JP2003180586A - Self-propelled cleaner - Google Patents

Self-propelled cleaner

Info

Publication number
JP2003180586A
JP2003180586A JP2001381654A JP2001381654A JP2003180586A JP 2003180586 A JP2003180586 A JP 2003180586A JP 2001381654 A JP2001381654 A JP 2001381654A JP 2001381654 A JP2001381654 A JP 2001381654A JP 2003180586 A JP2003180586 A JP 2003180586A
Authority
JP
Japan
Prior art keywords
moving
distance
detected
optical
moving distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001381654A
Other languages
Japanese (ja)
Other versions
JP3626724B2 (en
Inventor
Saku Egawa
索 柄川
Atsushi Koseki
篤志 小関
Minoru Arai
穣 荒井
Ikuo Takeuchi
郁雄 竹内
Taiji Tajima
泰治 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001381654A priority Critical patent/JP3626724B2/en
Publication of JP2003180586A publication Critical patent/JP2003180586A/en
Application granted granted Critical
Publication of JP3626724B2 publication Critical patent/JP3626724B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive self-propelled cleaner that can precisely control the traveling motion by detecting the moving distance and rotating angle with high degree of accuracy. <P>SOLUTION: A self-propelled cleaner is provided with a plurality of optical moving distance sensors 57 and 58, which detect two-dimensional moving distance from the change in the optical image on a floor surface 8, a moving distance detector 70 that detects two-dimensional moving distance and rotating angle of the cleaner body 2 based on the two-dimensional moving distance detected by the sensors, and a movement control section 75 that controls the movement of the cleaner body 2 based on the detected two-dimensional moving distance and the rotating angle. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自走式掃除機に関
する。
TECHNICAL FIELD The present invention relates to a self-propelled vacuum cleaner.

【0002】[0002]

【従来の技術】モータによって駆動される車輪を備えた
移動手段と、ゴミを吸引するノズルを備え、床面上を自
動走行して清掃を行う自走式掃除機が提案されている。
この自走式掃除機では、センサを用いて掃除機の移動距
離と旋回角度を計測し、掃除機が適切な移動経路に沿っ
て走行するように車輪を制御することが必要である。
2. Description of the Related Art A self-propelled vacuum cleaner has been proposed which is equipped with a moving means having wheels driven by a motor and a nozzle for sucking dust and which automatically travels on a floor surface for cleaning.
In this self-propelled cleaner, it is necessary to measure the moving distance and the turning angle of the cleaner using a sensor and control the wheels so that the cleaner travels along an appropriate moving route.

【0003】従来、このような制御のために、駆動車輪
の回転数を計測し、それによって、前後方向の移動距離
と旋回角度を検出する方法が用いられていた。また、旋
回角度を高精度に検出するために、ジャイロを用いるも
のもある。
Conventionally, for such control, a method has been used in which the rotational speed of the drive wheels is measured to detect the moving distance and the turning angle in the front-rear direction. There is also a gyroscope used to detect the turning angle with high accuracy.

【0004】また、特開平7−175518号公報に
は、計測輪を備え、計測輪の回転数を検出して本体を直
進させる移動作業ロボットが記載されている。
Further, Japanese Patent Application Laid-Open No. 7-175518 describes a mobile work robot having a measuring wheel and detecting the rotational speed of the measuring wheel to move the main body straight.

【0005】また、特開平8−75459号公報には、
進行経路に沿って設けたバーを認識装置により認識し、
そのカウント数に基づいて速度または位置を検出する無
人車が記載されている。
Further, in Japanese Patent Laid-Open No. 8-75459,
The recognition device recognizes the bar provided along the travel route,
An unmanned vehicle that detects speed or position based on the count number is described.

【0006】[0006]

【発明が解決しようとする課題】駆動車輪の回転数を計
測して移動を制御する自走式掃除機は、車輪と床面の間
にスリップが生じると、移動距離や旋回角度の検出誤差
が生じるために、床面の影響を受けやすく、走行経路の
精度が低いという問題がある。更に、このために、例え
ば床面上を往復移動して一定の幅ずつ床面を清掃するよ
うに使用すると、床面に清掃漏れが生じたり、清掃漏れ
を防ぐために移動経路の間隔を狭くして清掃するように
幅の重なりを大きくすると、清掃にかかる時間が長くな
るという問題がある。
In a self-propelled cleaner that measures the number of rotations of drive wheels to control movement, when slip occurs between the wheels and the floor surface, a detection error in the movement distance or turning angle may occur. Therefore, there is a problem in that it is easily affected by the floor surface and the accuracy of the traveling route is low. Further, for this purpose, for example, when used so as to reciprocally move on the floor surface to clean the floor surface by a constant width, a cleaning leak occurs on the floor surface, or the interval of the moving path is narrowed to prevent the cleaning leak. If the overlapping width is increased so that cleaning is performed, there is a problem in that cleaning takes a long time.

【0007】ジャイロを使用して旋回角度を計測する方
法は、走行経路の精度を向上させることができるが、装
置が高価になるという問題がある。
The method of measuring the turning angle using the gyro can improve the accuracy of the traveling route, but has a problem that the device becomes expensive.

【0008】また、前記特開平7−175518号公報
に記載されている移動作業ロボットは、駆動輪とは別に
計測輪を設けることにより床面の影響を減らしている
が、接触式であるために、床面の状況によっては、スリ
ップが生じて走行経路に誤差が生じるという問題があ
る。
Further, the mobile work robot described in JP-A-7-175518 reduces the influence of the floor surface by providing a measuring wheel in addition to the driving wheel, but it is a contact type. However, depending on the condition of the floor surface, there is a problem that slippage occurs and an error occurs in the travel route.

【0009】また、前記特開平8−75459号公報に
記載されている移動機構は、あらかじめ進行経路にマー
クを設けておく必要があるために、使用できる場所が制
約されるという問題がある。
Further, the moving mechanism described in Japanese Unexamined Patent Publication No. 8-75459 has a problem that the usable place is restricted because it is necessary to previously provide a mark on the traveling route.

【0010】そこで、カメラを用いた光学式センサによ
って床面を撮影して得た画像信号に基づいて移動距離を
検出することが考えられる。しかし、自走式掃除機は、
絨毯などが敷かれた凹凸のある床面上を走行することが
あるために、床面にノズルが引っかかるなどして、移動
体が急激に動いた時には床面を正しく撮影することがで
きない期間が発生し、短時間の間は、移動距離の検出に
誤差が発生する可能性がある。また、床面に凹凸の影響
により、焦点がずれた撮影となって、移動距離を検出で
きなくなる可能性がある。また、ゴミのある床面の上を
走行するために、カメラのレンズにゴミが付着して移動
距離を検出することができなくなる可能性がある。
Therefore, it is conceivable to detect the moving distance based on the image signal obtained by photographing the floor surface by an optical sensor using a camera. However, the self-propelled vacuum cleaner
Since the vehicle may travel on an uneven floor surface covered with a carpet or the like, the nozzle may be caught on the floor surface, etc. This may occur, and an error may occur in the detection of the moving distance during a short time. Further, due to the influence of the unevenness on the floor surface, the image may be out of focus, and the movement distance may not be detected. In addition, since the vehicle travels on a dusty floor surface, dust may adhere to the lens of the camera and it may not be possible to detect the moving distance.

【0011】本発明の1つの目的は、自走経路を高精度
に検出して床面を効率良く清掃することができる比較的
安価な自走式掃除機を提案することにある。
An object of the present invention is to propose a relatively inexpensive self-propelled cleaner capable of detecting a self-propelled path with high accuracy and efficiently cleaning the floor surface.

【0012】本発明の他の目的は、更に、清掃する床面
の影響を受けにくい自走式掃除機を提案することにあ
る。
Another object of the present invention is to propose a self-propelled cleaner which is not easily affected by the floor surface to be cleaned.

【0013】本発明の更に他の目的は、更に、保守が容
易な自走式掃除機を提案することにある。
Yet another object of the present invention is to propose a self-propelled cleaner which is easy to maintain.

【0014】[0014]

【課題を解決するための手段】本発明は、移動体と、移
動体を床面上を移動させる移動手段と、床面を清掃する
清掃手段とを備える自走式掃除機において、前記移動手
段には、前記移動体に床面と対向して設けられ、床面を
反復的に撮影して反復的に画像信号を入力する画像入力
手段と、前記画像入力手段から入力された反復的な画像
信号の変化に基づいて前記画像入力手段の床面に対する
2次元の移動距離を検出する画像処理手段とを備える複
数の光学式移動距離検出手段と、前記複数の光学式移動
距離検出手段により検出された2次元の移動距離に基づ
いて、前記移動体の2次元の移動距離および旋回角度を
検出する移動量検出手段と、前記移動量検出手段により
検出された前記移動体の2次元の移動距離および旋回角
度に基づいて、移動体の移動を制御する移動制御手段と
を設け、安価な構成で車輪のスリップに影響されずに正
確に移動距離と旋回角度を検出して高精度の移動制御を
行うものである。
The present invention provides a self-propelled cleaner including a moving body, a moving means for moving the moving body on a floor surface, and a cleaning means for cleaning the floor surface. And an image input unit that is provided on the moving body so as to face the floor surface and that repeatedly captures the floor surface and repeatedly inputs an image signal, and a repetitive image input from the image input unit. A plurality of optical moving distance detecting means including an image processing means for detecting a two-dimensional moving distance of the image input means with respect to the floor surface based on a change in the signal, and the plurality of optical moving distance detecting means detect the moving distance. Based on the two-dimensional moving distance, the moving amount detecting means for detecting the two-dimensional moving distance and the turning angle of the moving body, the two-dimensional moving distance of the moving body detected by the moving amount detecting means, and Based on the turning angle, And movement control means for controlling the movement of the body is provided, it is performed by detecting the moving control of high precision turning angle exactly moving distance without being affected by the slip of the wheels in an inexpensive structure.

【0015】また、前記移動手段には、更に、前記移動
体に設けられ、床面に接地する複数の回転輪と、前記複
数の回転輪の回転数を検出する回転数検出手段と、前記
回転数検出手段により検出された回転数に基づいて前記
移動体の前後方向の移動距離の成分と旋回角度を検出す
る変換手段とを備える機械式移動距離検出手段を備え、
前記移動量検出手段は、前記複数の光学式移動距離検出
手段により検出された2次元の移動距離と、前記機械式
移動距離検出手段により検出された前後方向の移動距離
の成分と旋回角度に基づいて前記移動体の2次元の移動
距離および旋回角度を検出することにより、光学式移動
距離検出手段の検出誤りの影響を除くものである。
Further, the moving means further includes a plurality of rotating wheels provided on the moving body and grounded on a floor surface, a rotation speed detecting means for detecting a rotating speed of the plurality of rotating wheels, and the rotation means. A mechanical moving distance detecting means including a converting means for detecting a component of a moving distance in the front-rear direction and a turning angle of the moving body based on the number of rotations detected by the number detecting means,
The movement amount detection means is based on a two-dimensional movement distance detected by the plurality of optical movement distance detection means, a component of the front-back direction movement distance detected by the mechanical movement distance detection means, and a turning angle. By detecting the two-dimensional moving distance and the turning angle of the moving body, the influence of the detection error of the optical moving distance detecting means is eliminated.

【0016】また、前記画像入力手段を、移動体に対し
て上下可動に支持することにより、床面の凹凸の影響を
軽減して安定した移動距離と旋回角度の検出を実現する
ものである。
Further, by supporting the image input means so as to be movable up and down with respect to the moving body, it is possible to reduce the influence of the unevenness of the floor surface and realize the stable detection of the moving distance and the turning angle.

【0017】また、前記画像入力手段は、結像手段の床
面に対向する面を平滑な凹面に形成することにより、ゴ
ミ付着を軽減して安定した移動距離と旋回角度の検出を
実現するものである。
Further, the image input means realizes stable detection of the moving distance and the turning angle by reducing the adhesion of dust by forming the surface of the image forming means facing the floor surface into a smooth concave surface. Is.

【0018】[0018]

【発明の実施の形態】本発明の実施の形態を図面を参照
して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings.

【0019】第1の実施の形態 図1および図2は、この第1の実施の形態における自走
式掃除機の側面図および平面図である。
First Embodiment FIGS. 1 and 2 are a side view and a plan view of a self-propelled cleaner according to the first embodiment.

【0020】この実施の形態における自走式掃除機1
は、移動体を構成する掃除機本体2と、清掃手段を構成
するノズル3および吸引式除塵機4と、駆動手段を構成
する左右一対の駆動車輪11,12および車輪駆動モー
タ13,14と、駆動車輪11,12の回転数を検出す
る回転数検出手段を構成する回転数センサ15,16
と、従動輪5と、画像入力手段を構成する前後に配置さ
れた2つのカメラ部21,22と、センサ信号処理とモ
ータ駆動制御を行う制御装置6と、吸引式除塵機4,車
輪駆動モータ13,14および制御装置6に給電する電
池7とを備える。
Self-propelled vacuum cleaner 1 in this embodiment
Is a cleaner body 2 that constitutes a moving body, a nozzle 3 and a suction type dust remover 4 that constitute cleaning means, a pair of left and right drive wheels 11 and 12 and wheel drive motors 13 and 14 that constitutes drive means, Rotational speed sensors 15 and 16 constituting rotational speed detection means for detecting the rotational speeds of the drive wheels 11 and 12.
A driven wheel 5, two camera units 21 and 22 arranged before and after the image input unit, a control device 6 for sensor signal processing and motor drive control, a suction dust remover 4, a wheel drive motor. 13, 14 and the battery 7 for supplying power to the control device 6.

【0021】ここで、前記駆動手段,回転数検出手段,
回転数検出手段,画像入力手段,制御装置および電池
は、移動手段を構成する。
Here, the drive means, the rotation speed detection means,
The rotation speed detecting means, the image inputting means, the control device and the battery constitute a moving means.

【0022】この自走式掃除機1は、左右の駆動車輪1
1,12の回転数を制御することにより、床面8の上に
おいて前後移動および旋回を行う。そして床面8の上の
ゴミをノズル3から吸引式除塵機4に吸引,除塵して清
掃を行う。なお、ここでは、図2における左右の方向、
すなわち、駆動車輪11,12の向きと平行方向を自走
式掃除機1の前後方向といい、それと直交する方向を左
右方向という。
This self-propelled vacuum cleaner 1 has left and right drive wheels 1
By controlling the rotational speeds of 1 and 12, the front-back movement and the turning are performed on the floor surface 8. Then, the dust on the floor surface 8 is sucked from the nozzle 3 to the suction type dust remover 4 to remove the dust and cleaned. In addition, here, the left and right directions in FIG.
That is, the direction parallel to the direction of the drive wheels 11 and 12 is called the front-back direction of the self-propelled cleaner 1, and the direction orthogonal to it is the left-right direction.

【0023】図3は、この実施の形態における画像入力
手段を構成するカメラ部21,22の縦断側面図であ
る。
FIG. 3 is a vertical cross-sectional side view of the camera units 21 and 22 which constitute the image input means in this embodiment.

【0024】カメラ部21(22)は、撮像手段を構成
する撮像素子31(32)と、結像手段を構成するレン
ズ42およびレンズカバー43と、ランプ44と、これ
らの部品を保持する保持器41を備える。ここで、撮像
素子31(32)は、CCDあるいはCMOSなどの電
子式の画像入力素子である。なお、レンズカバー43
は、レンズ42と一体に成形しても良い。
The camera section 21 (22) includes an image pickup device 31 (32) forming an image pickup means, a lens 42 and a lens cover 43 forming an image forming means, a lamp 44, and a holder for holding these parts. 41 is provided. Here, the image pickup device 31 (32) is an electronic image input device such as CCD or CMOS. The lens cover 43
May be formed integrally with the lens 42.

【0025】保持器41は、ガイド45によって掃除機
本体2に取り付けて上下に摺動可動且つ回転不能に支持
し、ばね46によって下方に押圧することによって底面
に設けた滑り材47を床面8に接触させて該床面8を摺
動する。
The retainer 41 is attached to the cleaner body 2 by a guide 45, supported vertically slidably and non-rotatably, and pressed downward by a spring 46 so that a sliding member 47 provided on the bottom surface of the retainer 41 is attached to the floor surface 8. To slide on the floor surface 8.

【0026】このようなカメラ部21(22)は、ラン
プ44により照明された床面8の光像がレンズ42によ
り撮像素子31(32)に結像し、この撮像素子31
(32)が撮影されて床面8の画像信号が出力される。
保持器41は、ばね46に押されて床面8上を摺動して
いるので、床面8に凹凸があっても保持器41は該凹凸
に沿って上下に移動し、床面8の光像は撮像素子31
(32)に対して常に正しい焦点を結んで画像信号に変
換される。
In such a camera unit 21 (22), the optical image of the floor surface 8 illuminated by the lamp 44 is formed on the image pickup device 31 (32) by the lens 42, and the image pickup device 31 (32) is formed.
(32) is photographed and the image signal of the floor surface 8 is output.
Since the cage 41 is pushed by the spring 46 and slides on the floor surface 8, even if the floor surface 8 has irregularities, the cage 41 moves up and down along the irregularities, and The optical image is the image sensor 31
(32) is always focused and converted into an image signal.

【0027】また、床面8の光像を撮像素子31(3
2)に導く光学系の床面8に対向する面であるレンズカ
バー43は、床面8との間に滑り材47により1mm〜
数mm程度の空隙を形成し、且つ、床面8との対向面が
滑らかな凹面となるように形成している。この構成は、
レンズカバー43と床面8が直に強く接触しないので、
光学系の傷付きを防止し、また、ゴミがたまるのを防止
するのに有効である。ゴミ付着防止の観点からは、レン
ズカバー43の周縁端は、保持器41の底面に対して連
続する部位に位置するように取り付けることが望まし
い。また、ゴミ付着防止のためには、レンズカバー43
に帯電防止処理を施すことが望ましい。これにより、撮
像素子31(32)は、常に明瞭な床面8の画像信号を
出力することができる。
Further, the optical image of the floor surface 8 is captured by the image pickup device 31 (3
The lens cover 43, which is a surface facing the floor surface 8 of the optical system leading to 2), is 1 mm to 1 mm by the sliding member 47 between the lens cover 43 and the floor surface 8.
A gap of about several mm is formed, and the surface facing the floor surface 8 is formed as a smooth concave surface. This configuration
Since the lens cover 43 and the floor surface 8 do not come into direct strong contact,
It is effective in preventing scratches on the optical system and preventing dust from collecting. From the viewpoint of preventing dust from adhering, it is desirable that the peripheral edge of the lens cover 43 be attached so as to be located at a portion continuous with the bottom surface of the holder 41. In order to prevent dust from adhering to the lens cover 43
It is desirable to apply an antistatic treatment to the. Accordingly, the image pickup device 31 (32) can always output a clear image signal of the floor surface 8.

【0028】なお、カメラ部21(22)は、床面8か
ら離して掃除機本体2に固定的に取り付けても良い。こ
の場合には、床面8の凹凸に対応するため、凹凸の高さ
よりも十分に高い位置にカメラ部21(22)を設置
し、且つ焦点深度の深いレンズ42を用いて床面8の凹
凸による焦点ずれを防止するように構成することが望ま
しい。
The camera section 21 (22) may be fixedly attached to the cleaner body 2 apart from the floor surface 8. In this case, in order to deal with the unevenness of the floor surface 8, the camera portion 21 (22) is installed at a position sufficiently higher than the height of the unevenness, and the unevenness of the floor surface 8 is obtained by using the lens 42 having a deep depth of focus. It is desirable to configure so as to prevent defocusing due to.

【0029】図4は、この実施の形態における制御装置
6を主体とする制御系の機能ブロック図である。
FIG. 4 is a functional block diagram of a control system mainly including the control device 6 in this embodiment.

【0030】撮像素子31,32と画像処理部51,5
2は、2つの光学式移動距離センサ57,58を構成
し、それぞれ、撮像素子31,32から所定の周期で反
復的に画像信号53,54を出力させて画像処理部5
1,52に取り込み、図5に示すように、床面8の模様
や汚れや傷などの画像(画像信号53,54)のX,Y
座標上の移動量を計測することによりカメラ部21,2
2の前後方向および左右方向の移動距離を検出して前後
方向移動距離信号55a,56aおよび左右方向移動距
離信号55b,56bを出力する。この光学式移動距離
センサ57,58は、それぞれ、撮像素子31,32と
画像処理部51,52をユニット化した既存の安価な部
品を利用することができる。
Image pickup devices 31, 32 and image processing units 51, 5
2 constitutes two optical movement distance sensors 57 and 58, which respectively cause the image pickup devices 31 and 32 to repeatedly output the image signals 53 and 54 at a predetermined cycle to output the image processing unit 5;
1, 52, and as shown in FIG. 5, X, Y of images (image signals 53, 54) of patterns, stains, scratches, etc. on the floor surface 8.
By measuring the amount of movement on the coordinates, the camera units 21, 2
The front and rear and left and right movement distances of 2 are detected and front and rear movement distance signals 55a and 56a and left and right movement distance signals 55b and 56b are output. The optical movement distance sensors 57 and 58 can use existing inexpensive parts in which the image pickup devices 31 and 32 and the image processing units 51 and 52 are unitized, respectively.

【0031】回転数センサ15,16と回転数センサ変
換部60は、機械式移動距離センサ64を構成し、回転
数センサ変換部60は、駆動車輪11,12の回転数セ
ンサ15,16から得られる回転数信号61,62に基
づいて、掃除機本体2の前後方向および左右方向の移動
距離と回転角度を求めて移動距離信号63a,63bと
回転角度信号63cを出力する。ここで、前後方向の移
動距離は、左右の車輪駆動モータ13,14の回転数の
平均値から求めることができ、旋回角度63cは左右の
車輪駆動モータ13,14の回転数の差と駆動車輪1
1,12間の距離から求めることができる。駆動車輪1
1,12の回転数により移動距離を求める際には、横滑
りがないことを前提としているので、左右方向の移動距
離信号63bは常に0と見做す。
The rotation speed sensors 15 and 16 and the rotation speed sensor conversion unit 60 constitute a mechanical movement distance sensor 64, and the rotation speed sensor conversion unit 60 is obtained from the rotation speed sensors 15 and 16 of the drive wheels 11 and 12. Based on the rotation speed signals 61 and 62, the moving distances and the rotation angles of the cleaner main body 2 in the front-rear direction and the left-right direction are obtained, and the movement distance signals 63a and 63b and the rotation angle signal 63c are output. Here, the moving distance in the front-rear direction can be obtained from the average value of the rotational speeds of the left and right wheel drive motors 13 and 14, and the turning angle 63c is the difference between the rotational speeds of the left and right wheel drive motors 13 and 14 and the drive wheels. 1
It can be obtained from the distance between 1 and 12. Drive wheel 1
Since it is premised that there is no skid when the moving distance is obtained from the rotational speeds of 1 and 12, the moving distance signal 63b in the left-right direction is always regarded as 0.

【0032】なお、車輪駆動モータ13,14の回転数
を検出する代わりに、駆動車輪11,12とは別に距離
計測用の回転輪として、車輪,コロ,ボール等を設け
て、その回転数を検出するようにしても良い。このよう
に構成すれば、駆動車輪11,12の回転数を検出する
よりもスリップの影響を受けにくくなり、移動距離と旋
回角度の検出精度が向上する。この場合には、左右方向
の動きを検出する回転輪を設けることにより、左右方向
の移動距離を計測することも可能になる。
Instead of detecting the rotation speeds of the wheel drive motors 13 and 14, wheels, rollers, balls, etc. are provided as the rotation wheels for distance measurement separately from the drive wheels 11 and 12, and the rotation speeds are set. You may make it detect. According to this structure, the influence of slip is less likely to occur than the detection of the rotation speeds of the drive wheels 11 and 12, and the detection accuracy of the moving distance and the turning angle is improved. In this case, the moving distance in the left-right direction can be measured by providing the rotating wheel that detects the movement in the left-right direction.

【0033】移動量検出部70は、2つのカメラ部2
1,22の前後方向移動距離信号55a,56aおよび
左右方向移動距離55b,56bに基づいて掃除機本体
2の前後方向および左右方向の移動距離、すなわち2次
元の移動距離および旋回角度を求めて移動距離信号71
a,71bおよび旋回角度信号71cを出力する光学式
センサ変換部72と、2つのカメラ部21,22の前後
方向の移動距離信号55a,56aを比較する比較器7
3と、比較器73の比較結果に基づいて、光学式センサ
変換部72により得られた2次元の移動距離信号71
a,71bおよび旋回角度信号71cと、機械式移動距
離センサ64により得られた2次元の移動距離信号63
a,63bおよび旋回角度信号63cの何れかを選択す
る選択器74を備える。
The movement amount detecting section 70 includes two camera sections 2.
Based on the front-rear direction movement distance signals 55a, 56a and the left-right direction movement distances 55b, 56b of 1, 22, the movement distance of the cleaner body 2 in the front-rear direction and the left-right direction, that is, the two-dimensional movement distance and the turning angle are obtained and moved. Distance signal 71
a, 71b and the optical sensor conversion unit 72 that outputs the turning angle signal 71c, and the comparator 7 that compares the front and rear movement distance signals 55a and 56a of the two camera units 21 and 22.
3 and the comparison result of the comparator 73, the two-dimensional moving distance signal 71 obtained by the optical sensor conversion unit 72.
a, 71b, a turning angle signal 71c, and a two-dimensional moving distance signal 63 obtained by a mechanical moving distance sensor 64.
The selector 74 is provided for selecting any of the a, 63b and the turning angle signal 63c.

【0034】移動制御部75は、選択器74により選択
して出力された2次元の移動距離信号76a,76bお
よび旋回角度信号76cに基づいて、掃除機本体2を所
定の経路に沿って走行させるように左右の車輪駆動モー
タ13,14の回転を制御する。
The movement control unit 75 causes the cleaner body 2 to travel along a predetermined route based on the two-dimensional movement distance signals 76a and 76b and the turning angle signal 76c selected and output by the selector 74. Thus, the rotations of the left and right wheel drive motors 13 and 14 are controlled.

【0035】ここで、前記回転数センサ変換部60,移
動料検出部70,移動制御部75は、実際には、マイク
ロコンピュータの信号処理機能によって実現する。
Here, the rotation speed sensor conversion unit 60, the moving charge detection unit 70, and the movement control unit 75 are actually realized by the signal processing function of a microcomputer.

【0036】このように構成した自走式掃除機1は、掃
除機本体2が移動すると、それに応じて、撮像素子3
1,32に結像される床面8の光像が移動する。撮像素
子31,32は、所定の周期で反復的に光像を画像信号
53,54に変換して画像処理部51,52に渡す。画
像処理部51,52は、図5に示すように、逐次取り込
まれる画像信号53,54を比較し、カメラ部21,2
2の床面8に対する2次元の移動距離、すなわち、前後
方向の移動距離および左右方向の移動距離を検出して前
後方向移動距離信号55a,56aおよび左右方向移動
距離信号55b,56bを検出する。
In the self-propelled cleaner 1 thus constructed, when the cleaner body 2 moves, the image pickup device 3 is correspondingly moved.
The light image of the floor surface 8 formed on the surfaces 1 and 32 moves. The image pickup devices 31 and 32 repeatedly convert the light image into image signals 53 and 54 at a predetermined cycle and pass the image signals to the image processing units 51 and 52. As shown in FIG. 5, the image processing units 51 and 52 compare the image signals 53 and 54 that are sequentially captured, and the camera units 21 and 21.
The two-dimensional movement distances of the two floor surfaces 8, that is, the movement distances in the front-rear direction and the movement distances in the left-right direction are detected to detect front-rear movement distance signals 55a, 56a and left-right movement distance signals 55b, 56b.

【0037】ここで、光像取り込み(光電変換)周期
は、次の取り込み時期までの間の光像の移動量がカメラ
部21,22の視野幅に対して過大にならないように定
める。光像の移動量は、視野の1/10以下にすること
が望ましく、例えば、最高移動速度300mm/s、カ
メラ視野幅3mmの場合には、光像取り込み周期は、1
ms以下にすることが望ましい。
Here, the light image taking-in (photoelectric conversion) cycle is determined so that the amount of movement of the light image until the next taking-in time does not become excessive with respect to the visual field width of the camera sections 21 and 22. The amount of movement of the light image is preferably 1/10 or less of the field of view. For example, when the maximum movement speed is 300 mm / s and the field of view of the camera is 3 mm, the light image capturing period is 1
It is desirable to set it to ms or less.

【0038】光学式センサ変換部72は、2つのカメラ
部21,22の前後方向の移動距離信号55a,56a
と左右方向の移動距離信号55b,56bを各々を平均
することにより、掃除機本体2の前後方向および左右方
向の移動距離を求めて前後方向の移動距離信号71aお
よび左右方向の移動距離信号71bを出力する。また、
光学式センサ変換部72は、2つのカメラ部21,22
の前後方向の移動距離(信号55a,56a)の差をカ
メラ間の距離Lで割ることにより、掃除機本体2の旋回
角度を求めて旋回角度信号71cを出力する。
The optical sensor conversion section 72 is a moving distance signal 55a, 56a in the front-back direction of the two camera sections 21, 22.
And moving distance signals 55b and 56b in the left-right direction are averaged to obtain the moving distances in the front-rear direction and the left-right direction of the cleaner body 2 to obtain the moving-distance signal 71a in the front-rear direction and the moving-distance signal 71b in the left-right direction. Output. Also,
The optical sensor conversion unit 72 includes two camera units 21 and 22.
By dividing the difference in the moving distance (signals 55a, 56a) in the front-back direction by the distance L between the cameras, the turning angle of the cleaner body 2 is obtained and the turning angle signal 71c is output.

【0039】ここで求めた移動距離および旋回角度の信
号71a,71b,71cは、カメラ部21,22で撮
影した床面8の光像に基づいて検出したものであるため
に、車輪により移動距離を検出した場合に生じやすいス
リップの問題がなく、床面8の影響を受けずに高精度に
検出することができる。また、高価なジャイロを用いず
に旋回角度を高精度に検出することができる。
Since the signals 71a, 71b and 71c of the moving distance and the turning angle obtained here are detected based on the optical image of the floor surface 8 photographed by the camera units 21 and 22, the moving distance by the wheels is changed. There is no problem of slip that tends to occur when is detected, and it is possible to detect with high accuracy without being affected by the floor surface 8. Further, the turning angle can be detected with high accuracy without using an expensive gyro.

【0040】ここで、この制御系は、2次元の移動距離
および旋回角度の計3自由度の平面運動を検出するのに
対して、2次元の移動距離を検出できる2つの光学式移
動距離センサ57,58を用いており、計4自由度のセ
ンサを有していることになる。このために、この制御系
は冗長性を有しており、これを利用してセンサの検出誤
りを検出することができる。
In this control system, two optical movement distance sensors capable of detecting a two-dimensional movement distance are detected, while a plane movement having a total of three degrees of freedom such as a two-dimensional movement distance and a turning angle is detected. 57 and 58 are used, and a sensor having a total of 4 degrees of freedom is included. For this reason, this control system has redundancy, and this can be utilized to detect a detection error of the sensor.

【0041】2つのカメラ部21,22は、共通の掃除
機本体2に取り付けられているので、カメラ間の距離は
一定である。このために、2つのカメラ部21,22で
撮影した床面8の画像信号に基づいて検出した移動距離
のカメラ間を結ぶ方向の成分は互いに等しくなる。ここ
では、カメラ部21,22を前後に配置しているので、
通常は、2つのカメラ部21,22の床面8に対する前
後方向の移動距離は常に等しくなる。従って、2つのカ
メラ部21,22で撮影した床面8の画像信号に基づい
て検出した移動距離が食い違う場合には、何らかの原因
で床面8の光像を正しく撮影(光電変換)することがで
きず、移動距離の検出に誤りが発生したと見做すことが
できる。
Since the two camera parts 21 and 22 are attached to the common cleaner body 2, the distance between the cameras is constant. For this reason, the components of the moving distance detected based on the image signal of the floor surface 8 captured by the two camera units 21 and 22 in the direction connecting the cameras are equal to each other. Here, since the camera units 21 and 22 are arranged in the front and rear,
Normally, the movement distances of the two camera units 21 and 22 in the front-rear direction with respect to the floor surface 8 are always the same. Therefore, when the moving distances detected based on the image signals of the floor surface 8 captured by the two camera units 21 and 22 are different, the optical image of the floor surface 8 can be captured correctly (photoelectric conversion) for some reason. No, it can be considered that an error has occurred in the detection of the moving distance.

【0042】そこで、移動量検出部70は、比較器73
により、2つのカメラ部の前後方向の移動距離信号55
a,56aを比較し、両者の差が所定の値よりも小さい
場合には検出誤りがないと見做し、選択器74により、
光学式移動距離センサ57,58より得られた移動距離
信号55a,56a,55b,56bに基づいて光学式
センサ変換部72で求めた2次元の移動距離および旋回
角度信号71a,71b,71cを選択して移動制御部
75に入力し、両者の差が所定の値よりも大きい場合に
は検出誤りが発生したと見做して、代替手段として、機
械式移動距離センサ64から得られた2次元の移動距離
および旋回角度信号63a,63b,63cを選択して
移動制御部75に入力する。ここで上記の所定の値は、
通常の検出誤りが無いときの移動距離の検出誤差の2倍
程度に定める。光学式移動距離センサ57,58に誤り
が発生して機械式移動距離センサ64で代替している期
間は、移動距離および旋回角度の検出精度が低下するこ
とになるが、通常は、短時間で回復するので大きな影響
は生じない。
Therefore, the movement amount detecting section 70 has a comparator 73.
The moving distance signal 55 in the front-back direction of the two camera units
a and 56a are compared, and if the difference between the two is smaller than a predetermined value, it is considered that there is no detection error, and the selector 74
Select the two-dimensional movement distance and turning angle signals 71a, 71b, 71c obtained by the optical sensor conversion unit 72 based on the movement distance signals 55a, 56a, 55b, 56b obtained from the optical movement distance sensors 57, 58. Then, when the difference between the two is larger than a predetermined value, it is considered that a detection error has occurred, and as an alternative means, the two-dimensional data obtained from the mechanical movement distance sensor 64 is used. The movement distance and the turning angle signals 63a, 63b, 63c are selected and input to the movement control unit 75. Where the above given value is
It is set to about twice the detection error of the moving distance when there is no normal detection error. During a period in which an error occurs in the optical movement distance sensors 57 and 58 and the mechanical movement distance sensor 64 substitutes, the detection accuracy of the movement distance and the turning angle is reduced, but usually in a short time. As it recovers, no major impact will occur.

【0043】第2の実施の形態 図6は、この第2の実施の形態における自走式掃除機の
底面図であり、画像入力部の配置を示している。
Second Embodiment FIG. 6 is a bottom view of the self-propelled cleaner according to the second embodiment, showing the arrangement of the image input section.

【0044】前述した第1の実施の形態においては、2
つのカメラ部21,22を掃除機本体2の前後に離して
配置していたが、この実施の形態は、2つのカメラ部2
1,22を掃除機本体2の左右に離して配置する構成で
ある。
In the above-described first embodiment, 2
Although the two camera units 21 and 22 are arranged apart from each other in the front and rear of the cleaner body 2, this embodiment has two camera units 2 and 22.
This is a configuration in which the cleaners 1 and 22 are arranged separately on the left and right of the cleaner body 2.

【0045】この実施の形態における制御系は、第1の
実施の形態と同様に構成することができるが、光学式セ
ンサ変換部72は、2つのカメラ部21,22の左右方
向の移動距離(信号55b,56b)の差をカメラ間の
距離Lで割る代わりに、前後方向の移動距離(信号55
a,56a)の差をカメラ間の距離Lで割ることによ
り、掃除機本体2の旋回角度(信号71c)を求める構
成に変更する。また、比較器73は、2つのカメラ部2
1,22の前後方向の移動距離(信号55a,56a)
を比較する代わりに、左右方向の移動距離(信号55
b,56b)を比較する構成に変更する。
The control system in this embodiment can be constructed in the same manner as in the first embodiment, but the optical sensor conversion unit 72 is arranged so that the two camera units 21 and 22 move in the horizontal direction ( Instead of dividing the difference between the signals 55b, 56b) by the distance L between the cameras, the moving distance in the front-back direction (signal 55b
a, 56a) is divided by the distance L between the cameras to change the configuration to obtain the turning angle (signal 71c) of the cleaner body 2. Further, the comparator 73 includes two camera units 2
1 and 22 moving distance in the front-back direction (signals 55a, 56a)
Instead of comparing
b, 56b) is changed to a configuration for comparison.

【0046】第3の実施の形態 図7は、この第3の実施の形態における自走式掃除機の
底面図であり、画像入力部の配置を示している。
Third Embodiment FIG. 7 is a bottom view of the self-propelled cleaner according to the third embodiment, showing the arrangement of the image input section.

【0047】前述した第1および第2の実施の形態は、
掃除機本体2に2つのカメラ部21,22を設置した構
成であるが、この第3の実施の形態は、(a),(b)
に示すように、3つ以上の複数のカメラ部23を設ける
構成である。
The first and second embodiments described above are
The cleaner main body 2 has two camera parts 21 and 22 installed therein. In the third embodiment, (a) and (b) are used.
As shown in (3), the configuration is such that three or more camera units 23 are provided.

【0048】このように構成すれば、何れかのセンサに
誤りが発生しても、残りのセンサによって代替して移動
距離および旋回角度を検出することができるので、機械
式移動距離センサを代替手段として用いずに高精度の制
御を行うことができ、移動距離と旋回角度に高い検出精
度を得ることができる。この実施の形態では、複数のカ
メラ部23のうちの任意の2つずつの組み合わせについ
て、検出された2次元の移動距離の各々のカメラ部23
を結ぶ方向の成分を比較し、差が所定の値よりも小さい
ものを選択的に用いて掃除機本体2の移動距離および旋
回角度を検出するように構成すれば良い。
According to this structure, even if an error occurs in any of the sensors, the remaining distance can be used as a substitute to detect the moving distance and the turning angle. It is possible to perform high-precision control without using it as described above, and it is possible to obtain high detection accuracy for the moving distance and the turning angle. In this embodiment, for each arbitrary combination of two of the plurality of camera units 23, each camera unit 23 of the detected two-dimensional movement distances.
It suffices to compare the components in the direction connecting the two and to selectively use the component having a difference smaller than a predetermined value to detect the moving distance and the turning angle of the cleaner body 2.

【0049】[0049]

【発明の効果】本発明によれば、床面の影響を軽減して
高精度に移動距離と旋回角度を検出することができるの
で、望ましい経路に沿った正確な走行制御を行うことが
でき、しかも、安価な自走式掃除機を実現することがで
きる。
According to the present invention, since the movement distance and the turning angle can be detected with high accuracy by reducing the influence of the floor surface, it is possible to perform accurate traveling control along a desired route. Moreover, it is possible to realize an inexpensive self-propelled vacuum cleaner.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態における自走式掃除
機の側面図である。
FIG. 1 is a side view of a self-propelled vacuum cleaner according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態における自走式掃除
機の上面図である。
FIG. 2 is a top view of the self-propelled vacuum cleaner according to the first embodiment of the present invention.

【図3】本発明の第1の実施の形態における画像入力部
の縦断側面図である。
FIG. 3 is a vertical cross-sectional side view of an image input unit according to the first embodiment of the present invention.

【図4】本発明の第1の実施の形態における制御系のブ
ロック図である。
FIG. 4 is a block diagram of a control system according to the first embodiment of the present invention.

【図5】本発明の第1の実施の形態における移動量検出
のための画像処理の模式図である。
FIG. 5 is a schematic diagram of image processing for detecting a movement amount according to the first embodiment of the present invention.

【図6】本発明の第3の実施の形態における自走式掃除
機の底面図である。
FIG. 6 is a bottom view of the self-propelled cleaner according to the third embodiment of the present invention.

【図7】本発明の第4の実施の形態における自走式掃除
機の底面図である。
FIG. 7 is a bottom view of the self-propelled cleaner according to the fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…自走式掃除機、2…掃除機本体、3…ノズル、4…
吸引式除塵機、6…制御装置、11,12…駆動車輪、
13,14…車輪駆動モータ、15,16…回転数セン
サ、21,22…カメラ部、31,32…撮像素子、4
2…レンズ、43…レンズカバー、57,58…光学式
移動距離センサ、60…機械式移動距離センサ、70…
移動量検出部、75…移動制御部。
1 ... Self-propelled cleaner, 2 ... Vacuum cleaner body, 3 ... Nozzle, 4 ...
Suction type dust remover, 6 ... control device, 11, 12 ... drive wheels,
13, 14 ... Wheel drive motors, 15, 16 ... Rotation speed sensors 21, 22 ... Camera section, 31, 32 ... Imaging device, 4
2 ... Lens, 43 ... Lens cover, 57, 58 ... Optical movement distance sensor, 60 ... Mechanical movement distance sensor, 70 ...
Movement amount detection unit, 75 ... Movement control unit.

フロントページの続き (72)発明者 荒井 穣 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 竹内 郁雄 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 田島 泰治 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 Fターム(参考) 3B057 DA00 Continued front page    (72) Inventor Minoru Arai             502 Kintatemachi, Tsuchiura City, Ibaraki Japan             Tate Seisakusho Mechanical Research Center (72) Inventor Ikuo Takeuchi             502 Kintatemachi, Tsuchiura City, Ibaraki Japan             Tate Seisakusho Mechanical Research Center (72) Inventor Taiji Tajima             502 Kintatemachi, Tsuchiura City, Ibaraki Japan             Tate Seisakusho Mechanical Research Center F-term (reference) 3B057 DA00

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】移動体と、移動体を床面上を移動させる移
動手段と、床面を清掃する清掃手段とを備える自走式掃
除機において、 前記移動手段は、 前記移動体に床面と対向して設けられ、床面を反復的に
撮影して反復的に画像信号を入力する画像入力手段と、
前記画像入力手段から入力された反復的な画像信号の変
化に基づいて前記画像入力手段の床面に対する2次元の
移動距離を検出する画像処理手段とを備える複数の光学
式移動距離検出手段と、 前記複数の光学式移動距離検出手段により検出された2
次元の移動距離に基づいて、前記移動体の2次元の移動
距離および旋回角度を検出する移動量検出手段と、 前記移動量検出手段により検出された前記移動体の2次
元の移動距離および旋回角度に基づいて、移動体の移動
を制御する移動制御手段とを備えたことを特徴とする自
走式掃除機。
1. A self-propelled cleaner including a moving body, a moving means for moving the moving body on a floor surface, and a cleaning means for cleaning the floor surface, wherein the moving means includes a floor surface on the moving body. An image input unit that is provided so as to face the floor surface repeatedly and repeatedly inputs an image signal,
A plurality of optical movement distance detecting means including an image processing means for detecting a two-dimensional movement distance of the image input means with respect to the floor surface based on the repeated change of the image signal inputted from the image input means; 2 detected by the plurality of optical movement distance detecting means
A moving amount detecting means for detecting a two-dimensional moving distance and a turning angle of the moving body based on a two-dimensional moving distance; and a two-dimensional moving distance and a turning angle of the moving body detected by the moving amount detecting means. A self-propelled vacuum cleaner, comprising: a movement control unit that controls movement of a moving body based on the above.
【請求項2】請求項1において、前記移動手段は、更
に、前記移動体に設けられ、床面に接地する複数の回転
輪と、前記複数の回転輪の回転数を検出する回転数検出
手段と、前記回転数検出手段により検出された回転数に
基づいて前記移動体の前後方向の移動距離の成分と旋回
角度を検出する変換手段とを備える機械式移動距離検出
手段を備え、 前記移動量検出手段は、前記複数の光学式移動距離検出
手段により検出された2次元の移動距離と、前記機械式
移動距離検出手段により検出された前後方向の移動距離
の成分と旋回角度に基づいて前記移動体の2次元の移動
距離および旋回角度を検出することを特徴とする自走式
掃除機。
2. The rotating means according to claim 1, further comprising: a plurality of rotating wheels provided on the moving body and grounded on a floor surface; and rotating speed detecting means for detecting rotating speeds of the plurality of rotating wheels. And a mechanical movement distance detecting means including a conversion means for detecting a component of a moving distance in the front-rear direction and a turning angle of the moving body based on the rotation speed detected by the rotation speed detecting means. The detection means moves based on the two-dimensional movement distance detected by the plurality of optical movement distance detection means, the component of the front-back movement distance detected by the mechanical movement distance detection means, and the turning angle. A self-propelled cleaner characterized by detecting a two-dimensional moving distance and a turning angle of a body.
【請求項3】請求項1または2において、前記移動量検
出手段は、前記複数の光学式移動距離検出手段のうちの
任意の組み合わせに対して、各々の光学式移動距離検出
手段により検出された2次元の移動距離を比較し、前記
各々の光学式移動距離検出手段の画像入力手段を結ぶ方
向の移動距離の成分の差を検出する比較手段と、前記複
数の光学式移動距離検出手段のうち、前記比較手段によ
り検出された前記画像入力手段を結ぶ方向の移動距離の
成分の差が所定の値よりも小さい光学式移動距離検出手
段の組み合わせを選択する選択手段とを備え、前記選択
手段により選択された光学式移動距離検出手段の組み合
わせにより検出された2次元の移動距離に基づいて前記
移動体の2次元の移動距離および旋回角度を検出するこ
とを特徴とする自走式掃除機。
3. The moving amount detecting means according to claim 1, wherein the moving amount detecting means detects the optical moving distance detecting means for any combination of the plurality of optical moving distance detecting means. Of the plurality of optical movement distance detecting means, comparing means for comparing two-dimensional movement distances to detect a difference in components of movement distances in a direction connecting the image input means of each of the optical movement distance detecting means A selection means for selecting a combination of optical movement distance detection means in which a difference in movement distance components in a direction connecting the image input means detected by the comparison means is smaller than a predetermined value. A two-dimensional moving distance and a turning angle of the moving body are detected based on the two-dimensional moving distance detected by the combination of the selected optical moving distance detecting means. Expression vacuum cleaner.
【請求項4】請求項3において、前記光学式移動距離検
出手段は、前記移動体の前後方向に離隔して画像入力手
段が配置された2つの光学式移動距離検出手段であり、 前記移動量検出手段は、前記2つの光学式移動距離検出
手段により検出された移動距離を比較し、前記移動距離
の前後方向の成分の差を検出する比較手段を備え、前記
移動距離の前後方向の成分の差が所定の値よりも小さい
場合には、前記2つの光学式移動距離検出手段により検
出された2次元の移動距離の平均から前記移動体の2次
元の移動距離を検出し、前記2つの光学式移動距離検出
手段により検出された移動距離の左右方向の成分の差か
ら前記移動体の旋回角度を検出し、前記移動距離の前後
方向の成分の差が所定の値よりも大きい場合には、前記
機械式移動距離検出手段により検出された前後方向の移
動距離の成分および旋回角度に基づいて前記移動体の2
次元の移動距離および旋回角度を検出することを特徴と
する自走式掃除機。
4. The optical movement distance detection means according to claim 3, wherein the optical movement distance detection means is two optical movement distance detection means in which an image input means is arranged apart from each other in the front-back direction of the moving body. The detecting means includes a comparing means for comparing the moving distances detected by the two optical moving distance detecting means, and for detecting a difference in the front-back direction component of the moving distance. If the difference is smaller than a predetermined value, the two-dimensional moving distance of the moving body is detected from the average of the two-dimensional moving distances detected by the two optical moving distance detecting means, and the two optical distances are detected. Detecting the turning angle of the moving body from the difference in the left-right direction component of the moving distance detected by the moving distance detecting means, if the difference in the front-back direction component of the moving distance is larger than a predetermined value, The mechanical distance measurement 2 of the moving body based on the component of the moving distance in the front-back direction and the turning angle detected by the output means.
A self-propelled vacuum cleaner characterized by detecting a two-dimensional movement distance and a turning angle.
【請求項5】請求項3において、前記光学式移動距離検
出手段は、前記移動体の左右方向に離隔して画像入力手
段が配置された2つの光学式移動距離検出手段であり、 前記移動量検出手段は、前記2つの光学式移動距離検出
手段により検出された移動距離を比較し、前記移動距離
の左右方向の成分の差を検出する比較手段を備え、前記
移動距離の左右方向の成分の差が所定の値よりも小さい
場合には、前記2つの光学式移動距離検出手段により検
出された2次元の移動距離の平均から前記移動体の2次
元の移動距離を検出し、前記2つの光学式移動距離検出
手段により検出された移動距離の前後方向の成分の差か
ら前記移動体の旋回角度を検出し、前記移動距離の左右
方向の成分の差が所定の値よりも大きい場合には、前記
機械式移動距離検出手段により検出された前後方向の移
動距離の成分および旋回角度に基づいて、前記移動体の
2次元の移動距離および旋回角度を検出することを特徴
とする自走式掃除機。
5. The optical movement distance detection means according to claim 3, wherein the optical movement distance detection means is two optical movement distance detection means in which an image input means is arranged apart from each other in the left-right direction of the moving body. The detecting means includes a comparing means for comparing the moving distances detected by the two optical moving distance detecting means and detecting a difference between the left and right components of the moving distance. If the difference is smaller than a predetermined value, the two-dimensional moving distance of the moving body is detected from the average of the two-dimensional moving distances detected by the two optical moving distance detecting means, and the two optical distances are detected. The turning angle of the moving body is detected from the difference in the front-rear direction component of the movement distance detected by the moving distance detection means, and when the difference in the left-right direction component of the movement distance is larger than a predetermined value, The mechanical distance measurement A two-dimensional moving distance and a turning angle of the moving body are detected based on a component of a moving distance in the front-rear direction and a turning angle detected by the output means.
【請求項6】請求項1〜5の1項において、前記画像入
力手段は、前記移動体に対して上下可動に支持されてい
ることを特徴とする自走式掃除機。
6. The self-propelled vacuum cleaner according to claim 1, wherein the image input means is supported so as to be vertically movable with respect to the moving body.
【請求項7】請求項1〜6の1項において、前記画像入
力手段は、撮像手段と、前記撮像手段に床面の画像を結
像する結像手段を備え、前記結像手段は、床面に対向す
る面を平滑な凹面に形成されていることを特徴とする自
走式掃除機。
7. The image input means according to claim 1, further comprising an image pickup means and an image formation means for forming an image of a floor surface on the image pickup means, wherein the image formation means is a floor. A self-propelled vacuum cleaner characterized in that the surface facing the surface is formed into a smooth concave surface.
JP2001381654A 2001-12-14 2001-12-14 Self-propelled vacuum cleaner Expired - Lifetime JP3626724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381654A JP3626724B2 (en) 2001-12-14 2001-12-14 Self-propelled vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381654A JP3626724B2 (en) 2001-12-14 2001-12-14 Self-propelled vacuum cleaner

Publications (2)

Publication Number Publication Date
JP2003180586A true JP2003180586A (en) 2003-07-02
JP3626724B2 JP3626724B2 (en) 2005-03-09

Family

ID=27592266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381654A Expired - Lifetime JP3626724B2 (en) 2001-12-14 2001-12-14 Self-propelled vacuum cleaner

Country Status (1)

Country Link
JP (1) JP3626724B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7171285B2 (en) 2003-04-03 2007-01-30 Lg Electronics Inc. Mobile robot using image sensor and method for measuring moving distance thereof
EP1768008A1 (en) * 2004-07-01 2007-03-28 Sharp Kabushiki Kaisha Mobile vehicle
JP2011092750A (en) * 2005-12-02 2011-05-12 Irobot Corp Autonomous cleaning robot
JP2011203224A (en) * 2010-03-26 2011-10-13 Shimizu Corp System and method for detection of moving body position
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8594840B1 (en) 2004-07-07 2013-11-26 Irobot Corporation Celestial navigation system for an autonomous robot
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
KR101339449B1 (en) * 2006-05-08 2013-12-06 삼성전자주식회사 Cleaning robot using floor image information and control method using the same
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8800107B2 (en) 2010-02-16 2014-08-12 Irobot Corporation Vacuum brush
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9436185B2 (en) 2010-12-30 2016-09-06 Irobot Corporation Coverage robot navigating
JP2020174899A (en) * 2019-04-18 2020-10-29 パナソニックIpマネジメント株式会社 Autonomically travelling type cleaner, system, and object recognition method

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8761935B2 (en) 2000-01-24 2014-06-24 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8565920B2 (en) 2000-01-24 2013-10-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8478442B2 (en) 2000-01-24 2013-07-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US8659255B2 (en) 2001-01-24 2014-02-25 Irobot Corporation Robot confinement
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8686679B2 (en) 2001-01-24 2014-04-01 Irobot Corporation Robot confinement
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US8659256B2 (en) 2001-01-24 2014-02-25 Irobot Corporation Robot confinement
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8656550B2 (en) 2002-01-03 2014-02-25 Irobot Corporation Autonomous floor-cleaning robot
US8763199B2 (en) 2002-01-03 2014-07-01 Irobot Corporation Autonomous floor-cleaning robot
US8516651B2 (en) 2002-01-03 2013-08-27 Irobot Corporation Autonomous floor-cleaning robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8671507B2 (en) 2002-01-03 2014-03-18 Irobot Corporation Autonomous floor-cleaning robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US7171285B2 (en) 2003-04-03 2007-01-30 Lg Electronics Inc. Mobile robot using image sensor and method for measuring moving distance thereof
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8461803B2 (en) 2004-01-21 2013-06-11 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8749196B2 (en) 2004-01-21 2014-06-10 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8456125B2 (en) 2004-01-28 2013-06-04 Irobot Corporation Debris sensor for cleaning apparatus
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8049902B2 (en) 2004-07-01 2011-11-01 Sharp Kabushiki Kaisha Mobile vehicle
EP1768008A4 (en) * 2004-07-01 2014-04-02 Sharp Kk Mobile vehicle
EP1768008A1 (en) * 2004-07-01 2007-03-28 Sharp Kabushiki Kaisha Mobile vehicle
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8634958B1 (en) 2004-07-07 2014-01-21 Irobot Corporation Celestial navigation system for an autonomous robot
US8634956B1 (en) 2004-07-07 2014-01-21 Irobot Corporation Celestial navigation system for an autonomous robot
US8594840B1 (en) 2004-07-07 2013-11-26 Irobot Corporation Celestial navigation system for an autonomous robot
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8782848B2 (en) 2005-02-18 2014-07-22 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8774966B2 (en) 2005-02-18 2014-07-08 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US10470629B2 (en) 2005-02-18 2019-11-12 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
US9599990B2 (en) 2005-12-02 2017-03-21 Irobot Corporation Robot system
US8954192B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Navigating autonomous coverage robots
US10524629B2 (en) 2005-12-02 2020-01-07 Irobot Corporation Modular Robot
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8761931B2 (en) 2005-12-02 2014-06-24 Irobot Corporation Robot system
US8950038B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Modular robot
JP2011092750A (en) * 2005-12-02 2011-05-12 Irobot Corp Autonomous cleaning robot
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8661605B2 (en) 2005-12-02 2014-03-04 Irobot Corporation Coverage robot mobility
US9149170B2 (en) 2005-12-02 2015-10-06 Irobot Corporation Navigating autonomous coverage robots
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8606401B2 (en) 2005-12-02 2013-12-10 Irobot Corporation Autonomous coverage robot navigation system
KR101339449B1 (en) * 2006-05-08 2013-12-06 삼성전자주식회사 Cleaning robot using floor image information and control method using the same
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US8572799B2 (en) 2006-05-19 2013-11-05 Irobot Corporation Removing debris from cleaning robots
US8528157B2 (en) 2006-05-19 2013-09-10 Irobot Corporation Coverage robots and associated cleaning bins
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8800107B2 (en) 2010-02-16 2014-08-12 Irobot Corporation Vacuum brush
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush
JP2011203224A (en) * 2010-03-26 2011-10-13 Shimizu Corp System and method for detection of moving body position
US10152062B2 (en) 2010-12-30 2018-12-11 Irobot Corporation Coverage robot navigating
US9436185B2 (en) 2010-12-30 2016-09-06 Irobot Corporation Coverage robot navigating
US11157015B2 (en) 2010-12-30 2021-10-26 Irobot Corporation Coverage robot navigating
JP2020174899A (en) * 2019-04-18 2020-10-29 パナソニックIpマネジメント株式会社 Autonomically travelling type cleaner, system, and object recognition method
JP7261958B2 (en) 2019-04-18 2023-04-21 パナソニックIpマネジメント株式会社 Autonomous vacuum cleaner

Also Published As

Publication number Publication date
JP3626724B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
JP2003180586A (en) Self-propelled cleaner
EP1500997B1 (en) Mobile robot using image sensor and method for measuring moving distance thereof
EP3230814B1 (en) Using laser sensor for floor type detection
US7507948B2 (en) Method of detecting object using structured light and robot using the same
WO2017200305A1 (en) Robot vacuum cleaner
US7239105B2 (en) Method compensating gyro sensor for robot cleaner
US20050166354A1 (en) Autonomous vacuum cleaner
JP2005230032A (en) Autonomous running robot cleaner
KR101637359B1 (en) Cleaner
KR20190015929A (en) Robot Cleaner
KR20180024326A (en) Moving Robot and controlling method
WO2021015411A1 (en) Robot cleaner and method for controlling the same
US8049902B2 (en) Mobile vehicle
KR20170129571A (en) Robot cleaner
JP2018153375A (en) Electric apparatus, autonomous traveling vacuum cleaner as electric apparatus and system including electric apparatus and base
KR101860338B1 (en) Mobile robot
KR20190130177A (en) Robot cleaner
JP2014219824A (en) Mobile robot system
KR20220012001A (en) Robot Cleaner and Controlling method thereof
AU2020409806B2 (en) Mobile robot and control method therefor
JP2010167055A (en) Self-travelling vacuum cleaner
KR102430113B1 (en) Robot cleaner
WO2021141199A1 (en) Robot cleaner and method for controlling the same
WO2021141200A1 (en) Robot cleaner and method for controlling the same
KR20000001764A (en) Control device of tavelling direction for robot cleaner and method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3626724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

EXPY Cancellation because of completion of term