AU2003213544B2 - Method and apparatus for cancellation of borehole effects due to a tilted or transverse magnetic dipole - Google Patents

Method and apparatus for cancellation of borehole effects due to a tilted or transverse magnetic dipole Download PDF

Info

Publication number
AU2003213544B2
AU2003213544B2 AU2003213544A AU2003213544A AU2003213544B2 AU 2003213544 B2 AU2003213544 B2 AU 2003213544B2 AU 2003213544 A AU2003213544 A AU 2003213544A AU 2003213544 A AU2003213544 A AU 2003213544A AU 2003213544 B2 AU2003213544 B2 AU 2003213544B2
Authority
AU
Australia
Prior art keywords
borehole
antenna
support
disposed
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2003213544A
Other versions
AU2003213544A1 (en
Inventor
Thomas D Barber
Stephen D Bonner
Brian Clark
Dean M Homan
Dzevat Omeragic
Richard A Rosthal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology BV
Original Assignee
Schlumberger Technology BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU93404/01A external-priority patent/AU765066B2/en
Application filed by Schlumberger Technology BV filed Critical Schlumberger Technology BV
Priority to AU2003213544A priority Critical patent/AU2003213544B2/en
Publication of AU2003213544A1 publication Critical patent/AU2003213544A1/en
Application granted granted Critical
Publication of AU2003213544B2 publication Critical patent/AU2003213544B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT Applicant(s): SCHLUMBERGER TECHNOLOGY B.V.
Invention Title: METHOD AND APPARATUS FOR CANCELLATION OF BOREHOLE EFFECTS DUE TO A TILTED OR TRANSVERSE MAGNETIC DIPOLE The following statement is a full description of this invention, including the best method of performing it known to me/us: i -2- METHOD AND APPARATUS FOR CANCELLATION OF BOREHOLE EFFECTS DUE TO A TILTED OR TRANSVERSE MAGNETIC DIPOLE 1. BACKGROUND OF THE INVENTION 1.1 Field of the Invention The invention relates to techniques for reducing and/or correcting for borehole effects encountered in subsurface measurements. More particularly, the invention concerns methods, and devices for their implementation, in which well logging instruments using sources or sensors having a transverse or tilted magnetic dipole are adapted to reduce or correct for undesired electromagnetic effects associated with the deployment of the instruments in a borehole. The present application is a divisional application of Australian application no. 93404/01.
1.2 Description of Related Art Various well logging techniques are known in the field of hydrocarbon exploration and production. These techniques typically employ logging instruments or "sondes" equipped with sources adapted to emit energy through a borehole traversing the subsurface formation. The emitted energy interacts with the surrounding formation to produce signals that are detected and measured by one or more sensors on the instrument. By processing the detected signal data, a profile of the formation properties is obtained.
Electromagnetic (EM) logging techniques known in the art include "wireline" logging and logging-while-drilling (LWD). Wireline logging entails lowering the instrument into the borehole at the end of an electrical cable to obtain the subsurface measurements as the instrument is moved along the borehole. LWD entails attaching the instrument disposed in a drill collar to a drilling assembly while a borehole is being drilled through earth formations.
Conventional wireline and LWD instruments are implemented with antennas that are operable as sources and/or sensors. In wireline applications, the antennas are typically enclosed by a housing constructed of a tough plastic material composed of a laminated fiberglass material impregnated with epoxy resin. In LWD applications, the antennas are generally mounted on a metallic support to withstand the hostile environment encountered during drilling. Conventional logging instruments are also being constructed of -3thermoplastic materials. The thermoplastic composite construction of these instruments provides a non-conductive structure for mounting the antennas. U.S. Pat. No. 6,084,052 (assigned to the present assignee) describes implementations of composite-based logging instruments for use in wireline and LWD applications.
In both wireline and LWD applications, the antennas are mounted on the support member and axially spaced from each other in the direction of the borehole. These antennas are generally coils of the cylindrical solenoid type and are comprised of one or more turns of insulated conductor wire that is wound around the support. U.S. Pat. Nos. 4,873,488 and 5,235,285 (both assigned to the present assignee), for example, describe instruments equipped with antennas disposed along a central metallic support. In operation, the transmitter antenna is energized by an alternating current to emit EM energy through the borehole fluid (also referred to herein as mud) and into the formation. The signals detected at the receiver antenna are usually expressed as a complex number (phasor voltage) and reflect interaction with the mud and the formation.
One EM logging technique investigates subsurface formations by obtaining electrical resistivity or conductivity logs by "focused" measurements. U.S. Pat. No. 3,452,269 (assigned to the present assignee) describes an instrument adapted for taking these focused measurements. The technique described in the '269 patent uses a survey current emitted by a principal survey current emitting electrode. This survey current is confined to a path substantially perpendicular to the borehole axis by focusing currents emitted from nearby focusing electrodes. U.S. Pat. No. 3,305,771 describes a focusing technique using an instrument equipped with toroidal coils. U.S. Pat. Nos. 3,772,589, 4,087,740, 4,286,217 (all assigned to the present assignee) describe other electrode-type instruments used for subsurface measurements.
U.S. Pat. No. 5,426,368 (assigned to the present assignee) describes a logging technique using an array of current electrodes disposed on a support. The '368 patent uses the electrode configuration to investigate the geometrical characteristics of the borehole and the resistivity properties of the formation. U.S. Pat. Nos. 5,235,285 and 5,339,037 (both assigned to the present assignee) describe metallic instruments adapted with a toroidal coil and electrode system for obtaining resistivity measurements while drilling. The -4measurement techniques described in the '285 and '037 patents entail inducing a current that travels in a path including the conductive support body and the formation.
U.S. Pat. Nos. 3,388,325 and 3,329,889 (both assigned to the present assignee) describe instruments equipped with an electrode and coil configuration for obtaining subsurface measurements. U.S. Pat. No. 3,760,260 (assigned to the present assignee) also describes a downhole instrument equipped with electrodes and coils. The '260 patent uses the electrode configuration to ensure radial current flow into the formation surrounding the borehole. U.S. Pat. No. 4,511,843 (assigned to the present assignee) describes a logging technique whereby currents are emitted from electrodes to zero a potential difference between other electrodes on the instrument. U.S. Pat. No. 4,538,109 (assigned to the present assignee) describes a logging technique aimed at correcting or canceling the effects of spurious EM components on downhole measurement signals.
A coil carrying a current can be represented as a magnetic dipole having a magnetic moment proportional to the current and the area. The direction and strength of the magnetic moment can be represented by a vector perpendicular to the plane of the coil. In conventional induction and propagation logging instruments, the transmitter and receiver antennas are mounted with their axes along the longitudinal axis of the instrument. Thus, these instruments are implemented with antennas having longitudinal magnetic dipoles (LMD). When such an antenna is placed in a borehole and energized to transmit EM energy, currents flow around the antenna in the borehole and in the surrounding formation. There is no net current flow up or down the borehole.
An emerging technique in the field of well logging is the use of instruments incorporating antennas having tilted or transverse coils, where the coil's axis is not parallel to the support axis. These instruments are thus implemented with antennas having a transverse or tilted magnetic dipole (TMD). The aim of these TMD configurations is to provide EM measurements with directed sensitivity and sensitivity to the anisotropic resistivity properties of the formation. Logging instruments equipped with TMDs are described in U.S. Pat. Nos. 4,319,191, 5,508,616, 5,757,191, 5,781,436, 6,044,325, 6,147,496, WO 00/50926, and in V. F. Mechetin et al., TEMP- A New Dual Electromagnetic and Laterolog Apparatus-Technological Complex, THIRTEENTH EUROPEAN FORMATION EVALUATION SYMPOSIUM TRANSACTIONS, Budapest Chapter, paper K, 1990.
A particularly troublesome property of the TMD is the extremely large borehole effect that occurs in high contrast situations, when the mud in the borehole is much more conductive than the formation. When a TMD is placed in the center of a borehole, there is no net current along the borehole axis. When it is eccentered in a direction parallel to the direction of the magnetic moment, the symmetry of the situation insures that there is still no net current along the borehole axis. However, when a TMD is eccentered in a direction perpendicular to the direction of the magnetic moment, axial currents are induced in the borehole. In high contrast situations these currents can flow for a very long distance along the borehole. When these currents pass by TMD receivers, they can cause undesired signals that are many times larger than would appear in a homogeneous formation without a borehole.
U.S. Pat. No. 5,041,975 (assigned to the present assignee) describes a technique for processing signal data from downhole measurements in an effort to correct for borehole effects. U.S. Pat. No. 5,058,077 describes a technique for processing downhole sensor data in an effort to compensate for the effect of eccentric rotation on the sensor while drilling.
However, neither of these patents relates to the properties or effects of TMDs in subsurface measurements.
Thus there remains a need for improved methods and apparatus for reducing or correcting for these currents when using well logging instruments implemented with TMDs.
2. SUMMARY OF THE INVENTION The invention provides an apparatus for use in a borehole traversing a formation, comprising an elongated non-conductive support having a longitudinal axis and at least one conductive segment disposed thereon; at least one antenna disposed on the support such that the magnetic dipole moment of the antenna is tilted or perpendicular with respect to the longitudinal axis of the support; the at least one antenna being disposed along a conductive segment on the support; and each at least one antenna being adapted to transmit and/or receive electromagnetic energy.
The invention provides a method for altering the flow of an axial electric current along a subsurface borehole in the vicinity of an antenna disposed within the borehole, the antenna being disposed on a non-conductive support having a longitudinal axis and adapted for disposal within the borehole, the antenna being adapted to transmit and/or receive electromagnetic energy. The method comprises mounting a conductive segment on the support such that the segment is exposed to the borehole when the support is disposed within the borehole; disposing the antenna along the conductive segment to provide a path through the antenna for the axial current flow when the support is disposed within the borehole; and disposing the antenna along the conductive segment such that the magnetic dipole moment of the antenna is tilted or perpendicular with respect to the longitudinal axis of the support.
3. BRIEF DESCRIPTION OF THE DRAWINGS Other aspects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which: Figure 1 shows a pictorial looking downhole of parallel and perpendicular eccentering of a tilted or transverse magnetic dipole within a borehole.
Figure 2 is a schematic diagram of an instrument with an arrayed electrode configuration according to an embodiment of the invention.
Figure 3 is a schematic diagram of an instrument with an annular electrode configuration according to an embodiment of the invention.
Figure 4 is a schematic diagram of an instrument with a conductive segment disposed on a non-conductive support according to an embodiment of the invention.
Figure 5 is a schematic diagram illustrating the current paths encountered with a conductive all-metal instrument having a perpendicularly eccentered tilted or transverse magnetic dipole in accord with the embodiment.
Figure 6 is a schematic diagram of an instrument with multiple electrode pairs configured about an antenna according to an embodiment of the invention.
Figure 7 shows a flow chart of an embodiment of a method according to the invention.
Figure 8 is a schematic diagram of the induced axial current flow encountered in the borehole with a non-conductive instrument having a perpendicularly eccentered tilted or transverse magnetic dipole.
Figure 9 illustrates the current injected into the borehole from an instrument equipped with electrode pairs about a source according to an embodiment of the invention.
Figure 10 is a schematic diagram of the axial current flow about an instrument equipped with electrode pairs about a sensor according to an embodiment of the invention.
4. DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS Before proceeding with disclosure of the invention, some theoretical consideration shall be set forth.
A TMD can be eccentered in a borehole in two possible orientations, which we will call parallel and perpendicular eccentering as shown in Figure 1. Parallel eccentering forces currents symmetrically up and down the borehole and therefore no net current is generated.
This borehole effect is no worse than in a typical downhole instrument equipped with nontilted (axial) antennas. Perpendicular eccentering gives rise to a large axial borehole current in the case of an insulated instrument body, which strongly couples to a transverse receiver an axial distance away (not shown). These two displacements are the extremes of the possible ones. In the general case, the eccentering will be in a direction that is at some angle to the dipole moment of the sensors. In this case, the borehole effect lies between the two extreme cases.
It is important to understand the basic difference between the borehole effect of a conventional LMD and the borehole effect of a TMD. If either type of source is placed in a homogeneous medium, currents will flow in paths surrounding the transmitter. When a borehole is added, these current paths are distorted. These currents induce a voltage in a receiver coil displaced from the transmitter. This voltage is an indication of the resistivity of the formation. If instead of a homogeneous medium, we include a borehole, then the current paths are altered and hence the received voltage is different from what would be measured in the absence of a borehole. This difference is called the "borehole effect." The difference in borehole effect between an LMD and a TMD is due to the difference between the distortion of the currents in the presence of a borehole. With an LMD centered or eccentered in a borehole, these currents flow in the borehole in a region near the transmitter. We know that the field of a localized current distribution can be represented as by a multipole expansion.
The leading term (the dipole term) falls off as I/ r 3 where r is the radial distance in any direction away from the transmitter. Other terms fall off even faster.
-8- For a TMD eccentered in a borehole in a direction along the direction of the dipole moment (parallel), we have a similar situation. Currents flow up one side of the borehole and down the other in a symmetric manner. There is no net current in the borehole past the transmitter. This localized current causes a dipole field just as with an LMD. When the TMD is eccentered in a direction perpendicular to the direction of the dipole moment, these currents are no longer symmetric and a net current flows in the borehole past the transmitter.
This current flows up the borehole and returns through the formation. When this current passes the receiver coil, a voltage is induced in the coil. This current falls off, not geometrically at least as rapidly as /1r 3 but exponentially as e (z 1 O where zo is proportional to fomin When the borehole is much more conductive than the formation, Rmu this leads to a very slow falloff in this current.
In the case of an LMD, or a parallel eccentered TMD, the voltage in the receiver is due to the fields from the localized distortion of the current distribution near the transmitter.
In the case of a perpendicularly eccentered TMD, it is due to the field from a current travelling in the borehole right past the receiver. This second effect is much larger than the first.
Figure 2 shows an embodiment of the invention. A logging instrument with a nonconductive body is shown disposed within a borehole. The instrument is equipped with a transverse (90'axis tilt) transmitter antenna Tx and a transverse receiver antenna Rx. The instrument is also equipped with a pair of electrodes El, E 2 positioned at opposite ends of the transmitter antenna Tx. The electrodes El, E 2 may be formed as an array of circumferentially spaced apart azimuthal metallic electrodes. Figure 2 shows an electrode configuration composed of an array of sixteen discrete azimuthal metallic segments 10 mounted on an insulating toroid 12. Alternatively, the electrodes El, E 2 may also be formed as one-piece metallic annular electrodes as shown in Figure 3. If an annular electrode configuration is used, it is preferable to leave an axial gap or opening along the circumference of the electrode. It will be appreciated by those skilled in the art that various types of electrode configurations may be used to implement the invention as known in the art, such as button electrodes.
-9- The electrodes El, E 2 are shorted together with a conductor a wire, cable, or metallic strap) 14 that preferably runs through the center of the transmitter antenna Tx. If the electrodes El, E 2 are configured as an array of circumferentially spaced apart azimuthal electrodes, all the electrode segments of El are shorted together and all the electrode segments of E 2 are shorted together and El is shorted to E 2 The shorting of the electrodes El and the shorting of the electrodes E 2 is preferably done with wires that run radially to avoid the formation of an azimuthal current loop. By shorting the electrodes El, E 2 above and below the transmitter Tx, this configuration insures that there is no net electric field along the borehole and so no net current flow. The conductor(s) connecting upper and lower electrodes El, E 2 pass through the transmitter Tx and allow currents flowing through the borehole to close. This leads to a localized current distribution without the long-range axial currents, which would otherwise be present in the borehole. This localized distribution of currents has, at most, a dipole moment which falls off at least as fast as 1/L 3 where L is the spacing between antennas. In effect, this configuration shorts the azimuthally varying induced axial current through the transmitter Tx and forms a local magnetic dipole in opposition to the TMD. The electrodes El, E 2 may be mounted on the instrument by any suitable means known in the art.
Figure 4 shows another embodiment of the invention. By mounting the TMD about a conductive segment 16 disposed along the non-conductive support member of the instrument, a local induced current distribution is formed. The current loop that is created is composed of the borehole and conductive segment 16. The conductive segment 16 may be formed as a metallic tube or sleeve mounted on the non-conductive support. The instrument may be equipped with multiple conductive segments and antennas as desired. Modeling and experiments show that the current that flows in the borehole and metal section of the instrument is limited in axial extent to a few times the borehole diameter. Thus the length of the conductive section is variable, but preferably more than a few times the diameter of the largest borehole where the instrument may be run.
With the conductive segment 16 disposed in alignment with an antenna and in contact with the borehole fluid, the axial current induced in the borehole returns through the instrument body in the vicinity of the antenna instead of traveling for a long distance along the borehole. If the conductive segment 16 is about the receiver antenna, then the axial current that would otherwise travel in the borehole will instead travel in the conductive segment 16. Thus, the flow of the induced axial current along the borehole is minimized by providing an alternate path for the current along the instrument body. An alternative embodiment extends the conductive segment 16 to the length of the instrument (not shown), in essence consisting of a full-metal sleeve along the support.
Conventional induction logging instruments, particularly wireline instruments, comprise antennas in housings formed of non-conductive materials such as fiberglass reinforced epoxy resin. Figure 5 shows another embodiment of the invention. A TMD antenna is disposed on'a logging instrument 18 consisting of an all-metal body 20. A layer of an electrically insulating material Randallite, fiberglass-epoxy, or rubber) is placed between the antenna and the body 20. The instrument 18 is also equipped with a signal generator mounted within the body (not shown) to pass an alternating current through the antenna. The signal generator operating frequency is generally between 1 kHz and 5 MHz.
Alternatively, the current may be fed to the antenna through a wireline cable as known in the art.
As shown in Figure 5, when the instrument 18 is eccentered in the borehole, the metallic body 20 is exposed to the borehole fluid such that a local induced current distribution is formed along the body 20. A shield 22 is also mounted on the body 20 to protect the TMD antenna and to permit the passage of particular desired electromagnetic energy components. U.S. Pat. Nos. 4,949,045 and 4,536,714 (both assigned to the present assignee) describe conductive metallic shield configurations that may be used. Those skilled in the art will appreciate that other suitable shields may be used with the instrument 18. For example, a shield may be configured in the form of a strip (not shown), also referred to as flex circuit, to provide flexibility and easy mounting.
For effective operation of the TMD antenna, the resulting current flow should not induce a voltage in the antenna. Thus if a conductive shield 22 is placed over the antenna so that current flows there instead of in the borehole fluid, a zero current will be induced in the antenna if the current in the shield 22 is azimuthally symmetric. Otherwise the voltage in the receiver antenna may be greater than it would be if current were flowing in the mud. The desired axisymmetric current distribution may be achieved by disposing a conductive material between the shield 22 and the body 20 such that an azimuthally uniform connection -11is formed. For example, a conductive metallic O-ring or gasket may be disposed at both ends of the shield 22 such that there are no breaks between the shield 22 and the body 20 (not shown). With respect to the embodiment of Figure 4, the conductive segment 16 on the nonconductive support redirects the induced current through the conductor centered through the TMD such that there will be zero voltage induced in the TMD within the mechanical accuracy of the placement of the conductor.
A zero current induced in the TMD antenna is also achieved by insulating the conductive shield 22 from the metallic body 20. This may be attained by mounting the shield 22 on the body 20 such that one end is fully insulated (not shown). Randallite, fiberglassepoxy, rubber, or any suitable nonconductive material or compound may be disposed between the shield 22 and the body 20 to provide the desired insulation. Alternatively, the TMD may be sealed or potted onto the body 20 with a rubber over-molding or any suitable non-conductive compound that permits the passage of EM energy. Yet another embodiment comprises a shield 22 made of an insulating material to permit the passage of EM radiation.
Useable materials include the class of polyetherketones described in U.S. Pat. Nos. 4,320,224 and 6,084,052 (assigned to the present assignee), or other suitable resins. Victrex USA, Inc.
of West Chester, PA manufactures one type called PEEK. Cytec Fiberite, Greene Tweed, and BASF market other suitable thermoplastic resin materials. Another usable insulating material is Tetragonal Phase Zirconia ceramic manufactured by Coors Ceramics of Golden, Colorado.
Figure 6 shows another embodiment of the invention. A logging instrument with a non-conductive body is shown disposed within a borehole. The instrument is equipped with a transverse transmitter antenna Tx and a transverse receiver antenna Rx. The receiver antenna Rx is positioned between a pair of measure electrodes M, which are themselves positioned between a pair of current electrodes A, The electrodes M, A, A' may be formed as an array of circumferentially spaced apart metallic electrodes or as an annular electrode as described above.
One embodiment of the invention involves a process using the principle of superposition and a digital focusing approach. This embodiment is shown in flow chart form in Figure 7. This technique may be implemented with the embodiment of Figure 6. In this process, the transmitter antenna Tx is activated, at 100, and the voltage signal (VRI) at the -12receiver antenna Rx as well as the voltage difference on the measure electrodes M, M' are obtained at 105, 110. The transmitter antenna is then shut off, at 115, and a current is run between the current electrodes A, A' at 120. The voltage at the measure electrodes
(AVM
2 and the voltage signal (VR 2 at the receiver antenna are again measured at 125, 130.
The excitation necessary to produce the set of voltages on the measure electrodes M, M' is then calculated, at 135, and the voltage in the receiver antenna Rx due to this excitation is computed at 140. This voltage is then subtracted from the voltage actually measured to produce the borehole-corrected signal at 145. Mathematically the equation is expressed as VCorr VRI A VR2 lO= AV' R (1) ArM2 This voltage should be equal to the voltage that would appear on the receiver antenna Rx if the longitudinal current in the borehole did not exist in a high contrast situation. Since the transmitter antenna Tx operates at some finite frequency, and all the voltages are complex (they include an amplitude and a phase shift relative to the transmitter current or the electrode currents), the currents injected from the electrodes A, A' are at the same frequency.
The instruments of the invention may be equipped with conventional electronics and circuitry to activate the sources and sensors to obtain the desired measurements as known in the art. Once acquired, the data may be stored and/or processed downhole or communicated to the surface in real time via conventional telemetry systems known in the art.
Figure 8 illustrates the induced axial current flow encountered in the borehole with a typical non-conductive instrument equipped with a TMD when the TMD is perpendicularly eccentered in a conductive borehole. Figure 9 shows another embodiment of the invention.
This particular embodiment entails a feedback process. The embodiment of Figure 9 is similar to that of Figure 6. The measure electrodes M, M' are adapted to sample and measure the azimuthally varying magnitude of the induced electric field. Current is then injected into the borehole by the current electrodes A, A' to counter or cancel the borehole current measured by the measure electrodes M, Thus, current is discharged from the 6 13current electrodes A, A' in such a way as to achieve the condition that the voltage difference between M and M' is made equal to zero. That is AV VM VM. 0.
Figure 10 shows another embodiment of the invention. The embodiment shown in Figure 10 is similar to that of Figure 9, except that the electrodes are disposed about a TMD receiver on a typical non-conductive instrument. With this configuration, the induced current flows up the borehole, enters the current electrode travels up the instrument to the second electrode A, and continues up the borehole. In the immediate vicinity of the TMD, there is no current flow in the borehole. The measure electrodes M and M' provide an analog feedback to the current electrodes A, A' to just cancel the borehole effect. Thus, the flow of the axial current along the borehole is countered with the injection of another current emitted within the borehole.
As known in the art, the signals measured with induction frequencies are affected by direct transmitter-to-receiver coupling. Therefore, the logging instruments of the invention may also include so-called "bucking" antennas to eliminate or reduce these coupling effects.
It will also be understood by those skilled in the art that the principle of reciprocity provides that the electrode and/or conductive segment configurations of the invention will work whether they are implemented about the transmitters or receivers on the instrument. The spacing between the electrodes and/or antennas in the direction of the borehole may also be varied for effective implementation of the invention. In addition, the logging instruments of the invention may be "propagation" instruments in which quantities such as phase shift or attenuation could be measured between pairs of receivers.
For the purposes of this specification it will be clearly understood that the word "comprising" means "including but not limited to", and that the word "comprises" has a corresponding meaning.
It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.

Claims (8)

1. An apparatus for use in a borehole traversing a formation, comprising: an elongated non-conductive support having a longitudinal axis and at least one conductive segment disposed thereon; at least one antenna disposed on the support such that the magnetic dipole moment of the antenna is tilted or perpendicular with respect to the longitudinal axis of the support; the at least one antenna being disposed along a conductive segment on the support; and each at least one antenna being adapted to transmit and/or receive electromagnetic energy.
2. The apparatus of claim 1, wherein the conductive segment comprises a metallic tubular coaxially disposed on the outer circumference of the support and the at least one antenna that is disposed along the segment is electrically insulated from the segment.
3. The apparatus of claim 1, wherein the support comprises a plurality of independent conductive segments disposed thereon.
4. The apparatus of claim 3, wherein the support comprises two independent conductive segments, each conductive segment having an antenna disposed thereon, the magnetic dipole moments of the antennas being tilted or perpendicular with respect to the longitudinal axis of the support.
A method for altering the flow of an axial electric current along a subsurface borehole in the vicinity of an antenna disposed within the borehole, the antenna being disposed on a non-conductive support having a longitudinal axis and adapted for disposal within the borehole, the antenna being adapted to transmit and/or receive electromagnetic energy, comprising: a) mounting a conductive segment on the support such that the segment is exposed to the borehole when the support is disposed within the borehole; b) disposing the antenna along the conductive segment to provide a path through the antenna for the axial current flow when the support is disposed within the borehole; and c) disposing the antenna along the conductive segment such that the magnetic dipole moment of the antenna is tilted or perpendicular with respect to the longitudinal axis of the support.
6. The method of claim 5, wherein the conductive segment comprises a metallic tubular coaxially disposed on the outer circumference of the support.
7. An apparatus as claimed in any one of claims 1 to 4 and substantially as herein described with reference to the accompanying drawings.
8. A method as claimed in claim 5 or claim 6 and substantially as herein described with reference to the accompanying drawings. Dated this 17th day of July 2003 SCHLUMBERGER TECHNOLOGY BV By their Patent Attorneys GRIFFITH HACK Fellows Institute of Patent and Trade Mark Attorneys of Australia
AU2003213544A 2000-12-15 2003-07-17 Method and apparatus for cancellation of borehole effects due to a tilted or transverse magnetic dipole Ceased AU2003213544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003213544A AU2003213544B2 (en) 2000-12-15 2003-07-17 Method and apparatus for cancellation of borehole effects due to a tilted or transverse magnetic dipole

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/737891 2000-12-15
AU93404/01A AU765066B2 (en) 2000-12-15 2001-11-23 Method and apparatus for cancellation of borehole effects due to a tilted or transverse magnetic dipole
AU2003213544A AU2003213544B2 (en) 2000-12-15 2003-07-17 Method and apparatus for cancellation of borehole effects due to a tilted or transverse magnetic dipole

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU93404/01A Division AU765066B2 (en) 2000-12-15 2001-11-23 Method and apparatus for cancellation of borehole effects due to a tilted or transverse magnetic dipole

Publications (2)

Publication Number Publication Date
AU2003213544A1 AU2003213544A1 (en) 2003-08-14
AU2003213544B2 true AU2003213544B2 (en) 2005-03-17

Family

ID=33557029

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2003213544A Ceased AU2003213544B2 (en) 2000-12-15 2003-07-17 Method and apparatus for cancellation of borehole effects due to a tilted or transverse magnetic dipole

Country Status (1)

Country Link
AU (1) AU2003213544B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2376076A (en) * 2000-12-15 2002-12-04 Schlumberger Holdings Cancellation of borehole effects due to a tilted or transverse magnetic dipole

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2376076A (en) * 2000-12-15 2002-12-04 Schlumberger Holdings Cancellation of borehole effects due to a tilted or transverse magnetic dipole

Also Published As

Publication number Publication date
AU2003213544A1 (en) 2003-08-14

Similar Documents

Publication Publication Date Title
AU765066B2 (en) Method and apparatus for cancellation of borehole effects due to a tilted or transverse magnetic dipole
US6693430B2 (en) Passive, active and semi-active cancellation of borehole effects for well logging
AU2002325479C1 (en) Current-directing shield apparatus for use with transverse magnetic dipole antennas
US7514930B2 (en) Apparatus and method for addressing borehole eccentricity effects
EP0560893B1 (en) System for nmr logging a well during the drilling thereof
US8036830B2 (en) Resistivity imager in non-conductive mud for LWD and wireline applications
US5233522A (en) Multifrequency dielectric logging tool including antenna system responsive to invaded rock formations
GB2371870A (en) Subsurface reservoir monitoring
WO2001048514A1 (en) An apparatus accurately measuring properties of a formation
US8786287B2 (en) Collocated tri-axial induction sensors with segmented horizontal coils
US6927578B2 (en) Detection of borehole currents due to a decentered transverse magnetic dipole transmitter
CA2499797C (en) Method and apparatus using a quadrupole transmitter in a directionally sensitive induction tool
GB2404742A (en) Apparatus and method for reducing borehole current effects
AU2003213544B2 (en) Method and apparatus for cancellation of borehole effects due to a tilted or transverse magnetic dipole
EP0163574B1 (en) Apparatus for microinductive investigation of earth formations
GB2235296A (en) Apparatus for use in a borehole to measure an electrical parameter of the formation surrounding the borehole
WO2001006278A1 (en) Logging-while-drilling using a directional sonde

Legal Events

Date Code Title Description
TH Corrigenda

Free format text: IN VOL 17, NO 30, PAGE(S) 10659 UNDER THE HEADING COMPLETE APPLICATIONS FILED - NAME INDEX UNDER THE NAME SCHLUMBERGER TECHNOLOGY B.V., APPLICATION NO. 2003213544, UNDER INID (31) CORRECT THE NUMBER TO READ 93404/01

FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired