be reduced. Therefore, the reliability of the direction detecting device can be improved, and the direction detecting device can be realized at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る自走式掃除機の一実施例の模式
図。
FIG. 1 is a schematic diagram of an embodiment of a self-propelled vacuum cleaner according to the present invention.

【図2】図1に示した自走式掃除機に用いられる光セン
サユニットの斜視図。
FIG. 2 is a perspective view of an optical sensor unit used in the self-propelled cleaner shown in FIG.

【図3】図2の光センサユニットの横断面図。3 is a cross-sectional view of the optical sensor unit of FIG.

【図4】図1に示した自走式掃除機の上面図。FIG. 4 is a top view of the self-propelled vacuum cleaner shown in FIG.

【図5】第1の受光手段の感度を説明するグラフ。FIG. 5 is a graph illustrating the sensitivity of the first light receiving unit.

【図6】第1の受光手段を説明する図。FIG. 6 is a diagram illustrating a first light receiving unit.

【図7】第2の受光手段を説明する図。FIG. 7 is a diagram illustrating a second light receiving unit.

【図8】第2の受光手段の感度を説明するグラフ。FIG. 8 is a graph illustrating the sensitivity of the second light receiving unit.

【図9】図1に示した自走式掃除機の動作を説明する
図。
FIG. 9 is a diagram for explaining the operation of the self-propelled cleaner shown in FIG. 1.

【図10】方向検出時の情報の流れを説明するブロック
図。
FIG. 10 is a block diagram illustrating the flow of information when a direction is detected.

【図11】方向検出データベースの再構築の手順を説明
するフローチャート。
FIG. 11 is a flowchart illustrating a procedure for reconstructing a direction detection database.

【図12】図1に示した自走式掃除機の動作を説明する
図。
FIG. 12 is a view for explaining the operation of the self-propelled vacuum cleaner shown in FIG.

【符号の説明】 1…光センサユニット、2、2a、2b…広指向角の受
光素子(第1の受光手段)、3…狭指向角の受光素子(第
2の受光手段)、4…移動体、5、5a、5b、5c、
5d…発光体、6…駆動系制御部、7…演算手段、9…
記憶手段、10…駆動輪。
[Explanation of Reference Signs] 1 ... Optical sensor unit, 2, 2a, 2b ... Wide directional angle light receiving element (first light receiving means), 3 ... Narrow directional angle light receiving element (second light receiving means), 4 ... Moving Body 5, 5a, 5b, 5c,
5d ... Light emitter, 6 ... Drive system control unit, 7 ... Computing means, 9 ...
Storage means, 10 ... Drive wheels.

フロントページの続き (72)発明者 小関 篤志 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 柄川 索 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 田島 泰治 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 Fターム(参考) 2F065 AA03 AA09 AA31 AA37 BB15 CC00 DD02 FF09 FF17 FF41 JJ05 JJ09 LL28 MM04 QQ25 3B006 KA01 3B057 DA04 DE02 Continued front page    (72) Inventor Atsushi Ozeki             502 Kintatemachi, Tsuchiura City, Ibaraki Japan             Tate Seisakusho Mechanical Research Center (72) Inventor Search for Kagawa             502 Kintatemachi, Tsuchiura City, Ibaraki Japan             Tate Seisakusho Mechanical Research Center (72) Inventor Taiji Tajima             502 Kintatemachi, Tsuchiura City, Ibaraki Japan             Tate Seisakusho Mechanical Research Center F term (reference) 2F065 AA03 AA09 AA31 AA37 BB15                       CC00 DD02 FF09 FF17 FF41                       JJ05 JJ09 LL28 MM04 QQ25                 3B006 KA01                 3B057 DA04 DE02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】光を発光し固設された発光体と、移動体に
搭載された光センサユニットとを備えた方向検出装置に
おいて、前記光センサユニットに、発光体から発光され
た光を受光する複数の第1の受光手段と、この第1の受
光手段よりも受光可能な入射範囲が狭い第2の受光手段
と、これら第1および第2の受光手段が受光した受光量
を評価する演算手段と、予め求めた受光量を記憶する記
憶手段とを設け、記憶手段に記憶された受光量と演算手
段が演算した受光量とに基づいて移動体と発光体との相
対方向を検出する方向検出装置。
1. A direction detection device comprising a light-emitting body that emits light and is fixedly installed, and a light-sensor unit mounted on a moving body, wherein the light-sensor unit receives light emitted from the light-emitting body. A plurality of first light receiving means, a second light receiving means having a narrower incident range than the first light receiving means, and an operation for evaluating the amount of light received by the first and second light receiving means. Means and a storage means for storing the light reception amount obtained in advance, and a direction for detecting the relative direction between the moving body and the light emitting body based on the light reception amount stored in the storage means and the light reception amount calculated by the calculation means. Detection device.
【請求項2】前記光センサユニットでは、周方向につい
てはいずれの方向からの光も受光可能なように複数の第
1の受光手段を周方向に配置し、前記第2の受光手段か
らの入力を前記演算手段が判別して光センサユニットと
発光体との相対方向を判断することを特徴とする請求項
1に記載の方向検出装置。
2. In the optical sensor unit, a plurality of first light receiving means are arranged in the circumferential direction so that light from any direction can be received in the circumferential direction, and an input from the second light receiving means. 2. The direction detecting device according to claim 1, wherein the calculating means determines the relative direction between the light sensor unit and the light emitter.
【請求項3】前記移動体に移動体の移動量を検出する手
段を設けたことを特徴とする請求項1または2に記載の
方向検出装置。
3. The direction detecting device according to claim 1, wherein the moving body is provided with means for detecting a moving amount of the moving body.
【請求項4】移動体を回動させて、前記記憶手段に記憶
された第1および第2の受光手段の受光データを更新す
ることを特徴とする請求項1または2に記載の方向検出
装置。
4. The direction detecting device according to claim 1, wherein the light receiving data of the first and second light receiving means stored in the storage means is updated by rotating the moving body. .
【請求項5】前記第1および第2の受光手段は、略円筒
上に形成された受光面の外周部に設けられており、前記
第2の受光手段を移動体の進行方向またはその逆方向に
設けたことを特徴とする請求項1または2に記載の方向
検出装置。
5. The first and second light receiving means are provided on an outer peripheral portion of a light receiving surface formed in a substantially cylindrical shape, and the second light receiving means is provided in a traveling direction of a moving body or an opposite direction thereof. The direction detecting device according to claim 1, wherein the direction detecting device is provided in
【請求項6】前記移動体が自走式掃除機であり、請求項
1ないし5のいずれかに記載の方向検出装置を搭載した
ことを特徴とする自走式掃除機。
6. A self-propelled vacuum cleaner in which the moving body is a self-propelled vacuum cleaner, and which is equipped with the direction detecting device according to claim 1.
JP2002062815A 2002-03-08 2002-03-08 Direction detecting device and self-propelled cleaner equipped with the same Expired - Fee Related JP3812463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002062815A JP3812463B2 (en) 2002-03-08 2002-03-08 Direction detecting device and self-propelled cleaner equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002062815A JP3812463B2 (en) 2002-03-08 2002-03-08 Direction detecting device and self-propelled cleaner equipped with the same

Publications (2)

Publication Number Publication Date
JP2003262520A true JP2003262520A (en) 2003-09-19
JP3812463B2 JP3812463B2 (en) 2006-08-23

Family

ID=29196396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002062815A Expired - Fee Related JP3812463B2 (en) 2002-03-08 2002-03-08 Direction detecting device and self-propelled cleaner equipped with the same

Country Status (1)

Country Link
JP (1) JP3812463B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100492588B1 (en) * 2003-01-23 2005-06-03 엘지전자 주식회사 Position information recognition apparatus for automatic running vacuum cleaner
JP2007248214A (en) * 2006-03-15 2007-09-27 Yunitekku:Kk Horizontal angle measuring method and position measuring method
US8060256B2 (en) 2006-07-07 2011-11-15 Samsung Electronics Co., Ltd. Apparatus, method, and medium for localizing moving robot and transmitter
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
WO2014029365A1 (en) * 2012-08-24 2014-02-27 科沃斯机器人科技(苏州)有限公司 Intelligent robot and method for moving same to brightest location
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
CN103838241A (en) * 2012-11-27 2014-06-04 科沃斯机器人科技(苏州)有限公司 Intelligent control robot and method for enabling intelligent control robot to move to bright positions
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8800107B2 (en) 2010-02-16 2014-08-12 Irobot Corporation Vacuum brush
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
CN106737700A (en) * 2015-11-23 2017-05-31 芋头科技(杭州)有限公司 A kind of smart machine system and method for being moved to bright light place
CN107361707A (en) * 2017-06-12 2017-11-21 北京小米移动软件有限公司 Intensity signal processing method and processing device
WO2018023228A1 (en) * 2016-07-31 2018-02-08 杨洁 Information pushing method for moving robot according to light intensity and robot
WO2018023227A1 (en) * 2016-07-31 2018-02-08 杨洁 Robot mobile technology data acquisition method and robot

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8761935B2 (en) 2000-01-24 2014-06-24 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8565920B2 (en) 2000-01-24 2013-10-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8478442B2 (en) 2000-01-24 2013-07-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8659256B2 (en) 2001-01-24 2014-02-25 Irobot Corporation Robot confinement
US8686679B2 (en) 2001-01-24 2014-04-01 Irobot Corporation Robot confinement
US8659255B2 (en) 2001-01-24 2014-02-25 Irobot Corporation Robot confinement
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8671507B2 (en) 2002-01-03 2014-03-18 Irobot Corporation Autonomous floor-cleaning robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8763199B2 (en) 2002-01-03 2014-07-01 Irobot Corporation Autonomous floor-cleaning robot
US8516651B2 (en) 2002-01-03 2013-08-27 Irobot Corporation Autonomous floor-cleaning robot
US8656550B2 (en) 2002-01-03 2014-02-25 Irobot Corporation Autonomous floor-cleaning robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8781626B2 (en) 2002-09-13 2014-07-15 Irobot Corporation Navigational control system for a robotic device
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
KR100492588B1 (en) * 2003-01-23 2005-06-03 엘지전자 주식회사 Position information recognition apparatus for automatic running vacuum cleaner
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8749196B2 (en) 2004-01-21 2014-06-10 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8461803B2 (en) 2004-01-21 2013-06-11 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8598829B2 (en) 2004-01-28 2013-12-03 Irobot Corporation Debris sensor for cleaning apparatus
US8456125B2 (en) 2004-01-28 2013-06-04 Irobot Corporation Debris sensor for cleaning apparatus
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US9360300B2 (en) 2004-03-29 2016-06-07 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8774966B2 (en) 2005-02-18 2014-07-08 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8670866B2 (en) 2005-02-18 2014-03-11 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8782848B2 (en) 2005-02-18 2014-07-22 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US10470629B2 (en) 2005-02-18 2019-11-12 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US8761931B2 (en) 2005-12-02 2014-06-24 Irobot Corporation Robot system
US9599990B2 (en) 2005-12-02 2017-03-21 Irobot Corporation Robot system
US8950038B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Modular robot
US8954192B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Navigating autonomous coverage robots
US8606401B2 (en) 2005-12-02 2013-12-10 Irobot Corporation Autonomous coverage robot navigation system
US8661605B2 (en) 2005-12-02 2014-03-04 Irobot Corporation Coverage robot mobility
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8584307B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US10524629B2 (en) 2005-12-02 2020-01-07 Irobot Corporation Modular Robot
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
JP2007248214A (en) * 2006-03-15 2007-09-27 Yunitekku:Kk Horizontal angle measuring method and position measuring method
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US8572799B2 (en) 2006-05-19 2013-11-05 Irobot Corporation Removing debris from cleaning robots
US8528157B2 (en) 2006-05-19 2013-09-10 Irobot Corporation Coverage robots and associated cleaning bins
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8060256B2 (en) 2006-07-07 2011-11-15 Samsung Electronics Co., Ltd. Apparatus, method, and medium for localizing moving robot and transmitter
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US8438695B2 (en) 2007-05-09 2013-05-14 Irobot Corporation Autonomous coverage robot sensing
US11072250B2 (en) 2007-05-09 2021-07-27 Irobot Corporation Autonomous coverage robot sensing
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US8800107B2 (en) 2010-02-16 2014-08-12 Irobot Corporation Vacuum brush
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush
WO2014029365A1 (en) * 2012-08-24 2014-02-27 科沃斯机器人科技(苏州)有限公司 Intelligent robot and method for moving same to brightest location
CN103631267A (en) * 2012-08-24 2014-03-12 科沃斯机器人科技(苏州)有限公司 An intelligent robot and a method for moving the same to the brightest position
CN103838241A (en) * 2012-11-27 2014-06-04 科沃斯机器人科技(苏州)有限公司 Intelligent control robot and method for enabling intelligent control robot to move to bright positions
CN106737700A (en) * 2015-11-23 2017-05-31 芋头科技(杭州)有限公司 A kind of smart machine system and method for being moved to bright light place
WO2018023227A1 (en) * 2016-07-31 2018-02-08 杨洁 Robot mobile technology data acquisition method and robot
WO2018023228A1 (en) * 2016-07-31 2018-02-08 杨洁 Information pushing method for moving robot according to light intensity and robot
CN107361707A (en) * 2017-06-12 2017-11-21 北京小米移动软件有限公司 Intensity signal processing method and processing device

Also Published As

Publication number Publication date
JP3812463B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
JP2003262520A (en) Direction detecting device and self-traveling cleaner loaded with it
US11918175B2 (en) Control method for carpet drift in robot motion, chip, and cleaning robot
EP2963515B1 (en) Robot cleaner and method for controlling the same
US7248951B2 (en) Method and device for determining position of an autonomous apparatus
US20060238156A1 (en) Self-moving robot capable of correcting movement errors and method for correcting movement errors of the same
US20060074532A1 (en) Apparatus and method for navigation based on illumination intensity
JP2000056006A (en) Position recognizing device for mobile
US20060229774A1 (en) Method, medium, and apparatus for self-propelled mobile unit with obstacle avoidance during wall-following algorithm
US20180055325A1 (en) Robot cleaner
CN109506652B (en) Optical flow data fusion method based on carpet migration and cleaning robot
US11525921B2 (en) Time of flight sensor arrangement for robot navigation and methods of localization using same
US5031103A (en) Position detector for moving vehicle
JP2007101492A (en) Device for detecting distance, and position of mobile robot
TWI759760B (en) Robot cleaner and method for controlling the same
RU2454313C2 (en) Mobile robot having self-contained navigation system (versions)
US20070203622A1 (en) Mobile Vehicle
EP3478143B1 (en) Robot cleaner
US20230225580A1 (en) Robot cleaner and robot cleaner control method
JP6863049B2 (en) Autonomous mobile robot
JPH10222225A (en) Unmanned travel body and its travel method
JPH06149358A (en) Mobile robot
JP2019208545A (en) Moving body moving along floor surface
CN114829083B (en) Mobile robot
JP2004355208A (en) Autonomous travelling device
JP2024006218A (en) Movement control system, movement control method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees