WO2024075359A1 - Liquid-crystal display device, liquid-crystal display method, and program - Google Patents

Liquid-crystal display device, liquid-crystal display method, and program Download PDF

Info

Publication number
WO2024075359A1
WO2024075359A1 PCT/JP2023/025719 JP2023025719W WO2024075359A1 WO 2024075359 A1 WO2024075359 A1 WO 2024075359A1 JP 2023025719 W JP2023025719 W JP 2023025719W WO 2024075359 A1 WO2024075359 A1 WO 2024075359A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
value
correction data
pixel
backlight
Prior art date
Application number
PCT/JP2023/025719
Other languages
French (fr)
Japanese (ja)
Inventor
久仁男 川村
宏哉 齋藤
隆仁 金田
和宏 肩
Original Assignee
Eizo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eizo株式会社 filed Critical Eizo株式会社
Publication of WO2024075359A1 publication Critical patent/WO2024075359A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present invention relates to a liquid crystal display device, a liquid crystal display method, and a program.
  • the degree to which flicker occurs varies depending on the frame displayed on the LCD display device, but for example, flicker is likely to occur in a frame called a dot mesh, which is an alternating arrangement of white and black pixels.
  • the present invention was made in consideration of these circumstances, and aims to provide a liquid crystal display device, a liquid crystal display method, and a program that can reduce flicker.
  • a liquid crystal display device that controls a backlight as a light source, the liquid crystal display device being configured to reduce flicker caused by a difference in liquid crystal response speed between pixels whose pixel values increase and pixels whose pixel values decrease during a transition from a first frame to a second frame, the liquid crystal display device comprising: a correction data acquisition unit; and a light source control unit, the correction data acquisition unit being configured to acquire correction data for reducing the occurrence of the flicker based on the pixel values of the first and second frames, the light source control unit being configured to acquire a backlight correction value based on the correction data, and the backlight correction value being used for the light source control of the backlight during a predetermined period between the first and second frames.
  • the light source control unit is configured to obtain a backlight correction value based on correction data for reducing the occurrence of flicker, and when a frame is displayed, the backlight is driven at a setting value that takes into account this backlight correction value, thereby reducing flicker.
  • the correction data acquisition unit acquires the correction data using an estimated pixel value based on the liquid crystal response characteristics, the estimated pixel value being a pixel value at an intermediate timing, and the intermediate timing being a timing between the first and second frames.
  • a liquid crystal display device according to any one of [1] to [3], wherein the light source control unit is configured to obtain the backlight correction value to be applied to pixels in the pixels within the region based on the correction data of the pixels within the region, and the pixels within the region are composed of a plurality of pixels included in a predetermined region of a first and second frame.
  • the statistical value is an average value, a median value, or a value obtained based on a histogram.
  • a liquid crystal display device according to any one of [4] to [7], wherein the correction data acquisition unit is configured to acquire an amount of flicker for each of the predetermined regions, and is configured to determine whether or not to use the correction data and the backlight correction value for the predetermined regions based on the amount of flicker, and the amount of flicker corresponds to a degree to which the flicker occurs in the predetermined regions during a transition from a first frame to a second frame.
  • the first and second frames are dot mesh images.
  • a liquid crystal display device according to any one of [1] to [9], wherein the light source control is local dimming control, and the backlight correction value is used for the local dimming control of the backlight corresponding to at least a pixel including a pixel of interest during a predetermined period between a first frame and a second frame.
  • a liquid crystal display method for controlling a backlight as a light source the liquid crystal display method reducing flicker caused by a difference in liquid crystal response speed between pixels whose pixel values increase and pixels whose pixel values decrease during a transition from a first frame to a second frame, the method comprising: a correction data acquisition step; and a backlight correction value acquisition step, in which correction data for reducing the occurrence of the flicker is acquired based on pixel values of the first and second frames, and in which a backlight correction value is acquired based on the correction data, the backlight correction value is used for the light source control of the backlight during a predetermined period between the first and second frames.
  • FIG. 1 is a schematic diagram showing a liquid crystal display device 100 according to an embodiment of the present invention and an output device 200 that outputs a video signal.
  • FIG. 2 is a functional block diagram of the liquid crystal display device 100 shown in FIG.
  • FIG. 3 shows frame F1 as the previous frame.
  • FIG. 4 shows pixel values at each coordinate of the frame F1 shown in FIG.
  • FIG. 5 shows frame F2 as the subsequent frame.
  • FIG. 6 shows pixel values at each coordinate of the frame F2 shown in FIG.
  • FIG. 7 is an example of a look-up table (LUT) that associates pixel values of a previous frame with pixel values of a subsequent frame.
  • FIG. 8 shows pixel values at each coordinate at intermediate timing.
  • FIG. LUT look-up table
  • FIG. 9 is a graph for explaining how the pixel value of each coordinate (here, coordinate (1, 1)) is estimated to change over time.
  • FIG. 10 is a flowchart illustrating various calculation steps when obtaining the backlight correction value Bc.
  • Figures 11A to 11C show frames F1 and F2 that are different in the likelihood of flicker occurring.
  • Frame F1 in Figures 11A to 11C is the same, and frame F2 in Figures 11A to 11C is different.
  • Figure 11A shows the case in Figures 11A to 11C where flicker is most likely to occur.
  • Figure 11B shows the case where flicker occurs slightly
  • Figure 11C shows the case where flicker is least likely to occur among Figures 11A to 11C.
  • FIG. 12A shows a transition line G of the average estimated pixel value when pixel values transition as in Fig. 11A.
  • Fig. 12A shows differences Ar1 to Ar9 corresponding to the differences between the transition line G of the average estimated pixel value and a reference line RL passing through the timing of the subsequent frame.
  • Fig. 12B shows a transition line G of the average estimated pixel value when pixel values transition as in Fig. 11B.
  • Fig. 12C shows a transition line G of the average estimated pixel value when pixel values transition as in Fig. 11C.
  • FIG. 13 is a flowchart illustrating various calculation steps when obtaining the backlight correction value Bc according to the first modification of the embodiment.
  • FIG. 13 is a flowchart illustrating various calculation steps when obtaining the backlight correction value Bc according to the first modification of the embodiment.
  • FIG. 14 is a flowchart illustrating various calculation steps when acquiring the backlight correction value Bc according to the method 1 of the second modified example of the embodiment.
  • Fig. 15A shows a predetermined region Rg of frame F1 as a previous frame and a predetermined region Rg of frame F2 as a subsequent frame, which are used in method 1 of modified example 2 of the embodiment.
  • Fig. 15B shows a difference D in pixel values between frames F1 and F2.
  • Fig. 15C shows the liquid crystal response characteristic (liquid crystal response time) of each pixel calculated from the LUT.
  • Fig. 15D shows an estimated transition amount of pixel values of each pixel at intermediate timing.
  • Fig. 15E shows an ideal value of the transition amount of pixel values of each pixel at intermediate timing.
  • Fig. 15A shows a predetermined region Rg of frame F1 as a previous frame and a predetermined region Rg of frame F2 as a subsequent frame, which are used in method 1 of modified example 2 of the embodiment.
  • FIG. 16 shows a straight line L1 for explaining how the pixel value of each coordinate (here, coordinate (2, 2)) is estimated to change over time, and a straight line L2 showing the ideal transition of each coordinate (here, coordinate (2, 2)).
  • FIG. 17 is a functional block diagram of a liquid crystal display device 100 according to the fifth modification of the embodiment.
  • the overall configuration of a liquid crystal display device 100 will be described.
  • the liquid crystal display device 100 is communicably connected to an output device 200 as shown in FIG. 1.
  • the output device 200 is an information processing device (e.g., a personal computer) and is configured to be able to output a video signal F.
  • the liquid crystal display device 100 is described as acquiring the video signal F from the output device 200 as an external device, but the present invention is not limited to this.
  • the video signal F may be stored in advance in the liquid crystal display device 100, and the liquid crystal display device 100 may process the video signal F.
  • the liquid crystal display device 100 is composed of a liquid crystal monitor. As shown in Fig. 2, the liquid crystal display device 100 includes a frame calculation processing unit 1, a correction data acquisition unit 2, a local dimming control unit 3 as a light source control unit, a memory 4, a liquid crystal driving circuit 5, a backlight driving circuit 6, and a liquid crystal display unit 7 having a liquid crystal panel 7A and a backlight 7B.
  • the memory 4 stores data used in the processing of the correction data acquisition unit 2.
  • Each component of the liquid crystal display device 100 may be realized by software or hardware. When realized by software, various functions can be realized by a CPU executing a computer program. The program may be stored in a built-in storage unit or a computer-readable non-transient recording medium.
  • the program stored in an external storage unit may be read and realized by so-called cloud computing.
  • cloud computing When realized by hardware, it can be realized by various circuits such as an ASIC, an FPGA, or a DRP (Dynamically Reconfigurable Processor).
  • various information and concepts including the same are handled, but these are represented by high and low signal values as a binary bit collection consisting of 0 or 1, and communication and calculation can be performed by the above-mentioned software or hardware aspects.
  • the liquid crystal display device 100 has a function for acquiring a backlight correction value Bc used when driving the backlight 7B in order to reduce flicker.
  • flicker is flickering that occurs in the liquid crystal display unit 7 due to pixel response delays when frames transition.
  • flicker corresponds to a gap in pixel values (luminance) occurring between previous and subsequent frames due to the difference in the liquid crystal response speed of a pixel whose pixel value (luminance) increases and the liquid crystal response speed of a pixel whose pixel value (luminance) decreases when frames transition.
  • the backlight correction value Bc described above makes it possible to reduce this gap.
  • a frame transition corresponds to a transition from a frame of any timing (an example of a first frame) to a frame of the next timing (an example of a second frame).
  • the pixel response delay means that there is a difference in response between pixels depending on the operation of the pixels of the liquid crystal display unit 7.
  • the liquid crystal display unit 7 will be described as having a response speed slower when the pixel value of each pixel of the liquid crystal display unit 7 increases than when the pixel value of each pixel of the liquid crystal display unit 7 decreases.
  • a pixel whose pixel value decreases reaches a desired pixel value more quickly than a pixel whose pixel value increases.
  • an increase in pixel value refers to a pixel value (relatively low value) of a pixel at any coordinate in a frame at any timing (an example of a first frame) increasing to a pixel value (relatively high value) of a pixel at the same coordinate in a frame next to the given frame (an example of a second frame).
  • a decrease in pixel value refers to a pixel value (relatively high value) of a pixel at any coordinate in a frame at any timing decreasing to a pixel value (relatively low value) of a pixel at the same coordinate in a frame next to the given frame.
  • the liquid crystal display device 100 obtains the above-mentioned backlight compensation value Bc using a pair of consecutive frames. For example, assume that the video signal F displays frames in the order of frame F1, frame F2, frame F3, frame F4, and so on. In this case, the liquid crystal display device 100 obtains the backlight compensation value Bc to be used in the period between frames F1 and F2 using frames F1 and F2. Similarly, the liquid crystal display device 100 obtains the backlight compensation value Bc to be used in the period between frames F2 and F3 using frames F2 and F3, and also obtains the backlight compensation value Bc to be used in the period between frames F3 and F4 using frames F3 and F4.
  • the video signal F has frames F1, F2, F3, F4, etc. in chronological order.
  • frame F1 may be referred to as the previous frame and frame F2 as the next frame.
  • Frame F1, which is the previous frame, and frame F2, which is the next frame are examples of the first and second frames.
  • frame F2, which is the previous frame, and frame F3, which is the next frame are also examples of the first and second frames
  • frame F3, which is the previous frame, and frame F4, which is the next frame are also examples of the first and second frames.
  • the frame calculation processing section 1 has a difference calculation function and a statistical value calculation function.
  • Difference calculation function (step S1 in FIG. 10: difference acquisition step)
  • the difference calculation function is a function that acquires a video signal F and acquires a difference D between pixel values (tone values) of a pair of frames in the video signal F.
  • the pixel value difference D is acquired for each coordinate of the previous and next frames (step S1 in FIG. 10: difference acquisition step).
  • the pixel value (tone value) is described as having a value of 0 to 255 (8 bits), but is not limited to this.
  • the pixel values of each pixel in the frame F1 shown in FIG. 3 are as shown in FIG. 4, and are, for example, 30 at the coordinates (1, 1) and 150 at the coordinates (2, 1).
  • the pixel values of each pixel in the frame F2 shown in FIG. 5 are as shown in FIG. 6, and are, for example, 90 at the coordinates (1, 1) and 35 at the coordinates (2, 1).
  • the coordinates (x, y) are defined by the position in the x direction and the position in the y direction perpendicular to the x direction.
  • the frame calculation processing unit 1 calculates the difference between the pixel values of each coordinate for the previous and next frames, the frames F1 and F2.
  • the statistical value calculation function is a function for obtaining statistical values (average values in this embodiment) of pixel values of a predetermined region Rg in previous and next frames (frames F1 and F2). First, the predetermined region Rg will be described.
  • the liquid crystal of the liquid crystal display unit 7 is controlled for each pixel, whereas the backlight 7B is controlled for each predetermined region Rg.
  • the predetermined region Rg is significant as a control unit for local dimming control.
  • local dimming control refers to control in which a set value is changed for each area, rather than controlling the entire area of the liquid crystal display unit 7 with a uniform set value.
  • Local dimming control is an example of light source control.
  • this embodiment is configured to obtain a backlight correction value Bc based on correction data Ec, and drive the backlight 7B based on the backlight correction value Bc to suppress flicker.
  • the predetermined region Rg can be set by various methods, and may be set to pixels forming a line arranged in the x direction shown in Fig. 3 (15 pixels in Fig. 3), or may be set to pixels forming a line arranged in the y direction shown in Fig. 3 (10 pixels in Fig. 3) In this embodiment, the predetermined region Rg is set to a 5 x 5 region in the x and y directions.
  • the predetermined region Rg includes intra-region pixels that are composed of a plurality of pixels.
  • the intra-region pixels include a pixel of interest a1 and peripheral pixels a2 (non-pixels of interest) that are arranged around the pixel of interest a1.
  • the pixel of interest a1 is a reference pixel in the predetermined region Rg, and in the embodiment, is located at the upper left corner of the predetermined region Rg.
  • the peripheral pixels a2 are pixels within a range of 5 pixels in the x direction and 5 pixels in the y direction from the pixel of interest a1.
  • an average value v1 of pixel values is an average value of pixel values in a 5 x 5 range shown in Fig. 4, and is approximately 109. Since the degree of flicker can be judged based on the deviation between the average value v1 and an average value vc described below, the average value v1 has significance as a criterion. For this reason, the average value v1 can also be called a target average value (target average pixel value). In this way, the frame calculation processing unit 1 is configured to obtain the average value v1 as a statistical value (step S2 in Fig. 10: first statistical value obtaining step).
  • the average pixel value v2 is the average pixel value in the 5 ⁇ 5 range shown in FIG.
  • the average value v1 is an example of a first statistical value.
  • the calculation of the statistical values by the frame calculation processing unit 1 and the calculation of the correction data Ec by the correction data acquisition unit 2 described later are performed sequentially for each predetermined region Rg.
  • the calculation of the statistical values, etc. in the 5 ⁇ 5 predetermined region Rg with the coordinates (1,1) as the reference (pixel of interest) is performed in parallel or sequentially with the calculation of the statistical values, etc. in the 5 ⁇ 5 predetermined region Rg with the coordinates (6,1) as the reference (pixel of interest).
  • the same is true for the 5 ⁇ 5 predetermined region Rg with the coordinates (11,1), (1,6), (6,6), and (11,6) as the reference (pixel of interest).
  • the entire region of the liquid crystal panel 7A is divided into six, and these regions are subject to local dimming control.
  • the entire region of the liquid crystal panel 7A is described as being subject to local dimming control, but this is not limited to this.
  • any region that is not significantly affected by flicker may be determined in advance, and the region may be excluded from the local dimming control.
  • correction data acquisition unit 2 has a function of calculating correction data Ec of pixel values.
  • the correction data acquisition unit 2 is configured to perform a correction data acquisition step.
  • the correction data acquisition step includes step S3 (estimated pixel value acquisition step) shown in Fig. 10, step S4 (second statistical value acquisition step) shown in Fig. 10, and step S5 (correction data calculation step) shown in Fig. 10.
  • the correction data acquisition unit 2 acquires the liquid crystal response characteristics (liquid crystal response time or liquid crystal response speed) associated with the pixel values of frames F1 and F2 from an LUT (look-up table), and acquires the correction data Ec using this liquid crystal response characteristic.
  • the correction data acquisition unit 2 also acquires the correction data Ec using an estimated pixel value based on this liquid crystal response characteristic. A method for acquiring the correction data Ec will be specifically described below.
  • the pixel value correction data Ec is a value that indicates the extent to which the pixel value (liquid crystal drive signal Ls of the liquid crystal drive circuit 5) needs to be corrected to reduce flicker, assuming that the setting value of the backlight 7B is not changed when moving from frame F1 to frame F2.
  • the pixel value correction data Ec related to the liquid crystal is acquired in advance, and this liquid crystal correction data Ec is converted into a correction amount (backlight correction value) for the backlight 7B described below, to reduce flicker.
  • the correction data Ec is the amount of pixel value related to the liquid crystal that corresponds to the correction amount of the backlight 7B setting value.
  • the correction data Ec of pixel values can be obtained by various methods, but one example will be described here.
  • the occurrence of flicker can be understood as the fluctuation of the average luminance in a predetermined range of the liquid crystal display unit 7 during the transition between previous and next frames. That is, as described above, the average value v1 of the pixel values in the previous frame is 109, and the average value v2 of the pixel values in the next frame is 108, and the two are quite close, but at an intermediate timing (a timing between the previous and next frames), if the average value of the pixel values deviates from the average value v1, flicker occurs.
  • the average value vc of the pixel values at the intermediate timing is calculated, and the correction data Ec is calculated using the average value vc.
  • the intermediate timing is the middle timing between the timing of the previous frame and the timing of the next frame. In other words, when the timing of the previous frame is 0 and the timing of the next frame is 1, the intermediate timing corresponds to 0.5. Note that the intermediate timing is not limited to being the middle timing between the timing of the previous frame and the timing of the next frame. Specifically, the intermediate timing may correspond to, for example, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, or 0.70, or may be within a range between any two of the numerical values exemplified here.
  • the memory 4 stores a LUT (lookup table) associated with pixel values of a previous frame (frame F1) and a subsequent frame (frame F2) as shown in FIG. 7.
  • This LUT is configured to estimate (obtain) the liquid crystal response characteristic of an arbitrary coordinate when a pixel value of the previous frame and a pixel value of the arbitrary coordinate of the subsequent frame are determined.
  • the liquid crystal response characteristic corresponds to a liquid crystal response time from a pixel value of a previous frame to a pixel value of a subsequent frame.
  • each liquid crystal response characteristic (liquid crystal response time) has a pixel value (tone value) of 32 as one section, but is not limited to this.
  • 1, 2, 4, 8, 16, 32, and 64 can be adopted as the pixel value (tone value) section of the LUT.
  • the liquid crystal response characteristics (liquid crystal response time) of a pixel of interest a1 in a predetermined region Rg shown in Figures 3 and 5 will be described.
  • the pixel value of the pixel of interest a1 is 30 as shown in Figure 4, so section 31 close to the pixel value 30 is referenced.
  • the pixel value of the pixel of interest a1 is 90 as shown in Figure 6, so section 95 close to the pixel value 90 is referenced.
  • the liquid crystal response characteristics (liquid crystal response time) of this pixel of interest a1 is 33.5 msec.
  • the transition of the pixel of interest a1 can be expressed as a straight line L1 that satisfies the difference D (the difference between pixel value 30 and pixel value 90) and the liquid crystal response characteristic (liquid crystal response time): 33.5 msec, as shown in FIG. 9.
  • the straight line L1 is the transition of the pixel value that is assumed to be real. It can be seen that in this straight line L1, the estimated pixel value predicted at the intermediate timing is 45 (see coordinates (1,1) in FIG. 8).
  • the correction data acquisition unit 2 can acquire the estimated pixel value based on the difference D and the liquid crystal response characteristic (liquid crystal response time) of the LUT (step S3 in FIG. 10: estimated pixel acquisition step).
  • a table can be obtained in which the estimated pixel value for each coordinate is specified, as shown in FIG. 8. From the table in FIG. 8, the average value vc of the pixel values of a predetermined 5 ⁇ 5 region at the intermediate timing can be calculated, which is 97.
  • the correction data acquisition unit 2 can acquire the average value vc based on the estimated pixel values of the predetermined region Rg (step S4 in FIG. 10: second statistical value acquisition step).
  • T N corresponds to the timing in the previous frame
  • T N+1 corresponds to the timing in the next frame
  • T M corresponds to the intermediate timing.
  • T is the time between the previous and next frames, which is determined in advance and is 16.66 msec in the embodiment.
  • 0.5T is the time from the timing of the previous frame to the intermediate timing, which is half the value of T in the embodiment.
  • the deviation between the average pixel value v1 and the average pixel value vc corresponds to the magnitude of the flicker.
  • the average pixel value is expected to drop from 109 to 97, which may cause flicker.
  • the correction data acquisition unit 2 can calculate the correction data Ec based on the difference between the average pixel value v1 and the average pixel value vc (step S5 in FIG. 10: correction data calculation step).
  • the liquid crystal response characteristic stored in the LUT of memory 4 has been described as the liquid crystal response time, but this is not limited to this and may be the liquid crystal response speed. This is because the liquid crystal response speed corresponds to the time required for a transition from one arbitrary pixel value to another arbitrary pixel value, and is therefore essentially the same as the liquid crystal response time.
  • the local dimming control unit 3 has a backlight correction value calculation function and is configured to acquire a backlight correction value based on the correction data Ec acquired by the correction data acquisition unit 2 (step S6 in FIG. 10: backlight correction value acquisition step).
  • the backlight correction value calculation function is a function that converts the correction data Ec related to the pixel values (tone values) of the liquid crystal into a backlight correction amount (backlight correction value).
  • the setting value of the backlight 7B is increased by an amount corresponding to the correction data (12), which is the difference in this average value. This increase corresponds to the backlight correction value.
  • the correction data Ec is a negative value, the setting value of the backlight 7B is decreased, and if the correction data Ec is 0, the setting value of the backlight is not changed.
  • a setting value for driving the backlight 7B can be set in the backlight driving circuit 6.
  • the setting value can be determined by the user or is previously determined in the liquid crystal display device 100.
  • the setting value can be set, for example, between 0 and 1000.
  • the setting value of the backlight 7B is 0 (minimum value)
  • the luminance of the backlight 7B is 0 cd/ m2
  • the setting value of the backlight 7B is 1000 (maximum value)
  • the luminance of the backlight 7B is 500 cd/ m2 .
  • the luminance of the backlight 7B increases by 0.5 cd/ m2 .
  • the luminance of the backlight 7B is 250 cd/ m2 .
  • the correction data Ec is converted to luminance (unit: cd/ m2 ).
  • the conversion can be calculated using the conversion formula: (luminance of the backlight 7B) ⁇ (correction data Ec) ⁇ (possible pixel value).
  • the luminance of the backlight 7B is 250 cd/ m2
  • the correction data Ec is 12, and there are 256 possible pixel values, so the backlight correction value is about 12 cd/ m2 .
  • the luminance of the backlight 7B increases by 0.5 cd/ m2 every time the set value is increased by one, so the backlight driving circuit 6 drives the backlight 7B so as to increase the set value from 500 to 24 (so as to increase the luminance by 12 cd/ m2 ).
  • the calculation here is a rough calculation as an example, but if the luminance setting value of the backlight 7B is in smaller increments, it is possible to reduce flicker more accurately even if the number of significant digits after the decimal point of the backlight correction value increases.
  • the set value of the backlight 7B is determined to be 524 in a 5 ⁇ 5 predetermined region Rg with the coordinates (1, 1) as the reference (pixel of interest).
  • the above calculation is also carried out for other 5 ⁇ 5 predetermined regions Rg having other coordinates such as (6, 1) as references (pixels of interest), and the setting values are determined in the same manner.
  • the period for controlling the backlight 7B using the backlight correction value Bc can be set to be from the timing (T N ) of the start of frame F1 to the timing (T N +1) of displaying the subsequent frame F2, centered around the intermediate timing (T M ).
  • the memory 4 stores a LUT (look-up table) shown in FIG.
  • the liquid crystal drive circuit 5 generates a liquid crystal drive signal Ls for controlling the liquid crystal of the liquid crystal panel 7A for each pixel based on the video signal, and controls the liquid crystal panel 7A.
  • the backlight drive circuit 6 generates a dimming signal Ds corresponding to the setting value of the backlight 7B based on the backlight correction value Bc, and controls the backlight 7B.
  • the backlight drive circuit 6 is configured to perform synchronous control with the liquid crystal drive circuit 5. In other words, the backlight 7B is controlled by the dimming signal Ds so as to be synchronized with the liquid crystal drive circuit 5 controlling the liquid crystal of the liquid crystal panel 7A to display frames at each timing.
  • the liquid crystal display unit 7 has a liquid crystal panel 7A and a backlight 7B.
  • the LEDs of the backlight 7B are arranged on the rear surface of the liquid crystal panel 7A and are of the direct type.
  • the backlight 7B is configured to illuminate the liquid crystal panel 7A with light directly from the rear surface side of the liquid crystal panel 7A.
  • the backlight 7B is described as being a direct type disposed on the rear surface of the liquid crystal panel 7A, but the present invention is not limited to this, and the backlight 7B may be an edge type.
  • the backlight 7B may be configured, for example, with edge type LEDs disposed on each of the four sides of the liquid crystal panel 7A. Even if the backlight 7B is an edge type, the light source can be controlled on an area basis.
  • the local dimming control unit 3 of the liquid crystal display device 100 is configured to acquire a backlight correction value Bc based on correction data Ec for reducing the occurrence of flicker.
  • the backlight 7B is driven at a setting value that takes into account the backlight correction value Bc, thereby reducing flicker.
  • controlling the pixel values means, for example, slowing down the rise and fall of the pixel values of each pixel. This slows down the response characteristics of the liquid crystal, increasing the possibility of causing a phenomenon called "tailing."
  • the term "tailing" refers to the blurring of an image that occurs when, for example, an object moves in a frame during the process of displaying a number of frames.
  • the liquid crystal display device 100 of the embodiment is not configured to control the pixel values of the frame themselves (change the pixel values themselves), but is configured to obtain a backlight correction value Bc for controlling the backlight 7B, so that it is possible to avoid affecting the response characteristics of the liquid crystal and to suppress the occurrence of a phenomenon such as "tailing" that changes the appearance of the displayed image.
  • Modification 3-1 Modification 1 Determining whether to correct a predetermined region Rg according to the amount of flicker
  • the correction data Ec and the backlight correction value Bc for each predetermined region Rg are uniformly acquired, but the present invention is not limited to this.
  • the liquid crystal display device 100 may perform a correction determination step S6 described later and determine whether to use the correction data Ec and the backlight correction value Bc according to the degree of flicker occurrence (amount of flicker).
  • the degree of flicker occurrence amount of flicker
  • the predetermined region Rg of the frame F1 in FIGS. 11A to 11C contains many alternating black and white pixels, and can be said to be somewhat close to a dot mesh image.
  • the predetermined region Rg of frame F2 in Fig. 11A is obtained by shifting the entire predetermined region Rg of frame F1 downward by one position, and the pixel values of the pixels in the top row are 90, 35, 40, 190, and 30. In the case of Fig.
  • the predetermined region Rg of frame F2 in Fig. 11B is set so that the change in the average pixel values between the previous and next frames is small, similar to Fig. 11A, but the distribution of pixel values in the predetermined region Rg of frame F2 in Fig.
  • the average pixel value is significantly greater than the average pixel value of the predetermined region Rg of frame F1, making it less likely for flicker to occur.
  • the degree of flicker occurrence is defined as the amount of flicker.
  • the amount of flicker corresponds to the degree of flicker occurrence in a predetermined region Rg at the transition from the previous frame to the next frame.
  • the amount of flicker can be expressed as the sum of the differences between a transition line G of the average value of the estimated pixel values at each predetermined timing and a reference line RL, in other words, corresponds to the area formed by the transition line G and the reference line RL.
  • the amount of flicker is the sum of the differences Ar1 to Ar9 shown in Fig. 12A. Comparing the cases of Fig. 11A and Fig. 11B, this sum is larger in Fig. 12A, which corresponds to Fig. 11A, and therefore the degree of flicker occurrence is greater in the case of Fig. 11A.
  • the transition line G of the average value and the like will be described below.
  • Each value of the average value transition line G is the same as the average value vc of the estimated pixel values of the 5x5 predetermined area described in the embodiment.
  • the average value vc described in the embodiment was the value at the timing of 0.5T.
  • the pixel values of each coordinate as shown in FIG. 8 can be estimated in increments of 0.1T, and as a result, the average value vc can be calculated in increments of 0.1T.
  • the reference line RL is a horizontal line passing through the timing of frame F2 as the subsequent frame.
  • the degree of flicker occurrence is determined by the deviation of the transition line G from this reference line RL.
  • Difference Ar1 is the difference between the value of the transition line G of the average estimated pixel value at the timing of 0.1T and the value of the reference line RL.
  • differences Ar2 to Ar9 are the differences between the values of the transition line G of the average estimated pixel value (average estimated pixel value) at the timings of 0.2T to 0.9T and the value of the reference line RL.
  • step S1 difference acquisition step
  • step S2 first statistical value acquisition step
  • step S2 acquires an average value v1 of estimated pixel values as a statistical value for each predetermined region Rg based on the previous frame (frame F1).
  • step S3 estimatemated pixel value acquisition step
  • the correction data acquisition unit 2 acquires estimated pixel values of each pixel at each timing based on the difference D and the LUT (see FIG. 7). That is, in step S3, ten matrices of estimated pixel values as shown in FIG. 8 are generated.
  • the timings refer to 0.1T, 0.2T, 0.3T, 0.4T, 0.5T, 0.6T, 0.7T, 0.8T, 0.9T, and 1.0T.
  • the liquid crystal response is linear.
  • the method of calculating the estimated pixel value at each timing is the same as the method described in FIG. 9 in the embodiment. That is, the section from T N to T N+1 shown in FIG.
  • the value of the straight line L1 in each divided section is the estimated pixel value at each timing of the pixel at coordinates (1, 1) which is the pixel of interest.
  • the estimated pixel values of the other pixels can also be obtained.
  • step S4 (second statistical value acquisition step), the correction data acquisition unit 2 acquires the average value vc of the estimated pixel values for each predetermined region Rg at each timing (0.1T, 0.2T, 0.3T, 0.4T, 0.5T, 0.6T, 0.7T, 0.8T, 0.9T, 1.0T).
  • step S5 the correction data acquisition unit 2 acquires the amount of flicker for each predetermined region Rg based on the average value vc of the estimated pixel values at each timing acquired in step S4.
  • the amount of flicker for each predetermined region Rg can be acquired by summing up the differences Ar1 to Ar9, as described above.
  • step S6 correction determination step
  • the correction data acquisition unit 2 determines a predetermined region Rg for which backlight correction is to be performed based on the amount of flicker acquired in step S5. If the amount of flicker in the predetermined region Rg is equal to or greater than a predetermined threshold, the correction data acquisition unit 2 determines that the predetermined region Rg is a predetermined region Rg for which correction is to be performed.
  • the correction data acquisition unit 2 determines that the predetermined region Rg is a predetermined region Rg for which correction is not to be performed. For the predetermined region Rg for which it has been determined that correction is to be performed, correction data Ec and a backlight correction value Bc will be obtained in a later step. On the other hand, for the predetermined region Rg for which it has been determined that no correction is to be performed, the correction data Ec and the backlight correction value Bc are not acquired in the subsequent steps.
  • step S7 the correction data acquisition unit 2 calculates correction data Ec for the predetermined region Rg determined to be corrected based on the difference between the average pixel value v1 and the average estimated pixel value vc at the intermediate timing, as in the embodiment. Note that, since the average estimated pixel value vc at 0.5T (intermediate timing) has already been acquired in step S4, the correction data acquisition unit 2 may use this already acquired average value vc. The correction data acquisition unit 2 does not calculate the correction data Ec for the predetermined region Rg for which it has been determined that no correction is to be performed.
  • step S8 backlight correction value acquisition step
  • the local dimming control unit 3 acquires the backlight correction value Bc based on the correction data Ec acquired by the correction data acquisition unit 2. Note that the method by which the local dimming control unit 3 converts the correction data Ec into the backlight correction value Bc is the same as in the embodiment.
  • Backlight 7B can be controlled for each pixel
  • the control using the backlight correction value Bc is performed for the entire region of the predetermined region Rg, but the present invention is not limited to this.
  • the predetermined region Rg can be divided into desired areas narrower than the predetermined region Rg. As an example, the area is described as being for each pixel. In this way, if the minimum area in which the backlight 7B can be independently controlled is narrow, it becomes possible to correct the backlight 7B by targeting pixels in the predetermined region Rg that are likely to be particularly affected by flicker, and the effect of reducing flicker more reliably can be expected.
  • Method 1 of Modification 2 when control is performed using the backlight correction value Bc, specific pixels that have a high effect of reducing flicker are extracted.
  • the configuration of Method 1 of Modification 2 can be implemented in at least two ways, which will be described separately below.
  • Method 1 of Modification 2 When the backlight correction value Bc differs for each pixel
  • the calculation flow of the backlight correction value Bc in Method 1 of Modification 1 does not have Step S2 in the embodiment (see FIG. 10), and newly includes Step S3 (ideal value acquisition step) and Step S4 (specific pixel extraction step) shown in FIG. 4.
  • step S1 difference acquisition step
  • the frame calculation processing unit 1 acquires the pixel value difference D for each coordinate of the previous and next frames (frames F1 and F2) in the same manner as in the embodiment.
  • the acquired difference D is as shown in FIG. 15B.
  • step S2 estimated transition amount acquisition step
  • the correction data acquisition unit 2 acquires an estimated transition amount of each pixel at the intermediate timing based on the difference D and the LUT (see FIG. 7).
  • the estimated transition amount is the difference between the estimated pixel value at the intermediate timing (see FIG. 8) and the pixel value of the previous frame, frame F1. Therefore, the estimated transition amount acquisition step of this step S2 is substantially the same as the estimated pixel value acquisition step described in the embodiment.
  • the liquid crystal response characteristics (liquid crystal response time) of each pixel shown in Fig. 15C can be obtained by using the LUT shown in Fig. 7.
  • the estimated transition amount of each pixel shown in Fig. 15D can be obtained by using the liquid crystal response characteristics (liquid crystal response time) of each pixel.
  • the estimated transition amount will be specifically described with reference to FIG. 16.
  • the pixel at coordinates (2, 2) will be described as an example.
  • the straight line L1 shown in FIG. 16 has the same meaning as the straight line L1 shown in FIG. 9 described in the embodiment.
  • the pixel at coordinates (2, 2) changes from a pixel value of 20 to a pixel value of 150.
  • the LUT shown in FIG. 7 shows that the liquid crystal response characteristic at coordinates (2, 2) is 25.4 msec. This shows that the pixel value expected at the intermediate timing for the straight line L1 shown in FIG. 16 is 62.7. Therefore, the estimated transition amount at the intermediate timing for coordinates (2, 2) is 42.7, as shown in FIG. 15D. For other coordinates, the estimated transition amount at the intermediate timing can be obtained by similar calculation.
  • step S3 the correction data acquisition unit 2 acquires an ideal value of the transition amount.
  • the ideal value of the transition amount is the difference between the pixel value of the previous frame and the pixel value of the intermediate timing when the pixel value of each pixel ideally transitions from the previous frame to the next frame. It should be noted that by assuming that the ideal transition is a linear transition from the pixel value of the previous frame to the pixel value of the next frame, it is possible to obtain the estimated transition amount for each pixel shown in FIG. 15E. Specifically, the ideal transition can be represented by a straight line connecting the pixel value of the previous frame and the pixel value of the next frame, as shown by line L2 in Fig. 16.
  • step S4 the correction data acquisition unit 2 extracts a specific pixel based on the difference between the ideal transition amount (FIG. 15E) and the estimated transition amount of the pixel value (FIG. 15D). Specifically, the correction data acquisition unit 2 extracts a specific pixel based on the insufficient transition amount data shown in FIG. 15F.
  • the value of the insufficient transition amount data changes depending on whether the absolute value of the liquid crystal response time shown in FIG. 15C is greater than or equal to the time between the previous and next frames (16.66 msec).
  • the absolute value of the liquid crystal response time is equal to or less than the time, it means that the pixel value transitions to the pixel value of the subsequent frame within the time.
  • FIG. 15C pixels whose absolute value of the liquid crystal response time is equal to or less than the time between the previous and next frames (16.66 msec) are highlighted by being surrounded by a dashed circle. Since such pixels are considered not to require correction, the insufficient transition amount data is set to 0.
  • the sum of the positive numbers of the deficient transition amount data shown in FIG. 15F is 139.5, and the sum of the negative numbers is 20.
  • the correction data acquisition unit 2 resets the absolute values of the deficient transition amount data with the larger positive and negative sums to 0, starting with the largest absolute value, until the relationship between the magnitudes of these sums is reversed.
  • the positive numbers are reset to 0, starting with the largest.
  • 22.4 at coordinate (4,2), 22.3 at coordinate (2,2), 21 at coordinate (1,3) and coordinate (3,5), and 15.1 at coordinate (1,1) are reset to 0, starting with the largest.
  • the sum of the remaining positive numbers is 21.9.
  • the correction data acquisition unit 2 stops the calculation of setting the insufficient transition amount data to 0, and extracts the coordinates related to the calculation before the magnitude relationship between the positive sum and the negative sum is reversed as specific pixels.
  • the specific pixels are coordinates (4, 2), (2, 2), (1, 3), (3, 5), and (1, 1). Note that in FIG. 15F, the specific pixels are highlighted by being surrounded by dashed circles, and pixels whose value will reverse the magnitude relationship between the positive sum and the negative sum by setting them to 0 are highlighted by being surrounded by dashed squares.
  • the correction data acquisition unit 2 resets the missing transition amount data of the larger sign of the positive sum or the negative sum to zero, starting from the larger missing transition amount data of the larger sign, for the missing transition amount data based on the difference between the ideal value of the transition amount and the estimated transition amount of the pixel value, until the positive sum and the negative sum are reversed.
  • the correction data acquisition unit 2 then extracts the pixel at the coordinates that have been reset to zero as the specific pixel.
  • step S5 the correction data acquisition unit 2 calculates correction data Ec for each pixel extracted as a specific pixel.
  • the correction data Ec the missing transition amount data shown in FIG. 15F can be used.
  • the correction data Ec is 7. Note that the correction data acquisition unit 2 does not acquire correction data Ec for pixels in the predetermined region Rg that were not extracted as specific pixels.
  • step S6 backlight correction value acquisition step
  • the local dimming control unit 3 acquires the backlight correction value Bc of each specific pixel based on the correction data Ec of each specific pixel. Note that the method by which the local dimming control unit 3 converts the correction data Ec of the specific pixel into the backlight correction value Bc is the same as in the embodiment.
  • the intermediate timing is set to 0.5T, but this is not limited to this and may be other timings as explained in the embodiment.
  • Method 1 or 2 of Modification 2 may be combined with, for example, the configuration of Modification 1.
  • a predetermined region Rg to be corrected may be determined by Modification 1, and specific pixels may be extracted from the determined predetermined region.
  • the backlight correction value Bc is obtained after performing local dimming control as an example of light source control, but the present invention is not limited to this, and the light source control does not have to be local dimming control.
  • various values are calculated for each area (each predetermined region Rg) and the backlight is controlled, but in the present modification 5, various values are calculated in a state where the entire backlight 7B is grouped together and the backlight is controlled.
  • the configuration of modification 5 corresponds to expanding the predetermined region Rg described in the embodiment to the entire region of the liquid crystal panel 7A (the entire 15 ⁇ 10 region in the frame of FIG. 3 or FIG. 5).
  • the liquid crystal display device 100 includes a light source control unit 3t instead of the local dimming control unit 3 shown in FIG. 2 of the embodiment.
  • the difference calculation function of the frame calculation processor 1 is the same as that of the embodiment.
  • the statistical value calculation function of the frame calculation processor 1 is applied to the entire 15 ⁇ 10 region shown in Fig. 3 and Fig. 5.
  • the calculation method of the average value v1 and the average value v2 is the same as that of the embodiment.
  • the method of calculating the average value vc in the correction data acquisition unit 2 is the same as that in the embodiment. That is, the correction data acquisition unit 2 calculates the average value vc of pixel values of the entire 15 ⁇ 10 region at the intermediate timing using a table in which estimated pixel values of each coordinate are specified, as shown in Fig. 8.
  • the correction data acquisition unit 2 can acquire correction data Ec based on the difference between the average value v1 and the average value vc.
  • the method of acquiring the backlight correction value Bc of the light source control unit is the same as that of the embodiment. That is, the light source control unit can acquire the backlight correction value Bc to be applied to the entire 15 ⁇ 10 region based on the correction data Ec acquired by the correction data acquisition unit 2.
  • Modification 5 can also be combined with Modification 1. That is, the liquid crystal display device 100 according to Modification 5 may have a configuration for determining, in accordance with the amount of flicker, whether or not to perform backlight correction for the entire 15 ⁇ 10 region. Furthermore, Modification 5 can be combined with Method 1 and Method 2 of Modification 2. That is, the liquid crystal display device 100 according to Modification 5 may obtain the backlight correction value Bc for each pixel in the entire 15 ⁇ 10 region. Furthermore, this modified example 5 can be combined with modified example 1 and method 1 or method 2 of modified example 2.
  • Frame calculation processing unit 2 Correction data acquisition unit 3: Local dimming control unit (light source control unit) 3t: Light source control unit 4: Memory 5: Liquid crystal drive circuit 6: Backlight drive circuit 7: Liquid crystal display unit 7A: Liquid crystal panel 7B: Backlight 100: Liquid crystal display device 200: Output device

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

The purpose of the present invention is to provide a liquid-crystal display device, a liquid-crystal display method, and a program which make it possible to reduce flickering. Provided is a liquid-crystal display device which controls a light source of backlight, wherein the liquid-crystal display device is configured to reduce flickering caused by the difference in liquid crystal response speed between pixels of which pixel values increase and pixels of which pixel values decrease at the time of transition from a first frame to a second frame, and comprises a correction data acquisition unit and a light source control unit. The correction data acquisition unit is configured to acquire, on the basis of the pixel values of the first and second frames, correction data for reducing the occurrence of flicking. The light source control unit is configured to acquire a backlight correction value on the basis of the correction data, wherein the backlight correction value is used for controlling the light source of backlight in a predetermined period between the first and second frames.

Description

液晶表示装置、液晶表示方法及びプログラムLiquid crystal display device, liquid crystal display method, and program
 本発明は、液晶表示装置、液晶表示方法及びプログラムに関する。 The present invention relates to a liquid crystal display device, a liquid crystal display method, and a program.
 液晶表示装置に表示するフレームが移行するときには、各画素の画素値(輝度)が表示するフレームに応じて変化する。ここで、画素値が上昇する画素の画素値の応答速度と、画素値が低下する画素の画素値の応答速度が異なることから、フレームが移行するときに液晶表示装置にフリッカーが生じ、画質の低下に繋がることがある(例えば、特許文献1参照)。 When a frame displayed on a liquid crystal display device changes, the pixel value (brightness) of each pixel changes according to the frame being displayed. Here, since the response speed of pixels whose pixel values increase differs from the response speed of pixels whose pixel values decrease, flicker occurs in the liquid crystal display device when the frame changes, which can lead to a decrease in image quality (see, for example, Patent Document 1).
米国特許出願公開第2011/0199287号明細書US Patent Application Publication No. 2011/0199287
 液晶表示装置に表示するフレームに応じてフリッカーを生じさせる度合が変わってくるが、例えば、白の画素及び黒の画素が交互に並ぶドットメッシュと呼ばれるフレームでは、フリッカーが生じやすい。 The degree to which flicker occurs varies depending on the frame displayed on the LCD display device, but for example, flicker is likely to occur in a frame called a dot mesh, which is an alternating arrangement of white and black pixels.
 本発明はこのような事情に鑑みてなされたものであり、フリッカーを低減することが可能な液晶表示装置、液晶表示方法及びプログラムを提供することを目的としている。 The present invention was made in consideration of these circumstances, and aims to provide a liquid crystal display device, a liquid crystal display method, and a program that can reduce flicker.
 本発明によれば、以下の液晶表示装置が提供される。
[1]バックライトを光源制御する液晶表示装置において、前記液晶表示装置は、第1フレームから第2フレームへの移行時に画素値が上昇する画素と低下する画素との液晶応答速度の差に起因するフリッカーを低減するように構成され、補正用データ取得部と、光源制御部とを備え、前記補正用データ取得部は、第1及び第2フレームの画素値に基づいて、前記フリッカーが生じることを低減するための補正用データを取得するように構成され、前記光源制御部は、前記補正用データに基づいてバックライト補正値を取得するように構成され、前記バックライト補正値は、第1及び第2フレームの間の予め定められた期間において、前記バックライトの前記光源制御に用いられる、液晶表示装置。
According to the present invention, the following liquid crystal display device is provided.
[1] A liquid crystal display device that controls a backlight as a light source, the liquid crystal display device being configured to reduce flicker caused by a difference in liquid crystal response speed between pixels whose pixel values increase and pixels whose pixel values decrease during a transition from a first frame to a second frame, the liquid crystal display device comprising: a correction data acquisition unit; and a light source control unit, the correction data acquisition unit being configured to acquire correction data for reducing the occurrence of the flicker based on the pixel values of the first and second frames, the light source control unit being configured to acquire a backlight correction value based on the correction data, and the backlight correction value being used for the light source control of the backlight during a predetermined period between the first and second frames.
 本発明では、光源制御部が、フリッカーが生じることを低減するための補正用データに基づいてバックライト補正値を取得するように構成されており、フレームが表示される際にこのバックライト補正値が加味された設定値でバックライトが駆動されることで、フリッカーを低減することができる。 In the present invention, the light source control unit is configured to obtain a backlight correction value based on correction data for reducing the occurrence of flicker, and when a frame is displayed, the backlight is driven at a setting value that takes into account this backlight correction value, thereby reducing flicker.
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
[2][1]に記載の液晶表示装置であって、前記補正用データ取得部は、第1フレームの画素値と第2フレームの画素値とが関連付けられた液晶応答特性を用いて、前記補正用データを取得し、前記液晶応答特性は、液晶応答速度又は液晶応答時間である、液晶表示装置。
[3][2]に記載の液晶表示装置であって、前記補正用データ取得部は、前記液晶応答特性に基づいた推定画素値を用いて、前記補正用データを取得し、前記推定画素値は、中間タイミングにおける画素値であり、前記中間タイミングは、第1及び第2フレームの間のタイミングである、液晶表示装置。
[4][1]~[3]の何れか1つに記載の液晶表示装置であって、前記光源制御部は、領域内画素の前記補正用データに基づいて、前記領域内画素中の画素に対して適用する前記バックライト補正値を取得するように構成され、前記領域内画素は、第1及び第2フレームの予め定められた領域に含まれる複数の画素で構成される、液晶表示装置。
[5][4]に記載の液晶表示装置であって、前記補正用データ取得部は、第1及び第2統計値の差分に基づいて前記補正用データを取得するように構成され、第1統計値は、第1フレームの前記領域内画素の前記複数の画素の画素値に基づいた統計値であり、第2統計値は、中間タイミングにおける、前記領域内画素の前記複数の画素の画素値に基づいた統計値であり、前記中間タイミングは、第1及び第2フレームの間のタイミングである、液晶表示装置。
[6][5]に記載の液晶表示装置であって、前記統計値は、平均値である、中央値である、又はヒストグラムに基づいて取得される値である、液晶表示装置。
[7][4]に記載の液晶表示装置であって、前記補正用データ取得部は、前記領域内画素の特定画素を抽出するように構成され、且つ、抽出した前記特定画素の前記補正用データを取得するように構成され、前記光源制御部は、前記特定画素の前記補正用データに基づいて前記バックライト補正値を取得するように構成されている、液晶表示装置。
[8][4]~[7]の何れか1つに記載の液晶表示装置であって、前記補正用データ取得部は、前記予め定められた領域ごとにフリッカー量を取得するように構成され、且つ、前記フリッカー量に基づいて、前記予め定められた領域に対して前記補正用データ及び前記バックライト補正値を使用するか否かを決定するように構成され、前記フリッカー量は、第1フレームから第2フレームへの移行時における、前記予め定められた領域の前記フリッカーが発生する度合に対応している、液晶表示装置。
[9][1]~[8]の何れか1つに記載の液晶表示装置であって、第1及び第2フレームは、ドットメッシュ画像である、液晶表示装置。
[10][1]~[9]の何れか1つに記載の液晶表示装置であって、前記光源制御は、ローカルディミング制御であり、前記バックライト補正値は、第1及び第2フレームの間の予め定められた期間において、少なくとも注目画素を含む画素に対応する前記バックライトの前記ローカルディミング制御に用いられる、液晶表示装置。
[11]バックライトを光源制御する液晶表示方法において、前記液晶表示方法は、第1フレームから第2フレームへの移行時に画素値が上昇する画素と低下する画素との液晶応答速度の差に起因するフリッカーを低減し、補正用データ取得ステップと、バックライト補正値取得ステップとを備え、前記補正用データ取得ステップでは、第1及び第2フレームの画素値に基づいて、前記フリッカーが生じることを低減するための補正用データを取得し、前記バックライト補正値取得ステップでは、前記補正用データに基づいてバックライト補正値を取得し、前記バックライト補正値は、第1及び第2フレームの間の予め定められた期間において、前記バックライトの前記光源制御に用いられる、方法。
[12]コンピュータに、[11]に記載の前記液晶表示方法を実行させる、プログラム。
Various embodiments of the present invention will be described below. The embodiments described below can be combined with each other.
[2] A liquid crystal display device as described in [1], wherein the correction data acquisition unit acquires the correction data using a liquid crystal response characteristic in which a pixel value of a first frame and a pixel value of a second frame are associated, and the liquid crystal response characteristic is a liquid crystal response speed or a liquid crystal response time.
[3] A liquid crystal display device as described in [2], wherein the correction data acquisition unit acquires the correction data using an estimated pixel value based on the liquid crystal response characteristics, the estimated pixel value being a pixel value at an intermediate timing, and the intermediate timing being a timing between the first and second frames.
[4] A liquid crystal display device according to any one of [1] to [3], wherein the light source control unit is configured to obtain the backlight correction value to be applied to pixels in the pixels within the region based on the correction data of the pixels within the region, and the pixels within the region are composed of a plurality of pixels included in a predetermined region of a first and second frame.
[5] A liquid crystal display device as described in [4], wherein the correction data acquisition unit is configured to acquire the correction data based on a difference between first and second statistical values, the first statistical value being a statistical value based on pixel values of the plurality of pixels in the region in a first frame, and the second statistical value being a statistical value based on pixel values of the plurality of pixels in the region at an intermediate timing, and the intermediate timing being a timing between the first and second frames.
[6] The liquid crystal display device according to [5], wherein the statistical value is an average value, a median value, or a value obtained based on a histogram.
[7] A liquid crystal display device as described in [4], wherein the correction data acquisition unit is configured to extract a specific pixel from among the pixels within the region, and is configured to acquire the correction data for the extracted specific pixel, and the light source control unit is configured to acquire the backlight correction value based on the correction data for the specific pixel.
[8] A liquid crystal display device according to any one of [4] to [7], wherein the correction data acquisition unit is configured to acquire an amount of flicker for each of the predetermined regions, and is configured to determine whether or not to use the correction data and the backlight correction value for the predetermined regions based on the amount of flicker, and the amount of flicker corresponds to a degree to which the flicker occurs in the predetermined regions during a transition from a first frame to a second frame.
[9] The liquid crystal display device according to any one of [1] to [8], wherein the first and second frames are dot mesh images.
[10] A liquid crystal display device according to any one of [1] to [9], wherein the light source control is local dimming control, and the backlight correction value is used for the local dimming control of the backlight corresponding to at least a pixel including a pixel of interest during a predetermined period between a first frame and a second frame.
[11] A liquid crystal display method for controlling a backlight as a light source, the liquid crystal display method reducing flicker caused by a difference in liquid crystal response speed between pixels whose pixel values increase and pixels whose pixel values decrease during a transition from a first frame to a second frame, the method comprising: a correction data acquisition step; and a backlight correction value acquisition step, in which correction data for reducing the occurrence of the flicker is acquired based on pixel values of the first and second frames, and in which a backlight correction value is acquired based on the correction data, the backlight correction value is used for the light source control of the backlight during a predetermined period between the first and second frames.
[12] A program for causing a computer to execute the liquid crystal display method according to [11].
図1は、実施形態に係る液晶表示装置100とビデオ信号を出力する出力装置200を示す模式図である。FIG. 1 is a schematic diagram showing a liquid crystal display device 100 according to an embodiment of the present invention and an output device 200 that outputs a video signal. 図2は、図1に示す液晶表示装置100の機能ブロック図である。FIG. 2 is a functional block diagram of the liquid crystal display device 100 shown in FIG. 図3は、前フレームとしてのフレームF1を示している。FIG. 3 shows frame F1 as the previous frame. 図4は、図3に示すフレームF1の各座標の画素値を示している。FIG. 4 shows pixel values at each coordinate of the frame F1 shown in FIG. 図5は、後フレームとしてのフレームF2を示している。FIG. 5 shows frame F2 as the subsequent frame. 図6は、図5に示すフレームF2の各座標の画素値を示している。FIG. 6 shows pixel values at each coordinate of the frame F2 shown in FIG. 図7は、前フレームの画素値と、後フレームの画素値とに関連付けられているLUT(ルックアップテーブル)の一例である。FIG. 7 is an example of a look-up table (LUT) that associates pixel values of a previous frame with pixel values of a subsequent frame. 図8は、中間タイミングにおける各座標の画素値を示している。FIG. 8 shows pixel values at each coordinate at intermediate timing. 図9は、各座標(ここでは、座標(1,1))の画素値が時間とともにどのように推移することが推定されるかを説明するためのグラフである。FIG. 9 is a graph for explaining how the pixel value of each coordinate (here, coordinate (1, 1)) is estimated to change over time. 図10は、バックライト補正値Bcを取得する際の各種演算過程を説明するフローチャートである。FIG. 10 is a flowchart illustrating various calculation steps when obtaining the backlight correction value Bc. 図11A~図11Cは、フリッカーが発生しやすさが異なるフレームF1,F2を示している。図11A~図11CにおけるフレームF1は同じであり、図11A~図11CにおけるフレームF2は互いに異なっている。図11Aは、図11A~図11Cの中で最もフリッカーが発生しやすいケースである。図11Bは、フリッカーが僅かに発生するケースであり、図11Cは、図11A~図11Cの中で最もフリッカーが発生しにくいケースである。Figures 11A to 11C show frames F1 and F2 that are different in the likelihood of flicker occurring. Frame F1 in Figures 11A to 11C is the same, and frame F2 in Figures 11A to 11C is different. Figure 11A shows the case in Figures 11A to 11C where flicker is most likely to occur. Figure 11B shows the case where flicker occurs slightly, and Figure 11C shows the case where flicker is least likely to occur among Figures 11A to 11C. 図12Aは、図11Aのような画素値の遷移をする場合における推定画素値の平均値の推移線Gを示している。図12Aでは、推定画素値の平均値の推移線Gと、後フレームのタイミングを通る基準線RLとの差に対応する差Ar1~差Ar9を示している。図12Bは、図11Bのような画素値の遷移をする場合における推定画素値の平均値の推移線Gを示している。図12Cは、図11Cのような画素値の遷移をする場合における推定画素値の平均値の推移線Gを示している。Fig. 12A shows a transition line G of the average estimated pixel value when pixel values transition as in Fig. 11A. Fig. 12A shows differences Ar1 to Ar9 corresponding to the differences between the transition line G of the average estimated pixel value and a reference line RL passing through the timing of the subsequent frame. Fig. 12B shows a transition line G of the average estimated pixel value when pixel values transition as in Fig. 11B. Fig. 12C shows a transition line G of the average estimated pixel value when pixel values transition as in Fig. 11C. 図13は、実施形態の変形例1に係るバックライト補正値Bcを取得する際の各種演算過程を説明するフローチャートである。FIG. 13 is a flowchart illustrating various calculation steps when obtaining the backlight correction value Bc according to the first modification of the embodiment. 図14は、実施形態の変形例2の方法1に係るバックライト補正値Bcを取得する際の各種演算過程を説明するフローチャートである。FIG. 14 is a flowchart illustrating various calculation steps when acquiring the backlight correction value Bc according to the method 1 of the second modified example of the embodiment. 図15Aは、実施形態の変形例2の方法1で用いる、前フレームとしてのフレームF1の予め定められた領域Rgと後フレームとしてのフレームF2の予め定められた領域Rgを示している。図15Bは、フレームF1、F2の画素値の差分Dを示している。図15Cは、LUTから算出される各画素の液晶応答特性(液晶応答時間)を示している。図15Dは、中間タイミングにおける各画素の画素値の推定遷移量を示している。図15Eは、中間タイミングにおける各画素の画素値の遷移量の理想値を示している。図15Fは、不足遷移量データを示している。Fig. 15A shows a predetermined region Rg of frame F1 as a previous frame and a predetermined region Rg of frame F2 as a subsequent frame, which are used in method 1 of modified example 2 of the embodiment. Fig. 15B shows a difference D in pixel values between frames F1 and F2. Fig. 15C shows the liquid crystal response characteristic (liquid crystal response time) of each pixel calculated from the LUT. Fig. 15D shows an estimated transition amount of pixel values of each pixel at intermediate timing. Fig. 15E shows an ideal value of the transition amount of pixel values of each pixel at intermediate timing. Fig. 15F shows insufficient transition amount data. 図16は、各座標(ここでは、座標(2,2))の画素値が時間とともにどのように推移することが推定されるかを説明するための直線L1と、各座標(ここでは、座標(2,2))の理想的な遷移を示す直線L2とを示している。FIG. 16 shows a straight line L1 for explaining how the pixel value of each coordinate (here, coordinate (2, 2)) is estimated to change over time, and a straight line L2 showing the ideal transition of each coordinate (here, coordinate (2, 2)). 図17は、実施形態の変形例5に係る液晶表示装置100の機能ブロック図である。FIG. 17 is a functional block diagram of a liquid crystal display device 100 according to the fifth modification of the embodiment.
 以下、図面を用いて本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 Below, an embodiment of the present invention will be explained using the drawings. The various features shown in the embodiment shown below can be combined with each other. Furthermore, each feature can be an invention independently.
1 全体構成説明
 実施形態に係る液晶表示装置100の全体構成について説明する。実施形態において、液晶表示装置100は、図1に示すように、出力装置200に通信可能に接続されている。なお、出力装置200は、情報処理装置(例えばパーソナル・コンピュータ)であって、ビデオ信号Fを出力可能に構成されている。また、実施形態では、液晶表示装置100が外部装置としての出力装置200からビデオ信号Fを取得するものとして説明しているがこれに限定されるものではなく、ビデオ信号Fが液晶表示装置100に予め記憶されており、液晶表示装置100がそのビデオ信号Fを処理してもよい。
1. Description of Overall Configuration The overall configuration of a liquid crystal display device 100 according to an embodiment will be described. In the embodiment, the liquid crystal display device 100 is communicably connected to an output device 200 as shown in FIG. 1. The output device 200 is an information processing device (e.g., a personal computer) and is configured to be able to output a video signal F. In the embodiment, the liquid crystal display device 100 is described as acquiring the video signal F from the output device 200 as an external device, but the present invention is not limited to this. The video signal F may be stored in advance in the liquid crystal display device 100, and the liquid crystal display device 100 may process the video signal F.
 実施形態において、液晶表示装置100は、液晶モニターで構成される。図2に示すように、液晶表示装置100は、フレーム演算処理部1と、補正用データ取得部2と、光源制御部としてのローカルディミング制御部3と、メモリ4と、液晶駆動回路5と、バックライト駆動回路6と、液晶パネル7A及びバックライト7Bを有する液晶表示部7とを備えている。なお、メモリ4は、補正用データ取得部2の処理で用いるデータが格納される。
 液晶表示装置100の各構成要素は、ソフトウェアによって実現してもよく、ハードウェアによって実現してもよい。ソフトウェアによって実現する場合、CPUがコンピュータプログラムを実行することによって各種機能を実現することができる。プログラムは、内蔵の記憶部に格納してもよく、コンピュータ読み取り可能な非一時的な記録媒体に格納してもよい。また、外部の記憶部に格納されたプログラムを読み出し、いわゆるクラウドコンピューティングにより実現してもよい。ハードウェアによって実現する場合、ASIC、FPGA、又はDRP(Dynamically Reconfigurable Processor)などの種々の回路によって実現することができる。本実施形態においては、様々な情報やこれを包含する概念を取り扱うが、これらは、0又は1で構成される2進数のビット集合体として信号値の高低によって表され、上記のソフトウェア又はハードウェアの態様によって通信や演算が実行され得るものである。
In the embodiment, the liquid crystal display device 100 is composed of a liquid crystal monitor. As shown in Fig. 2, the liquid crystal display device 100 includes a frame calculation processing unit 1, a correction data acquisition unit 2, a local dimming control unit 3 as a light source control unit, a memory 4, a liquid crystal driving circuit 5, a backlight driving circuit 6, and a liquid crystal display unit 7 having a liquid crystal panel 7A and a backlight 7B. The memory 4 stores data used in the processing of the correction data acquisition unit 2.
Each component of the liquid crystal display device 100 may be realized by software or hardware. When realized by software, various functions can be realized by a CPU executing a computer program. The program may be stored in a built-in storage unit or a computer-readable non-transient recording medium. In addition, the program stored in an external storage unit may be read and realized by so-called cloud computing. When realized by hardware, it can be realized by various circuits such as an ASIC, an FPGA, or a DRP (Dynamically Reconfigurable Processor). In this embodiment, various information and concepts including the same are handled, but these are represented by high and low signal values as a binary bit collection consisting of 0 or 1, and communication and calculation can be performed by the above-mentioned software or hardware aspects.
 液晶表示装置100は、フリッカーを低減するために、バックライト7Bを駆動する際に用いるバックライト補正値Bcを取得する機能を有する。ここで、フリッカーは、フレームが移行するときに、画素応答遅延に起因して、液晶表示部7に生じるチラツキである。換言すると、フリッカーは、フレームが移行するときにおいて、画素値(輝度)が上昇する画素の液晶応答速度と、画素値(輝度)が低下する画素の液晶応答速度との差によって、前後のフレームに対して画素値(輝度)にギャップが生じることに対応している。上述したバックライト補正値Bcは、このギャップが低減することが可能となっている。 The liquid crystal display device 100 has a function for acquiring a backlight correction value Bc used when driving the backlight 7B in order to reduce flicker. Here, flicker is flickering that occurs in the liquid crystal display unit 7 due to pixel response delays when frames transition. In other words, flicker corresponds to a gap in pixel values (luminance) occurring between previous and subsequent frames due to the difference in the liquid crystal response speed of a pixel whose pixel value (luminance) increases and the liquid crystal response speed of a pixel whose pixel value (luminance) decreases when frames transition. The backlight correction value Bc described above makes it possible to reduce this gap.
 ここで、フレームが移行するときとは、任意のタイミングのフレーム(第1フレームの一例)から、次のタイミングのフレーム(第2フレームの一例)に移行することに対応している。
 また、画素応答遅延は、液晶表示部7の画素の動作内容に応じて、画素間の応答に差があることを意味している。本実施形態では、液晶表示部7は液晶表示部7の各画素の画素値が上昇するときの応答速度が、液晶表示部7の各画素の画素値が低下するときの応答速度よりも遅いものとして説明する。換言すると、フレームが移行するときにおいて、画素値が低下する画素は、画素値が上昇する画素よりも、すみやかに所望の画素値に到達する。本実施形態は、これに限定されるものではなく、液晶表示部7は液晶表示部7の各画素の画素値が低下するときの応答速度が、液晶表示部7の各画素の画素値が上昇するときの応答速度よりも遅い場合についても適用可能である。
 なお、実施形態において、画素値が上昇するとは、任意のタイミングのフレーム(第1フレームの一例)における任意の座標の画素の画素値(相対的に低い値)が、当該任意のフレームの次フレーム(第2フレームの一例)の同座標の画素の画素値(相対的に高い値)へ上昇することを指す。同様に、画素値が低下するとは、任意のタイミングのフレームにおける任意の座標の画素の画素値(相対的に高い値)が、当該任意のフレームの次フレームの同座標の画素の画素値(相対的に低い値)へ低下することを指す。
Here, a frame transition corresponds to a transition from a frame of any timing (an example of a first frame) to a frame of the next timing (an example of a second frame).
Moreover, the pixel response delay means that there is a difference in response between pixels depending on the operation of the pixels of the liquid crystal display unit 7. In this embodiment, the liquid crystal display unit 7 will be described as having a response speed slower when the pixel value of each pixel of the liquid crystal display unit 7 increases than when the pixel value of each pixel of the liquid crystal display unit 7 decreases. In other words, when a frame transitions, a pixel whose pixel value decreases reaches a desired pixel value more quickly than a pixel whose pixel value increases. This embodiment is not limited to this, and can also be applied to a case where the response speed of each pixel of the liquid crystal display unit 7 when the pixel value of each pixel of the liquid crystal display unit 7 decreases is slower than the response speed of each pixel of the liquid crystal display unit 7 when the pixel value of each pixel of the liquid crystal display unit 7 increases.
In the embodiment, an increase in pixel value refers to a pixel value (relatively low value) of a pixel at any coordinate in a frame at any timing (an example of a first frame) increasing to a pixel value (relatively high value) of a pixel at the same coordinate in a frame next to the given frame (an example of a second frame). Similarly, a decrease in pixel value refers to a pixel value (relatively high value) of a pixel at any coordinate in a frame at any timing decreasing to a pixel value (relatively low value) of a pixel at the same coordinate in a frame next to the given frame.
 液晶表示装置100は、連続する一対のフレームを用いて、上述したバックライト補正値Bcを取得する。例えば、ビデオ信号Fが、フレームF1、フレームF2、フレームF3、フレームF4・・・の順番にフレームを表示する内容であるとする。このとき、液晶表示装置100は、フレームF1とフレームF2とを用いてフレームF1とフレームF2との間の期間で用いるバックライト補正値Bcを取得する。同様に、液晶表示装置100は、フレームF2とフレームF3とを用いてフレームF2とフレームF3との間の期間で用いるバックライト補正値Bcを取得し、また、フレームF3とフレームF4とを用いてフレームF3とフレームF4との間の期間で用いるバックライト補正値Bcを取得する。 The liquid crystal display device 100 obtains the above-mentioned backlight compensation value Bc using a pair of consecutive frames. For example, assume that the video signal F displays frames in the order of frame F1, frame F2, frame F3, frame F4, and so on. In this case, the liquid crystal display device 100 obtains the backlight compensation value Bc to be used in the period between frames F1 and F2 using frames F1 and F2. Similarly, the liquid crystal display device 100 obtains the backlight compensation value Bc to be used in the period between frames F2 and F3 using frames F2 and F3, and also obtains the backlight compensation value Bc to be used in the period between frames F3 and F4 using frames F3 and F4.
 ビデオ信号Fは、時系列順のフレームF1、フレームF2、フレームF3、フレームF4・・・を有するが、以下の各構成要素の構成説明では、説明の便宜上、任意のフレームF1と、当該任意のフレームF1の次フレームであるフレームF2とを用いた各種演算を中心に説明する。
 なお、フレームF1及びフレームF2は、時系列として前後のフレームであるため、フレームF1を前フレームと称し、フレームF2を後フレームと称する場合がある。また、前フレームであるフレームF1と後フレームであるフレームF2は、第1及び第2フレームの一例である。同様に、前フレームであるフレームF2と後フレームであるフレームF3も、第1及び第2フレームの一例であり、前フレームであるフレームF3と後フレームであるフレームF4も、第1及び第2フレームの一例である。
The video signal F has frames F1, F2, F3, F4, etc. in chronological order. However, in the following description of the configuration of each component, for the sake of convenience, the explanation will focus on various calculations using an arbitrary frame F1 and frame F2, which is the next frame of the arbitrary frame F1.
Note that since frames F1 and F2 are successive frames in time series, frame F1 may be referred to as the previous frame and frame F2 as the next frame. Frame F1, which is the previous frame, and frame F2, which is the next frame, are examples of the first and second frames. Similarly, frame F2, which is the previous frame, and frame F3, which is the next frame, are also examples of the first and second frames, and frame F3, which is the previous frame, and frame F4, which is the next frame, are also examples of the first and second frames.
2 各構成要素の説明
 2-1 フレーム演算処理部1
 フレーム演算処理部1は、差分算出機能と統計値算出機能とを有する。
2. Description of each component 2-1 Frame calculation processing unit 1
The frame calculation processing section 1 has a difference calculation function and a statistical value calculation function.
・差分算出機能(図10のステップS1:差分取得ステップ)
 差分算出機能とは、ビデオ信号Fを取得し、ビデオ信号F中の一対のフレームの画素値(階調値)の差分Dを取得する機能である。実施形態では、前後のフレームの各座標に対して、画素値の差分Dが取得される(図10のステップS1:差分取得ステップ)。なお、実施形態では、画素値(階調値)が0~255(8ビット)の値をとるものとして説明するが、これに限定されるものではない。
 図3に示すフレームF1の各画素の画素値は、図4に示す通りであり、例えば、座標(1,1)においては30、座標(2,1)においては150である。図5に示すフレームF2の各画素の画素値は、図6に示す通りであり、例えば、座標(1,1)においては90、座標(2,1)においては35である。なお、座標(x,y)は、x方向の位置と、x方向に直交するy方向の位置とで定義される。例えば、前後のフレームの座標(1,1)における画素値の差分Dは、90-30=60であり、前後のフレームの座標(2,1)における画素値の差分Dは、35-150=-115である。このように、フレーム演算処理部1は、前後のフレームであるフレームF1,F2について、各座標の画素値の差分を算出する。
Difference calculation function (step S1 in FIG. 10: difference acquisition step)
The difference calculation function is a function that acquires a video signal F and acquires a difference D between pixel values (tone values) of a pair of frames in the video signal F. In the embodiment, the pixel value difference D is acquired for each coordinate of the previous and next frames (step S1 in FIG. 10: difference acquisition step). Note that, in the embodiment, the pixel value (tone value) is described as having a value of 0 to 255 (8 bits), but is not limited to this.
The pixel values of each pixel in the frame F1 shown in FIG. 3 are as shown in FIG. 4, and are, for example, 30 at the coordinates (1, 1) and 150 at the coordinates (2, 1). The pixel values of each pixel in the frame F2 shown in FIG. 5 are as shown in FIG. 6, and are, for example, 90 at the coordinates (1, 1) and 35 at the coordinates (2, 1). The coordinates (x, y) are defined by the position in the x direction and the position in the y direction perpendicular to the x direction. For example, the difference D between the pixel values at the coordinates (1, 1) of the previous and next frames is 90-30=60, and the difference D between the pixel values at the coordinates (2, 1) of the previous and next frames is 35-150=-115. In this way, the frame calculation processing unit 1 calculates the difference between the pixel values of each coordinate for the previous and next frames, the frames F1 and F2.
・統計値算出機能(図10のステップS2:第1統計値取得ステップ)
 統計値算出機能とは、前後のフレーム(フレームF1,F2)における、予め定められた領域Rgの画素値の統計値(実施形態は平均値)を取得する機能である。まず、予め定められた領域Rgについて説明する。
Statistical value calculation function (step S2 in FIG. 10: first statistical value acquisition step)
The statistical value calculation function is a function for obtaining statistical values (average values in this embodiment) of pixel values of a predetermined region Rg in previous and next frames (frames F1 and F2). First, the predetermined region Rg will be described.
 本実施形態において、液晶表示部7の液晶は画素ごとに制御されるが、それに対し、バックライト7Bは、予め定められた領域Rgごとに制御される。つまり、予め定められた領域Rgは、ローカルディミング制御の制御単位をしての意義がある。なお、ローカルディミング制御とは、液晶表示部7のエリア全体を一律の設定値で制御するのではなく、エリアごとに設定値を変える制御を指す。ローカルディミング制御は、光源制御の一例である。
 なお、本実施形態は、後述するように、補正用データEcに基づいてバックライト補正値Bcを取得し、バックライト補正値Bcに基づいてバックライト7Bを駆動し、フリッカーを抑制する構成を備えている。ここで、フリッカーを抑制するにあたって、本実施形態では、光源制御の一例であるローカルディミング制御を実施した上でバックライト補正値Bcを取得する構成を備える場合を一例として説明するが、ローカルディミング制御は必須の構成ではない。
 予め定められた領域Rgは、各種の方法で設定することができ、例えば、図3に示すx方向に配置されるラインをなす画素(図3では15つの画素)に設定してもよいし、また、例えば、図3に示すy方向に配置されるラインをなす画素(図3では10つの画素)に設定してもよい。本実施形態では、予め定められた領域Rgは、x方向とy方向における5×5の領域に設定している。
 実施形態において、予め定められた領域Rgは、複数の画素で構成される領域内画素を含む。領域内画素は、注目画素a1と、注目画素a1の周辺に配置される周辺画素a2(非注目画素)とを有する。注目画素a1は、予め定められた領域Rgにおける基準となる画素であり、実施形態では予め定められた領域Rgの左上の角に位置している。周辺画素a2は、注目画素a1からx方向に5以内、y方向に5以内の範囲内の画素である。
In this embodiment, the liquid crystal of the liquid crystal display unit 7 is controlled for each pixel, whereas the backlight 7B is controlled for each predetermined region Rg. In other words, the predetermined region Rg is significant as a control unit for local dimming control. Note that local dimming control refers to control in which a set value is changed for each area, rather than controlling the entire area of the liquid crystal display unit 7 with a uniform set value. Local dimming control is an example of light source control.
As described later, this embodiment is configured to obtain a backlight correction value Bc based on correction data Ec, and drive the backlight 7B based on the backlight correction value Bc to suppress flicker. Here, in this embodiment, to suppress flicker, a case will be described as an example in which a configuration is provided in which the backlight correction value Bc is obtained after performing local dimming control, which is an example of light source control, but local dimming control is not a required configuration.
The predetermined region Rg can be set by various methods, and may be set to pixels forming a line arranged in the x direction shown in Fig. 3 (15 pixels in Fig. 3), or may be set to pixels forming a line arranged in the y direction shown in Fig. 3 (10 pixels in Fig. 3) In this embodiment, the predetermined region Rg is set to a 5 x 5 region in the x and y directions.
In the embodiment, the predetermined region Rg includes intra-region pixels that are composed of a plurality of pixels. The intra-region pixels include a pixel of interest a1 and peripheral pixels a2 (non-pixels of interest) that are arranged around the pixel of interest a1. The pixel of interest a1 is a reference pixel in the predetermined region Rg, and in the embodiment, is located at the upper left corner of the predetermined region Rg. The peripheral pixels a2 are pixels within a range of 5 pixels in the x direction and 5 pixels in the y direction from the pixel of interest a1.
 図3に示すフレームF1の注目画素a1の予め定められた領域Rgにおいて、画素値の平均値v1は、図4に示す5×5の範囲の画素値の平均値であり、約109である。平均値v1と後述する平均値vcとの乖離によって、フリッカーの大きさの度合を判断することができることから、平均値v1は、基準としての意義がある。このため、平均値v1は、ターゲット平均値(ターゲット平均画素値)と言い換えることもできる。このように、フレーム演算処理部1は、統計値としての平均値v1を取得するように構成されている(図10のステップS2:第1統計値取得ステップ)。
 図5に示すフレームF2の注目画素a1の予め定められた領域Rgにおいて、画素値の平均値v2は、図4に示す5×5の範囲の画素値の平均値であり、約108である。
 なお、平均値v1は、第1統計値の一例である。
 このように、平均値v1と平均値v2とにほとんど変動はないものの、図3や図4に示すフレームでは、画素値が上昇する画素と、画素値が低下する画素とが混在している。ドットメッシュ画像(白の画素及び黒の画素が交互に並ぶ画像)と呼ばれるようなフレームをはじめ、このような条件を満たすフレームでは、フリッカーが生じやすい。
In a predetermined region Rg of a pixel of interest a1 in a frame F1 shown in Fig. 3, an average value v1 of pixel values is an average value of pixel values in a 5 x 5 range shown in Fig. 4, and is approximately 109. Since the degree of flicker can be judged based on the deviation between the average value v1 and an average value vc described below, the average value v1 has significance as a criterion. For this reason, the average value v1 can also be called a target average value (target average pixel value). In this way, the frame calculation processing unit 1 is configured to obtain the average value v1 as a statistical value (step S2 in Fig. 10: first statistical value obtaining step).
In the predetermined region Rg of the pixel of interest a1 in the frame F2 shown in FIG. 5, the average pixel value v2 is the average pixel value in the 5×5 range shown in FIG.
The average value v1 is an example of a first statistical value.
Thus, although there is almost no change between the average values v1 and v2, there are pixels whose pixel values increase and pixels whose pixel values decrease in the frames shown in Figures 3 and 4. Frames that satisfy such conditions, including frames known as dot mesh images (images in which white pixels and black pixels are arranged alternately), are prone to flicker.
 フレーム演算処理部1の統計値の算出や、後述する補正用データ取得部2の補正用データEcの算出は、予め定められた領域Rgごとに順次実施される。例えば、図3に示すように、座標(1,1)を基準(注目画素)とする5×5の予め定められた領域Rgにおける統計値等の算出と、並行して又は順次、座標(6,1)を基準(注目画素)とする5×5の予め定められた領域Rgにおける統計値等の算出も実施される。座標(11,1)、座標(1,6)、座標(6,6)、座標(11,6)を基準(注目画素)とする5×5の予め定められた領域Rgについても同様である。つまり、液晶パネル7Aの全領域が6分割されており、これらの領域がローカルディミング制御の対象となっている。なお、実施形態では、液晶パネル7Aの全領域がローカルディミング制御の対象であるものとして説明するが、これに限定されるものではなく、例えば、フリッカーの影響が大きくないような任意の領域を予め決定しておき、当該領域については、ローカルディミング制御の対象外としてもよい。 The calculation of the statistical values by the frame calculation processing unit 1 and the calculation of the correction data Ec by the correction data acquisition unit 2 described later are performed sequentially for each predetermined region Rg. For example, as shown in FIG. 3, the calculation of the statistical values, etc. in the 5×5 predetermined region Rg with the coordinates (1,1) as the reference (pixel of interest) is performed in parallel or sequentially with the calculation of the statistical values, etc. in the 5×5 predetermined region Rg with the coordinates (6,1) as the reference (pixel of interest). The same is true for the 5×5 predetermined region Rg with the coordinates (11,1), (1,6), (6,6), and (11,6) as the reference (pixel of interest). In other words, the entire region of the liquid crystal panel 7A is divided into six, and these regions are subject to local dimming control. Note that in the embodiment, the entire region of the liquid crystal panel 7A is described as being subject to local dimming control, but this is not limited to this. For example, any region that is not significantly affected by flicker may be determined in advance, and the region may be excluded from the local dimming control.
2-2 補正用データ取得部2
 補正用データ取得部2は、画素値の補正用データEcの算出機能を有する。そして、補正用データ取得部2は、補正用データ取得ステップを実施するように構成されている。補正用データ取得ステップは、図10に示すステップS3(推定画素値取得ステップ)と、図10に示すステップS4(第2統計値取得ステップ)と、図10に示すステップS5(補正用データ算出ステップ)とを含む。
2-2 Correction data acquisition unit 2
The correction data acquisition unit 2 has a function of calculating correction data Ec of pixel values. The correction data acquisition unit 2 is configured to perform a correction data acquisition step. The correction data acquisition step includes step S3 (estimated pixel value acquisition step) shown in Fig. 10, step S4 (second statistical value acquisition step) shown in Fig. 10, and step S5 (correction data calculation step) shown in Fig. 10.
 補正用データ取得部2は、後述するように、フレームF1,F2の画素値が関連付けられた液晶応答特性(液晶応答時間又は液晶応答速度)をLUT(ルックアップテーブル)から取得し、この液晶応答特性を用いて補正用データEcを取得する。また、補正用データ取得部2は、この液晶応答特性に基づいた推定画素値を用いて、補正用データEcを取得する。以下に、補正用データEcを取得する方法を具体的に説明する。 As described below, the correction data acquisition unit 2 acquires the liquid crystal response characteristics (liquid crystal response time or liquid crystal response speed) associated with the pixel values of frames F1 and F2 from an LUT (look-up table), and acquires the correction data Ec using this liquid crystal response characteristic. The correction data acquisition unit 2 also acquires the correction data Ec using an estimated pixel value based on this liquid crystal response characteristic. A method for acquiring the correction data Ec will be specifically described below.
 画素値の補正用データEcは、フレームF1からフレームF2に移行する際に仮にバックライト7Bの設定値を変更しないとした場合において、フリッカーを低減するにはどの程度、画素値(液晶駆動回路5の液晶駆動信号Ls)を補正する必要があるかを示す値である。つまり、実施形態では、液晶に係る画素値の補正用データEcを予め取得しておき、この液晶に係る補正用データEcを、後述するバックライト7Bの補正量(バックライト補正値)へ変換し、フリッカーを低減する。このため、補正用データEcは、バックライト7Bの設定値の補正量に対応する、液晶に係る画素値の量である。 The pixel value correction data Ec is a value that indicates the extent to which the pixel value (liquid crystal drive signal Ls of the liquid crystal drive circuit 5) needs to be corrected to reduce flicker, assuming that the setting value of the backlight 7B is not changed when moving from frame F1 to frame F2. In other words, in this embodiment, the pixel value correction data Ec related to the liquid crystal is acquired in advance, and this liquid crystal correction data Ec is converted into a correction amount (backlight correction value) for the backlight 7B described below, to reduce flicker. For this reason, the correction data Ec is the amount of pixel value related to the liquid crystal that corresponds to the correction amount of the backlight 7B setting value.
 画素値の補正用データEcは、各種の方法で取得することができるが、ここではその一例について説明する。フリッカーの発生は、前後のフレームを遷移する過程で、液晶表示部7の所定の範囲の平均輝度が変動してしまう、ということで理解することができる。つまり、上述のように、前のフレームにおける画素値の平均値v1は109であり、後のフレームにおける画素値の平均値v2は108であり、両者はかなり近いが、中間タイミング(前後のフレームの間のタイミング)には、画素値の平均値が、平均値v1から乖離してしまう場合、フリッカーが生じる。そこで、実施形態では、中間タイミングにおける画素値の平均値vc(第2統計値の一例)を算出し、平均値vcを用いて補正用データEcを算出する。
 実施形態において、中間タイミングは、前のフレームのタイミングと後のフレームのタイミングとの中央のタイミングである。換言すると、前のフレームのタイミングを0とし、後のフレームのタイミングを1としたとき、中間タイミングは、0.5に対応する。なお、中間タイミングは、前のフレームのタイミングと後のフレームのタイミングとの中央であることに限定されるものではない。中間タイミングは、具体的には例えば、0.30,0.35,0.40,0.45,0.50,0.55,0.60,0.65,0.70に対応するものであってもよく、ここで例示した数値の何れか2つの間の範囲内であってもよい。
The correction data Ec of pixel values can be obtained by various methods, but one example will be described here. The occurrence of flicker can be understood as the fluctuation of the average luminance in a predetermined range of the liquid crystal display unit 7 during the transition between previous and next frames. That is, as described above, the average value v1 of the pixel values in the previous frame is 109, and the average value v2 of the pixel values in the next frame is 108, and the two are quite close, but at an intermediate timing (a timing between the previous and next frames), if the average value of the pixel values deviates from the average value v1, flicker occurs. Therefore, in the embodiment, the average value vc of the pixel values at the intermediate timing (an example of the second statistical value) is calculated, and the correction data Ec is calculated using the average value vc.
In the embodiment, the intermediate timing is the middle timing between the timing of the previous frame and the timing of the next frame. In other words, when the timing of the previous frame is 0 and the timing of the next frame is 1, the intermediate timing corresponds to 0.5. Note that the intermediate timing is not limited to being the middle timing between the timing of the previous frame and the timing of the next frame. Specifically, the intermediate timing may correspond to, for example, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, or 0.70, or may be within a range between any two of the numerical values exemplified here.
 メモリ4には、図7に示すような、前フレーム(フレームF1)の画素値と、後フレーム(フレームF2)の画素値とに関連付けられているLUT(ルックアップテーブル)が格納されている。このLUTには、前フレームの任意の座標の画素値と後フレームの当該任意の座標の画素値のそれぞれが定まっていると、当該任意の座標の液晶応答特性を推定(取得)できるように構成されている。液晶応答特性とは、実施形態において、前のフレームの画素値から、後のフレームの画素値に至るまでの液晶応答時間に対応する。図7に示す例では、各液晶応答特性(液晶応答時間)は、32の画素値(階調値)を1区間にしているが、これに限定されるものではない。LUTの画素値(階調値)の区間は、例えば、1,2,4,8,16,32,64を採用することができる。
 一例として、図3及び図5に示す予め定められた領域Rgの注目画素a1の液晶応答特性(液晶応答時間)について説明する。前フレームにおいて、注目画素a1の画素値は、図4に示すように、30であることから、画素値30に近い区間31を参照する。また、後フレームにおいて、注目画素a1の画素値は、図6に示すように、90であることから、画素値90に近い区間95を参照する。その結果、この注目画素a1の液晶応答特性(液晶応答時間)は、33.5msecとなる。
The memory 4 stores a LUT (lookup table) associated with pixel values of a previous frame (frame F1) and a subsequent frame (frame F2) as shown in FIG. 7. This LUT is configured to estimate (obtain) the liquid crystal response characteristic of an arbitrary coordinate when a pixel value of the previous frame and a pixel value of the arbitrary coordinate of the subsequent frame are determined. In the embodiment, the liquid crystal response characteristic corresponds to a liquid crystal response time from a pixel value of a previous frame to a pixel value of a subsequent frame. In the example shown in FIG. 7, each liquid crystal response characteristic (liquid crystal response time) has a pixel value (tone value) of 32 as one section, but is not limited to this. For example, 1, 2, 4, 8, 16, 32, and 64 can be adopted as the pixel value (tone value) section of the LUT.
As an example, the liquid crystal response characteristics (liquid crystal response time) of a pixel of interest a1 in a predetermined region Rg shown in Figures 3 and 5 will be described. In the previous frame, the pixel value of the pixel of interest a1 is 30 as shown in Figure 4, so section 31 close to the pixel value 30 is referenced. In the subsequent frame, the pixel value of the pixel of interest a1 is 90 as shown in Figure 6, so section 95 close to the pixel value 90 is referenced. As a result, the liquid crystal response characteristics (liquid crystal response time) of this pixel of interest a1 is 33.5 msec.
 実施形態では、液晶応答が線形であることを仮定する。このとき、この注目画素a1の遷移の様子は、図9に示すように、差分D(画素値30と、画素値90の差分)と、液晶応答特性(液晶応答時間):33.5msecを満たすような直線L1として表すことができる。直線L1は、現実として想定される画素値の遷移である。この直線L1では、中間タイミングにおいて予想される推定画素値が45(図8の座標(1,1)参照)となることがわかる。つまり、補正用データ取得部2は、差分DとLUTの液晶応答特性(液晶応答時間)とに基づいて、推定画素値を取得することができる(図10のステップS3:推定画素取得ステップ)。 In this embodiment, it is assumed that the liquid crystal response is linear. In this case, the transition of the pixel of interest a1 can be expressed as a straight line L1 that satisfies the difference D (the difference between pixel value 30 and pixel value 90) and the liquid crystal response characteristic (liquid crystal response time): 33.5 msec, as shown in FIG. 9. The straight line L1 is the transition of the pixel value that is assumed to be real. It can be seen that in this straight line L1, the estimated pixel value predicted at the intermediate timing is 45 (see coordinates (1,1) in FIG. 8). In other words, the correction data acquisition unit 2 can acquire the estimated pixel value based on the difference D and the liquid crystal response characteristic (liquid crystal response time) of the LUT (step S3 in FIG. 10: estimated pixel acquisition step).
 このような計算を各座標の画素に対して実施することで、図8に示すような、各座標の推定画素値が特定された表を得ることができる。図8の表より、中間タイミングにおける、5×5の予め定められた領域の画素値の平均値vcを算出することができ、97である。つまり、補正用データ取得部2は、予め定められた領域Rgの推定画素値に基づいて、平均値vcを取得することができる(図10のステップS4:第2統計値取得ステップ)。 By performing such calculations for the pixel at each coordinate, a table can be obtained in which the estimated pixel value for each coordinate is specified, as shown in FIG. 8. From the table in FIG. 8, the average value vc of the pixel values of a predetermined 5×5 region at the intermediate timing can be calculated, which is 97. In other words, the correction data acquisition unit 2 can acquire the average value vc based on the estimated pixel values of the predetermined region Rg (step S4 in FIG. 10: second statistical value acquisition step).
 なお、図9において、Tは、前フレームにおけるタイミングに対応し、TN+1は、後フレームにおけるタイミングに対応し、Tは、中間タイミングに対応している。Tは、前後のフレーム間の時間であって予め定められており、実施形態では16.66msecである。0.5Tは、前フレームのタイミングから中間タイミングまでの時間であって、実施形態ではTの半分の値である。 9, T N corresponds to the timing in the previous frame, T N+1 corresponds to the timing in the next frame, and T M corresponds to the intermediate timing. T is the time between the previous and next frames, which is determined in advance and is 16.66 msec in the embodiment. 0.5T is the time from the timing of the previous frame to the intermediate timing, which is half the value of T in the embodiment.
 画素値の平均値v1と画素値の平均値vcとの乖離が、フリッカーの大きさの度合に対応する。つまり、中間タイミングでは、画素値の平均値が109から97へ低下してしまうことが見込まれ、フリッカーを引き起こす可能性がある。実施形態では、補正用データ取得部2は、画素値の平均値v1と画素値の平均値vcとの差に基づいて、補正用データEcを算出することができる(図10のステップS5:補正用データ算出ステップ)。ここでは、補正用データEcは、109-97=12である。 The deviation between the average pixel value v1 and the average pixel value vc corresponds to the magnitude of the flicker. In other words, at the intermediate timing, the average pixel value is expected to drop from 109 to 97, which may cause flicker. In the embodiment, the correction data acquisition unit 2 can calculate the correction data Ec based on the difference between the average pixel value v1 and the average pixel value vc (step S5 in FIG. 10: correction data calculation step). Here, the correction data Ec is 109-97=12.
 なお、実施形態では、メモリ4のLUTに格納される液晶応答特性が、液晶応答時間であるものとして説明したが、これに限定されるものではなく、液晶応答速度であってもよい。液晶応答速度は、ある任意の画素値から別の任意の画素値へ遷移するのに要する時間に対応しているため、実質的には、液晶応答時間と同じものであるからである。 In the embodiment, the liquid crystal response characteristic stored in the LUT of memory 4 has been described as the liquid crystal response time, but this is not limited to this and may be the liquid crystal response speed. This is because the liquid crystal response speed corresponds to the time required for a transition from one arbitrary pixel value to another arbitrary pixel value, and is therefore essentially the same as the liquid crystal response time.
2-3 ローカルディミング制御部3
 ローカルディミング制御部3は、バックライト補正値算出機能を有する。ローカルディミング制御部3は、補正用データ取得部2が取得した補正用データEcに基づいて、バックライト補正値を取得するように構成されている(図10のステップS6:バックライト補正値取得ステップ)。
2-3 Local dimming control unit 3
The local dimming control unit 3 has a backlight correction value calculation function and is configured to acquire a backlight correction value based on the correction data Ec acquired by the correction data acquisition unit 2 (step S6 in FIG. 10: backlight correction value acquisition step).
 バックライト補正値算出機能とは、液晶の画素値(階調値)に係る補正用データEcを、バックライトの補正量(バックライト補正値)へ変換する機能である。上述の説明の通り、補正用データEcは、109-97=12である。つまり、フレームF1からフレームF2への遷移の際において、予め定められた領域Rgの画素値の平均値が、中間タイミングで109から97へ低下してしまい、フリッカーを引き起こす可能性がある。このため、この平均値の差分である補正用データ(12)に対応する分だけ、バックライト7Bの設定値を増加させる。この増加量が、バックライト補正値に対応している。なお、逆に補正用データEcが負の値であれば、バックライト7Bの設定値を低下させ、補正用データEcが0であれば、バックライトの設定値を変更しない。 The backlight correction value calculation function is a function that converts the correction data Ec related to the pixel values (tone values) of the liquid crystal into a backlight correction amount (backlight correction value). As explained above, the correction data Ec is 109-97=12. In other words, when transitioning from frame F1 to frame F2, the average value of the pixel values of a predetermined region Rg may drop from 109 to 97 at an intermediate timing, which may cause flicker. For this reason, the setting value of the backlight 7B is increased by an amount corresponding to the correction data (12), which is the difference in this average value. This increase corresponds to the backlight correction value. Conversely, if the correction data Ec is a negative value, the setting value of the backlight 7B is decreased, and if the correction data Ec is 0, the setting value of the backlight is not changed.
 バックライト駆動回路6には、バックライト7Bを駆動するための設定値が設定可能となっている。設定値は、ユーザーによって定めることが可能である、又は、液晶表示装置100において予め定められている。設定値は、例えば0~1000までの設定値をとることが可能である。そして、バックライト7Bの設定値が0(最小値)である場合にはバックライト7Bの輝度は0cd/m2であり、バックライト7Bの設定値が1000(最大値)である場合にはバックライト7Bの輝度は500cd/m2であるものとする。ここでは、バックライト7Bの輝度が、設定値の最小値から最大値にかけて線形に変化するものとする。つまり、バックライト7Bの設定値が1上昇することに、輝度が0.5cd/m2上昇するということである。例えば、バックライト7Bの設定値が500である場合には、バックライトの7Bの輝度は250cd/m2である。ここでは、説明の便宜上、バックライト7Bの設定値が500であるものとする。 A setting value for driving the backlight 7B can be set in the backlight driving circuit 6. The setting value can be determined by the user or is previously determined in the liquid crystal display device 100. The setting value can be set, for example, between 0 and 1000. When the setting value of the backlight 7B is 0 (minimum value), the luminance of the backlight 7B is 0 cd/ m2 , and when the setting value of the backlight 7B is 1000 (maximum value), the luminance of the backlight 7B is 500 cd/ m2 . Here, it is assumed that the luminance of the backlight 7B changes linearly from the minimum setting value to the maximum setting value. In other words, when the setting value of the backlight 7B increases by 1, the luminance increases by 0.5 cd/ m2 . For example, when the setting value of the backlight 7B is 500, the luminance of the backlight 7B is 250 cd/ m2 . Here, for convenience of explanation, it is assumed that the setting value of the backlight 7B is 500.
 ここで、バックライト補正値Bcを取得するために、補正用データEcを輝度(単位cd/m2)へ変換する。変換にあたっては、(バックライト7Bの輝度)×(補正用データEc)÷(取り得る画素値)という変換式を用いて算出することができる。
 具体的には、バックライト7Bの輝度は250cd/m2であり、補正用データEcが12であり、取り得る画素値が256あるため、バックライト補正値は、約12cd/m2となる。バックライト7Bの輝度は、設定値を1つ上昇させるごとに、0.5cd/m2上昇することになるので、バックライト駆動回路6は、設定値を500から24上昇させるように(輝度を12cd/m2 上昇させるように)、バックライト7Bを駆動することになる。なお、ここでの計算は、一例として、大まかに計算しているが、バックライト7Bの設定値の輝度の刻みがもっと細ければ、バックライト補正値の小数点の有効数字の桁数が増大しても、より精度よくフリッカーを低減することが可能である。このようにして、座標(1,1)を基準(注目画素)とする5×5の予め定められた領域Rgにおいて、バックライト7Bの設定値は、524に決定される。その他の座標(6,1)等を基準(注目画素)とする5×5の予め定められた領域Rgにおいても、上述の演算を実施して、同様に設定値を決定していく。
Here, in order to obtain the backlight correction value Bc, the correction data Ec is converted to luminance (unit: cd/ m2 ). The conversion can be calculated using the conversion formula: (luminance of the backlight 7B) × (correction data Ec) ÷ (possible pixel value).
Specifically, the luminance of the backlight 7B is 250 cd/ m2 , the correction data Ec is 12, and there are 256 possible pixel values, so the backlight correction value is about 12 cd/ m2 . The luminance of the backlight 7B increases by 0.5 cd/ m2 every time the set value is increased by one, so the backlight driving circuit 6 drives the backlight 7B so as to increase the set value from 500 to 24 (so as to increase the luminance by 12 cd/ m2 ). Note that the calculation here is a rough calculation as an example, but if the luminance setting value of the backlight 7B is in smaller increments, it is possible to reduce flicker more accurately even if the number of significant digits after the decimal point of the backlight correction value increases. In this way, the set value of the backlight 7B is determined to be 524 in a 5×5 predetermined region Rg with the coordinates (1, 1) as the reference (pixel of interest). The above calculation is also carried out for other 5×5 predetermined regions Rg having other coordinates such as (6, 1) as references (pixels of interest), and the setting values are determined in the same manner.
 また、バックライト補正値Bcを用いてバックライト7Bを制御する期間は、中間タイミング(T)を中心にして、フレームF1の開始のタイミング(TN)から、後フレームであるフレームF2を表示するタイミング(TN+1)までとすることができる。 In addition, the period for controlling the backlight 7B using the backlight correction value Bc can be set to be from the timing (T N ) of the start of frame F1 to the timing (T N +1) of displaying the subsequent frame F2, centered around the intermediate timing (T M ).
2-4 メモリ4、液晶駆動回路5及びバックライト駆動回路6
 メモリ4には、図7に示すLUT(ルックアップテーブル)が格納されている。
 液晶駆動回路5は、ビデオ信号に基づいて、画素ごとに液晶パネル7Aの液晶を制御する液晶駆動信号Lsを生成し、液晶パネル7Aを制御する。
 バックライト駆動回路6は、バックライト補正値Bcに基づいて、バックライト7Bの設定値に対応する調光信号Dsを生成し、バックライト7Bを制御する。バックライト駆動回路6は、液晶駆動回路5と同期制御するように構成されている。つまり、液晶駆動回路5が各タイミングのフレームを表示するべく液晶パネル7Aの液晶を制御することに同期するように、調光信号Dsでバックライト7Bを制御する。
2-4 Memory 4, liquid crystal driving circuit 5 and backlight driving circuit 6
The memory 4 stores a LUT (look-up table) shown in FIG.
The liquid crystal drive circuit 5 generates a liquid crystal drive signal Ls for controlling the liquid crystal of the liquid crystal panel 7A for each pixel based on the video signal, and controls the liquid crystal panel 7A.
The backlight drive circuit 6 generates a dimming signal Ds corresponding to the setting value of the backlight 7B based on the backlight correction value Bc, and controls the backlight 7B. The backlight drive circuit 6 is configured to perform synchronous control with the liquid crystal drive circuit 5. In other words, the backlight 7B is controlled by the dimming signal Ds so as to be synchronized with the liquid crystal drive circuit 5 controlling the liquid crystal of the liquid crystal panel 7A to display frames at each timing.
2-5 液晶表示部7
 液晶表示部7は、液晶パネル7Aと、バックライト7Bとを有する。バックライト7BのLEDは、液晶パネル7Aの背面に配置されており、直下型である。つまり、バックライト7Bは、液晶パネル7Aの背面側から直接、液晶パネル7Aへ光を照らすように構成されている。
 なお、実施形態では、バックライト7Bが液晶パネル7Aの背面に配置された直下型であるものとして説明するが、これに限定されるものではなく、バックライト7Bは、エッジ型であってもよい。この場合には、バックライト7Bは、例えば、液晶パネル7Aの4辺それぞれに配置されたエッジ型LEDで構成することができる。バックライト7Bがエッジ型であっても、エリア単位で光源の制御が可能である。
2-5 Liquid crystal display unit 7
The liquid crystal display unit 7 has a liquid crystal panel 7A and a backlight 7B. The LEDs of the backlight 7B are arranged on the rear surface of the liquid crystal panel 7A and are of the direct type. In other words, the backlight 7B is configured to illuminate the liquid crystal panel 7A with light directly from the rear surface side of the liquid crystal panel 7A.
In the embodiment, the backlight 7B is described as being a direct type disposed on the rear surface of the liquid crystal panel 7A, but the present invention is not limited to this, and the backlight 7B may be an edge type. In this case, the backlight 7B may be configured, for example, with edge type LEDs disposed on each of the four sides of the liquid crystal panel 7A. Even if the backlight 7B is an edge type, the light source can be controlled on an area basis.
3 実施形態の効果
 実施形態に係る液晶表示装置100のローカルディミング制御部3は、フリッカーが生じることを低減するための補正用データEcに基づいてバックライト補正値Bcを取得するように構成されている。そして、液晶表示部7に表示されるフレームが前フレームとしてのフレームF1から後フレームとしてのフレームF2に移り変わる際に、このバックライト補正値Bcが加味された設定値でバックライト7Bが駆動されることで、フリッカーを低減することができる。
3. Effects of the embodiment The local dimming control unit 3 of the liquid crystal display device 100 according to the embodiment is configured to acquire a backlight correction value Bc based on correction data Ec for reducing the occurrence of flicker. When the frame displayed on the liquid crystal display unit 7 changes from frame F1 as the previous frame to frame F2 as the next frame, the backlight 7B is driven at a setting value that takes into account the backlight correction value Bc, thereby reducing flicker.
 ここで、フリッカーを抑制するにあたって、画素値自体を制御(画素値自体を変更)する方式も考えられる。この場合、画素値を制御することで、例えば、各画素の画素値の立ち上がりや、立下りを遅くすることになる。そうすると、液晶の応答特性が遅くなって「尾引き」と呼ばれる現象を引き起こす可能性が高まる。
 ここで、「尾引き」とは、例えば、複数のフレームが表示される過程で、当該フレーム中の表示対象が移動するときに発生する画像のぼやけを指している。
 実施形態に係る液晶表示装置100は、フレームの画素値自体を制御(画素値自体を変更)する構成ではなく、バックライト7Bを制御するためのバックライト補正値Bcを取得する構成であるため、液晶の応答特性に影響を与えることを回避し、「尾引き」といったような表示画像の見た目が変わってしまう現象が発生することを抑制することができる。
Here, a method of controlling the pixel values themselves (changing the pixel values themselves) can be considered to suppress flicker. In this case, controlling the pixel values means, for example, slowing down the rise and fall of the pixel values of each pixel. This slows down the response characteristics of the liquid crystal, increasing the possibility of causing a phenomenon called "tailing."
Here, the term "tailing" refers to the blurring of an image that occurs when, for example, an object moves in a frame during the process of displaying a number of frames.
The liquid crystal display device 100 of the embodiment is not configured to control the pixel values of the frame themselves (change the pixel values themselves), but is configured to obtain a backlight correction value Bc for controlling the backlight 7B, so that it is possible to avoid affecting the response characteristics of the liquid crystal and to suppress the occurrence of a phenomenon such as "tailing" that changes the appearance of the displayed image.
3 変形例3-1 変形例1:フリッカー量に応じて予め定められた領域Rgの補正をするかを決定
 実施形態では、各予め定められた領域Rgの補正用データEc及びバックライト補正値Bcを一律に取得する形態について説明したが、これに限定されるものではない。図13に示すように、液晶表示装置100は、後述する補正決定ステップS6を実施し、フリッカーが発生する度合(フリッカー量)に応じて、補正用データEc及びバックライト補正値Bcを使用するか否かを決定してもよい。
 ここで、フリッカーが発生しやすいフレームについて説明する。
3 Modification 3-1 Modification 1: Determining whether to correct a predetermined region Rg according to the amount of flicker In the embodiment, the correction data Ec and the backlight correction value Bc for each predetermined region Rg are uniformly acquired, but the present invention is not limited to this. As shown in Fig. 13, the liquid crystal display device 100 may perform a correction determination step S6 described later and determine whether to use the correction data Ec and the backlight correction value Bc according to the degree of flicker occurrence (amount of flicker).
Here, a frame in which flicker is likely to occur will be described.
 図11A~図11CのフレームF1の予め定められた領域Rgは、白と黒の画素が交互にならぶような配置を多く含んでおり、ドットメッシュ画像にある程度近いものということができる。
 一方で、図11AのフレームF2の予め定められた領域Rgは、フレームF1の予め定められた領域Rgの全体を下に一つずらし、一番上の行の画素の画素値は90,35,40,190,30となっている。図11Aのケースでは、白寄りの画素値の画素が黒寄りの画素値の画素となり、且つ、黒寄りの画素値の画素が白寄りの画素値の画素となる傾向が強いため、前後のフレームの画素値の平均値の変化が小さい割に、液晶応答速度の差が表れやすい状況である。このような状況だと、後述するフリッカー量が大きくなり、フリッカーが発生しやすい。
 図11BのフレームF2の予め定められた領域Rgは、図11Aと同様に、前後のフレームの画素値の平均値の変化が小さいように設定されてはいる。しかし、図11BのフレームF2の予め定められた領域Rgは、画素値の分布が図11AのフレームF2よりもランダムであり、図11Aのケースよりも、フリッカーが発生しにくい状況である。
 図11CのフレームF2の予め定められた領域Rgは、その画素値の平均値が、フレームF1の予め定められた領域Rgの画素値の平均値よりも大幅に大きくなっており、フリッカーが発生しにくい状況である。
The predetermined region Rg of the frame F1 in FIGS. 11A to 11C contains many alternating black and white pixels, and can be said to be somewhat close to a dot mesh image.
On the other hand, the predetermined region Rg of frame F2 in Fig. 11A is obtained by shifting the entire predetermined region Rg of frame F1 downward by one position, and the pixel values of the pixels in the top row are 90, 35, 40, 190, and 30. In the case of Fig. 11A, there is a strong tendency for pixels with pixel values closer to white to become pixels with pixel values closer to black, and for pixels with pixel values closer to black to become pixels with pixel values closer to white, so that although the change in the average pixel values of the previous and next frames is small, the difference in liquid crystal response speed is likely to be apparent. In such a situation, the amount of flicker, which will be described later, increases, and flicker is likely to occur.
The predetermined region Rg of frame F2 in Fig. 11B is set so that the change in the average pixel values between the previous and next frames is small, similar to Fig. 11A, but the distribution of pixel values in the predetermined region Rg of frame F2 in Fig. 11B is more random than that of frame F2 in Fig. 11A, making flicker less likely to occur in this situation than in the case of Fig. 11A.
In the predetermined region Rg of frame F2 in FIG. 11C, the average pixel value is significantly greater than the average pixel value of the predetermined region Rg of frame F1, making it less likely for flicker to occur.
 ここでは、フリッカーが発生する度合を、フリッカー量で定義する。フリッカー量は、前フレームから後フレームへの移行時における、予め定められた領域Rgのフリッカーが発生する度合に対応する。フリッカー量は、予め定められた各タイミングにおける推定画素値の平均値の推移線Gと、基準線RLと、の差の総和で表すことができ、換言すると、推移線Gと基準線RLとがなす面積に対応している。
 本変形例では、フリッカー量は、図12Aに示す差Ar1~差Ar9の合計値である。図11A及び図11Bのケースを比較すると、この合計値は、図11Aに対応する図12Aの方が大きいことから、図11Aのケースの方が、フリッカーが発生する度合が大きい。以下に、平均値の推移線G等について説明する。
Here, the degree of flicker occurrence is defined as the amount of flicker. The amount of flicker corresponds to the degree of flicker occurrence in a predetermined region Rg at the transition from the previous frame to the next frame. The amount of flicker can be expressed as the sum of the differences between a transition line G of the average value of the estimated pixel values at each predetermined timing and a reference line RL, in other words, corresponds to the area formed by the transition line G and the reference line RL.
In this modification, the amount of flicker is the sum of the differences Ar1 to Ar9 shown in Fig. 12A. Comparing the cases of Fig. 11A and Fig. 11B, this sum is larger in Fig. 12A, which corresponds to Fig. 11A, and therefore the degree of flicker occurrence is greater in the case of Fig. 11A. The transition line G of the average value and the like will be described below.
・平均値の推移線Gの各値は、実施形態で説明した5×5の予め定められた領域の推定画素値の平均値vcと同様である。実施形態で説明した平均値vcは、0.5Tのタイミングにおける値であった。本変形例の平均値の推移線Gは、平均値vcを0.1Tの刻みで算出してプロットし、線で結んだものである。つまり、前後のフレーム間の時間(図9の時間T参照)をn等分(ここではn=10)し、そのn等分した時間ごとに平均値vcがプロットされることで推移線Gが得られる。なお、実施形態で説明したように、液晶応答が線形であることを仮定したとき、前後のフレームの画素値の差分Dと、液晶応答特性(図7参照)とが分かっていると、0.1Tの刻みで図8のような各座標の画素値を推定することができ、その結果、0.1Tの刻みで平均値vcを算出することができる。・基準線RLは、後フレームとしてのフレームF2のタイミングを通る水平線である。変形例では、フリッカーが発生する度合を、この基準線RLに対する推移線Gの乖離によって判断する。・差Ar1は、0.1Tのタイミングにおける推定画素値の平均値の推移線Gの値と、基準線RLの値との差である。同様に、差Ar2~差Ar9は、0.2T~0.9Tのタイミングにおける推定画素値の平均値の推移線Gの値(推定画素値の平均値)と、基準線RLの値との差である。 - Each value of the average value transition line G is the same as the average value vc of the estimated pixel values of the 5x5 predetermined area described in the embodiment. The average value vc described in the embodiment was the value at the timing of 0.5T. The average value transition line G of the present modified example is obtained by calculating the average value vc in increments of 0.1T, plotting it, and connecting it with a line. In other words, the time between the previous and next frames (see time T in FIG. 9) is divided into n equal parts (n=10 here), and the average value vc is plotted for each of the n equal parts of time to obtain the transition line G. Note that, as described in the embodiment, assuming that the liquid crystal response is linear, if the difference D between the pixel values of the previous and next frames and the liquid crystal response characteristics (see FIG. 7) are known, the pixel values of each coordinate as shown in FIG. 8 can be estimated in increments of 0.1T, and as a result, the average value vc can be calculated in increments of 0.1T. - The reference line RL is a horizontal line passing through the timing of frame F2 as the subsequent frame. In this modified example, the degree of flicker occurrence is determined by the deviation of the transition line G from this reference line RL. Difference Ar1 is the difference between the value of the transition line G of the average estimated pixel value at the timing of 0.1T and the value of the reference line RL. Similarly, differences Ar2 to Ar9 are the differences between the values of the transition line G of the average estimated pixel value (average estimated pixel value) at the timings of 0.2T to 0.9T and the value of the reference line RL.
 次に、図13を参照して、本変形例におけるバックライト補正値Bcを取得方法のフローを説明する。
 ステップS1(差分取得ステップ)では、フレーム演算処理部1は、実施形態と同様に、前後のフレーム(フレームF1,F2)の各座標に対して、画素値の差分Dを取得する。
 ステップS2(第1統計値取得ステップ)では、フレーム演算処理部1は、実施形態と同様に、前のフレーム(フレームF1)に基づいて、予め定められた領域Rgごとに、統計値としての推定画素値の平均値v1を取得する。
Next, a flow of a method for obtaining the backlight correction value Bc in this modified example will be described with reference to FIG.
In step S1 (difference acquisition step), the frame calculation processor 1 acquires the pixel value difference D for each coordinate of the previous and next frames (frames F1, F2) in the same manner as in the embodiment.
In step S2 (first statistical value acquisition step), the frame calculation processing unit 1, as in the embodiment, acquires an average value v1 of estimated pixel values as a statistical value for each predetermined region Rg based on the previous frame (frame F1).
 ステップS3(推定画素値取得ステップ)では、補正用データ取得部2は、差分DとLUT(図7参照)とに基づいて、各タイミングにおける各画素の推定画素値を取得する。つまり、ステップS3では、図8に示すような推定画素値のマトリクスが、10つ生成されることになる。なお、各タイミングとは、ここでは、0.1T、0.2T、0.3T、0.4T、0.5T、0.6T、0.7T、0.8T、0.9T、1.0Tのタイミングを指している。
 本変形例でも実施形態と同様に、液晶応答が線形であることを仮定している。また、各タイミングにおける推定画素値の算出方法は、実施形態において、図9で説明した方法と同様の方法である。つまり、図9に示すTからTN+1の区間を10の区間に分割し、分割された各区間における直線L1の値が、注目画素である座標(1,1)の画素の各タイミングにおける推定画素値である。同じ要領で、その他の画素も、推定画素値を取得することができる。
In step S3 (estimated pixel value acquisition step), the correction data acquisition unit 2 acquires estimated pixel values of each pixel at each timing based on the difference D and the LUT (see FIG. 7). That is, in step S3, ten matrices of estimated pixel values as shown in FIG. 8 are generated. Here, the timings refer to 0.1T, 0.2T, 0.3T, 0.4T, 0.5T, 0.6T, 0.7T, 0.8T, 0.9T, and 1.0T.
In this modified example, as in the embodiment, it is assumed that the liquid crystal response is linear. The method of calculating the estimated pixel value at each timing is the same as the method described in FIG. 9 in the embodiment. That is, the section from T N to T N+1 shown in FIG. 9 is divided into 10 sections, and the value of the straight line L1 in each divided section is the estimated pixel value at each timing of the pixel at coordinates (1, 1) which is the pixel of interest. In the same manner, the estimated pixel values of the other pixels can also be obtained.
 ステップS4(第2統計値取得ステップ)では、補正用データ取得部2は、各タイミング(0.1T、0.2T、0.3T、0.4T、0.5T、0.6T、0.7T、0.8T、0.9T、1.0Tのタイミング)の、予め定められた領域Rgごとの推定画素値の平均値vcを取得する。 In step S4 (second statistical value acquisition step), the correction data acquisition unit 2 acquires the average value vc of the estimated pixel values for each predetermined region Rg at each timing (0.1T, 0.2T, 0.3T, 0.4T, 0.5T, 0.6T, 0.7T, 0.8T, 0.9T, 1.0T).
 ステップS5(フリッカー量取得ステップ)では、補正用データ取得部2は、ステップS4で取得した各タイミングの推定画素値の平均値vcに基づいて、予め定められた領域Rgごとにフリッカー量を取得する。各予め定められた領域Rgのフリッカー量は、上記で説明したように、差Ar1~差Ar9を合計することで取得することができる。
 ステップS6(補正決定ステップ)では、補正用データ取得部2は、ステップS5で取得したフリッカー量に基づいて、バックライトの補正をする予め定められた領域Rgを決定する。補正用データ取得部2は、予め定められた領域Rgのフリッカー量が予め定められた閾値以上である場合には、当該予め定められた領域Rgが、補正をする予め定められた領域Rgであると決定する。一方で、補正用データ取得部2は、予め定められた領域Rgのフリッカー量が予め定められた閾値未満である場合には、当該予め定められた領域Rgが、補正をしない予め定められた領域Rgであると決定する。
 補正をすると決定された予め定められた領域Rgについては、後段のステップで、補正用データEc及びバックライト補正値Bcが取得されることになる。
 一方で、補正をしないと決定された予め定められた領域Rgについては、後段のステップで、補正用データEc及びバックライト補正値Bcが取得されない。
In step S5 (flicker amount acquisition step), the correction data acquisition unit 2 acquires the amount of flicker for each predetermined region Rg based on the average value vc of the estimated pixel values at each timing acquired in step S4. The amount of flicker for each predetermined region Rg can be acquired by summing up the differences Ar1 to Ar9, as described above.
In step S6 (correction determination step), the correction data acquisition unit 2 determines a predetermined region Rg for which backlight correction is to be performed based on the amount of flicker acquired in step S5. If the amount of flicker in the predetermined region Rg is equal to or greater than a predetermined threshold, the correction data acquisition unit 2 determines that the predetermined region Rg is a predetermined region Rg for which correction is to be performed. On the other hand, if the amount of flicker in the predetermined region Rg is less than the predetermined threshold, the correction data acquisition unit 2 determines that the predetermined region Rg is a predetermined region Rg for which correction is not to be performed.
For the predetermined region Rg for which it has been determined that correction is to be performed, correction data Ec and a backlight correction value Bc will be obtained in a later step.
On the other hand, for the predetermined region Rg for which it has been determined that no correction is to be performed, the correction data Ec and the backlight correction value Bc are not acquired in the subsequent steps.
 ステップS7(補正用データ算出ステップ)では、補正用データ取得部2は、補正をすると決定された予め定められた領域Rgに対し、実施形態と同様に、画素値の平均値v1と、中間タイミングにおける推定画素値の平均値vcとの差に基づいて、補正用データEcを算出する。なお、ステップS4において、既に、0.5T(中間タイミング)における推定画素値の平均値vcを既に取得しているので、補正用データ取得部2は、この既に取得した平均値vcを用いればよい。
 なお、補正用データ取得部2は、補正をしないと決定された予め定められた領域Rgに対しては、補正用データEcを算出しない。
In step S7 (correction data calculation step), the correction data acquisition unit 2 calculates correction data Ec for the predetermined region Rg determined to be corrected based on the difference between the average pixel value v1 and the average estimated pixel value vc at the intermediate timing, as in the embodiment. Note that, since the average estimated pixel value vc at 0.5T (intermediate timing) has already been acquired in step S4, the correction data acquisition unit 2 may use this already acquired average value vc.
The correction data acquisition unit 2 does not calculate the correction data Ec for the predetermined region Rg for which it has been determined that no correction is to be performed.
 ステップS8(バックライト補正値取得ステップ)では、ローカルディミング制御部3は補正用データ取得部2が取得した補正用データEcに基づいて、バックライト補正値Bcを取得する。なお、ローカルディミング制御部3が、補正用データEcをバックライト補正値Bcに変換する方法は実施形態と同様である。 In step S8 (backlight correction value acquisition step), the local dimming control unit 3 acquires the backlight correction value Bc based on the correction data Ec acquired by the correction data acquisition unit 2. Note that the method by which the local dimming control unit 3 converts the correction data Ec into the backlight correction value Bc is the same as in the embodiment.
3-2 変形例2:バックライト7Bを1画素ごとに制御可能
 実施形態では、予め定められた領域Rgの領域全体に対して、バックライト補正値Bcを用いた制御を実施しているが、これに限定されるものではない。バックライト7Bを独立して制御可能な最小エリアが予め定められた領域Rgよりも狭ければ、予め定められた領域Rgを、予め定められた領域Rgより狭い所望のエリアで区分することができる。一例として、当該エリアが1画素ごとの領域であるものとして説明する。このように、バックライト7Bを独立して制御可能な最小エリアが狭いと、予め定められた領域Rg中の画素のうち、特にフリッカーの影響が大きそうな画素を狙ってバックライト7Bの補正が可能になり、フリッカーをより確実に低減する効果が期待できる。つまり、本変形例2の方法1では、バックライト補正値Bcを用いた制御をしたときに、フリッカーの低減効果が高い特定画素を抽出する。
 なお、本変形例2の方法1の構成は、少なくとも2つの方法で実施することができるため、以下に分けてそれぞれ説明する。
3-2 Modification 2: Backlight 7B can be controlled for each pixel In the embodiment, the control using the backlight correction value Bc is performed for the entire region of the predetermined region Rg, but the present invention is not limited to this. If the minimum area in which the backlight 7B can be independently controlled is narrower than the predetermined region Rg, the predetermined region Rg can be divided into desired areas narrower than the predetermined region Rg. As an example, the area is described as being for each pixel. In this way, if the minimum area in which the backlight 7B can be independently controlled is narrow, it becomes possible to correct the backlight 7B by targeting pixels in the predetermined region Rg that are likely to be particularly affected by flicker, and the effect of reducing flicker more reliably can be expected. In other words, in the method 1 of this modification 2, when control is performed using the backlight correction value Bc, specific pixels that have a high effect of reducing flicker are extracted.
The configuration of Method 1 of Modification 2 can be implemented in at least two ways, which will be described separately below.
3-2-1 変形例2の方法1:画素ごとにバックライト補正値Bcが異なる場合
 本変形例1の方法1のバックライト補正値Bcの算出フロー(図14参照)は、実施形態(図10参照)のステップS2が無く、図4に示すステップS3(理想値取得ステップ)とステップS4(特定画素抽出ステップ)が新設されている。
3-2-1 Method 1 of Modification 2: When the backlight correction value Bc differs for each pixel The calculation flow of the backlight correction value Bc in Method 1 of Modification 1 (see FIG. 14) does not have Step S2 in the embodiment (see FIG. 10), and newly includes Step S3 (ideal value acquisition step) and Step S4 (specific pixel extraction step) shown in FIG. 4.
 図14を参照して、本変形例におけるバックライト補正値Bcを取得方法のフローを説明する。なお、本変形例では、図15Aに示すフレームF1,F2を使用するものとして説明する。図15Aに示す画素値は、図4及び図6の画素値と同様である。 The flow of the method for obtaining the backlight correction value Bc in this modified example will be described with reference to FIG. 14. Note that this modified example will be described assuming that frames F1 and F2 shown in FIG. 15A are used. The pixel values shown in FIG. 15A are the same as the pixel values in FIG. 4 and FIG. 6.
 ステップS1(差分取得ステップ)では、フレーム演算処理部1は、実施形態と同様に、前後のフレーム(フレームF1,F2)の各座標に対して、画素値の差分Dを取得する。取得した差分Dは、図15Bに示す通りである。 In step S1 (difference acquisition step), the frame calculation processing unit 1 acquires the pixel value difference D for each coordinate of the previous and next frames (frames F1 and F2) in the same manner as in the embodiment. The acquired difference D is as shown in FIG. 15B.
 ステップS2(推定遷移量取得ステップ)では、補正用データ取得部2は、差分DとLUT(図7参照)とに基づいて、中間タイミングにおける各画素の推定遷移量を取得する。推定遷移量は、中間タイミングにおける推定画素値(図8参照)と、前フレームであるフレームF1の画素値との差である。このため、本ステップS2の推定遷移量取得ステップは、実施形態で説明した推定画素値取得ステップと実質的には同じ内容である。
 なお、図7に示すLUTを用いることで、図15Cに示す各画素の液晶応答特性(液晶応答時間)を得ることができる。この各画素の液晶応答特性(液晶応答時間)を用いることで、図15Dに示す各画素の推定遷移量を得ることができる。
In step S2 (estimated transition amount acquisition step), the correction data acquisition unit 2 acquires an estimated transition amount of each pixel at the intermediate timing based on the difference D and the LUT (see FIG. 7). The estimated transition amount is the difference between the estimated pixel value at the intermediate timing (see FIG. 8) and the pixel value of the previous frame, frame F1. Therefore, the estimated transition amount acquisition step of this step S2 is substantially the same as the estimated pixel value acquisition step described in the embodiment.
It should be noted that the liquid crystal response characteristics (liquid crystal response time) of each pixel shown in Fig. 15C can be obtained by using the LUT shown in Fig. 7. The estimated transition amount of each pixel shown in Fig. 15D can be obtained by using the liquid crystal response characteristics (liquid crystal response time) of each pixel.
 図16を参照して、推定遷移量について具体的に説明する。ここでは、座標(2,2)の画素を例に説明する。図16に示す直線L1は、実施形態で説明した図9に示す直線L1と同じ意味をもつ直線である。座標(2,2)の画素は、画素値20から画素値150へ変化する。そして、図7に示すLUTから、座標(2,2)の液晶応答特性は、25.4msecである。これにより、図16に示す直線L1では、中間タイミングにおいて想定される画素値が62.7となることがわかる。したがって、座標(2,2)の中間タイミングにおける推定遷移量は、図15Dに示すように、42.7となる。その他の座標についても、同様の計算で、中間タイミングにおける推定遷移量を取得することができる。 The estimated transition amount will be specifically described with reference to FIG. 16. Here, the pixel at coordinates (2, 2) will be described as an example. The straight line L1 shown in FIG. 16 has the same meaning as the straight line L1 shown in FIG. 9 described in the embodiment. The pixel at coordinates (2, 2) changes from a pixel value of 20 to a pixel value of 150. The LUT shown in FIG. 7 shows that the liquid crystal response characteristic at coordinates (2, 2) is 25.4 msec. This shows that the pixel value expected at the intermediate timing for the straight line L1 shown in FIG. 16 is 62.7. Therefore, the estimated transition amount at the intermediate timing for coordinates (2, 2) is 42.7, as shown in FIG. 15D. For other coordinates, the estimated transition amount at the intermediate timing can be obtained by similar calculation.
 ステップS3(理想値取得ステップ)では、補正用データ取得部2は、遷移量の理想値を取得する。遷移量の理想値は、前フレームから後フレームへ遷移するとき、各画素の画素値が理想的に遷移するとした場合における中間タイミングの画素値と、前フレームの画素値との差である。
 なお、理想的な遷移が、前フレームの画素値から後フレームの画素値へ線形で遷移することであると仮定することで、図15Eに示す各画素の推定遷移量を得ることができる。
 具体的には、理想的な遷移は、図16の直線L2に示すように、前フレームの画素値と後フレームの画素値とを直線で結んで表すことができる。つまり、実際には、画素値20から画素値150へ上昇するためには、25.4msecを要するが、理想的には、16.66msecで上昇することが望まれる。この直線L2では、中間タイミングにおいて画素値が85となることがわかる。このため、座標(2,2)の画素の遷移量の理想値は、85-20=65となる。その他の座標についても、同様の計算で、遷移量の理想値を取得することができる。
In step S3 (ideal value acquisition step), the correction data acquisition unit 2 acquires an ideal value of the transition amount. The ideal value of the transition amount is the difference between the pixel value of the previous frame and the pixel value of the intermediate timing when the pixel value of each pixel ideally transitions from the previous frame to the next frame.
It should be noted that by assuming that the ideal transition is a linear transition from the pixel value of the previous frame to the pixel value of the next frame, it is possible to obtain the estimated transition amount for each pixel shown in FIG. 15E.
Specifically, the ideal transition can be represented by a straight line connecting the pixel value of the previous frame and the pixel value of the next frame, as shown by line L2 in Fig. 16. That is, in reality, it takes 25.4 msec for the pixel value to increase from 20 to 150, but ideally, it is desired that the increase takes 16.66 msec. It can be seen from line L2 that the pixel value is 85 at the intermediate timing. Therefore, the ideal value of the transition amount for the pixel at coordinates (2, 2) is 85-20=65. For other coordinates, the ideal value of the transition amount can be obtained by similar calculation.
 ステップS4(特定画素抽出ステップ)では、補正用データ取得部2は、遷移量の理想値(図15E)と、画素値の推定遷移量(図15D)との差に基づいて、特定画素を抽出する。具体的には、補正用データ取得部2は、図15Fに示す不足遷移量データに基づいて、特定画素を抽出する。 In step S4 (specific pixel extraction step), the correction data acquisition unit 2 extracts a specific pixel based on the difference between the ideal transition amount (FIG. 15E) and the estimated transition amount of the pixel value (FIG. 15D). Specifically, the correction data acquisition unit 2 extracts a specific pixel based on the insufficient transition amount data shown in FIG. 15F.
 不足遷移量データは、図15Cに示す液晶応答時間の絶対値が、前後のフレーム間の時間(16.66msec)より大きいか、当該時間以下であるかに応じて値が変わる。液晶応答時間の絶対値が、当該時間以下である場合には、当該時間内に画素値が後フレームの画素値へ移行することを意味している。なお、図15Cにおいて、液晶応答時間の絶対値が、前後のフレーム間の時間(16.66msec)以下である画素は、破線の円で囲って強調されている。このような画素は、補正が必要ないと考えられるため、不足遷移量データは、0としている。一方で、液晶応答時間の絶対値が、前後のフレーム間の時間より大きい場合には、補正が必要になる。このような画素の不足遷移量データは、遷移量の理想値(図15E)と、画素値の推定遷移量(図15D)との差に基づいて取得することができる。 The value of the insufficient transition amount data changes depending on whether the absolute value of the liquid crystal response time shown in FIG. 15C is greater than or equal to the time between the previous and next frames (16.66 msec). When the absolute value of the liquid crystal response time is equal to or less than the time, it means that the pixel value transitions to the pixel value of the subsequent frame within the time. In FIG. 15C, pixels whose absolute value of the liquid crystal response time is equal to or less than the time between the previous and next frames (16.66 msec) are highlighted by being surrounded by a dashed circle. Since such pixels are considered not to require correction, the insufficient transition amount data is set to 0. On the other hand, when the absolute value of the liquid crystal response time is greater than the time between the previous and next frames, correction is required. The insufficient transition amount data of such pixels can be obtained based on the difference between the ideal value of the transition amount (FIG. 15E) and the estimated transition amount of the pixel value (FIG. 15D).
 ここで、図15Fに示す不足遷移量データの正の数の総和は、139.5であり、負の数の総和は、20である。補正用データ取得部2は、これらの総和の大小関係が逆転するまで、正及び負のうち総和が多い方の不足遷移量データの絶対値を、絶対値が大きいものから順番に0にしていく。つまり、図15Fでは、正の総和が多いため、正の数を大きいものから順番に0にしていく。具体的には、座標(4,2)の22.4と、座標(2,2)の22.3と、座標(1,3)及び座標(3,5)の21と、座標(1,1)の15.1を順番に0にしていく。このとき、残りの正の数の総和は、21.9である。そして、次に、座標(3,2)の11.5を0にしてしまうと、正の数の総和と、負の数の総和とが逆転してしまう。このため、補正用データ取得部2は、ここで不足遷移量データを0にしていく演算を停止し、正の総和と負の総和の大小関係が逆転する前の演算に係る座標を特定画素として抽出する。ここでの説明では、特定画素は、座標(4,2)、座標(2,2)、座標(1,3)、座標(3,5)及び座標(1,1)である。なお、図15Fにおいて、特定画素は、破線の円で囲って強調し、値を0にすることで正の総和と負の総和の大小関係が逆転する画素は、破線の四角で囲って強調している。 Here, the sum of the positive numbers of the deficient transition amount data shown in FIG. 15F is 139.5, and the sum of the negative numbers is 20. The correction data acquisition unit 2 resets the absolute values of the deficient transition amount data with the larger positive and negative sums to 0, starting with the largest absolute value, until the relationship between the magnitudes of these sums is reversed. In other words, in FIG. 15F, since there are more positive sums, the positive numbers are reset to 0, starting with the largest. Specifically, 22.4 at coordinate (4,2), 22.3 at coordinate (2,2), 21 at coordinate (1,3) and coordinate (3,5), and 15.1 at coordinate (1,1) are reset to 0, starting with the largest. At this time, the sum of the remaining positive numbers is 21.9. Next, if 11.5 at coordinate (3,2) is reset to 0, the sum of the positive numbers and the sum of the negative numbers will be reversed. Therefore, the correction data acquisition unit 2 stops the calculation of setting the insufficient transition amount data to 0, and extracts the coordinates related to the calculation before the magnitude relationship between the positive sum and the negative sum is reversed as specific pixels. In this explanation, the specific pixels are coordinates (4, 2), (2, 2), (1, 3), (3, 5), and (1, 1). Note that in FIG. 15F, the specific pixels are highlighted by being surrounded by dashed circles, and pixels whose value will reverse the magnitude relationship between the positive sum and the negative sum by setting them to 0 are highlighted by being surrounded by dashed squares.
 このように、補正用データ取得部2は、遷移量の理想値と画素値の推定遷移量との差に基づく不足遷移量データに関して、正の総和と負の総和のうち多い方の符号の不足遷移量データを、正の総和と負の総和が逆転するまで、当該多い方の符号の不足遷移量データの大きい方から順に0にしていく。そして、補正用データ取得部2は、0にした座標の画素を特定画素として抽出する。 In this way, the correction data acquisition unit 2 resets the missing transition amount data of the larger sign of the positive sum or the negative sum to zero, starting from the larger missing transition amount data of the larger sign, for the missing transition amount data based on the difference between the ideal value of the transition amount and the estimated transition amount of the pixel value, until the positive sum and the negative sum are reversed.The correction data acquisition unit 2 then extracts the pixel at the coordinates that have been reset to zero as the specific pixel.
 ステップS5(補正用データ算出ステップ)では、補正用データ取得部2は、特定画素として抽出された画素に対して、特定画素ごとに補正用データEcを算出する。補正用データEcとしては、図15Fに示す不足遷移量データを用いることができる。例えば、座標(1,4)については、補正用データEcは7である。なお、予め定められた領域Rgの画素のうち特定画素として抽出されなかった画素については、補正用データ取得部2は、補正用データEcを取得しない。 In step S5 (correction data calculation step), the correction data acquisition unit 2 calculates correction data Ec for each pixel extracted as a specific pixel. As the correction data Ec, the missing transition amount data shown in FIG. 15F can be used. For example, for coordinates (1, 4), the correction data Ec is 7. Note that the correction data acquisition unit 2 does not acquire correction data Ec for pixels in the predetermined region Rg that were not extracted as specific pixels.
 ステップS6(バックライト補正値取得ステップ)では、ローカルディミング制御部3は、各特定画素の補正用データEcに基づいて、各特定画素のバックライト補正値Bcを取得する。なお、ローカルディミング制御部3が、特定画素の補正用データEcをバックライト補正値Bcに変換する方法は実施形態と同様である。 In step S6 (backlight correction value acquisition step), the local dimming control unit 3 acquires the backlight correction value Bc of each specific pixel based on the correction data Ec of each specific pixel. Note that the method by which the local dimming control unit 3 converts the correction data Ec of the specific pixel into the backlight correction value Bc is the same as in the embodiment.
 なお、本変形例2の方法1では、予め定められた領域Rgごとに特定画素を抽出していく形態について説明したが、これに限定されるものではなく、液晶パネル7A全体から直に特定画素を抽出してもよい。 In method 1 of this modified example 2, a form in which specific pixels are extracted for each predetermined region Rg has been described, but this is not limited to this, and specific pixels may be extracted directly from the entire liquid crystal panel 7A.
 なお、本変形例2の方法1では、中間タイミングを0.5Tとしているが、これに限定されるものではなく、実施形態で説明したように、これ以外のタイミングであってもよい。 In method 1 of this modified example 2, the intermediate timing is set to 0.5T, but this is not limited to this and may be other timings as explained in the embodiment.
3-2-2 変形例2の方法2:バックライト補正値Bcが共通する場合
 上述の3-2-1は、特定画素を抽出し、特定画素ごとに補正用データEcを取得するものであったが、特定画素に対して共通の補正用データEcを用いることもできる。なお、共通の補正用データEcは、例えば、特定画素の不足遷移量データの平均値を用いてもよいし、中央値を用いてもよいし、ヒストグラムを用いてもよい。
 なお、本変形例2の方法2の場合の動作は、方法1に係る図14のフローチャートと基本的には同じであるが、ステップS5において、特定画素に共通の補正用データEcを取得する点と、ステップS6において、共通の補正用データEcに基づいて共通のバックライト補正値Bcを取得する点が異なる。
3-2-2 Method 2 of Modification 2: When the backlight correction value Bc is common In the above 3-2-1, specific pixels are extracted and correction data Ec is obtained for each specific pixel, but common correction data Ec can also be used for the specific pixels. Note that the common correction data Ec may be, for example, an average value or a median value of the insufficient transition amount data of the specific pixels, or a histogram.
The operation of method 2 in this modified example 2 is basically the same as that of method 1 in the flowchart of Figure 14, except that in step S5, correction data Ec common to specific pixels is obtained, and in step S6, a common backlight correction value Bc is obtained based on the common correction data Ec.
 なお、変形例2の方法1又は方法2は、例えば変形例1の構成と組み合わせてもよい。つまり、変形例1により、補正する予め定められた領域Rgを決定しておき、その決定された予め定められた領域に対して特定画素を抽出するようにしてもよい。 Method 1 or 2 of Modification 2 may be combined with, for example, the configuration of Modification 1. In other words, a predetermined region Rg to be corrected may be determined by Modification 1, and specific pixels may be extracted from the determined predetermined region.
3-3 変形例3:統計値について
 実施形態では、平均値v1及び平均値v2(第1統計値の一例)や、平均値vc(第2統計値の一例)を用いて各種演算をすることを説明したが、これに限定されるものではない。平均値の他に、中央値を用いてもよいし、ヒストグラムを用いてもよい。
3-3 Modification 3: Regarding statistical values In the embodiment, various calculations are performed using the average value v1 and the average value v2 (an example of the first statistical value) and the average value vc (an example of the second statistical value), but this is not limiting. In addition to the average value, a median value or a histogram may be used.
3-4 変形例4:液晶応答特性の取得方法
 実施形態では、LUTに格納された液晶応答特性を用いて推定画素値を取得する方法を説明したがこれに限定されるものではない。前後のフレームの画素値に基づいて液晶応答特性を取得することができる演算式を用いて、都度、液晶応答特性を算出してもよい。
3-4 Modification 4: Method of Acquiring Liquid Crystal Response Characteristics In the embodiment, the method of acquiring an estimated pixel value using the liquid crystal response characteristics stored in the LUT has been described, but the present invention is not limited to this. The liquid crystal response characteristics may be calculated each time using an arithmetic expression that can acquire the liquid crystal response characteristics based on the pixel values of the previous and next frames.
3-5 変形例5:光源制御について
 実施形態では、光源制御の一例としてのローカルディミング制御を実施した上でバックライト補正値Bcを取得するものとして説明したが、これに限定されるものではなく、光源制御は、ローカルディミング制御でなくてもよい。具体的には、実施形態では、エリアごと(予め定められた領域Rgごと)に分けて各種値が演算され、バックライトが制御される構成となっているが、本変形例5では、バックライト7B全体がひとまとめにされた状況で各種値が演算され、バックライトが制御される構成となっている。つまり、変形例5の構成は、実施形態で説明した予め定められた領域Rgを液晶パネル7Aの領域全体(図3や図5のフレームにおける15×10の領域全体)に拡張することに対応している。
3-5 Modification 5: Regarding Light Source Control In the embodiment, the backlight correction value Bc is obtained after performing local dimming control as an example of light source control, but the present invention is not limited to this, and the light source control does not have to be local dimming control. Specifically, in the embodiment, various values are calculated for each area (each predetermined region Rg) and the backlight is controlled, but in the present modification 5, various values are calculated in a state where the entire backlight 7B is grouped together and the backlight is controlled. In other words, the configuration of modification 5 corresponds to expanding the predetermined region Rg described in the embodiment to the entire region of the liquid crystal panel 7A (the entire 15×10 region in the frame of FIG. 3 or FIG. 5).
 変形例5において、液晶表示装置100は、図17に示すように、実施形態の図2に示すローカルディミング制御部3の代わりに光源制御部3tを備えている。 In the fifth modification, as shown in FIG. 17, the liquid crystal display device 100 includes a light source control unit 3t instead of the local dimming control unit 3 shown in FIG. 2 of the embodiment.
 本変形例5において、フレーム演算処理部1の差分算出機能は、実施形態と同様である。また、フレーム演算処理部1の統計値算出機能は、図3や図5に示す15×10の全体領域に対して適用される。なお、平均値v1及び平均値v2の算出方法は、実施形態と同様である。
 本変形例5において、補正用データ取得部2における平均値vcの算出方法は、実施形態と同様である。つまり、補正用データ取得部2は、図8に示すように、各座標の推定画素値が特定された表を用いて、中間タイミングにおける、15×10の領域全体の画素値の平均値vcを算出する。そして、補正用データ取得部2は、平均値v1と平均値vcとの差に基づいて、補正用データEcを取得することができる。
 本変形例5において、光源制御部のバックライト補正値Bcの取得方法は、実施形態と同様である。つまり、光源制御部は、補正用データ取得部2が取得した補正用データEcに基づいて、15×10の領域全体に適用するバックライト補正値Bcを取得することができる。
In this modification 5, the difference calculation function of the frame calculation processor 1 is the same as that of the embodiment. Also, the statistical value calculation function of the frame calculation processor 1 is applied to the entire 15×10 region shown in Fig. 3 and Fig. 5. The calculation method of the average value v1 and the average value v2 is the same as that of the embodiment.
In the present modified example 5, the method of calculating the average value vc in the correction data acquisition unit 2 is the same as that in the embodiment. That is, the correction data acquisition unit 2 calculates the average value vc of pixel values of the entire 15×10 region at the intermediate timing using a table in which estimated pixel values of each coordinate are specified, as shown in Fig. 8. Then, the correction data acquisition unit 2 can acquire correction data Ec based on the difference between the average value v1 and the average value vc.
In the present modified example 5, the method of acquiring the backlight correction value Bc of the light source control unit is the same as that of the embodiment. That is, the light source control unit can acquire the backlight correction value Bc to be applied to the entire 15×10 region based on the correction data Ec acquired by the correction data acquisition unit 2.
 本変形例5は、変形例1と組み合わせることもできる。つまり、変形例5に係る液晶表示装置100が、フリッカー量に応じて、15×10の領域全体に対してバックライト補正をするか否かを決定する構成を備えていてもよい。
 また、本変形例5は、変形例2の方法1及び方法2と組み合わせることもできる。つまり、変形例5に係る液晶表示装置100が、15×10の領域全体の画素ごとにバックライト補正値Bcを取得してもよい。
 更に、本変形例5は、変形例1、及び、変形例2の方法1又は方法2と組み合わせることもできる。
Modification 5 can also be combined with Modification 1. That is, the liquid crystal display device 100 according to Modification 5 may have a configuration for determining, in accordance with the amount of flicker, whether or not to perform backlight correction for the entire 15×10 region.
Furthermore, Modification 5 can be combined with Method 1 and Method 2 of Modification 2. That is, the liquid crystal display device 100 according to Modification 5 may obtain the backlight correction value Bc for each pixel in the entire 15×10 region.
Furthermore, this modified example 5 can be combined with modified example 1 and method 1 or method 2 of modified example 2.
1   :フレーム演算処理部
2   :補正用データ取得部
3   :ローカルディミング制御部(光源制御部)
3t  :光源制御部
4   :メモリ
5   :液晶駆動回路
6   :バックライト駆動回路
7   :液晶表示部
7A  :液晶パネル
7B  :バックライト
100 :液晶表示装置
200 :出力装置
1: Frame calculation processing unit 2: Correction data acquisition unit 3: Local dimming control unit (light source control unit)
3t: Light source control unit 4: Memory 5: Liquid crystal drive circuit 6: Backlight drive circuit 7: Liquid crystal display unit 7A: Liquid crystal panel 7B: Backlight 100: Liquid crystal display device 200: Output device

Claims (12)

  1.  バックライトを光源制御する液晶表示装置において、
     前記液晶表示装置は、第1フレームから第2フレームへの移行時に画素値が上昇する画素と低下する画素との液晶応答速度の差に起因するフリッカーを低減するように構成され、
     補正用データ取得部と、光源制御部とを備え、
     前記補正用データ取得部は、第1及び第2フレームの画素値に基づいて、前記フリッカーが生じることを低減するための補正用データを取得するように構成され、
     前記光源制御部は、前記補正用データに基づいてバックライト補正値を取得するように構成され、
     前記バックライト補正値は、第1及び第2フレームの間の予め定められた期間において、前記バックライトの前記光源制御に用いられる、液晶表示装置。
    In a liquid crystal display device that controls a backlight as a light source,
    the liquid crystal display device is configured to reduce flicker caused by a difference in liquid crystal response speed between a pixel whose pixel value increases and a pixel whose pixel value decreases during a transition from a first frame to a second frame;
    A correction data acquisition unit and a light source control unit are provided,
    the correction data acquisition unit is configured to acquire correction data for reducing the occurrence of flicker based on pixel values of first and second frames;
    the light source control unit is configured to obtain a backlight correction value based on the correction data;
    The backlight correction value is used for the light source control of the backlight during a predetermined period between a first frame and a second frame.
  2.  請求項1に記載の液晶表示装置であって、
     前記補正用データ取得部は、第1フレームの画素値と第2フレームの画素値とが関連付けられた液晶応答特性を用いて、前記補正用データを取得し、
      前記液晶応答特性は、液晶応答速度又は液晶応答時間である、液晶表示装置。
    The liquid crystal display device according to claim 1 ,
    the correction data acquisition unit acquires the correction data using a liquid crystal response characteristic in which a pixel value of a first frame and a pixel value of a second frame are associated with each other;
    The liquid crystal response characteristic is a liquid crystal response speed or a liquid crystal response time.
  3.  請求項2に記載の液晶表示装置であって、
     前記補正用データ取得部は、前記液晶応答特性に基づいた推定画素値を用いて、前記補正用データを取得し、
      前記推定画素値は、中間タイミングにおける画素値であり、
       前記中間タイミングは、第1及び第2フレームの間のタイミングである、液晶表示装置。
    The liquid crystal display device according to claim 2,
    the correction data acquisition unit acquires the correction data by using an estimated pixel value based on the liquid crystal response characteristic;
    the estimated pixel value is a pixel value at an intermediate timing,
    The intermediate timing is a timing between the first and second frames.
  4.  請求項1~請求項3の何れか1つに記載の液晶表示装置であって、
     前記光源制御部は、領域内画素の前記補正用データに基づいて、前記領域内画素中の画素に対して適用する前記バックライト補正値を取得するように構成され、
     前記領域内画素は、第1及び第2フレームの予め定められた領域に含まれる複数の画素で構成される、液晶表示装置。
    The liquid crystal display device according to any one of claims 1 to 3,
    the light source control unit is configured to obtain the backlight correction value to be applied to pixels in the region based on the correction data of the pixels in the region;
    A liquid crystal display device, wherein the intra-region pixels are composed of a plurality of pixels included in a predetermined region of the first and second frames.
  5.  請求項4に記載の液晶表示装置であって、
     前記補正用データ取得部は、第1及び第2統計値の差分に基づいて前記補正用データを取得するように構成され、
      第1統計値は、第1フレームの前記領域内画素の前記複数の画素の画素値に基づいた統計値であり、
      第2統計値は、中間タイミングにおける、前記領域内画素の前記複数の画素の画素値に基づいた統計値であり、
       前記中間タイミングは、第1及び第2フレームの間のタイミングである、液晶表示装置。
    The liquid crystal display device according to claim 4,
    the correction data acquisition unit is configured to acquire the correction data based on a difference between first and second statistical values;
    the first statistical value is a statistical value based on pixel values of the plurality of pixels within the region of the first frame;
    the second statistical value is a statistical value based on pixel values of the pixels in the region at an intermediate timing;
    The intermediate timing is a timing between the first and second frames.
  6.  請求項5に記載の液晶表示装置であって、
     前記統計値は、平均値である、中央値である、又はヒストグラムに基づいて取得される値である、液晶表示装置。
    The liquid crystal display device according to claim 5 ,
    A liquid crystal display device, wherein the statistical value is an average value, a median value, or a value obtained based on a histogram.
  7.  請求項4に記載の液晶表示装置であって、
     前記補正用データ取得部は、前記領域内画素の特定画素を抽出するように構成され、且つ、抽出した前記特定画素の前記補正用データを取得するように構成され、
     前記光源制御部は、前記特定画素の前記補正用データに基づいて前記バックライト補正値を取得するように構成されている、液晶表示装置。
    The liquid crystal display device according to claim 4,
    the correction data acquisition unit is configured to extract a specific pixel from among pixels within the region, and to acquire the correction data for the extracted specific pixel;
    The liquid crystal display device, wherein the light source control unit is configured to obtain the backlight correction value based on the correction data of the specific pixel.
  8.  請求項4に記載の液晶表示装置であって、
     前記補正用データ取得部は、前記予め定められた領域ごとにフリッカー量を取得するように構成され、且つ、前記フリッカー量に基づいて、前記予め定められた領域に対して前記補正用データ及び前記バックライト補正値を使用するか否かを決定するように構成され、
      前記フリッカー量は、第1フレームから第2フレームへの移行時における、前記予め定められた領域の前記フリッカーが発生する度合に対応している、液晶表示装置。
    The liquid crystal display device according to claim 4,
    the correction data acquisition unit is configured to acquire an amount of flicker for each of the predetermined regions, and is configured to determine whether or not to use the correction data and the backlight correction value for the predetermined regions based on the amount of flicker;
    A liquid crystal display device, wherein the amount of flicker corresponds to a degree to which the flicker occurs in the predetermined region during a transition from a first frame to a second frame.
  9.  請求項1~請求項8の何れか1つに記載の液晶表示装置であって、
     第1及び第2フレームは、ドットメッシュ画像である、液晶表示装置。
    A liquid crystal display device according to any one of claims 1 to 8,
    The first and second frames are dot mesh images.
  10.  請求項1~請求項9の何れか1つに記載の液晶表示装置であって、
     前記光源制御は、ローカルディミング制御であり、
     前記バックライト補正値は、第1及び第2フレームの間の予め定められた期間において、少なくとも注目画素を含む画素に対応する前記バックライトの前記ローカルディミング制御に用いられる、液晶表示装置。
    A liquid crystal display device according to any one of claims 1 to 9,
    the light source control is a local dimming control,
    The backlight correction value is used for the local dimming control of the backlight corresponding to at least pixels including a pixel of interest during a predetermined period between first and second frames.
  11.  バックライトを光源制御する液晶表示方法において、
     前記液晶表示方法は、第1フレームから第2フレームへの移行時に画素値が上昇する画素と低下する画素との液晶応答速度の差に起因するフリッカーを低減し、
     補正用データ取得ステップと、バックライト補正値取得ステップとを備え、
     前記補正用データ取得ステップでは、第1及び第2フレームの画素値に基づいて、前記フリッカーが生じることを低減するための補正用データを取得し、
     前記バックライト補正値取得ステップでは、前記補正用データに基づいてバックライト補正値を取得し、
     前記バックライト補正値は、第1及び第2フレームの間の予め定められた期間において、前記バックライトの前記光源制御に用いられる、方法。
    In a liquid crystal display method for controlling a backlight as a light source,
    The liquid crystal display method includes reducing flicker caused by a difference in liquid crystal response speed between pixels whose pixel values increase and pixels whose pixel values decrease during a transition from a first frame to a second frame;
    The method includes a correction data acquisition step and a backlight correction value acquisition step,
    In the correction data acquisition step, correction data for reducing the occurrence of the flicker is acquired based on pixel values of the first and second frames;
    In the backlight correction value acquisition step, a backlight correction value is acquired based on the correction data,
    The method of claim 1, wherein the backlight compensation value is used in the light source control of the backlight during a predetermined period between a first and a second frame.
  12.  コンピュータに、請求項11に記載の前記液晶表示方法を実行させる、プログラム。 A program that causes a computer to execute the liquid crystal display method described in claim 11.
PCT/JP2023/025719 2022-10-04 2023-07-12 Liquid-crystal display device, liquid-crystal display method, and program WO2024075359A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022160192 2022-10-04
JP2022-160192 2022-10-04

Publications (1)

Publication Number Publication Date
WO2024075359A1 true WO2024075359A1 (en) 2024-04-11

Family

ID=90608326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025719 WO2024075359A1 (en) 2022-10-04 2023-07-12 Liquid-crystal display device, liquid-crystal display method, and program

Country Status (1)

Country Link
WO (1) WO2024075359A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512386A (en) * 1998-04-17 2002-04-23 バルコ・ナムローゼ・フエンノートシャップ Conversion of video signal for driving liquid crystal display
JP2008268905A (en) * 2007-03-29 2008-11-06 Nec Lcd Technologies Ltd Liquid crystal display device
KR20090057619A (en) * 2007-12-03 2009-06-08 주식회사 대우일렉트로닉스 Apparatus for improving motion blur and method thereof
KR20120045509A (en) * 2010-10-29 2012-05-09 엘지디스플레이 주식회사 Liquid crystal display device and driving method for thereof
WO2016148122A1 (en) * 2015-03-19 2016-09-22 シャープ株式会社 Liquid crystal display device
JP2018194659A (en) * 2017-05-17 2018-12-06 キヤノン株式会社 Image display device, liquid crystal display method and liquid crystal display program
JP2019168594A (en) * 2018-03-23 2019-10-03 キヤノン株式会社 Display device, method for controlling the same, program, and storage medium
KR20200086241A (en) * 2020-07-02 2020-07-16 삼성디스플레이 주식회사 Liquid crystal display device
US20200335033A1 (en) * 2019-04-17 2020-10-22 Samsung Display Co., Ltd. Display apparatus and method of driving the same
US20210118379A1 (en) * 2019-08-02 2021-04-22 Sitronix Technology Corp. Driving method for flicker suppression of display panel and driving circuit thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512386A (en) * 1998-04-17 2002-04-23 バルコ・ナムローゼ・フエンノートシャップ Conversion of video signal for driving liquid crystal display
JP2008268905A (en) * 2007-03-29 2008-11-06 Nec Lcd Technologies Ltd Liquid crystal display device
KR20090057619A (en) * 2007-12-03 2009-06-08 주식회사 대우일렉트로닉스 Apparatus for improving motion blur and method thereof
KR20120045509A (en) * 2010-10-29 2012-05-09 엘지디스플레이 주식회사 Liquid crystal display device and driving method for thereof
WO2016148122A1 (en) * 2015-03-19 2016-09-22 シャープ株式会社 Liquid crystal display device
JP2018194659A (en) * 2017-05-17 2018-12-06 キヤノン株式会社 Image display device, liquid crystal display method and liquid crystal display program
JP2019168594A (en) * 2018-03-23 2019-10-03 キヤノン株式会社 Display device, method for controlling the same, program, and storage medium
US20200335033A1 (en) * 2019-04-17 2020-10-22 Samsung Display Co., Ltd. Display apparatus and method of driving the same
US20210118379A1 (en) * 2019-08-02 2021-04-22 Sitronix Technology Corp. Driving method for flicker suppression of display panel and driving circuit thereof
KR20200086241A (en) * 2020-07-02 2020-07-16 삼성디스플레이 주식회사 Liquid crystal display device

Similar Documents

Publication Publication Date Title
KR100860189B1 (en) Display control device of liquid crystal panel and liquid crystal display device
JP4559099B2 (en) Display method, display control device, and display device
JP4686148B2 (en) Liquid crystal display device and video signal correction method thereof
JP4231071B2 (en) Image display device, image display method, and image display program
US20200035141A1 (en) Display panel, display method thereof and display device
JP5452666B2 (en) Video display device
WO2017113343A1 (en) Method for adjusting backlight brightness and terminal
CN103354935B (en) Light-emission control device, light-emission control method, light emitting device, image display device
KR20160044166A (en) Method of driving display panel and display apparatus performing the same
EP2801968B1 (en) Projection type image display apparatus, method for displaying projection image, and storage medium
US11393416B2 (en) Method and device for backlight control, electronic device, and computer readable storage medium
JPWO2009081602A1 (en) Display device
WO2015186212A1 (en) Liquid crystal display device and display method
US8228285B2 (en) Display control apparatus and method, and program
KR20200001709A (en) Touch display device
JP2008039868A (en) Liquid crystal display device
CN109599068B (en) VR equipment and control method thereof
KR102056686B1 (en) Image processing part, display apparatus having the same and method of processing image using the same
WO2024075359A1 (en) Liquid-crystal display device, liquid-crystal display method, and program
EP2811481B1 (en) Video display control device
US20180183967A1 (en) Display apparatus and control method thereof
CN111048049A (en) Display device
US20190139500A1 (en) Display apparatus and control method thereof
JP2019070850A (en) Display and method for controlling the same
JP2015049487A (en) Image processing apparatus and control method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874493

Country of ref document: EP

Kind code of ref document: A1