WO2024075594A1 - Semiconductor laser device - Google Patents

Semiconductor laser device Download PDF

Info

Publication number
WO2024075594A1
WO2024075594A1 PCT/JP2023/034932 JP2023034932W WO2024075594A1 WO 2024075594 A1 WO2024075594 A1 WO 2024075594A1 JP 2023034932 W JP2023034932 W JP 2023034932W WO 2024075594 A1 WO2024075594 A1 WO 2024075594A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
mirror
reflecting mirror
laser light
light
Prior art date
Application number
PCT/JP2023/034932
Other languages
French (fr)
Japanese (ja)
Inventor
雅幸 畑
健太 渡邉
一彦 山中
茂生 林
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Publication of WO2024075594A1 publication Critical patent/WO2024075594A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30

Definitions

  • This disclosure relates to a semiconductor laser device.
  • Patent Document 1 describes a semiconductor laser device that includes a multi-stage base arranged on a flat bottom surface, a plurality of semiconductor laser elements and a plurality of reflecting mirrors arranged on the multi-stage base, a focusing lens, and an optical fiber.
  • a semiconductor laser device that includes a multi-stage base arranged on a flat bottom surface, a plurality of semiconductor laser elements and a plurality of reflecting mirrors arranged on the multi-stage base, a focusing lens, and an optical fiber.
  • Each of the plurality of semiconductor laser elements and each of the plurality of reflecting mirrors are arranged on each stage of the multi-stage base.
  • the plurality of laser beams from the plurality of semiconductor laser elements are respectively deflected by the plurality of reflecting mirrors and enter the focusing lens.
  • the focusing lens focuses the incident plurality of laser beams onto the incident end face of the optical fiber.
  • the semiconductor laser device described in Patent Document 1 aims to realize a compact, high-output laser light source through the above-mentioned configuration.
  • the semiconductor laser device described in Patent Document 1 When the bottom surface of the semiconductor laser device described in Patent Document 1 is placed on a heat sink, the distances from the multiple semiconductor laser elements to the bottom surface are different from one another, resulting in non-uniform heat dissipation characteristics for the multiple semiconductor laser elements. Also, in the semiconductor laser device described in Patent Document 1, the multiple semiconductor laser elements need to be mounted in multiple stages that are different heights from one another, making the mounting process complicated. In the semiconductor laser device described in Patent Document 1, the positions at which the semiconductor laser elements are arranged are determined on a multi-stage base, making it difficult to solve these problems.
  • the present disclosure therefore aims to increase the degree of freedom in arranging multiple semiconductor laser elements in a semiconductor laser device that includes multiple semiconductor laser elements.
  • a semiconductor laser device includes a housing having a bottom surface, a first semiconductor laser element and a second semiconductor laser element disposed within the housing, a first reflecting mirror that reflects a first laser light emitted from the first semiconductor laser element, a second reflecting mirror that reflects a second laser light emitted from the second semiconductor laser element, a focusing lens that focuses the first laser light reflected by the first reflecting mirror and the second laser light reflected by the second reflecting mirror, a first mirror mounting surface on which the first reflecting mirror is mounted, and a second mirror mounting surface on which the second reflecting mirror is mounted, the first mirror mounting surface and the second mirror mounting surface being parallel to each other, , the second mirror installation surface is not on the same plane, the first semiconductor laser element has a first light-emitting point from which the first laser light is emitted, the second semiconductor laser element has a second light-emitting point from which the second laser light is emitted, the optical axis of the first laser light incident on the
  • a semiconductor laser device includes a housing having a bottom surface, a first semiconductor laser element and a second semiconductor laser element arranged within the housing, a first reflecting mirror that reflects a first laser light emitted from the first semiconductor laser element, a second reflecting mirror that reflects a second laser light emitted from the second semiconductor laser element, a focusing lens that focuses the first laser light reflected by the first reflecting mirror and the second laser light reflected by the second reflecting mirror, a first collimating element arranged between the first semiconductor laser element and the first reflecting mirror and deflecting the propagation direction of the first laser light, and a second collimating element arranged between the second semiconductor laser element and the second reflecting mirror and deflecting the propagation direction of the second laser light, the first semiconductor laser element having a first light-emitting point from which the first laser light is emitted, and the second semiconductor laser element having a second light-emitting point from which the second laser light is emitted.
  • the optical axis of the first laser light incident on the first parallelizing element is parallel to the optical axis of the second laser light incident on the second parallelizing element
  • the optical axis of the first laser light incident on the first reflecting mirror is parallel to the optical axis of the second laser light incident on the second reflecting mirror
  • the optical axis of the first laser light incident on the first reflecting mirror is inclined with respect to the optical axis of the first laser light incident on the first parallelizing element
  • FIG. 1 is a perspective view showing a configuration of a semiconductor laser device according to a first embodiment; 1 is a plan view showing a configuration of a semiconductor laser device according to a first embodiment; 1 is a side view showing a configuration of a semiconductor laser device according to a first embodiment; 2 is a schematic diagram showing the spot shape of laser light on the end face of an optical fiber.
  • FIG. FIG. 2 is a plan view showing a configuration of a semiconductor laser device according to a first modification of the first embodiment.
  • 1 is a side view showing a configuration of a semiconductor laser device according to a first modification of the first embodiment.
  • FIG. FIG. 11 is a plan view showing a configuration of a semiconductor laser device according to a second modification of the first embodiment.
  • FIG. 11 is a side view showing a configuration of a semiconductor laser device according to a second modification of the first embodiment.
  • FIG. 11 is a perspective view showing a configuration of a semiconductor laser device according to a second embodiment.
  • FIG. 11 is a perspective view showing a detailed configuration example of an airtight package according to a second embodiment.
  • FIG. 11 is a perspective view showing an internal configuration of an airtight package according to a modified example of the second embodiment.
  • FIG. 11 is a plan view showing a configuration of a semiconductor laser device according to a third embodiment.
  • FIG. 11 is a side view showing a configuration of a semiconductor laser device according to a third embodiment.
  • FIG. 11 is a perspective view showing a configuration of a semiconductor laser device according to a fourth embodiment.
  • FIG. 11 is a side view showing a configuration of a semiconductor laser device according to a second modification of the first embodiment.
  • FIG. 11 is a perspective view showing a configuration of a semiconductor laser device according to a second embodiment
  • FIG. 13 is a side view showing a configuration of a semiconductor laser device according to a fourth embodiment.
  • FIG. 13 is a perspective view showing a configuration of a semiconductor laser device according to a first modification of the fourth embodiment.
  • FIG. 13 is a side view showing a configuration of a semiconductor laser device according to a first modification of the fourth embodiment.
  • FIG. 13 is a side view showing a configuration of a semiconductor laser device according to a second modification of the fourth embodiment.
  • FIG. 13 is a perspective view showing a configuration of a semiconductor laser device according to a fifth embodiment.
  • FIG. 13 is a side view showing a configuration of a semiconductor laser device according to a fifth embodiment.
  • FIG. 13 is a perspective view showing a configuration of a semiconductor laser device according to a modification of the fifth embodiment.
  • FIG. 11 is a perspective view showing a configuration of a semiconductor laser device according to a third modification of the first embodiment.
  • FIG. 11 is a perspective view showing a configuration of a semiconductor laser device according
  • each figure is a schematic diagram and is not necessarily an exact illustration. Therefore, for example, the scales of each figure do not necessarily match.
  • the same reference numerals are used for substantially the same configuration, and duplicate explanations are omitted or simplified.
  • the terms “above” and “below” do not refer to vertically above and below in an absolute spatial sense, but are used as terms defined by a relative positional relationship based on the stacking order in the stacked configuration. Furthermore, the terms “above” and “below” are applied not only to cases where two components are arranged with a gap between them and another component exists between the two components, but also to cases where two components are arranged in close contact with each other and the two components are in contact.
  • FIGS. 1, 2, and 3 are a perspective view, a plan view, and a side view, respectively, showing the configuration of the semiconductor laser device 1 according to the present embodiment.
  • FIGS. 1 to 3 in order to show the inside of the semiconductor laser device 1, the cover of the housing 2 of the semiconductor laser device 1 and a part or all of the side wall 3 are not shown.
  • Each figure shows an X-axis, a Y-axis, and a Z-axis that are orthogonal to each other.
  • the X-axis, the Y-axis, and the Z-axis are in a right-handed Cartesian coordinate system.
  • the relative position in the X-axis direction may be expressed as “upper” (or “up”) or “lower” (or “lower”).
  • a position on the positive side of a certain position in the X-axis direction may be expressed as an upper position
  • a position on the negative side of the X-axis direction may be expressed as a lower position.
  • the semiconductor laser device 1 includes a housing 2, a plurality of semiconductor laser elements 10-15, a plurality of reflecting mirrors 70-75, a focusing lens 90, and a plurality of mirror mounting surfaces 80-85.
  • the semiconductor laser device 1 further includes submounts 20-25, FAST axis collimator lenses 30-35, a deflection element 40, parallelizing elements 51-55, SLOW axis collimator lenses 60-65, an optical fiber 4, a laser base 7, current introduction terminals 9a, 9b, and a wiring member 9c.
  • the semiconductor laser device 1 is a module that can spatially combine and emit the laser light emitted from each of the multiple semiconductor laser elements 10 to 15 using an optical system.
  • the housing 2 has a bottom 6, a side wall 3, and a lid (not shown).
  • the bottom 6 is a plate-like member that is placed on the bottom of the housing 2 (the lower end, i.e., the end on the negative side in the X-axis direction in each figure).
  • the bottom 6 has a flat bottom surface 6a.
  • the bottom surface 6a is a flat region of the main surface of the bottom 6 that is located on the inside of the housing 2.
  • the bottom surface 6a is a surface that is in the same plane.
  • the bottom surface 6a is the entire main surface of the bottom 6. Note that the main surface of the bottom 6 that is located on the inside of the housing 2 may have a non-flat region (i.e., a region other than the bottom surface 6a).
  • the sidewall 3 is disposed perpendicular to the bottom 6 of the housing 2.
  • the sidewall 3 is disposed so as to surround the multiple semiconductor laser elements 10-15.
  • the sidewall 3 is made of, for example, Cu, a Cu alloy, an Fe-Ni-Co alloy, or Al.
  • the bottom 6 is made of, for example, Cu, a Cu alloy, Al, or a ceramic with high thermal conductivity (for example, AlN or BeO).
  • the lid is a member that covers the upper part of the housing 2.
  • the current introduction terminals 9a, 9b are terminals for introducing a current from the outside of the housing 2 to the inside of the housing 2. One end of each of the current introduction terminals 9a, 9b is disposed outside the housing 2, and the other end is disposed inside the housing 2. In this embodiment, the current introduction terminals 9a, 9b are disposed on the side wall 3 and penetrate the side wall 3. If the side wall 3 is formed of a conductive material, an insulating member is disposed between the current introduction terminals 9a, 9b and the side wall 3.
  • the multiple mirror installation surfaces 80 to 85 are surfaces on which multiple reflective mirrors 70 to 75 are respectively installed. That is, the reflective mirror 70 is installed on the mirror installation surface 80, the reflective mirror 71 is installed on the mirror installation surface 81, the reflective mirror 72 is installed on the mirror installation surface 82, the reflective mirror 73 is installed on the mirror installation surface 83, the reflective mirror 74 is installed on the mirror installation surface 84, and the reflective mirror 75 is installed on the mirror installation surface 85.
  • the multiple mirror installation surfaces 80 to 85 have different heights (or average heights) from the bottom surface 6a.
  • the mirror installation surface 81 is higher from the bottom surface 6a than the mirror installation surface 80
  • the mirror installation surface 82 is higher from the bottom surface 6a than the mirror installation surface 81
  • the mirror installation surface 83 is higher from the bottom surface 6a than the mirror installation surface 82
  • the mirror installation surface 84 is higher from the bottom surface 6a than the mirror installation surface 83
  • the mirror installation surface 85 is higher from the bottom surface 6a than the mirror installation surface 84.
  • the mirror installation surfaces 80 to 85 are flat surfaces parallel to the bottom surface 6a.
  • the multiple mirror mounting surfaces 80-85 include a first mirror mounting surface and a second mirror mounting surface.
  • Mirror mounting surface 81 is an example of a first mirror mounting surface on which a reflecting mirror 71 (first reflecting mirror) is mounted.
  • Mirror mounting surface 82 is an example of a second mirror mounting surface on which a reflecting mirror 72 (second reflecting mirror) is mounted.
  • the semiconductor laser device 1 includes a multi-stage base 8 having a plurality of mirror mounting surfaces 80-85.
  • the multi-stage base 8 has a lower surface 8ba, and is mounted on the bottom surface 6a so that the lower surface 8ba is parallel to the bottom surface 6a.
  • the multi-stage base 8 has a plurality of stair-like steps.
  • Each of the multiple steps of the multi-stage base 8 has a surface parallel to the lower surface 8ba, and the surfaces parallel to the lower surface 8ba correspond to each of the multiple mirror mounting surfaces 80-85. Therefore, each of the multiple mirror mounting surfaces 80-85 is parallel to the bottom surface 6a. Furthermore, each of the multiple mirror mounting surfaces 80-85 is parallel to one another and is not on the same plane.
  • the laser base 7 is a base on which multiple semiconductor laser elements 10 to 15 are mounted.
  • the laser base 7 is a rectangular plate-shaped member having a flat laser mounting surface 7a. Multiple semiconductor laser elements 10 to 15 are mounted on the laser mounting surface 7a.
  • the laser base 7 is made of, for example, the same material as the bottom 6 of the housing 2.
  • the semiconductor laser elements 10-15 are elements that convert input power and emit laser light, and are arranged inside the housing 2.
  • the semiconductor laser elements 10-15 are arranged in the Y-axis direction. In this embodiment, the semiconductor laser elements 10-15 are installed on the same plane. The heights of the semiconductor laser elements 10-15 from the bottom surface 6a are equal. Specifically, the semiconductor laser elements 10-15 are installed on the laser installation surface 7a of the laser base 7 via the submounts 20-25, respectively.
  • the semiconductor laser element 11 and the semiconductor laser element 12 are examples of the first semiconductor laser element and the second semiconductor laser element included in the semiconductor laser elements 10-15, respectively.
  • Each of the semiconductor laser elements 10-15 is a laser element in which a semiconductor laminate film and an optical waveguide are formed on a semiconductor substrate.
  • the semiconductor laser elements 10-15 each have light-emitting points 10e-15e that emit a plurality of laser beams L0A-L5A (see FIG. 2).
  • the semiconductor laser elements 10-15 convert the power input from the outside to the optical waveguide into stimulated emission light such as laser beams and emit the light from the light-emitting points 10e-15e, which are one end of the optical waveguide.
  • the semiconductor laser elements 10-15 each emit laser beams L0A-L5A (see FIG. 2). Note that in FIG. 2 and FIG. 3, the optical axes of the laser beams L0A-L5A are indicated by dashed lines. Also, in FIG.
  • the laser beams L1A and L2A are examples of the first laser beam and the second laser beam, respectively.
  • the light-emitting point 11e is an example of a first light-emitting point from which the first laser light is emitted.
  • the light-emitting point 12e is an example of a second light-emitting point from which the second laser light is emitted.
  • the FAST axis of the laser light L0A to L5A is the axis in the stacking direction of the semiconductor laminated film of the multiple semiconductor laser elements 10 to 15, and the SLOW axis perpendicular to the FAST axis is an axis parallel to the stacking surface of the semiconductor laminated film and is an axis parallel to the Y-axis direction in each figure.
  • the FAST axis direction of the multiple semiconductor laser elements 10 to 15 is the height direction from the bottom surface 6a (the X-axis direction in each figure).
  • the wavelength of the laser light emitted from the semiconductor laser elements 10 to 15 changes depending on the semiconductor material that constitutes the semiconductor laminated film.
  • the multiple semiconductor laser elements 10 to 15 can emit laser light having a peak wavelength between 350 nm and 550 nm, for example.
  • the multiple semiconductor laser elements 10-15 semiconductor laser elements whose main components are semiconductors made of Al, Ga, In, As, and P, the multiple semiconductor laser elements 10-15 can emit laser light having a peak wavelength between 600 nm and 1600 nm.
  • the multiple semiconductor laser elements 10-15 are not limited to semiconductor laser elements made of the above semiconductor materials, and the wavelength of the laser light emitted by the multiple semiconductor laser elements 10-15 is not limited to the above wavelength.
  • the multiple semiconductor laser elements 10 to 15 are rectangular in shape and are long in the waveguiding direction of the optical waveguide.
  • the optical waveguide has a width of, for example, 5 ⁇ m to 300 ⁇ m and a length of, for example, 500 ⁇ m to 5 mm.
  • the multiple semiconductor laser elements 10 to 15 are transverse multimode lasers in which the laser light is multimode in the SLOW axis.
  • the multiple semiconductor laser elements 10 to 15 are laser elements with Fabry-Perot mirrors formed on both ends of the optical waveguide, but the configuration of the multiple semiconductor laser elements 10 to 15 is not limited to this.
  • the multiple semiconductor laser elements 10 to 15 may be so-called superluminescent diodes in which no mirror is formed on the light-emitting point side of the optical waveguide.
  • the multiple semiconductor laser elements 10 to 15 may be elements for so-called external resonator type semiconductor lasers in which no mirror is formed on the light-emitting point side of the optical waveguide, but a resonator mirror is placed as a separate component from the multiple semiconductor laser elements 10 to 15 on the emission direction side of the emitted light to perform laser oscillation.
  • a current is supplied to the semiconductor laser elements 10-15 from outside the housing 2 via the current introduction terminals 9a, 9b and the wiring member 9c.
  • the wiring member 9c is a conductive member disposed within the housing 2, and constitutes part of the current path between the current introduction terminals 9a, 9b and the semiconductor laser elements 10-15.
  • the wiring member 9c extends from near the current introduction terminal 9a to near the semiconductor laser element 10.
  • the semiconductor laser elements 10-15 are connected in series using metal wires W.
  • the current introduction terminal 9a is connected to the wiring member 9c by the metal wire W, and the wiring member 9c is connected to the semiconductor laser element 10 by the metal wire W.
  • one electrode of the semiconductor laser element 10 is connected to an electrode formed on the submount 20 via a conductive bonding member such as Au or AuSn, and the electrode formed on the submount 20 is connected to the wiring member 9c by the metal wire W.
  • the other electrode of the semiconductor laser element 10 is connected to the semiconductor laser element 11 by a metal wire W.
  • one electrode of the semiconductor laser element 11 is connected to an electrode formed on the submount 21, and the electrode formed on the submount 21 is connected to the other electrode of the semiconductor laser element 11 by a metal wire W.
  • the semiconductor laser elements 11 to 15 are connected in the same manner as the semiconductor laser element 10 and the semiconductor laser element 11.
  • the semiconductor laser element 15 is connected to the current introduction terminal 9b by a metal wire W. As described above, by using the wiring member 9c that extends from near the current introduction terminal 9a to near the semiconductor laser element 10, the length of the metal wire W can be shortened and interference between the multiple metal wires W can be suppressed.
  • the submounts 20-25 are bases on which the semiconductor laser elements 10-15 are mounted. In this embodiment, the submounts 20-25 are mounted on the laser mounting surface 7a of the laser base 7.
  • the submounts 20-25 are block-shaped members made of insulating materials such as crystals, such as AlN or SiC, or ceramics. Electrodes are formed on the upper surfaces of the block-shaped submounts 20-25, and are each connected to one of the electrodes of the semiconductor laser elements 10-15.
  • the electrodes are made of one or more metal films, such as Ni, Cu, Pt, and Au.
  • the multiple FAST axis collimator lenses 30-35 are respectively disposed between the semiconductor laser elements 10-15 and the deflection element 40 (and the parallelization elements 51-55), and are optical elements into which the laser beams L0A-L5A are incident.
  • the multiple FAST axis collimator lenses 30-35 collimate the FAST axis direction component of the laser beams L0A-L5A, respectively, and emit laser beams L0B-L5B with the FAST axis direction component collimated.
  • the laser beams L1B and L2B are examples of the first laser beam and the second laser beam, respectively.
  • the multiple FAST axis collimator lenses 30 to 35 may be, for example, lenses having a convex cylindrical surface. More specifically, the multiple FAST axis collimator lenses 30 to 35 may be, for example, plano-convex cylindrical lenses made of glass with an anti-reflection coating formed on the surface.
  • the multiple FAST axis collimator lenses 30 to 35 include a first FAST axis collimator lens and a second FAST axis collimator lens.
  • the FAST axis collimator lens 31 and the FAST axis collimator lens 32 are examples of the first FAST axis collimator lens and the second FAST axis collimator lens, respectively.
  • the deflection element 40 is disposed between the semiconductor laser elements 11-15 and the reflecting mirrors 71-75, and is a deflection element that gives a height component from the bottom surface 6a to the propagation direction of the laser beams L1B-L5B (i.e., deflects in the height direction).
  • the deflection element 40 is disposed between the multiple FAST axis collimator lenses 31-35 and the multiple parallelizing elements 51-55, and deflects the laser beams L1B-L5B upward (i.e., in the positive direction in the X-axis direction) and emits the deflected laser beams L1C-L5C.
  • the laser beams L1C-L5C are deflected, for example, by 5 degrees or more and 20 degrees or less with respect to the laser beams L1B-L5B.
  • the laser beams L1C and L2C are examples of the first laser beam and the second laser beam, respectively.
  • the deflection element 40 deflects the laser beams L1B-L5B at the same angle.
  • the laser light L0B does not enter the deflection element 40.
  • the deflection element 40 is not disposed on the optical path of the laser light L0B. Therefore, the laser light L0B propagates parallel to the bottom surface 6a from the light emitting point 10e to the reflecting mirror 70 (and the focusing lens 90) without being given a component in the height direction.
  • a transmissive deflection element can be used as the deflection element 40.
  • the transmissive deflection element is, for example, a prism having an entrance surface and an exit surface, and the entrance surface and the exit surface are not parallel.
  • the laser beams L0A to L5A and L0B to L5B propagate parallel to the bottom surface 6a in the positive direction of the Z axis between the semiconductor laser elements 10 to 15 and the deflection element 40.
  • the laser beams L0A to L5A and L0B to L5B propagate parallel to each other between the semiconductor laser elements 10 to 15 and the deflection element 40.
  • the deflection element 40 is an example of a first deflection element that is disposed between the semiconductor laser element 11 (first semiconductor laser element) and the reflecting mirror 71 (first reflecting mirror) and provides a height component from the bottom surface 6a to the propagation direction of the laser light L1B (first laser light).
  • the deflection element 40 is also an example of a second deflection element that is disposed between the semiconductor laser element 12 (second semiconductor laser element) and the reflecting mirror 72 (second reflecting mirror) and provides a height component from the bottom surface 6a to the propagation direction of the laser light L2B (second laser light).
  • the semiconductor laser device 1 includes a single deflection element 40, but may include multiple deflection elements.
  • the semiconductor laser device 1 may include five deflection elements that impart height components to each of the laser beams L1B to L5B.
  • the five deflection elements may be installed at the same height from the bottom surface 6a.
  • the parallelizing elements 51 to 55 are disposed between the deflection element 40 and the reflecting mirrors 71 to 75, respectively, and are deflection elements that deflect the propagation direction of the laser beams L1C to L5C in a direction parallel to the mirror mounting surfaces 81 to 85, and emit the laser beams L1D to L5D.
  • the laser beams L1D and L2D are examples of the first laser beam and the second laser beam, respectively.
  • the parallelizing elements 51 to 55 are disposed on the mirror mounting surfaces 81 to 85, respectively. As a result, the heights from the bottom surface 6a at the positions where the parallelizing elements 51 to 55 are disposed are different from one another.
  • the parallelizing elements 51, 52, 53, 54, and 55 are higher in height from the bottom surface 6a at the mounting positions in that order. Note that no parallelizing element is disposed on the optical path of the laser beam L0B. Since the laser beams L1B to L5B are deflected by the deflection element 40 at the same angle, it is necessary to make the distance from the deflection element 40 to each of the parallelization elements 51 to 55 different depending on the height of the installation position of each parallelization element. In other words, it is necessary to make the distance from the deflection element 40 longer in the order of the parallelization elements 51, 52, 53, 54, and 55.
  • the multiple laser beams L1C to L5C between the deflection element 40 and the multiple parallelization elements 51 to 55 are parallel to each other.
  • the laser beams L1D to L5D are deflected, for example, by 5 degrees or more and 20 degrees or less with respect to the laser beams L1C to L5C.
  • the distances between the deflection element 40 and the multiple parallelization elements 51 to 55 are different from each other.
  • the distance between the deflection element 40 and the parallelization element 52 is longer than the distance between the deflection element 40 and the parallelization element 51.
  • the distance in the Z-axis direction from each parallelizing element to each semiconductor laser element increases as the height from the bottom surface 6a of the installation position of each parallelizing element increases.
  • the parallelizing elements 51 to 55 are installed near the ends of the mirror installation surfaces 81 to 85 that are closer to the semiconductor laser elements 11 to 15. In other words, the distance in the Z-axis direction from the end located between each semiconductor laser element and each parallelizing element on each mirror installation surface to each parallelizing element is smaller than the distance in the Z-axis direction from the end to each semiconductor laser element. This reduces the blocking of each laser light by the multi-stage base 8.
  • each mirror mounting surface closest to each semiconductor laser element increases as the height of each mirror mounting surface from the bottom surface 6a increases. Also, as the height of each mirror mounting surface from the bottom surface 6a increases, the length of each mirror mounting surface in the propagation direction (Z-axis direction) of the laser light L0E to L5E decreases.
  • the height of the area of the multistage base 8 between the multiple mirror mounting surfaces 80-85 and the multiple semiconductor laser elements 10-15 from the bottom surface 6a is lower than the height of the bottom surface 6a of each light emitting point of the semiconductor laser elements 10-15. This reduces the blocking of each laser light by the multistage base 8.
  • the position of the end of the multistage base 8 close to each semiconductor laser element coincides with the end of the multiple mirror mounting surfaces 80-85. In other words, there are no components of the multistage base 8 located between each mirror mounting surface and the laser base 7. This reduces the blocking of each laser light by the multistage base 8, and makes the multistage base 8 lighter.
  • an end face perpendicular to the bottom face 6a is formed on the multi-stage base 8.
  • the distance in the Z-axis direction from the end face to each semiconductor laser element increases as the height from the bottom face 6a of each mirror mounting surface increases. This reduces the blocking of the laser light by the multi-stage base 8 between the deflection element 40 and the parallelization elements 51 to 55, as shown in FIG. 3.
  • a transmissive deflection element can be used as the multiple parallelizing elements 51 to 55.
  • a transmissive deflection element is, for example, a prism having an entrance surface and an exit surface, and the entrance surface and the exit surface are not parallel.
  • the parallelizing element 51 is an example of a first parallelizing element that is disposed between the deflection element 40 (first deflection element) and the reflection mirror 71 (first reflection mirror) and deflects the propagation direction of the laser light L1C (first laser light) in a direction parallel to the mirror mounting surface 81 (first mirror mounting surface).
  • the parallelizing element 52 is also an example of a second parallelizing element that is disposed between the deflection element 40 (second deflection element) and the reflection mirror 72 (second reflection mirror) and deflects the propagation direction of the laser light L2C (second laser light) in a direction parallel to the mirror mounting surface 82 (second mirror mounting surface).
  • the multiple SLOW axis collimator lenses 60-65 are optical elements that are respectively disposed between the multiple FAST axis collimator lenses 30-35 and the reflecting mirrors 70-75, and into which the laser beams L0B, L1D-L5D are incident.
  • the multiple SLOW axis collimator lenses 60-65 are respectively mounted on the mirror mounting surfaces 80-85.
  • the heights from the bottom surface 6a at the positions where the SLOW axis collimator lenses 60-65 are mounted are different from one another.
  • the heights from the bottom surface 6a at the mounting positions increase in the order of the SLOW axis collimator lenses 60, 61, 62, 63, 64, 65.
  • the multiple SLOW-axis collimator lenses 60-65 collimate the components of the laser light L0B, L1D-L5D in the SLOW-axis direction, respectively.
  • the multiple SLOW-axis collimator lenses 60-65 may be, for example, lenses having a convex cylindrical surface. More specifically, the multiple SLOW-axis collimator lenses 60-65 may be, for example, plano-convex cylindrical lenses made of glass with an anti-reflection coating formed on the surface.
  • the spot size in the SLOW axis direction of each laser light emitted from the multiple SLOW axis collimator lenses 60 to 65 increases as the optical path length from each semiconductor laser element to each SLOW axis collimator lens increases.
  • the optical path length from each of the multiple SLOW axis collimator lenses 60 to 65 to each of the multiple semiconductor laser elements 10 to 15 may be aligned. Accordingly, the Z axis direction positions of each of the SLOW axis collimator lenses 60 to 65 are different. As shown in FIG.
  • the Z axis direction positions of the SLOW axis collimator lens 60 and the SLOW axis collimator lens 65 differ by ⁇ L.
  • the Z axis direction distance from each SLOW axis collimator lens to each semiconductor laser element decreases as the height from the bottom surface 6a of each SLOW axis collimator lens increases. This makes it possible to align the optical path length from each SLOW axis collimator lens to each semiconductor laser element.
  • the multiple SLOW-axis collimator lenses 60 to 65 include a first SLOW-axis collimator lens and a second SLOW-axis collimator lens.
  • the SLOW-axis collimator lens 61 and the SLOW-axis collimator lens 62 are examples of the first SLOW-axis collimator lens and the second SLOW-axis collimator lens, respectively.
  • the multiple reflecting mirrors 70-75 are optical elements that reflect the multiple laser beams L0E-L5E emitted from the multiple semiconductor laser elements 10-15, respectively, and emit multiple laser beams L0F-L5F.
  • Laser beam L1F and laser beam L2F are examples of the first laser beam and the second laser beam, respectively.
  • the multiple reflecting mirrors 70-75 each reflect the multiple laser beams L0E-L5E, thereby deflecting them by 90 degrees.
  • the multiple reflecting mirrors 70-75 are respectively mounted on the multiple mirror mounting surfaces 80-85. As a result, the heights from the bottom surface 6a at the positions where the reflecting mirrors 70-75 are mounted are different from one another. The heights from the bottom surface 6a at the mounting positions increase in the order of the reflecting mirrors 70, 71, 72, 73, 74, and 75.
  • the multiple reflecting mirrors 70 to 75 include a first reflecting mirror and a second reflecting mirror.
  • Reflecting mirror 71 is an example of a first reflecting mirror that reflects laser light L1E (first laser light) emitted from semiconductor laser element 11 (first semiconductor laser element).
  • Reflecting mirror 72 is an example of a second reflecting mirror that reflects laser light L2E (second laser light) emitted from semiconductor laser element 12 (second semiconductor laser element).
  • laser light L1E emitted from semiconductor laser element 11 refers to laser light that is laser light L1A emitted from semiconductor laser element 11 and enters reflecting mirror 71 via FAST axis collimator lens 31, deflection element 40, parallelization element 51, and SLOW axis collimator lens 61.
  • the laser light L2E emitted from the semiconductor laser element 12 means the laser light L2A emitted from the semiconductor laser element 12 that is incident on the reflecting mirror 72 via the FAST axis collimator lens 32, the deflection element 40, the parallelizing element 52, and the SLOW axis collimator lens 62.
  • the optical axis of the first laser light that is incident on the first reflecting mirror is the first optical axis
  • the optical axis of the second laser light that is incident on the second reflecting mirror is the second optical axis.
  • the direction that passes through the light emitting point 11e (first light emitting point) of the semiconductor laser element 11 and is perpendicular to the first optical axis is also referred to as the first direction.
  • a first distance D1 in a first direction (X-axis direction in this embodiment) from the light emitting point 11e (first light emitting point) of the semiconductor laser element 11 to the optical axis (first optical axis A1) of the laser light L1E incident on the reflecting mirror 71 and a second distance D2 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the optical axis (second optical axis A2) of the laser light L2E incident on the reflecting mirror 72 are different from each other.
  • the distances in the first direction (X-axis direction in this embodiment) from the light emitting point 11e of the semiconductor laser element 11 to the optical axes of the laser light L1E to L5E incident on the reflecting mirrors 71 to 75, respectively, are different from each other.
  • the laser beams L1D to L5D and L1E to L5E propagate in the positive direction of the Z axis between the parallelizing elements 51 to 55 and the reflecting mirrors 71 to 75, respectively, parallel to the bottom surface 6a and parallel to the mirror installation surfaces 81 to 85.
  • the laser beams L1D to L5D also propagate parallel to each other.
  • the laser beams L0F to L5F emitted from the multiple reflecting mirrors 70 to 75 have parallel propagation directions, do not overlap in height from the bottom surface 6a, and overlap in positions parallel to the bottom surface 6a.
  • the laser beams L1F emitted from the reflecting mirror 71 and the laser beams L2F emitted from the reflecting mirror 72 have parallel propagation directions, do not overlap in the FAST axis direction (height from the bottom surface 6a in this embodiment), and overlap in the SLOW axis direction (direction parallel to the bottom surface 6a in this embodiment).
  • the laser beams L0F to L5F propagate in the negative Y-axis direction and parallel to the bottom surface 6a between the reflecting mirrors 70 to 75 and the focusing lens 90.
  • the semiconductor laser elements 10-15 are disposed on the same plane, and the multiple reflective mirrors 70-75 are respectively mounted on multiple mirror mounting surfaces 80-85 having different heights from each other. Therefore, in this embodiment, the difference in height between the light emitting point 11e of the semiconductor laser element 11 from the bottom surface 6a and the height of the mirror mounting surface 81 from the bottom surface 6a is greater than the difference in height between the light emitting point 10e of the semiconductor laser element 10 from the bottom surface 6a and the height of the mirror mounting surface 80 from the bottom surface 6a.
  • the difference in height between the light emitting point 12e of the semiconductor laser element 12 from the bottom surface 6a and the height of the mirror mounting surface 82 from the bottom surface 6a is greater than the difference in height between the light emitting point 11e of the semiconductor laser element 11 from the bottom surface 6a and the height of the mirror mounting surface 81 from the bottom surface 6a.
  • a third distance D3 in a first direction (in this embodiment, the X-axis direction) from the light emitting point 12e (second light emitting point) of the semiconductor laser element 12 to the optical axis (second optical axis A2) of the laser light L2E incident on the reflecting mirror 72 is greater than the distance in the first direction from the light emitting point 11e (first light emitting point) of the semiconductor laser element 11 to the optical axis (first optical axis A1) of the laser light L1E incident on the reflecting mirror 71.
  • the difference between the height of one light-emitting point and the height of the mirror installation surface corresponding to that light-emitting point differs for each combination of light-emitting point and mirror installation surface.
  • each difference here is defined as the absolute value of the value resulting from the subtraction.
  • Each difference described below is also defined as an absolute value in the same way.
  • the difference between the height of the light emitting point 11e of the semiconductor laser element 11 from the bottom surface 6a and the height of the light emitting point 12e of the semiconductor laser element 12 from the bottom surface 6a is smaller than the difference between the height of the mirror installation surface 81 from the bottom surface 6a and the height of the mirror installation surface 82 from the bottom surface 6a.
  • the distance in the first direction from the light emitting point 11e (first light emitting point) of the semiconductor laser element 11 to the light emitting point 12e (second light emitting point) of the semiconductor laser element 12 is smaller than a fourth distance D4 in the first direction from the optical axis (first optical axis A1) of the laser light L1E incident on the reflection mirror 71 to the optical axis (second optical axis A2) of the laser light L2E incident on the reflection mirror 72.
  • the distance in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the light emitting point 12e of the semiconductor laser element 12 is zero and is not shown in FIG. 3. In this way, in this embodiment, the deviation in height of the multiple semiconductor laser elements 10-15 from the bottom surface 6a can be reduced more than the deviation in height of the multiple reflecting mirrors 70-75 from the bottom surface.
  • the multiple reflecting mirrors 70 to 75 include a first reflecting mirror and a second reflecting mirror.
  • Reflecting mirror 71 is an example of a first reflecting mirror that reflects laser light L1E (first laser light) emitted from semiconductor laser element 11 (first semiconductor laser element).
  • Reflecting mirror 72 is an example of a second reflecting mirror that reflects laser light L2E (second laser light) emitted from semiconductor laser element 12 (second semiconductor laser element).
  • laser light L1E emitted from semiconductor laser element 11 refers to laser light that is laser light L1A emitted from semiconductor laser element 11 and enters reflecting mirror 71 via FAST axis collimator lens 31, deflection element 40, parallelization element 51, and SLOW axis collimator lens 61.
  • the laser light L2E emitted from the semiconductor laser element 12 refers to the laser light L2A emitted from the semiconductor laser element 12 that passes through the FAST axis collimator lens 32, the deflection element 40, the parallelizing element 52, and the SLOW axis collimator lens 62 and enters the reflecting mirror 72.
  • the focusing lens 90 is a lens that focuses the multiple laser beams L0F to L5F reflected by the multiple reflecting mirrors 70 to 75.
  • the focusing lens 90 focuses the laser beams L0F to L5F so that most of the multiple laser beams L0F to L5F are incident on the end face of the optical fiber 4 and can propagate through the optical fiber 4.
  • a spherical lens can be used as the focusing lens 90.
  • FIG. 4 is a schematic diagram showing the spot shape of the laser beams L0F to L5F on the incident surface of the focusing lens 90.
  • the outlines of the laser beams L0F to L5F are shown by dashed lines.
  • the overlap of the laser beams L0F to L5F on the focusing lens 90 is reduced.
  • the optical fiber 4 is a member that guides the laser beams L0F to L5F from inside the housing 2 to the outside.
  • the laser beams L0F to L5F emitted from the focusing lens 90 are incident on the end face of the optical fiber 4 that is located inside the housing 2 at the same position at different angles of incidence.
  • the overlap of the laser beams L0F to L5F at the focusing lens 90 is reduced, so that deterioration and damage to the optical fiber 4 caused by the laser beams L0F to L5F concentrating on a portion of the end face of the optical fiber 4 can be suppressed.
  • the semiconductor laser device 1 includes a housing 2 having a bottom surface 6a, a semiconductor laser element 11 and a semiconductor laser element 12 arranged in the housing 2, a reflecting mirror 71 that reflects the laser light L1E emitted from the semiconductor laser element 11, a reflecting mirror 72 that reflects the laser light L2E emitted from the semiconductor laser element 12, a focusing lens 90 that focuses the laser light L1F reflected by the reflecting mirror 71 and the laser light L2F reflected by the reflecting mirror 72, a mirror mounting surface 81 on which the reflecting mirror 71 is mounted, and a mirror mounting surface 82 on which the reflecting mirror 72 is mounted.
  • the mirror mounting surface 81 and the mirror mounting surface 82 are parallel to each other.
  • the mirror mounting surface 81 and the mirror mounting surface 82 are not on the same plane.
  • the semiconductor laser element 11 has a light emitting point 11e that emits the laser light L1A
  • the semiconductor laser element 12 has a light emitting point 12e that emits the laser light L2A.
  • the optical axis of the laser light L1E incident on the reflecting mirror 71 is the first optical axis A1
  • the optical axis of the laser light L2E incident on the reflecting mirror 72 is the second optical axis A2.
  • a first distance D1 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the first optical axis A1 and a second distance D2 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the second optical axis are different from each other.
  • a third distance D3 in the first direction from the light emitting point 12e of the semiconductor laser element 12 to the second optical axis A2 is greater than the first distance D1.
  • the difference between the height of the light emitting point 12e of the second semiconductor laser element from the bottom surface 6a and the height of the mirror installation surface 82 from the bottom surface 6a is greater than the difference between the height of the light emitting point 11e of the first semiconductor laser element from the bottom surface 6a and the height of the mirror installation surface 81 from the bottom surface 6a.
  • each semiconductor laser device 1 it is not necessary to make the difference between the height of each light emitting point from the bottom surface 6a and the height of each mirror mounting surface from the bottom surface 6a uniform.
  • This increases the degree of freedom in arranging each semiconductor laser element. For example, it becomes possible to reduce the height of each semiconductor laser element from the bottom surface 6a. This makes it possible to improve the heat dissipation characteristics of each semiconductor laser element by connecting a heat sink to the bottom 6.
  • a semiconductor laser device 1 includes a housing 2 having a bottom surface 6a, a semiconductor laser element 11 and a semiconductor laser element 12 arranged in the housing 2, a reflection mirror 71 that reflects the laser light L1E emitted from the semiconductor laser element 11, a reflection mirror 72 that reflects the laser light L2E emitted from the semiconductor laser element 12, and a focusing lens 90 that focuses the laser light L1F reflected by the reflection mirror 71 and the laser light L2F reflected by the reflection mirror 72.
  • the semiconductor laser device 1 further includes a parallelizing element 51 that is arranged between the semiconductor laser element 11 and the reflection mirror 71 and that deflects the propagation direction of the laser light L1C, and a parallelizing element 52 that is arranged between the semiconductor laser element 12 and the reflection mirror 72 and that deflects the propagation direction of the laser light L2C.
  • the semiconductor laser element 11 has an emission point 11e that emits the laser light L1A
  • the semiconductor laser element 12 has an emission point 12e that emits the laser light L2A.
  • the FAST axis direction of the laser light L1A at the emission point 11e of the semiconductor laser element 11 is parallel to the first direction.
  • the optical axis of the laser light L1C incident on the collimating element 51 is parallel to the optical axis of the laser light L2C incident on the collimating element 52.
  • the optical axis of the laser light L1E incident on the reflecting mirror 71 is parallel to the optical axis of the laser light L2E incident on the reflecting mirror 72.
  • the optical axis of the laser light L1E incident on the reflecting mirror 71 is inclined with respect to the optical axis of the laser light L1C incident on the collimating element 51.
  • the optical axis of the laser light L1E incident on the reflecting mirror 71 is the first optical axis A1, and the optical axis of the laser light L2E incident on the reflecting mirror 72 is the second optical axis A2.
  • a first distance D1 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the first optical axis A1 and a second distance D2 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the second optical axis A2 are different from each other.
  • a third distance D3 in the first direction from the light emitting point 12e of the semiconductor laser element 12 to the second optical axis is greater than the first distance D1.
  • each collimating element in the semiconductor laser device it is no longer necessary to align the distance from each light emitting point to the optical axis of the laser light incident on each reflecting mirror. In other words, it is no longer necessary to align the difference between the height of each light emitting point from the bottom surface 6a and the height of each mirror mounting surface from the bottom surface 6a.
  • This increases the degree of freedom in arranging each semiconductor laser element. For example, it becomes possible to reduce the height of each semiconductor laser element from the bottom surface 6a. This makes it possible to improve the heat dissipation characteristics of each semiconductor laser element by connecting a heat sink to the bottom 6.
  • the difference between the height of the light emitting point 11e of the semiconductor laser element 11 from the bottom surface 6a and the height of the light emitting point 12e of the semiconductor laser element 12 from the bottom surface 6a may be smaller than the difference between the height of the mirror mounting surface 81 from the bottom surface 6a and the height of the mirror mounting surface 82 from the bottom surface 6a.
  • the distance in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the light emitting point 12e of the semiconductor laser element 12 may be smaller than a fourth distance D4 in the first direction from the first optical axis A1 to the second optical axis A2.
  • the difference in height between each semiconductor laser element and the bottom surface 6a can be reduced, which makes it easier to mount each semiconductor laser element. Furthermore, when a heat sink is connected to the bottom 6 and heat is dissipated from the bottom 6, the heat dissipation characteristics change depending on the distance between each semiconductor laser element and the bottom surface 6a. Therefore, by reducing the difference in height between each semiconductor laser element and the bottom surface 6a, the difference in heat dissipation characteristics between each semiconductor laser element can be reduced. This makes it possible to reduce the difference in characteristics such as the wavelength of each laser light from each semiconductor laser element.
  • the multiple semiconductor laser elements 10 to 15 may be placed on the same plane.
  • the height of the bond portion of the wire bond can be made uniform, making wire bonding easier.
  • the FAST axis direction of the multiple semiconductor laser elements 10 to 15 may be the height direction from the bottom surface 6a.
  • the semiconductor laser device 1 may also include a deflection element 40 (first deflection element) disposed between the semiconductor laser element 11 and the reflecting mirror 71, which gives a first direction component to the propagation direction of the laser light L1B; a parallelization element 51 disposed between the deflection element 40 and the reflecting mirror 71, which deflects the propagation direction of the laser light L1C, which has been given the first direction component in the propagation direction, in a direction parallel to the mirror installation surface 81; a deflection element 40 (second deflection element) disposed between the semiconductor laser element 12 and the reflecting mirror 72, which gives a first direction component to the propagation direction of the laser light L2B; and a parallelization element 52 disposed between the deflection element 40 and the reflecting mirror 72, which deflects the propagation direction of the laser light L2C, which has been given the first direction component in the propagation direction, in a direction parallel to the mirror installation surface 82.
  • a deflection element 40 first deflection element
  • each laser light can be made parallel to each mirror installation surface without installing each semiconductor laser element at a height corresponding to each mirror installation surface, and the height of each laser light can be guided to the height at which it is incident on each reflecting mirror.
  • the parallelizing element 51 may be installed on the mirror installation surface 81, and the parallelizing element 52 may be installed on the mirror installation surface 82.
  • the laser light L1C between the deflection element 40 and the parallelization element 51 and the laser light L2C between the deflection element 40 and the parallelization element 52 are parallel, and the distance between the deflection element 40 and the parallelization element 52 may be longer than the distance between the deflection element 40 and the parallelization element 51.
  • each of the deflection element 40, the parallelization element 51, and the parallelization element 52 may be a transmissive deflection element.
  • the transmissive deflection element is a prism having an entrance surface and an exit surface, and the entrance surface and the exit surface do not have to be parallel. This makes it possible to adjust the angle of the optical path deflection more precisely than the installation angle of the prism.
  • the semiconductor laser device 1 may also include a FAST axis collimator lens 31 disposed between the semiconductor laser element 11 and the collimating element 51.
  • the semiconductor laser device 1 may also include a SLOW axis collimator lens 61 disposed between the FAST axis collimator lens 31 and the reflecting mirror 71.
  • the laser light L1F emitted from the reflecting mirror 71 and the laser light L2F emitted from the reflecting mirror 72 may have parallel propagation directions, and the positions of the laser light L1F in the FAST axis direction may not overlap, and the positions of the laser light L1F in the SLOW axis direction may overlap.
  • the laser light L1F and the laser light L2F can be easily focused onto the optical fiber 4, etc. Furthermore, by not overlapping the positions of the laser light L1F and the laser light L2F in the FAST axis direction, it is possible to prevent the laser light intensity from becoming locally high, thereby preventing deterioration and damage to optical elements such as the optical fiber 4 into which each laser light is incident.
  • a semiconductor laser device according to Modification 1 of the present embodiment will be described.
  • the semiconductor laser device according to this modification differs from the above-described semiconductor laser device 1 mainly in that the laser light is deflected downward by a deflection element.
  • the semiconductor laser device according to this modification will be described below with reference to FIGS. 5 and 6, focusing on the differences from the semiconductor laser device 1.
  • FIGS. 5 and 6 are plan and side views showing the configuration of a semiconductor laser device 1a according to this modified example.
  • the semiconductor laser device 1a according to this modified example includes a housing 2, a plurality of semiconductor laser elements 10-12, a plurality of submounts 20-22, a plurality of FAST axis collimator lenses 30-32, a deflection element 40a, a plurality of parallelizing elements 51a, 52a, a plurality of SLOW axis collimator lenses 60-62, a plurality of reflecting mirrors 70-72, a plurality of mirror mounting surfaces 80a-82a, an optical fiber 4, and current introduction terminals 9a, 9b.
  • the semiconductor laser device 1a has a multi-stage base 8a with multiple mirror mounting surfaces 80a to 82a.
  • the multiple mirror mounting surfaces 80a-82a are surfaces on which the multiple reflective mirrors 70-72 are respectively mounted.
  • the multiple mirror mounting surfaces 80a-82a differ from one another in height from the bottom surface 6a.
  • the mirror mounting surface 81a is lower in height from the bottom surface 6a than the mirror mounting surface 80a
  • the mirror mounting surface 82a is lower in height from the bottom surface 6a than the mirror mounting surface 81a.
  • the mirror mounting surface 80a is at the same height as the upper surface of the multi-stage base 8a.
  • the mirror mounting surfaces 81a, 82a are formed at a lower position than the upper surface, and there is a step between the ends of the mirror mounting surfaces 81a, 82a and the upper surface of the multi-stage base 8a.
  • the semiconductor laser elements 10-12, the submounts 20-22, the FAST-axis collimator lenses 30-32, and the deflection element 40a are arranged on the upper surface of the multi-stage base 8a.
  • the SLOW-axis collimator lens 60 and the reflecting mirror 70 are arranged on the mirror mounting surface 80a.
  • the deflection element 40a is disposed between the semiconductor laser elements 11, 12 and the reflecting mirrors 71, 72, and is a deflection element that gives a height component from the bottom surface 6a to the propagation direction of the laser light L1B, L2B.
  • the deflection element 40a is disposed between the multiple FAST axis collimator lenses 31, 32 and the multiple parallelizing elements 51a, 52a, and deflects the laser light L1B, L2B downward (i.e., in the negative direction in the X-axis direction).
  • the deflection element 40a deflects the laser light L1B, L2B at the same angle.
  • the deflection element 40a is disposed between the semiconductor laser element 11 (first semiconductor laser element) and the reflecting mirror 71 (first reflecting mirror), and is an example of a first deflection element that gives a height component from the bottom surface 6a to the propagation direction of the laser light L1B (first laser light).
  • the deflection element 40a is also an example of a second deflection element that is disposed between the semiconductor laser element 12 (second semiconductor laser element) and the reflecting mirror 72 (second reflecting mirror) and provides a height component from the bottom surface 6a to the propagation direction of the laser light L2B (second laser light).
  • the multiple parallelizing elements 51a, 52a are disposed between the deflection element 40a and the reflecting mirrors 71, 72, respectively, and are deflection elements that deflect the propagation direction of the laser light L1C, L2C in a direction parallel to the mirror mounting surfaces 81a, 82a.
  • the multiple parallelizing elements 51a, 52a are mounted on the mirror mounting surfaces 81a, 82a, respectively.
  • the heights from the bottom surface 6a at the positions where the multiple parallelizing elements 51a, 52a are mounted are different from each other.
  • the heights from the bottom surface 6a at the mounting positions decrease in the order of the parallelizing elements 51a, 52a.
  • the distance in the Z-axis direction from the corresponding semiconductor laser element of each of the parallelizing elements 51a, 52a increases as the height from the bottom surface 6a of the mounting position of each parallelizing element decreases. This allows the distance of each of the parallelizing elements 51a and 52a from the deflection element 40a to be different depending on the height from the bottom surface 6a of the installation position of each parallelizing element.
  • a step is formed between the end of the mirror mounting surface 81a, 82a closer to the semiconductor laser elements 11, 12 and the upper surface of the multi-stage base 8a.
  • a deflection element 40a is installed on the upper surface of the multi-stage base 8a near this step.
  • the distance in the Z-axis direction from the step to the parallelizing element 51a is longer than the distance in the Z-axis direction from the step to the deflection element 40a. This reduces the blocking of the laser light by the multi-stage base 8a between the deflection element 40a and the parallelizing element 51a, as shown in FIG. 6.
  • the distance in the Z-axis direction from each of the SLOW-axis collimator lenses 60-62 to each semiconductor laser element becomes smaller as the height of each SLOW-axis collimator lens from the bottom surface 6a decreases. This makes it possible to align the optical path length between each SLOW-axis collimator lens and each semiconductor laser element.
  • the semiconductor laser device 1a having such a configuration also achieves the same effects as the semiconductor laser device 1 according to the first embodiment.
  • a semiconductor laser device according to Modification 2 of the present embodiment will be described.
  • the semiconductor laser device according to this modification is different from the semiconductor laser device 1a according to Modification 1 described above mainly in that the laser light is also deflected upward by a deflection element.
  • the semiconductor laser device according to this modification will be described below with reference to FIGS. 7 and 8, focusing on the differences from the semiconductor laser device 1a according to Modification 1.
  • FIGS. 7 and 8 are plan and side views showing the configuration of a semiconductor laser device 1b according to this modified example.
  • the semiconductor laser device 1b according to this modified example includes a housing 2, a plurality of semiconductor laser elements 10-14, a plurality of submounts 20-24, a plurality of FAST axis collimator lenses 30-34, deflection elements 40a, 40b, a plurality of parallelizing elements 51a-54a, a plurality of SLOW axis collimator lenses 60-64, a plurality of reflecting mirrors 70-74, a plurality of mirror mounting surfaces 80a-84a, an optical fiber 4, and current introduction terminals 9a, 9b.
  • the semiconductor laser device 1b has a multi-stage base 8b with multiple mirror mounting surfaces 80a to 84a.
  • the multiple mirror mounting surfaces 83a, 84a are surfaces on which the multiple reflective mirrors 73, 74 are respectively mounted.
  • the multiple mirror mounting surfaces 80a-84a differ from one another in height from the bottom surface 6a. Specifically, the mirror mounting surface 83a is higher from the bottom surface 6a than the mirror mounting surface 80a, and the mirror mounting surface 84a is higher from the bottom surface 6a than the mirror mounting surface 83a.
  • the multiple semiconductor laser elements 10-14, the multiple submounts 20-24, the multiple FAST axis collimator lenses 30-34, and the deflection elements 40a, 40b are arranged on the upper surface of the multi-stage base 8b.
  • the deflection element 40b in this modified example is disposed between the semiconductor laser elements 13, 14 and the reflecting mirrors 73, 74, and is a deflection element that imparts a height component from the bottom surface 6a to the propagation direction of the laser beams L3B, L4B.
  • the deflection element 40b is disposed between the multiple FAST axis collimator lenses 33, 34 and the multiple parallelizing elements 53a, 54a, and deflects the laser beams L3B, L4B upward (i.e., in the positive direction in the X-axis direction).
  • the deflection element 40b deflects the laser beams L3B, L4B at the same angle.
  • the deflection element 40b is disposed between the semiconductor laser element 13 and the reflecting mirror 73, and is an example of a first deflection element that imparts a height component from the bottom surface 6a to the propagation direction of the laser beam L3B.
  • the deflection element 40b is disposed between the semiconductor laser element 14 and the reflection mirror 74, and is also an example of a second deflection element that gives the propagation direction of the laser light L4B a component in the height direction from the bottom surface 6a.
  • the semiconductor laser element 13 and the semiconductor laser element 14 are examples of the first semiconductor laser element and the second semiconductor laser element, respectively.
  • the reflection mirrors 73 and 74 are examples of the first reflection mirror and the second reflection mirror, respectively.
  • the laser light L3B and the laser light L4B are examples of the first laser light and the second laser light, respectively.
  • the parallelizing elements 53a, 54a are disposed between the deflection element 40b and the reflecting mirrors 73, 74, respectively, and are deflection elements that deflect the propagation direction of the laser beams L3C, L4C in a direction parallel to the mirror mounting surfaces 83a, 84a.
  • the parallelizing elements 53a, 54a are mounted on the mirror mounting surfaces 83a, 84a, respectively.
  • the parallelizing elements 53a, 54a are higher in height from the bottom surface 6a at the mounting positions in this order.
  • the semiconductor laser device 1b having this configuration also achieves the same effects as the semiconductor laser device 1a according to the first modification.
  • the distance in the Z-axis direction between the end of the mirror mounting surface 83a located between the deflection element 40b and the parallelization element 53a and the installation position of the parallelization element 53a is smaller than the distance in the Z-axis direction between the end and the deflection element 40b. This reduces the blocking of the laser light L3C by the multi-stage base 8b.
  • Embodiment 2 A semiconductor laser device according to a second embodiment will be described.
  • the semiconductor laser device according to this embodiment differs from the semiconductor laser device 1 according to the first embodiment in that the semiconductor laser element is disposed in an airtight package.
  • the semiconductor laser device according to this embodiment will be described below, focusing on the differences from the semiconductor laser device 1 according to the first embodiment.
  • Fig. 9 is a perspective view showing the configuration of a semiconductor laser device 101 according to this embodiment.
  • the semiconductor laser device 101 includes a housing 2, a plurality of semiconductor laser elements 10 to 12, a plurality of submounts 20 to 22, a plurality of FAST axis collimator lenses 30 to 32, a deflection element 40, and a plurality of the parallelizing elements 51 and 52, a plurality of slow axis collimator lenses 60 to 62, a plurality of reflecting mirrors 70 to 72, a plurality of mirror installation surfaces 80 to 82, an optical fiber 4, and current input terminals 9a and 9b.
  • the semiconductor laser device 101 further includes an airtight package 107.
  • the semiconductor laser device 101 also includes a multi-stage base 108 having a plurality of mirror mounting surfaces 80 to 82.
  • the number of semiconductor laser elements etc. is three, but similarly to the first embodiment, the number of semiconductor laser elements etc. may be four or more.
  • the airtight package 107 is a package that hermetically seals at least one of the multiple semiconductor laser elements 10-12.
  • the airtight package 107 is a single package that hermetically seals the multiple semiconductor laser elements 10-12.
  • the submounts 20-22 are also hermetically sealed within the airtight package 107.
  • the airtight package 107 has a light-transmitting window 117 for emitting each laser light from the multiple semiconductor laser elements 10-12 to the outside of the airtight package 107.
  • the semiconductor laser device 101 includes an airtight package 107 that hermetically seals at least one of the multiple semiconductor laser elements 10 to 12.
  • multiple semiconductor laser elements 10-12 include AlGaInN-based semiconductors and emit laser light with wavelengths ranging from blue light to ultraviolet light, it is possible to suppress deterioration of each semiconductor laser element due to organic matter adhering to the light-emitting point of each semiconductor laser element.
  • the semiconductor laser device 101 also includes a single airtight package 107 that hermetically seals the semiconductor laser element 11 (first semiconductor laser element) and the semiconductor laser element 12 (second semiconductor laser element). This allows for a simpler configuration than when each of the multiple semiconductor laser elements 10 to 12 is individually airtight sealed. Also, the airtight package 107 can be attached to the housing 2 more easily than when multiple airtight packages are used.
  • FIG. 10 is a perspective view showing a detailed configuration example of the hermetic package 107 according to this embodiment.
  • a lid covering an opening P01 of the hermetic package 107 is removed.
  • the airtight package 107 has a first package P21, a light-transmitting window 117, and a lid (not shown).
  • the first package P21 has a frame body P20, a package bottom P30, and a power supply member formed on the frame body P20.
  • the frame body P20 is stacked and fixed to the package bottom P30.
  • the package bottom P30 is a plate-shaped member made of an inorganic material with high thermal conductivity.
  • the package bottom P30 may be made of a metal such as Cu or a Cu alloy, or may be made of a ceramic or polycrystalline material such as AlN, SiC, or diamond.
  • the frame body P20 is a frame-shaped member that exists mainly around the periphery of the package bottom P30 and has an opening P01 that opens in the center when viewed from above.
  • the opening P01 has a rectangular shape when viewed from above.
  • the frame body P20 is a member whose main material is an inorganic insulating material such as alumina ceramic or AlN ceramic.
  • the upper surface of the portion near the center of the package bottom P30 that is not covered by the frame body P20 becomes the semiconductor laser element mounting surface.
  • Power supply members are provided inside and on the surface of the frame P20.
  • the power supply members are made up of an anode extraction electrode P31, a cathode extraction electrode P34, an anode electrode P32, and a cathode electrode P35, which are made up of patterned metal wiring.
  • An opening (not shown) for extracting laser light is formed on one side of the first package P21.
  • a light-transmitting window 117 is provided in the frame body P20 so as to cover the opening.
  • the anode extraction electrode P31 is an electrode that connects the anode electrode P32 to a current introduction terminal 9a that is arranged outside the airtight package 107
  • the cathode extraction electrode P34 is an electrode that connects the cathode electrode P35 to a current introduction terminal 9b that is arranged outside the airtight package 107.
  • the anode extraction electrode P31 and the cathode extraction electrode P34 are formed on the upper surface of the frame body P20.
  • the anode extraction electrode P31 and the cathode extraction electrode P34 are electrically connected to the anode electrode P32 and the cathode electrode P35, respectively, by metal wiring, via electrodes, etc.
  • the airtight package 107 can form an airtight space by the package bottom P30, the frame body P20, the light-transmitting window 117, and the lid.
  • the semiconductor laser elements 10 to 12 are arranged in the airtight space of the airtight package 107.
  • the semiconductor laser elements 10 to 12 are arranged on a single submount 120.
  • the submount 120 is a member in which the submounts 20 to 22 are integrated.
  • the four patterned metal films 126-129 are arranged on the upper surface of the submount 120 and are insulated from one another.
  • the four metal films 126-129 are arranged in the Y-axis direction.
  • the semiconductor laser elements 10-12 are placed on the metal films 126-128, respectively, via conductive bonding members.
  • the four metal films 126-129 are made of one or more metal films of, for example, Ni, Cu, Pt, and Au.
  • the submount 120 is a separate component from the first package P21, but it may be formed integrally as part of the first package P21.
  • the cathode electrode P35 is connected to the metal film 129 by a metal wire W.
  • the metal film 129 is connected to an electrode on the top surface of the semiconductor laser element 12 by a metal wire W.
  • the metal film 128 is connected to an electrode on the top surface of the semiconductor laser element 11 by a metal wire W.
  • the metal film 127 is connected to an electrode on the top surface of the semiconductor laser element 10 by a metal wire W.
  • the metal film 126 is connected to the anode electrode P32 by a metal wire W.
  • the semiconductor laser elements 10 to 12 are mounted on the submount 120 in a junction-down configuration, but they may also be mounted in a junction-up configuration.
  • a FAST axis collimator lens 130 is disposed on the optical path of the laser beams L0A to L2A (not shown in FIG. 10) inside the package.
  • the FAST axis collimator lens 130 is an integrated combination of the FAST axis collimator lenses 30 to 32.
  • FIG. 11 is a perspective view showing the internal configuration of an airtight package 107 according to the modification of this embodiment.
  • the semiconductor laser elements 10 to 12 are integrated to form a semiconductor laser array 110.
  • the semiconductor laser elements 10 to 12 are included in the semiconductor laser array 110, which is a single element.
  • the three optical waveguides formed in the semiconductor laser array 110 correspond to the semiconductor laser elements 10 to 12.
  • an electrode is formed on the upper surface of the semiconductor laser array 110 to integrally cover at least the portions corresponding to the three optical waveguides.
  • an electrode is formed on the lower surface of the semiconductor laser array 110 to integrally cover at least the portions corresponding to the three optical waveguides.
  • two patterned metal films 126, 129 are arranged on the upper surface of the submount 120 and are insulated from each other.
  • the semiconductor laser array 110 is placed on the metal film 126 via a conductive bonding material.
  • the cathode electrode P35 is connected to the metal film 129 by a metal wire W.
  • the metal film 129 is connected to the electrode on the top surface of the semiconductor laser array 110 by a metal wire W.
  • the metal film 126 is connected to the anode electrode P32 by a metal wire W.
  • the semiconductor laser device according to this embodiment differs from the semiconductor laser device 1 according to the first embodiment mainly in that the deflection element and the parallelization element have a reflecting surface.
  • the semiconductor laser device according to this embodiment will be described below with reference to Figs. 12 and 13, focusing on the differences from the semiconductor laser device 1 according to the first embodiment.
  • FIGS. 12 and 13 are a plan view and a side view, respectively, showing the configuration of a semiconductor laser device 201 according to this embodiment.
  • the semiconductor laser device 201 includes a housing 2, a plurality of semiconductor laser elements 10-12, a plurality of reflecting mirrors 70-72, a focusing lens 90, a plurality of mirror mounting surfaces 80-82, submounts 20-22, FAST axis collimator lenses 30-32, a deflection element 240, parallelizing elements 251, 252, SLOW axis collimator lenses 60-62, an optical fiber 4, and current introduction terminals 9a, 9b.
  • the semiconductor laser elements 10 to 12 are disposed on the bottom surface 6a via submounts 20 to 22, respectively.
  • the mirror mounting surface 80 is the bottom surface 6a.
  • the semiconductor laser device 201 has a multi-stage base 208 having mirror mounting surfaces 81 and 82.
  • the deflection element 240 is disposed between the semiconductor laser elements 11, 12 and the reflecting mirrors 71, 72, and is a deflection element that gives a height component from the bottom surface 6a to the propagation direction of the laser beams L1B, L2B.
  • the deflection element 240 is an optical element having a reflecting surface 240a.
  • the deflection element 240 is a rectangular prism-shaped optical element whose upper surface is the reflecting surface 240a. As shown in FIG.
  • the laser beams L1B, L2B are reflected by the reflecting surface 240a of the deflection element 240, so that an upward component from the bottom surface 6a is given to the propagation direction of the laser beams L1B, L2B, and the laser beams L1C, L2C are emitted from the deflection element 240.
  • the multiple parallelizing elements 251, 252 are disposed between the deflection element 240 and the reflecting mirrors 71, 72, and are deflection elements that deflect the propagation direction of the laser beams L1C, L2C in a direction parallel to the mirror mounting surfaces 81, 82.
  • the multiple parallelizing elements 251, 252 are prisms having reflecting surfaces 251a, 252a, respectively.
  • An anti-reflection film is provided on the entrance surface and exit surface of each of the multiple parallelizing elements 251, 252 to reduce reflection.
  • the laser beams L1C, L2C incident on the entrance surfaces of the multiple parallelizing elements 251, 252 are reflected by the reflecting surfaces 251a, 252a, respectively, and are emitted from the exit surface as laser beams L1D, L2D.
  • the laser beams L1C and L2C are incident perpendicularly to the incident surfaces of the parallelizing elements 251 and 252, respectively, and the laser beams L1C and L2C are emitted perpendicularly from the exit surfaces of the parallelizing elements 251 and 252, respectively.
  • the semiconductor laser device 201 also achieves the same effects as the semiconductor laser device 1 according to the first embodiment.
  • the semiconductor laser device according to this embodiment differs from the semiconductor laser device 1 according to the first embodiment mainly in that the laser light emitted from the semiconductor laser element has a component in the height direction.
  • the semiconductor laser device according to this embodiment will be described below, focusing on the differences from the semiconductor laser device 1 according to the first embodiment.
  • FIGS. 14 and 15 are a perspective view and a side view, respectively, showing the configuration of a semiconductor laser device 301 according to this embodiment.
  • the semiconductor laser device 301 includes a housing 2, a plurality of semiconductor laser elements 10-12, a plurality of reflecting mirrors 70-72, a focusing lens 90, a plurality of mirror mounting surfaces 80-82, submounts 20-22, FAST axis collimator lenses 30-32, parallelizing elements 50-52, SLOW axis collimator lenses 60-62, and an optical fiber 4.
  • current introduction terminals and the like are omitted from the illustrations in FIGS. 14 and 15. Current introduction terminals and the like may also be omitted from the following drawings.
  • the semiconductor laser elements 10-12 are mounted on a laser mounting surface 307a that is inclined at an angle of 5 degrees to 20 degrees with respect to the bottom surface 6a.
  • the propagation direction of the laser beams L0A-L2A emitted from the semiconductor laser elements 10-12 is inclined at an angle of 5 degrees to 20 degrees and has a height component from the bottom surface 6a. Therefore, in this embodiment, the FAST axis direction of the laser beams L0A-L2A is not parallel to the X-axis direction.
  • the propagation direction of the laser beams L0A-L2A emitted from the semiconductor laser elements 10-12 has an upward (positive X-axis) component. Therefore, in this embodiment, the deflection element 40 used in the first embodiment and the like is not required. This allows the configuration of the semiconductor laser device 301 to be simplified.
  • the multiple semiconductor laser elements 10 to 12 are arranged on the same plane.
  • the semiconductor laser device 301 has a multi-stage base 308 having mirror mounting surfaces 80 to 82 and a laser mounting surface 307a.
  • the semiconductor laser device 301 also includes a first parallelizing element (parallelizing element 51) that is disposed between the first semiconductor laser element (semiconductor laser element 11) and the first reflecting mirror (reflecting mirror 71) and deflects the propagation direction of the first laser light (laser light L1B) in a direction parallel to the first mirror mounting surface (mirror mounting surface 81), and a second parallelizing element (parallelizing element 52) that is disposed between the second semiconductor laser element (semiconductor laser element 12) and the second reflecting mirror (reflecting mirror 72) and deflects the propagation direction of the second laser light (laser light L2B) by 5 degrees or more and 20 degrees or less in a direction parallel to the second mirror mounting surface (mirror mounting surface 82).
  • the first laser light between the first semiconductor laser element and the first collimating element and the second laser light between the second semiconductor laser element and the second collimating element are parallel, and the distance between the second semiconductor laser element and the second collimating element is longer than the distance between the first semiconductor laser element and the first collimating element.
  • the distance in the Z-axis direction from the corresponding semiconductor laser element of each of the collimating elements 50 to 52 increases as the height of each collimating element from the bottom surface 6a increases. This allows the distance from each of the collimating elements 50 to 52 to each semiconductor laser element to be different depending on the height of the installation position of each collimating element.
  • the collimating elements 50 to 52 are installed near the ends of the mirror installation surfaces 80 to 82 that are closer to the semiconductor laser elements 10 to 12, respectively.
  • the collimating elements 50 to 52 may be installed in areas on the laser installation surface 307a near the ends of each mirror installation surface.
  • each semiconductor laser element to each mirror mounting surface increases as the height of each mirror mounting surface from the bottom surface 6a increases. Also, as the height of each mirror mounting surface from the bottom surface 6a increases, the length of each mirror mounting surface in the propagation direction (Z-axis direction) of each laser light (L0D to L2D, L0E to L2E) of each mirror mounting surface decreases.
  • the end of each mirror mounting surface is directly connected to the laser mounting surface 307a. This allows each laser light to propagate along the laser mounting surface 307a and each mirror mounting surface. Therefore, it is possible to reduce the blocking of each laser light by the multi-stage base 308. Also, by arranging each optical element on the laser mounting surface 307a or each mirror mounting surface, it is possible to control each laser light.
  • the laser mounting surface 307a is inclined with respect to the bottom surface 6a, and the height from the bottom surface 6a decreases as it moves away from the end of each mirror mounting surface.
  • the laser beams L0B to L2B propagate parallel to the laser mounting surface 307a between the semiconductor laser elements 10 to 12 and the collimating elements 50 to 52.
  • the laser beams L0B to L2B also propagate parallel to each other between the semiconductor laser elements 10 to 12 and the collimating elements 50 to 52.
  • the semiconductor laser device 301 according to this embodiment differs from the semiconductor laser device 1 according to the first embodiment in that the propagation direction of each laser light emitted from each semiconductor laser element has a component in the height direction from the bottom surface 6a.
  • the semiconductor laser device 301 according to this embodiment as in the semiconductor laser device 1 according to the first embodiment, as shown in FIG. 15, the first distance D1 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the first optical axis A1 of the laser light L1E incident on the reflecting mirror 71 and the second distance D2 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the second optical axis A2 of the laser light L2E incident on the reflecting mirror 72 are different from each other.
  • the third distance D3 in the first direction from the light emitting point 12e of the semiconductor laser element 12 to the second optical axis A2 of the laser light L2E incident on the reflecting mirror 72 is greater than the first distance D1.
  • the semiconductor laser device 301 according to this embodiment also achieves the same effects as the semiconductor laser device 1 according to the first embodiment.
  • a semiconductor laser device according to Modification 1 of the present embodiment will be described.
  • the semiconductor laser device according to this modification is different from the semiconductor laser device 301 according to the fourth embodiment mainly in that the propagation direction of the laser beams L0A-L2A emitted from the multiple semiconductor laser elements 10-12 has a downward component.
  • the semiconductor laser device according to this modification will be described below with reference to FIGS. 16 and 17, focusing on the differences from the semiconductor laser device 301 according to the fourth embodiment.
  • FIGS. 16 and 17 are a perspective view and a side view, respectively, showing the configuration of a semiconductor laser device 301a according to this modified example.
  • the semiconductor laser device 301a includes a housing 2, a plurality of semiconductor laser elements 10-12, a plurality of reflecting mirrors 70-72, a focusing lens 90, a plurality of mirror mounting surfaces 80a-82a, submounts 20-22, FAST-axis collimator lenses 30-32, parallelizing elements 50-52, SLOW-axis collimator lenses 60-62, and an optical fiber 4.
  • the semiconductor laser device 301a includes a multi-stage base 308a having mirror mounting surfaces 80a-82a and a laser mounting surface 307a.
  • the multiple mirror mounting surfaces 80a-82a have different heights from the bottom surface 6a. Specifically, the mirror mounting surface 81a is lower in height from the bottom surface 6a than the mirror mounting surface 80a, and the mirror mounting surface 82a is lower in height from the bottom surface 6a than the mirror mounting surface 81a.
  • the multiple semiconductor laser elements 10-12 in this modified example are mounted on a laser mounting surface 307a that is inclined with respect to the bottom surface 6a.
  • the propagation direction of the laser beams L0A-L2A emitted from the multiple semiconductor laser elements 10-12 has a component in the height direction from the bottom surface 6a.
  • the propagation direction of the laser beams L0A-L2A emitted from the multiple semiconductor laser elements 10-12 has a downward component. Therefore, in this modified example, the deflection element 40 used in the first embodiment and the like is not required. This allows the configuration of the semiconductor laser device 301a to be simplified.
  • the multiple semiconductor laser elements 10 to 12 are arranged on the same plane.
  • the distance in the Z-axis direction from each of the parallelizing elements 50-52 to each semiconductor laser element increases as the height from the bottom surface 6a of the installation position of each parallelizing element decreases. This makes it possible to vary the distance from each semiconductor laser element to each parallelizing element depending on the height of the installation position of each parallelizing element.
  • the parallelizing elements 50-52 are installed near the ends of the mirror installation surfaces 80-82 that are closer to the semiconductor laser elements 10-12.
  • the parallelizing elements 50-52 may also be installed in areas on the laser installation surface 307a near the ends of each mirror installation surface.
  • each semiconductor laser element to each mirror mounting surface increases as the height of each mirror mounting surface from the bottom surface 6a decreases. Also, as the height of each mirror mounting surface from the bottom surface 6a decreases, the length of each mirror mounting surface in the propagation direction (Z-axis direction) of each laser light (L0D-L2D, L0E-L2E) decreases. In other words, the lower the height of the mirror mounting surface from the bottom surface 6a among the mirror mounting surfaces 80a-82a, the shorter the length in the propagation direction (Z-axis direction) of the laser light.
  • the end of each mirror mounting surface is directly connected to the laser mounting surface 307a. This allows each laser light to propagate along the laser mounting surface 307a and each mirror mounting surface.
  • each optical element on the laser mounting surface 307a or each mirror mounting surface, it is possible to control each laser light.
  • the laser mounting surface 307a is inclined relative to the bottom surface 6a, and the height from the bottom surface 6a increases as it moves away from the end of each mirror mounting surface.
  • the laser beams L0B to L2B propagate parallel to the laser mounting surface 307a between the semiconductor laser elements 10 to 12 and the collimating elements 50 to 52.
  • the laser beams L0B to L2B also propagate parallel to each other between the semiconductor laser elements 10 to 12 and the collimating elements 50 to 52.
  • the semiconductor laser device 301a according to this modified example also achieves the same effects as the semiconductor laser device 301 according to the fourth embodiment.
  • a semiconductor laser device according to Modification 2 of the present embodiment will be described.
  • the semiconductor laser device according to this modification is different from the semiconductor laser device 301a according to Modification 1 mainly in that the laser mounting surface on which the multiple semiconductor laser elements 10 to 12 are mounted is parallel to the bottom surface 6a, and the mirror mounting surface is inclined with respect to the bottom surface 6a.
  • the semiconductor laser device according to this modification will be described below with reference to FIG. 18, focusing on the differences from the semiconductor laser device 301a according to Modification 1.
  • FIG. 18 is a side view showing the configuration of a semiconductor laser device 301b according to this modified example.
  • the semiconductor laser device 301b includes a plurality of semiconductor laser elements 10-12 (semiconductor laser elements 10 and 11 are not shown), a plurality of reflecting mirrors 70-72, a plurality of mirror mounting surfaces 80a-82a, submounts 20-22 (submounts 20 and 21 are not shown), FAST axis collimator lenses 30-32 (FAST axis collimator lenses 30 and 31 are not shown), parallelizing elements 50-52, and SLOW axis collimator lenses 60-62.
  • the semiconductor laser device 301b includes a laser base 307 having a laser mounting surface 307b, and a multi-stage base 308b having a plurality of mirror mounting surfaces 80a to 82a.
  • the laser base 307 and the multi-stage base 308b may be separate bodies or may be integrated together.
  • the semiconductor laser device 301b differs from the semiconductor laser device 301a of the first modification in the configuration of the multi-stage base 308b and the laser base 307.
  • the semiconductor laser device 301b includes a laser base 307 having a laser mounting surface 307b parallel to the lower surface 308ba (or bottom surface 6a) of the multi-stage base 308b. Since the semiconductor laser elements 10 to 12 are mounted on the laser mounting surface 307b, the propagation direction of the laser beams L0A to L2A emitted from the semiconductor laser elements 10 to 12 does not include a component in the height direction from the bottom surface 6a.
  • the mirror mounting surfaces 80-82 on which the reflective mirrors 70-72 are mounted are inclined at an angle of 5 degrees to 20 degrees with respect to the lower surface 308ba (or bottom surface 6a) of the multi-stage base 308b.
  • the multiple mirror mounting surfaces 80-82 are parallel to each other.
  • the heights of the ends of the multiple mirror mounting surfaces 80-82 that are closer to each semiconductor laser element from the bottom surface 6a are the same.
  • the height of the ends may be the same as the height of the laser mounting surface 307b.
  • the height of the multistage base 308b from the bottom surface 6a of the area between the multiple mirror mounting surfaces 80-82 and the multiple semiconductor laser elements 10-12 is lower than the height of the bottom surface 6a of each light emitting point of the semiconductor laser elements 10-12. This reduces the blocking of each laser light by the multistage base 308b.
  • the position of the end of the multistage base 308b close to each semiconductor laser element coincides with the end of the multiple mirror mounting surfaces 80-82. In other words, there is no component of the multistage base 8 located between each mirror mounting surface and the laser base 307. This reduces the blocking of each laser light by the multistage base 308b, and makes the multistage base 308b lighter.
  • the parallelizing elements 50-52 impart a height component (an upward component in this modification) to the propagation direction of the laser beams L0B-L2B, respectively, so that the propagation direction of the laser beams L0D-L2D emitted from the parallelizing elements 50-52 becomes parallel to the mirror installation surfaces 80-82, respectively.
  • the distance in the Z-axis direction from each of the parallelizing elements 50-52 to each semiconductor laser element increases as the height from the bottom surface 6a of the installation position of the reflecting mirror corresponding to each parallelizing element decreases. This makes it possible to make the distance from each semiconductor laser element to each parallelizing element different depending on the installation position of the reflecting mirror corresponding to each parallelizing element.
  • the parallelizing elements 50-52 are installed near the ends of the mirror installation surfaces 80-82, respectively, that are closer to the semiconductor laser elements 10-12.
  • each mirror mounting surface closest to each semiconductor laser element increases as the height from the bottom surface 6a of the installation position of each reflecting mirror installed on each mirror mounting surface decreases. Also, the optical path length of the laser light propagating along each mirror mounting surface decreases as the height from the bottom surface 6a of the installation position of each reflecting mirror installed on each mirror mounting surface decreases.
  • Each mirror mounting surface may be directly connected to the laser mounting surface 307a at the end closest to the laser mounting surface 307a.
  • the multi-stage base 308b may be integrated with the laser base 307.
  • the laser beams L0B to L2B propagate parallel to the laser mounting surface 307a between the semiconductor laser elements 10 to 12 and the collimating elements 50 to 52.
  • the laser beams L0B to L2B propagate in the positive direction of the Z axis, parallel to the bottom surface 6a.
  • the laser beams L0B to L2B propagate parallel to each other between these points.
  • the first distance D1 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the optical axis (first optical axis A1) of the laser light L1E incident on the reflecting mirror 71 and the second distance D2 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the optical axis (second optical axis A2) of the laser light L2E incident on the reflecting mirror 72 are different from each other.
  • the third distance D3 in the first direction from the light emitting point 12e of the semiconductor laser element 12 to the second optical axis A2 is greater than the first distance D1.
  • the difference between the height of the light emitting point 12e of the semiconductor laser element 12 from the bottom surface 6a and the average height of the mirror installation surface 82 from the bottom surface 6a is greater than the difference between the height of the light emitting point 11e of the semiconductor laser element 11 from the bottom surface 6a and the average height of the mirror installation surface 81 from the bottom surface 6a.
  • the semiconductor laser device 301b according to this modified example also achieves the same effects as those of the first embodiment.
  • the semiconductor laser device 301b according to this modification also achieves the same effects as the semiconductor laser device 301a according to modification 1.
  • FIG. 5 A semiconductor laser device according to embodiment 5 will be described.
  • the semiconductor laser device according to this embodiment differs from the semiconductor laser device 301 according to embodiment 4 mainly in that the laser light emitted from the semiconductor laser element is perpendicular to the bottom surface 6a.
  • the semiconductor laser device according to this embodiment will be described below, focusing on the differences from the semiconductor laser device 301 according to embodiment 4.
  • FIGS. 19 and 20 are a perspective view and a side view, respectively, showing the configuration of a semiconductor laser device 401 according to this embodiment.
  • the semiconductor laser device 401 includes a housing 2, a plurality of semiconductor laser elements 10-12, a plurality of reflecting mirrors 70-72, a focusing lens 90, a plurality of mirror mounting surfaces 80-82, submounts 20-22, FAST-axis collimator lenses 30-32, parallelizing elements 450-452, SLOW-axis collimator lenses 60-62, and an optical fiber 4.
  • the semiconductor laser device 401 comprises a laser mounting surface 407a on which multiple semiconductor laser elements 10-12 are mounted, and a multi-stage base 408 having multiple mirror mounting surfaces 80-82.
  • the laser mounting surface 407a perpendicularly intersects with the multiple mirror mounting surfaces 80-82 and the bottom surface 6a.
  • the multiple semiconductor laser elements 10-12 according to this embodiment are mounted on a laser mounting surface 407b that perpendicularly intersects with the bottom surface 6a and the multiple mirror mounting surfaces 80-82.
  • the propagation direction of the laser light L0A-L2A emitted from the multiple semiconductor laser elements 10-12 has a component in the height direction from the bottom surface 6a.
  • the laser light L0A-L2A emitted by the multiple semiconductor laser elements 10-12 propagates upward (positive in the X-axis direction).
  • the collimating elements 450-452 respectively deflect the laser beams L0B-L2B emitted by the semiconductor laser elements 10-12 (laser beams L0B-L2B obtained by collimating the laser beams L0A-L2A emitted by the semiconductor laser elements 10-12 by the FAST-axis collimator lenses 30-32) by 90 degrees.
  • the collimating elements 450-452 respectively deflect the laser beams L0B-L2B in the positive direction in the Z-axis direction.
  • the collimating elements 450-452 are reflective deflection elements made of a triangular prism having a reflecting surface and a right-angled triangular base.
  • the laser beams L0B-L2B incident on the incident surfaces of the collimating elements 450-452 are reflected by the reflecting surfaces of the collimating elements 450-452 and are emitted from the reflecting surfaces as laser beams L0D-L2D via the emitting surfaces.
  • the laser beams L0D to L2D are the reflected beams of the laser beams L0B to L2B that are reflected by the reflecting surfaces of the collimating elements 450 to 452, respectively.
  • the laser beams L0B to L2B are incident perpendicularly on the incident surfaces of the collimating elements 450 to 452, respectively, and the laser beams L0D to L2D are emitted perpendicularly from the exit surfaces of the collimating elements 450 to 452.
  • the parallelizing elements 450-452 are installed on the outside of the corner where the laser mounting surface 407a and the multiple mirror mounting surfaces 80-82 intersect perpendicularly, on a line extended to the emission side of the semiconductor laser elements 10-12, and at the same height as each of the reflecting mirrors 70-72.
  • the parallelizing elements 450-452 are installed on the mirror mounting surfaces 80-82, respectively.
  • Each parallelizing element is installed in a state where it protrudes from each mirror mounting surface in a direction parallel to each mirror mounting surface, in a direction approaching the optical axis of the laser beams L0B-L2B. This allows each laser beam to be incident on the reflecting surface of each parallelizing element.
  • each parallelizing element is arranged in a state where it is inclined with respect to each mirror mounting surface and the laser mounting surface 407a.
  • the inclination angle of the reflecting surface of each parallelizing element with respect to each mirror mounting surface and the laser mounting surface 407a is 45 degrees.
  • the parallelizing elements 450 to 452 may be reflective mirrors and may be installed on a surface other than the mirror installation surface.
  • the parallelizing elements 450 to 452 may be installed on the laser installation surface 407a.
  • a first distance D1 in a first direction from the light emitting point 11e of the semiconductor laser element 11 to the optical axis (first optical axis A1) of the laser light L1E incident on the reflecting mirror 71 and a second distance D2 in a first direction from the light emitting point 11e of the semiconductor laser element 11 to the optical axis (second optical axis A2) of the laser light L2E incident on the reflecting mirror 72 are different from each other.
  • a third distance D3 in the first direction from the light emitting point 12e of the semiconductor laser element 12 to the second optical axis A2 is greater than the first distance D1.
  • the first distance D1 is equal to the sum of the optical path length of the laser light L1A and the optical path length of the laser light L1B (i.e., the optical path length from the light emitting point 11e to the intersection of the reflecting surface of the parallelizing element 451 and the first optical axis A1).
  • the second distance D2 and the third distance D3 are equal to the sum of the optical path length of the laser light L2A and the optical path length of the laser light L2B (i.e., the optical path length from the light emitting point 12e to the intersection of the reflecting surface of the parallelizing element 452 and the second optical axis A2).
  • the semiconductor laser device 401 according to this embodiment also exhibits the same effects as the semiconductor laser device 301 according to embodiment 4.
  • the optical axis of the laser light is deflected by 90 degrees using each parallelizing element, thereby reducing the dimension of the semiconductor laser device 401 in the Z-axis direction.
  • a semiconductor laser device according to a modification of the present embodiment will be described.
  • the semiconductor laser device according to this modification differs from the semiconductor laser device 401 according to the fifth embodiment mainly in that the propagation direction of the laser beams L0A-L2A emitted from the plurality of semiconductor laser elements 10-12 is downward.
  • the semiconductor laser device according to this modification will be described below with reference to FIG. 21, focusing on the differences from the semiconductor laser device 401 according to the fifth embodiment.
  • FIG. 21 is a perspective view showing the configuration of a semiconductor laser device 401a according to this modified example.
  • the semiconductor laser device 401a includes a housing 2, a plurality of semiconductor laser elements 10-12, a plurality of reflecting mirrors 70-72, a focusing lens 90, a plurality of mirror mounting surfaces 80-82, submounts 20-22, FAST axis collimator lenses 30-32, parallelizing elements 50-52, SLOW axis collimator lenses 60-62, and an optical fiber 4.
  • the semiconductor laser device 401a comprises a laser mounting surface 407b on which multiple semiconductor laser elements 10-12 are mounted, and a multi-stage base 408a having multiple mirror mounting surfaces 80-82.
  • the multi-stage base 408a has a lower surface 408ba and mirror mounting surfaces 80-82 that are parallel to and face the lower surface 408ba.
  • the mirror mounting surfaces 80-82 have different heights from the bottom surface 6a, with the heights from the bottom surface increasing in the order of mirror mounting surfaces 82, 81, and 80.
  • the laser mounting surface 407b perpendicularly intersects with the multiple mirror mounting surfaces 80-82 and the bottom surface 6a.
  • the laser mounting surface 407b extends upward from the ends of the mirror mounting surfaces 80-82 that are closer to the semiconductor laser elements 10-12, in the opposite direction to the lower surface 408ba.
  • the laser mounting surface 407b and the mirror mounting surfaces 80 to 82 form an L-shape
  • the multi-stage base 408a has a recessed portion in the L-shape.
  • the multi-stage base 408a has a stepped upper surface including the mirror mounting surfaces 80 to 82, and has a first plate-like portion extending along the bottom surface 6a, and a second plate-like portion connected to the plate-like portion, including the laser mounting surface 407b, and standing on the bottom surface 6a.
  • the multiple semiconductor laser elements 10 to 12 are mounted on the laser mounting surface 407b that perpendicularly intersects with the bottom surface 6a and the multiple mirror mounting surfaces 80 to 82.
  • the propagation direction of the laser beams L0A to L2A (not shown in FIG. 21) emitted from the multiple semiconductor laser elements 10 to 12 has a component in the height direction from the bottom surface 6a.
  • the laser beams L0A to L2A emitted by the semiconductor laser elements 10 to 12 propagate downward (negative direction in the X-axis direction).
  • the parallelizing elements 450 to 452 respectively deflect the laser beams L0B to L2B emitted by the semiconductor laser elements 10 to 12 (laser beams L0B to L2B obtained by collimating the laser beams L0A to L2A emitted by the semiconductor laser elements 10 to 12 by the FAST-axis collimator lenses 30 to 32) by 90 degrees.
  • the parallelizing elements 450 to 452 respectively deflect the laser beams L0B to L2B in the positive direction in the Z-axis direction.
  • the parallelizing elements 450 to 452 are reflective deflection elements having a reflecting surface.
  • the parallelizing elements 450 to 452 are installed near the ends of the mirror installation surfaces 80 to 82 that are closer to the semiconductor laser elements 10 to 12.
  • the parallelizing elements 450 to 452 may be reflecting mirrors.
  • the semiconductor laser device 401a according to this modified example also achieves the same effects as the semiconductor laser device 401 according to the fifth embodiment.
  • each SLOW-axis collimator lens may be placed between each semiconductor laser element (or each FAST-axis collimator lens) and each parallelizing element, or between each semiconductor laser element (or each FAST-axis collimator lens) and each deflection element.
  • Figure 22 is a perspective view showing the configuration of a semiconductor laser device 1c according to modification 3 of embodiment 1.
  • Figure 23 is a perspective view showing the configuration of a semiconductor laser device 1d according to modification 4 of embodiment 1.
  • the semiconductor laser device 1c according to the third modification differs from the semiconductor laser device 1 according to the first embodiment in the configuration and arrangement of the SLOW-axis collimator lens 60c.
  • the SLOW-axis collimator lens 60c according to the third modification is disposed between the multiple parallelizing elements 51-55 and the multiple semiconductor laser elements 11-15, and between the reflecting mirror 70 and the semiconductor laser element 10. More specifically, the SLOW-axis collimator lens 60c is disposed between the deflection element 40 and the multiple FAST-axis collimator lenses 31-35, and between the reflecting mirror 70 and the FAST-axis collimator lens 30.
  • the SLOW-axis collimator lens 60c has a configuration in which multiple SLOW-axis collimator lenses 60-65 arranged in the Y-axis direction are integrated.
  • the SLOW-axis collimator lens 60c corresponding to multiple laser beams is arranged in the area between the deflection element 40 and the multiple semiconductor laser elements 10-15, that is, in the area where the multiple laser beams are in the same plane, making it possible to arrange the multiple SLOW-axis collimator lenses 60-65 on the same plane. Therefore, in the third modification, the multiple SLOW-axis collimator lenses 60-65 can be easily integrated. Furthermore, the integration of the multiple SLOW-axis collimator lenses 60-65 makes it easier to install the SLOW-axis collimator lens 60c.
  • the slow axis collimator lenses are not arranged on the mirror mounting surfaces, it is possible to shorten the length of each mirror mounting surface in the Z-axis direction. This allows the dimensions of the multi-stage base 8 to be reduced, making it possible to reduce the weight of the multi-stage base 8.
  • the semiconductor laser device 1d according to the fourth modification shown in FIG. 23 differs from the semiconductor laser device 1c according to the third modification mainly in that it has multiple deflection elements 41-45 instead of the deflection element 40, and in the arrangement of the multiple deflection elements 41-45 and the multiple parallelizing elements 51-55.
  • the multiple deflection elements 41 to 45 in the fourth modification are disposed between the SLOW-axis collimator lens 60c and the multiple parallelizing elements 51 to 55, respectively.
  • the SLOW-axis collimator lens 60c and the multiple deflection elements 41 to 45 are disposed on the laser base 7.
  • the distance in the Z-axis direction from each deflection element to each semiconductor laser element decreases as the height of the corresponding parallelizing element and reflecting mirror from the bottom surface 6a increases. Meanwhile, the position of each parallelizing element in the Z-axis direction is the same. In other words, the distance in the Z-axis direction between each deflection element and each parallelizing element increases as the height of each parallelizing element from the bottom surface 6a increases. This allows each laser light to propagate to each of the parallelizing elements that are installed at different heights. Note that, even in the fourth modification, the propagation directions of the multiple laser lights propagating between the multiple deflection elements 41-45 and the multiple parallelizing elements 51-55 are parallel to each other and inclined with respect to the bottom surface 6a.
  • the lengths of the multiple mirror mounting surfaces in the Z-axis direction in the fourth modified example may be equal. This allows the edges of the multiple mirror mounting surfaces to be formed on the same plane, making it easier to manufacture the multi-stage base 8d having multiple mirror mounting surfaces.
  • Each parallelizing element is disposed near the end of each mirror mounting surface that is closer to each semiconductor laser element.
  • the semiconductor laser devices according to the third and fourth modifications of the first embodiment as described above also achieve the same effects as the semiconductor laser device 1 according to the first embodiment.
  • the parallelizing element instead of placing the parallelizing element on the mirror mounting surface, the parallelizing element may be placed on the laser mounting surface that is inclined with respect to the bottom surface. In this case, the parallelizing element is placed near the end of the laser mounting surface that is closer to the reflecting mirror.
  • the semiconductor laser device is particularly useful as a high-brightness, high-power laser light source, for example, a laser light source for processing, a laser light source for displays, a laser light source for medical use, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

This semiconductor laser device comprises: a semiconductor laser element (11) and a semiconductor laser element (12); a reflecting mirror (71) that reflects first laser light emitted from the semiconductor laser element (11); and a reflecting mirror (72) that reflects second laser light emitted from the semiconductor laser element (12). The semiconductor laser element (11) has a light emitting point (11e). The semiconductor laser element (12) has a light emitting point (12e). When the optical axis of the first laser light entering the reflecting mirror (71) is a first optical axis, the optical axis of the second laser light entering the reflecting mirror (72) is a second optical axis, and a direction passing through the light emitting point (11e) and perpendicular to the first optical axis is a first direction, a first distance from the light emitting point (11e) to the first optical axis in the first direction and a second distance from the light emitting point (11e) to the second optical axis in the first direction are different from each other. A third distance from the light emitting point (12e) to the second optical axis in the first direction is greater than the first distance.

Description

半導体レーザ装置Semiconductor laser device
 本開示は、半導体レーザ装置に関する。 This disclosure relates to a semiconductor laser device.
 特許文献1には、平坦な底面に配置される多段ベースと、多段ベースに配置される複数の半導体レーザ素子及び複数の反射ミラーと、集光レンズと、光ファイバとを備える半導体レーザ装置が記載されている。複数の半導体レーザ素子の各々、及び、複数の反射ミラーの各々は、多段ベースの各段に配置される。複数の半導体レーザ素子からの複数のレーザ光は、それぞれ、複数の反射ミラーによって偏向されて、集光レンズに入射する。集光レンズは、入射した複数のレーザ光を光ファイバの入射端面に集光する。 Patent Document 1 describes a semiconductor laser device that includes a multi-stage base arranged on a flat bottom surface, a plurality of semiconductor laser elements and a plurality of reflecting mirrors arranged on the multi-stage base, a focusing lens, and an optical fiber. Each of the plurality of semiconductor laser elements and each of the plurality of reflecting mirrors are arranged on each stage of the multi-stage base. The plurality of laser beams from the plurality of semiconductor laser elements are respectively deflected by the plurality of reflecting mirrors and enter the focusing lens. The focusing lens focuses the incident plurality of laser beams onto the incident end face of the optical fiber.
 特許文献1に記載された半導体レーザ装置では、以上のような構成により、コンパクト、かつ、高出力なレーザ光源を実現しようとしている。 The semiconductor laser device described in Patent Document 1 aims to realize a compact, high-output laser light source through the above-mentioned configuration.
国際公開第2021/230294号International Publication No. 2021/230294
 特許文献1に記載された半導体レーザ装置の底面がヒートシンク上に配置される場合、複数の半導体レーザ素子から底面までの距離が互いに異なるため、複数の半導体レーザ素子の放熱特性が不均一となる。また、特許文献1に記載された半導体レーザ装置では、複数の半導体レーザ素子を、それぞれ、互いに高さが異なる複数の段に実装する必要があるため、実装工程が煩雑となる。特許文献1に記載された半導体レーザ装置では、半導体レーザ素子の配置位置が多段ベース上に定められているため、これらの問題を解決し難い。 When the bottom surface of the semiconductor laser device described in Patent Document 1 is placed on a heat sink, the distances from the multiple semiconductor laser elements to the bottom surface are different from one another, resulting in non-uniform heat dissipation characteristics for the multiple semiconductor laser elements. Also, in the semiconductor laser device described in Patent Document 1, the multiple semiconductor laser elements need to be mounted in multiple stages that are different heights from one another, making the mounting process complicated. In the semiconductor laser device described in Patent Document 1, the positions at which the semiconductor laser elements are arranged are determined on a multi-stage base, making it difficult to solve these problems.
 そこで、本開示は、複数の半導体レーザ素子を備える半導体レーザ装置において、複数の半導体レーザ素子の配置の自由度を高めることを目的とする。 The present disclosure therefore aims to increase the degree of freedom in arranging multiple semiconductor laser elements in a semiconductor laser device that includes multiple semiconductor laser elements.
 上記目的を達成するため、本開示の一態様に係る半導体レーザ装置は、底面を有する筐体と、前記筐体内に配置される第一半導体レーザ素子及び第二半導体レーザ素子と、前記第一半導体レーザ素子から出射される第一レーザ光を反射する第一反射ミラーと、前記第二半導体レーザ素子から出射される第二レーザ光を反射する第二反射ミラーと、前記第一反射ミラーによって反射された前記第一レーザ光と、前記第二反射ミラーによって反射された前記第二レーザ光とを集光する集光レンズと、前記第一反射ミラーが設置される第一ミラー設置面と、前記第二反射ミラーが設置される第二ミラー設置面とを備え、前記第一ミラー設置面と、前記第二ミラー設置面とは、互いに平行であり、前記第一ミラー設置面と、前記第二ミラー設置面とは、同一平面上になく、前記第一半導体レーザ素子は、前記第一レーザ光が出射される第一発光点を有し、前記第二半導体レーザ素子は、前記第二レーザ光が出射される第二発光点を有し、前記第一反射ミラーに入射する前記第一レーザ光の光軸を第一光軸とし、前記第二反射ミラーに入射する前記第二レーザ光の光軸を第二光軸とし、前記第一発光点を通り、前記第一光軸と垂直な方向を第一方向とするとき、前記第一発光点から、前記第一光軸までの前記第一方向における第一距離と、前記第一発光点から、前記第二光軸までの前記第一方向における第二距離とは、互いに異なり、前記第二発光点から、前記第二光軸までの前記第一方向における第三距離は、前記第一距離より大きい。 In order to achieve the above object, a semiconductor laser device according to one embodiment of the present disclosure includes a housing having a bottom surface, a first semiconductor laser element and a second semiconductor laser element disposed within the housing, a first reflecting mirror that reflects a first laser light emitted from the first semiconductor laser element, a second reflecting mirror that reflects a second laser light emitted from the second semiconductor laser element, a focusing lens that focuses the first laser light reflected by the first reflecting mirror and the second laser light reflected by the second reflecting mirror, a first mirror mounting surface on which the first reflecting mirror is mounted, and a second mirror mounting surface on which the second reflecting mirror is mounted, the first mirror mounting surface and the second mirror mounting surface being parallel to each other, , the second mirror installation surface is not on the same plane, the first semiconductor laser element has a first light-emitting point from which the first laser light is emitted, the second semiconductor laser element has a second light-emitting point from which the second laser light is emitted, the optical axis of the first laser light incident on the first reflecting mirror is a first optical axis, the optical axis of the second laser light incident on the second reflecting mirror is a second optical axis, and a direction passing through the first light-emitting point and perpendicular to the first optical axis is a first direction, a first distance in the first direction from the first light-emitting point to the first optical axis and a second distance in the first direction from the first light-emitting point to the second optical axis are different from each other, and a third distance in the first direction from the second light-emitting point to the second optical axis is greater than the first distance.
 上記目的を達成するため、本開示の他の一態様に係る半導体レーザ装置は、底面を有する筐体と、前記筐体内に配置される第一半導体レーザ素子及び第二半導体レーザ素子と、前記第一半導体レーザ素子から出射される第一レーザ光を反射する第一反射ミラーと、前記第二半導体レーザ素子から出射される第二レーザ光を反射する第二反射ミラーと、前記第一反射ミラーによって反射された前記第一レーザ光と、前記第二反射ミラーによって反射された前記第二レーザ光とを集光する集光レンズと、前記第一半導体レーザ素子と、前記第一反射ミラーとの間に配置され、前記第一レーザ光の伝搬方向を偏向する第一平行化素子と、前記第二半導体レーザ素子と、前記第二反射ミラーとの間に配置され、前記第二レーザ光の伝搬方向を偏向する第二平行化素子とを備え、前記第一半導体レーザ素子は、前記第一レーザ光が出射される第一発光点を有し、前記第二半導体レーザ素子は、前記第二レーザ光が出射される第二発光点を有し、前記第一平行化素子に入射する前記第一レーザ光の光軸と、前記第二平行化素子に入射する前記第二レーザ光の光軸とは、平行であり、前記第一反射ミラーに入射する前記第一レーザ光の光軸と、前記第二反射ミラーに入射する前記第二レーザ光の光軸とは、平行であり、前記第一反射ミラーに入射する前記第一レーザ光の光軸は、前記第一平行化素子に入射する前記第一レーザ光の光軸に対して、傾斜しており、前記第一反射ミラーに入射する前記第一レーザ光の光軸を第一光軸とし、前記第二反射ミラーに入射する前記第二レーザ光の光軸を第二光軸とし、前記第一発光点を通り、前記第一光軸と垂直な方向を第一方向とするとき、前記第一発光点から、前記第一光軸までの前記第一方向における第一距離と、前記第一発光点から、前記第二光軸までの前記第一方向における第二距離は、互いに異なり、前記第二発光点から、前記第二光軸までの前記第一方向における第三距離は、前記第一距離より大きい。 In order to achieve the above object, a semiconductor laser device according to another aspect of the present disclosure includes a housing having a bottom surface, a first semiconductor laser element and a second semiconductor laser element arranged within the housing, a first reflecting mirror that reflects a first laser light emitted from the first semiconductor laser element, a second reflecting mirror that reflects a second laser light emitted from the second semiconductor laser element, a focusing lens that focuses the first laser light reflected by the first reflecting mirror and the second laser light reflected by the second reflecting mirror, a first collimating element arranged between the first semiconductor laser element and the first reflecting mirror and deflecting the propagation direction of the first laser light, and a second collimating element arranged between the second semiconductor laser element and the second reflecting mirror and deflecting the propagation direction of the second laser light, the first semiconductor laser element having a first light-emitting point from which the first laser light is emitted, and the second semiconductor laser element having a second light-emitting point from which the second laser light is emitted. The optical axis of the first laser light incident on the first parallelizing element is parallel to the optical axis of the second laser light incident on the second parallelizing element, the optical axis of the first laser light incident on the first reflecting mirror is parallel to the optical axis of the second laser light incident on the second reflecting mirror, and the optical axis of the first laser light incident on the first reflecting mirror is inclined with respect to the optical axis of the first laser light incident on the first parallelizing element, and when the optical axis of the first laser light incident on the first reflecting mirror is the first optical axis, and the optical axis of the second laser light incident on the second reflecting mirror is the second optical axis, and a direction passing through the first light emitting point and perpendicular to the first optical axis is the first direction, a first distance in the first direction from the first light emitting point to the first optical axis and a second distance in the first direction from the first light emitting point to the second optical axis are different from each other, and a third distance in the first direction from the second light emitting point to the second optical axis is greater than the first distance.
 本開示によれば、複数の半導体レーザ素子を備える半導体レーザ装置において、複数の半導体レーザ素子の配置の自由度を高めることができる。 According to the present disclosure, in a semiconductor laser device having multiple semiconductor laser elements, it is possible to increase the degree of freedom in the arrangement of the multiple semiconductor laser elements.
実施の形態1に係る半導体レーザ装置の構成を示す斜視図である。1 is a perspective view showing a configuration of a semiconductor laser device according to a first embodiment; 実施の形態1に係る半導体レーザ装置の構成を示す平面図である。1 is a plan view showing a configuration of a semiconductor laser device according to a first embodiment; 実施の形態1に係る半導体レーザ装置の構成を示す側面図である。1 is a side view showing a configuration of a semiconductor laser device according to a first embodiment; 光ファイバの端面におけるレーザ光のスポット形状を示す模式図である。2 is a schematic diagram showing the spot shape of laser light on the end face of an optical fiber. FIG. 実施の形態1の変形例1に係る半導体レーザ装置の構成を示す平面図である。FIG. 2 is a plan view showing a configuration of a semiconductor laser device according to a first modification of the first embodiment. 実施の形態1の変形例1に係る半導体レーザ装置の構成を示す側面図である。1 is a side view showing a configuration of a semiconductor laser device according to a first modification of the first embodiment. FIG. 実施の形態1の変形例2に係る半導体レーザ装置の構成を示す平面図である。FIG. 11 is a plan view showing a configuration of a semiconductor laser device according to a second modification of the first embodiment. 実施の形態1の変形例2に係る半導体レーザ装置の構成を示す側面図である。FIG. 11 is a side view showing a configuration of a semiconductor laser device according to a second modification of the first embodiment. 実施の形態2に係る半導体レーザ装置の構成を示す斜視図である。FIG. 11 is a perspective view showing a configuration of a semiconductor laser device according to a second embodiment. 実施の形態2に係る気密パッケージの詳細構成例を示す斜視図である。FIG. 11 is a perspective view showing a detailed configuration example of an airtight package according to a second embodiment. 実施の形態2の変形例に係る気密パッケージの内部構成を示す斜視図である。FIG. 11 is a perspective view showing an internal configuration of an airtight package according to a modified example of the second embodiment. 実施の形態3に係る半導体レーザ装置の構成を示す平面図である。FIG. 11 is a plan view showing a configuration of a semiconductor laser device according to a third embodiment. 実施の形態3に係る半導体レーザ装置の構成を示す側面図である。FIG. 11 is a side view showing a configuration of a semiconductor laser device according to a third embodiment. 実施の形態4に係る半導体レーザ装置の構成を示す斜視図である。FIG. 11 is a perspective view showing a configuration of a semiconductor laser device according to a fourth embodiment. 実施の形態4に係る半導体レーザ装置の構成を示す側面図である。FIG. 13 is a side view showing a configuration of a semiconductor laser device according to a fourth embodiment. 実施の形態4の変形例1に係る半導体レーザ装置の構成を示す斜視図である。FIG. 13 is a perspective view showing a configuration of a semiconductor laser device according to a first modification of the fourth embodiment. 実施の形態4の変形例1に係る半導体レーザ装置の構成を示す側面図である。FIG. 13 is a side view showing a configuration of a semiconductor laser device according to a first modification of the fourth embodiment. 実施の形態4の変形例2に係る半導体レーザ装置の構成を示す側面図である。FIG. 13 is a side view showing a configuration of a semiconductor laser device according to a second modification of the fourth embodiment. 実施の形態5に係る半導体レーザ装置の構成を示す斜視図である。FIG. 13 is a perspective view showing a configuration of a semiconductor laser device according to a fifth embodiment. 実施の形態5に係る半導体レーザ装置の構成を示す側面図である。FIG. 13 is a side view showing a configuration of a semiconductor laser device according to a fifth embodiment. 実施の形態5の変形例に係る半導体レーザ装置の構成を示す斜視図である。FIG. 13 is a perspective view showing a configuration of a semiconductor laser device according to a modification of the fifth embodiment. 実施の形態1の変形例3に係る半導体レーザ装置の構成を示す斜視図である。FIG. 11 is a perspective view showing a configuration of a semiconductor laser device according to a third modification of the first embodiment. 実施の形態1の変形例4に係る半導体レーザ装置の構成を示す斜視図である。FIG. 11 is a perspective view showing a configuration of a semiconductor laser device according to a fourth modification of the first embodiment.
 以下では、本開示の実施の形態に係る半導体レーザ装置について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する趣旨ではない。 Below, a semiconductor laser device according to an embodiment of the present disclosure will be described in detail with reference to the drawings. Note that each of the embodiments described below shows a specific example of the present disclosure. Therefore, the numerical values, shapes, materials, components, arrangement and connection of the components, steps, and order of steps shown in the following embodiments are merely examples and are not intended to limit the present disclosure.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 In addition, each figure is a schematic diagram and is not necessarily an exact illustration. Therefore, for example, the scales of each figure do not necessarily match. In addition, in each figure, the same reference numerals are used for substantially the same configuration, and duplicate explanations are omitted or simplified.
 また、本明細書において、等しいなどの要素間の関係性を示す用語、及び、平坦、平行、垂直、板形状、曲面形状などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。 In addition, in this specification, terms indicating the relationship between elements, such as "equal," terms indicating the shape of elements, such as "flat," "parallel," "vertical," "plate-shaped," "curved," and numerical ranges, are not expressions that express only a strict meaning, but are expressions that include a substantially equivalent range, for example, a difference of about a few percent.
 また、本明細書において、「上方」及び「下方」という用語は、絶対的な空間認識における鉛直上方及び鉛直下方を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔を空けて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。 In addition, in this specification, the terms "above" and "below" do not refer to vertically above and below in an absolute spatial sense, but are used as terms defined by a relative positional relationship based on the stacking order in the stacked configuration. Furthermore, the terms "above" and "below" are applied not only to cases where two components are arranged with a gap between them and another component exists between the two components, but also to cases where two components are arranged in close contact with each other and the two components are in contact.
 (実施の形態1)
 実施の形態1に係る半導体レーザ装置について説明する。
(Embodiment 1)
A semiconductor laser device according to a first embodiment will be described.
 [1-1.構成]
 実施の形態1に係る半導体レーザ装置の構成について、図1~図3を用いて説明する。図1、図2、及び図3は、それぞれ、本実施の形態に係る半導体レーザ装置1の構成を示す斜視図、平面図、及び側面図である。図1~図3においては、半導体レーザ装置1の内部を示すために、半導体レーザ装置1の筐体2の蓋、及び、側壁3の一部又は全部が示されていない。なお、各図には、互いに直交するX軸、Y軸、及びZ軸が示されている。X軸、Y軸、及びZ軸は、右手系の直交座標系である。以下では、X軸方向における相対位置を「上方」(又は、「上」)、「下方」(又は、「下」)と表現することがある。例えば、ある位置に対して、X軸方向の正側にある位置のことを上方の位置、X軸方向の負側にある位置のことを下方の位置などと表現することがある。
[1-1. Configuration]
The configuration of the semiconductor laser device according to the first embodiment will be described with reference to FIGS. 1 to 3. FIGS. 1, 2, and 3 are a perspective view, a plan view, and a side view, respectively, showing the configuration of the semiconductor laser device 1 according to the present embodiment. In FIGS. 1 to 3, in order to show the inside of the semiconductor laser device 1, the cover of the housing 2 of the semiconductor laser device 1 and a part or all of the side wall 3 are not shown. Each figure shows an X-axis, a Y-axis, and a Z-axis that are orthogonal to each other. The X-axis, the Y-axis, and the Z-axis are in a right-handed Cartesian coordinate system. Hereinafter, the relative position in the X-axis direction may be expressed as "upper" (or "up") or "lower" (or "lower"). For example, a position on the positive side of a certain position in the X-axis direction may be expressed as an upper position, and a position on the negative side of the X-axis direction may be expressed as a lower position.
 図1に示されるように、半導体レーザ装置1は、筐体2と、複数の半導体レーザ素子10~15と、複数の反射ミラー70~75と、集光レンズ90と、複数のミラー設置面80~85とを備える。本実施の形態では、半導体レーザ装置1は、サブマウント20~25と、FAST軸コリメータレンズ30~35と、偏向素子40と、平行化素子51~55と、SLOW軸コリメータレンズ60~65と、光ファイバ4と、レーザベース7と、電流導入端子9a、9bと、配線部材9cとをさらに備える。 As shown in FIG. 1, the semiconductor laser device 1 includes a housing 2, a plurality of semiconductor laser elements 10-15, a plurality of reflecting mirrors 70-75, a focusing lens 90, and a plurality of mirror mounting surfaces 80-85. In this embodiment, the semiconductor laser device 1 further includes submounts 20-25, FAST axis collimator lenses 30-35, a deflection element 40, parallelizing elements 51-55, SLOW axis collimator lenses 60-65, an optical fiber 4, a laser base 7, current introduction terminals 9a, 9b, and a wiring member 9c.
 半導体レーザ装置1は、複数の半導体レーザ素子10~15のそれぞれから出射されたレーザ光を光学系により空間的に合波して出射させることができるモジュールである。 The semiconductor laser device 1 is a module that can spatially combine and emit the laser light emitted from each of the multiple semiconductor laser elements 10 to 15 using an optical system.
 筐体2は、底部6と、側壁3と、蓋(不図示)とを有する。 The housing 2 has a bottom 6, a side wall 3, and a lid (not shown).
 底部6は、筐体2の底(下方端、つまり、各図のX軸方向の負側の端部)に配置される板状部材である。底部6は、平坦な底面6aを有する。底面6aは、底部6の主面のうち、筐体2の内側に位置する主面における平坦な領域である。つまり、底面6aは、同一平面内にある面である。本実施の形態では、底面6aは、底部6の主面全体である。なお、底部6の主面のうち、筐体2の内側に位置する主面は、平坦でない領域(つまり、底面6a以外の領域)を有してもよい。 The bottom 6 is a plate-like member that is placed on the bottom of the housing 2 (the lower end, i.e., the end on the negative side in the X-axis direction in each figure). The bottom 6 has a flat bottom surface 6a. The bottom surface 6a is a flat region of the main surface of the bottom 6 that is located on the inside of the housing 2. In other words, the bottom surface 6a is a surface that is in the same plane. In this embodiment, the bottom surface 6a is the entire main surface of the bottom 6. Note that the main surface of the bottom 6 that is located on the inside of the housing 2 may have a non-flat region (i.e., a region other than the bottom surface 6a).
 側壁3は、筐体2の底部6に対して、垂直に配置されている。また、側壁3は、複数の半導体レーザ素子10~15などを囲むように配置される。側壁3は、例えば、Cu、Cu合金、Fe-Ni-Co合金又はAlで構成される。また、底部6は、例えばCu、Cu合金、Al、高熱伝導率を有するセラミック(例えば、AlN又はBeO)等で構成される。蓋は、筐体2の上方を覆う部材である。 The sidewall 3 is disposed perpendicular to the bottom 6 of the housing 2. The sidewall 3 is disposed so as to surround the multiple semiconductor laser elements 10-15. The sidewall 3 is made of, for example, Cu, a Cu alloy, an Fe-Ni-Co alloy, or Al. The bottom 6 is made of, for example, Cu, a Cu alloy, Al, or a ceramic with high thermal conductivity (for example, AlN or BeO). The lid is a member that covers the upper part of the housing 2.
 電流導入端子9a、9bは、筐体2の外部から筐体2の内部へ電流を導入するための端子である。電流導入端子9a、9bの各々の一端は、筐体2の外部に配置され、他端は、筐体2の内部に配置される。本実施の形態では、電流導入端子9a、9bは、側壁3に配置され、側壁3を貫通する。側壁3が導電性材料で形成される場合には、電流導入端子9a、9bと側壁3との間に絶縁部材が配置される。 The current introduction terminals 9a, 9b are terminals for introducing a current from the outside of the housing 2 to the inside of the housing 2. One end of each of the current introduction terminals 9a, 9b is disposed outside the housing 2, and the other end is disposed inside the housing 2. In this embodiment, the current introduction terminals 9a, 9b are disposed on the side wall 3 and penetrate the side wall 3. If the side wall 3 is formed of a conductive material, an insulating member is disposed between the current introduction terminals 9a, 9b and the side wall 3.
 複数のミラー設置面80~85は、複数の反射ミラー70~75がそれぞれ設置される面である。つまり、ミラー設置面80には、反射ミラー70が設置され、ミラー設置面81には、反射ミラー71が設置され、ミラー設置面82には、反射ミラー72が設置され、ミラー設置面83には、反射ミラー73が設置され、ミラー設置面84には、反射ミラー74が設置され、ミラー設置面85には、反射ミラー75が設置される。複数のミラー設置面80~85は、互いに底面6aからの高さ(又は平均高さ)が異なる。具体的には、ミラー設置面80より、ミラー設置面81の方が、底面6aからの高さが高く、ミラー設置面81より、ミラー設置面82の方が、底面6aからの高さが高く、ミラー設置面82より、ミラー設置面83の方が、底面6aからの高さが高く、ミラー設置面83より、ミラー設置面84の方が、底面6aからの高さが高く、ミラー設置面84より、ミラー設置面85の方が、底面6aからの高さが高い。本実施の形態では、ミラー設置面80~85は、底面6aと平行な平坦面である。 The multiple mirror installation surfaces 80 to 85 are surfaces on which multiple reflective mirrors 70 to 75 are respectively installed. That is, the reflective mirror 70 is installed on the mirror installation surface 80, the reflective mirror 71 is installed on the mirror installation surface 81, the reflective mirror 72 is installed on the mirror installation surface 82, the reflective mirror 73 is installed on the mirror installation surface 83, the reflective mirror 74 is installed on the mirror installation surface 84, and the reflective mirror 75 is installed on the mirror installation surface 85. The multiple mirror installation surfaces 80 to 85 have different heights (or average heights) from the bottom surface 6a. Specifically, the mirror installation surface 81 is higher from the bottom surface 6a than the mirror installation surface 80, the mirror installation surface 82 is higher from the bottom surface 6a than the mirror installation surface 81, the mirror installation surface 83 is higher from the bottom surface 6a than the mirror installation surface 82, the mirror installation surface 84 is higher from the bottom surface 6a than the mirror installation surface 83, and the mirror installation surface 85 is higher from the bottom surface 6a than the mirror installation surface 84. In this embodiment, the mirror installation surfaces 80 to 85 are flat surfaces parallel to the bottom surface 6a.
 複数のミラー設置面80~85は、第一ミラー設置面及び第二ミラー設置面を含む。ミラー設置面81は、反射ミラー71(第一反射ミラー)が設置される第一ミラー設置面の一例である。ミラー設置面82は、反射ミラー72(第二反射ミラー)が設置される第二ミラー設置面の一例である。 The multiple mirror mounting surfaces 80-85 include a first mirror mounting surface and a second mirror mounting surface. Mirror mounting surface 81 is an example of a first mirror mounting surface on which a reflecting mirror 71 (first reflecting mirror) is mounted. Mirror mounting surface 82 is an example of a second mirror mounting surface on which a reflecting mirror 72 (second reflecting mirror) is mounted.
 本実施の形態では、半導体レーザ装置1は、複数のミラー設置面80~85を有する多段ベース8を備える。多段ベース8は下面8baを有し、下面8baが底面6aに平行になるように、底面6aに設置される。多段ベース8は、階段状の複数の段を有する。多段ベース8の複数の段の各々が下面8baに平行な面を有し、下面8baに平行な面が、複数のミラー設置面80~85の各々に相当する。したがって、複数のミラー設置面80~85の各々は、底面6aと平行である。また、複数のミラー設置面80~85の各々は互いに平行であり、同一平面上にない。 In this embodiment, the semiconductor laser device 1 includes a multi-stage base 8 having a plurality of mirror mounting surfaces 80-85. The multi-stage base 8 has a lower surface 8ba, and is mounted on the bottom surface 6a so that the lower surface 8ba is parallel to the bottom surface 6a. The multi-stage base 8 has a plurality of stair-like steps. Each of the multiple steps of the multi-stage base 8 has a surface parallel to the lower surface 8ba, and the surfaces parallel to the lower surface 8ba correspond to each of the multiple mirror mounting surfaces 80-85. Therefore, each of the multiple mirror mounting surfaces 80-85 is parallel to the bottom surface 6a. Furthermore, each of the multiple mirror mounting surfaces 80-85 is parallel to one another and is not on the same plane.
 レーザベース7は、複数の半導体レーザ素子10~15が設置される基台である。本実施の形態では、レーザベース7は、平坦なレーザ設置面7aを有する矩形板状の部材である。レーザ設置面7aに複数の半導体レーザ素子10~15が設置される。レーザベース7は、例えば、筐体2の底部6と同様の材料で構成される。 The laser base 7 is a base on which multiple semiconductor laser elements 10 to 15 are mounted. In this embodiment, the laser base 7 is a rectangular plate-shaped member having a flat laser mounting surface 7a. Multiple semiconductor laser elements 10 to 15 are mounted on the laser mounting surface 7a. The laser base 7 is made of, for example, the same material as the bottom 6 of the housing 2.
 複数の半導体レーザ素子10~15は、入力された電力を変換し、レーザ光を出射する素子であり、筐体2内に配置される。複数の半導体レーザ素子10~15は、Y軸方向に配列されている。本実施の形態では、複数の半導体レーザ素子10~15は、同一平面に設置される。複数の半導体レーザ素子10~15の底面6aからの高さは、等しい。具体的には、複数の半導体レーザ素子10~15は、それぞれ、複数のサブマウント20~25を介してレーザベース7のレーザ設置面7a上に設置される。半導体レーザ素子11及び半導体レーザ素子12は、それぞれ、複数の半導体レーザ素子10~15に含まれる第一半導体レーザ素子及び第二半導体レーザ素子の一例である。 The semiconductor laser elements 10-15 are elements that convert input power and emit laser light, and are arranged inside the housing 2. The semiconductor laser elements 10-15 are arranged in the Y-axis direction. In this embodiment, the semiconductor laser elements 10-15 are installed on the same plane. The heights of the semiconductor laser elements 10-15 from the bottom surface 6a are equal. Specifically, the semiconductor laser elements 10-15 are installed on the laser installation surface 7a of the laser base 7 via the submounts 20-25, respectively. The semiconductor laser element 11 and the semiconductor laser element 12 are examples of the first semiconductor laser element and the second semiconductor laser element included in the semiconductor laser elements 10-15, respectively.
 複数の半導体レーザ素子10~15の各々は、半導体基板上に半導体積層膜と光導波路とが形成されているレーザ素子である。複数の半導体レーザ素子10~15は、それぞれ、複数のレーザ光L0A~L5Aを出射する発光点10e~15eを有する(図2参照)。複数の半導体レーザ素子10~15は、外部から光導波路に入力された電力をレーザ光などの誘導放出光に変換して光導波路の一方の端である発光点10e~15eから出射させる。半導体レーザ素子10~15は、それぞれ、レーザ光L0A~L5Aを出射する(図2参照)。なお、図2及び図3には、レーザ光L0A~L5Aなどの各光軸が一点鎖線で示されている。また、図3には、各レーザ光の直径(スポットサイズ)が破線で示されている。レーザ光L1A及びレーザ光L2Aは、それぞれ、第一レーザ光、及び第二レーザ光の一例である。発光点11eは、第一レーザ光が出射される第一発光点の一例である。発光点12eは、第二レーザ光が出射される第二発光点の一例である。 Each of the semiconductor laser elements 10-15 is a laser element in which a semiconductor laminate film and an optical waveguide are formed on a semiconductor substrate. The semiconductor laser elements 10-15 each have light-emitting points 10e-15e that emit a plurality of laser beams L0A-L5A (see FIG. 2). The semiconductor laser elements 10-15 convert the power input from the outside to the optical waveguide into stimulated emission light such as laser beams and emit the light from the light-emitting points 10e-15e, which are one end of the optical waveguide. The semiconductor laser elements 10-15 each emit laser beams L0A-L5A (see FIG. 2). Note that in FIG. 2 and FIG. 3, the optical axes of the laser beams L0A-L5A are indicated by dashed lines. Also, in FIG. 3, the diameter (spot size) of each laser beam is indicated by a dashed line. The laser beams L1A and L2A are examples of the first laser beam and the second laser beam, respectively. The light-emitting point 11e is an example of a first light-emitting point from which the first laser light is emitted. The light-emitting point 12e is an example of a second light-emitting point from which the second laser light is emitted.
 レーザ光L0A~L5AのFAST軸は、複数の半導体レーザ素子10~15の半導体積層膜の積層方向の軸であり、FAST軸と直交するSLOW軸は半導体積層膜の積層面に平行な軸であり、かつ、各図のY軸方向に平行な軸である。本実施の形態では、複数の半導体レーザ素子10~15のFAST軸方向は、底面6aからの高さ方向(各図のX軸方向)である。半導体レーザ素子10~15から出射されるレーザ光の波長は、半導体積層膜を構成する半導体材料に応じて変化する。例えば、複数の半導体レーザ素子10~15をAl、Ga、Inの窒化物を主成分とする窒化物系半導体レーザ素子とすることで、複数の半導体レーザ素子10~15は、例えば350nmから550nmの間にピーク波長を有するレーザ光を出射することができる。また、例えば、複数の半導体レーザ素子10~15をAl、Ga、In、As、Pから構成される半導体を主成分とする半導体レーザ素子とすることで、複数の半導体レーザ素子10~15は、600nmから1600nmの間にピーク波長を有するレーザ光を出射することができる。なお、複数の半導体レーザ素子10~15は、上記の半導体材料で構成される半導体レーザ素子に限られず、また、複数の半導体レーザ素子10~15が出射するレーザ光の波長は、上記の波長に限られない。 The FAST axis of the laser light L0A to L5A is the axis in the stacking direction of the semiconductor laminated film of the multiple semiconductor laser elements 10 to 15, and the SLOW axis perpendicular to the FAST axis is an axis parallel to the stacking surface of the semiconductor laminated film and is an axis parallel to the Y-axis direction in each figure. In this embodiment, the FAST axis direction of the multiple semiconductor laser elements 10 to 15 is the height direction from the bottom surface 6a (the X-axis direction in each figure). The wavelength of the laser light emitted from the semiconductor laser elements 10 to 15 changes depending on the semiconductor material that constitutes the semiconductor laminated film. For example, by making the multiple semiconductor laser elements 10 to 15 nitride-based semiconductor laser elements mainly composed of nitrides of Al, Ga, and In, the multiple semiconductor laser elements 10 to 15 can emit laser light having a peak wavelength between 350 nm and 550 nm, for example. Furthermore, for example, by making the multiple semiconductor laser elements 10-15 semiconductor laser elements whose main components are semiconductors made of Al, Ga, In, As, and P, the multiple semiconductor laser elements 10-15 can emit laser light having a peak wavelength between 600 nm and 1600 nm. Note that the multiple semiconductor laser elements 10-15 are not limited to semiconductor laser elements made of the above semiconductor materials, and the wavelength of the laser light emitted by the multiple semiconductor laser elements 10-15 is not limited to the above wavelength.
 複数の半導体レーザ素子10~15は、光導波路の導波方向に長い矩形形状である。また光導波路は、幅が、例えば5μm以上300μm以下であり、長さが、例えば500μm以上5mm以下である。複数の半導体レーザ素子10~15は、レーザ光がSLOW軸においてマルチモードである横マルチモードレーザである。 The multiple semiconductor laser elements 10 to 15 are rectangular in shape and are long in the waveguiding direction of the optical waveguide. The optical waveguide has a width of, for example, 5 μm to 300 μm and a length of, for example, 500 μm to 5 mm. The multiple semiconductor laser elements 10 to 15 are transverse multimode lasers in which the laser light is multimode in the SLOW axis.
 また、本実施の形態においては、複数の半導体レーザ素子10~15は、光導波路の両方の端部にファブリペローミラーが形成されたレーザ素子であるが、複数の半導体レーザ素子10~15の構成は、これに限られない。例えば、複数の半導体レーザ素子10~15は、光導波路の発光点側にミラーを形成していない、いわゆるスーパールミネッセントダイオードであってもよい。また、複数の半導体レーザ素子10~15は、光導波路の発光点側にミラーを形成せずに、出射光の出射方向側に、複数の半導体レーザ素子10~15とは別の部品として共振ミラーを配置してレーザ発振を行う、いわゆる、外部共振型の半導体レーザ用の素子であってもよい。 In addition, in this embodiment, the multiple semiconductor laser elements 10 to 15 are laser elements with Fabry-Perot mirrors formed on both ends of the optical waveguide, but the configuration of the multiple semiconductor laser elements 10 to 15 is not limited to this. For example, the multiple semiconductor laser elements 10 to 15 may be so-called superluminescent diodes in which no mirror is formed on the light-emitting point side of the optical waveguide. Furthermore, the multiple semiconductor laser elements 10 to 15 may be elements for so-called external resonator type semiconductor lasers in which no mirror is formed on the light-emitting point side of the optical waveguide, but a resonator mirror is placed as a separate component from the multiple semiconductor laser elements 10 to 15 on the emission direction side of the emitted light to perform laser oscillation.
 本実施の形態では、複数の半導体レーザ素子10~15には、電流導入端子9a、9b、及び配線部材9cを介して筐体2の外部から電流が供給される。配線部材9cは、筐体2内に配置される導電性部材であり、電流導入端子9a、9bと、複数の半導体レーザ素子10~15との間の電流経路の一部を構成する。配線部材9cは、電流導入端子9a付近から、半導体レーザ素子10付近まで延在する。複数の半導体レーザ素子10~15は、金属ワイヤWを用いて直列に接続される。また、電流導入端子9aは、配線部材9cと金属ワイヤWによって接続され、配線部材9cは、半導体レーザ素子10と金属ワイヤWによって接続される。より具体的には、半導体レーザ素子10の一方の電極は、サブマウント20上に形成された電極と、Au、AuSnなどの導電性の接合部材を介して接続されており、サブマウント20上に形成された電極と、配線部材9cとが金属ワイヤWによって接続される。また、半導体レーザ素子10の他方の電極と、半導体レーザ素子11とが金属ワイヤWによって接続される。より具体的には、半導体レーザ素子11の一方の電極は、サブマウント21上に形成された電極と接続されており、サブマウント21上に形成された電極と、半導体レーザ素子11の他方の電極とが金属ワイヤWによって接続される。半導体レーザ素子11~15の間も、半導体レーザ素子10と半導体レーザ素子11との間と同様に接続される。半導体レーザ素子15は、電流導入端子9bと金属ワイヤWによって接続される。以上のように、電流導入端子9a付近から、半導体レーザ素子10付近まで延在する配線部材9cを用いることで、金属ワイヤWの長さを短縮することができ、かつ、複数の金属ワイヤWが互いに干渉することを抑制できる。 In this embodiment, a current is supplied to the semiconductor laser elements 10-15 from outside the housing 2 via the current introduction terminals 9a, 9b and the wiring member 9c. The wiring member 9c is a conductive member disposed within the housing 2, and constitutes part of the current path between the current introduction terminals 9a, 9b and the semiconductor laser elements 10-15. The wiring member 9c extends from near the current introduction terminal 9a to near the semiconductor laser element 10. The semiconductor laser elements 10-15 are connected in series using metal wires W. The current introduction terminal 9a is connected to the wiring member 9c by the metal wire W, and the wiring member 9c is connected to the semiconductor laser element 10 by the metal wire W. More specifically, one electrode of the semiconductor laser element 10 is connected to an electrode formed on the submount 20 via a conductive bonding member such as Au or AuSn, and the electrode formed on the submount 20 is connected to the wiring member 9c by the metal wire W. The other electrode of the semiconductor laser element 10 is connected to the semiconductor laser element 11 by a metal wire W. More specifically, one electrode of the semiconductor laser element 11 is connected to an electrode formed on the submount 21, and the electrode formed on the submount 21 is connected to the other electrode of the semiconductor laser element 11 by a metal wire W. The semiconductor laser elements 11 to 15 are connected in the same manner as the semiconductor laser element 10 and the semiconductor laser element 11. The semiconductor laser element 15 is connected to the current introduction terminal 9b by a metal wire W. As described above, by using the wiring member 9c that extends from near the current introduction terminal 9a to near the semiconductor laser element 10, the length of the metal wire W can be shortened and interference between the multiple metal wires W can be suppressed.
 複数のサブマウント20~25は、それぞれ、複数の半導体レーザ素子10~15が設置される基台である。本実施の形態では、複数のサブマウント20~25は、レーザベース7のレーザ設置面7aに設置される。複数のサブマウント20~25は、例えば、AlN若しくはSiCなどの結晶又はセラミックなどの絶縁材料で構成されるブロック形状の部材である。ブロック形状の複数のサブマウント20~25の上面に、電極が形成されており、それぞれ、複数の半導体レーザ素子10~15の一方の電極と接続される。電極は、例えば、Ni、Cu、Pt及びAuなどのうち、一つ又は複数の金属膜によって構成される。 The submounts 20-25 are bases on which the semiconductor laser elements 10-15 are mounted. In this embodiment, the submounts 20-25 are mounted on the laser mounting surface 7a of the laser base 7. The submounts 20-25 are block-shaped members made of insulating materials such as crystals, such as AlN or SiC, or ceramics. Electrodes are formed on the upper surfaces of the block-shaped submounts 20-25, and are each connected to one of the electrodes of the semiconductor laser elements 10-15. The electrodes are made of one or more metal films, such as Ni, Cu, Pt, and Au.
 複数のFAST軸コリメータレンズ30~35は、それぞれ、半導体レーザ素子10~15と、偏向素子40(及び平行化素子51~55)との間に配置され、レーザ光L0A~L5Aが入射する光学素子である。複数のFAST軸コリメータレンズ30~35は、それぞれ、レーザ光L0A~L5AのFAST軸方向の成分をコリメートし、FAST軸方向の成分がコリメートされたレーザ光L0B~L5Bを出射する。レーザ光L1B及びレーザ光L2Bは、それぞれ、第一レーザ光、及び第二レーザ光の一例である。 The multiple FAST axis collimator lenses 30-35 are respectively disposed between the semiconductor laser elements 10-15 and the deflection element 40 (and the parallelization elements 51-55), and are optical elements into which the laser beams L0A-L5A are incident. The multiple FAST axis collimator lenses 30-35 collimate the FAST axis direction component of the laser beams L0A-L5A, respectively, and emit laser beams L0B-L5B with the FAST axis direction component collimated. The laser beams L1B and L2B are examples of the first laser beam and the second laser beam, respectively.
 複数のFAST軸コリメータレンズ30~35として、例えば、凸面の円柱の表面を有するレンズを用いることができる。より具体的には、複数のFAST軸コリメータレンズ30~35として、例えば、表面に反射防止膜が形成されたガラスからなる平凸型のシリンドリカルレンズを用いることができる。 The multiple FAST axis collimator lenses 30 to 35 may be, for example, lenses having a convex cylindrical surface. More specifically, the multiple FAST axis collimator lenses 30 to 35 may be, for example, plano-convex cylindrical lenses made of glass with an anti-reflection coating formed on the surface.
 複数のFAST軸コリメータレンズ30~35は、第一FAST軸コリメータレンズ及び第二FAST軸コリメータレンズを含む。FAST軸コリメータレンズ31及びFAST軸コリメータレンズ32は、それぞれ、第一FAST軸コリメータレンズ及び第二FAST軸コリメータレンズの一例である。 The multiple FAST axis collimator lenses 30 to 35 include a first FAST axis collimator lens and a second FAST axis collimator lens. The FAST axis collimator lens 31 and the FAST axis collimator lens 32 are examples of the first FAST axis collimator lens and the second FAST axis collimator lens, respectively.
 偏向素子40は、半導体レーザ素子11~15と、反射ミラー71~75との間に配置され、レーザ光L1B~L5Bの伝搬方向に底面6aからの高さ方向の成分を与える(つまり高さ方向に偏向する)偏向素子である。本実施の形態では、偏向素子40は、複数のFAST軸コリメータレンズ31~35と、複数の平行化素子51~55との間に配置され、レーザ光L1B~L5Bを上向きに(つまり、X軸方向正向きに)偏向し、偏向されたレーザ光L1C~L5Cを出射する。また、レーザ光L1C~L5Cは、レーザ光L1B~L5Bに対して、例えば5度以上20度以下偏向されている。レーザ光L1C及びレーザ光L2Cは、それぞれ、第一レーザ光、及び第二レーザ光の一例である。偏向素子40は、レーザ光L1B~L5Bを同一の角度で偏向する。本実施の形態では、レーザ光L0Bは、偏向素子40に入射しない。言い換えると、レーザ光L0Bの光路上には、偏向素子40は、配置されない。このため、レーザ光L0Bは、発光点10eから反射ミラー70(及び集光レンズ90)まで高さ方向の成分を与えられることなく、底面6aと平行に伝搬する。偏向素子40として、例えば、透過型偏向素子を用いることができる。透過型偏向素子は、例えば、入射面及び出射面を有するプリズムであり、当該入射面と当該出射面とは平行でない。 The deflection element 40 is disposed between the semiconductor laser elements 11-15 and the reflecting mirrors 71-75, and is a deflection element that gives a height component from the bottom surface 6a to the propagation direction of the laser beams L1B-L5B (i.e., deflects in the height direction). In this embodiment, the deflection element 40 is disposed between the multiple FAST axis collimator lenses 31-35 and the multiple parallelizing elements 51-55, and deflects the laser beams L1B-L5B upward (i.e., in the positive direction in the X-axis direction) and emits the deflected laser beams L1C-L5C. The laser beams L1C-L5C are deflected, for example, by 5 degrees or more and 20 degrees or less with respect to the laser beams L1B-L5B. The laser beams L1C and L2C are examples of the first laser beam and the second laser beam, respectively. The deflection element 40 deflects the laser beams L1B-L5B at the same angle. In this embodiment, the laser light L0B does not enter the deflection element 40. In other words, the deflection element 40 is not disposed on the optical path of the laser light L0B. Therefore, the laser light L0B propagates parallel to the bottom surface 6a from the light emitting point 10e to the reflecting mirror 70 (and the focusing lens 90) without being given a component in the height direction. For example, a transmissive deflection element can be used as the deflection element 40. The transmissive deflection element is, for example, a prism having an entrance surface and an exit surface, and the entrance surface and the exit surface are not parallel.
 レーザ光L0A~L5A、及びL0B~L5Bは、半導体レーザ素子10~15と偏向素子40との間で、Z軸方向正向きに、底面6aと平行に伝搬する。また、この間でレーザ光L0A~L5A、及びL0B~L5Bの各々は、互いに平行に伝搬する。 The laser beams L0A to L5A and L0B to L5B propagate parallel to the bottom surface 6a in the positive direction of the Z axis between the semiconductor laser elements 10 to 15 and the deflection element 40. In addition, the laser beams L0A to L5A and L0B to L5B propagate parallel to each other between the semiconductor laser elements 10 to 15 and the deflection element 40.
 偏向素子40は、半導体レーザ素子11(第一半導体レーザ素子)と、反射ミラー71(第一反射ミラー)との間に配置され、レーザ光L1B(第一レーザ光)の伝搬方向に底面6aからの高さ方向の成分を与える第一偏向素子の一例である。また、偏向素子40は、半導体レーザ素子12(第二半導体レーザ素子)と、反射ミラー72(第二反射ミラー)との間に配置され、レーザ光L2B(第二レーザ光)の伝搬方向に底面6aからの高さ方向の成分を与える第二偏向素子の一例でもある。 The deflection element 40 is an example of a first deflection element that is disposed between the semiconductor laser element 11 (first semiconductor laser element) and the reflecting mirror 71 (first reflecting mirror) and provides a height component from the bottom surface 6a to the propagation direction of the laser light L1B (first laser light). The deflection element 40 is also an example of a second deflection element that is disposed between the semiconductor laser element 12 (second semiconductor laser element) and the reflecting mirror 72 (second reflecting mirror) and provides a height component from the bottom surface 6a to the propagation direction of the laser light L2B (second laser light).
 なお、本実施の形態では、半導体レーザ装置1は、単一の偏向素子40を備えるが、複数の偏向素子を備えてもよい。例えば、半導体レーザ装置1は、レーザ光L1B~L5Bのそれぞれに高さ方向の成分を与える5個の偏向素子を備えてもよい。この場合、例えば、5個の偏向素子を底面6aから同一の高さに設置してもよい。 In this embodiment, the semiconductor laser device 1 includes a single deflection element 40, but may include multiple deflection elements. For example, the semiconductor laser device 1 may include five deflection elements that impart height components to each of the laser beams L1B to L5B. In this case, for example, the five deflection elements may be installed at the same height from the bottom surface 6a.
 複数の平行化素子51~55は、それぞれ、偏向素子40と、反射ミラー71~75との間に配置され、レーザ光L1C~L5Cの伝搬方向をミラー設置面81~85と平行な方向に偏向し、レーザ光L1D~L5Dを出射する偏向素子である。レーザ光L1D及びレーザ光L2Dは、それぞれ、第一レーザ光、及び第二レーザ光の一例である。本実施の形態では、複数の平行化素子51~55は、それぞれ、ミラー設置面81~85に設置される。これにより、複数の平行化素子51~55が設置される位置の底面6aからの高さは互いに異なる。平行化素子51、52、53、54、55の順に、設置位置の底面6aから高さが高くなる。なお、レーザ光L0Bの光路上には、平行化素子は配置されない。レーザ光L1B~L5Bは、偏向素子40により同一の角度で、偏向されるため、偏向素子40から平行化素子51~55の各々までの距離を、各平行化素子の設置位置の高さに応じて異ならせる必要がある。つまり、平行化素子51、52、53、54、55の順に、偏向素子40からの距離を長くする必要がある。以上のように、偏向素子40と、複数の平行化素子51~55との間における複数のレーザ光L1C~L5Cは、互いに平行である。また、レーザ光L1D~L5Dは、レーザ光L1C~L5Cに対して、例えば5度以上20度以下偏向されている。偏向素子40と、複数の平行化素子51~55との間の距離は、互いに異なる。例えば、偏向素子40と、平行化素子52との間の距離は、偏向素子40と、平行化素子51との間の距離より長い。各平行化素子から各半導体レーザ素子までのZ軸方向における距離は、各平行化素子の設置位置の底面6aから高さが高くなるにしたがって、大きくなる。これにより、偏向素子40から各平行化素子までの距離を、各平行化素子の設置位置の底面6aからの高さに応じて異ならせることができる。平行化素子51~55は、それぞれ、ミラー設置面81~85の半導体レーザ素子11~15に近い方の端部近傍に設置されている。言い換えると、各ミラー設置面の各半導体レーザ素子と各平行化素子との間に位置する端部から、各平行化素子までのZ軸方向における距離は、当該端部から各半導体レーザ素子までのZ軸方向における距離より小さい。これにより、多段ベース8によって、各レーザ光が遮られることを低減できる。 The parallelizing elements 51 to 55 are disposed between the deflection element 40 and the reflecting mirrors 71 to 75, respectively, and are deflection elements that deflect the propagation direction of the laser beams L1C to L5C in a direction parallel to the mirror mounting surfaces 81 to 85, and emit the laser beams L1D to L5D. The laser beams L1D and L2D are examples of the first laser beam and the second laser beam, respectively. In this embodiment, the parallelizing elements 51 to 55 are disposed on the mirror mounting surfaces 81 to 85, respectively. As a result, the heights from the bottom surface 6a at the positions where the parallelizing elements 51 to 55 are disposed are different from one another. The parallelizing elements 51, 52, 53, 54, and 55 are higher in height from the bottom surface 6a at the mounting positions in that order. Note that no parallelizing element is disposed on the optical path of the laser beam L0B. Since the laser beams L1B to L5B are deflected by the deflection element 40 at the same angle, it is necessary to make the distance from the deflection element 40 to each of the parallelization elements 51 to 55 different depending on the height of the installation position of each parallelization element. In other words, it is necessary to make the distance from the deflection element 40 longer in the order of the parallelization elements 51, 52, 53, 54, and 55. As described above, the multiple laser beams L1C to L5C between the deflection element 40 and the multiple parallelization elements 51 to 55 are parallel to each other. In addition, the laser beams L1D to L5D are deflected, for example, by 5 degrees or more and 20 degrees or less with respect to the laser beams L1C to L5C. The distances between the deflection element 40 and the multiple parallelization elements 51 to 55 are different from each other. For example, the distance between the deflection element 40 and the parallelization element 52 is longer than the distance between the deflection element 40 and the parallelization element 51. The distance in the Z-axis direction from each parallelizing element to each semiconductor laser element increases as the height from the bottom surface 6a of the installation position of each parallelizing element increases. This allows the distance from the deflection element 40 to each parallelizing element to be different depending on the height from the bottom surface 6a of the installation position of each parallelizing element. The parallelizing elements 51 to 55 are installed near the ends of the mirror installation surfaces 81 to 85 that are closer to the semiconductor laser elements 11 to 15. In other words, the distance in the Z-axis direction from the end located between each semiconductor laser element and each parallelizing element on each mirror installation surface to each parallelizing element is smaller than the distance in the Z-axis direction from the end to each semiconductor laser element. This reduces the blocking of each laser light by the multi-stage base 8.
 各半導体レーザ素子に近い方の各ミラー設置面の端部から各半導体レーザ素子までの距離は、各ミラー設置面の底面6aからの高さが高くなるにしたがって大きくなる。また、各ミラー設置面の底面6aからの高さが高くなるにしたがって、レーザ光L0E~L5Eの伝搬方向(Z軸方向)における各ミラー設置面の長さが短くなる。 The distance from the end of each mirror mounting surface closest to each semiconductor laser element increases as the height of each mirror mounting surface from the bottom surface 6a increases. Also, as the height of each mirror mounting surface from the bottom surface 6a increases, the length of each mirror mounting surface in the propagation direction (Z-axis direction) of the laser light L0E to L5E decreases.
 多段ベース8の、複数のミラー設置面80~85と複数の半導体レーザ素子10~15との間の領域の底面6aからの高さは、半導体レーザ素子10~15の各発光点の底面6aの高さより低い。これにより、多段ベース8によって各レーザ光が遮られることを低減できる。本実施の形態では、多段ベース8の各半導体レーザ素子に近い端部の位置は、複数のミラー設置面80~85の端部に一致する。言い換えると、各ミラー設置面と、レーザベース7との間に位置する多段ベース8の構成要素は存在しない。これにより、多段ベース8によって各レーザ光が遮られることを低減でき、かつ、多段ベース8を軽量化することができる。 The height of the area of the multistage base 8 between the multiple mirror mounting surfaces 80-85 and the multiple semiconductor laser elements 10-15 from the bottom surface 6a is lower than the height of the bottom surface 6a of each light emitting point of the semiconductor laser elements 10-15. This reduces the blocking of each laser light by the multistage base 8. In this embodiment, the position of the end of the multistage base 8 close to each semiconductor laser element coincides with the end of the multiple mirror mounting surfaces 80-85. In other words, there are no components of the multistage base 8 located between each mirror mounting surface and the laser base 7. This reduces the blocking of each laser light by the multistage base 8, and makes the multistage base 8 lighter.
 また、各ミラー設置面の端部において、底面6aと垂直な端面が、多段ベース8に形成されている。当該端面から各半導体レーザ素子までのZ軸方向における距離は、各ミラー設置面の底面6aからの高さが高くなるにしたがって、大きくなる。これにより、図3のように、偏向素子40と平行化素子51~55の間で、多段ベース8によってレーザ光が遮られることを低減できる。 Furthermore, at the end of each mirror mounting surface, an end face perpendicular to the bottom face 6a is formed on the multi-stage base 8. The distance in the Z-axis direction from the end face to each semiconductor laser element increases as the height from the bottom face 6a of each mirror mounting surface increases. This reduces the blocking of the laser light by the multi-stage base 8 between the deflection element 40 and the parallelization elements 51 to 55, as shown in FIG. 3.
 複数の平行化素子51~55として、例えば、透過型偏向素子を用いることができる。透過型偏向素子は、例えば、入射面及び出射面を有するプリズムであり、当該入射面と当該出射面とは平行でない。 For example, a transmissive deflection element can be used as the multiple parallelizing elements 51 to 55. A transmissive deflection element is, for example, a prism having an entrance surface and an exit surface, and the entrance surface and the exit surface are not parallel.
 平行化素子51は、偏向素子40(第一偏向素子)と、反射ミラー71(第一反射ミラー)との間に配置され、レーザ光L1C(第一レーザ光)の伝搬方向をミラー設置面81(第一ミラー設置面)と平行な方向に偏向する第一平行化素子の一例である。また、平行化素子52は、偏向素子40(第二偏向素子)と、反射ミラー72(第二反射ミラー)との間に配置され、レーザ光L2C(第二レーザ光)の伝搬方向をミラー設置面82(第二ミラー設置面)と平行な方向に偏向する第二平行化素子の一例でもある。 The parallelizing element 51 is an example of a first parallelizing element that is disposed between the deflection element 40 (first deflection element) and the reflection mirror 71 (first reflection mirror) and deflects the propagation direction of the laser light L1C (first laser light) in a direction parallel to the mirror mounting surface 81 (first mirror mounting surface). The parallelizing element 52 is also an example of a second parallelizing element that is disposed between the deflection element 40 (second deflection element) and the reflection mirror 72 (second reflection mirror) and deflects the propagation direction of the laser light L2C (second laser light) in a direction parallel to the mirror mounting surface 82 (second mirror mounting surface).
 複数のSLOW軸コリメータレンズ60~65は、それぞれ、複数のFAST軸コリメータレンズ30~35と、反射ミラー70~75との間に配置され、レーザ光L0B、L1D~L5Dが入射する光学素子である。本実施の形態では、複数のSLOW軸コリメータレンズ60~65は、それぞれ、ミラー設置面80~85に設置される。これにより、SLOW軸コリメータレンズ60~65が設置される位置の底面6aからの高さは互いに異なる。SLOW軸コリメータレンズ60、61、62,63,64,65の順に、設置位置の底面6aから高さが高くなる。 The multiple SLOW axis collimator lenses 60-65 are optical elements that are respectively disposed between the multiple FAST axis collimator lenses 30-35 and the reflecting mirrors 70-75, and into which the laser beams L0B, L1D-L5D are incident. In this embodiment, the multiple SLOW axis collimator lenses 60-65 are respectively mounted on the mirror mounting surfaces 80-85. As a result, the heights from the bottom surface 6a at the positions where the SLOW axis collimator lenses 60-65 are mounted are different from one another. The heights from the bottom surface 6a at the mounting positions increase in the order of the SLOW axis collimator lenses 60, 61, 62, 63, 64, 65.
 複数のSLOW軸コリメータレンズ60~65は、それぞれ、レーザ光L0B、L1D~L5DのSLOW軸方向の成分をコリメートする。複数のSLOW軸コリメータレンズ60~65として、例えば、凸面の円柱の表面を有するレンズを用いることができる。より具体的には、複数のSLOW軸コリメータレンズ60~65として、例えば、表面に反射防止膜が形成されたガラスからなる平凸型のシリンドリカルレンズを用いることができる。 The multiple SLOW-axis collimator lenses 60-65 collimate the components of the laser light L0B, L1D-L5D in the SLOW-axis direction, respectively. The multiple SLOW-axis collimator lenses 60-65 may be, for example, lenses having a convex cylindrical surface. More specifically, the multiple SLOW-axis collimator lenses 60-65 may be, for example, plano-convex cylindrical lenses made of glass with an anti-reflection coating formed on the surface.
 複数のSLOW軸コリメータレンズ60~65から出射される各レーザ光のSLOW軸方向のスポットサイズは、各半導体レーザ素子から各SLOW軸コリメータレンズまでの光路長が長くなるにしたがって大きくなる。複数のSLOW軸コリメータレンズ60~65から出射される各レーザ光のSLOW軸方向のスポットサイズを揃えるために、複数のSLOW軸コリメータレンズ60~65の各々から、複数の半導体レーザ素子10~15の各々までの光路長を揃えてもよい。これに伴い、SLOW軸コリメータレンズ60~65の各Z軸方向位置が異なる。図2に示されるように、SLOW軸コリメータレンズ60と、SLOW軸コリメータレンズ65とのZ軸方向の位置は、ΔLだけ異なる。各SLOW軸コリメータレンズから各半導体レーザ素子までのZ軸方向の距離は、各SLOW軸コリメータレンズの底面6aからの高さが高くなるにしたがって、小さくなる。これにより、各SLOW軸コリメータレンズから各半導体レーザ素子までの光路長を揃えることが可能となる。 The spot size in the SLOW axis direction of each laser light emitted from the multiple SLOW axis collimator lenses 60 to 65 increases as the optical path length from each semiconductor laser element to each SLOW axis collimator lens increases. In order to align the spot size in the SLOW axis direction of each laser light emitted from the multiple SLOW axis collimator lenses 60 to 65, the optical path length from each of the multiple SLOW axis collimator lenses 60 to 65 to each of the multiple semiconductor laser elements 10 to 15 may be aligned. Accordingly, the Z axis direction positions of each of the SLOW axis collimator lenses 60 to 65 are different. As shown in FIG. 2, the Z axis direction positions of the SLOW axis collimator lens 60 and the SLOW axis collimator lens 65 differ by ΔL. The Z axis direction distance from each SLOW axis collimator lens to each semiconductor laser element decreases as the height from the bottom surface 6a of each SLOW axis collimator lens increases. This makes it possible to align the optical path length from each SLOW axis collimator lens to each semiconductor laser element.
 複数のSLOW軸コリメータレンズ60~65は、第一SLOW軸コリメータレンズ及び第二SLOW軸コリメータレンズを含む。SLOW軸コリメータレンズ61及びSLOW軸コリメータレンズ62は、それぞれ、第一SLOW軸コリメータレンズ及び第二SLOW軸コリメータレンズの一例である。 The multiple SLOW-axis collimator lenses 60 to 65 include a first SLOW-axis collimator lens and a second SLOW-axis collimator lens. The SLOW-axis collimator lens 61 and the SLOW-axis collimator lens 62 are examples of the first SLOW-axis collimator lens and the second SLOW-axis collimator lens, respectively.
 複数の反射ミラー70~75は、複数の半導体レーザ素子10~15から出射される複数のレーザ光L0E~L5Eをそれぞれ反射して、複数のレーザ光L0F~L5Fを出射する光学素子である。レーザ光L1F及びレーザ光L2Fは、それぞれ、第一レーザ光、及び第二レーザ光の一例である。本実施の形態では、複数の反射ミラー70~75は、それぞれ、複数のレーザ光L0E~L5Eを反射することで、90度偏向する。複数の反射ミラー70~75は、それぞれ、複数のミラー設置面80~85に設置される。これにより、反射ミラー70~75が設置される位置の底面6aからの高さは互いに異なる。反射ミラー70、71、72、73、74,75の順に、設置位置の底面6aから高さが高くなる。 The multiple reflecting mirrors 70-75 are optical elements that reflect the multiple laser beams L0E-L5E emitted from the multiple semiconductor laser elements 10-15, respectively, and emit multiple laser beams L0F-L5F. Laser beam L1F and laser beam L2F are examples of the first laser beam and the second laser beam, respectively. In this embodiment, the multiple reflecting mirrors 70-75 each reflect the multiple laser beams L0E-L5E, thereby deflecting them by 90 degrees. The multiple reflecting mirrors 70-75 are respectively mounted on the multiple mirror mounting surfaces 80-85. As a result, the heights from the bottom surface 6a at the positions where the reflecting mirrors 70-75 are mounted are different from one another. The heights from the bottom surface 6a at the mounting positions increase in the order of the reflecting mirrors 70, 71, 72, 73, 74, and 75.
 複数の反射ミラー70~75は、第一反射ミラー及び第二反射ミラーを含む。反射ミラー71は、半導体レーザ素子11(第一半導体レーザ素子)から出射されるレーザ光L1E(第一レーザ光)を反射する第一反射ミラーの一例である。反射ミラー72は、半導体レーザ素子12(第二半導体レーザ素子)から出射されるレーザ光L2E(第二レーザ光)を反射する第二反射ミラーの一例である。本明細書では、半導体レーザ素子11から出射されるレーザ光L1Eとは、半導体レーザ素子11から出射されるレーザ光L1Aが、FAST軸コリメータレンズ31、偏向素子40、平行化素子51、及びSLOW軸コリメータレンズ61を介して、反射ミラー71に入射するレーザ光のことを意味する。また、半導体レーザ素子12から出射されるレーザ光L2Eは、半導体レーザ素子12から出射されるレーザ光L2Aが、FAST軸コリメータレンズ32、偏向素子40、平行化素子52、及びSLOW軸コリメータレンズ62を介して、反射ミラー72に入射するレーザ光のことを意味する。また、第一反射ミラーに入射する第一レーザ光の光軸を第一光軸とし、第二反射ミラーに入射する第二レーザ光の光軸を第二光軸とする。以下では、半導体レーザ素子11の発光点11e(第一発光点)を通り、第一光軸と垂直な方向を第一方向とも称する。 The multiple reflecting mirrors 70 to 75 include a first reflecting mirror and a second reflecting mirror. Reflecting mirror 71 is an example of a first reflecting mirror that reflects laser light L1E (first laser light) emitted from semiconductor laser element 11 (first semiconductor laser element). Reflecting mirror 72 is an example of a second reflecting mirror that reflects laser light L2E (second laser light) emitted from semiconductor laser element 12 (second semiconductor laser element). In this specification, laser light L1E emitted from semiconductor laser element 11 refers to laser light that is laser light L1A emitted from semiconductor laser element 11 and enters reflecting mirror 71 via FAST axis collimator lens 31, deflection element 40, parallelization element 51, and SLOW axis collimator lens 61. Moreover, the laser light L2E emitted from the semiconductor laser element 12 means the laser light L2A emitted from the semiconductor laser element 12 that is incident on the reflecting mirror 72 via the FAST axis collimator lens 32, the deflection element 40, the parallelizing element 52, and the SLOW axis collimator lens 62. Moreover, the optical axis of the first laser light that is incident on the first reflecting mirror is the first optical axis, and the optical axis of the second laser light that is incident on the second reflecting mirror is the second optical axis. Hereinafter, the direction that passes through the light emitting point 11e (first light emitting point) of the semiconductor laser element 11 and is perpendicular to the first optical axis is also referred to as the first direction.
 例えば、図3に示されるように、半導体レーザ素子11の発光点11eを基準とすると、半導体レーザ素子11の発光点11e(第一発光点)から、反射ミラー71に入射するレーザ光L1Eの光軸(第一光軸A1)までの第一方向(本実施の形態ではX軸方向)における第一距離D1と、半導体レーザ素子11の発光点11eから、反射ミラー72に入射するレーザ光L2Eの光軸(第二光軸A2)までの第一方向における第二距離D2とは、互いに異なる。同様に、半導体レーザ素子11の発光点11eから、反射ミラー71~75にそれぞれ入射するレーザ光L1E~L5Eの光軸までの第一方向(本実施の形態ではX軸方向)における距離は、互いに異なる。 3, when the light emitting point 11e of the semiconductor laser element 11 is used as a reference, a first distance D1 in a first direction (X-axis direction in this embodiment) from the light emitting point 11e (first light emitting point) of the semiconductor laser element 11 to the optical axis (first optical axis A1) of the laser light L1E incident on the reflecting mirror 71 and a second distance D2 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the optical axis (second optical axis A2) of the laser light L2E incident on the reflecting mirror 72 are different from each other. Similarly, the distances in the first direction (X-axis direction in this embodiment) from the light emitting point 11e of the semiconductor laser element 11 to the optical axes of the laser light L1E to L5E incident on the reflecting mirrors 71 to 75, respectively, are different from each other.
 レーザ光L1D~L5D、及びL1E~L5Eは、それぞれ、平行化素子51~55と反射ミラー71~75との間で、Z軸方向正向きに、底面6aと平行に伝搬し、かつ、ミラー設置面81~85と平行に伝搬する。また、レーザ光L1D~L5Dの各々は、互いに平行に伝搬する。 The laser beams L1D to L5D and L1E to L5E propagate in the positive direction of the Z axis between the parallelizing elements 51 to 55 and the reflecting mirrors 71 to 75, respectively, parallel to the bottom surface 6a and parallel to the mirror installation surfaces 81 to 85. The laser beams L1D to L5D also propagate parallel to each other.
 複数の反射ミラー70~75から出射したレーザ光L0F~L5Fは、伝搬方向が互いに平行であり、かつ、底面6aからの高さ方向の位置が重ならず、かつ、底面6aと平行な方向の位置が重なる。例えば、反射ミラー71から出射したレーザ光L1Fと、反射ミラー72から出射したレーザ光L2Fとは、伝搬方向が平行であり、かつ、反射ミラー71から出射したレーザ光L1FのFAST軸方向(本実施の形態では、底面6aからの高さ方向)の位置が重ならず、かつ、反射ミラー71から出射したレーザ光L1FのSLOW軸方向(本実施の形態では、底面6aと平行な方向)の位置が重なる。レーザ光L0F~L5Fは、反射ミラー70~75と集光レンズ90との間で、Y軸方向負向きに、底面6aと平行に伝搬する。 The laser beams L0F to L5F emitted from the multiple reflecting mirrors 70 to 75 have parallel propagation directions, do not overlap in height from the bottom surface 6a, and overlap in positions parallel to the bottom surface 6a. For example, the laser beams L1F emitted from the reflecting mirror 71 and the laser beams L2F emitted from the reflecting mirror 72 have parallel propagation directions, do not overlap in the FAST axis direction (height from the bottom surface 6a in this embodiment), and overlap in the SLOW axis direction (direction parallel to the bottom surface 6a in this embodiment). The laser beams L0F to L5F propagate in the negative Y-axis direction and parallel to the bottom surface 6a between the reflecting mirrors 70 to 75 and the focusing lens 90.
 本実施の形態では、上述したとおり、半導体レーザ素子10~15は、同一平面上に配置され、複数の反射ミラー70~75は、それぞれ、互いに高さが異なる複数のミラー設置面80~85に設置される。したがって、本実施の形態では、半導体レーザ素子11の発光点11eの底面6aからの高さと、ミラー設置面81の底面6aからの高さとの差は、半導体レーザ素子10の発光点10eの底面6aからの高さと、ミラー設置面80の底面6aからの高さとの差より大きい。同様に、半導体レーザ素子12の発光点12eの底面6aからの高さと、ミラー設置面82の底面6aからの高さとの差は、半導体レーザ素子11の発光点11eの底面6aからの高さと、ミラー設置面81の底面6aからの高さとの差より大きい。言い換えると、図3に示されるように、半導体レーザ素子12の発光点12e(第二発光点)から、反射ミラー72に入射するレーザ光L2Eの光軸(第二光軸A2)までの第一方向(本実施の形態では、X軸方向)における第三距離D3は、半導体レーザ素子11の発光点11e(第一発光点)から、反射ミラー71に入射するレーザ光L1Eの光軸(第一光軸A1)までの第一方向における距離より大きい。 In this embodiment, as described above, the semiconductor laser elements 10-15 are disposed on the same plane, and the multiple reflective mirrors 70-75 are respectively mounted on multiple mirror mounting surfaces 80-85 having different heights from each other. Therefore, in this embodiment, the difference in height between the light emitting point 11e of the semiconductor laser element 11 from the bottom surface 6a and the height of the mirror mounting surface 81 from the bottom surface 6a is greater than the difference in height between the light emitting point 10e of the semiconductor laser element 10 from the bottom surface 6a and the height of the mirror mounting surface 80 from the bottom surface 6a. Similarly, the difference in height between the light emitting point 12e of the semiconductor laser element 12 from the bottom surface 6a and the height of the mirror mounting surface 82 from the bottom surface 6a is greater than the difference in height between the light emitting point 11e of the semiconductor laser element 11 from the bottom surface 6a and the height of the mirror mounting surface 81 from the bottom surface 6a. In other words, as shown in FIG. 3, a third distance D3 in a first direction (in this embodiment, the X-axis direction) from the light emitting point 12e (second light emitting point) of the semiconductor laser element 12 to the optical axis (second optical axis A2) of the laser light L2E incident on the reflecting mirror 72 is greater than the distance in the first direction from the light emitting point 11e (first light emitting point) of the semiconductor laser element 11 to the optical axis (first optical axis A1) of the laser light L1E incident on the reflecting mirror 71.
 このように、本実施の形態では、一つの発光点の高さと、当該発光点に対応するミラー設置面の高さとの差は、発光点とミラー設置面との組み合わせ毎に異なる。なお、ここで、各差は、減算した結果の値の絶対値で定義される。以下で述べる各差についても同様に絶対値で定義される。 In this way, in this embodiment, the difference between the height of one light-emitting point and the height of the mirror installation surface corresponding to that light-emitting point differs for each combination of light-emitting point and mirror installation surface. Note that each difference here is defined as the absolute value of the value resulting from the subtraction. Each difference described below is also defined as an absolute value in the same way.
 また、本実施の形態では、例えば、半導体レーザ素子11の発光点11eの底面6aからの高さと、半導体レーザ素子12の発光点12eの底面6aからの高さとの差は、ミラー設置面81の底面6aからの高さと、ミラー設置面82の底面6aからの高さとの差より小さい。言い換えると、図3に示されるように、半導体レーザ素子11の発光点11e(第一発光点)から、半導体レーザ素子12の発光点12e(第二発光点)までの第一方向における距離は、反射ミラー71に入射するレーザ光L1Eの光軸(第一光軸A1)から、反射ミラー72に入射するレーザ光L2Eの光軸(第二光軸A2)までの第一方向における第四距離D4より小さい。なお、本実施の形態では、半導体レーザ素子11の発光点11eから、半導体レーザ素子12の発光点12eまでの第一方向における距離は、ゼロであり、図3には示されていない。このように、本実施の形態では、複数の半導体レーザ素子10~15の底面6aからの高さのずれを、複数の反射ミラー70~75の底面からの高さのずれより低減できる。 In addition, in this embodiment, for example, the difference between the height of the light emitting point 11e of the semiconductor laser element 11 from the bottom surface 6a and the height of the light emitting point 12e of the semiconductor laser element 12 from the bottom surface 6a is smaller than the difference between the height of the mirror installation surface 81 from the bottom surface 6a and the height of the mirror installation surface 82 from the bottom surface 6a. In other words, as shown in FIG. 3, the distance in the first direction from the light emitting point 11e (first light emitting point) of the semiconductor laser element 11 to the light emitting point 12e (second light emitting point) of the semiconductor laser element 12 is smaller than a fourth distance D4 in the first direction from the optical axis (first optical axis A1) of the laser light L1E incident on the reflection mirror 71 to the optical axis (second optical axis A2) of the laser light L2E incident on the reflection mirror 72. In addition, in this embodiment, the distance in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the light emitting point 12e of the semiconductor laser element 12 is zero and is not shown in FIG. 3. In this way, in this embodiment, the deviation in height of the multiple semiconductor laser elements 10-15 from the bottom surface 6a can be reduced more than the deviation in height of the multiple reflecting mirrors 70-75 from the bottom surface.
 複数の反射ミラー70~75は、第一反射ミラー及び第二反射ミラーを含む。反射ミラー71は、半導体レーザ素子11(第一半導体レーザ素子)から出射されるレーザ光L1E(第一レーザ光)を反射する第一反射ミラーの一例である。反射ミラー72は、半導体レーザ素子12(第二半導体レーザ素子)から出射されるレーザ光L2E(第二レーザ光)を反射する第二反射ミラーの一例である。本明細書では、半導体レーザ素子11から出射されるレーザ光L1Eとは、半導体レーザ素子11から出射されるレーザ光L1Aが、FAST軸コリメータレンズ31、偏向素子40、平行化素子51、及びSLOW軸コリメータレンズ61を介して、反射ミラー71に入射するレーザ光のことを意味する。また、半導体レーザ素子12から出射されるレーザ光L2Eは、半導体レーザ素子12から出射されるレーザ光L2Aが、FAST軸コリメータレンズ32、偏向素子40、平行化素子52、及びSLOW軸コリメータレンズ62を介して、反射ミラー72に入射するレーザ光のことを意味する。 The multiple reflecting mirrors 70 to 75 include a first reflecting mirror and a second reflecting mirror. Reflecting mirror 71 is an example of a first reflecting mirror that reflects laser light L1E (first laser light) emitted from semiconductor laser element 11 (first semiconductor laser element). Reflecting mirror 72 is an example of a second reflecting mirror that reflects laser light L2E (second laser light) emitted from semiconductor laser element 12 (second semiconductor laser element). In this specification, laser light L1E emitted from semiconductor laser element 11 refers to laser light that is laser light L1A emitted from semiconductor laser element 11 and enters reflecting mirror 71 via FAST axis collimator lens 31, deflection element 40, parallelization element 51, and SLOW axis collimator lens 61. In addition, the laser light L2E emitted from the semiconductor laser element 12 refers to the laser light L2A emitted from the semiconductor laser element 12 that passes through the FAST axis collimator lens 32, the deflection element 40, the parallelizing element 52, and the SLOW axis collimator lens 62 and enters the reflecting mirror 72.
 集光レンズ90は、複数の反射ミラー70~75によって反射された複数のレーザ光L0F~L5Fを集光するレンズである。本実施の形態では、複数のレーザ光L0F~L5Fの大部分が、光ファイバ4の端面に入射し、光ファイバ4内を伝搬できるように、集光レンズ90によってレーザ光L0F~L5Fを集光する。集光レンズ90として、例えば、球面レンズを用いることができる。ここで、集光レンズ90におけるレーザ光L0F~L5Fのスポット形状について、図4を用いて説明する。図4は、集光レンズ90の入射面におけるレーザ光L0F~L5Fのスポット形状を示す模式図である。図4において、破線で、レーザ光L0F~L5Fの輪郭が示されている。図4に示されるように、本実施の形態では、レーザ光L0F~L5Fの集光レンズ90における重なりを低減している。 The focusing lens 90 is a lens that focuses the multiple laser beams L0F to L5F reflected by the multiple reflecting mirrors 70 to 75. In this embodiment, the focusing lens 90 focuses the laser beams L0F to L5F so that most of the multiple laser beams L0F to L5F are incident on the end face of the optical fiber 4 and can propagate through the optical fiber 4. For example, a spherical lens can be used as the focusing lens 90. Here, the spot shape of the laser beams L0F to L5F on the focusing lens 90 will be described with reference to FIG. 4. FIG. 4 is a schematic diagram showing the spot shape of the laser beams L0F to L5F on the incident surface of the focusing lens 90. In FIG. 4, the outlines of the laser beams L0F to L5F are shown by dashed lines. As shown in FIG. 4, in this embodiment, the overlap of the laser beams L0F to L5F on the focusing lens 90 is reduced.
 光ファイバ4は、筐体2の内部から外部へレーザ光L0F~L5Fを導光する部材である。上述したとおり、光ファイバ4の、筐体2の内部に配置される端面に集光レンズ90から出射したレーザ光L0F~L5Fが同じ位置に異なる入射角度で入射する。図4に示されるように、本実施の形態では、レーザ光L0F~L5Fの集光レンズ90における重なりを低減しているので、光ファイバ4の端面において、レーザ光L0F~L5Fが一部に集中することに起因する光ファイバ4の劣化及び破損を抑制できる。 The optical fiber 4 is a member that guides the laser beams L0F to L5F from inside the housing 2 to the outside. As described above, the laser beams L0F to L5F emitted from the focusing lens 90 are incident on the end face of the optical fiber 4 that is located inside the housing 2 at the same position at different angles of incidence. As shown in FIG. 4, in this embodiment, the overlap of the laser beams L0F to L5F at the focusing lens 90 is reduced, so that deterioration and damage to the optical fiber 4 caused by the laser beams L0F to L5F concentrating on a portion of the end face of the optical fiber 4 can be suppressed.
 [1-2.効果など]
 本実施の形態に係る半導体レーザ装置1の効果などについて説明する。
[1-2. Effects, etc.]
The effects of the semiconductor laser device 1 according to this embodiment will be described.
 上述したように、本実施の形態の一態様に係る半導体レーザ装置1は、底面6aを有する筐体2と、筐体2内に配置される半導体レーザ素子11及び半導体レーザ素子12と、半導体レーザ素子11から出射されるレーザ光L1Eを反射する反射ミラー71と、半導体レーザ素子12から出射されるレーザ光L2Eを反射する反射ミラー72と、反射ミラー71によって反射されたレーザ光L1Fと、反射ミラー72によって反射されたレーザ光L2Fとを集光する集光レンズ90と、反射ミラー71が設置されるミラー設置面81と、反射ミラー72が設置されるミラー設置面82とを備える。ミラー設置面81とミラー設置面82とは、互いに平行である。ミラー設置面81と、ミラー設置面82とは、同一平面上にない。半導体レーザ素子11は、レーザ光L1Aを出射する発光点11eを有し、半導体レーザ素子12は、レーザ光L2Aを出射する発光点12eを有する。反射ミラー71に入射するレーザ光L1Eの光軸を第一光軸A1とし、反射ミラー72に入射するレーザ光L2Eの光軸を第二光軸A2とする。半導体レーザ素子11の発光点11eから第一光軸A1までの第一方向における第一距離D1と、半導体レーザ素子11の発光点11eから、第二光軸までの第一方向における第二距離D2とは、互いに異なる。半導体レーザ素子12の発光点12eから、第二光軸A2までの第一方向における第三距離D3は、第一距離D1より大きい。言い換えると、第二半導体レーザ素子の発光点12eの底面6aからの高さと、ミラー設置面82の底面6aからの高さとの差は、第一半導体レーザ素子の発光点11eの底面6aからの高さと、ミラー設置面81の底面6aからの高さとの差より大きい。 As described above, the semiconductor laser device 1 according to one aspect of the present embodiment includes a housing 2 having a bottom surface 6a, a semiconductor laser element 11 and a semiconductor laser element 12 arranged in the housing 2, a reflecting mirror 71 that reflects the laser light L1E emitted from the semiconductor laser element 11, a reflecting mirror 72 that reflects the laser light L2E emitted from the semiconductor laser element 12, a focusing lens 90 that focuses the laser light L1F reflected by the reflecting mirror 71 and the laser light L2F reflected by the reflecting mirror 72, a mirror mounting surface 81 on which the reflecting mirror 71 is mounted, and a mirror mounting surface 82 on which the reflecting mirror 72 is mounted. The mirror mounting surface 81 and the mirror mounting surface 82 are parallel to each other. The mirror mounting surface 81 and the mirror mounting surface 82 are not on the same plane. The semiconductor laser element 11 has a light emitting point 11e that emits the laser light L1A, and the semiconductor laser element 12 has a light emitting point 12e that emits the laser light L2A. The optical axis of the laser light L1E incident on the reflecting mirror 71 is the first optical axis A1, and the optical axis of the laser light L2E incident on the reflecting mirror 72 is the second optical axis A2. A first distance D1 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the first optical axis A1 and a second distance D2 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the second optical axis are different from each other. A third distance D3 in the first direction from the light emitting point 12e of the semiconductor laser element 12 to the second optical axis A2 is greater than the first distance D1. In other words, the difference between the height of the light emitting point 12e of the second semiconductor laser element from the bottom surface 6a and the height of the mirror installation surface 82 from the bottom surface 6a is greater than the difference between the height of the light emitting point 11e of the first semiconductor laser element from the bottom surface 6a and the height of the mirror installation surface 81 from the bottom surface 6a.
 このように、半導体レーザ装置1では、各発光点の底面6aからの高さと、各ミラー設置面の底面6aからの高さとの差を、揃える必要がない。したがって、各半導体レーザ素子の配置の自由度を高めることができる。例えば、各半導体レーザ素子の底面6aからの高さを低減することが可能となる。これにより、底部6にヒートシンクを接続することで、各半導体レーザ素子の放熱特性を高めることができる。 In this way, in the semiconductor laser device 1, it is not necessary to make the difference between the height of each light emitting point from the bottom surface 6a and the height of each mirror mounting surface from the bottom surface 6a uniform. This increases the degree of freedom in arranging each semiconductor laser element. For example, it becomes possible to reduce the height of each semiconductor laser element from the bottom surface 6a. This makes it possible to improve the heat dissipation characteristics of each semiconductor laser element by connecting a heat sink to the bottom 6.
 また、本実施の形態の他の一態様に係る半導体レーザ装置1は、底面6aを有する筐体2と、筐体2内に配置される半導体レーザ素子11及び半導体レーザ素子12と、半導体レーザ素子11から出射されるレーザ光L1Eを反射する反射ミラー71と、半導体レーザ素子12から出射されるレーザ光L2Eを反射する反射ミラー72と、反射ミラー71によって反射されたレーザ光L1Fと、反射ミラー72によって反射されたレーザ光L2Fとを集光する集光レンズ90とを備える。半導体レーザ装置1は、さらに、半導体レーザ素子11と、反射ミラー71との間に配置され、レーザ光L1Cの伝搬方向を偏向する平行化素子51と、半導体レーザ素子12と、反射ミラー72との間に配置され、レーザ光L2Cの伝搬方向を偏向する平行化素子52とを備える。半導体レーザ素子11は、レーザ光L1Aを出射する発光点11eを有し、半導体レーザ素子12は、レーザ光L2Aを出射する発光点12eを有する。半導体レーザ素子11の発光点11eでのレーザ光L1AのFAST軸方向は、第一方向に平行である。平行化素子51に入射するレーザ光L1Cの光軸と、平行化素子52に入射するレーザ光L2Cの光軸とは、平行である。反射ミラー71に入射するレーザ光L1Eの光軸と、反射ミラー72に入射するレーザ光L2Eの光軸とは、平行である。反射ミラー71に入射するレーザ光L1Eの光軸は、平行化素子51に入射するレーザ光L1Cの光軸に対して、傾斜している。反射ミラー71に入射するレーザ光L1Eの光軸を第一光軸A1とし、反射ミラー72に入射するレーザ光L2Eの光軸を第二光軸A2とする。半導体レーザ素子11の発光点11eから、第一光軸A1までの第一方向における第一距離D1と、半導体レーザ素子11の発光点11eから、第二光軸A2までの第一方向における第二距離D2は、互いに異なる。半導体レーザ素子12の発光点12eから、第二光軸までの第一方向における第三距離D3は、第一距離D1より大きい。 A semiconductor laser device 1 according to another aspect of this embodiment includes a housing 2 having a bottom surface 6a, a semiconductor laser element 11 and a semiconductor laser element 12 arranged in the housing 2, a reflection mirror 71 that reflects the laser light L1E emitted from the semiconductor laser element 11, a reflection mirror 72 that reflects the laser light L2E emitted from the semiconductor laser element 12, and a focusing lens 90 that focuses the laser light L1F reflected by the reflection mirror 71 and the laser light L2F reflected by the reflection mirror 72. The semiconductor laser device 1 further includes a parallelizing element 51 that is arranged between the semiconductor laser element 11 and the reflection mirror 71 and that deflects the propagation direction of the laser light L1C, and a parallelizing element 52 that is arranged between the semiconductor laser element 12 and the reflection mirror 72 and that deflects the propagation direction of the laser light L2C. The semiconductor laser element 11 has an emission point 11e that emits the laser light L1A, and the semiconductor laser element 12 has an emission point 12e that emits the laser light L2A. The FAST axis direction of the laser light L1A at the emission point 11e of the semiconductor laser element 11 is parallel to the first direction. The optical axis of the laser light L1C incident on the collimating element 51 is parallel to the optical axis of the laser light L2C incident on the collimating element 52. The optical axis of the laser light L1E incident on the reflecting mirror 71 is parallel to the optical axis of the laser light L2E incident on the reflecting mirror 72. The optical axis of the laser light L1E incident on the reflecting mirror 71 is inclined with respect to the optical axis of the laser light L1C incident on the collimating element 51. The optical axis of the laser light L1E incident on the reflecting mirror 71 is the first optical axis A1, and the optical axis of the laser light L2E incident on the reflecting mirror 72 is the second optical axis A2. A first distance D1 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the first optical axis A1 and a second distance D2 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the second optical axis A2 are different from each other. A third distance D3 in the first direction from the light emitting point 12e of the semiconductor laser element 12 to the second optical axis is greater than the first distance D1.
 このように、半導体レーザ装置1では、各平行化素子を用いることで、各発光点から、各反射ミラーに入射するレーザ光の光軸までの距離を、揃える必要がなくなる。つまり、各発光点の底面6aからの高さと、各ミラー設置面の底面6aからの高さとの差を、揃える必要がなくなる。したがって、各半導体レーザ素子の配置の自由度を高めることができる。例えば、各半導体レーザ素子の底面6aからの高さを低減することが可能となる。これにより、底部6にヒートシンクを接続することで、各半導体レーザ素子の放熱特性を高めることができる。 In this way, by using each collimating element in the semiconductor laser device 1, it is no longer necessary to align the distance from each light emitting point to the optical axis of the laser light incident on each reflecting mirror. In other words, it is no longer necessary to align the difference between the height of each light emitting point from the bottom surface 6a and the height of each mirror mounting surface from the bottom surface 6a. This increases the degree of freedom in arranging each semiconductor laser element. For example, it becomes possible to reduce the height of each semiconductor laser element from the bottom surface 6a. This makes it possible to improve the heat dissipation characteristics of each semiconductor laser element by connecting a heat sink to the bottom 6.
 また、本実施の形態に係る半導体レーザ装置1において、半導体レーザ素子11の発光点11eの底面6aからの高さと、半導体レーザ素子12の発光点12eの底面6aからの高さとの差は、ミラー設置面81の底面6aからの高さと、ミラー設置面82の底面6aからの高さとの差より小さくてもよい。言い換えると、半導体レーザ素子11の発光点11eから、半導体レーザ素子12の発光点12eまでの第一方向における距離は、第一光軸A1から、第二光軸A2までの第一方向における第四距離D4より小さくてもよい。 Furthermore, in the semiconductor laser device 1 according to this embodiment, the difference between the height of the light emitting point 11e of the semiconductor laser element 11 from the bottom surface 6a and the height of the light emitting point 12e of the semiconductor laser element 12 from the bottom surface 6a may be smaller than the difference between the height of the mirror mounting surface 81 from the bottom surface 6a and the height of the mirror mounting surface 82 from the bottom surface 6a. In other words, the distance in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the light emitting point 12e of the semiconductor laser element 12 may be smaller than a fourth distance D4 in the first direction from the first optical axis A1 to the second optical axis A2.
 このように、各半導体レーザ素子の底面6aからの高さの差を低減できるため、各半導体レーザ素子の実装を容易化できる。また、底部6にヒートシンクを接続して、底部6から放熱を行う場合には、各半導体レーザ素子と底面6aまでの距離に応じて放熱特性が変化する。したがって、各半導体レーザ素子の底面6aからの高さの差を低減することで、各半導体レーザ素子の放熱特性の差を低減できる。これにより、各半導体レーザ素子からの各レーザ光の波長などの特性の差を低減できる。 In this way, the difference in height between each semiconductor laser element and the bottom surface 6a can be reduced, which makes it easier to mount each semiconductor laser element. Furthermore, when a heat sink is connected to the bottom 6 and heat is dissipated from the bottom 6, the heat dissipation characteristics change depending on the distance between each semiconductor laser element and the bottom surface 6a. Therefore, by reducing the difference in height between each semiconductor laser element and the bottom surface 6a, the difference in heat dissipation characteristics between each semiconductor laser element can be reduced. This makes it possible to reduce the difference in characteristics such as the wavelength of each laser light from each semiconductor laser element.
 また、本実施の形態に係る半導体レーザ装置1において、複数の半導体レーザ素子10~15は、同一平面に設置されてもよい。 In addition, in the semiconductor laser device 1 according to this embodiment, the multiple semiconductor laser elements 10 to 15 may be placed on the same plane.
 これにより、複数の半導体レーザ素子10~15の実装をさらに容易化できる。また、例えば、複数の半導体レーザ素子10~15への電流供給のために、金属ワイヤWを用いて各半導体レーザ素子への配線を行う場合、ワイヤボンドのボンド部分の高さを揃えることができるため、ワイヤボンディングを容易化できる。 This makes it even easier to mount the multiple semiconductor laser elements 10-15. Also, for example, when wiring the multiple semiconductor laser elements 10-15 using metal wires W to supply current to the semiconductor laser elements, the height of the bond portion of the wire bond can be made uniform, making wire bonding easier.
 また、本実施の形態に係る半導体レーザ装置1において、複数の半導体レーザ素子10~15のFAST軸方向は、底面6aからの高さ方向であってもよい。 In addition, in the semiconductor laser device 1 according to this embodiment, the FAST axis direction of the multiple semiconductor laser elements 10 to 15 may be the height direction from the bottom surface 6a.
 これにより、各半導体レーザ素子の放熱特性を向上することができる。 This improves the heat dissipation characteristics of each semiconductor laser element.
 また、本実施の形態に係る半導体レーザ装置1は、半導体レーザ素子11と、反射ミラー71との間に配置され、レーザ光L1Bの伝搬方向に第一方向の成分を与える偏向素子40(第一偏向素子)と、偏向素子40と、反射ミラー71との間に配置され、伝搬方向に第一方向の成分を与えられたレーザ光L1Cの伝搬方向をミラー設置面81と平行な方向に偏向する平行化素子51と、半導体レーザ素子12と、反射ミラー72との間に配置され、レーザ光L2Bの伝搬方向に第一方向の成分を与える偏向素子40(第二偏向素子)と、偏向素子40と、反射ミラー72との間に配置され、伝搬方向に第一方向の成分を与えられたレーザ光L2Cの伝搬方向をミラー設置面82と平行な方向に偏向する平行化素子52とを備えてもよい。 The semiconductor laser device 1 according to this embodiment may also include a deflection element 40 (first deflection element) disposed between the semiconductor laser element 11 and the reflecting mirror 71, which gives a first direction component to the propagation direction of the laser light L1B; a parallelization element 51 disposed between the deflection element 40 and the reflecting mirror 71, which deflects the propagation direction of the laser light L1C, which has been given the first direction component in the propagation direction, in a direction parallel to the mirror installation surface 81; a deflection element 40 (second deflection element) disposed between the semiconductor laser element 12 and the reflecting mirror 72, which gives a first direction component to the propagation direction of the laser light L2B; and a parallelization element 52 disposed between the deflection element 40 and the reflecting mirror 72, which deflects the propagation direction of the laser light L2C, which has been given the first direction component in the propagation direction, in a direction parallel to the mirror installation surface 82.
 これにより、各半導体レーザ素子を、各ミラー設置面に対応する高さに設置することなく、各レーザ光の伝搬方向を各ミラー設置面と平行にでき、かつ、各レーザ光の高さを各反射ミラーに入射する高さに導光できる。 As a result, the propagation direction of each laser light can be made parallel to each mirror installation surface without installing each semiconductor laser element at a height corresponding to each mirror installation surface, and the height of each laser light can be guided to the height at which it is incident on each reflecting mirror.
 また、本実施の形態に係る半導体レーザ装置1において、平行化素子51は、ミラー設置面81に設置され、平行化素子52は、ミラー設置面82に設置されてもよい。 In addition, in the semiconductor laser device 1 according to this embodiment, the parallelizing element 51 may be installed on the mirror installation surface 81, and the parallelizing element 52 may be installed on the mirror installation surface 82.
 これにより、各平行化素子から、各反射ミラーへ各レーザ光を導光しやすくなる。また、各平行化素子の高さ調整を容易化できる。 This makes it easier to guide each laser beam from each parallelizing element to each reflecting mirror. It also makes it easier to adjust the height of each parallelizing element.
 また、本実施の形態に係る半導体レーザ装置1において、偏向素子40と平行化素子51との間におけるレーザ光L1Cと、偏向素子40と平行化素子52との間におけるレーザ光L2Cとは、平行であり、偏向素子40と平行化素子52との間の距離は、偏向素子40と平行化素子51との間の距離より長くてもよい。 Furthermore, in the semiconductor laser device 1 according to this embodiment, the laser light L1C between the deflection element 40 and the parallelization element 51 and the laser light L2C between the deflection element 40 and the parallelization element 52 are parallel, and the distance between the deflection element 40 and the parallelization element 52 may be longer than the distance between the deflection element 40 and the parallelization element 51.
 これにより、半導体レーザ素子12の発光点12eの底面6aからの高さと、ミラー設置面82の底面6aからの高さとの差を、半導体レーザ素子11の発光点11eの底面6aからの高さと、ミラー設置面81の底面6aからの高さとの差より大きくすることができる。 This allows the difference in height between the light emitting point 12e of the semiconductor laser element 12 from the bottom surface 6a and the height of the mirror mounting surface 82 from the bottom surface 6a to be greater than the difference in height between the light emitting point 11e of the semiconductor laser element 11 from the bottom surface 6a and the height of the mirror mounting surface 81 from the bottom surface 6a.
 また、本実施の形態に係る半導体レーザ装置1において、偏向素子40、平行化素子51、及び平行化素子52の各々は、透過型偏向素子であってもよい。 In addition, in the semiconductor laser device 1 according to this embodiment, each of the deflection element 40, the parallelization element 51, and the parallelization element 52 may be a transmissive deflection element.
 また、本実施の形態に係る半導体レーザ装置1において、透過型偏向素子は、入射面及び出射面を有するプリズムであり、入射面と出射面とは平行でなくてもよい。これにより、光路偏向の角度をプリズムの設置角度に比べて精密に調整することが可能である。 In addition, in the semiconductor laser device 1 according to this embodiment, the transmissive deflection element is a prism having an entrance surface and an exit surface, and the entrance surface and the exit surface do not have to be parallel. This makes it possible to adjust the angle of the optical path deflection more precisely than the installation angle of the prism.
 また、本実施の形態に係る半導体レーザ装置1は、半導体レーザ素子11と平行化素子51との間に配置されるFAST軸コリメータレンズ31を備えてもよい。 The semiconductor laser device 1 according to this embodiment may also include a FAST axis collimator lens 31 disposed between the semiconductor laser element 11 and the collimating element 51.
 これにより、レーザ光L1AのFAST軸方向におけるスポットサイズの増大を抑制できる。 This makes it possible to suppress an increase in the spot size of the laser light L1A in the FAST axis direction.
 また、本実施の形態に係る半導体レーザ装置1は、FAST軸コリメータレンズ31と反射ミラー71との間に配置されるSLOW軸コリメータレンズ61を備えてもよい。 The semiconductor laser device 1 according to this embodiment may also include a SLOW axis collimator lens 61 disposed between the FAST axis collimator lens 31 and the reflecting mirror 71.
 これにより、レーザ光L1DのSLOW軸方向におけるスポットサイズの増大を抑制できる。 This makes it possible to suppress an increase in the spot size of the laser light L1D in the SLOW axis direction.
 また、本実施の形態に係る半導体レーザ装置1において、反射ミラー71から出射したレーザ光L1Fと、反射ミラー72から出射したレーザ光L2Fとは、伝搬方向が平行であり、かつ、レーザ光L1FのFAST軸方向の位置が重ならず、かつ、レーザ光L1FのSLOW軸方向の位置が重なってもよい。 Furthermore, in the semiconductor laser device 1 according to this embodiment, the laser light L1F emitted from the reflecting mirror 71 and the laser light L2F emitted from the reflecting mirror 72 may have parallel propagation directions, and the positions of the laser light L1F in the FAST axis direction may not overlap, and the positions of the laser light L1F in the SLOW axis direction may overlap.
 このように、レーザ光L1Fとレーザ光L2Fとの伝搬方向を平行とし、レーザ光L1FのSLOW軸方向の位置を揃えることにより、レーザ光L1Fとレーザ光L2Fとを、光ファイバ4などへ集光しやすくなる。また、レーザ光L1Fとレーザ光L2FとのFAST軸方向の位置が重ならないことで、レーザ光強度が局所的に大きくなることを抑制できるため、各レーザ光が入射される光ファイバ4などの光学素子の劣化及び破損を抑制できる。 In this way, by making the propagation directions of the laser light L1F and the laser light L2F parallel and aligning the position of the laser light L1F in the SLOW axis direction, the laser light L1F and the laser light L2F can be easily focused onto the optical fiber 4, etc. Furthermore, by not overlapping the positions of the laser light L1F and the laser light L2F in the FAST axis direction, it is possible to prevent the laser light intensity from becoming locally high, thereby preventing deterioration and damage to optical elements such as the optical fiber 4 into which each laser light is incident.
 [1-3.変形例1]
 本実施の形態の変形例1に係る半導体レーザ装置について説明する。本変形例に係る半導体レーザ装置は、主に、偏向素子によってレーザ光を下方に偏向する点において、上述した半導体レーザ装置1と相違する。以下、本変形例に係る半導体レーザ装置について、半導体レーザ装置1との相違点を中心に図5及び図6を用いて説明する。
[1-3. Modification 1]
A semiconductor laser device according to Modification 1 of the present embodiment will be described. The semiconductor laser device according to this modification differs from the above-described semiconductor laser device 1 mainly in that the laser light is deflected downward by a deflection element. The semiconductor laser device according to this modification will be described below with reference to FIGS. 5 and 6, focusing on the differences from the semiconductor laser device 1.
 図5及び図6は、本変形例に係る半導体レーザ装置1aの構成を示す平面図及び側面図である。図5に示されるように、本変形例に係る半導体レーザ装置1aは、筐体2と、複数の半導体レーザ素子10~12と、複数のサブマウント20~22と、複数のFAST軸コリメータレンズ30~32と、偏向素子40aと、複数の平行化素子51a、52aと、複数のSLOW軸コリメータレンズ60~62と、複数の反射ミラー70~72と、複数のミラー設置面80a~82aと、光ファイバ4と、電流導入端子9a、9bとを備える。 FIGS. 5 and 6 are plan and side views showing the configuration of a semiconductor laser device 1a according to this modified example. As shown in FIG. 5, the semiconductor laser device 1a according to this modified example includes a housing 2, a plurality of semiconductor laser elements 10-12, a plurality of submounts 20-22, a plurality of FAST axis collimator lenses 30-32, a deflection element 40a, a plurality of parallelizing elements 51a, 52a, a plurality of SLOW axis collimator lenses 60-62, a plurality of reflecting mirrors 70-72, a plurality of mirror mounting surfaces 80a-82a, an optical fiber 4, and current introduction terminals 9a, 9b.
 本変形例では、半導体レーザ装置1aは、複数のミラー設置面80a~82aを有する多段ベース8aを備える。 In this modified example, the semiconductor laser device 1a has a multi-stage base 8a with multiple mirror mounting surfaces 80a to 82a.
 複数のミラー設置面80a~82aは、複数の反射ミラー70~72がそれぞれ設置される面である。複数のミラー設置面80a~82aは、互いに底面6aからの高さが異なる。具体的には、ミラー設置面80aより、ミラー設置面81aの方が、底面6aからの高さが低く、ミラー設置面81aより、ミラー設置面82aの方が、底面6aからの高さが低い。ミラー設置面80aは、多段ベース8aの上面と同じ高さである。ミラー設置面81a、82aは、上面より低い位置に形成され、ミラー設置面81a、82aの端部と多段ベース8aの上面との間に段差がある。 The multiple mirror mounting surfaces 80a-82a are surfaces on which the multiple reflective mirrors 70-72 are respectively mounted. The multiple mirror mounting surfaces 80a-82a differ from one another in height from the bottom surface 6a. Specifically, the mirror mounting surface 81a is lower in height from the bottom surface 6a than the mirror mounting surface 80a, and the mirror mounting surface 82a is lower in height from the bottom surface 6a than the mirror mounting surface 81a. The mirror mounting surface 80a is at the same height as the upper surface of the multi-stage base 8a. The mirror mounting surfaces 81a, 82a are formed at a lower position than the upper surface, and there is a step between the ends of the mirror mounting surfaces 81a, 82a and the upper surface of the multi-stage base 8a.
 また、本変形例では、複数の半導体レーザ素子10~12、複数のサブマウント20~22、複数のFAST軸コリメータレンズ30~32、及び、偏向素子40aは、多段ベース8aの上面に配置されている。ミラー設置面80aにSLOW軸コリメータレンズ60と反射ミラー70とが配置されている。 In addition, in this modified example, the semiconductor laser elements 10-12, the submounts 20-22, the FAST-axis collimator lenses 30-32, and the deflection element 40a are arranged on the upper surface of the multi-stage base 8a. The SLOW-axis collimator lens 60 and the reflecting mirror 70 are arranged on the mirror mounting surface 80a.
 図6に示されるように、本変形例に係る偏向素子40aは、半導体レーザ素子11、12と、反射ミラー71、72との間に配置され、レーザ光L1B、L2Bの伝搬方向に底面6aからの高さ方向の成分を与える偏向素子である。本変形例では、偏向素子40aは、複数のFAST軸コリメータレンズ31、32と、複数の平行化素子51a、52aとの間に配置され、レーザ光L1B、L2Bを下向きに(つまり、X軸方向負向きに)偏向する。偏向素子40aは、レーザ光L1B、L2Bを同一の角度で偏向する。偏向素子40aは、半導体レーザ素子11(第一半導体レーザ素子)と、反射ミラー71(第一反射ミラー)との間に配置され、レーザ光L1B(第一レーザ光)の伝搬方向に底面6aからの高さ方向の成分を与える第一偏向素子の一例である。また、偏向素子40aは、半導体レーザ素子12(第二半導体レーザ素子)と、反射ミラー72(第二反射ミラー)との間に配置され、レーザ光L2B(第二レーザ光)の伝搬方向に底面6aからの高さ方向の成分を与える第二偏向素子の一例でもある。 6, the deflection element 40a according to this modification is disposed between the semiconductor laser elements 11, 12 and the reflecting mirrors 71, 72, and is a deflection element that gives a height component from the bottom surface 6a to the propagation direction of the laser light L1B, L2B. In this modification, the deflection element 40a is disposed between the multiple FAST axis collimator lenses 31, 32 and the multiple parallelizing elements 51a, 52a, and deflects the laser light L1B, L2B downward (i.e., in the negative direction in the X-axis direction). The deflection element 40a deflects the laser light L1B, L2B at the same angle. The deflection element 40a is disposed between the semiconductor laser element 11 (first semiconductor laser element) and the reflecting mirror 71 (first reflecting mirror), and is an example of a first deflection element that gives a height component from the bottom surface 6a to the propagation direction of the laser light L1B (first laser light). The deflection element 40a is also an example of a second deflection element that is disposed between the semiconductor laser element 12 (second semiconductor laser element) and the reflecting mirror 72 (second reflecting mirror) and provides a height component from the bottom surface 6a to the propagation direction of the laser light L2B (second laser light).
 複数の平行化素子51a、52aは、それぞれ、偏向素子40aと、反射ミラー71、72との間に配置され、レーザ光L1C、L2Cの伝搬方向をミラー設置面81a、82aと平行な方向に偏向する偏向素子である。本変形例では、複数の平行化素子51a、52aは、それぞれ、ミラー設置面81a、82aに設置される。これにより、複数の平行化素子51a、52aが設置される位置の底面6aからの高さは互いに異なる。平行化素子51a、52aの順に、設置位置の底面6aから高さが低くなる。平行化素子51a、52aの各々の対応する半導体レーザ素子からのZ軸方向における距離は、各平行化素子の設置位置の底面6aからの高さが低くなるにしたがって大きくなる。これにより、平行化素子51a、52aの各々の偏向素子40aからの距離を、各平行化素子の設置位置の底面6aからの高さに応じて異ならせることができる。 The multiple parallelizing elements 51a, 52a are disposed between the deflection element 40a and the reflecting mirrors 71, 72, respectively, and are deflection elements that deflect the propagation direction of the laser light L1C, L2C in a direction parallel to the mirror mounting surfaces 81a, 82a. In this modified example, the multiple parallelizing elements 51a, 52a are mounted on the mirror mounting surfaces 81a, 82a, respectively. As a result, the heights from the bottom surface 6a at the positions where the multiple parallelizing elements 51a, 52a are mounted are different from each other. The heights from the bottom surface 6a at the mounting positions decrease in the order of the parallelizing elements 51a, 52a. The distance in the Z-axis direction from the corresponding semiconductor laser element of each of the parallelizing elements 51a, 52a increases as the height from the bottom surface 6a of the mounting position of each parallelizing element decreases. This allows the distance of each of the parallelizing elements 51a and 52a from the deflection element 40a to be different depending on the height from the bottom surface 6a of the installation position of each parallelizing element.
 本実施の形態において、半導体レーザ素子11,12に近い方のミラー設置面81a、82aの端部と、多段ベース8aの上面との間に段差が形成されている。この段差の近傍において、多段ベース8aの上面に偏向素子40aが設置されている。当該段差から平行化素子51aまでのZ軸方向における距離は、当該段差から偏向素子40aまでのZ軸方向における距離より長い。これにより、図6に示されるように、偏向素子40aと平行化素子51aとの間で、多段ベース8aによってレーザ光が遮られることを低減できる。 In this embodiment, a step is formed between the end of the mirror mounting surface 81a, 82a closer to the semiconductor laser elements 11, 12 and the upper surface of the multi-stage base 8a. A deflection element 40a is installed on the upper surface of the multi-stage base 8a near this step. The distance in the Z-axis direction from the step to the parallelizing element 51a is longer than the distance in the Z-axis direction from the step to the deflection element 40a. This reduces the blocking of the laser light by the multi-stage base 8a between the deflection element 40a and the parallelizing element 51a, as shown in FIG. 6.
 また、SLOW軸コリメータレンズ60~62の各々から各半導体レーザ素子までのZ軸方向における距離は、各SLOW軸コリメータレンズの底面6aからの高さが低くなるにしたがって、小さくなる。これにより、各SLOW軸コリメータレンズと各半導体レーザ素子との間の光路長を揃えることができる。 In addition, the distance in the Z-axis direction from each of the SLOW-axis collimator lenses 60-62 to each semiconductor laser element becomes smaller as the height of each SLOW-axis collimator lens from the bottom surface 6a decreases. This makes it possible to align the optical path length between each SLOW-axis collimator lens and each semiconductor laser element.
 このような構成を有する半導体レーザ装置1aによっても、実施の形態1に係る半導体レーザ装置1と同様の効果が奏される。 The semiconductor laser device 1a having such a configuration also achieves the same effects as the semiconductor laser device 1 according to the first embodiment.
 [1-4.変形例2]
 本実施の形態の変形例2に係る半導体レーザ装置について説明する。本変形例に係る半導体レーザ装置は、主に、偏向素子によってレーザ光を上方にも偏向する点において、上述した変形例1に係る半導体レーザ装置1aと相違する。以下、本変形例に係る半導体レーザ装置について、変形例1に係る半導体レーザ装置1aとの相違点を中心に図7及び図8を用いて説明する。
[1-4. Modification 2]
A semiconductor laser device according to Modification 2 of the present embodiment will be described. The semiconductor laser device according to this modification is different from the semiconductor laser device 1a according to Modification 1 described above mainly in that the laser light is also deflected upward by a deflection element. The semiconductor laser device according to this modification will be described below with reference to FIGS. 7 and 8, focusing on the differences from the semiconductor laser device 1a according to Modification 1.
 図7及び図8は、本変形例に係る半導体レーザ装置1bの構成を示す平面図及び側面図である。図7に示されるように、本変形例に係る半導体レーザ装置1bは、筐体2と、複数の半導体レーザ素子10~14と、複数のサブマウント20~24と、複数のFAST軸コリメータレンズ30~34と、偏向素子40a、40bと、複数の平行化素子51a~54aと、複数のSLOW軸コリメータレンズ60~64と、複数の反射ミラー70~74と、複数のミラー設置面80a~84aと、光ファイバ4と、電流導入端子9a、9bとを備える。 FIGS. 7 and 8 are plan and side views showing the configuration of a semiconductor laser device 1b according to this modified example. As shown in FIG. 7, the semiconductor laser device 1b according to this modified example includes a housing 2, a plurality of semiconductor laser elements 10-14, a plurality of submounts 20-24, a plurality of FAST axis collimator lenses 30-34, deflection elements 40a, 40b, a plurality of parallelizing elements 51a-54a, a plurality of SLOW axis collimator lenses 60-64, a plurality of reflecting mirrors 70-74, a plurality of mirror mounting surfaces 80a-84a, an optical fiber 4, and current introduction terminals 9a, 9b.
 本変形例では、半導体レーザ装置1bは、複数のミラー設置面80a~84aを有する多段ベース8bを備える。 In this modified example, the semiconductor laser device 1b has a multi-stage base 8b with multiple mirror mounting surfaces 80a to 84a.
 複数のミラー設置面83a、84aは、複数の反射ミラー73、74がそれぞれ設置される面である。複数のミラー設置面80a~84aは、互いに底面6aからの高さが異なる。具体的には、ミラー設置面80aより、ミラー設置面83aの方が、底面6aからの高さが高く、ミラー設置面83aより、ミラー設置面84aの方が、底面6aからの高さが高い。 The multiple mirror mounting surfaces 83a, 84a are surfaces on which the multiple reflective mirrors 73, 74 are respectively mounted. The multiple mirror mounting surfaces 80a-84a differ from one another in height from the bottom surface 6a. Specifically, the mirror mounting surface 83a is higher from the bottom surface 6a than the mirror mounting surface 80a, and the mirror mounting surface 84a is higher from the bottom surface 6a than the mirror mounting surface 83a.
 また、本変形例では、複数の半導体レーザ素子10~14、複数のサブマウント20~24、複数のFAST軸コリメータレンズ30~34、及び、偏向素子40a、40bは、多段ベース8bの上面に配置されている。 In addition, in this modified example, the multiple semiconductor laser elements 10-14, the multiple submounts 20-24, the multiple FAST axis collimator lenses 30-34, and the deflection elements 40a, 40b are arranged on the upper surface of the multi-stage base 8b.
 図8に示されるように、本変形例に係る偏向素子40bは、半導体レーザ素子13、14と、反射ミラー73、74との間に配置され、レーザ光L3B、L4Bの伝搬方向に底面6aからの高さ方向の成分を与える偏向素子である。本変形例では、偏向素子40bは、複数のFAST軸コリメータレンズ33、34と、複数の平行化素子53a、54aとの間に配置され、レーザ光L3B、L4Bを上向きに(つまり、X軸方向正向きに)偏向する。偏向素子40bは、レーザ光L3B、L4Bを同一の角度で偏向する。偏向素子40bは、半導体レーザ素子13と、反射ミラー73との間に配置され、レーザ光L3Bの伝搬方向に底面6aからの高さ方向の成分を与える第一偏向素子の一例である。また、偏向素子40bは、半導体レーザ素子14と、反射ミラー74との間に配置され、レーザ光L4Bの伝搬方向に底面6aからの高さ方向の成分を与える第二偏向素子の一例でもある。ここで、半導体レーザ素子13及び半導体レーザ素子14は、それぞれ、第一半導体レーザ素子及び第二半導体レーザ素子の一例である。反射ミラー73及び74は、それぞれ、第一反射ミラー及び第二反射ミラーの一例である。レーザ光L3B及びレーザ光L4Bは、それぞれ、第一レーザ光、及び第二レーザ光の一例である。 8, the deflection element 40b in this modified example is disposed between the semiconductor laser elements 13, 14 and the reflecting mirrors 73, 74, and is a deflection element that imparts a height component from the bottom surface 6a to the propagation direction of the laser beams L3B, L4B. In this modified example, the deflection element 40b is disposed between the multiple FAST axis collimator lenses 33, 34 and the multiple parallelizing elements 53a, 54a, and deflects the laser beams L3B, L4B upward (i.e., in the positive direction in the X-axis direction). The deflection element 40b deflects the laser beams L3B, L4B at the same angle. The deflection element 40b is disposed between the semiconductor laser element 13 and the reflecting mirror 73, and is an example of a first deflection element that imparts a height component from the bottom surface 6a to the propagation direction of the laser beam L3B. In addition, the deflection element 40b is disposed between the semiconductor laser element 14 and the reflection mirror 74, and is also an example of a second deflection element that gives the propagation direction of the laser light L4B a component in the height direction from the bottom surface 6a. Here, the semiconductor laser element 13 and the semiconductor laser element 14 are examples of the first semiconductor laser element and the second semiconductor laser element, respectively. The reflection mirrors 73 and 74 are examples of the first reflection mirror and the second reflection mirror, respectively. The laser light L3B and the laser light L4B are examples of the first laser light and the second laser light, respectively.
 複数の平行化素子53a、54aは、それぞれ、偏向素子40bと、反射ミラー73、74との間に配置され、レーザ光L3C、L4Cの伝搬方向をミラー設置面83a、84aと平行な方向に偏向する偏向素子である。本変形例では、複数の平行化素子53a、54aは、それぞれ、ミラー設置面83a、84aに設置される。これにより、複数の平行化素子53a、54aが設置される位置の底面6aからの高さは互いに異なる。平行化素子53a、54aの順に、設置位置の底面6aから高さが高くなる。 The parallelizing elements 53a, 54a are disposed between the deflection element 40b and the reflecting mirrors 73, 74, respectively, and are deflection elements that deflect the propagation direction of the laser beams L3C, L4C in a direction parallel to the mirror mounting surfaces 83a, 84a. In this modified example, the parallelizing elements 53a, 54a are mounted on the mirror mounting surfaces 83a, 84a, respectively. As a result, the heights from the bottom surface 6a at the positions where the parallelizing elements 53a, 54a are mounted are different from each other. The parallelizing elements 53a, 54a are higher in height from the bottom surface 6a at the mounting positions in this order.
 このような構成を有する半導体レーザ装置1bによっても、変形例1に係る半導体レーザ装置1aと同様の効果が奏される。 The semiconductor laser device 1b having this configuration also achieves the same effects as the semiconductor laser device 1a according to the first modification.
 また、本変形例では、ミラー設置面83aの、偏向素子40bと平行化素子53aとの間に位置する端部と、平行化素子53aの設置位置との間のZ軸方向における距離は、当該端部と、偏向素子40bとの間のZ軸方向における距離より小さい。これにより、多段ベース8bによってレーザ光L3Cが遮られることを低減できる。 In addition, in this modified example, the distance in the Z-axis direction between the end of the mirror mounting surface 83a located between the deflection element 40b and the parallelization element 53a and the installation position of the parallelization element 53a is smaller than the distance in the Z-axis direction between the end and the deflection element 40b. This reduces the blocking of the laser light L3C by the multi-stage base 8b.
 (実施の形態2)
 実施の形態2に係る半導体レーザ装置について説明する。本実施の形態に係る半導体レーザ装置は、半導体レーザ素子が気密パッケージ内に配置されている点において、実施の形態1に係る半導体レーザ装置1と相違する。以下、本実施の形態に係る半導体レーザ装置について、実施の形態1に係る半導体レーザ装置1との相違点を中心に説明する。
(Embodiment 2)
A semiconductor laser device according to a second embodiment will be described. The semiconductor laser device according to this embodiment differs from the semiconductor laser device 1 according to the first embodiment in that the semiconductor laser element is disposed in an airtight package. The semiconductor laser device according to this embodiment will be described below, focusing on the differences from the semiconductor laser device 1 according to the first embodiment.
 [2-1.基本構成]
 本実施の形態に係る半導体レーザ装置の基本構成について、図9を用いて説明する。図9は、本実施の形態に係る半導体レーザ装置101の構成を示す斜視図である。図9に示されるように、半導体レーザ装置101は、筐体2と、複数の半導体レーザ素子10~12と、複数のサブマウント20~22と、複数のFAST軸コリメータレンズ30~32と、偏向素子40と、複数の平行化素子51、52と、複数のSLOW軸コリメータレンズ60~62と、複数の反射ミラー70~72と、複数のミラー設置面80~82と、光ファイバ4と、電流導入端子9a、9bとを備える。本実施の形態では、半導体レーザ装置101は、気密パッケージ107をさらに備える。また、半導体レーザ装置101は、複数のミラー設置面80~82を有する多段ベース108を備える。なお、本実施の形態では、半導体レーザ素子などの個数は、3個であるが、実施の形態1と同様に、半導体レーザ素子などの個数は、4個以上であってもよい。
[2-1. Basic configuration
The basic configuration of a semiconductor laser device according to this embodiment will be described with reference to Fig. 9. Fig. 9 is a perspective view showing the configuration of a semiconductor laser device 101 according to this embodiment. In this manner, the semiconductor laser device 101 includes a housing 2, a plurality of semiconductor laser elements 10 to 12, a plurality of submounts 20 to 22, a plurality of FAST axis collimator lenses 30 to 32, a deflection element 40, and a plurality of the parallelizing elements 51 and 52, a plurality of slow axis collimator lenses 60 to 62, a plurality of reflecting mirrors 70 to 72, a plurality of mirror installation surfaces 80 to 82, an optical fiber 4, and current input terminals 9a and 9b. In this embodiment, the semiconductor laser device 101 further includes an airtight package 107. The semiconductor laser device 101 also includes a multi-stage base 108 having a plurality of mirror mounting surfaces 80 to 82. In this embodiment, the number of semiconductor laser elements etc. is three, but similarly to the first embodiment, the number of semiconductor laser elements etc. may be four or more.
 気密パッケージ107は、複数の半導体レーザ素子10~12の少なくとも一つを気密封止するパッケージである。本実施の形態では、気密パッケージ107は、複数の半導体レーザ素子10~12を気密封止する単一のパッケージである。気密パッケージ107内には、サブマウント20~22も気密封止されている。気密パッケージ107は、複数の半導体レーザ素子10~12からの各レーザ光を、気密パッケージ107の外部に出射するための透光窓117を有する。 The airtight package 107 is a package that hermetically seals at least one of the multiple semiconductor laser elements 10-12. In this embodiment, the airtight package 107 is a single package that hermetically seals the multiple semiconductor laser elements 10-12. The submounts 20-22 are also hermetically sealed within the airtight package 107. The airtight package 107 has a light-transmitting window 117 for emitting each laser light from the multiple semiconductor laser elements 10-12 to the outside of the airtight package 107.
 以上のように、本実施の形態に係る半導体レーザ装置101は、複数の半導体レーザ素子10~12の少なくとも一つを気密封止する気密パッケージ107を備える。 As described above, the semiconductor laser device 101 according to this embodiment includes an airtight package 107 that hermetically seals at least one of the multiple semiconductor laser elements 10 to 12.
 これにより、例えば、複数の半導体レーザ素子10~12が、AlGaInN系の半導体を含み、青色光から紫外光までに対応する波長のレーザ光を出射する場合に、有機物が各半導体レーザ素子の発光点に付着することなどに起因して、各半導体レーザ素子が劣化することを抑制できる。 As a result, for example, when multiple semiconductor laser elements 10-12 include AlGaInN-based semiconductors and emit laser light with wavelengths ranging from blue light to ultraviolet light, it is possible to suppress deterioration of each semiconductor laser element due to organic matter adhering to the light-emitting point of each semiconductor laser element.
 また、本実施の形態に係る半導体レーザ装置101は、半導体レーザ素子11(第一半導体レーザ素子)と半導体レーザ素子12(第二半導体レーザ素子)とを気密封止する単一の気密パッケージ107を備える。これにより、複数の半導体レーザ素子10~12の各々を個別に気密封止する場合より、構成を簡素化することができる。また、複数の気密パッケージを用いる場合より、気密パッケージ107の筐体2への取付を容易化できる。 The semiconductor laser device 101 according to this embodiment also includes a single airtight package 107 that hermetically seals the semiconductor laser element 11 (first semiconductor laser element) and the semiconductor laser element 12 (second semiconductor laser element). This allows for a simpler configuration than when each of the multiple semiconductor laser elements 10 to 12 is individually airtight sealed. Also, the airtight package 107 can be attached to the housing 2 more easily than when multiple airtight packages are used.
 [2-2.気密パッケージの詳細構成例]
 本実施の形態に係る半導体レーザ装置101の気密パッケージ107の詳細構成例について図10を用いて説明する。図10は、本実施の形態に係る気密パッケージ107の詳細構成例を示す斜視図である。図10においては、気密パッケージ107の内部を示すために、気密パッケージ107の開口部P01を覆うリッドを取り外した状態の図が示されている。
[2-2. Detailed configuration example of airtight package]
A detailed configuration example of the hermetic package 107 of the semiconductor laser device 101 according to this embodiment will be described with reference to Fig. 10. Fig. 10 is a perspective view showing a detailed configuration example of the hermetic package 107 according to this embodiment. In Fig. 10, in order to show the inside of the hermetic package 107, a lid covering an opening P01 of the hermetic package 107 is removed.
 気密パッケージ107は、第一パッケージP21と、透光窓117と、リッド(不図示)とを有する。 The airtight package 107 has a first package P21, a light-transmitting window 117, and a lid (not shown).
 第一パッケージP21は、図10に示されるように、枠体P20と、パッケージ底部P30と、枠体P20に形成された給電部材とを有する。第一パッケージP21においては、パッケージ底部P30に枠体P20が積層され固定される。 As shown in FIG. 10, the first package P21 has a frame body P20, a package bottom P30, and a power supply member formed on the frame body P20. In the first package P21, the frame body P20 is stacked and fixed to the package bottom P30.
 パッケージ底部P30は、熱伝導率が高い無機の材料で構成された板状の部材である。パッケージ底部P30は、例えば、Cu又はCu合金などの金属などで構成されてもよく、AlN、SiC若しくはダイヤモンドなどのセラミック又は多結晶体などで構成されてもよい。 The package bottom P30 is a plate-shaped member made of an inorganic material with high thermal conductivity. The package bottom P30 may be made of a metal such as Cu or a Cu alloy, or may be made of a ceramic or polycrystalline material such as AlN, SiC, or diamond.
 枠体P20は、主にパッケージ底部P30の周辺部分のみ存在し、平面視で中央に開口を有する開口部P01が設けられている枠形状の部材である。開口部P01の平面視形状は、矩形である。枠体P20は、主材料がアルミナセラミック又はAlNセラミックなどの無機の絶縁材料で構成された部材である。パッケージ底部P30の中央部分付近の枠体P20で覆われない部分の上面が半導体レーザ素子搭載面となる。 The frame body P20 is a frame-shaped member that exists mainly around the periphery of the package bottom P30 and has an opening P01 that opens in the center when viewed from above. The opening P01 has a rectangular shape when viewed from above. The frame body P20 is a member whose main material is an inorganic insulating material such as alumina ceramic or AlN ceramic. The upper surface of the portion near the center of the package bottom P30 that is not covered by the frame body P20 becomes the semiconductor laser element mounting surface.
 枠体P20の内部及び表面には給電部材が設けられている。給電部材は、パターン化された金属配線で構成されるアノード取り出し電極P31、カソード取り出し電極P34、アノード電極P32及びカソード電極P35などで構成されている。 Power supply members are provided inside and on the surface of the frame P20. The power supply members are made up of an anode extraction electrode P31, a cathode extraction electrode P34, an anode electrode P32, and a cathode electrode P35, which are made up of patterned metal wiring.
 第一パッケージP21の一方の側面にはレーザ光取り出し用の開口部(不図示)が形成される。当該開口部を覆うように、透光窓117が枠体P20に設置される。 An opening (not shown) for extracting laser light is formed on one side of the first package P21. A light-transmitting window 117 is provided in the frame body P20 so as to cover the opening.
 アノード取り出し電極P31は、アノード電極P32と気密パッケージ107の外部に配置される電流導入端子9aとを接続する電極であり、カソード取り出し電極P34は、カソード電極P35と気密パッケージ107の外部に配置される電流導入端子9bとを接続する電極である。アノード取り出し電極P31とカソード取り出し電極P34とは、枠体P20の上面に形成される。 The anode extraction electrode P31 is an electrode that connects the anode electrode P32 to a current introduction terminal 9a that is arranged outside the airtight package 107, and the cathode extraction electrode P34 is an electrode that connects the cathode electrode P35 to a current introduction terminal 9b that is arranged outside the airtight package 107. The anode extraction electrode P31 and the cathode extraction electrode P34 are formed on the upper surface of the frame body P20.
 アノード取り出し電極P31及びカソード取り出し電極P34は、金属配線、ビア電極などにより、それぞれアノード電極P32及びカソード電極P35と電気的に接続される。 The anode extraction electrode P31 and the cathode extraction electrode P34 are electrically connected to the anode electrode P32 and the cathode electrode P35, respectively, by metal wiring, via electrodes, etc.
 以上のよう気密パッケージ107は、パッケージ底部P30と、枠体P20と、透光窓117と、リッドとによって気密空間を形成できる。 As described above, the airtight package 107 can form an airtight space by the package bottom P30, the frame body P20, the light-transmitting window 117, and the lid.
 気密パッケージ107の気密空間内に半導体レーザ素子10~12が配置される。本構成例では、半導体レーザ素子10~12は、単一のサブマウント120上に配置される。言い換えると、サブマウント120は、サブマウント20~22が一体化された部材である。 The semiconductor laser elements 10 to 12 are arranged in the airtight space of the airtight package 107. In this configuration example, the semiconductor laser elements 10 to 12 are arranged on a single submount 120. In other words, the submount 120 is a member in which the submounts 20 to 22 are integrated.
 サブマウント120の上面には、パターニングされた四つの金属膜126~129が互いに絶縁されて配置されている。四つの金属膜126~129はY軸方向に配列される。金属膜126~128上に、それぞれ、導電性の接合部材を介して半導体レーザ素子10~12が設置される。四つの金属膜126~129は、例えば、Ni、Cu、Pt及びAuなどのうち、一つ又は複数の金属膜によって構成される。本実施の形態においては、サブマウント120は、第一パッケージP21とは別の部品としているが、第一パッケージP21の一部として、一体に形成されてもよい。 Four patterned metal films 126-129 are arranged on the upper surface of the submount 120 and are insulated from one another. The four metal films 126-129 are arranged in the Y-axis direction. The semiconductor laser elements 10-12 are placed on the metal films 126-128, respectively, via conductive bonding members. The four metal films 126-129 are made of one or more metal films of, for example, Ni, Cu, Pt, and Au. In this embodiment, the submount 120 is a separate component from the first package P21, but it may be formed integrally as part of the first package P21.
 カソード電極P35は、金属膜129と金属ワイヤWによって接続される。金属膜129は、半導体レーザ素子12の上面の電極と金属ワイヤWによって接続される。金属膜128は、半導体レーザ素子11の上面の電極と金属ワイヤWによって接続される。金属膜127は、半導体レーザ素子10の上面の電極と金属ワイヤWによって接続される。金属膜126は、アノード電極P32と金属ワイヤWによって接続される。 The cathode electrode P35 is connected to the metal film 129 by a metal wire W. The metal film 129 is connected to an electrode on the top surface of the semiconductor laser element 12 by a metal wire W. The metal film 128 is connected to an electrode on the top surface of the semiconductor laser element 11 by a metal wire W. The metal film 127 is connected to an electrode on the top surface of the semiconductor laser element 10 by a metal wire W. The metal film 126 is connected to the anode electrode P32 by a metal wire W.
 これにより、複数の半導体レーザ素子10~12を直列に接続できる。なお、本構成例では、半導体レーザ素子10~12をサブマウント120にジャンクションダウン実装する例を示したが、ジャンクションアップ実装を行ってもよい。 This allows multiple semiconductor laser elements 10 to 12 to be connected in series. Note that in this configuration example, the semiconductor laser elements 10 to 12 are mounted on the submount 120 in a junction-down configuration, but they may also be mounted in a junction-up configuration.
 また、パッケージ内のレーザ光L0A~L2A(図10には不図示)の光路上には、FAST軸コリメータレンズ130が配置される。FAST軸コリメータレンズ130は、FAST軸コリメータレンズ30~32を一体化したものである。 Furthermore, a FAST axis collimator lens 130 is disposed on the optical path of the laser beams L0A to L2A (not shown in FIG. 10) inside the package. The FAST axis collimator lens 130 is an integrated combination of the FAST axis collimator lenses 30 to 32.
 以上のように、気密パッケージ107内に、半導体レーザ素子10~12などを気密封止することにより、半導体レーザ素子10~12などの劣化を抑制できる。 As described above, by hermetically sealing the semiconductor laser elements 10-12 and the like within the airtight package 107, deterioration of the semiconductor laser elements 10-12 and the like can be suppressed.
 [2-3.変形例に係る詳細構成例]
 本実施の形態の変形例に係る詳細構成例について説明する。本変形例は、主に半導体レーザ素子10~12が一体化されている点において、上記詳細構成例と相違する。以下、本変形例に係る詳細構成例の、上記詳細構成例との相違点を中心に図11を用いて説明する。図11は、本実施の形態の変形例に係る気密パッケージ107の内部構成を示す斜視図である。
[2-3. Detailed configuration example according to the modified example]
A detailed configuration example according to a modification of this embodiment will be described. This modification differs from the above detailed configuration example mainly in that the semiconductor laser elements 10 to 12 are integrated. Below, the detailed configuration example according to this modification will be described with reference to Fig. 11, focusing on the differences from the above detailed configuration example. Fig. 11 is a perspective view showing the internal configuration of an airtight package 107 according to the modification of this embodiment.
 図11に示されるように、本変形例に係る半導体レーザ素子10~12は、一体化されて、半導体レーザアレイ110を形成している。言い換えると、半導体レーザ素子10~12は、単一の素子である半導体レーザアレイ110に含まれる。半導体レーザアレイ110に形成された三つの光導波路が半導体レーザ素子10~12に対応する。本変形例では、半導体レーザアレイ110の上面のうち、少なくとも、三つの光導波路に対応する部分を一体的に覆う電極が形成されている。また、半導体レーザアレイ110の下面のうち、少なくとも、三つの光導波路に対応する部分を一体的に覆う電極が形成されている。このような半導体レーザアレイ110を用いることにより、複数の半導体レーザ素子10~12をまとめて実装できるため、製造工程を簡素化できる。また、複数の半導体レーザ素子10~12の相対位置の調整が不要となるため、製造工程をさらに簡素化できる。 As shown in FIG. 11, the semiconductor laser elements 10 to 12 according to this modification are integrated to form a semiconductor laser array 110. In other words, the semiconductor laser elements 10 to 12 are included in the semiconductor laser array 110, which is a single element. The three optical waveguides formed in the semiconductor laser array 110 correspond to the semiconductor laser elements 10 to 12. In this modification, an electrode is formed on the upper surface of the semiconductor laser array 110 to integrally cover at least the portions corresponding to the three optical waveguides. Also, an electrode is formed on the lower surface of the semiconductor laser array 110 to integrally cover at least the portions corresponding to the three optical waveguides. By using such a semiconductor laser array 110, the multiple semiconductor laser elements 10 to 12 can be mounted together, simplifying the manufacturing process. Also, since there is no need to adjust the relative positions of the multiple semiconductor laser elements 10 to 12, the manufacturing process can be further simplified.
 本変形例のサブマウント120の上面には、パターニングされた二つの金属膜126、129が互いに絶縁されて配置されている。金属膜126上に、導電性の接合部材を介して半導体レーザアレイ110が設置される。 In this modified example, two patterned metal films 126, 129 are arranged on the upper surface of the submount 120 and are insulated from each other. The semiconductor laser array 110 is placed on the metal film 126 via a conductive bonding material.
 カソード電極P35は、金属膜129と金属ワイヤWによって接続される。金属膜129は、半導体レーザアレイ110の上面の電極と金属ワイヤWによって接続される。金属膜126は、アノード電極P32と金属ワイヤWによって接続される。 The cathode electrode P35 is connected to the metal film 129 by a metal wire W. The metal film 129 is connected to the electrode on the top surface of the semiconductor laser array 110 by a metal wire W. The metal film 126 is connected to the anode electrode P32 by a metal wire W.
 これにより、並列接続された半導体レーザ素子10~12を実現できる。 This makes it possible to realize semiconductor laser elements 10 to 12 connected in parallel.
 本変形例に係る詳細構成例によっても、上記詳細構成例と同様の効果が奏される。 The detailed configuration example of this modified example also achieves the same effects as the detailed configuration example above.
 (実施の形態3)
 実施の形態3に係る半導体レーザ装置について説明する。本実施の形態に係る半導体レーザ装置は、主に、偏向素子及び平行化素子が反射面を有する点において、実施の形態1に係る半導体レーザ装置1と相違する。以下、本実施の形態に係る半導体レーザ装置について、実施の形態1に係る半導体レーザ装置1との相違点を中心に図12及び図13を用いて説明する。
(Embodiment 3)
A semiconductor laser device according to a third embodiment will be described. The semiconductor laser device according to this embodiment differs from the semiconductor laser device 1 according to the first embodiment mainly in that the deflection element and the parallelization element have a reflecting surface. The semiconductor laser device according to this embodiment will be described below with reference to Figs. 12 and 13, focusing on the differences from the semiconductor laser device 1 according to the first embodiment.
 図12及び図13は、それぞれ、本実施の形態に係る半導体レーザ装置201の構成を示す平面図、及び側面図である。 FIGS. 12 and 13 are a plan view and a side view, respectively, showing the configuration of a semiconductor laser device 201 according to this embodiment.
 図12に示されるように、半導体レーザ装置201は、筐体2と、複数の半導体レーザ素子10~12と、複数の反射ミラー70~72と、集光レンズ90と、複数のミラー設置面80~82と、サブマウント20~22と、FAST軸コリメータレンズ30~32と、偏向素子240と、平行化素子251、252と、SLOW軸コリメータレンズ60~62と、光ファイバ4と、電流導入端子9a、9bとを備える。 As shown in FIG. 12, the semiconductor laser device 201 includes a housing 2, a plurality of semiconductor laser elements 10-12, a plurality of reflecting mirrors 70-72, a focusing lens 90, a plurality of mirror mounting surfaces 80-82, submounts 20-22, FAST axis collimator lenses 30-32, a deflection element 240, parallelizing elements 251, 252, SLOW axis collimator lenses 60-62, an optical fiber 4, and current introduction terminals 9a, 9b.
 本実施の形態では、半導体レーザ素子10~12は、それぞれサブマウント20~22を介して底面6aに配置されている。 In this embodiment, the semiconductor laser elements 10 to 12 are disposed on the bottom surface 6a via submounts 20 to 22, respectively.
 また、ミラー設置面80は、底面6aである。半導体レーザ装置201は、ミラー設置面81及び82を有する多段ベース208を備える。 The mirror mounting surface 80 is the bottom surface 6a. The semiconductor laser device 201 has a multi-stage base 208 having mirror mounting surfaces 81 and 82.
 偏向素子240は、半導体レーザ素子11、12と、反射ミラー71、72との間に配置され、レーザ光L1B、L2Bの伝搬方向に底面6aからの高さ方向の成分を与える偏向素子である。本実施の形態では、偏向素子240は、反射面240aを有する光学素子である。本実施の形態では、偏向素子240は、上面が反射面240aである四角柱状の光学素子である。図13に示されるように、偏向素子240の反射面240aによって、レーザ光L1B、L2Bが反射されることで、レーザ光L1B、L2Bの伝搬方向に底面6aからの上向きの成分が与えられ、偏向素子240から、レーザ光L1C、L2Cが出射される。 The deflection element 240 is disposed between the semiconductor laser elements 11, 12 and the reflecting mirrors 71, 72, and is a deflection element that gives a height component from the bottom surface 6a to the propagation direction of the laser beams L1B, L2B. In this embodiment, the deflection element 240 is an optical element having a reflecting surface 240a. In this embodiment, the deflection element 240 is a rectangular prism-shaped optical element whose upper surface is the reflecting surface 240a. As shown in FIG. 13, the laser beams L1B, L2B are reflected by the reflecting surface 240a of the deflection element 240, so that an upward component from the bottom surface 6a is given to the propagation direction of the laser beams L1B, L2B, and the laser beams L1C, L2C are emitted from the deflection element 240.
 複数の平行化素子251、252は、それぞれ、偏向素子240と、反射ミラー71、72との間に配置され、レーザ光L1C、L2Cの伝搬方向をミラー設置面81、82と平行な方向に偏向する偏向素子である。複数の平行化素子251、252は、それぞれ、反射面251a、252aを有するプリズムである。複数の平行化素子251、252の各々の入射面及び出射面には、反射防止膜が設けられており、反射が低減されている。複数の平行化素子251、252の入射面から入射したレーザ光L1C、L2Cは、それぞれ、反射面251a、252aにおいて反射され、出射面からレーザ光L1D、L2Dとして出射される。なお、本実施の形態では、レーザ光L1C、L2Cは、それぞれ、平行化素子251、252の入射面に垂直に入射し、レーザ光L1C、L2Cは、それぞれ、平行化素子251、252の出射面から垂直に出射する。 The multiple parallelizing elements 251, 252 are disposed between the deflection element 240 and the reflecting mirrors 71, 72, and are deflection elements that deflect the propagation direction of the laser beams L1C, L2C in a direction parallel to the mirror mounting surfaces 81, 82. The multiple parallelizing elements 251, 252 are prisms having reflecting surfaces 251a, 252a, respectively. An anti-reflection film is provided on the entrance surface and exit surface of each of the multiple parallelizing elements 251, 252 to reduce reflection. The laser beams L1C, L2C incident on the entrance surfaces of the multiple parallelizing elements 251, 252 are reflected by the reflecting surfaces 251a, 252a, respectively, and are emitted from the exit surface as laser beams L1D, L2D. In this embodiment, the laser beams L1C and L2C are incident perpendicularly to the incident surfaces of the parallelizing elements 251 and 252, respectively, and the laser beams L1C and L2C are emitted perpendicularly from the exit surfaces of the parallelizing elements 251 and 252, respectively.
 以上のように、偏向素子240、及び平行化素子251、252として、反射型偏向素子を用いてよい。本実施の形態に係る半導体レーザ装置201においても、実施の形態1に係る半導体レーザ装置1と同様の効果が奏される。 As described above, reflective deflection elements may be used as the deflection element 240 and the parallelization elements 251 and 252. The semiconductor laser device 201 according to this embodiment also achieves the same effects as the semiconductor laser device 1 according to the first embodiment.
 (実施の形態4)
 実施の形態4に係る半導体レーザ装置について説明する。本実施の形態に係る半導体レーザ装置は、主に、半導体レーザ素子から出射されるレーザ光が、高さ方向の成分を有する点において、実施の形態1に係る半導体レーザ装置1と相違する。以下、本実施の形態に係る半導体レーザ装置について、実施の形態1に係る半導体レーザ装置1との相違点を中心に説明する。
(Embodiment 4)
A semiconductor laser device according to a fourth embodiment will be described. The semiconductor laser device according to this embodiment differs from the semiconductor laser device 1 according to the first embodiment mainly in that the laser light emitted from the semiconductor laser element has a component in the height direction. The semiconductor laser device according to this embodiment will be described below, focusing on the differences from the semiconductor laser device 1 according to the first embodiment.
 [4-1.構成]
 本実施の形態に係る半導体レーザ装置の構成について、図14及び図15を用いて説明する。
[4-1. Configuration]
The configuration of a semiconductor laser device according to this embodiment will be described with reference to FIGS.
 図14及び図15は、それぞれ、本実施の形態に係る半導体レーザ装置301の構成を示す斜視図、及び側面図である。 FIGS. 14 and 15 are a perspective view and a side view, respectively, showing the configuration of a semiconductor laser device 301 according to this embodiment.
 図14に示されるように、半導体レーザ装置301は、筐体2と、複数の半導体レーザ素子10~12と、複数の反射ミラー70~72と、集光レンズ90と、複数のミラー設置面80~82と、サブマウント20~22と、FAST軸コリメータレンズ30~32と、平行化素子50~52と、SLOW軸コリメータレンズ60~62と、光ファイバ4とを備える。なお、図14、図15においては、電流導入端子などの図示が省略されている。以下の図においても電流導入端子などの図示が省略される場合がある。 As shown in FIG. 14, the semiconductor laser device 301 includes a housing 2, a plurality of semiconductor laser elements 10-12, a plurality of reflecting mirrors 70-72, a focusing lens 90, a plurality of mirror mounting surfaces 80-82, submounts 20-22, FAST axis collimator lenses 30-32, parallelizing elements 50-52, SLOW axis collimator lenses 60-62, and an optical fiber 4. Note that current introduction terminals and the like are omitted from the illustrations in FIGS. 14 and 15. Current introduction terminals and the like may also be omitted from the following drawings.
 本実施の形態に係る複数の半導体レーザ素子10~12は、底面6aに対して、5度以上20度以下傾斜したレーザ設置面307aに設置されている。これにより、図15に示されるように、複数の半導体レーザ素子10~12から出射されるレーザ光L0A~L2Aの伝搬方向は、5度以上20度以下傾斜し、底面6aからの高さ方向の成分を有する。したがって、本実施の形態では、レーザ光L0A~L2AのFAST軸方向は、X軸方向と平行ではない。複数の半導体レーザ素子10~12から出射されるレーザ光L0A~L2Aの伝搬方向は、上向き(X軸方向正向き)の成分を有する。したがって、本実施の形態では、実施の形態1などで用いられた偏向素子40などが不要となる。これにより、半導体レーザ装置301の構成を簡素化できる。 The semiconductor laser elements 10-12 according to this embodiment are mounted on a laser mounting surface 307a that is inclined at an angle of 5 degrees to 20 degrees with respect to the bottom surface 6a. As a result, as shown in FIG. 15, the propagation direction of the laser beams L0A-L2A emitted from the semiconductor laser elements 10-12 is inclined at an angle of 5 degrees to 20 degrees and has a height component from the bottom surface 6a. Therefore, in this embodiment, the FAST axis direction of the laser beams L0A-L2A is not parallel to the X-axis direction. The propagation direction of the laser beams L0A-L2A emitted from the semiconductor laser elements 10-12 has an upward (positive X-axis) component. Therefore, in this embodiment, the deflection element 40 used in the first embodiment and the like is not required. This allows the configuration of the semiconductor laser device 301 to be simplified.
 また、本実施の形態においても、実施の形態1と同様に、複数の半導体レーザ素子10~12は、同一平面上に配置される。 Also in this embodiment, as in embodiment 1, the multiple semiconductor laser elements 10 to 12 are arranged on the same plane.
 本実施の形態では、半導体レーザ装置301は、ミラー設置面80~82と、レーザ設置面307aとを有する多段ベース308を備える。 In this embodiment, the semiconductor laser device 301 has a multi-stage base 308 having mirror mounting surfaces 80 to 82 and a laser mounting surface 307a.
 本実施の形態に係る半導体レーザ装置301も、実施の形態1に係る半導体レーザ装置1と同様に、第一半導体レーザ素子(半導体レーザ素子11)と、第一反射ミラー(反射ミラー71)との間に配置され、第一レーザ光(レーザ光L1B)の伝搬方向を第一ミラー設置面(ミラー設置面81)と平行な方向に偏向する第一平行化素子(平行化素子51)と、第二半導体レーザ素子(半導体レーザ素子12)と、第二反射ミラー(反射ミラー72)との間に配置され、第二レーザ光(レーザ光L2B)の伝搬方向を第二ミラー設置面(ミラー設置面82)と平行な方向に、5度以上20度以下偏向する第二平行化素子(平行化素子52)とを備える。 Similar to the semiconductor laser device 1 according to the first embodiment, the semiconductor laser device 301 according to the present embodiment also includes a first parallelizing element (parallelizing element 51) that is disposed between the first semiconductor laser element (semiconductor laser element 11) and the first reflecting mirror (reflecting mirror 71) and deflects the propagation direction of the first laser light (laser light L1B) in a direction parallel to the first mirror mounting surface (mirror mounting surface 81), and a second parallelizing element (parallelizing element 52) that is disposed between the second semiconductor laser element (semiconductor laser element 12) and the second reflecting mirror (reflecting mirror 72) and deflects the propagation direction of the second laser light (laser light L2B) by 5 degrees or more and 20 degrees or less in a direction parallel to the second mirror mounting surface (mirror mounting surface 82).
 また、本実施の形態に係る半導体レーザ装置301において、第一半導体レーザ素子と第一平行化素子との間における第一レーザ光と、第二半導体レーザ素子と第二平行化素子との間における第二レーザ光とは、平行であり、第二半導体レーザ素子と第二平行化素子との間の距離は、第一半導体レーザ素子と第一平行化素子との間の距離より長い。平行化素子50~52の各々の、対応する半導体レーザ素子からのZ軸方向における距離は、各平行化素子の底面6aからの高さが高くなるにしたがって、大きくなる。これにより、平行化素子50~52の各々の各半導体レーザ素子からの距離を、各平行化素子の設置位置の高さに応じて異ならせることができる。平行化素子50~52は、それぞれ、ミラー設置面80~82の、半導体レーザ素子10~12に近い方の端部近傍に設置されている。なお、平行化素子50~52は、レーザ設置面307a上の、各ミラー設置面の端部付近の領域に設置されてもよい。 In the semiconductor laser device 301 according to this embodiment, the first laser light between the first semiconductor laser element and the first collimating element and the second laser light between the second semiconductor laser element and the second collimating element are parallel, and the distance between the second semiconductor laser element and the second collimating element is longer than the distance between the first semiconductor laser element and the first collimating element. The distance in the Z-axis direction from the corresponding semiconductor laser element of each of the collimating elements 50 to 52 increases as the height of each collimating element from the bottom surface 6a increases. This allows the distance from each of the collimating elements 50 to 52 to each semiconductor laser element to be different depending on the height of the installation position of each collimating element. The collimating elements 50 to 52 are installed near the ends of the mirror installation surfaces 80 to 82 that are closer to the semiconductor laser elements 10 to 12, respectively. The collimating elements 50 to 52 may be installed in areas on the laser installation surface 307a near the ends of each mirror installation surface.
 各半導体レーザ素子から各ミラー設置面までの距離は、各ミラー設置面の底面6aからの高さが高くなるにしたがって、大きくなる。また、各ミラー設置面の底面6aからの高さが高くなるにしたがって、各ミラー設置面の、各レーザ光(L0D~L2D、L0E~L2E)の伝搬方向(Z軸方向)における各ミラー設置面の長さが短くなる。各ミラー設置面の端部は、レーザ設置面307aに直接接続されている。これにより、各レーザ光を、レーザ設置面307a及び各ミラー設置面に沿って伝搬させることができる。したがって、多段ベース308によって各レーザ光が遮られることを低減できる。また、各光学素子を、レーザ設置面307a又は各ミラー設置面に配置することで、各レーザ光を制御できる。レーザ設置面307aは、底面6aに対して傾斜しており、各ミラー設置面の端部から遠ざかるにしたがって、底面6aからの高さが低くなる。 The distance from each semiconductor laser element to each mirror mounting surface increases as the height of each mirror mounting surface from the bottom surface 6a increases. Also, as the height of each mirror mounting surface from the bottom surface 6a increases, the length of each mirror mounting surface in the propagation direction (Z-axis direction) of each laser light (L0D to L2D, L0E to L2E) of each mirror mounting surface decreases. The end of each mirror mounting surface is directly connected to the laser mounting surface 307a. This allows each laser light to propagate along the laser mounting surface 307a and each mirror mounting surface. Therefore, it is possible to reduce the blocking of each laser light by the multi-stage base 308. Also, by arranging each optical element on the laser mounting surface 307a or each mirror mounting surface, it is possible to control each laser light. The laser mounting surface 307a is inclined with respect to the bottom surface 6a, and the height from the bottom surface 6a decreases as it moves away from the end of each mirror mounting surface.
 レーザ光L0B~L2Bは、半導体レーザ素子10~12と平行化素子50~52との間で、レーザ設置面307aと平行に伝搬する。また、半導体レーザ素子10~12と平行化素子50~52との間でレーザ光L0B~L2Bの各々は、互いに平行に伝搬する。 The laser beams L0B to L2B propagate parallel to the laser mounting surface 307a between the semiconductor laser elements 10 to 12 and the collimating elements 50 to 52. The laser beams L0B to L2B also propagate parallel to each other between the semiconductor laser elements 10 to 12 and the collimating elements 50 to 52.
 本実施の形態に係る半導体レーザ装置301においては、上述したように、各半導体レーザ素子から出射される各レーザ光の伝搬方向は、底面6aからの高さ方向の成分を有する点において、実施の形態1に係る半導体レーザ装置1と相違する。しかしながら、本実施の形態に係る半導体レーザ装置301においても、実施の形態1に係る半導体レーザ装置1と同様に、図15に示されるように、半導体レーザ素子11の発光点11eから反射ミラー71に入射するレーザ光L1Eの第一光軸A1までの第一方向における第一距離D1と、半導体レーザ素子11の発光点11eから、反射ミラー72に入射するレーザ光L2Eの第二光軸A2までの第一方向における第二距離D2とは、互いに異なる。また、半導体レーザ素子12の発光点12eから、反射ミラー72に入射するレーザ光L2Eの第二光軸A2までの第一方向における第三距離D3は、第一距離D1より大きい。 As described above, the semiconductor laser device 301 according to this embodiment differs from the semiconductor laser device 1 according to the first embodiment in that the propagation direction of each laser light emitted from each semiconductor laser element has a component in the height direction from the bottom surface 6a. However, in the semiconductor laser device 301 according to this embodiment, as in the semiconductor laser device 1 according to the first embodiment, as shown in FIG. 15, the first distance D1 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the first optical axis A1 of the laser light L1E incident on the reflecting mirror 71 and the second distance D2 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the second optical axis A2 of the laser light L2E incident on the reflecting mirror 72 are different from each other. In addition, the third distance D3 in the first direction from the light emitting point 12e of the semiconductor laser element 12 to the second optical axis A2 of the laser light L2E incident on the reflecting mirror 72 is greater than the first distance D1.
 これにより、本実施の形態に係る半導体レーザ装置301においても、実施の形態1に係る半導体レーザ装置1と同様の効果が奏される。 As a result, the semiconductor laser device 301 according to this embodiment also achieves the same effects as the semiconductor laser device 1 according to the first embodiment.
 [4-2.変形例1]
 本実施の形態の変形例1に係る半導体レーザ装置について説明する。本変形例に係る半導体レーザ装置は、主に、複数の半導体レーザ素子10~12から出射されるレーザ光L0A~L2Aの伝搬方向が下向きの成分を有する点において、実施の形態4に係る半導体レーザ装置301と相違する。以下、本変形例に係る半導体レーザ装置について、実施の形態4に係る半導体レーザ装置301との相違点を中心に、図16及び図17を用いて説明する。
[4-2. Modification 1]
A semiconductor laser device according to Modification 1 of the present embodiment will be described. The semiconductor laser device according to this modification is different from the semiconductor laser device 301 according to the fourth embodiment mainly in that the propagation direction of the laser beams L0A-L2A emitted from the multiple semiconductor laser elements 10-12 has a downward component. The semiconductor laser device according to this modification will be described below with reference to FIGS. 16 and 17, focusing on the differences from the semiconductor laser device 301 according to the fourth embodiment.
 図16及び図17は、それぞれ、本変形例に係る半導体レーザ装置301aの構成を示す斜視図、及び側面図である。 FIGS. 16 and 17 are a perspective view and a side view, respectively, showing the configuration of a semiconductor laser device 301a according to this modified example.
 図16に示されるように、半導体レーザ装置301aは、筐体2と、複数の半導体レーザ素子10~12と、複数の反射ミラー70~72と、集光レンズ90と、複数のミラー設置面80a~82aと、サブマウント20~22と、FAST軸コリメータレンズ30~32と、平行化素子50~52と、SLOW軸コリメータレンズ60~62と、光ファイバ4とを備える。 As shown in FIG. 16, the semiconductor laser device 301a includes a housing 2, a plurality of semiconductor laser elements 10-12, a plurality of reflecting mirrors 70-72, a focusing lens 90, a plurality of mirror mounting surfaces 80a-82a, submounts 20-22, FAST-axis collimator lenses 30-32, parallelizing elements 50-52, SLOW-axis collimator lenses 60-62, and an optical fiber 4.
 本変形例では、半導体レーザ装置301aは、ミラー設置面80a~82aと、レーザ設置面307aとを有する多段ベース308aを備える。複数のミラー設置面80a~82aは、互いに底面6aからの高さが異なる。具体的には、ミラー設置面80aより、ミラー設置面81aの方が、底面6aからの高さが低く、ミラー設置面81aより、ミラー設置面82aの方が、底面6aからの高さが低い。 In this modified example, the semiconductor laser device 301a includes a multi-stage base 308a having mirror mounting surfaces 80a-82a and a laser mounting surface 307a. The multiple mirror mounting surfaces 80a-82a have different heights from the bottom surface 6a. Specifically, the mirror mounting surface 81a is lower in height from the bottom surface 6a than the mirror mounting surface 80a, and the mirror mounting surface 82a is lower in height from the bottom surface 6a than the mirror mounting surface 81a.
 本変形例に係る複数の半導体レーザ素子10~12は、底面6aに対して傾斜したレーザ設置面307aに設置されている。これにより、図17に示されるように、複数の半導体レーザ素子10~12から出射されるレーザ光L0A~L2Aの伝搬方向は、底面6aからの高さ方向の成分を有する。複数の半導体レーザ素子10~12から出射されるレーザ光L0A~L2Aの伝搬方向は、下向きの成分を有する。したがって、本変形例では、実施の形態1などで用いられた偏向素子40などが不要となる。これにより、半導体レーザ装置301aの構成を簡素化できる。 The multiple semiconductor laser elements 10-12 in this modified example are mounted on a laser mounting surface 307a that is inclined with respect to the bottom surface 6a. As a result, as shown in FIG. 17, the propagation direction of the laser beams L0A-L2A emitted from the multiple semiconductor laser elements 10-12 has a component in the height direction from the bottom surface 6a. The propagation direction of the laser beams L0A-L2A emitted from the multiple semiconductor laser elements 10-12 has a downward component. Therefore, in this modified example, the deflection element 40 used in the first embodiment and the like is not required. This allows the configuration of the semiconductor laser device 301a to be simplified.
 また、本変形例においても、実施の形態4と同様に、複数の半導体レーザ素子10~12は、同一平面上に配置される。 In this modified example, similar to the fourth embodiment, the multiple semiconductor laser elements 10 to 12 are arranged on the same plane.
 平行化素子50~52の各々から各半導体レーザ素子までのZ軸方向における距離は、各平行化素子の設置位置の底面6aからの高さが低くなるにしたがって、大きくなる。これにより、各半導体レーザ素子から各平行化素子までの距離を、各平行化素子の設置位置の高さに応じて異ならせることができる。平行化素子50~52は、それぞれ、ミラー設置面80~82の、半導体レーザ素子10~12に近い方の端部近傍に設置されている。なお、平行化素子50~52は、レーザ設置面307a上の、各ミラー設置面の端部付近の領域に設置されてもよい。 The distance in the Z-axis direction from each of the parallelizing elements 50-52 to each semiconductor laser element increases as the height from the bottom surface 6a of the installation position of each parallelizing element decreases. This makes it possible to vary the distance from each semiconductor laser element to each parallelizing element depending on the height of the installation position of each parallelizing element. The parallelizing elements 50-52 are installed near the ends of the mirror installation surfaces 80-82 that are closer to the semiconductor laser elements 10-12. The parallelizing elements 50-52 may also be installed in areas on the laser installation surface 307a near the ends of each mirror installation surface.
 各半導体レーザ素子から各ミラー設置面までの距離は、各ミラー設置面の底面6aからの高さが低くなるにしたがって、大きくなる。また、各ミラー設置面の底面6aからの高さが低くなるにしたがって、各ミラー設置面の、各レーザ光(L0D~L2D、L0E~L2E)の伝搬方向(Z軸方向)における長さが短くなる。言い換えると、ミラー設置面80a~82aのうち底面6aからの高さの低いミラー設置面ほど、レーザ光の伝搬方向(Z軸方向)における長さが短い。各ミラー設置面の端部は、レーザ設置面307aに直接接続されている。これにより、各レーザ光を、レーザ設置面307a及び各ミラー設置面に沿って伝搬させることができる。したがって、多段ベース308aによって各レーザ光が遮られることを低減できる。また、各光学素子を、レーザ設置面307a又は各ミラー設置面に配置することで、各レーザ光を制御できる。レーザ設置面307aは、底面6aに対して傾斜しており、各ミラー設置面の端部から離れるにしたがって、底面6aからの高さが高くなる。 The distance from each semiconductor laser element to each mirror mounting surface increases as the height of each mirror mounting surface from the bottom surface 6a decreases. Also, as the height of each mirror mounting surface from the bottom surface 6a decreases, the length of each mirror mounting surface in the propagation direction (Z-axis direction) of each laser light (L0D-L2D, L0E-L2E) decreases. In other words, the lower the height of the mirror mounting surface from the bottom surface 6a among the mirror mounting surfaces 80a-82a, the shorter the length in the propagation direction (Z-axis direction) of the laser light. The end of each mirror mounting surface is directly connected to the laser mounting surface 307a. This allows each laser light to propagate along the laser mounting surface 307a and each mirror mounting surface. Therefore, it is possible to reduce the blocking of each laser light by the multi-stage base 308a. Also, by arranging each optical element on the laser mounting surface 307a or each mirror mounting surface, it is possible to control each laser light. The laser mounting surface 307a is inclined relative to the bottom surface 6a, and the height from the bottom surface 6a increases as it moves away from the end of each mirror mounting surface.
 レーザ光L0B~L2Bは、半導体レーザ素子10~12と平行化素子50~52との間で、レーザ設置面307aと平行に伝搬する。また、半導体レーザ素子10~12と平行化素子50~52との間でレーザ光L0B~L2Bの各々は、互いに平行に伝搬する。 The laser beams L0B to L2B propagate parallel to the laser mounting surface 307a between the semiconductor laser elements 10 to 12 and the collimating elements 50 to 52. The laser beams L0B to L2B also propagate parallel to each other between the semiconductor laser elements 10 to 12 and the collimating elements 50 to 52.
 本変形例に係る半導体レーザ装置301aにおいても、実施の形態4に係る半導体レーザ装置301と同様の効果が奏される。 The semiconductor laser device 301a according to this modified example also achieves the same effects as the semiconductor laser device 301 according to the fourth embodiment.
 [4-3.変形例2]
 本実施の形態の変形例2に係る半導体レーザ装置について説明する。本変形例に係る半導体レーザ装置は、主に、複数の半導体レーザ素子10~12が設置されるレーザ設置面が、底面6aと平行で、ミラー設置面が底面6aに対して傾斜している点において、変形例1に係る半導体レーザ装置301aと相違する。以下、本変形例に係る半導体レーザ装置について、変形例1に係る半導体レーザ装置301aとの相違点を中心に、図18を用いて説明する。
[4-3. Modification 2]
A semiconductor laser device according to Modification 2 of the present embodiment will be described. The semiconductor laser device according to this modification is different from the semiconductor laser device 301a according to Modification 1 mainly in that the laser mounting surface on which the multiple semiconductor laser elements 10 to 12 are mounted is parallel to the bottom surface 6a, and the mirror mounting surface is inclined with respect to the bottom surface 6a. The semiconductor laser device according to this modification will be described below with reference to FIG. 18, focusing on the differences from the semiconductor laser device 301a according to Modification 1.
 図18は、本変形例に係る半導体レーザ装置301bの構成を示す側面図である。 FIG. 18 is a side view showing the configuration of a semiconductor laser device 301b according to this modified example.
 図18に示されるように、半導体レーザ装置301bは、複数の半導体レーザ素子10~12(半導体レーザ素子10、11は、図示せず)と、複数の反射ミラー70~72と、複数のミラー設置面80a~82aと、サブマウント20~22(サブマウント20、21は、図示せず)と、FAST軸コリメータレンズ30~32(FAST軸コリメータレンズ30、31は、図示せず)と、平行化素子50~52と、SLOW軸コリメータレンズ60~62とを備える。 As shown in FIG. 18, the semiconductor laser device 301b includes a plurality of semiconductor laser elements 10-12 ( semiconductor laser elements 10 and 11 are not shown), a plurality of reflecting mirrors 70-72, a plurality of mirror mounting surfaces 80a-82a, submounts 20-22 ( submounts 20 and 21 are not shown), FAST axis collimator lenses 30-32 (FAST axis collimator lenses 30 and 31 are not shown), parallelizing elements 50-52, and SLOW axis collimator lenses 60-62.
 半導体レーザ装置301bは、レーザ設置面307bを有するレーザベース307と、複数のミラー設置面80a~82aを有する多段ベース308bとを備える。なお、レーザベース307と、多段ベース308bとは、別体であってもよいし、一体化されていてもよい。 The semiconductor laser device 301b includes a laser base 307 having a laser mounting surface 307b, and a multi-stage base 308b having a plurality of mirror mounting surfaces 80a to 82a. The laser base 307 and the multi-stage base 308b may be separate bodies or may be integrated together.
 半導体レーザ装置301bは、多段ベース308b及びレーザベース307の構成において、変形例1に係る半導体レーザ装置301aと相違する。 The semiconductor laser device 301b differs from the semiconductor laser device 301a of the first modification in the configuration of the multi-stage base 308b and the laser base 307.
 本変形例に係る半導体レーザ装置301bは、多段ベース308bの下面308ba(又は、底面6a)と平行なレーザ設置面307bを有するレーザベース307を備える。半導体レーザ素子10~12は、レーザ設置面307bに設置されるため、半導体レーザ素子10~12から出射されるレーザ光L0A~L2Aの伝搬方向は、底面6aからの高さ方向の成分を有さない。 The semiconductor laser device 301b according to this modified example includes a laser base 307 having a laser mounting surface 307b parallel to the lower surface 308ba (or bottom surface 6a) of the multi-stage base 308b. Since the semiconductor laser elements 10 to 12 are mounted on the laser mounting surface 307b, the propagation direction of the laser beams L0A to L2A emitted from the semiconductor laser elements 10 to 12 does not include a component in the height direction from the bottom surface 6a.
 一方、反射ミラー70~72が設置されるミラー設置面80~82は、多段ベース308bの下面308ba(又は、底面6a)に対して、5度以上20度以下傾斜している。また、複数のミラー設置面80~82の各々は互いに平行である。複数のミラー設置面80~82の各半導体レーザ素子に近い側の端部の底面6aからの高さは同一である。当該端部の高さは、レーザ設置面307bの高さと同一であってもよい。 On the other hand, the mirror mounting surfaces 80-82 on which the reflective mirrors 70-72 are mounted are inclined at an angle of 5 degrees to 20 degrees with respect to the lower surface 308ba (or bottom surface 6a) of the multi-stage base 308b. The multiple mirror mounting surfaces 80-82 are parallel to each other. The heights of the ends of the multiple mirror mounting surfaces 80-82 that are closer to each semiconductor laser element from the bottom surface 6a are the same. The height of the ends may be the same as the height of the laser mounting surface 307b.
 多段ベース308bの、複数のミラー設置面80~82と複数の半導体レーザ素子10~12との間の領域の底面6aからの高さは、半導体レーザ素子10~12の各発光点の底面6aの高さより低い。これにより、多段ベース308bによって各レーザ光が遮られることを低減できる。本変形例では、多段ベース308bの各半導体レーザ素子に近い端部の位置は、複数のミラー設置面80~82の端部に一致する。言い換えると、各ミラー設置面と、レーザベース307との間に位置する多段ベース8の構成要素は存在しない。これにより、多段ベース308bによって各レーザ光が遮られることを低減でき、かつ、多段ベース308bを軽量化することができる。 The height of the multistage base 308b from the bottom surface 6a of the area between the multiple mirror mounting surfaces 80-82 and the multiple semiconductor laser elements 10-12 is lower than the height of the bottom surface 6a of each light emitting point of the semiconductor laser elements 10-12. This reduces the blocking of each laser light by the multistage base 308b. In this modified example, the position of the end of the multistage base 308b close to each semiconductor laser element coincides with the end of the multiple mirror mounting surfaces 80-82. In other words, there is no component of the multistage base 8 located between each mirror mounting surface and the laser base 307. This reduces the blocking of each laser light by the multistage base 308b, and makes the multistage base 308b lighter.
 本変形例では、平行化素子50~52が、それぞれ、レーザ光L0B~L2Bの伝搬方向に高さ方向の成分(本変形例では上向きの成分)を与えることで、平行化素子50~52から出射されるレーザ光L0D~L2Dの伝搬方向が、それぞれミラー設置面80~82と平行となる。平行化素子50~52の各々から各半導体レーザ素子までのZ軸方向における距離は、各平行化素子に対応する反射ミラーの設置位置の底面6aからの高さが低くなるにしたがって、大きくなる。これにより、各半導体レーザ素子から各平行化素子までの距離を、各平行化素子に対応する反射ミラーの設置位置に応じて異ならせることができる。平行化素子50~52は、それぞれ、ミラー設置面80~82の、半導体レーザ素子10~12に近い方の端部近傍に設置されている。 In this modification, the parallelizing elements 50-52 impart a height component (an upward component in this modification) to the propagation direction of the laser beams L0B-L2B, respectively, so that the propagation direction of the laser beams L0D-L2D emitted from the parallelizing elements 50-52 becomes parallel to the mirror installation surfaces 80-82, respectively. The distance in the Z-axis direction from each of the parallelizing elements 50-52 to each semiconductor laser element increases as the height from the bottom surface 6a of the installation position of the reflecting mirror corresponding to each parallelizing element decreases. This makes it possible to make the distance from each semiconductor laser element to each parallelizing element different depending on the installation position of the reflecting mirror corresponding to each parallelizing element. The parallelizing elements 50-52 are installed near the ends of the mirror installation surfaces 80-82, respectively, that are closer to the semiconductor laser elements 10-12.
 各半導体レーザ素子に近い方の各ミラー設置面の端部から各半導体レーザ素子までの距離は、各ミラー設置面に設置される各反射ミラーの設置位置の底面6aからの高さが低くなるにしたがって、大きくなる。また、各ミラー設置面に設置される各反射ミラーの設置位置の底面6aからの高さが低くなるにしたがって、各ミラー設置面に沿って伝搬するレーザ光の光路長が短い。 The distance from the end of each mirror mounting surface closest to each semiconductor laser element increases as the height from the bottom surface 6a of the installation position of each reflecting mirror installed on each mirror mounting surface decreases. Also, the optical path length of the laser light propagating along each mirror mounting surface decreases as the height from the bottom surface 6a of the installation position of each reflecting mirror installed on each mirror mounting surface decreases.
 各ミラー設置面は、レーザ設置面307aと近い側の端部において、レーザ設置面307aに直接接続されていてもよい。また、この場合、多段ベース308bは、レーザベース307と一体化されていてもよい。 Each mirror mounting surface may be directly connected to the laser mounting surface 307a at the end closest to the laser mounting surface 307a. In this case, the multi-stage base 308b may be integrated with the laser base 307.
 レーザ光L0B~L2Bは、半導体レーザ素子10~12と平行化素子50~52との間で、レーザ設置面307aと平行に伝搬する。レーザ光L0B~L2Bは、Z軸方向正向きに、底面6aと平行に伝搬する。また、この間でレーザ光L0B~L2Bの各々は、互いに平行に伝搬する。 The laser beams L0B to L2B propagate parallel to the laser mounting surface 307a between the semiconductor laser elements 10 to 12 and the collimating elements 50 to 52. The laser beams L0B to L2B propagate in the positive direction of the Z axis, parallel to the bottom surface 6a. In addition, the laser beams L0B to L2B propagate parallel to each other between these points.
 本変形例においても、実施の形態1などと同様に、図18に示されるように、半導体レーザ素子11の発光点11eから、反射ミラー71に入射するレーザ光L1Eの光軸(第一光軸A1)までの第一方向における第一距離D1と、半導体レーザ素子11の発光点11eから、反射ミラー72に入射するレーザ光L2Eの光軸(第二光軸A2)までの第一方向における第二距離D2とは、互いに異なる。半導体レーザ素子12の発光点12eから、第二光軸A2までの第一方向における第三距離D3は、第一距離D1より大きい。言い換えると、半導体レーザ素子12の発光点12eの底面6aからの高さと、ミラー設置面82の底面6aからの平均高さとの差は、半導体レーザ素子11の発光点11eの底面6aからの高さと、ミラー設置面81の底面6aからの平均高さとの差より大きい。 In this modified example, as in the first embodiment, as shown in FIG. 18, the first distance D1 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the optical axis (first optical axis A1) of the laser light L1E incident on the reflecting mirror 71 and the second distance D2 in the first direction from the light emitting point 11e of the semiconductor laser element 11 to the optical axis (second optical axis A2) of the laser light L2E incident on the reflecting mirror 72 are different from each other. The third distance D3 in the first direction from the light emitting point 12e of the semiconductor laser element 12 to the second optical axis A2 is greater than the first distance D1. In other words, the difference between the height of the light emitting point 12e of the semiconductor laser element 12 from the bottom surface 6a and the average height of the mirror installation surface 82 from the bottom surface 6a is greater than the difference between the height of the light emitting point 11e of the semiconductor laser element 11 from the bottom surface 6a and the average height of the mirror installation surface 81 from the bottom surface 6a.
 したがって、本変形例に係る半導体レーザ装置301bにおいても、実施の形態1と同様の効果が奏される。 Therefore, the semiconductor laser device 301b according to this modified example also achieves the same effects as those of the first embodiment.
 また、本変形例に係る半導体レーザ装置301bにおいても、変形例1に係る半導体レーザ装置301aと同様の効果が奏される。 Furthermore, the semiconductor laser device 301b according to this modification also achieves the same effects as the semiconductor laser device 301a according to modification 1.
 (実施の形態5)
 実施の形態5に係る半導体レーザ装置について説明する。本実施の形態に係る半導体レーザ装置は、主に、半導体レーザ素子から出射されるレーザ光が、底面6aに対して垂直である点において、実施の形態4に係る半導体レーザ装置301と相違する。以下、本実施の形態に係る半導体レーザ装置について、実施の形態4に係る半導体レーザ装置301との相違点を中心に説明する。
(Embodiment 5)
A semiconductor laser device according to embodiment 5 will be described. The semiconductor laser device according to this embodiment differs from the semiconductor laser device 301 according to embodiment 4 mainly in that the laser light emitted from the semiconductor laser element is perpendicular to the bottom surface 6a. The semiconductor laser device according to this embodiment will be described below, focusing on the differences from the semiconductor laser device 301 according to embodiment 4.
 [5-1.構成]
 本実施の形態に係る半導体レーザ装置の構成について、図19及び図20を用いて説明する。
[5-1. Configuration]
The configuration of a semiconductor laser device according to this embodiment will be described with reference to FIGS.
 図19及び図20は、それぞれ、本実施の形態に係る半導体レーザ装置401の構成を示す斜視図、及び側面図である。 FIGS. 19 and 20 are a perspective view and a side view, respectively, showing the configuration of a semiconductor laser device 401 according to this embodiment.
 図19に示されるように、半導体レーザ装置401は、筐体2と、複数の半導体レーザ素子10~12と、複数の反射ミラー70~72と、集光レンズ90と、複数のミラー設置面80~82と、サブマウント20~22と、FAST軸コリメータレンズ30~32と、平行化素子450~452と、SLOW軸コリメータレンズ60~62と、光ファイバ4とを備える。 As shown in FIG. 19, the semiconductor laser device 401 includes a housing 2, a plurality of semiconductor laser elements 10-12, a plurality of reflecting mirrors 70-72, a focusing lens 90, a plurality of mirror mounting surfaces 80-82, submounts 20-22, FAST-axis collimator lenses 30-32, parallelizing elements 450-452, SLOW-axis collimator lenses 60-62, and an optical fiber 4.
 半導体レーザ装置401は、複数の半導体レーザ素子10~12が設置されるレーザ設置面407aと、複数のミラー設置面80~82を有する多段ベース408とを備える。レーザ設置面407aと、複数のミラー設置面80~82及び底面6aとは、垂直に交わる。本実施の形態に係る複数の半導体レーザ素子10~12は、底面6a及び複数のミラー設置面80~82に対して垂直に交わるレーザ設置面407bに設置されている。これにより、複数の半導体レーザ素子10~12から出射されるレーザ光L0A~L2Aの伝搬方向は、底面6aからの高さ方向の成分を有する。複数の半導体レーザ素子10~12が出射するレーザ光L0A~L2Aは、上向き(X軸方向正向き)に伝搬する。平行化素子450~452は、それぞれ、複数の半導体レーザ素子10~12が出射するレーザ光L0B~L2B(複数の半導体レーザ素子10~12が出射するレーザ光L0A~L2AがFAST軸コリメータレンズ30~32によってコリメートされたレーザ光L0B~L2B)を90度偏向する。平行化素子450~452は、それぞれ、レーザ光L0B~L2BをZ軸方向正向きに偏向する。本実施の形態では、平行化素子450~452は、反射面を有する直角三角形の底面を有する三角柱状のプリズムからなる反射型偏向素子である。平行化素子450~452の入射面からそれぞれ入射したレーザ光L0B~L2Bは、平行化素子450~452の反射面において反射され、レーザ光L0D~L2Dとして反射面から出射面を介して出射する。つまり、レーザ光L0D~L2Dは、レーザ光L0B~L2Bが、それぞれ、平行化素子450~452の反射面において反射された反射光である。本実施の形態では、平行化素子450~452の入射面に、それぞれ、レーザ光L0B~L2Bが垂直に入射し、平行化素子450~452の出射面から垂直にレーザ光L0D~L2Dが出射される。 The semiconductor laser device 401 comprises a laser mounting surface 407a on which multiple semiconductor laser elements 10-12 are mounted, and a multi-stage base 408 having multiple mirror mounting surfaces 80-82. The laser mounting surface 407a perpendicularly intersects with the multiple mirror mounting surfaces 80-82 and the bottom surface 6a. The multiple semiconductor laser elements 10-12 according to this embodiment are mounted on a laser mounting surface 407b that perpendicularly intersects with the bottom surface 6a and the multiple mirror mounting surfaces 80-82. As a result, the propagation direction of the laser light L0A-L2A emitted from the multiple semiconductor laser elements 10-12 has a component in the height direction from the bottom surface 6a. The laser light L0A-L2A emitted by the multiple semiconductor laser elements 10-12 propagates upward (positive in the X-axis direction). The collimating elements 450-452 respectively deflect the laser beams L0B-L2B emitted by the semiconductor laser elements 10-12 (laser beams L0B-L2B obtained by collimating the laser beams L0A-L2A emitted by the semiconductor laser elements 10-12 by the FAST-axis collimator lenses 30-32) by 90 degrees. The collimating elements 450-452 respectively deflect the laser beams L0B-L2B in the positive direction in the Z-axis direction. In this embodiment, the collimating elements 450-452 are reflective deflection elements made of a triangular prism having a reflecting surface and a right-angled triangular base. The laser beams L0B-L2B incident on the incident surfaces of the collimating elements 450-452 are reflected by the reflecting surfaces of the collimating elements 450-452 and are emitted from the reflecting surfaces as laser beams L0D-L2D via the emitting surfaces. In other words, the laser beams L0D to L2D are the reflected beams of the laser beams L0B to L2B that are reflected by the reflecting surfaces of the collimating elements 450 to 452, respectively. In this embodiment, the laser beams L0B to L2B are incident perpendicularly on the incident surfaces of the collimating elements 450 to 452, respectively, and the laser beams L0D to L2D are emitted perpendicularly from the exit surfaces of the collimating elements 450 to 452.
 レーザ設置面407aと複数のミラー設置面80~82が垂直に交わる角の外側であって、半導体レーザ素子10~12の出射側に延長した線上にあって、各反射ミラー70~72と同じ高さの位置において、平行化素子450~452は設置される。本実施の形態では、平行化素子450~452は、それぞれ、ミラー設置面80~82に設置される。各平行化素子は、各ミラー設置面から、各ミラー設置面に平行な方向において、レーザ光L0B~L2Bの光軸に近づく向きに突出した状態で設置される。これにより、各平行化素子の反射面への各レーザ光の入射を可能としている。各平行化素子の反射面は、各ミラー設置面及びレーザ設置面407aに対して傾斜した状態で配置される。本実施の形態では、各平行化素子の反射面の、各ミラー設置面及びレーザ設置面407aに対する傾斜角度は45度である。なお、平行化素子450~452は、反射ミラーであってもよく、各ミラー設置面以外に設置されてもよい。例えば、平行化素子450~452は、レーザ設置面407aに設置されてもよい。 The parallelizing elements 450-452 are installed on the outside of the corner where the laser mounting surface 407a and the multiple mirror mounting surfaces 80-82 intersect perpendicularly, on a line extended to the emission side of the semiconductor laser elements 10-12, and at the same height as each of the reflecting mirrors 70-72. In this embodiment, the parallelizing elements 450-452 are installed on the mirror mounting surfaces 80-82, respectively. Each parallelizing element is installed in a state where it protrudes from each mirror mounting surface in a direction parallel to each mirror mounting surface, in a direction approaching the optical axis of the laser beams L0B-L2B. This allows each laser beam to be incident on the reflecting surface of each parallelizing element. The reflecting surface of each parallelizing element is arranged in a state where it is inclined with respect to each mirror mounting surface and the laser mounting surface 407a. In this embodiment, the inclination angle of the reflecting surface of each parallelizing element with respect to each mirror mounting surface and the laser mounting surface 407a is 45 degrees. In addition, the parallelizing elements 450 to 452 may be reflective mirrors and may be installed on a surface other than the mirror installation surface. For example, the parallelizing elements 450 to 452 may be installed on the laser installation surface 407a.
 本実施の形態に係る半導体レーザ装置401においても、図20に示されるように、半導体レーザ素子11の発光点11eから、反射ミラー71に入射するレーザ光L1Eの光軸(第一光軸A1)までの第一方向における第一距離D1と、半導体レーザ素子11の発光点11eから、反射ミラー72に入射するレーザ光L2Eの光軸(第二光軸A2)までの第一方向における第二距離D2とは、互いに異なる。半導体レーザ素子12の発光点12eから、第二光軸A2までの第一方向における第三距離D3は、第一距離D1より大きい。本実施の形態では、レーザ光L1A、L2A、L1B、L2Bが、第一光軸A1及び第二光軸A2に垂直な方向に伝搬するため、第一距離D1は、レーザ光L1Aの光路長と、レーザ光L1Bとの光路長との和(つまり、発光点11eから、平行化素子451の反射面と第一光軸A1との交点までの光路長)に等しい。また、第二距離D2及び第三距離D3は、レーザ光L2Aの光路長と、レーザ光L2Bとの光路長との和(つまり、発光点12eから、平行化素子452の反射面と第二光軸A2との交点までの光路長)に等しい。 20, in the semiconductor laser device 401 according to this embodiment, a first distance D1 in a first direction from the light emitting point 11e of the semiconductor laser element 11 to the optical axis (first optical axis A1) of the laser light L1E incident on the reflecting mirror 71 and a second distance D2 in a first direction from the light emitting point 11e of the semiconductor laser element 11 to the optical axis (second optical axis A2) of the laser light L2E incident on the reflecting mirror 72 are different from each other. A third distance D3 in the first direction from the light emitting point 12e of the semiconductor laser element 12 to the second optical axis A2 is greater than the first distance D1. In this embodiment, since the laser lights L1A, L2A, L1B, and L2B propagate in a direction perpendicular to the first optical axis A1 and the second optical axis A2, the first distance D1 is equal to the sum of the optical path length of the laser light L1A and the optical path length of the laser light L1B (i.e., the optical path length from the light emitting point 11e to the intersection of the reflecting surface of the parallelizing element 451 and the first optical axis A1). Furthermore, the second distance D2 and the third distance D3 are equal to the sum of the optical path length of the laser light L2A and the optical path length of the laser light L2B (i.e., the optical path length from the light emitting point 12e to the intersection of the reflecting surface of the parallelizing element 452 and the second optical axis A2).
 また、本実施の形態に係る半導体レーザ装置401においても、実施の形態4に係る半導体レーザ装置301と同様の効果が奏される。 Furthermore, the semiconductor laser device 401 according to this embodiment also exhibits the same effects as the semiconductor laser device 301 according to embodiment 4.
 また、本実施の形態では、各平行化素子によって、レーザ光の光軸を90度偏向することで、半導体レーザ装置401のZ軸方向における寸法を縮小できる。 In addition, in this embodiment, the optical axis of the laser light is deflected by 90 degrees using each parallelizing element, thereby reducing the dimension of the semiconductor laser device 401 in the Z-axis direction.
 [5-2.変形例]
 本実施の形態の変形例に係る半導体レーザ装置について説明する。本変形例に係る半導体レーザ装置は、主に、複数の半導体レーザ素子10~12から出射されるレーザ光L0A~L2Aの伝搬方向が下向きである点において、実施の形態5に係る半導体レーザ装置401と相違する。以下、本変形例に係る半導体レーザ装置について、実施の形態5に係る半導体レーザ装置401との相違点を中心に、図21を用いて説明する。
[5-2. Modifications]
A semiconductor laser device according to a modification of the present embodiment will be described. The semiconductor laser device according to this modification differs from the semiconductor laser device 401 according to the fifth embodiment mainly in that the propagation direction of the laser beams L0A-L2A emitted from the plurality of semiconductor laser elements 10-12 is downward. The semiconductor laser device according to this modification will be described below with reference to FIG. 21, focusing on the differences from the semiconductor laser device 401 according to the fifth embodiment.
 図21は、本変形例に係る半導体レーザ装置401aの構成を示す斜視図である。 FIG. 21 is a perspective view showing the configuration of a semiconductor laser device 401a according to this modified example.
 図21に示されるように、半導体レーザ装置401aは、筐体2と、複数の半導体レーザ素子10~12と、複数の反射ミラー70~72と、集光レンズ90と、複数のミラー設置面80~82と、サブマウント20~22と、FAST軸コリメータレンズ30~32と、平行化素子50~52と、SLOW軸コリメータレンズ60~62と、光ファイバ4とを備える。 As shown in FIG. 21, the semiconductor laser device 401a includes a housing 2, a plurality of semiconductor laser elements 10-12, a plurality of reflecting mirrors 70-72, a focusing lens 90, a plurality of mirror mounting surfaces 80-82, submounts 20-22, FAST axis collimator lenses 30-32, parallelizing elements 50-52, SLOW axis collimator lenses 60-62, and an optical fiber 4.
 半導体レーザ装置401aは、複数の半導体レーザ素子10~12が設置されるレーザ設置面407bと、複数のミラー設置面80~82を有する多段ベース408aを備える。多段ベース408aは、下面408baと、下面408baと平行で、下面408baと対向するミラー設置面80~82とを有する。ミラー設置面80~82は、底面6aからの高さが異なり、ミラー設置面82、81、80の順に、底面からの高さが高くなる。レーザ設置面407bと、複数のミラー設置面80~82及び底面6aとは、垂直に交わる。レーザ設置面407bは、ミラー設置面80~82の半導体レーザ素子10~12に近い方の端部から、下面408baと反対方向に、上向きに延在する。Y軸方向から見た断面において、レーザ設置面407bとミラー設置面80~82とがL字型をなしており、多段ベース408aは、L字型に凹んだ部分を有している。言い換えると、多段ベース408aは、ミラー設置面80~82を含む階段状の上面を有し、かつ、底面6aに沿って延在する第一板状部分と、当該板状部分と接続され、レーザ設置面407bを含む第二板状部分であって、底面6aに立設される第二板状部分とを有する。本実施の形態に係る複数の半導体レーザ素子10~12は、底面6a及び複数のミラー設置面80~82に対して垂直に交わるレーザ設置面407bに設置されている。これにより、複数の半導体レーザ素子10~12から出射されるレーザ光L0A~L2A(図21には不図示)の伝搬方向は、底面6aからの高さ方向の成分を有する。複数の半導体レーザ素子10~12が出射するレーザ光L0A~L2Aは、下向き(X軸方向負向き)に伝搬する。平行化素子450~452は、それぞれ、複数の半導体レーザ素子10~12が出射するレーザ光L0B~L2B(複数の半導体レーザ素子10~12が出射するレーザ光L0A~L2AがFAST軸コリメータレンズ30~32によってコリメートされたレーザ光L0B~L2B)を90度偏向する。平行化素子450~452は、それぞれ、レーザ光L0B~L2BをZ軸方向正向きに偏向する。平行化素子450~452は、反射面を有する反射型偏向素子である。平行化素子450~452は、ミラー設置面80~82の、半導体レーザ素子10~12に近い方の端部近傍に設置される。平行化素子450~452は、反射ミラーであってもよい。 The semiconductor laser device 401a comprises a laser mounting surface 407b on which multiple semiconductor laser elements 10-12 are mounted, and a multi-stage base 408a having multiple mirror mounting surfaces 80-82. The multi-stage base 408a has a lower surface 408ba and mirror mounting surfaces 80-82 that are parallel to and face the lower surface 408ba. The mirror mounting surfaces 80-82 have different heights from the bottom surface 6a, with the heights from the bottom surface increasing in the order of mirror mounting surfaces 82, 81, and 80. The laser mounting surface 407b perpendicularly intersects with the multiple mirror mounting surfaces 80-82 and the bottom surface 6a. The laser mounting surface 407b extends upward from the ends of the mirror mounting surfaces 80-82 that are closer to the semiconductor laser elements 10-12, in the opposite direction to the lower surface 408ba. In a cross section seen from the Y-axis direction, the laser mounting surface 407b and the mirror mounting surfaces 80 to 82 form an L-shape, and the multi-stage base 408a has a recessed portion in the L-shape. In other words, the multi-stage base 408a has a stepped upper surface including the mirror mounting surfaces 80 to 82, and has a first plate-like portion extending along the bottom surface 6a, and a second plate-like portion connected to the plate-like portion, including the laser mounting surface 407b, and standing on the bottom surface 6a. The multiple semiconductor laser elements 10 to 12 according to this embodiment are mounted on the laser mounting surface 407b that perpendicularly intersects with the bottom surface 6a and the multiple mirror mounting surfaces 80 to 82. As a result, the propagation direction of the laser beams L0A to L2A (not shown in FIG. 21) emitted from the multiple semiconductor laser elements 10 to 12 has a component in the height direction from the bottom surface 6a. The laser beams L0A to L2A emitted by the semiconductor laser elements 10 to 12 propagate downward (negative direction in the X-axis direction). The parallelizing elements 450 to 452 respectively deflect the laser beams L0B to L2B emitted by the semiconductor laser elements 10 to 12 (laser beams L0B to L2B obtained by collimating the laser beams L0A to L2A emitted by the semiconductor laser elements 10 to 12 by the FAST-axis collimator lenses 30 to 32) by 90 degrees. The parallelizing elements 450 to 452 respectively deflect the laser beams L0B to L2B in the positive direction in the Z-axis direction. The parallelizing elements 450 to 452 are reflective deflection elements having a reflecting surface. The parallelizing elements 450 to 452 are installed near the ends of the mirror installation surfaces 80 to 82 that are closer to the semiconductor laser elements 10 to 12. The parallelizing elements 450 to 452 may be reflecting mirrors.
 本変形例に係る半導体レーザ装置401aにおいても、実施の形態5に係る半導体レーザ装置401と同様の効果が奏される。 The semiconductor laser device 401a according to this modified example also achieves the same effects as the semiconductor laser device 401 according to the fifth embodiment.
 (その他の実施の形態)
 以上、本開示に係る半導体レーザ装置について、各実施の形態及び各変形例に基づいて説明したが、本開示は、これらの各実施の形態及び各変形例に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、各実施の形態及び各変形例における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。
(Other embodiments)
Although the semiconductor laser device according to the present disclosure has been described above based on the embodiments and modifications, the present disclosure is not limited to these embodiments and modifications. As long as the modifications do not deviate from the gist of the present disclosure, the scope of the present disclosure also includes modifications that a person skilled in the art may make to the embodiments, and other forms constructed by combining some of the components in the embodiments and modifications.
 例えば、各実施の形態において、各SLOW軸コリメータレンズを各平行化素子と各反射ミラーとの間に配置する代わりに、各SLOW軸コリメータレンズを各半導体レーザ素子(又は各FAST軸コリメータレンズ)と各平行化素子との間、又は、各半導体レーザ素子(又は各FAST軸コリメータレンズ)と各偏向素子との間に配置してもよい。以下、上記変形例を実施の形態1に係る半導体レーザ装置1に適用した例について、図22及び図23を用いて説明する。図22は、実施の形態1の変形例3に係る半導体レーザ装置1cの構成を示す斜視図である。図23は、実施の形態1の変形例4に係る半導体レーザ装置1dの構成を示す斜視図である。 For example, in each embodiment, instead of placing each SLOW-axis collimator lens between each parallelizing element and each reflecting mirror, each SLOW-axis collimator lens may be placed between each semiconductor laser element (or each FAST-axis collimator lens) and each parallelizing element, or between each semiconductor laser element (or each FAST-axis collimator lens) and each deflection element. Below, an example in which the above-mentioned modification is applied to the semiconductor laser device 1 according to embodiment 1 will be described with reference to Figures 22 and 23. Figure 22 is a perspective view showing the configuration of a semiconductor laser device 1c according to modification 3 of embodiment 1. Figure 23 is a perspective view showing the configuration of a semiconductor laser device 1d according to modification 4 of embodiment 1.
 図22に示されるように、変形例3に係る半導体レーザ装置1cは、SLOW軸コリメータレンズ60cの構成及び配置において、実施の形態1に係る半導体レーザ装置1と相違する。変形例3に係るSLOW軸コリメータレンズ60cは、複数の平行化素子51~55と、複数の半導体レーザ素子11~15との間、及び、反射ミラー70と半導体レーザ素子10との間に配置されている。より具体的には、SLOW軸コリメータレンズ60cは、偏向素子40と、複数のFAST軸コリメータレンズ31~35との間、及び、反射ミラー70とFAST軸コリメータレンズ30との間に配置されている。 As shown in FIG. 22, the semiconductor laser device 1c according to the third modification differs from the semiconductor laser device 1 according to the first embodiment in the configuration and arrangement of the SLOW-axis collimator lens 60c. The SLOW-axis collimator lens 60c according to the third modification is disposed between the multiple parallelizing elements 51-55 and the multiple semiconductor laser elements 11-15, and between the reflecting mirror 70 and the semiconductor laser element 10. More specifically, the SLOW-axis collimator lens 60c is disposed between the deflection element 40 and the multiple FAST-axis collimator lenses 31-35, and between the reflecting mirror 70 and the FAST-axis collimator lens 30.
 SLOW軸コリメータレンズ60cは、Y軸方向に配列された複数のSLOW軸コリメータレンズ60~65が一体化された構成を有する。変形例3では、複数のレーザ光に対応するSLOW軸コリメータレンズ60cを、偏向素子40と複数の半導体レーザ素子10~15との間の領域、つまり、複数のレーザ光が同一平面内にある領域に配置することで、複数のSLOW軸コリメータレンズ60~65を同一平面上に配置することが可能となる。したがって、変形例3では、複数のSLOW軸コリメータレンズ60~65を容易に一体化できる。また、複数のSLOW軸コリメータレンズ60~65が一体化されていることで、SLOW軸コリメータレンズ60cの設置作業を容易化できる。 The SLOW-axis collimator lens 60c has a configuration in which multiple SLOW-axis collimator lenses 60-65 arranged in the Y-axis direction are integrated. In the third modification, the SLOW-axis collimator lens 60c corresponding to multiple laser beams is arranged in the area between the deflection element 40 and the multiple semiconductor laser elements 10-15, that is, in the area where the multiple laser beams are in the same plane, making it possible to arrange the multiple SLOW-axis collimator lenses 60-65 on the same plane. Therefore, in the third modification, the multiple SLOW-axis collimator lenses 60-65 can be easily integrated. Furthermore, the integration of the multiple SLOW-axis collimator lenses 60-65 makes it easier to install the SLOW-axis collimator lens 60c.
 また、変形例3では、各ミラー設置面に各SLOW軸コリメータレンズが配置されないため、各ミラー設置面のZ軸方向における長さを短縮することが可能となる。これにより、多段ベース8の寸法を縮小できるため、多段ベース8の軽量化が可能となる。 In addition, in the third modification, since the slow axis collimator lenses are not arranged on the mirror mounting surfaces, it is possible to shorten the length of each mirror mounting surface in the Z-axis direction. This allows the dimensions of the multi-stage base 8 to be reduced, making it possible to reduce the weight of the multi-stage base 8.
 図23に示される変形例4に係る半導体レーザ装置1dは、主に、偏向素子40に代えて複数の偏向素子41~45を備える点、並びに、複数の偏向素子41~45及び複数の平行化素子51~55の配置において、変形例3に係る半導体レーザ装置1cと相違する。 The semiconductor laser device 1d according to the fourth modification shown in FIG. 23 differs from the semiconductor laser device 1c according to the third modification mainly in that it has multiple deflection elements 41-45 instead of the deflection element 40, and in the arrangement of the multiple deflection elements 41-45 and the multiple parallelizing elements 51-55.
 変形例4に係る複数の偏向素子41~45は、それぞれ、SLOW軸コリメータレンズ60cと、複数の平行化素子51~55との間に配置される。変形例4では、SLOW軸コリメータレンズ60c、及び複数の偏向素子41~45は、レーザベース7上に配置される。 The multiple deflection elements 41 to 45 in the fourth modification are disposed between the SLOW-axis collimator lens 60c and the multiple parallelizing elements 51 to 55, respectively. In the fourth modification, the SLOW-axis collimator lens 60c and the multiple deflection elements 41 to 45 are disposed on the laser base 7.
 各偏向素子から各半導体レーザ素子までのZ軸方向における距離は、対応する各平行化素子及び各反射ミラーの底面6aからの高さが高くなるにしたがって、小さくなる。一方、各平行化素子のZ軸方向における位置は、同一である。言い換えると、各偏向素子と各平行化素子との間のZ軸方向における距離は、各平行化素子の底面6aからの高さが高くなるにしたがって、大きくなる。これにより、設置位置の高さが異なる複数の平行化素子の各々へ、各レーザ光へ伝搬させることができる。なお、変形例4においても、複数の偏向素子41~45と複数の平行化素子51~55との間を伝搬する複数のレーザ光の伝搬方向は、互いに平行であり、底面6aに対して傾斜している。 The distance in the Z-axis direction from each deflection element to each semiconductor laser element decreases as the height of the corresponding parallelizing element and reflecting mirror from the bottom surface 6a increases. Meanwhile, the position of each parallelizing element in the Z-axis direction is the same. In other words, the distance in the Z-axis direction between each deflection element and each parallelizing element increases as the height of each parallelizing element from the bottom surface 6a increases. This allows each laser light to propagate to each of the parallelizing elements that are installed at different heights. Note that, even in the fourth modification, the propagation directions of the multiple laser lights propagating between the multiple deflection elements 41-45 and the multiple parallelizing elements 51-55 are parallel to each other and inclined with respect to the bottom surface 6a.
 変形例4に係る複数のミラー設置面のZ軸方向における長さは、等しくてもよい。これにより、複数のミラー設置面の端縁を同一平面上に形成することが可能となるため、複数のミラー設置面を有する多段ベース8dの製造を容易化できる。各平行化素子は、各ミラー設置面の各半導体レーザ素子に近い側の端部付近に配置されている。 The lengths of the multiple mirror mounting surfaces in the Z-axis direction in the fourth modified example may be equal. This allows the edges of the multiple mirror mounting surfaces to be formed on the same plane, making it easier to manufacture the multi-stage base 8d having multiple mirror mounting surfaces. Each parallelizing element is disposed near the end of each mirror mounting surface that is closer to each semiconductor laser element.
 以上のような実施の形態1の変形例3、4に係る各半導体レーザ装置においても、実施の形態1に係る半導体レーザ装置1と同様の効果が奏される。 The semiconductor laser devices according to the third and fourth modifications of the first embodiment as described above also achieve the same effects as the semiconductor laser device 1 according to the first embodiment.
 また、実施の形態4及び実施の形態4の変形例1、2において、平行化素子をミラー設置面に配置する代わりに、底面に対して傾斜したレーザ設置面に平行化素子を配置してもよい。この場合、平行化素子は、レーザ設置面の、反射ミラーに近い方の端部近傍に設置される。 In addition, in the fourth embodiment and the first and second variations of the fourth embodiment, instead of placing the parallelizing element on the mirror mounting surface, the parallelizing element may be placed on the laser mounting surface that is inclined with respect to the bottom surface. In this case, the parallelizing element is placed near the end of the laser mounting surface that is closer to the reflecting mirror.
 また、上記の実施の形態は、請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Furthermore, the above embodiment may be modified, substituted, added, omitted, etc. in various ways within the scope of the claims or their equivalents.
 本開示に係る半導体レーザ装置は、例えば、加工用レーザ光源、ディスプレイ用レーザ光源、医療用レーザ光源などの高輝度・高パワーレーザ光源として特に有用である。 The semiconductor laser device according to the present disclosure is particularly useful as a high-brightness, high-power laser light source, for example, a laser light source for processing, a laser light source for displays, a laser light source for medical use, etc.
 1、1a、1b、1c、1d、101、201、301、301a、301b、401、401a  半導体レーザ装置
 2  筐体
 3  側壁
 4  光ファイバ
 6  底部
 6a  底面
 7、307  レーザベース
 7a、307a、307b、407a、407b  レーザ設置面
 8、8a、8b、8d、108、208、308、308a、308b、408、408a  多段ベース
 8ba、308ba、408ba  下面
 9a、9b  電流導入端子
 9c  配線部材
 10、11、12、13、14、15  半導体レーザ素子
 10e、11e、12e、13e、14e、15e  発光点
 20、21、22、23、24、25、120  サブマウント
 30、31、32、33、34、35、130  FAST軸コリメータレンズ
 40、40a、40b、41、42、43、44、45、240  偏向素子
 50、51、51a、52、52a、53、53a、54、54a、55、251、252、450、451、452  平行化素子
 60、60c、61、62、63、64、65  SLOW軸コリメータレンズ
 70、71、72、73、74、75  反射ミラー
 80、80a、81、81a、82、82a、83、83a、84、84a、85  ミラー設置面
 90  集光レンズ
 107  気密パッケージ
 110  半導体レーザアレイ
 117  透光窓
 126、127、128、129  金属膜
 240a、251a、252a  反射面
 A1 第一光軸
 A2 第二光軸
 D1 第一距離
 D2 第二距離
 D3 第三距離
 D4 第四距離
 L0A、L0B、L0D、L0E、L0F、L1A、L1B、L1C、L1D、L1E、L1F、L2A、L2B、L2C、L2D、L2E、L2F、L3A、L3B、L3C、L3D、L3E、L3F、L4A、L4B、L4C、L4D、L4E、L4F、L5A、L5B、L5C、L5D、L5E、L5F レーザ光
 P01  開口部
 P20  枠体
 P21  第一パッケージ
 P30  パッケージ底部
 P31  アノード取り出し電極
 P32  アノード電極
 P34  カソード取り出し電極
 P35  カソード電極
 W  金属ワイヤ
REFERENCE SIGNS LIST 1, 1a, 1b, 1c, 1d, 101, 201, 301, 301a, 301b, 401, 401a Semiconductor laser device 2 Housing 3 Side wall 4 Optical fiber 6 Bottom 6a Bottom surface 7, 307 Laser base 7a, 307a, 307b, 407a, 407b Laser installation surface 8, 8a, 8b, 8d, 108, 208, 308, 308a, 308b, 408, 408a Multi-stage base 8ba, 308ba, 408ba Bottom surface 9a, 9b Current input terminal 9c Wiring member 10, 11, 12, 13, 14, 15 Semiconductor laser element 10e, 11e, 12e, 13e, 14e, 15e Emission point 20, 21, 22, 23, 24, 25, 120 Submount 30, 31, 32, 33, 34, 35, 130 FAST axis collimator lens 40, 40a, 40b, 41, 42, 43, 44, 45, 240 Deflection element 50, 51, 51a, 52, 52a, 53, 53a, 54, 54a, 55, 251, 252, 450, 451, 452 Parallelization element 60, 60c, 61, 62, 63, 64, 65 SLOW axis collimator lens 70, 71, 72, 73, 74, 75 Reflection mirror 80, 80a, 81, 81a, 82, 82a, 83, 83a, 84, 84a, 85 Mirror installation surface 90 Condenser lens 107 Airtight package 110 Semiconductor laser array 117 Light-transmitting window 126, 127, 128, 129 Metal film 240a, 251a, 252a Reflecting surface A1 First optical axis A2 Second optical axis D1 First distance D2 Second distance D3 Third distance D4 Fourth distance L0A, L0B, L0D, L0E, L0F, L1A, L1B, L1C, L1D, L1E, L1F, L2A, L2B, L2C, L2D, L2E, L2F, L3A, L3B, L3C, L3D, L3E, L3F, L4A, L4B, L4C, L4D, L4E, L4F, L5A, L5B, L5C, L5D, L5E, L5F Laser light P01 Opening P20 Frame P21 First package P30 Package bottom P31 Anode lead-out electrode P32 Anode electrode P34 Cathode lead-out electrode P35 Cathode electrode W Metal wire

Claims (26)

  1.  底面を有する筐体と、
     前記筐体内に配置される第一半導体レーザ素子及び第二半導体レーザ素子と、
     前記第一半導体レーザ素子から出射される第一レーザ光を反射する第一反射ミラーと、
     前記第二半導体レーザ素子から出射される第二レーザ光を反射する第二反射ミラーと、
     前記第一反射ミラーによって反射された前記第一レーザ光と、前記第二反射ミラーによって反射された前記第二レーザ光とを集光する集光レンズと、
     前記第一反射ミラーが設置される第一ミラー設置面と、
     前記第二反射ミラーが設置される第二ミラー設置面とを備え、
     前記第一ミラー設置面と、前記第二ミラー設置面とは、互いに平行であり、
     前記第一ミラー設置面と、前記第二ミラー設置面とは、同一平面上になく、
     前記第一半導体レーザ素子は、前記第一レーザ光が出射される第一発光点を有し、
     前記第二半導体レーザ素子は、前記第二レーザ光が出射される第二発光点を有し、
     前記第一反射ミラーに入射する前記第一レーザ光の光軸を第一光軸とし、
     前記第二反射ミラーに入射する前記第二レーザ光の光軸を第二光軸とし、
     前記第一発光点を通り、前記第一光軸と垂直な方向を第一方向とするとき、
     前記第一発光点から、前記第一光軸までの前記第一方向における第一距離と、前記第一発光点から、前記第二光軸までの前記第一方向における第二距離とは、互いに異なり、
     前記第二発光点から、前記第二光軸までの前記第一方向における第三距離は、前記第一距離より大きい
     半導体レーザ装置。
    A housing having a bottom surface;
    a first semiconductor laser element and a second semiconductor laser element disposed in the housing;
    a first reflecting mirror that reflects a first laser beam emitted from the first semiconductor laser element;
    a second reflecting mirror that reflects a second laser beam emitted from the second semiconductor laser element;
    a condenser lens that condenses the first laser light reflected by the first reflecting mirror and the second laser light reflected by the second reflecting mirror;
    a first mirror mounting surface on which the first reflecting mirror is mounted;
    a second mirror mounting surface on which the second reflecting mirror is mounted,
    the first mirror installation surface and the second mirror installation surface are parallel to each other,
    The first mirror installation surface and the second mirror installation surface are not on the same plane,
    the first semiconductor laser element has a first light-emitting point from which the first laser light is emitted,
    the second semiconductor laser element has a second light-emitting point from which the second laser light is emitted,
    an optical axis of the first laser light incident on the first reflecting mirror is defined as a first optical axis;
    an optical axis of the second laser light incident on the second reflecting mirror is defined as a second optical axis;
    When a direction passing through the first light emitting point and perpendicular to the first optical axis is defined as a first direction,
    a first distance in the first direction from the first light-emitting point to the first optical axis and a second distance in the first direction from the first light-emitting point to the second optical axis are different from each other,
    a third distance in the first direction from the second light emitting point to the second optical axis is greater than the first distance.
  2.  前記第一半導体レーザ素子と、前記第一反射ミラーとの間に配置され、前記第一レーザ光の伝搬方向に前記第一方向の成分を与える第一偏向素子と、
     前記第一偏向素子と、前記第一反射ミラーとの間に配置され、前記第一レーザ光の伝搬方向を前記第一ミラー設置面と平行な方向に偏向する第一平行化素子と、
     前記第二半導体レーザ素子と、前記第二反射ミラーとの間に配置され、前記第二レーザ光の伝搬方向に前記第一方向の成分を与える第二偏向素子と、
     前記第二偏向素子と、前記第二反射ミラーとの間に配置され、前記第二レーザ光の伝搬方向を前記第二ミラー設置面と平行な方向に偏向する第二平行化素子とを備える
     請求項1に記載の半導体レーザ装置。
    a first deflection element disposed between the first semiconductor laser element and the first reflecting mirror, the first deflection element providing a component of the first direction in a propagation direction of the first laser light;
    a first collimating element disposed between the first deflection element and the first reflecting mirror and configured to deflect a propagation direction of the first laser light in a direction parallel to a surface on which the first mirror is placed;
    a second deflection element disposed between the second semiconductor laser element and the second reflecting mirror and configured to give a component of the first direction to a propagation direction of the second laser light;
    2. The semiconductor laser device according to claim 1, further comprising: a second collimating element disposed between the second deflection element and the second reflecting mirror and configured to deflect a propagation direction of the second laser light in a direction parallel to a mounting surface of the second mirror.
  3.  底面を有する筐体と、
     前記筐体内に配置される第一半導体レーザ素子及び第二半導体レーザ素子と、
     前記第一半導体レーザ素子から出射される第一レーザ光を反射する第一反射ミラーと、
     前記第二半導体レーザ素子から出射される第二レーザ光を反射する第二反射ミラーと、
     前記第一反射ミラーによって反射された前記第一レーザ光と、前記第二反射ミラーによって反射された前記第二レーザ光とを集光する集光レンズと、
     前記第一半導体レーザ素子と、前記第一反射ミラーとの間に配置され、前記第一レーザ光の伝搬方向を偏向する第一平行化素子と、
     前記第二半導体レーザ素子と、前記第二反射ミラーとの間に配置され、前記第二レーザ光の伝搬方向を偏向する第二平行化素子とを備え、
     前記第一半導体レーザ素子は、前記第一レーザ光が出射される第一発光点を有し、
     前記第二半導体レーザ素子は、前記第二レーザ光が出射される第二発光点を有し、
     前記第一平行化素子に入射する前記第一レーザ光の光軸と、前記第二平行化素子に入射する前記第二レーザ光の光軸とは、平行であり、
     前記第一反射ミラーに入射する前記第一レーザ光の光軸と、前記第二反射ミラーに入射する前記第二レーザ光の光軸とは、平行であり、
     前記第一反射ミラーに入射する前記第一レーザ光の光軸は、前記第一平行化素子に入射する前記第一レーザ光の光軸に対して、傾斜しており、
     前記第一反射ミラーに入射する前記第一レーザ光の光軸を第一光軸とし、
     前記第二反射ミラーに入射する前記第二レーザ光の光軸を第二光軸とし、
     前記第一発光点を通り、前記第一光軸と垂直な方向を第一方向とするとき、
     前記第一発光点から、前記第一光軸までの前記第一方向における第一距離と、前記第一発光点から、前記第二光軸までの前記第一方向における第二距離は、互いに異なり、
     前記第二発光点から、前記第二光軸までの前記第一方向における第三距離は、前記第一距離より大きい
     半導体レーザ装置。
    A housing having a bottom surface;
    a first semiconductor laser element and a second semiconductor laser element disposed in the housing;
    a first reflecting mirror that reflects a first laser beam emitted from the first semiconductor laser element;
    a second reflecting mirror that reflects a second laser beam emitted from the second semiconductor laser element;
    a condenser lens that condenses the first laser light reflected by the first reflecting mirror and the second laser light reflected by the second reflecting mirror;
    a first collimating element disposed between the first semiconductor laser element and the first reflecting mirror and configured to deflect a propagation direction of the first laser light;
    a second collimating element disposed between the second semiconductor laser element and the second reflecting mirror and configured to deflect a propagation direction of the second laser light;
    the first semiconductor laser element has a first light-emitting point from which the first laser light is emitted,
    the second semiconductor laser element has a second light-emitting point from which the second laser light is emitted,
    an optical axis of the first laser light incident on the first collimating element and an optical axis of the second laser light incident on the second collimating element are parallel to each other;
    an optical axis of the first laser light incident on the first reflecting mirror and an optical axis of the second laser light incident on the second reflecting mirror are parallel to each other;
    an optical axis of the first laser light incident on the first reflecting mirror is inclined with respect to an optical axis of the first laser light incident on the first collimating element;
    an optical axis of the first laser light incident on the first reflecting mirror is defined as a first optical axis;
    an optical axis of the second laser light incident on the second reflecting mirror is defined as a second optical axis;
    When a direction passing through the first light emitting point and perpendicular to the first optical axis is defined as a first direction,
    a first distance in the first direction from the first light-emitting point to the first optical axis and a second distance in the first direction from the first light-emitting point to the second optical axis are different from each other,
    a third distance in the first direction from the second light emitting point to the second optical axis is greater than the first distance.
  4.  前記第一反射ミラーが設置される第一ミラー設置面と、
     前記第二反射ミラーが設置される第二ミラー設置面とを備える
     請求項3に記載の半導体レーザ装置。
    a first mirror mounting surface on which the first reflecting mirror is mounted;
    The semiconductor laser device according to claim 3 , further comprising: a second mirror mounting surface on which the second reflecting mirror is mounted.
  5.  前記第一半導体レーザ素子と、前記第一平行化素子との間に配置され、前記第一レーザ光の伝搬方向に前記第一方向の成分を与える第一偏向素子と、
     前記第二半導体レーザ素子と、前記第二平行化素子との間に配置され、前記第二レーザ光の伝搬方向に前記第一方向の成分を与える第二偏向素子とを備える
     請求項3又は4に記載の半導体レーザ装置。
    a first deflection element disposed between the first semiconductor laser element and the first collimation element, the first deflection element providing a component of the first direction in a propagation direction of the first laser light;
    5. The semiconductor laser device according to claim 3, further comprising a second deflection element disposed between the second semiconductor laser element and the second collimating element, the second deflection element providing a component of the first direction in a propagation direction of the second laser light.
  6.  前記第一偏向素子と前記第一平行化素子との間における前記第一レーザ光と、前記第二偏向素子と前記第二平行化素子との間における前記第二レーザ光とは、平行であり、
     前記第二偏向素子と前記第二平行化素子との間の距離は、前記第一偏向素子と前記第一平行化素子との間の距離より長い
     請求項2又は5に記載の半導体レーザ装置。
    the first laser light between the first deflection element and the first collimation element and the second laser light between the second deflection element and the second collimation element are parallel to each other;
    The semiconductor laser device according to claim 2 , wherein a distance between the second deflection element and the second collimating element is longer than a distance between the first deflection element and the first collimating element.
  7.  前記第一平行化素子は、前記第一ミラー設置面に設置され、
     前記第二平行化素子は、前記第二ミラー設置面に設置される
     請求項2又は4に記載の半導体レーザ装置。
    the first collimating element is disposed on the first mirror mounting surface;
    The semiconductor laser device according to claim 2 , wherein the second collimating element is disposed on the second mirror mounting surface.
  8.  前記第一偏向素子、前記第一平行化素子、前記第二偏向素子、及び前記第二平行化素子の各々は、透過型偏向素子である
     請求項2、5、6のいずれか1項に記載の半導体レーザ装置。
    The semiconductor laser device according to claim 2 , wherein each of the first deflection element, the first collimating element, the second deflection element, and the second collimating element is a transmissive deflection element.
  9.  前記透過型偏向素子は、入射面及び出射面を有するプリズムであり、
     前記入射面と前記出射面とは平行でない
     請求項8に記載の半導体レーザ装置。
    the transmissive deflection element is a prism having an entrance surface and an exit surface,
    The semiconductor laser device according to claim 8 , wherein the entrance surface and the exit surface are not parallel to each other.
  10.  前記第一半導体レーザ素子及び前記第二半導体レーザ素子の各々のFAST軸方向は、前記底面からの高さ方向である
     請求項1~9のいずれか1項に記載の半導体レーザ装置。
    10. The semiconductor laser device according to claim 1, wherein a FAST axis direction of each of the first semiconductor laser element and the second semiconductor laser element is a height direction from the bottom surface.
  11.  前記第一半導体レーザ素子及び前記第二半導体レーザ素子の各々から出射されるレーザ光の伝搬方向は、前記底面からの高さ方向の成分を有する
     請求項1、3、4のいずれか1項に記載の半導体レーザ装置。
    5. The semiconductor laser device according to claim 1, wherein a propagation direction of laser light emitted from each of the first semiconductor laser element and the second semiconductor laser element has a component in a height direction from the bottom surface.
  12.  前記第一半導体レーザ素子と、前記第一反射ミラーとの間に配置され、前記第一レーザ光の伝搬方向を前記第一ミラー設置面と平行な方向に偏向する第一平行化素子と、
     前記第二半導体レーザ素子と、前記第二反射ミラーとの間に配置され、前記第二レーザ光の伝搬方向を前記第二ミラー設置面と平行な方向に偏向する第二平行化素子とを備える
     請求項1に記載の半導体レーザ装置。
    a first collimating element disposed between the first semiconductor laser element and the first reflecting mirror and configured to deflect a propagation direction of the first laser light to a direction parallel to a surface on which the first mirror is placed;
    2. The semiconductor laser device according to claim 1, further comprising: a second collimating element disposed between the second semiconductor laser element and the second reflecting mirror and configured to deflect a propagation direction of the second laser light to a direction parallel to a mounting surface of the second mirror.
  13.  前記第一半導体レーザ素子と前記第一平行化素子との間における前記第一レーザ光と、前記第二半導体レーザ素子と前記第二平行化素子との間における前記第二レーザ光とは、平行であり、
     前記第二半導体レーザ素子と前記第二平行化素子との間の距離は、前記第一半導体レーザ素子と前記第一平行化素子との間の距離より長い
     請求項12に記載の半導体レーザ装置。
    the first laser light between the first semiconductor laser element and the first collimating element and the second laser light between the second semiconductor laser element and the second collimating element are parallel,
    The semiconductor laser device according to claim 12 , wherein a distance between the second semiconductor laser element and the second collimating element is longer than a distance between the first semiconductor laser element and the first collimating element.
  14.  前記第一平行化素子、及び前記第二平行化素子は、それぞれ、前記第一レーザ光、及び前記第二レーザ光を90度偏向する
     請求項12又は13に記載の半導体レーザ装置。
    The semiconductor laser device according to claim 12 , wherein the first collimating element and the second collimating element respectively deflect the first laser light and the second laser light by 90 degrees.
  15.  前記第一平行化素子は、前記第一ミラー設置面に設置され、
     前記第二平行化素子は、前記第二ミラー設置面に設置される
     請求項12~14のいずれか1項に記載の半導体レーザ装置。
    the first collimating element is disposed on the first mirror mounting surface;
    15. The semiconductor laser device according to claim 12, wherein the second collimating element is disposed on the second mirror mounting surface.
  16.  前記第一平行化素子、及び前記第二平行化素子の各々は、透過型偏向素子である
     請求項12~15のいずれか1項に記載の半導体レーザ装置。
    16. The semiconductor laser device according to claim 12, wherein each of the first collimating element and the second collimating element is a transmissive deflection element.
  17.  前記透過型偏向素子は、入射面及び出射面を有するプリズムであり、
     前記入射面と前記出射面とは平行でない
     請求項16に記載の半導体レーザ装置。
    the transmissive deflection element is a prism having an entrance surface and an exit surface,
    The semiconductor laser device according to claim 16 , wherein the entrance surface and the exit surface are not parallel to each other.
  18.  前記第一半導体レーザ素子と前記第一平行化素子との間に配置されるFAST軸コリメータレンズを備える
     請求項2~9、12~17のいずれか1項に記載の半導体レーザ装置。
    18. The semiconductor laser device according to claim 2, further comprising a fast axis collimator lens disposed between the first semiconductor laser element and the first collimating element.
  19.  前記FAST軸コリメータレンズと前記第一反射ミラーとの間に配置されるSLOW軸コリメータレンズを備える
     請求項18に記載の半導体レーザ装置。
    20. The semiconductor laser device according to claim 18, further comprising a slow-axis collimator lens disposed between the fast-axis collimator lens and the first reflecting mirror.
  20.  前記第一発光点から、前記第二発光点までの前記第一方向における距離は、前記第一光軸から、前記第二光軸までの前記第一方向における距離より小さい
     請求項1~19のいずれか1項に記載の半導体レーザ装置。
    20. The semiconductor laser device according to claim 1, wherein a distance in the first direction from the first light-emitting point to the second light-emitting point is smaller than a distance in the first direction from the first optical axis to the second optical axis.
  21.  前記底面は、平坦である
     請求項1~20のいずれか1項に記載の半導体レーザ装置。
    21. The semiconductor laser device according to claim 1, wherein the bottom surface is flat.
  22.  前記第一半導体レーザ素子及び前記第二半導体レーザ素子は、同一平面に設置される
     請求項1~21のいずれか1項に記載の半導体レーザ装置。
    22. The semiconductor laser device according to claim 1, wherein the first semiconductor laser element and the second semiconductor laser element are disposed on the same plane.
  23.  前記第一半導体レーザ素子及び前記第二半導体レーザ素子の少なくとも一つを気密封止する気密パッケージを備える
     請求項1~22のいずれか1項に記載の半導体レーザ装置。
    23. The semiconductor laser device according to claim 1, further comprising an airtight package that hermetically seals at least one of the first semiconductor laser element and the second semiconductor laser element.
  24.  前記第一半導体レーザ素子と前記第二半導体レーザ素子とを気密封止する単一の気密パッケージを備える
     請求項1~23のいずれか1項に記載の半導体レーザ装置。
    24. The semiconductor laser device according to claim 1, further comprising a single hermetic package that hermetically seals the first semiconductor laser element and the second semiconductor laser element.
  25.  前記第一半導体レーザ素子と前記第二半導体レーザ素子とは、単一の素子に含まれる
     請求項1~24のいずれか1項に記載の半導体レーザ装置。
    25. The semiconductor laser device according to claim 1, wherein the first semiconductor laser element and the second semiconductor laser element are included in a single element.
  26.  前記第一反射ミラーから出射した前記第一レーザ光と、前記第二反射ミラーから出射した前記第二レーザ光とは、伝搬方向が平行であり、かつ、前記第一反射ミラーから出射した前記第一レーザ光のFAST軸方向の位置が重ならず、かつ、前記第一反射ミラーから出射した前記第一レーザ光のSLOW軸方向の位置が重なる
     請求項1~25のいずれか1項に記載の半導体レーザ装置。
    The semiconductor laser device according to any one of claims 1 to 25, wherein the first laser light emitted from the first reflecting mirror and the second laser light emitted from the second reflecting mirror have parallel propagation directions, the first laser light emitted from the first reflecting mirror does not overlap in the FAST axis direction, and the first laser light emitted from the first reflecting mirror overlaps in the SLOW axis direction.
PCT/JP2023/034932 2022-10-05 2023-09-26 Semiconductor laser device WO2024075594A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022161257 2022-10-05
JP2022-161257 2022-10-05

Publications (1)

Publication Number Publication Date
WO2024075594A1 true WO2024075594A1 (en) 2024-04-11

Family

ID=90608310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034932 WO2024075594A1 (en) 2022-10-05 2023-09-26 Semiconductor laser device

Country Status (1)

Country Link
WO (1) WO2024075594A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001516473A (en) * 1998-01-09 2001-09-25 イェーノプティク アクチエンゲゼルシャフト Optical arrangement for balancing the light beams of one or more high power diode lasers, one positioned above the other
JP2013235943A (en) * 2012-05-08 2013-11-21 Furukawa Electric Co Ltd:The Semiconductor laser module
CN106785883A (en) * 2016-12-20 2017-05-31 大族激光科技产业集团股份有限公司 High-power semiconductor laser
US20190252863A1 (en) * 2018-02-06 2019-08-15 Nlight, Inc. Diode laser apparatus with fac lens out-of-plane beam steering
JP2020194955A (en) * 2019-05-22 2020-12-03 日亜化学工業株式会社 Light source unit
JP2020204734A (en) * 2019-06-18 2020-12-24 パナソニックIpマネジメント株式会社 Light source device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001516473A (en) * 1998-01-09 2001-09-25 イェーノプティク アクチエンゲゼルシャフト Optical arrangement for balancing the light beams of one or more high power diode lasers, one positioned above the other
JP2013235943A (en) * 2012-05-08 2013-11-21 Furukawa Electric Co Ltd:The Semiconductor laser module
CN106785883A (en) * 2016-12-20 2017-05-31 大族激光科技产业集团股份有限公司 High-power semiconductor laser
US20190252863A1 (en) * 2018-02-06 2019-08-15 Nlight, Inc. Diode laser apparatus with fac lens out-of-plane beam steering
JP2020194955A (en) * 2019-05-22 2020-12-03 日亜化学工業株式会社 Light source unit
JP2020204734A (en) * 2019-06-18 2020-12-24 パナソニックIpマネジメント株式会社 Light source device

Similar Documents

Publication Publication Date Title
WO2013054547A1 (en) Light-emitting device
CN110542059A (en) Light emitting device
US20180034236A1 (en) Beam source having a laser diode
US20210336411A1 (en) Method of manufacturing laser light source
WO2024075594A1 (en) Semiconductor laser device
US20230299557A1 (en) Light emitting device
US20220344896A1 (en) Light-emitting device
US11984698B2 (en) Light emitting device
US20220302672A1 (en) Base member or light-emitting device
WO2024075595A1 (en) Semiconductor laser device
US11616339B2 (en) Light source device
US9876327B2 (en) Hermetically sealed container for laser device
JP7316098B2 (en) Semiconductor laser module and laser processing equipment
JP2021093514A (en) Light source device
US11774666B2 (en) Light-emitting device and light-emitting module
JP2020126992A (en) Mounting member and light emitting device
US20240106187A1 (en) Light source device
US11835380B2 (en) Light-emitting device
US11309681B2 (en) Mount member and light emitting device
US12000567B2 (en) Light source device including first substrate supporting first and second laser diodes and second substrate supporting third laser diode
US20230163562A1 (en) Light-emitting device
US20240047937A1 (en) Light-emitting device
US20240030676A1 (en) Plurality of light-emitting devices, and light-emitting module
JP2023021899A (en) Light source device
US20220209078A1 (en) Light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874722

Country of ref document: EP

Kind code of ref document: A1