AU2006235774B2 - Controlling direction of ultrasound imaging catheter - Google Patents

Controlling direction of ultrasound imaging catheter Download PDF

Info

Publication number
AU2006235774B2
AU2006235774B2 AU2006235774A AU2006235774A AU2006235774B2 AU 2006235774 B2 AU2006235774 B2 AU 2006235774B2 AU 2006235774 A AU2006235774 A AU 2006235774A AU 2006235774 A AU2006235774 A AU 2006235774A AU 2006235774 B2 AU2006235774 B2 AU 2006235774B2
Authority
AU
Australia
Prior art keywords
catheter
operative
imaging catheter
view
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2006235774A
Other versions
AU2006235774A1 (en
Inventor
Andres Claudio Altmann
Yaron Ephrath
Assaf Govari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biosense Webster Inc
Original Assignee
Biosense Webster Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biosense Webster Inc filed Critical Biosense Webster Inc
Publication of AU2006235774A1 publication Critical patent/AU2006235774A1/en
Application granted granted Critical
Publication of AU2006235774B2 publication Critical patent/AU2006235774B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • A61B8/543Control of the diagnostic device involving acquisition triggered by a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/304Surgical robots including a freely orientable platform, e.g. so called 'Stewart platforms'
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • A61B2090/3782Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument
    • A61B2090/3784Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument both receiver and transmitter being in the instrument or receiver being also transmitter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

The position of an imaging catheter in a body structure such as the heart is automatically controlled by a robotic manipulator such that its field of view at all times includes the distal end of a second catheter that is employed to effect a medical 5 procedure. A processor receives signals from position sensors in the catheters. The processor utilizes the information received from the sensors and continually determines any deviation of the second catheter from the required field of view of the imaging catheter. The processor transmits compensation instructions to the robotic manipulator, which when executed assure that the imaging catheter tracks the second 10 catheter. 13/10/06,16071 speci,2 0\ 37 46 40 41k3 12 s _ 6

Description

P/00/0 Il Regulation 3.2 AUSTRALIA Patents Act 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT ORIGINAL TO BE COMPLETED BY APPLICANT Name of Applicant: BIOSENSE WEBSTER, INC. Actual Inventors: ANDRES CLAUDIO ALTMANN YARON EPHRATH ASSAF GOVARI Address for Service: CALLINAN LAWRIE, 711 High Street, Kew, Victoria 3101, Australia Invention Title: CONTROLLING DIRECTION OF ULTRASOUND IMAGING CATHETER The following statement is a full description of this invention, including the best method of performing it known to us:- 2 CONTROLLING DIRECTION OF ULTRASOUND IMAGING CATHETER BACKGROUND OF THE INVENTION Field of the Invention 5 This invention relates to sensing the position and orientation of an object placed within a living body. More particularly, this invention relates to stabilizing the position and orientation of an intravascular probe within a moving internal organ of a living body. 10 Description of the Related Art A wide range of medical procedures involve placing objects, such as sensors, tubes, catheters, dispensing devices, and implants, within the body. Realtime imaging methods are often used to assist operators in visualizing the object and its surroundings during these procedures. In most situations, however, realtime three 15 dimensional imaging is not possible or desirable. Instead, systems for obtaining realtime spatial coordinates of the internal object are often utilized. Many such position sensing systems have been developed or envisioned in the prior art. Some systems involve attaching sensors to the internal object in the form of 20 transducers or antennas, which can sense magnetic, electric, or ultrasonic fields generated outside of the body. For example, U.S. Patent No. 5,983,126, issued to Wittkampf, whose disclosure is incorporated herein by reference, describes a system in which three substantially orthogonal alternating signals are applied through the subject. A catheter is equipped with at least one measuring electrode, and a voltage is 25 sensed between the catheter tip and a reference electrode. The voltage signal has components corresponding to the three orthogonal applied current signals, from which calculations are made for determination of the three-dimensional location of the catheter tip within the body. Similar methods for sensing voltage differentials between electrodes are proposed by U.S. Patent No. 5,899,860, issued to Pfeiffer, 30 whose disclosure is incorporated herein by reference. In both of these systems, it is 13/10/06,16071 speci,2 3 necessary to undertake a separate calibration procedure in order to adjust for discrepancies between the apparent position of the catheter tip as measured and its actual position. 5 Hybrid catheters are now known that perform ultrasound imaging in conjunction with position sensing. Such devices are disclosed, for example, in U.S. Patent Nos. 6,690,963, 6,716,166 and 6,773,402, which are herein incorporated by reference. Medical applications include three-dimensional mapping of a cavity of the body, as well as measurement of chamber wall thickness, wall velocity, and mapping 10 of electrical activity. In medical applications, it is common to acquire maps and images of body organs by different modalities, which are to be interpreted in relationship to one another. An example is correlation of an electro-anatomical map of the heart and an image, such as a three-dimensional ultrasound image. 15 Commercial electrophysiological and physical mapping systems based on detecting the position of a probe inside the body are presently available. Among them, the Carto-Biosense@ Navigation System, available from Biosense Webster Inc., 3333 Diamond Canyon Road Diamond Bar, CA 91765, is a system for automatic association and mapping of local electrical activity with catheter location. 20 SUMMARY OF THE INVENTION Hybrid catheters, for example, catheters having ultrasound transducers and a location sensor provide real-time visualization of anatomical structures and of surgical procedures. The catheter field of view and the resulting ultrasound images have the form of a two-dimensional "fan," which opens outward from the catheter tip 25 and provides a sectional image of the tissue that it intersects. If the location or orientation of the tip is incorrect or unstable, the fan may fail to capture a desired structure or may lose the structure during viewing. Disclosed embodiments of the present invention provide methods and systems for directing and stabilizing the orientation of the ultrasound beam. This is particularly useful in imaging an area in 30 which a surgical procedure is being performed. For example, ultrasound imaging can verify that an ablation catheter is in place and in contact with tissue to be ablated. 13/10/06,16071 speci,3 4 Subsequent to ablation, ultrasound imaging can confirm that ablation was successful because of the change in echogenicity of the tissue. Stabilization of the catheter using the principles of the present invention ensures that the operator has accurate, near realtime visual feedback related to the target of interest. A catheter having the 5 capabilities just described is sometimes referred to herein as an ultrasound catheter or an ultrasound imaging catheter. In some aspects of the present invention, convenience of echocardiographic guidance in single operator intracardiac therapeutic procedures is enhanced. By 10 robotically steering an ultrasound catheter to automatically follow the tip of an operative catheter, such as a mapping or ablating catheter, the operator is relieved of the burden of adjusting the imaging catheter to track the mapping or ablation catheter and its target. Realtime visualization of a target site is also enabled during the catheterization procedure, enabling accurate lesion targeting and optimal execution 15 of a therapeutic ablation plan. Other advantages of the invention include monitoring catheter-tissue contact, monitoring the progress of ablation, including detection of bubble and char formation in tissues at the target. Although the magnetic-based position and orientation sensor in the ultrasound 20 catheter enables the operator to know the catheter position and orientation at all times, it does not by itself guarantee success in holding the catheter stationary in a desired position. Embodiments of the present invention solve this problem by using automatic control of the ultrasound catheter to ensure that the catheter is correctly positioned, and oriented toward the target. The position sensing system determines 25 desired position and the direction in which the imaging catheter should be pointed and measures any deviations from this position and direction, using the magnetic position sensor in the catheter. It then corrects the imaging catheter position and orientation, using a robotic mechanism. Alternatively, cues are provided for the operator to manipulate the catheter as required. 30 13/10/06,16071 speci,4 -5 According to one disclosed embodiment of the invention a first catheter, e.g., an ultrasound catheter, is controlled in order to keep a second catheter in its field of view. The second catheter, which could be an ablating catheter or any catheter for effecting a medical procedure, includes a position sensor. The position sensing 5 system determines the position of the second catheter, using its position sensor, and uses the determined position as a reference point. The first catheter is then controlled to track the movement of the reference point, thereby keeping the second catheter in view. It should be noted that when the echogenic property of a landmark is changing, for example as a result of the medical procedure, image registration may become 10 increasingly difficult. The existence of a reliable reference point, as provided by the invention, then becomes all the more valuable. Advantages of the present invention include improved accuracy in utilizing ultrasound imaging to track the progress of medical procedures. It relieves the 15 operator of the continuous distraction of aiming the beam of the imaging catheter while performing a procedure. It can also be used to keep a particular structure or location within the body in the field of view of the catheter. In accordance with the present invention there is provided a method for 20 displaying structural information in a body of a living subject, said method including the steps of: introducing an imaging catheter into said body, said imaging catheter having a field of view; arranging the imaging catheter to a robotic manipulator operative for maneuvering said imaging catheter in said body; introducing an operative catheter into said body for performing a medical procedure on a target 25 structure of said body, and displacing said operative catheter in said body while performing said medical procedure; while performing said medical procedure, repetitively sensing a current position of said operative catheter and a current position of said imaging catheter; and responsively to said current position of said operative catheter and said current position of said imaging catheter, transmitting 30 control signals to the robotic manipulator to effectuate maneuvering of said imaging catheter on the basis of said control signals to include at least a portion of said operative catheter as a predetermined target in said field of view, wherein while 16/07/13jn6071 speci.5 -6 performing the medical procedure at least a portion of the operative catheter is maintained in said field of view. According to a preferred aspect of the method, the predetermined target is at 5 least one of a portion of the operative catheter and a portion of the target structure. A further preferred aspect of the method includes displaying an image of the field of view of the imaging catheter. 10 Another preferred aspect of the method displaying an image includes displaying a two-dimensional slice of the field of view of the imaging catheter in registration with a portion of the predetermined target. In another preferred aspect of the method, varying the field of view includes 15 maneuvering the imaging catheter in the body. In a further preferred aspect of the method, varying the field of view includes fixedly positioning the catheter and scanning an ultrasound beam from the imaging catheter in an oscillatory motion. 20 Still another preferred aspect of the method, which is carried out while scanning the ultrasound beam, includes acquiring a plurality of two-dimensional images of the field of view, constructing a three-dimensional image from the plurality of two-dimensional images, and displaying the three-dimensional image. 25 Yet another preferred aspect of the method varying the field of view includes moving the imaging catheter in an oscillatory motion. An additional preferred aspect of the method, which is carried out while 30 moving the imaging catheter, includes acquiring a plurality of two-dimensional images of the field of view, constructing a three-dimensional image from the plurality of two-dimensional images, and displaying the three-dimensional image. 16/07/13jtn6071 speci6 -7 According to still another preferred aspect of the method, the target structure is a portion of a heart. In accordance with the invention there is also provided a system for 5 displaying structural information in a body of a living subject, said method including: an imaging catheter adapted for introduction into said body, said imaging catheter having a field of view and having a position sensor therein; an operative catheter adapted for introduction into said body and for effecting a medical procedure on a target structure of said body, said operative catheter having a position sensor therein, 10 a robotic manipulator operative for maneuvering said imaging catheter in said body; a positioning processor linked to said robotic manipulator, said positioning processor being operative responsively to signals from said position sensor of said imaging catheter and said position sensor of said operative catheter for repetitively sensing a current position of said operative catheter relative to said imaging catheter while 15 effecting the medical procedure, said positioning processor being operative responsively to said current position to transmit control signals to said robotic manipulator to cause said robotic manipulator to maneuver said imaging catheter to maintain a portion of said operative catheter in said field of view; and an image processor operative to generate an image of said field of view responsively to image 20 data received from said imaging catheter; and a display for displaying said image. According to an additional preferred aspect of the system, the positioning processor is operative to maneuver the imaging catheter responsively to signals produced by the position sensor of the operative catheter. 25 According to another preferred aspect of the system, the positioning processor is operative to position the imaging catheter according to predetermined position coordinates. 30 According to yet another preferred aspect of the system, the image processor is operative for generating a two-dimensional image of the field of view in registration with the portion of the operative catheter. 16/0 7 /13jm16071 speci,7 -8 According to a further preferred aspect of the system, the robotic manipulator is operative to maneuver the imaging catheter in an oscillatory motion, and the image processor is operative for generating a plurality of two-dimensional images of the field of view, and a three-dimensional image that is constructed by the 5 image processor from the plurality of two-dimensional images. According to another preferred aspect of the system, the imaging catheter is an ultrasound imaging catheter. 10 The invention provides a method for displaying structural information in a body of a living subject, which is carried out by introducing an imaging catheter into the body, and positioning the imaging catheter such that its field of view includes a predetermined landmark in the body. The method is further carried out by introducing an operative catheter into the body adapted for performing a medical 15 procedure on a target structure of the body, displacing the operative catheter in the body while performing the medical procedure, automatically adjusting the field of view to maintain the landmark therein, and displaying an image of the landmark. One aspect of the method includes constructing a map of the target structure 20 that includes position coordinates of the landmark, wherein positioning the imaging catheter includes directing the field of view according to the position coordinates of the landmark. 16107/13Im16071 speci.8 9 BRIEF DESCRIPTION OF THE DRAWINGS For a better understanding of the present invention, reference is made to the de tailed description of the invention, by way of example, which is to be read in conjunction with the following drawings, wherein like elements are given like 5 reference numerals, and wherein: Fig. I is an illustration of a system for imaging and mapping a heart of a patient in accordance with a disclosed embodiment of the invention; 10 Fig. 2 schematically illustrates an embodiment of the distal end of s catheter used in the system shown in Fig. 1, in accordance with a disclosed embodiment of the invention; Fig. 3 is a schematic exploded view of a diagnostic image of the heart, in 15 accordance with a disclosed embodiment of the invention; Fig. 4 schematically illustrates a control mechanism used by the system shown in Fig. I to maneuver an imaging catheter during a medical procedure in accordance with a disclosed embodiment of the invention; and 20 Fig. 5 schematically illustrates a control mechanism used by the system shown in Fig. I to maneuver an imaging catheter during a medical procedure in accordance with an alternate embodiment of the invention. 13/10/06,16071 speci,9 10 DETAILED DESCRIPTION OF THE INVENTION In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent to one skilled in the art, however, that the present invention may be practiced without these 5 specific details. In other instances, well-known circuits, control logic, and the details of computer program instructions for conventional algorithms and processes have not been shown in detail in order not to obscure the present invention unnecessarily. 10 Software programming code, which embodies aspects of the present invention, is typically maintained in permanent storage, such as a computer readable medium. In a client-server environment, such software programming code may be stored on a client or a server. The software programming code may be embodied on any of a variety of known media for use with a data processing system. This includes, but is 15 not limited to, magnetic and optical storage devices such as disk drives, magnetic tape, compact discs (CD's), digital video discs (DVD's), and computer instruction signals embodied in a transmission medium with or without a carrier wave upon which the signals are modulated. For example, the transmission medium may include a communications network, such as the Internet. In addition, while the invention may 20 be embodied in computer software, the functions necessary to implement the invention may alternatively be embodied in part or in whole using hardware components such as application-specific integrated circuits or other hardware, or some combination of hardware components and software. 25 System Overview Turning now to the drawings, reference is initially made to Fig. 1, which is an illustration of a system 20 for imaging and mapping a heart 24 of a patient, and which is suitable for performing diagnostic or therapeutic procedures involving the heart 24, in accordance with an embodiment of the present invention. The system 30 comprises a catheter 28, which is percutaneously inserted by an operator 43, who is typically a physician, into a chamber or vascular structure of the heart. The 13/10/06,16071 speci,10 1 I catheter 28 typically comprises a handle 29 for operation of the catheter by the physician. Suitable controls on the handle enable the physician to steer, position and orient the distal end of the catheter as desired to effect a medical procedure. A second catheter 27 is used for imaging the heart, and for determining the position of 5 the catheter 28 in relation to a target, as described below. The catheter 27 has a steering mechanism 41 that is controlled by a robotic manipulator 31, and optionally by the operator 43. The manipulator 31 receives control signals from a positioning processor 36, located in a console 34. 10 The system 20 comprises a positioning subsystem that measures location and orientation coordinates of the catheter 28. Throughout this patent application, the term "location" refers to the spatial coordinates of the catheter, and the term "orientation" refers to its angular coordinates. The term "position" refers to the full positional information of the catheter, comprising both location and orientation 15 coordinates. In one embodiment, the positioning subsystem comprises a magnetic position tracking system that determines the position and orientation of the catheter 28 and the catheter 27. The positioning subsystem generates magnetic fields in a predefined 20 working volume its vicinity and senses these fields at the catheter. The positioning subsystem typically comprises a set of external radiators, such as field generating coils 30, which are located in fixed, known positions external to the patient. The coils 30 generate fields, typically electromagnetic fields, in the vicinity of the heart 24. 25 In an alternative embodiment, a radiator in the catheter, such as a coil, generates electromagnetic fields, which are received by sensors (not shown) outside the patient's body. 30 The position sensor transmits, in response to the sensed fields, position related electrical signals over cables 33 running through the catheter to the console 34. Alternatively, the position sensor may transmit signals to the console 13/10/06.16071 speci, I I 12 over a wireless link. The positioning processor 36 that calculates the location and orientation of the catheter 28 based on the signals sent by a position sensor 32. The positioning processor 36 typically receives, amplifies, filters, digitizes, and otherwise processes signals from the catheter 28. The positioning processor 36 also provides 5 signal input to the manipulator 31 for maneuvering the catheter 27. Some position tracking systems that may be used for this purpose are described, for example, in U.S. Patents 6,690,963, 6,618,612 and 6,332,089, and U.S. Patent Application Publications 2002/0065455 Al, 2004/0147920 Al, and o 2004/0068178 Al, whose disclosures are all incorporated herein by reference. Although the positioning subsystem shown in Fig. I uses magnetic fields, the methods described below may be implemented using any other suitable positioning subsystem, such as systems based on electromagnetic fields, acoustic or ultrasonic measurements. 15 Alternatively, the system 20 can be realized as the above-referenced Carto Biosense Navigation System, suitably modified to execute the procedures described hereinbelow. For example, the system 20 may employ, mutatis mutandis, the catheters disclosed in the above-noted U.S. Patent Nos. 6,716,166 and 6,773,402 in 20 order to acquire ultrasound images for display in near realtime. Reference is now made to Fig. 2, which schematically illustrates the distal end of the catheter 28 (Fig. 1), in accordance with a disclosed embodiment of the invention. The fields generated by the field generating coils 30 (Fig. 1) are sensed by the 25 position sensor 32 inside the catheter 28. The catheter 28 also comprises an ultrasonic imaging sensor, which is typically realized as an array of ultrasonic transducers 40. In one embodiment, the transducers are piezo-electric transducers. The ultrasonic transducers are positioned in or adjacent to a window 41, which defines an opening within the body or wall of the catheter. The catheter 28 typically 30 has at least one lumen 37, which can admit a guide wire and guide tube to aid in deployment of a therapeutic device. 13/10/06,16071 speci.12 13 The transducers 40 operate as a phased array, jointly transmitting an ultrasound beam from the array aperture through the window 23. Although the transducers are shown arranged in a linear array configuration, other array configurations can be used, such as circular or convex configurations. In one 5 embodiment, the array transmits a short burst of ultrasound energy and then switches to a receiving mode for receiving the ultrasound signals reflected from the surrounding tissue. Typically, the transducers 40 are driven individually in a controlled manner in order to steer the ultrasound beam in a desired direction. By appropriate timing of the transducers, the produced ultrasound beam can be given a 10 concentrically curved wave front, to focus the beam at a given distance from the transducer array. Thus, the system 20 (Fig. 1) uses the transducer array as a phased array and implements a transmit/receive scanning mechanism that enables the steering and focusing of the ultrasound beam, so as to produce two-dimensional ultrasound images. 15 In one embodiment, the ultrasonic sensor comprises between sixteen and sixty-four transducers 40, preferably between forty-eight and sixty-four transducers. Typically, the transducers generate the ultrasound energy at a center frequency in the range of 5-10 MHz, with a typical penetration depth of 14 cm. The penetration depth 20 typically ranges from several millimeters to around 16 centimeters, and depends upon the ultrasonic sensor characteristics, the characteristics of the surrounding tissue and the operating frequency. In alternative embodiments, other suitable frequency ranges and penetration depths can be used. 25 After receiving the reflected ultrasound echoes, electric signals based on the reflected acoustic signals or echoes are sent by transducers 40 over cables 33 through the catheter 28 to an image processor 42 (Fig. 1) in the console 34, which transforms them into two-dimensional, typically sector-shaped ultrasound images. The positioning processor 36 in cooperation with the image processor 42 typically 30 computes or determines position and orientation information, displays real-time ultrasound images, performs three-dimensional image or volume reconstructions. and other functions, which will all be described in greater detail below. 13/10/06,16071 speci,13 14 Position sensors and ultrasonic transducers in the catheter 27 (Fig. 1) are similar to those of the catheter 28, except that the transducers of the catheter 27 may be adapted for imaging applications, rather than delivery of therapeutic ultrasound 5 energy to a target. In some embodiments, the image processor 42 uses the ultrasound images and the positional information to produce a three-dimensional model of a target structure of the patient's heart. The three-dimensional model is presented to the 10 physician as a two-dimensional projection on a display 44. In some embodiments, the distal end of the catheter 28 also comprises at least one electrode 46 for performing diagnostic functions, therapeutic functions or both, such as electro-physiological mapping and radio frequency (RF) ablation. In one 15 embodiment, the electrode 46 is used for sensing local electrical potentials. The electrical potentials measured by the electrode 46 may be used in mapping the local electrical activity at contact points of the endocardial surface. When the electrode 46 is brought into contact or proximity with a point on the inner surface of the heart 24 (Fig. 1), it measures the local electrical potential at that point. The measured 20 potentials are converted into electrical signals and sent through the catheter to the image processor for display as a map reflecting the functional data or activity at each contact point. In other embodiments, the local electrical potentials are obtained from another catheter comprising suitable electrodes and a position sensor, all connected to the console 34. In some applications, the electrode 46 can be used to determine 25 when the catheter is in contact with a valve, since the electrical potentials are weaker there than in the myocardium. Although the electrode 46 is shown as being a single ring electrode, the catheter may comprise any number of electrodes in any form. For example, the 30 catheter may comprise two or more ring electrodes, a plurality or array of point electrodes, a tip electrode, or any combination of these types of electrodes for performing the diagnostic and therapeutic functions outlined above. 13/10/06.16071 speci,14 15 The position sensor 32 is typically located within the distal end of the catheter 28, adjacent to the electrode 46 and the transducers 40. Typically, the mutual positional and orientational offsets between the position sensor 32, electrode 46 and 5 transducers 40 of the ultrasonic sensor are constant. These offsets are typically used by the positioning processor 36 to derive the coordinates of the ultrasonic sensor and of the electrode 46, given the measured position of the position sensor 32. In another embodiment, the catheter 28 comprises two or more position sensors 32, each having constant positional and orientational offsets with respect to the electrode 46 and the 10 transducers 40. In some embodiments, the offsets (or equivalent calibration parameters) are pre-calibrated and stored in the positioning processor 36. Alternatively, the offsets can be stored in a memory device (such as an electrically programmable read-only memory, or EPROM) fitted into the handle 29 (Fig. 1) of the catheter 28. 15 The position sensor 32 typically comprises three non-concentric coils (not shown), such as described in U.S. Patent No. 6,690,963, cited above. Alternatively, any other suitable position sensor arrangement can be used, such as sensors comprising any number of concentric or non-concentric coils, Hall-effect sensors or 20 magneto-resistive sensors. Typically, both the ultrasound images and the position measurements are synchronized with the heart cycle, by gating signal and image capture relative to a body-surface electrocardiogram (ECG) signal or intra-cardiac electrocardiogram. (In 25 one embodiment, the ECG signal can be produced by the electrode 46.) Since features of the heart change their shape and position during the heart's periodic contraction and relaxation, the entire imaging process is typically performed at a particular timing with respect to this period. In some embodiments, additional measurements taken by the catheter, such as measurements of various tissue 30 characteristics, temperature and blood flow measurements, are also synchronized to the electrocardiogram (ECG) signal. These measurements are also associated with 13/10/06,16071 speci,15 16 corresponding position measurements taken by the position sensor 32. The additional measurements are typically overlaid on the reconstructed three-dimensional model. In some embodiments, the position measurements and the acquisition of the 5 ultrasound images are synchronized to an internally generated signal produced by the system 20. For example, the synchronization mechanism can be used to avoid interference in the ultrasound images caused by a certain signal. In this example, the timing of image acquisition and position measurement is set to a particular offset with respect to the interfering signal, so that images are acquired without 10 interference. The offset can be adjusted occasionally to maintain interference-free image acquisition. Alternatively, the measurement and acquisition can be synchronized to an externally supplied synchronization signal. In one embodiment, the system 20 comprises an ultrasound driver 25 that 15 drives the ultrasound transducers 40. One example of a suitable ultrasound driver, which can be used for this purpose is an AN2300TM ultrasound system produced by Analogic Corp. (Peabody, Massachusetts). In this embodiment, the ultrasound driver performs some of the functions of the image processor 42, driving the ultrasonic sensor and producing the two-dimensional ultrasound images. The ultrasound driver 20 may support different imaging modes such as B-mode, M-mode, CW Doppler and color flow Doppler, as are known in the art. Typically, the positioning processor 36 and image processor 42 are implemented using a general-purpose computer, which is programmed in software to 25 carry out the functions described herein. The software may be downloaded to the computer in electronic form, over a network, for example, or it may alternatively be supplied to the computer on tangible media, such as CD-ROM. The positioning processor and image processor may be implemented using separate computers or using a single computer, or may be integrated with other computing functions of the 30 system 20. Additionally or alternatively, at least some of the positioning and image processing functions may be performed using dedicated hardware. 13/10/06,16071 speci,16 17 Two-Dimensional Anatomic Imaging Referring again to Fig. 1, using the catheter 27, gated images, e.g., ultrasound images, of the heart are created, and registered with location data of the catheter 28. Suitable registration techniques are disclosed in U.S. Patent No. 6,650,927, the 5 disclosure of which is herein incorporated by reference. Reference is now made to Fig. 3, which is a schematic exploded view of a diagnostic image 56 of the heart 24 (Fig. 1), in accordance with a disclosed embodiment of the invention. The view is generated using a bullseye rendition technique. The 10 image 56 comprises a stack of parallel slices 58, which are perpendicular to an axis 60. The slices are typically taken at a fixed slice increment along the axis 60. Each slice shows a section 62. Three-Dimensional Anatomic Imaging 15 Referring again to Fig. 1, three-dimensional imaging is described in commonly assigned Application No. 11/115,002 filed on April 26, 2005, entitled Three-Dimensional Cardiac Imaging Using Ultrasound Contour Reconstruction, which is herein incorporated by reference. Essentially, three-dimensional image is constructed by combining multiple two-dimensional ultrasound images, acquired at 20 different positions of the catheter 27 into a single three-dimensional model of the target structure. The catheter 27 may operate in a scanning mode, moving between different positions inside a chamber of the heart 24. In each catheter position, the image processor 42 acquires and produces a two-dimensional ultrasound image. In one embodiment, the catheter 27 is side-looking, and a partial three-dimensional 25 reconstruction of the heart is obtained by dithering the catheter, using the manipulator 31, so as to vary its roll angle in an oscillatory manner. Alternatively, the catheter 27 can be dithered so as to vary its pitch or yaw angle. In any case, the result is displayed as a three-dimensional segment of the cardiac chamber, including the catheter 28 and its current target structure. 30 Alternatively, the catheter 28 is provided with a two-dimensional array of transducers 40 (Fig. 2), which can be phased in order to sweep the beam in an 13/10/06,16071 speci,17 18 oscillatory manner and thereby obtain different two-dimensional images of the target structure in a planes, while the catheter 28 is held in a fixed position. Tracking and Display 5 Referring again to Fig. 1, during a medical procedure the system 20 can continuously track and display the three-dimensional position of the catheter 28, using the catheter 27 to produce near real-time images of the catheter 28 and its target area. The positioning subsystem of the system 20 repetitively measures and calculates the current position of the catheter 28. The calculated position is stored 10 together with the corresponding slice or slices 58 (Fig. 3). Typically, each position of the catheter 28 is represented in coordinate form, such as a six-dimensional coordinate (X, Y, Z axis positions, and pitch, yaw and roll angular orientations). The image processor 42 subsequently assigns three-dimensional coordinates 15 to contours of interest, e.g., features identified in the set of images. The location and orientation of the planes of these images in three-dimensional space are known by virtue of the positional information, stored together with the images. Therefore, the image processor is able to determine the three-dimensional coordinates of any pixel in the two-dimensional images. When assigning the coordinates, the image processor 20 typically uses stored calibration data comprising position and orientation offsets between the position sensor and the ultrasonic sensor, as described above. Alternatively, the system 20 can be used for three-dimensional display and projection of two-dimensional ultrasound images, without reconstructing a three 25 dimensional model. For example, the physician can acquire a single two-dimensional ultrasound image. Contours of interest on this image can be tagged using the procedures described below. The system 20 can then orient and project the ultrasound image in three-dimensional space. 30 Reference is now made to Fig. 4, which schematically illustrates a mechanism used by the system 20 (Fig. 1) to effect real-time control of an imaging catheter during a medical procedure in accordance with a disclosed embodiment of the 13/10/06,16071 spcci,18 19 invention. The positioning processor 36 uses signals developed by the position sensor 32 (Fig. 2) to determine the location of the catheter 28, and varies signals that are transmitted to the manipulator 31. The catheter 27 is then automatically maneuvered by the manipulator 31, such that the current location of the catheter 28 is 5 always included in a field of view 35 of the catheter 27. The positioning processor 36 also receives signals from the position sensor (not shown) in the catheter 27 so that it can determine the relative locations of the catheters 27, 28. Using the information obtained from the catheters 28, 27, the position sensing 10 system determines the current appropriate location and orientation of the catheter 27, and measures any deviations. It then automatically signals the manipulator 31 to execute compensatory maneuvers of the catheter 27. Optionally, an annunciator 39 may audibly or visually cue the operator to override the manipulator 31 and adjust the position of the catheter 27 manually. 15 In some embodiments, once the target is in proximity with the catheter 28, an enhanced mode of operation is enabled. Using images developed by the image processor 42 (Fig. 1), a target 38 is identified, generally by the operator, but alternatively using information obtained from a knowledge base or a pre-acquired 20 map, as described below. The positioning processor 36 then instructs the manipulator 31 not only to include the catheter 28 in the field of view 35, but also the target 38. The system 20 (Fig. 1) then displays the catheter 28 and the target 38 on the display 44 in a perspective view that is most helpful to the operator. For example, in endoscopic applications, the display 44 can present complementary angular views 25 as requested by the operator. Alternative Embodiments The techniques of the present invention may also be used to keep the ultrasound catheter aimed toward a target that is not equipped with a position sensor. 30 Referring again to Fig. 1, the catheter 27 may be controlled to aim the ultrasound beam continuously toward a landmark in the heart. There are alternative ways of fixing the location and orientation of the ultrasound beam to include the landmark. 13/10/06,16071 speci,19 20 The operator 43 indicates fixed reference coordinates on a pre-acquired map. A suitable map can be prepared using the methods described in U.S. Patent 6,226,542, whose disclosure is incorporated herein by reference, Essentially, a 5 processor reconstructs a three-dimensional map of a volume or cavity in a patient's body from a plurality of sampled points on the volume whose position coordinates have been determined. In the case of a moving structure, such as the heart the sampled points are related to a reference frame obtained by gating the imaging data at a point in the cardiac cycle. When acquiring the map, a reference catheter is 10 fixedly positioned in the heart, and the sampled points are determined together with the position of the reference catheter, which is used to register the points. Reference is now made to Fig. 5, which schematically illustrates a control mechanism used by the system 20 (Fig. 1) to effect real-time tracking and control of 15 an imaging catheter during a medical procedure in accordance with an alternate embodiment of the invention. Fig. 5 is similar to Fig. 4, except now the positioning processor 36 does not receive signals from the location sensor of the catheter 27. Instead, the position of the catheter 27 is determined automatically by the positioning processor 36 with reference to suitably transformed coordinates of a map 70, which 20 is shown in Fig. 5 as a reconstructed heart volume. The map 70 has a plurality of sampled points 72, which are used to reconstruct a surface 74. A grid (not shown) is adjusted to form the surface 74, in which each point on the grid receives a reliability value indicative of the accuracy of the determination. When the map 70 is displayed for the operator 43, areas of the surface 74 that are covered by relatively less-reliable 25 grid points may be displayed semi-transparently. Alternatively or additionally, different levels of semi-transparency are used together with a multi-level reliability scale. Alternatively, the map 70 may indicate coordinates of the target, which are 30 then used as points of reference. 13/10/06,16071 spcci,20 21 The embodiments represented by Fig. 5 may be used to aim the ultrasound catheter toward an important landmark, such as the left atrial appendage or the mitral valve. The purpose of this can be, e.g., to confirm that the area is not being damaged by the medical procedure or that emboli are not developing. As an additional 5 example, the embodiments may be used to confirm the depth of ablation lesions. It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and sub-combinations 1o of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description. Throughout this specification and the claims which follow, unless the context 15 requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps. 20 The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form or suggestion that the prior art forms part of the common general knowledge in Australia. 13/10/06,16071 speci,21

Claims (10)

1. A method for displaying structural information in a body of a living subject, said method including the steps of: introducing an imaging catheter into said body, said imaging catheter having 5 a field of view; arranging the imaging catheter to a robotic manipulator operative for maneuvering said imaging catheter in said body; introducing an operative catheter into said body for performing a medical procedure on a target structure of said body, and displacing said operative catheter in 10 said body while performing said medical procedure; while performing said medical procedure, repetitively sensing a current position of said operative catheter and a current position of said imaging catheter; and responsively to said current position of said operative catheter and said 15 current position of said imaging catheter, transmitting control signals to the robotic manipulator to effectuate maneuvering of said imaging catheter on the basis of said control signals to include at least a portion of said operative catheter as a predetermined target in said field of view, wherein while performing the medical procedure at least a portion of the operative catheter is maintained in said field of 20 view.
2. The method according to claim 1, wherein said predetermined target is at least one of a portion of said operative catheter and a portion of said target structure. 25 3. The method according to claim 1 or claim 2, further including the step of displaying an image of said field of view of said imaging catheter.
4. The method according to claim 3, wherein said step of displaying an image includes displaying a two-dimensional slice of said field of view in registration with 30 a portion of said predetermined target. 16/07/13.,16071 speci.22 - 23 5. The method according to any one of the preceding claims, wherein said step of varying said field of view of said imaging catheter includes maneuvering said imaging catheter in said body. 5 6. The method according to any one of claims I to 4, wherein said step of varying said field of view includes fixedly positioning said catheter and scanning an ultrasound beam from said imaging catheter in an oscillatory motion.
7. The method according to any one of the preceding claims, further including 10 the steps of: while performing said step of scanning, acquiring a plurality of two dimensional images of said field of view; constructing a three-dimensional image from said plurality of two dimensional images; and 15 displaying said three-dimensional image.
8. The method according to any one of the preceding claims, wherein said step of varying said field of view includes moving said imaging catheter in an oscillatory motion. 20
9. The method according to claim 8, further including the steps of: while performing said step of moving said imaging catheter, acquiring a plurality of two-dimensional images of said field of view; constructing a three-dimensional image from said plurality of two 25 dimensional images; and displaying said three-dimensional image.
10. The method according to any one of the preceding claims, wherein said target structure is a portion of a heart. 30 IL. A system for displaying structural information in a body of a living subject, said method including: 160 7 /13.jmn6071 spcci.23 - 24 an imaging catheter adapted for introduction into said body, said imaging catheter having a field of view and having a position sensor therein; an operative catheter adapted for introduction into said body and for effecting a medical procedure on a target structure of said body, said operative 5 catheter having a position sensor therein, a robotic manipulator operative for maneuvering said imaging catheter in said body; a positioning processor linked to said robotic manipulator, said positioning processor being operative responsively to signals from said position sensor of said 10 imaging catheter and said position sensor of said operative catheter for repetitively sensing a current position of said operative catheter relative to said imaging catheter while effecting the medical procedure, said positioning processor being operative responsively to said current position to transmit control signals to said robotic manipulator to cause said robotic manipulator 15 to maneuver said imaging catheter to maintain a portion of said operative catheter in said field of view; and an image processor operative to generate an image of said field of view responsively to image data received from said imaging catheter; and a display for displaying said image. 20
12. The system according to claim 11, wherein said positioning processor is operative to maneuver said imaging catheter responsively to signals produced by said position sensor of said operative catheter. 25 13. The system according to claim 11, wherein said positioning processor is operative to position said imaging catheter according to predetermined position coordinates.
14. The system according to any one of claims 1 I to 13, wherein said image 30 processor is operative for generating a two-dimensional image of said field of view in registration with said portion of said operative catheter. 1 6 /0 7 /13,jml6071 speci.24 - 25 15. The system according to any one of claims I I to 14, wherein said robotic manipulator is operative to maneuver said imaging catheter in an oscillatory motion, and said image processor is operative for generating a plurality of two-dimensional images of said field of view, and said image includes a three-dimensional image that 5 is constructed by said image processor from said plurality of two-dimensional images.
16. The system according to any one of claims I I to 15, wherein said imaging catheter is an ultrasound imaging catheter. 10 16/07/13jm16071 speci.25
AU2006235774A 2005-11-01 2006-10-31 Controlling direction of ultrasound imaging catheter Ceased AU2006235774B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/264,221 2005-11-01
US11/264,221 US20070106147A1 (en) 2005-11-01 2005-11-01 Controlling direction of ultrasound imaging catheter

Publications (2)

Publication Number Publication Date
AU2006235774A1 AU2006235774A1 (en) 2007-05-17
AU2006235774B2 true AU2006235774B2 (en) 2013-08-15

Family

ID=37697870

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2006235774A Ceased AU2006235774B2 (en) 2005-11-01 2006-10-31 Controlling direction of ultrasound imaging catheter

Country Status (10)

Country Link
US (1) US20070106147A1 (en)
EP (1) EP1779802B1 (en)
JP (1) JP4920371B2 (en)
KR (1) KR20070047221A (en)
CN (1) CN101069645B (en)
AU (1) AU2006235774B2 (en)
BR (1) BRPI0604509A (en)
CA (1) CA2565652C (en)
IL (1) IL178913A (en)
MX (1) MXPA06012630A (en)

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10258285B2 (en) 2004-05-28 2019-04-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for automated creation of ablation lesions
US8755864B2 (en) 2004-05-28 2014-06-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for diagnostic data mapping
US8528565B2 (en) 2004-05-28 2013-09-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for automated therapy delivery
US9782130B2 (en) 2004-05-28 2017-10-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system
US7632265B2 (en) 2004-05-28 2009-12-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Radio frequency ablation servo catheter and method
GB0419954D0 (en) 2004-09-08 2004-10-13 Advotek Medical Devices Ltd System for directing therapy
US8155910B2 (en) * 2005-05-27 2012-04-10 St. Jude Medical, Atrial Fibrillation Divison, Inc. Robotically controlled catheter and method of its calibration
WO2007115152A2 (en) * 2006-03-31 2007-10-11 Medtronic Vascular, Inc. Telescoping catheter with electromagnetic coils for imaging and navigation during cardiac procedures
ITUD20070076A1 (en) 2007-04-26 2008-10-27 Eurotech S P A INTERACTIVE DISPLAY DEVICE AND CONFIGURATION PROCEDURE WITH CALCULATION UNIT
US9055883B2 (en) * 2007-05-16 2015-06-16 General Electric Company Surgical navigation system with a trackable ultrasound catheter
US7909767B2 (en) * 2007-05-16 2011-03-22 General Electric Company Method for minimizing tracking system interference
US8057397B2 (en) * 2007-05-16 2011-11-15 General Electric Company Navigation and imaging system sychronized with respiratory and/or cardiac activity
US20080287783A1 (en) * 2007-05-16 2008-11-20 General Electric Company System and method of tracking delivery of an imaging probe
US8620473B2 (en) * 2007-06-13 2013-12-31 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US9883818B2 (en) 2007-06-19 2018-02-06 Accuray Incorporated Fiducial localization
US20090003528A1 (en) * 2007-06-19 2009-01-01 Sankaralingam Ramraj Target location by tracking of imaging device
NL2002010C2 (en) * 2007-09-28 2009-10-06 Gen Electric Imaging and navigation system for atrial fibrillation treatment, displays graphical representation of catheter position acquired using tracking system and real time three-dimensional image obtained from imaging devices, on display
US9017248B2 (en) * 2007-11-08 2015-04-28 Olympus Medical Systems Corp. Capsule blood detection system and method
US9131847B2 (en) * 2007-11-08 2015-09-15 Olympus Corporation Method and apparatus for detecting abnormal living tissue
US20100329520A2 (en) * 2007-11-08 2010-12-30 Olympus Medical Systems Corp. Method and System for Correlating Image and Tissue Characteristic Data
US8162828B2 (en) * 2007-11-08 2012-04-24 Olympus Medical Systems Corp. Blood content detecting capsule
US9788790B2 (en) 2009-05-28 2017-10-17 Avinger, Inc. Optical coherence tomography for biological imaging
US9125562B2 (en) 2009-07-01 2015-09-08 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
US9498600B2 (en) 2009-07-01 2016-11-22 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US8062316B2 (en) 2008-04-23 2011-11-22 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US8548571B2 (en) 2009-12-08 2013-10-01 Avinger, Inc. Devices and methods for predicting and preventing restenosis
JP5789195B2 (en) 2008-12-08 2015-10-07 シリコンバレー メディカル インスツルメンツ インコーポレイテッド Catheter system for image guidance
CN102292041A (en) * 2009-01-20 2011-12-21 伊顿株式会社 Surgical robot for liposuction
US8265363B2 (en) * 2009-02-04 2012-09-11 General Electric Company Method and apparatus for automatically identifying image views in a 3D dataset
EP2424608B1 (en) 2009-04-28 2014-03-19 Avinger, Inc. Guidewire support catheter
US9005217B2 (en) * 2009-08-12 2015-04-14 Biosense Webster, Inc. Robotic drive for catheter
US10069668B2 (en) * 2009-12-31 2018-09-04 Mediguide Ltd. Compensation of motion in a moving organ using an internal position reference sensor
JP2013531542A (en) 2010-07-01 2013-08-08 アビンガー・インコーポレイテッド An atherectomy catheter having a longitudinally movable drive shaft
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
KR101347299B1 (en) * 2010-09-08 2014-01-03 (주)미래컴퍼니 Surgical robot for liposuction
CN103221148B (en) 2010-11-18 2016-04-13 皇家飞利浦电子股份有限公司 There are the Medical Devices of the ultrasonic transducer be embedded in flexible paillon foil
CA2831306C (en) 2011-03-28 2018-11-20 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
EP3653151A1 (en) 2011-10-17 2020-05-20 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US9345406B2 (en) 2011-11-11 2016-05-24 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
KR20140124856A (en) * 2012-02-16 2014-10-27 커스텀 메디컬 애플리케이션즈, 아이엔씨. Catheters, catheters for use in ultrasound guided procedures, and related methods
WO2013156896A2 (en) 2012-04-19 2013-10-24 Koninklijke Philips N.V. Energy application apparatus
WO2013172974A1 (en) 2012-05-14 2013-11-21 Avinger, Inc. Atherectomy catheter drive assemblies
EP2849661B1 (en) 2012-05-14 2020-12-09 Avinger, Inc. Atherectomy catheters with imaging
WO2013172972A1 (en) 2012-05-14 2013-11-21 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
JP6323974B2 (en) * 2012-05-18 2018-05-16 オリンパス株式会社 Surgery support device
WO2014009961A1 (en) * 2012-07-12 2014-01-16 Trig Medical Ltd. Transmitter guide
US9498247B2 (en) 2014-02-06 2016-11-22 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US10335173B2 (en) 2012-09-06 2019-07-02 Avinger, Inc. Re-entry stylet for catheter
EP2892448B1 (en) 2012-09-06 2020-07-15 Avinger, Inc. Balloon atherectomy catheters with imaging
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
JP6382202B2 (en) * 2012-10-12 2018-08-29 マフィン・インコーポレイテッドMuffin Incorporated Medical device with ultrasonic transducer
US10588597B2 (en) 2012-12-31 2020-03-17 Intuitive Surgical Operations, Inc. Systems and methods for interventional procedure planning
JP6291025B2 (en) 2013-03-15 2018-03-14 アビンガー・インコーポレイテッドAvinger, Inc. Optical pressure sensor assembly
US11096717B2 (en) 2013-03-15 2021-08-24 Avinger, Inc. Tissue collection device for catheter
US9854979B2 (en) 2013-03-15 2018-01-02 Avinger, Inc. Chronic total occlusion crossing devices with imaging
EP3019096B1 (en) 2013-07-08 2023-07-05 Avinger, Inc. System for identification of elastic lamina to guide interventional therapy
CN104640501B (en) * 2013-07-21 2019-07-23 特里格医疗有限公司 Transmitter guiding device
WO2015010900A1 (en) * 2013-07-23 2015-01-29 Koninklijke Philips N.V. Method and system for localizing body structures
US11103174B2 (en) * 2013-11-13 2021-08-31 Biosense Webster (Israel) Ltd. Reverse ECG mapping
EP3082610A1 (en) * 2013-12-17 2016-10-26 Koninklijke Philips N.V. Shape sensed robotic ultrasound for minimally invasive interventions
US20150182726A1 (en) * 2013-12-30 2015-07-02 Catheter Robotics, Inc. Simultaneous Dual Catheter Control System And Method For Controlling An Imaging Catheter To Enable Treatment By Another Catheter
US9713456B2 (en) * 2013-12-30 2017-07-25 Acist Medical Systems, Inc. Position sensing in intravascular imaging
JP6568084B2 (en) * 2014-01-24 2019-08-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Robot control to image devices using optical shape detection
CA2938972A1 (en) 2014-02-06 2015-08-13 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US9545263B2 (en) 2014-06-19 2017-01-17 Limflow Gmbh Devices and methods for treating lower extremity vasculature
MX2017000303A (en) 2014-07-08 2017-07-10 Avinger Inc High speed chronic total occlusion crossing devices.
CN104771232A (en) * 2015-05-05 2015-07-15 北京汇影互联科技有限公司 Electromagnetic positioning system and selection method for three-dimensional image view angle of electromagnetic positioning system
CA2992272A1 (en) 2015-07-13 2017-01-19 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
CN108778113B (en) 2015-09-18 2022-04-15 奥瑞斯健康公司 Navigation of tubular networks
JP6902547B2 (en) * 2016-01-15 2021-07-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Automated probe steering for clinical views using fusion image guidance system annotations
WO2017132247A1 (en) 2016-01-25 2017-08-03 Avinger, Inc. Oct imaging catheter with lag correction
CN108882948A (en) 2016-04-01 2018-11-23 阿维格公司 Rotary-cut art conduit with zigzag cutter
JP6963567B2 (en) 2016-05-19 2021-11-10 アシスト・メディカル・システムズ,インコーポレイテッド Position detection in intravascular processes
CN109561879B (en) 2016-05-19 2022-03-29 阿西斯特医疗系统有限公司 Position sensing in intravascular procedures
WO2017210466A1 (en) 2016-06-03 2017-12-07 Avinger, Inc. Catheter device with detachable distal end
JP7061080B2 (en) 2016-06-30 2022-04-27 アビンガー・インコーポレイテッド Atherectomy catheter with a shaped distal tip
US10792466B2 (en) 2017-03-28 2020-10-06 Auris Health, Inc. Shaft actuating handle
EP3609415B1 (en) 2017-04-10 2023-08-23 LimFlow GmbH Devices for treating lower extremity vasculature
KR102643758B1 (en) 2017-05-12 2024-03-08 아우리스 헬스, 인코포레이티드 Biopsy devices and systems
EP3420914A1 (en) * 2017-06-30 2019-01-02 Koninklijke Philips N.V. Ultrasound system and method
KR102341451B1 (en) 2017-06-28 2021-12-23 아우리스 헬스, 인코포레이티드 Robot system, method and non-trnasitory computer readable storage medium for instrument insertion compensation
CN107361848B (en) * 2017-07-31 2023-05-16 成都博恩思医学机器人有限公司 Control handle of actuating mechanism
KR102500422B1 (en) 2018-03-28 2023-02-20 아우리스 헬스, 인코포레이티드 System and method for displaying the estimated position of an instrument
CA3112353A1 (en) 2018-10-09 2020-04-16 Limflow Gmbh Devices and methods for catheter alignment
CN109223175A (en) * 2018-10-24 2019-01-18 中聚科技股份有限公司 A kind of three-dimensional based endoscopic imaging laser therapeutic system
WO2020118190A1 (en) * 2018-12-07 2020-06-11 Veran Medical Technologies, Inc. Endobronchial catheter system and method for rapid diagnosis of lung disease
EP4044942A4 (en) 2019-10-18 2023-11-15 Avinger, Inc. Occlusion-crossing devices
EP3815614A1 (en) * 2019-10-28 2021-05-05 Koninklijke Philips N.V. Ultrasound device tracking
CA3153757A1 (en) 2019-11-01 2021-05-06 Limflow Gmbh Devices and methods for increasing blood perfusion to a distal extremity
US20210137488A1 (en) * 2019-11-12 2021-05-13 Biosense Webster (Israel) Ltd. Historical ultrasound data for display of live location data
US11903656B2 (en) * 2021-09-24 2024-02-20 Biosense Webster (Israel) Ltd. Automatic control and enhancement of 4D ultrasound images

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029682A1 (en) * 1996-02-15 1997-08-21 Biosense Inc. Locatable biopsy needle
US5749362A (en) * 1992-05-27 1998-05-12 International Business Machines Corporation Method of creating an image of an anatomical feature where the feature is within a patient's body
WO2001089405A1 (en) * 2000-05-22 2001-11-29 Siemens Aktiengesellschaft Fully-automatic, robot-assisted camera guidance using position sensors for laparoscopic interventions
US6332089B1 (en) * 1996-02-15 2001-12-18 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US20030220561A1 (en) * 2002-03-11 2003-11-27 Estelle Camus Method and apparatus for acquiring and displaying a medical instrument introduced into a cavity organ of a patient to be examined or treated

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690963B2 (en) * 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
DE19529950C1 (en) * 1995-08-14 1996-11-14 Deutsche Forsch Luft Raumfahrt Guiding method for stereo laparoscope in minimal invasive surgery
US5697377A (en) * 1995-11-22 1997-12-16 Medtronic, Inc. Catheter mapping system and method
ES2210498T3 (en) * 1996-02-15 2004-07-01 Biosense, Inc. POSITIONABLE TRANSDUCERS INDEPENDENTLY FOR LOCATION SYSTEM.
SE9603314D0 (en) * 1996-09-12 1996-09-12 Siemens Elema Ab Method and apparatus for determining the location of a catheter within the body of a patient
US6490474B1 (en) * 1997-08-01 2002-12-03 Cardiac Pathways Corporation System and method for electrode localization using ultrasound
US6083166A (en) * 1997-12-02 2000-07-04 Situs Corporation Method and apparatus for determining a measure of tissue manipulation
EP0945104A1 (en) * 1998-03-25 1999-09-29 Sulzer Osypka GmbH System and method for visualising the activity of an organ
US6226542B1 (en) * 1998-07-24 2001-05-01 Biosense, Inc. Three-dimensional reconstruction of intrabody organs
US6546270B1 (en) * 2000-07-07 2003-04-08 Biosense, Inc. Multi-electrode catheter, system and method
US6650927B1 (en) * 2000-08-18 2003-11-18 Biosense, Inc. Rendering of diagnostic imaging data on a three-dimensional map
US6716166B2 (en) * 2000-08-18 2004-04-06 Biosense, Inc. Three-dimensional reconstruction using ultrasound
US6773402B2 (en) * 2001-07-10 2004-08-10 Biosense, Inc. Location sensing with real-time ultrasound imaging
US8175680B2 (en) * 2001-11-09 2012-05-08 Boston Scientific Scimed, Inc. Systems and methods for guiding catheters using registered images
US20040068178A1 (en) * 2002-09-17 2004-04-08 Assaf Govari High-gradient recursive locating system
GB0222265D0 (en) * 2002-09-25 2002-10-30 Imp College Innovations Ltd Control of robotic manipulation
US7306593B2 (en) * 2002-10-21 2007-12-11 Biosense, Inc. Prediction and assessment of ablation of cardiac tissue
EP1720480A1 (en) * 2004-03-05 2006-11-15 Hansen Medical, Inc. Robotic catheter system
CN100445488C (en) * 2005-08-01 2008-12-24 邱则有 Hollow member for cast-in-situ concrete moulding
US8079950B2 (en) * 2005-09-29 2011-12-20 Intuitive Surgical Operations, Inc. Autofocus and/or autoscaling in telesurgery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5749362A (en) * 1992-05-27 1998-05-12 International Business Machines Corporation Method of creating an image of an anatomical feature where the feature is within a patient's body
WO1997029682A1 (en) * 1996-02-15 1997-08-21 Biosense Inc. Locatable biopsy needle
US6332089B1 (en) * 1996-02-15 2001-12-18 Biosense, Inc. Medical procedures and apparatus using intrabody probes
WO2001089405A1 (en) * 2000-05-22 2001-11-29 Siemens Aktiengesellschaft Fully-automatic, robot-assisted camera guidance using position sensors for laparoscopic interventions
US20030220561A1 (en) * 2002-03-11 2003-11-27 Estelle Camus Method and apparatus for acquiring and displaying a medical instrument introduced into a cavity organ of a patient to be examined or treated

Also Published As

Publication number Publication date
MXPA06012630A (en) 2007-04-30
CA2565652C (en) 2015-01-06
IL178913A0 (en) 2007-03-08
JP4920371B2 (en) 2012-04-18
US20070106147A1 (en) 2007-05-10
EP1779802B1 (en) 2016-04-06
AU2006235774A1 (en) 2007-05-17
CN101069645B (en) 2012-11-28
BRPI0604509A (en) 2007-08-28
JP2007144150A (en) 2007-06-14
KR20070047221A (en) 2007-05-04
EP1779802A2 (en) 2007-05-02
EP1779802A3 (en) 2007-12-19
IL178913A (en) 2011-03-31
CA2565652A1 (en) 2007-05-01
CN101069645A (en) 2007-11-14

Similar Documents

Publication Publication Date Title
AU2006235774B2 (en) Controlling direction of ultrasound imaging catheter
AU2006203713B2 (en) Segmentation and registration of multimodal images using physiological data
EP1749475B1 (en) Monitoring of percutaneous mitral valvuloplasty
AU2006201644B2 (en) Registration of electro-anatomical map with pre-acquired imaging using ultrasound
EP2064991B1 (en) Flashlight view of an anatomical structure
KR20060112243A (en) Display of two-dimensional ultrasound fan
KR20060112239A (en) Registration of ultrasound data with pre-acquired image
KR20060112242A (en) Software product for three-dimensional cardiac imaging using ultrasound contour reconstruction
KR20060112241A (en) Three-dimensional cardiac imaging using ultrasound contour reconstruction
KR20060112244A (en) Display of catheter tip with beam direction for ultrasound system
JP2008535560A (en) 3D imaging for guided interventional medical devices in body volume
KR20070046000A (en) Synchronization of ultrasound imaging data with electrical mapping
US20240108315A1 (en) Registration of x-ray and ultrasound images
KR20110078274A (en) Position tracking method for vascular treatment micro robot using image registration
KR20110078271A (en) Integrated ultrasound probe in vessel with electromagnetic sensor
KR20110078275A (en) Navigation control system for vascular treatment micro robot by considering deformability of coronary artery
KR20110078270A (en) Position tracking method for vascular treatment micro robot by considering deformability of coronary artery
KR20110078279A (en) Fiducial marker for multi medical imaging systems
KR20070015883A (en) Monitoring of percutaneous mitral valvuloplsasty

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired