WO2024070491A1 - Indoor unit for air conditioning system, air conditioning system, control device, method for controlling indoor unit for air conditioning system, and program - Google Patents

Indoor unit for air conditioning system, air conditioning system, control device, method for controlling indoor unit for air conditioning system, and program Download PDF

Info

Publication number
WO2024070491A1
WO2024070491A1 PCT/JP2023/031967 JP2023031967W WO2024070491A1 WO 2024070491 A1 WO2024070491 A1 WO 2024070491A1 JP 2023031967 W JP2023031967 W JP 2023031967W WO 2024070491 A1 WO2024070491 A1 WO 2024070491A1
Authority
WO
WIPO (PCT)
Prior art keywords
room
unit
air conditioning
conditioning system
temperature
Prior art date
Application number
PCT/JP2023/031967
Other languages
French (fr)
Japanese (ja)
Inventor
裕人 高橋
裕志 神原
雅司 ▲高▼野
智充 山口
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Publication of WO2024070491A1 publication Critical patent/WO2024070491A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide

Definitions

  • the present disclosure relates to an indoor unit of an air conditioning system, an air conditioning system, a control device, and a control method and program for an indoor unit of an air conditioning system.
  • Patent Literature 1 discloses an air conditioning system equipped with a gas sensor that detects the degree of pollution of indoor air. It is conceivable that such a gas sensor is used to detect the carbon dioxide concentration in a room, and when an increase in the carbon dioxide concentration in the room is detected, ventilation of the room is attempted.
  • Patent Document 1 the air conditioning system described in Patent Document 1 must be equipped with a gas sensor to detect the carbon dioxide concentration, which leads to problems such as a complex structure and increased costs.
  • the present disclosure has been made to solve the above problems, and aims to provide an indoor unit of an air conditioning system, an air conditioning system, a control device, and a control method and program for an indoor unit of an air conditioning system that is capable of detecting an increase in the concentration of carbon dioxide in a room that accompanies the use of another combustion-type heater with a simple configuration.
  • the indoor unit of the air conditioning system is an indoor unit of an air conditioning system, and is equipped with a temperature sensor that detects the temperature inside the room, a relative humidity sensor that detects the relative humidity inside the room, and a control device, and the control device is equipped with an information acquisition unit that acquires the temperature detected by the temperature sensor and the relative humidity detected by the relative humidity sensor, an operation control unit that controls the operation of the indoor unit based on the acquired temperature and relative humidity, and a monitoring unit that acquires the absolute humidity inside the room based on the temperature and relative humidity during heating operation of the indoor unit, and monitors the carbon dioxide concentration inside the room based on the acquired absolute humidity.
  • the air conditioning system according to the present disclosure includes an indoor unit of the air conditioning system as described above.
  • the control device is a control device provided in an indoor unit of an air conditioning system, and includes an information acquisition unit that acquires the indoor temperature detected by a temperature sensor and the indoor relative humidity detected by a relative humidity sensor, an operation control unit that controls the operation of the indoor unit based on the acquired temperature and relative humidity, and a monitoring unit that acquires the indoor absolute humidity based on the temperature and relative humidity during heating operation of the indoor unit, and monitors the carbon dioxide concentration in the room based on the acquired absolute humidity.
  • the method of controlling an indoor unit of an air conditioning system includes the steps of acquiring an indoor temperature and a relative humidity in the room, acquiring an absolute humidity in the room based on the temperature and the relative humidity during heating operation of the indoor unit, and monitoring the carbon dioxide concentration in the room based on the acquired absolute humidity.
  • the program disclosed herein causes a control device of an indoor unit of an air conditioning system to execute the steps of acquiring the indoor temperature and the indoor relative humidity, acquiring the indoor absolute humidity based on the temperature and the relative humidity during heating operation of the indoor unit, and monitoring the indoor carbon dioxide concentration based on the acquired absolute humidity.
  • the indoor unit of an air conditioning system, air conditioning system, control device, and control method and program for an indoor unit of an air conditioning system disclosed herein can detect an increase in the carbon dioxide concentration in a room that is caused by the use of another combustion-type heater with a simple configuration.
  • FIG. 1 is a diagram showing a schematic configuration of an air conditioning system according to an embodiment of the present disclosure.
  • 3 is a block diagram showing a functional configuration of an indoor unit of the air conditioning system.
  • FIG. 4 is a flowchart showing the steps of a control method for an indoor unit of an air conditioning system according to an embodiment of the present disclosure.
  • the air conditioning system 1 includes an outdoor unit 2 and an indoor unit 3 .
  • the outdoor unit 2 is installed outside the building.
  • the outdoor unit 2 is connected to the indoor unit 3 via a connection pipe 5.
  • the outdoor unit 2 includes a compressor 21, a condenser (not shown), a fan (not shown), an expansion valve (not shown), a switching valve (not shown), and an outdoor unit control device 25.
  • the compressor 21, condenser, fan, expansion valve, and switching valve are provided on the refrigerant circuit (not shown).
  • the compressor 21 compresses the refrigerant flowing in the refrigerant piping that constitutes the refrigerant circuit.
  • the condenser exchanges heat between the outside air and the refrigerant flowing in the refrigerant piping.
  • the fan sends outside air toward the condenser.
  • the expansion valve expands the refrigerant that has passed through the condenser.
  • the switching valve switches the flow of refrigerant in the refrigerant circuit, switching between cooling and heating operation.
  • the outdoor unit control device 25 controls the operation of the outdoor unit 2.
  • the outdoor unit control device 25 detects the rotation speed of the compressor 21 and transfers the detection result to the control device 40 of the indoor unit 3, which will be described later.
  • the indoor unit 3 is installed inside the building.
  • the indoor unit 3 conditions the air inside the room by performing cooling operation, heating operation, etc.
  • the indoor unit 3 is equipped with an evaporator 33, a temperature sensor 31, a relative humidity sensor 32, and a control device 40.
  • the evaporator 33 of the indoor unit 3 is connected to the outdoor unit 2 via a connecting pipe 5.
  • the connecting pipe forms part of the refrigerant circuit (not shown).
  • the temperature sensor 31 detects the temperature in the room where the indoor unit 3 is installed.
  • the relative humidity sensor 32 detects the relative humidity in the room where the indoor unit 3 is installed.
  • the temperature sensor 31 and the relative humidity sensor 32 output the information (temperature, relative humidity) detected by each to the control device 40.
  • the control device 40 can be configured using a computer such as a microcomputer or a CPU (Central Processing Unit), and hardware such as computer peripheral circuits and devices.
  • the control device 40 is configured by a control board equipped with a microcomputer.
  • the control device 40 has a functional configuration consisting of a combination of hardware and software such as a program executed by the computer, including an information acquisition unit 41, an external input acceptance unit 42, an operation control unit 43, a monitoring unit 44, and an information output unit 45.
  • the information acquisition unit 41 acquires information on the temperature detected by the temperature sensor 31 and the relative humidity detected by the relative humidity sensor 32.
  • the information acquisition unit 41 also acquires information on the rotation speed of the compressor 21 transferred from the outdoor unit control device (not shown) of the outdoor unit 2.
  • the external input receiving unit 42 can receive a selection of multiple operation modes based on user input from an external remote controller or the like.
  • the external input receiving unit 42 receives input of a set temperature based on user input from an external remote controller or the like.
  • the indoor unit 3 can have multiple operation modes such as heating operation and cooling operation selected by the user of the air conditioning system 1 using a remote controller or the like for the indoor unit 3.
  • the indoor unit 3 can select a mode (for example, a fireplace mode) in which another combustion type heating appliance is used during heating operation in the room in which the indoor unit 3 is installed.
  • combustion type heating appliances used indoors include a gas fan heater, a kerosene fan heater, a gas stove, a kerosene stove, a wood stove that uses firewood as fuel, and a pellet stove that uses wood pellets as fuel.
  • the external input receiving unit 42 When the external input receiving unit 42 receives that an operation mode such as heating operation or cooling operation has been selected, it notifies the operation control unit 43 of the selected operation mode. When the external input receiving unit 42 receives that the fireplace mode, in which another combustion-type heating appliance is used during heating operation indoors, has been selected, it notifies the monitoring unit 44 that the fireplace mode has been selected.
  • the operation control unit 43 controls the operation of the indoor unit 3 based on the acquired temperature and relative humidity.
  • the operation control unit 43 controls the indoor unit 3 based on the set temperature and the indoor temperature detected by the temperature sensor 31 so that the indoor temperature approaches the set temperature.
  • the monitoring unit 44 acquires the indoor absolute humidity based on the temperature and relative humidity during heating operation of the indoor unit 3.
  • the indoor absolute humidity can be acquired based on the indoor temperature and the indoor relative humidity, for example, on a publicly known psychrometric chart.
  • the monitoring unit 44 calculates (acquires) the indoor absolute humidity from the indoor temperature detected by the temperature sensor 31 and the indoor relative humidity detected by the relative humidity sensor 32, based on an arithmetic formula set on the basis of a publicly known psychrometric chart, etc.
  • the monitoring unit 44 monitors the carbon dioxide concentration in the room based on the acquired absolute humidity.
  • the monitoring unit 44 determines that the carbon dioxide concentration in the room is increasing when the increase in absolute humidity per unit time is equal to or greater than a preset threshold value. For this reason, the monitoring unit 44 calculates the absolute humidity based on the indoor temperature detected by the temperature sensor 31 and the relative humidity detected by the relative humidity sensor 32 at preset time intervals (e.g., 10 minutes).
  • the monitoring unit 44 determines that the carbon dioxide concentration in the room is increasing based on the difference between the calculated absolute humidity and the absolute humidity calculated immediately before, when the increase in absolute humidity per unit time corresponding to the preset time interval is equal to or greater than a preset threshold value.
  • the monitoring unit 44 monitors the carbon dioxide concentration in the room as described above when a mode in which another combustion type heating appliance is used during heating operation is selected based on a notification from the external input receiving unit 42. This makes it possible to avoid monitoring the carbon dioxide concentration in the room when another combustion type heating appliance is not being used and normal heating or cooling operation is being performed.
  • the monitoring unit 44 monitors the carbon dioxide concentration in the room as described above when the heating load in the indoor unit 3 is low. Therefore, it is preferable that the monitoring unit 44 monitors the carbon dioxide concentration in the room as described above when the difference between the set temperature set externally to the operation control unit 43 and the temperature detected by the temperature sensor 31 is smaller than a preset value. Furthermore, it is preferable that the monitoring unit 44 monitors the carbon dioxide concentration in the room when the rotation speed of the compressor 21 acquired by the information acquisition unit 41 is lower than a preset reference rotation speed.
  • the information output unit 45 outputs information indicating that the carbon dioxide concentration in the room is increasing when it is determined that the carbon dioxide concentration in the room is increasing based on the monitoring result of the monitoring unit 44.
  • the information output by the information output unit 45 is preferably for promoting ventilation in the room.
  • the information output by the information output unit 45 may be, for example, information indicating that the carbon dioxide concentration in the room is high.
  • the information output unit 45 outputs information to the output device 50.
  • the output device 50 is, for example, a remote controller (not shown), a display screen of a display unit provided in the housing of the indoor unit 3, a lamp, etc. The information is notified to the outside, for example, by displaying a message on the display screen, lighting or blinking a lamp, etc.
  • the information may be notified to the outside by outputting an alarm sound or a voice message from the remote controller or the indoor unit 3.
  • the information output unit 45 may transfer the information to be output to an external terminal, for example, a smartphone, tablet terminal, etc. used by the user, and cause the external terminal to output the information.
  • the method for controlling an indoor unit of an air conditioning system includes step S11 of determining whether or not to monitor the indoor carbon dioxide concentration, step S12 of acquiring the indoor temperature and relative humidity, step S13 of acquiring the indoor absolute humidity, step S14 of monitoring the indoor carbon dioxide concentration, and step S15 of outputting information.
  • step S11 which determines whether or not to monitor the carbon dioxide concentration in the room, the monitoring unit 44 estimates whether or not another combustion-type heating appliance is being used in the room during heating operation.
  • the monitoring unit 44 estimates whether or not another combustion-type heating appliance is being used in the room based on the following conditions (A) to (C).
  • This step S11 is executed repeatedly every time a preset time has elapsed.
  • the monitoring unit 44 presumes that another combustion-type heating appliance is being used indoors (step S11; Yes), and proceeds to the process of monitoring the carbon dioxide concentration indoors from step S12 onwards. If all of the conditions (A) to (C) are not met, the monitoring unit 44 presumes that another combustion-type heating appliance is not being used indoors (step S11; No), and repeats step S11 after a preset time has elapsed.
  • step S12 which acquires the indoor temperature and relative humidity
  • the information acquisition unit 41 acquires information on the temperature detected by the temperature sensor 31 and the relative humidity detected by the relative humidity sensor 32.
  • step S13 of acquiring the indoor absolute humidity the monitoring unit 44 acquires the indoor absolute humidity based on the indoor temperature and indoor relative humidity acquired in step S12.
  • the monitoring unit 44 calculates (acquires) the indoor absolute humidity from the indoor temperature detected by the temperature sensor 31 and the indoor relative humidity detected by the relative humidity sensor 32, based on an arithmetic formula set on the basis of a known psychrometric chart or the like.
  • step S14 of monitoring the indoor carbon dioxide concentration the monitoring unit 44 monitors the indoor carbon dioxide concentration based on the absolute humidity acquired in step S13.
  • the monitoring unit 44 calculates the increase in absolute humidity per unit time based on the difference between the absolute humidity calculated in step S13 and the absolute humidity calculated in step S13 immediately before that (during the previous processing).
  • the monitoring unit 44 determines whether the calculated increase in absolute humidity per unit time is equal to or greater than a preset threshold value. When the calculated increase in absolute humidity per unit time is not equal to or greater than the preset threshold value (Step S14; No), the monitoring unit 44 returns to Step S11. If the calculated increase in absolute humidity per unit time is equal to or greater than a preset threshold value (step S11; Yes), the monitoring unit 44 determines that the carbon dioxide concentration in the room is increasing, and proceeds to step S15.
  • step S15 of outputting information when it is determined that the carbon dioxide concentration in the room is increasing based on the monitoring result of the monitoring unit 44 in step S14 (step S11; Yes), information indicating that the carbon dioxide concentration in the room is increasing is output.
  • the information output unit 45 outputs information to the output device 50 to encourage ventilation in the room.
  • the output device 50 receives the information output from the information output unit 45 and notifies the outside of the information for encouraging ventilation in the room, for example, by displaying a message, turning on or blinking a lamp, outputting an alarm sound or a voice message, etc.
  • a user of the air conditioning system 1 recognizes the information notified by the output device 50, he or she can ventilate the room by opening a window, operating a ventilation fan, etc.
  • the absolute humidity in the room is acquired based on the temperature detected by the temperature sensor 31 and the relative humidity detected by the relative humidity sensor 32.
  • a combustion type heating appliance is used in addition to the air conditioning system 1 in the room, moisture is generated together with carbon dioxide as the fuel in the combustion type heating appliance is burned.
  • the combustion type heating appliance is continued to be used, the carbon dioxide concentration in the room increases and the humidity in the room increases. Therefore, when the combustion type heating appliance is used, it is possible to practically monitor the increase in the carbon dioxide concentration in the room by grasping the increase in the absolute humidity acquired based on the temperature and humidity in the room.
  • the information output unit 45 outputs information indicating that the carbon dioxide concentration in the room is increasing. This allows the user in the room to recognize that the carbon dioxide concentration in the room is increasing. This allows the user in the room to ventilate the room by opening a window, operating a ventilation fan, etc.
  • the information output unit 45 outputting information encouraging ventilation in the room, the user in the room can more directly recognize that the carbon dioxide concentration in the room is increasing and that ventilation in the room is necessary.
  • the monitoring unit 44 also determines that the carbon dioxide concentration in the room is increasing if the increase in absolute humidity per unit time is equal to or greater than a preset threshold value. If the increase in absolute humidity per unit time is large, the degree of increase in the carbon dioxide concentration in the room is increasing. In such a case, by determining that the carbon dioxide concentration in the room is increasing, it is possible to ventilate the room at a more appropriate time.
  • the air conditioning system 1, indoor unit 3, and control device 40 monitor the indoor carbon dioxide concentration when the external input receiving unit 42 selects a mode in which another combustion heater is used. For example, when the only increase in humidity in the room is due to a humidifier or cooking, the indoor carbon dioxide concentration may not increase even if the indoor humidity increases. In such cases, the indoor carbon dioxide concentration is not monitored, and the carbon dioxide concentration can be monitored based on the increase in indoor absolute humidity only when it is determined that another combustion heater is being used in the room.
  • the monitoring unit 44 also monitors the carbon dioxide concentration in the room when the difference between the set temperature externally set for the operation control unit 43 and the temperature detected by the temperature sensor 31 is smaller than a preset value. As a result, if the difference between the set temperature and the room temperature is small and the absolute humidity in the room increases, it can be assumed that the increase in carbon dioxide concentration is due to the use of another combustion heater in the room. Therefore, it is possible to effectively monitor the carbon dioxide concentration based on the increase in absolute humidity in the room.
  • the monitoring unit 44 also monitors the carbon dioxide concentration in the room when the acquired rotation speed of the compressor 21 is lower than a preset reference rotation speed. In this way, if the difference between the set temperature and the room temperature is small and the rotation speed of the compressor 21 is low, and the absolute humidity in the room increases, it can be estimated with greater accuracy that another combustion heater is being used in the room. In such cases, it is possible to effectively monitor the carbon dioxide concentration based on the increase in absolute humidity in the room.
  • step S11 when all of the conditions (A) to (C) are satisfied, it is estimated that another combustion type heating appliance is being used indoors, but this is not limited to the above. For example, it is assumed that the user forgets to select the fireplace mode and uses another combustion type heating appliance.
  • step S11 Even if the condition (A) is not satisfied and the conditions (B) and (C) are satisfied, it may be estimated that another combustion type heating appliance is being used indoors (step S11; Yes), and the process of monitoring the carbon dioxide concentration in the room may proceed to step S12 and subsequent steps. If the conditions (B) and (C) are satisfied, the heating load in the indoor unit 3 is small. In this state, if it is confirmed in step S14 that the absolute humidity in the room is rising, it is considered that the carbon dioxide concentration in the room is rising because another combustion type heating appliance is being used indoors.
  • control device 40 which is a computer
  • some or all of the programs executed by the control device 40 can be distributed via a computer-readable recording medium or a communication line.
  • the indoor unit 3 of the air conditioning system 1, the air conditioning system 1, the control device 40, and the control method and program for the indoor unit 3 of the air conditioning system 1 described in the embodiment can be understood, for example, as follows.
  • the indoor unit 3 of the air conditioning system 1 is an indoor unit 3 of an air conditioning system 1, and includes a temperature sensor 31 that detects the temperature inside the room, a relative humidity sensor 32 that detects the relative humidity inside the room, and a control device 40.
  • the control device 40 includes an information acquisition unit 41 that acquires the temperature detected by the temperature sensor 31 and the relative humidity detected by the relative humidity sensor 32, an operation control unit 43 that controls the operation of the indoor unit 3 based on the acquired temperature and relative humidity, and a monitoring unit 44 that acquires the absolute humidity inside the room based on the temperature and the relative humidity during heating operation of the indoor unit 3, and monitors the carbon dioxide concentration inside the room based on the acquired absolute humidity.
  • an operation control unit 43 controls the operation of the indoor unit 3 based on the temperature detected by the temperature sensor 31 and the relative humidity detected by the relative humidity sensor 32 .
  • a combustion-type heating appliance is used indoors in addition to the air conditioning system 1, moisture is generated along with carbon dioxide as the fuel in the heating appliance burns. As a result, if the combustion-type heating appliance is used continuously, the carbon dioxide concentration in the room increases and the humidity in the room also increases.
  • the monitoring unit 44 obtains the absolute humidity in the room based on the temperature detected by the temperature sensor 31 and the relative humidity detected by the relative humidity sensor 32.
  • the monitoring unit 44 can grasp the increase in absolute humidity. Therefore, it is possible to practically monitor the carbon dioxide concentration in the room based on the obtained absolute humidity. This makes it possible to effectively monitor the carbon dioxide concentration in the room without having a carbon dioxide sensor that detects the carbon dioxide concentration. As a result, with a simple configuration, it is possible to detect an increase in the carbon dioxide concentration in the room that accompanies the use of another combustion type heating appliance.
  • the indoor unit 3 of the air conditioning system 1 is the indoor unit 3 of the air conditioning system 1 of (1), and further includes an information output unit 45 that outputs information indicating that the carbon dioxide concentration in the room is increasing when the carbon dioxide concentration in the room is increasing based on the monitoring result of the monitoring unit 44.
  • the information output unit 45 outputs information indicating that the carbon dioxide concentration in the room is increasing, allowing the user in the room to recognize that the carbon dioxide concentration in the room is increasing. This allows the user in the room to ventilate the room by opening a window, operating a ventilation fan, etc.
  • the indoor unit 3 of the air conditioning system 1 according to the third aspect is the indoor unit 3 of the air conditioning system 1 of (1) or (2), and the information is intended to promote ventilation in the room.
  • the information output unit 45 outputs information to encourage ventilation in the room, allowing the user in the room to more directly recognize that ventilation in the room is necessary when the carbon dioxide concentration in the room is high.
  • the indoor unit 3 of the air conditioning system 1 is an indoor unit 3 of any one of the air conditioning systems 1 described in (1) to (3), and the monitoring unit 44 determines that the carbon dioxide concentration in the room is increasing when the increase in the absolute humidity per unit time is equal to or greater than a preset threshold value.
  • the indoor unit 3 of the air conditioning system 1 is an indoor unit 3 of any one of the air conditioning systems 1 of (1) to (4), and further includes an external input receiving unit 42 that allows a selection of multiple operating modes based on an input from the outside, and the monitoring unit 44 monitors the carbon dioxide concentration in the room when a mode in which another combustion heater is used is selected by the external input receiving unit 42.
  • the indoor carbon dioxide concentration is monitored when the external input receiving unit 42 selects a mode in which another combustion heater is used. For example, when the only increase in humidity in the room is due to a humidifier or cooking, the indoor carbon dioxide concentration may not increase even if the humidity in the room increases. In such cases, the indoor carbon dioxide concentration is not monitored, and the carbon dioxide concentration can be monitored based on the increase in absolute humidity in the room only when it is determined that another combustion heater is being used in the room.
  • the indoor unit 3 of the air conditioning system 1 is the indoor unit 3 of any one of the air conditioning systems 1 of (1) to (5), and the monitoring unit 44 monitors the carbon dioxide concentration in the room when the difference between the set temperature set externally to the operation control unit 43 and the temperature detected by the temperature sensor 31 is smaller than a preset value.
  • the indoor unit 3 of the air conditioning system 1 is the indoor unit 3 of the air conditioning system 1 of (6), in which the information acquisition unit 41 acquires the rotation speed of the compressor 21 that compresses the refrigerant in the refrigerant circuit of the air conditioning system 1, and the monitoring unit 44 monitors the carbon dioxide concentration in the room when the acquired rotation speed is lower than a preset reference rotation speed.
  • the air conditioning system 1 includes an indoor unit 3 of any one of the air conditioning systems 1 (1) to (7).
  • This air conditioning system 1 has a simple configuration and can detect an increase in the carbon dioxide concentration in a room that occurs when another combustion-type heater is used.
  • the control device 40 is a control device 40 provided in an indoor unit 3 of an air conditioning system 1, and includes an information acquisition unit 41 that acquires the indoor temperature detected by a temperature sensor 31 and the indoor relative humidity detected by a relative humidity sensor 32, an operation control unit 43 that controls the operation of the indoor unit 3 based on the acquired temperature and relative humidity, and a monitoring unit 44 that acquires the indoor absolute humidity based on the temperature and the relative humidity during heating operation of the indoor unit 3, and monitors the carbon dioxide concentration in the room based on the acquired absolute humidity.
  • This control device 40 has a simple configuration and can detect an increase in the carbon dioxide concentration in the room that occurs when other combustion heaters are used.
  • the method for controlling the indoor unit 3 of the air conditioning system 1 includes step S12 of acquiring the indoor temperature and the indoor relative humidity, step S13 of acquiring the indoor absolute humidity based on the temperature and the relative humidity during heating operation of the indoor unit 3, and step S14 of monitoring the indoor carbon dioxide concentration based on the acquired absolute humidity.
  • This method of controlling the indoor unit 3 of the air conditioning system 1 makes it possible, with a simple configuration, to detect an increase in the carbon dioxide concentration in the room that accompanies the use of another combustion-type heater.
  • the program according to the eleventh aspect causes the control device 40 of the indoor unit 3 of the air conditioning system 1 to execute step S12 of acquiring the indoor temperature and the indoor relative humidity, step S13 of acquiring the indoor absolute humidity based on the temperature and the relative humidity during heating operation of the indoor unit 3, and step S14 of monitoring the indoor carbon dioxide concentration based on the acquired absolute humidity.
  • This program has a simple configuration and can cause the control device 40 of the indoor unit 3 of the air conditioning system 1 to execute a process for detecting an increase in the carbon dioxide concentration in the room that accompanies the use of another combustion-type heater.
  • a simple configuration is used to detect an increase in the carbon dioxide concentration in a room that occurs when another combustion-type heater is used.
  • Reference Signs List 1 For Air conditioning system 2
  • Outdoor unit 3 ForIndoor unit 21
  • Compressor 25 ...Outdoor unit control device 31
  • Temperature sensor 32 ForRelative humidity sensor 33
  • Evaporator 40 Control device 41
  • Information acquisition unit 42 ForExternal input reception unit 43
  • Operation control unit 44 ForMonitoring unit 45
  • Information output unit 50 ...Output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This indoor unit for an air conditioning system comprises a temperature sensor that detects the temperature in a room, a relative humidity sensor that detects the relative humidity in the room, and a control device, wherein the control device includes: an information acquisition unit that acquires the temperature detected by the temperature sensor and the relative humidity detected by the relative humidity sensor; an operation control unit that controls the operation of the indoor unit on the basis of the acquired temperature and relative humidity; and a monitoring unit that, during a heating operation of the indoor unit, acquires the absolute humidity inside the room on the basis of the temperature and the relative humidity, and monitors the carbon dioxide concentration in the room on the basis of the acquired absolute humidity.

Description

空気調和システムの室内機、空気調和システム、制御装置、空気調和システムの室内機の制御方法、プログラムIndoor unit of air conditioning system, air conditioning system, control device, and method and program for controlling indoor unit of air conditioning system
 本開示は、空気調和システムの室内機、空気調和システム、制御装置、空気調和システムの室内機の制御方法、プログラムに関する。
 本願は、2022年9月29日に、日本に出願された特願2022-156111号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to an indoor unit of an air conditioning system, an air conditioning system, a control device, and a control method and program for an indoor unit of an air conditioning system.
This application claims priority based on Japanese Patent Application No. 2022-156111, filed on September 29, 2022, the contents of which are incorporated herein by reference.
 室内において、空気調和システム(いわゆるルームエアコンディショナ)に加えて、ファンヒータ、薪ストーブ等の燃焼式の暖房器具を組み合わせて用いることがある。燃焼式の暖房器具においては、燃料を燃焼させる際に、二酸化炭素が発生する。室内の二酸化炭素濃度が上昇した場合には、室内の換気を図る必要がある。
 例えば、特許文献1には、室内空気の汚染度を検出するガスセンサを備えた空気調和システムが開示されている。このようなガスセンサを用いて室内の二酸化炭素濃度を検出し、室内の二酸化炭素が上昇したことが検出された場合に、室内の換気を図ることが考えられる。
Indoors, combustion-type heating appliances such as fan heaters and wood stoves are sometimes used in combination with air conditioning systems (so-called room air conditioners). Combustion-type heating appliances generate carbon dioxide when burning fuel. When the carbon dioxide concentration in a room increases, it is necessary to ventilate the room.
For example, Patent Literature 1 discloses an air conditioning system equipped with a gas sensor that detects the degree of pollution of indoor air. It is conceivable that such a gas sensor is used to detect the carbon dioxide concentration in a room, and when an increase in the carbon dioxide concentration in the room is detected, ventilation of the room is attempted.
日本国特開2013-47579号公報Japanese Patent Publication No. 2013-47579
 しかしながら、特許文献1に記載の空気調和システムにおいては、二酸化炭素濃度を検出するためのガスセンサを備えなければならず、構造の複雑化、コスト上昇等に繋がるという問題があった。 However, the air conditioning system described in Patent Document 1 must be equipped with a gas sensor to detect the carbon dioxide concentration, which leads to problems such as a complex structure and increased costs.
 本開示は、上記課題を解決するためになされたものであって、簡易な構成で、他の燃焼式の暖房機の使用に伴う室内の二酸化炭素濃度の上昇を検出することができる空気調和システムの室内機、空気調和システム、制御装置、空気調和システムの室内機の制御方法、プログラムを提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide an indoor unit of an air conditioning system, an air conditioning system, a control device, and a control method and program for an indoor unit of an air conditioning system that is capable of detecting an increase in the concentration of carbon dioxide in a room that accompanies the use of another combustion-type heater with a simple configuration.
 上記課題を解決するために、本開示に係る空気調和システムの室内機は、空気調和システムの室内機であって、室内の温度を検出する温度センサと、前記室内の相対湿度を検出する相対湿度センサと、制御装置と、を備え、前記制御装置は、前記温度センサで検出される前記温度、及び前記相対湿度センサで検出される前記相対湿度を取得する情報取得部と、取得された前記温度、及び前記相対湿度に基づいて、前記室内機の運転を制御する運転制御部と、前記室内機の暖房運転時に、前記温度、及び前記相対湿度に基づいて、前記室内の絶対湿度を取得し、取得された前記絶対湿度に基づいて、前記室内の二酸化炭素濃度を監視する監視部と、を備える。 In order to solve the above problems, the indoor unit of the air conditioning system according to the present disclosure is an indoor unit of an air conditioning system, and is equipped with a temperature sensor that detects the temperature inside the room, a relative humidity sensor that detects the relative humidity inside the room, and a control device, and the control device is equipped with an information acquisition unit that acquires the temperature detected by the temperature sensor and the relative humidity detected by the relative humidity sensor, an operation control unit that controls the operation of the indoor unit based on the acquired temperature and relative humidity, and a monitoring unit that acquires the absolute humidity inside the room based on the temperature and relative humidity during heating operation of the indoor unit, and monitors the carbon dioxide concentration inside the room based on the acquired absolute humidity.
 本開示に係る空気調和システムは、上記したような空気調和システムの室内機を備える。 The air conditioning system according to the present disclosure includes an indoor unit of the air conditioning system as described above.
 本開示に係る制御装置は、空気調和システムの室内機に備えられた制御装置であって、温度センサで検出される室内の温度、及び相対湿度センサで検出される前記室内の相対湿度を取得する情報取得部と、取得された前記温度、及び前記相対湿度に基づいて、前記室内機の運転を制御する運転制御部と、前記室内機の暖房運転時に、前記温度、及び前記相対湿度に基づいて、前記室内の絶対湿度を取得し、取得された前記絶対湿度に基づいて、前記室内の二酸化炭素濃度を監視する監視部と、を備える。 The control device according to the present disclosure is a control device provided in an indoor unit of an air conditioning system, and includes an information acquisition unit that acquires the indoor temperature detected by a temperature sensor and the indoor relative humidity detected by a relative humidity sensor, an operation control unit that controls the operation of the indoor unit based on the acquired temperature and relative humidity, and a monitoring unit that acquires the indoor absolute humidity based on the temperature and relative humidity during heating operation of the indoor unit, and monitors the carbon dioxide concentration in the room based on the acquired absolute humidity.
 本開示に係る空気調和システムの室内機の制御方法は、室内の温度、及び前記室内の相対湿度を取得するステップと、前記室内機の暖房運転時に、前記温度、及び前記相対湿度に基づいて、前記室内の絶対湿度を取得するステップと、取得された前記絶対湿度に基づいて、前記室内の二酸化炭素濃度を監視するステップと、を含む。 The method of controlling an indoor unit of an air conditioning system according to the present disclosure includes the steps of acquiring an indoor temperature and a relative humidity in the room, acquiring an absolute humidity in the room based on the temperature and the relative humidity during heating operation of the indoor unit, and monitoring the carbon dioxide concentration in the room based on the acquired absolute humidity.
 本開示に係るプログラムは、室内の温度、及び前記室内の相対湿度を取得するステップと、前記室内機の暖房運転時に、前記温度、及び前記相対湿度に基づいて、前記室内の絶対湿度を取得するステップと、取得された前記絶対湿度に基づいて、前記室内の二酸化炭素濃度を監視するステップと、を、空気調和システムの室内機の制御装置に実行させる。 The program disclosed herein causes a control device of an indoor unit of an air conditioning system to execute the steps of acquiring the indoor temperature and the indoor relative humidity, acquiring the indoor absolute humidity based on the temperature and the relative humidity during heating operation of the indoor unit, and monitoring the indoor carbon dioxide concentration based on the acquired absolute humidity.
 本開示の空気調和システムの室内機、空気調和システム、制御装置、空気調和システムの室内機の制御方法、プログラムによれば、簡易な構成で、他の燃焼式の暖房機の使用に伴う室内の二酸化炭素濃度の上昇を検出することができる。 The indoor unit of an air conditioning system, air conditioning system, control device, and control method and program for an indoor unit of an air conditioning system disclosed herein can detect an increase in the carbon dioxide concentration in a room that is caused by the use of another combustion-type heater with a simple configuration.
本開示の実施形態に係る空気調和システムの概略構成を示す図である。1 is a diagram showing a schematic configuration of an air conditioning system according to an embodiment of the present disclosure. 上記空気調和システムの室内機の機能構成を示すブロック図である。3 is a block diagram showing a functional configuration of an indoor unit of the air conditioning system. FIG. 本開示の実施形態に係る空気調和システムの室内機の制御方法の手順を示すフローチャートである。4 is a flowchart showing the steps of a control method for an indoor unit of an air conditioning system according to an embodiment of the present disclosure.
 以下、添付図面を参照して、本開示による空気調和システムの室内機、空気調和システム、制御装置、空気調和システムの室内機の制御方法、プログラムを実施するための形態を説明する。しかし、本開示はこの実施形態のみに限定されるものではない。
(空気調和システムの構成)
 図1に示すように、空気調和システム1は、室外機2と、室内機3と、を備えている。
Hereinafter, embodiments for carrying out an indoor unit of an air conditioning system, an air conditioning system, a control device, a control method for an indoor unit of an air conditioning system, and a program according to the present disclosure will be described with reference to the accompanying drawings. However, the present disclosure is not limited to only these embodiments.
(Configuration of air conditioning system)
As shown in FIG. 1 , the air conditioning system 1 includes an outdoor unit 2 and an indoor unit 3 .
 室外機2は、建物の室外に設置されている。室外機2は、室内機3に対し、接続配管5を介して接続されている。室外機2は、圧縮機21と、コンデンサ(図示せず)と、ファン(図示せず)と、膨張弁(図示せず)と、切換弁(図示せず)と、室外機制御装置25と、を備えている。 The outdoor unit 2 is installed outside the building. The outdoor unit 2 is connected to the indoor unit 3 via a connection pipe 5. The outdoor unit 2 includes a compressor 21, a condenser (not shown), a fan (not shown), an expansion valve (not shown), a switching valve (not shown), and an outdoor unit control device 25.
 圧縮機21、コンデンサ、ファン、膨張弁、及び切換弁は、冷媒回路(図示無し)上に設けられている。圧縮機21は、冷媒回路を構成する冷媒配管内を流れる冷媒を圧縮する。コンデンサは、室外の空気と、冷媒配管内を流れる冷媒との間で熱交換を行う。ファンは、コンデンサに向かって外部の空気を送る。膨張弁は、コンデンサを経た冷媒を膨張させる。切換弁は、冷媒回路における冷媒の流れを切り換え、冷房運転と暖房運転との切替を行う。 The compressor 21, condenser, fan, expansion valve, and switching valve are provided on the refrigerant circuit (not shown). The compressor 21 compresses the refrigerant flowing in the refrigerant piping that constitutes the refrigerant circuit. The condenser exchanges heat between the outside air and the refrigerant flowing in the refrigerant piping. The fan sends outside air toward the condenser. The expansion valve expands the refrigerant that has passed through the condenser. The switching valve switches the flow of refrigerant in the refrigerant circuit, switching between cooling and heating operation.
 室外機制御装置25は、室外機2の動作を制御する。室外機制御装置25は、圧縮機21の回転数を検出し、その検出結果を、後述する室内機3の制御装置40に転送する。 The outdoor unit control device 25 controls the operation of the outdoor unit 2. The outdoor unit control device 25 detects the rotation speed of the compressor 21 and transfers the detection result to the control device 40 of the indoor unit 3, which will be described later.
 室内機3は、建物の室内に設置されている。室内機3は、冷房運転、暖房運転等を行うことで、室内の空気調和を図る。室内機3は、エバポレータ33と、温度センサ31と、相対湿度センサ32と、制御装置40と、を備えている。 The indoor unit 3 is installed inside the building. The indoor unit 3 conditions the air inside the room by performing cooling operation, heating operation, etc. The indoor unit 3 is equipped with an evaporator 33, a temperature sensor 31, a relative humidity sensor 32, and a control device 40.
 室内機3のエバポレータ33は、接続配管5を介して室外機2に接続されている。接続配管は、冷媒回路(図示無し)の一部を構成する。 The evaporator 33 of the indoor unit 3 is connected to the outdoor unit 2 via a connecting pipe 5. The connecting pipe forms part of the refrigerant circuit (not shown).
 温度センサ31は、室内機3が設置された室内の温度を検出する。相対湿度センサ32は、室内機3が設置された室内の相対湿度を検出する。温度センサ31、及び相対湿度センサ32は、それぞれで検出した情報(温度、相対湿度)を、制御装置40に出力する。 The temperature sensor 31 detects the temperature in the room where the indoor unit 3 is installed. The relative humidity sensor 32 detects the relative humidity in the room where the indoor unit 3 is installed. The temperature sensor 31 and the relative humidity sensor 32 output the information (temperature, relative humidity) detected by each to the control device 40.
 制御装置40は、マイクロコンピュータ、CPU(Central Processing Unit)等のコンピュータと、コンピュータの周辺回路や周辺装置等のハードウェアを用いて構成することができる。本実施形態では、制御装置40は、マイクロコンピュータが搭載された制御基板により構成されている。図2に示すように、制御装置40は、ハードウェアと、コンピュータが実行するプログラム等のソフトウェアとの組み合わせから構成される機能的構成として、情報取得部41と、外部入力受付部42と、運転制御部43と、監視部44と、情報出力部45と、を備えている。 The control device 40 can be configured using a computer such as a microcomputer or a CPU (Central Processing Unit), and hardware such as computer peripheral circuits and devices. In this embodiment, the control device 40 is configured by a control board equipped with a microcomputer. As shown in FIG. 2, the control device 40 has a functional configuration consisting of a combination of hardware and software such as a program executed by the computer, including an information acquisition unit 41, an external input acceptance unit 42, an operation control unit 43, a monitoring unit 44, and an information output unit 45.
 情報取得部41は、温度センサ31で検出される温度、及び相対湿度センサ32で検出される相対湿度の情報を取得する。また、情報取得部41は、室外機2の室外機制御装置(図示せず)から転送される、圧縮機21の回転数の情報を取得する。 The information acquisition unit 41 acquires information on the temperature detected by the temperature sensor 31 and the relative humidity detected by the relative humidity sensor 32. The information acquisition unit 41 also acquires information on the rotation speed of the compressor 21 transferred from the outdoor unit control device (not shown) of the outdoor unit 2.
 外部入力受付部42は、外部のリモートコントローラ等からのユーザによる入力に基づき、複数の運転モードの選択を受付可能とされている。外部入力受付部42は、外部のリモートコントローラ等からのユーザによる入力に基づき、設定温度の入力を受け付ける。 室内機3は、室内機3のリモートコントローラ等において、暖房運転、冷房運転等の複数の運転モードが、空気調和システム1のユーザにより選択可能とされている。室内機3は、運転モードの一つとして、室内機3が設置されている室内で、暖房運転時に、他の燃焼式の暖房器具が使用されるモード(例えば、ファイアプレイスモード)が選択可能とされている。室内で使用される他の燃焼式の暖房器具としては、ガスファンヒータ、灯油ファンヒータ、ガスストーブ、石油ストーブ、薪を燃料とする薪ストーブ、木質ペレットを燃料とするペレットストーブ等が例示できる。 The external input receiving unit 42 can receive a selection of multiple operation modes based on user input from an external remote controller or the like. The external input receiving unit 42 receives input of a set temperature based on user input from an external remote controller or the like. The indoor unit 3 can have multiple operation modes such as heating operation and cooling operation selected by the user of the air conditioning system 1 using a remote controller or the like for the indoor unit 3. As one of the operation modes, the indoor unit 3 can select a mode (for example, a fireplace mode) in which another combustion type heating appliance is used during heating operation in the room in which the indoor unit 3 is installed. Examples of other combustion type heating appliances used indoors include a gas fan heater, a kerosene fan heater, a gas stove, a kerosene stove, a wood stove that uses firewood as fuel, and a pellet stove that uses wood pellets as fuel.
 外部入力受付部42は、暖房運転、冷房運転等の運転モードが選択されたことを受け付けた場合、運転制御部43に、選択された運転モードを通知する。外部入力受付部42は、室内で、暖房運転時に、他の燃焼式の暖房器具が使用されるファイアプレイスモードが選択されたことを受け付けた場合、監視部44に、ファイアプレイスモードが選択されたことを通知する。 When the external input receiving unit 42 receives that an operation mode such as heating operation or cooling operation has been selected, it notifies the operation control unit 43 of the selected operation mode. When the external input receiving unit 42 receives that the fireplace mode, in which another combustion-type heating appliance is used during heating operation indoors, has been selected, it notifies the monitoring unit 44 that the fireplace mode has been selected.
 運転制御部43は、取得された温度、及び相対湿度に基づいて、室内機3の運転を制御する。運転制御部43は、設定温度と、温度センサ31で検出された室内の温度とに基づいて、室内の温度が設定温度に近づくように、室内機3を制御する。 The operation control unit 43 controls the operation of the indoor unit 3 based on the acquired temperature and relative humidity. The operation control unit 43 controls the indoor unit 3 based on the set temperature and the indoor temperature detected by the temperature sensor 31 so that the indoor temperature approaches the set temperature.
 監視部44は、室内機3の暖房運転時に、温度、及び相対湿度に基づいて、室内の絶対湿度を取得する。室内の絶対湿度は、例えば公知の空気線図に基づいて、室内の温度と、室内の相対湿度とに基づいて取得できる。監視部44では、公知の空気線図等に基づいて設定された演算式に基づいて、温度センサ31で検出された室内の温度と、相対湿度センサ32で検出された室内の相対湿度とから、室内の絶対湿度を算出(取得)する。 The monitoring unit 44 acquires the indoor absolute humidity based on the temperature and relative humidity during heating operation of the indoor unit 3. The indoor absolute humidity can be acquired based on the indoor temperature and the indoor relative humidity, for example, on a publicly known psychrometric chart. The monitoring unit 44 calculates (acquires) the indoor absolute humidity from the indoor temperature detected by the temperature sensor 31 and the indoor relative humidity detected by the relative humidity sensor 32, based on an arithmetic formula set on the basis of a publicly known psychrometric chart, etc.
 さらに、監視部44は、取得された絶対湿度に基づいて、室内の二酸化炭素濃度を監視する。監視部44では、単位時間あたりの絶対湿度の増加量が、予め設定された閾値以上である場合に、室内の二酸化炭素濃度が高まっていると判定する。このため、監視部44は、予め設定された時間間隔(例えば10分)ごとに、温度センサ31で検出される室内の温度と、相対湿度センサ32で検出される相対湿度とに基づいて、絶対湿度を算出する。監視部44は、算出した絶対湿度と、直前に算出した絶対湿度との差に基づき、予め設定された時間間隔に応じた単位時間あたりの絶対湿度の増加量が、予め設定された閾値以上である場合に、室内の二酸化炭素濃度が高まっていると判定する。 Furthermore, the monitoring unit 44 monitors the carbon dioxide concentration in the room based on the acquired absolute humidity. The monitoring unit 44 determines that the carbon dioxide concentration in the room is increasing when the increase in absolute humidity per unit time is equal to or greater than a preset threshold value. For this reason, the monitoring unit 44 calculates the absolute humidity based on the indoor temperature detected by the temperature sensor 31 and the relative humidity detected by the relative humidity sensor 32 at preset time intervals (e.g., 10 minutes). The monitoring unit 44 determines that the carbon dioxide concentration in the room is increasing based on the difference between the calculated absolute humidity and the absolute humidity calculated immediately before, when the increase in absolute humidity per unit time corresponding to the preset time interval is equal to or greater than a preset threshold value.
 また、監視部44は、外部入力受付部42からの通知に基づき、暖房運転時に、他の燃焼式の暖房器具が使用されるモードが選択されている場合に、上記したような室内の二酸化炭素濃度の監視を行うようにするのが好ましい。これにより、他の燃焼式の暖房器具が使用されておらず、通常の暖房運転、冷房運転が行われているときには、室内の二酸化炭素濃度の監視を行わないようにすることができる。 Furthermore, it is preferable that the monitoring unit 44 monitors the carbon dioxide concentration in the room as described above when a mode in which another combustion type heating appliance is used during heating operation is selected based on a notification from the external input receiving unit 42. This makes it possible to avoid monitoring the carbon dioxide concentration in the room when another combustion type heating appliance is not being used and normal heating or cooling operation is being performed.
 また、監視部44は、室内機3における暖房負荷が小さい状態である場合に、上記したような室内の二酸化炭素濃度の監視を行うようにするのが好ましい。このため、監視部44は、運転制御部43に対して外部から設定された設定温度と、温度センサ31で検出される温度との差が、予め設定された設定値よりも小さい場合に、上記したような室内の二酸化炭素濃度の監視を行うようにするのが好ましい。さらに、監視部44は、情報取得部41で取得された圧縮機21の回転数が、予め設定された基準回転数よりも低い場合に、室内の二酸化炭素濃度の監視を行うようにするのが好ましい。 In addition, it is preferable that the monitoring unit 44 monitors the carbon dioxide concentration in the room as described above when the heating load in the indoor unit 3 is low. Therefore, it is preferable that the monitoring unit 44 monitors the carbon dioxide concentration in the room as described above when the difference between the set temperature set externally to the operation control unit 43 and the temperature detected by the temperature sensor 31 is smaller than a preset value. Furthermore, it is preferable that the monitoring unit 44 monitors the carbon dioxide concentration in the room when the rotation speed of the compressor 21 acquired by the information acquisition unit 41 is lower than a preset reference rotation speed.
 情報出力部45は、監視部44の監視結果に基づき、室内の二酸化炭素濃度が高まっていると判定された場合に、室内の二酸化炭素濃度が高まっていることを示す情報を出力する。情報出力部45が出力する情報は、室内の換気を促すためのものであるのが好ましい。情報出力部45が出力する情報は、例えば、室内の二酸化炭素が高いことを示す情報であってもよい。
 情報出力部45は、情報を、出力装置50に出力する。出力装置50は、例えば、リモートコントローラ(図示せず)、室内機3の筐体に設けられたディスプレイ部の表示画面、ランプ等である。情報は、例えば、表示画面におけるメッセージの表示、ランプの点灯、点滅等により、外部に報知される。情報は、リモートコントローラや室内機3から、アラーム音や音声メッセージの出力等により、外部に報知してもよい。また、情報出力部45は、出力する情報を、例えば、ユーザが利用するスマートフォン、タブレット端末等の外部端末に転送し、外部端末で情報を出力させるようにしてもよい。
The information output unit 45 outputs information indicating that the carbon dioxide concentration in the room is increasing when it is determined that the carbon dioxide concentration in the room is increasing based on the monitoring result of the monitoring unit 44. The information output by the information output unit 45 is preferably for promoting ventilation in the room. The information output by the information output unit 45 may be, for example, information indicating that the carbon dioxide concentration in the room is high.
The information output unit 45 outputs information to the output device 50. The output device 50 is, for example, a remote controller (not shown), a display screen of a display unit provided in the housing of the indoor unit 3, a lamp, etc. The information is notified to the outside, for example, by displaying a message on the display screen, lighting or blinking a lamp, etc. The information may be notified to the outside by outputting an alarm sound or a voice message from the remote controller or the indoor unit 3. In addition, the information output unit 45 may transfer the information to be output to an external terminal, for example, a smartphone, tablet terminal, etc. used by the user, and cause the external terminal to output the information.
(空気調和システムの室内機の制御方法の手順)
 図3に示すように、本開示の実施形態に係る空気調和システムの室内機の制御方法は、室内の二酸化炭素濃度の監視を行うか否かを判定するステップS11と、室内の温度、及び相対湿度を取得するステップS12と、室内の絶対湿度を取得するステップS13と、室内の二酸化炭素濃度を監視するステップS14と、情報を出力するステップS15と、を含んでいる。
(Procedure for controlling indoor units of air conditioning systems)
As shown in FIG. 3, the method for controlling an indoor unit of an air conditioning system according to an embodiment of the present disclosure includes step S11 of determining whether or not to monitor the indoor carbon dioxide concentration, step S12 of acquiring the indoor temperature and relative humidity, step S13 of acquiring the indoor absolute humidity, step S14 of monitoring the indoor carbon dioxide concentration, and step S15 of outputting information.
 室内の二酸化炭素濃度の監視を行うか否かを判定するステップS11では、監視部44が、室内で、暖房運転時に、他の燃焼式の暖房器具が使用されている状態であるか否かを推定する。ここで、監視部44は、下記の条件(A)~(C)に基づき、室内で他の燃焼式の暖房器具が使用されている状態であるか否かを推定する。このステップS11は、予め設定された時間が経過する毎に、繰り返し実行される。 In step S11, which determines whether or not to monitor the carbon dioxide concentration in the room, the monitoring unit 44 estimates whether or not another combustion-type heating appliance is being used in the room during heating operation. Here, the monitoring unit 44 estimates whether or not another combustion-type heating appliance is being used in the room based on the following conditions (A) to (C). This step S11 is executed repeatedly every time a preset time has elapsed.
 条件(A):ファイアプレイスモードが選択されている。
 室内で、暖房運転時に、他の燃焼式の暖房器具が使用される場合、ユーザにより、外部のリモートコントローラ等から、ファイアプレイスモードが選択される。外部入力受付部42は、ファイアプレイスモードが選択されたことを受け付けた場合、監視部44に、ファイアプレイスモードが選択されたことを通知する。監視部44は、条件(A)を確認するため、外部入力受付部42から、ファイアプレイスモードが選択されたことを示す通知がなされているか否かを判定する。
Condition (A): Fireplace mode is selected.
When another combustion-type heating appliance is used indoors during heating operation, the user selects the fireplace mode from an external remote controller or the like. When external input receiving unit 42 receives that the fireplace mode has been selected, it notifies monitoring unit 44 that the fireplace mode has been selected. In order to confirm condition (A), monitoring unit 44 determines whether or not a notification indicating that the fireplace mode has been selected has been received from external input receiving unit 42.
 条件(B):設定温度と、温度センサ31で検出される温度との差が、予め設定された設定値よりも小さい。
 監視部44は、この条件(B)を確認するため、運転制御部43に対して外部から設定された設定温度と、温度センサ31で検出される温度との差が、予め設定された設定値よりも小さいか否かを判定する。
Condition (B): The difference between the set temperature and the temperature detected by the temperature sensor 31 is smaller than a preset value.
To confirm this condition (B), the monitoring unit 44 determines whether the difference between the set temperature set externally to the operation control unit 43 and the temperature detected by the temperature sensor 31 is smaller than a preset value.
 条件(C):圧縮機21の回転数が、予め設定された基準回転数よりも低い。
 監視部44は、この条件(C)を確認するため、情報取得部41で取得される圧縮機21の回転数が、予め設定された基準回転数よりも低いか否かを判定する。
Condition (C): The rotation speed of the compressor 21 is lower than a preset reference rotation speed.
To check this condition (C), the monitoring unit 44 determines whether or not the rotation speed of the compressor 21 acquired by the information acquisition unit 41 is lower than a preset reference rotation speed.
 監視部44は、条件(A)~(C)の全てを満足する場合、室内で他の燃焼式の暖房器具が使用されている状態である(ステップS11;Yes)と推定し、ステップS12以降の、室内の二酸化炭素濃度の監視を行う処理に移行する。監視部44は、条件(A)~(C)の全てを満足しない場合、室内で他の燃焼式の暖房器具が使用されている状態ではない(ステップS11;No)と推定し、予め設定された時間が経過した後に、ステップS11を繰り返す。 If all of the conditions (A) to (C) are met, the monitoring unit 44 presumes that another combustion-type heating appliance is being used indoors (step S11; Yes), and proceeds to the process of monitoring the carbon dioxide concentration indoors from step S12 onwards. If all of the conditions (A) to (C) are not met, the monitoring unit 44 presumes that another combustion-type heating appliance is not being used indoors (step S11; No), and repeats step S11 after a preset time has elapsed.
 室内の温度、及び相対湿度を取得するステップS12では、情報取得部41が、温度センサ31で検出される温度、及び相対湿度センサ32で検出される相対湿度の情報を取得する。 In step S12, which acquires the indoor temperature and relative humidity, the information acquisition unit 41 acquires information on the temperature detected by the temperature sensor 31 and the relative humidity detected by the relative humidity sensor 32.
 室内の絶対湿度を取得するステップS13では、監視部44が、ステップS12で取得された室内の温度と、室内の相対湿度とに基づいて、室内の絶対湿度を取得する。監視部44では、公知の空気線図等に基づいて設定された演算式に基づいて、温度センサ31で検出された室内の温度と、相対湿度センサ32で検出された室内の相対湿度とから、室内の絶対湿度を算出(取得)する。 In step S13 of acquiring the indoor absolute humidity, the monitoring unit 44 acquires the indoor absolute humidity based on the indoor temperature and indoor relative humidity acquired in step S12. The monitoring unit 44 calculates (acquires) the indoor absolute humidity from the indoor temperature detected by the temperature sensor 31 and the indoor relative humidity detected by the relative humidity sensor 32, based on an arithmetic formula set on the basis of a known psychrometric chart or the like.
 室内の二酸化炭素濃度を監視するステップS14では、監視部44が、ステップS13で取得された絶対湿度に基づいて、室内の二酸化炭素濃度を監視する。監視部44では、ステップS13で算出した絶対湿度と、その直前(前回の処理時)にステップS13で算出した絶対湿度との差に基づき、単位時間あたりの絶対湿度の増加量を算出する。監視部44は、算出された、単位時間あたりの絶対湿度の増加量が、予め設定された閾値以上であるか否かを判定する。
 監視部44は、算出された単位時間あたりの絶対湿度の増加量が、予め設定された閾値以上ではない場合(ステップS14;No)、ステップS11に戻る。
 監視部44は、算出された単位時間あたりの絶対湿度の増加量が、予め設定された閾値以上である場合(ステップS11;Yes)に、室内の二酸化炭素濃度が高まっていると判定し、ステップS15に進む。
In step S14 of monitoring the indoor carbon dioxide concentration, the monitoring unit 44 monitors the indoor carbon dioxide concentration based on the absolute humidity acquired in step S13. The monitoring unit 44 calculates the increase in absolute humidity per unit time based on the difference between the absolute humidity calculated in step S13 and the absolute humidity calculated in step S13 immediately before that (during the previous processing). The monitoring unit 44 determines whether the calculated increase in absolute humidity per unit time is equal to or greater than a preset threshold value.
When the calculated increase in absolute humidity per unit time is not equal to or greater than the preset threshold value (Step S14; No), the monitoring unit 44 returns to Step S11.
If the calculated increase in absolute humidity per unit time is equal to or greater than a preset threshold value (step S11; Yes), the monitoring unit 44 determines that the carbon dioxide concentration in the room is increasing, and proceeds to step S15.
 情報を出力するステップS15では、ステップS14における監視部44の監視結果に基づき、室内の二酸化炭素濃度が高まっていると判定された場合(ステップS11;Yes)に、室内の二酸化炭素濃度が高まっていることを示す情報を出力する。情報出力部45は、情報として、室内の換気を促すための情報を、出力装置50に出力する。
 情報出力部45から出力された情報を受信した出力装置50は、室内の換気を促すための情報を、例えば、メッセージの表示、ランプの点灯、点滅、アラーム音や音声メッセージの出力等により、外部に報知する。空気調和システム1のユーザは、出力装置50によって報知される情報を認識した場合、窓を開ける、換気扇を動作させる等することによって、室内の換気を図ることができる。
In step S15 of outputting information, when it is determined that the carbon dioxide concentration in the room is increasing based on the monitoring result of the monitoring unit 44 in step S14 (step S11; Yes), information indicating that the carbon dioxide concentration in the room is increasing is output. The information output unit 45 outputs information to the output device 50 to encourage ventilation in the room.
The output device 50 receives the information output from the information output unit 45 and notifies the outside of the information for encouraging ventilation in the room, for example, by displaying a message, turning on or blinking a lamp, outputting an alarm sound or a voice message, etc. When a user of the air conditioning system 1 recognizes the information notified by the output device 50, he or she can ventilate the room by opening a window, operating a ventilation fan, etc.
(作用効果)
 上記構成の空気調和システム1、室内機3、制御装置40、空気調和システム1の室内機3の制御方法では、温度センサ31で検出される温度、及び相対湿度センサ32で検出される相対湿度に基づいて、室内の絶対湿度を取得する。室内で、空気調和システム1に加えて、燃焼式の暖房器具が用いられている場合、燃焼式の暖房器具における燃料の燃焼にともない、二酸化炭素とともに水分が発生する。これにより、燃焼式の暖房器具を使い続けていると、室内の二酸化炭素濃度が高まるとともに、室内の湿度が高まっていく。したがって、燃焼式の暖房器具の使用時に、室内の温度と湿度とに基づいて取得される絶対湿度の上昇を把握することで、室内の二酸化炭素濃度の上昇を実質的に監視することが可能となる。これにより、二酸化炭素濃度を検出する二酸化炭素センサを別途備えることなく、室内の二酸化炭素濃度を有効に監視することができる。その結果、簡易な構成で、他の燃焼式の暖房機の使用に伴う室内の二酸化炭素濃度の上昇を検出することができる。
(Action and Effect)
In the air conditioning system 1, indoor unit 3, control device 40, and control method for the indoor unit 3 of the air conditioning system 1 configured as above, the absolute humidity in the room is acquired based on the temperature detected by the temperature sensor 31 and the relative humidity detected by the relative humidity sensor 32. When a combustion type heating appliance is used in addition to the air conditioning system 1 in the room, moisture is generated together with carbon dioxide as the fuel in the combustion type heating appliance is burned. As a result, if the combustion type heating appliance is continued to be used, the carbon dioxide concentration in the room increases and the humidity in the room increases. Therefore, when the combustion type heating appliance is used, it is possible to practically monitor the increase in the carbon dioxide concentration in the room by grasping the increase in the absolute humidity acquired based on the temperature and humidity in the room. This makes it possible to effectively monitor the carbon dioxide concentration in the room without separately providing a carbon dioxide sensor for detecting the carbon dioxide concentration. As a result, it is possible to detect the increase in the carbon dioxide concentration in the room accompanying the use of another combustion type heating appliance with a simple configuration.
 また、室内の二酸化炭素濃度が高まっている場合に、情報出力部45が、室内の二酸化炭素濃度が高まっていることを示す情報を出力する。これにより、室内のユーザが、室内の二酸化炭素濃度が高まっていることを認識することができる。これにより、室内のユーザは、窓を開ける、換気扇を動作させる等して、室内の換気を図ることができる。 Furthermore, when the carbon dioxide concentration in the room is increasing, the information output unit 45 outputs information indicating that the carbon dioxide concentration in the room is increasing. This allows the user in the room to recognize that the carbon dioxide concentration in the room is increasing. This allows the user in the room to ventilate the room by opening a window, operating a ventilation fan, etc.
 また、情報出力部45が、室内の換気を促す情報を出力することで、室内のユーザは、室内の二酸化炭素濃度が高まっており、室内の換気が必要であることを、より直接的に認識することができる。 In addition, by the information output unit 45 outputting information encouraging ventilation in the room, the user in the room can more directly recognize that the carbon dioxide concentration in the room is increasing and that ventilation in the room is necessary.
 また、監視部44は、単位時間あたりの絶対湿度の増加量が、予め設定された閾値以上である場合に、室内の二酸化炭素濃度が高まっていると判定する。単位時間あたりの絶対湿度の増加量が大きい場合、室内の二酸化炭素濃度の上昇度合いが高まっている。このような場合に、室内の二酸化炭素濃度が高まっていると判定することにより、室内の換気を、より適切なタイミングで行うことができる。 The monitoring unit 44 also determines that the carbon dioxide concentration in the room is increasing if the increase in absolute humidity per unit time is equal to or greater than a preset threshold value. If the increase in absolute humidity per unit time is large, the degree of increase in the carbon dioxide concentration in the room is increasing. In such a case, by determining that the carbon dioxide concentration in the room is increasing, it is possible to ventilate the room at a more appropriate time.
 また、空気調和システム1、室内機3、制御装置40では、外部入力受付部42により、他の燃焼式の暖房機が使用されるモードが選択されている場合に、室内の二酸化炭素濃度の監視を行う。例えば、室内で加湿器や、調理による湿度上昇のみが生じている場合に、室内の湿度が上昇しても、室内の二酸化炭素濃度の上昇が生じないことがある。このような場合には、室内の二酸化炭素濃度の監視を行わず、室内で、他の燃焼式の暖房機が使用されていると判断される場合のみに、室内の絶対湿度の上昇に基づく二酸化炭素濃度の監視を行うことができる。 In addition, the air conditioning system 1, indoor unit 3, and control device 40 monitor the indoor carbon dioxide concentration when the external input receiving unit 42 selects a mode in which another combustion heater is used. For example, when the only increase in humidity in the room is due to a humidifier or cooking, the indoor carbon dioxide concentration may not increase even if the indoor humidity increases. In such cases, the indoor carbon dioxide concentration is not monitored, and the carbon dioxide concentration can be monitored based on the increase in indoor absolute humidity only when it is determined that another combustion heater is being used in the room.
 また、監視部44は、運転制御部43に対して外部から設定された設定温度と、温度センサ31で検出される温度との差が、予め設定された設定値よりも小さい場合に、室内の二酸化炭素濃度の監視を行う。これにより、設定温度と室内の温度との差が小さい状態で、室内の絶対の湿度が上昇した場合、室内で、他の燃焼式の暖房機が使用されていることによって、二酸化炭素濃度の上昇が生じている、と推定することができる。したがって、室内の絶対湿度の上昇に基づく二酸化炭素濃度の監視を有効に行うことができる。 The monitoring unit 44 also monitors the carbon dioxide concentration in the room when the difference between the set temperature externally set for the operation control unit 43 and the temperature detected by the temperature sensor 31 is smaller than a preset value. As a result, if the difference between the set temperature and the room temperature is small and the absolute humidity in the room increases, it can be assumed that the increase in carbon dioxide concentration is due to the use of another combustion heater in the room. Therefore, it is possible to effectively monitor the carbon dioxide concentration based on the increase in absolute humidity in the room.
 また、監視部44は、取得された圧縮機21の回転数が、予め設定された基準回転数よりも低い場合に、室内の二酸化炭素濃度の監視を行う。このように、設定温度と室内の温度との差が小さく、しかも圧縮機21の回転数が低い状態で、室内の絶対の湿度が上昇した場合、室内で、他の燃焼式の暖房機が使用されていると、より高い精度で推定することができる。このような場合に、室内の絶対湿度の上昇に基づく二酸化炭素濃度の監視を有効に行うことができる。 The monitoring unit 44 also monitors the carbon dioxide concentration in the room when the acquired rotation speed of the compressor 21 is lower than a preset reference rotation speed. In this way, if the difference between the set temperature and the room temperature is small and the rotation speed of the compressor 21 is low, and the absolute humidity in the room increases, it can be estimated with greater accuracy that another combustion heater is being used in the room. In such cases, it is possible to effectively monitor the carbon dioxide concentration based on the increase in absolute humidity in the room.
(その他の実施形態)
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 なお、上記実施形態では、ステップS11において、条件(A)~(C)の全てを満足する場合に、室内で他の燃焼式の暖房器具が使用されている状態である、と推定するようにしたが、これに限られない。例えば、ユーザが、ファイアプレイスモードを選択し忘れたまま、他の燃焼式の暖房器具を使用することも想定される。このため、例えば、条件(A)を満足せず、条件(B)及び条件(C)を満足している場合においても、室内で他の燃焼式の暖房器具が使用されている状態である(ステップS11;Yes)と推定し、ステップS12以降の、室内の二酸化炭素濃度の監視を行う処理に移行してもよい。条件(B)及び条件(C)を満足している場合、室内機3における暖房負荷が小さい状態である。このような状態で、ステップS14で、室内の絶対湿度が上昇していることが確認できれば、室内で他の燃焼式の暖房器具が使用されているために、室内の二酸化炭素濃度が上昇している、と考えられるためである。
Other Embodiments
Although the embodiments of the present disclosure have been described in detail above with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes and the like that do not deviate from the gist of the present disclosure are also included.
In the above embodiment, in step S11, when all of the conditions (A) to (C) are satisfied, it is estimated that another combustion type heating appliance is being used indoors, but this is not limited to the above. For example, it is assumed that the user forgets to select the fireplace mode and uses another combustion type heating appliance. For this reason, even if the condition (A) is not satisfied and the conditions (B) and (C) are satisfied, it may be estimated that another combustion type heating appliance is being used indoors (step S11; Yes), and the process of monitoring the carbon dioxide concentration in the room may proceed to step S12 and subsequent steps. If the conditions (B) and (C) are satisfied, the heating load in the indoor unit 3 is small. In this state, if it is confirmed in step S14 that the absolute humidity in the room is rising, it is considered that the carbon dioxide concentration in the room is rising because another combustion type heating appliance is being used indoors.
 また、上記実施形態でコンピュータである制御装置40が実行するプログラムの一部または全部は、コンピュータ読取可能な記録媒体や通信回線を介して頒布することができる。 Furthermore, in the above embodiment, some or all of the programs executed by the control device 40, which is a computer, can be distributed via a computer-readable recording medium or a communication line.
<付記>
 実施形態に記載の空気調和システム1の室内機3、空気調和システム1、制御装置40、空気調和システム1の室内機3の制御方法、プログラムは、例えば以下のように把握される。
<Additional Notes>
The indoor unit 3 of the air conditioning system 1, the air conditioning system 1, the control device 40, and the control method and program for the indoor unit 3 of the air conditioning system 1 described in the embodiment can be understood, for example, as follows.
(1)第1の態様に係る空気調和システム1の室内機3は、空気調和システム1の室内機3であって、室内の温度を検出する温度センサ31と、前記室内の相対湿度を検出する相対湿度センサ32と、制御装置40と、を備え、前記制御装置40は、前記温度センサ31で検出される前記温度、及び前記相対湿度センサ32で検出される前記相対湿度を取得する情報取得部41と、取得された前記温度、及び前記相対湿度に基づいて、前記室内機3の運転を制御する運転制御部43と、前記室内機3の暖房運転時に、前記温度、及び前記相対湿度に基づいて、前記室内の絶対湿度を取得し、取得された前記絶対湿度に基づいて、前記室内の二酸化炭素濃度を監視する監視部44と、を備える。 (1) The indoor unit 3 of the air conditioning system 1 according to the first aspect is an indoor unit 3 of an air conditioning system 1, and includes a temperature sensor 31 that detects the temperature inside the room, a relative humidity sensor 32 that detects the relative humidity inside the room, and a control device 40. The control device 40 includes an information acquisition unit 41 that acquires the temperature detected by the temperature sensor 31 and the relative humidity detected by the relative humidity sensor 32, an operation control unit 43 that controls the operation of the indoor unit 3 based on the acquired temperature and relative humidity, and a monitoring unit 44 that acquires the absolute humidity inside the room based on the temperature and the relative humidity during heating operation of the indoor unit 3, and monitors the carbon dioxide concentration inside the room based on the acquired absolute humidity.
 この空気調和システム1の室内機3は、温度センサ31で検出される温度、及び相対湿度センサ32で検出される相対湿度に基づいて、運転制御部43が、室内機3の運転を制御する。
 室内で、空気調和システム1に加えて、燃焼式の暖房器具が用いられている場合、暖房器具における燃料の燃焼にともない、二酸化炭素とともに水分が発生する。これにより、燃焼式の暖房器具を使い続けていると、室内の二酸化炭素濃度が高まるとともに、室内の湿度が高まっていく。
 監視部44では、温度センサ31で検出される温度、及び相対湿度センサ32で検出される相対湿度に基づいて、室内の絶対湿度を取得する。これにより、燃焼式の暖房器具の使用時に、室内の二酸化炭素濃度が高まるとともに、室内の絶対湿度が上昇した場合、監視部44で、絶対湿度の上昇を把握することができる。したがって、取得された絶対湿度に基づいて、室内の二酸化炭素濃度を実質的に監視することが可能となる。これにより、二酸化炭素濃度を検出する二酸化炭素センサを備えることなく、室内の二酸化炭素濃度を有効に監視することができる。その結果、簡易な構成で、他の燃焼式の暖房機の使用に伴う室内の二酸化炭素濃度の上昇を検出することができる。
In the indoor unit 3 of this air conditioning system 1 , an operation control unit 43 controls the operation of the indoor unit 3 based on the temperature detected by the temperature sensor 31 and the relative humidity detected by the relative humidity sensor 32 .
When a combustion-type heating appliance is used indoors in addition to the air conditioning system 1, moisture is generated along with carbon dioxide as the fuel in the heating appliance burns. As a result, if the combustion-type heating appliance is used continuously, the carbon dioxide concentration in the room increases and the humidity in the room also increases.
The monitoring unit 44 obtains the absolute humidity in the room based on the temperature detected by the temperature sensor 31 and the relative humidity detected by the relative humidity sensor 32. As a result, if the carbon dioxide concentration in the room increases and the absolute humidity in the room rises when the combustion type heating appliance is in use, the monitoring unit 44 can grasp the increase in absolute humidity. Therefore, it is possible to practically monitor the carbon dioxide concentration in the room based on the obtained absolute humidity. This makes it possible to effectively monitor the carbon dioxide concentration in the room without having a carbon dioxide sensor that detects the carbon dioxide concentration. As a result, with a simple configuration, it is possible to detect an increase in the carbon dioxide concentration in the room that accompanies the use of another combustion type heating appliance.
(2)第2の態様に係る空気調和システム1の室内機3は、(1)の空気調和システム1の室内機3であって、前記監視部44の監視結果に基づき、前記室内の二酸化炭素濃度が高まっている場合に、前記室内の二酸化炭素濃度が高まっていることを示す情報を出力する情報出力部45、を更に備える。 (2) The indoor unit 3 of the air conditioning system 1 according to the second aspect is the indoor unit 3 of the air conditioning system 1 of (1), and further includes an information output unit 45 that outputs information indicating that the carbon dioxide concentration in the room is increasing when the carbon dioxide concentration in the room is increasing based on the monitoring result of the monitoring unit 44.
 これにより、室内の二酸化炭素濃度が高まっている場合に、情報出力部45が、室内の二酸化炭素濃度が高まっていることを示す情報を出力することによって、室内のユーザが、室内の二酸化炭素濃度が高まっていることを認識することができる。これにより、室内のユーザは、窓を開ける、換気扇を動作させる等して、室内の換気を図ることができる。 As a result, when the carbon dioxide concentration in the room is increasing, the information output unit 45 outputs information indicating that the carbon dioxide concentration in the room is increasing, allowing the user in the room to recognize that the carbon dioxide concentration in the room is increasing. This allows the user in the room to ventilate the room by opening a window, operating a ventilation fan, etc.
(3)第3の態様に係る空気調和システム1の室内機3は、(1)又は(2)の空気調和システム1の室内機3であって、前記情報は、室内の換気を促すためのものである。 (3) The indoor unit 3 of the air conditioning system 1 according to the third aspect is the indoor unit 3 of the air conditioning system 1 of (1) or (2), and the information is intended to promote ventilation in the room.
 これにより、情報出力部45が、室内の換気を促すための情報を出力することで、室内のユーザは、室内の二酸化炭素濃度が高まっている場合に、室内の換気が必要であることを、より直接的に認識することができる。 As a result, the information output unit 45 outputs information to encourage ventilation in the room, allowing the user in the room to more directly recognize that ventilation in the room is necessary when the carbon dioxide concentration in the room is high.
(4)第4の態様に係る空気調和システム1の室内機3は、(1)から(3)の何れか一つの空気調和システム1の室内機3であって、前記監視部44は、単位時間あたりの前記絶対湿度の増加量が、予め設定された閾値以上である場合に、前記室内の二酸化炭素濃度が高まっていると判定する。 (4) The indoor unit 3 of the air conditioning system 1 according to the fourth aspect is an indoor unit 3 of any one of the air conditioning systems 1 described in (1) to (3), and the monitoring unit 44 determines that the carbon dioxide concentration in the room is increasing when the increase in the absolute humidity per unit time is equal to or greater than a preset threshold value.
 これにより、単位時間あたりの絶対湿度の増加量が大きい場合、室内の二酸化炭素濃度の上昇度合いが高まっているので、このような場合に、室内の二酸化炭素濃度が高まっていると判定することにより、室内の換気を、より適切なタイミングで行うことができる。 As a result, if the increase in absolute humidity per unit time is large, the degree of increase in the carbon dioxide concentration in the room is increasing, so in such a case, by determining that the carbon dioxide concentration in the room is increasing, ventilation of the room can be carried out at a more appropriate time.
(5)第5の態様に係る空気調和システム1の室内機3は、(1)から(4)の何れか一つの空気調和システム1の室内機3であって、外部からの入力に基づき、複数の運転モードが選択可能とされた外部入力受付部42を更に備え、前記監視部44は、前記外部入力受付部42により、他の燃焼式の暖房機が使用されるモードが選択されている場合に、前記室内の二酸化炭素濃度の監視を行う。 (5) The indoor unit 3 of the air conditioning system 1 according to the fifth aspect is an indoor unit 3 of any one of the air conditioning systems 1 of (1) to (4), and further includes an external input receiving unit 42 that allows a selection of multiple operating modes based on an input from the outside, and the monitoring unit 44 monitors the carbon dioxide concentration in the room when a mode in which another combustion heater is used is selected by the external input receiving unit 42.
 このような構成では、外部入力受付部42により、他の燃焼式の暖房機が使用されるモードが選択されている場合に、室内の二酸化炭素濃度の監視を行う。例えば、室内で加湿器や、調理による湿度上昇のみが生じている場合に、室内の湿度が上昇しても、室内の二酸化炭素濃度の上昇が生じないことがある。このような場合には、室内の二酸化炭素濃度の監視を行わず、室内で、他の燃焼式の暖房機が使用されていると判断される場合のみに、室内の絶対湿度の上昇に基づく二酸化炭素濃度の監視を行うことができる。 In this configuration, the indoor carbon dioxide concentration is monitored when the external input receiving unit 42 selects a mode in which another combustion heater is used. For example, when the only increase in humidity in the room is due to a humidifier or cooking, the indoor carbon dioxide concentration may not increase even if the humidity in the room increases. In such cases, the indoor carbon dioxide concentration is not monitored, and the carbon dioxide concentration can be monitored based on the increase in absolute humidity in the room only when it is determined that another combustion heater is being used in the room.
(6)第6の態様に係る空気調和システム1の室内機3は、(1)から(5)の何れか一つの空気調和システム1の室内機3であって、前記監視部44は、前記運転制御部43に対して外部から設定された設定温度と、前記温度センサ31で検出される前記温度との差が、予め設定された設定値よりも小さい場合に、前記室内の二酸化炭素濃度の監視を行う。 (6) The indoor unit 3 of the air conditioning system 1 according to the sixth aspect is the indoor unit 3 of any one of the air conditioning systems 1 of (1) to (5), and the monitoring unit 44 monitors the carbon dioxide concentration in the room when the difference between the set temperature set externally to the operation control unit 43 and the temperature detected by the temperature sensor 31 is smaller than a preset value.
 これにより、設定温度と室内の温度との差が小さい状態で、室内の絶対の湿度が上昇した場合、室内で、他の燃焼式の暖房機が使用されていると推定することができる。このような場合に、室内の絶対湿度の上昇に基づく二酸化炭素濃度の監視を有効に行うことができる。 As a result, if the difference between the set temperature and the room temperature is small and the absolute humidity in the room increases, it can be assumed that another combustion heater is being used in the room. In such cases, it is possible to effectively monitor the carbon dioxide concentration based on the increase in absolute humidity in the room.
(7)第7の態様に係る空気調和システム1の室内機3は、(6)の空気調和システム1の室内機3であって、前記情報取得部41は、前記空気調和システム1の冷媒回路内の冷媒を圧縮する圧縮機21の回転数を取得し、前記監視部44は、取得された前記回転数が、予め設定された基準回転数よりも低い場合に、前記室内の二酸化炭素濃度の監視を行う。 (7) The indoor unit 3 of the air conditioning system 1 according to the seventh aspect is the indoor unit 3 of the air conditioning system 1 of (6), in which the information acquisition unit 41 acquires the rotation speed of the compressor 21 that compresses the refrigerant in the refrigerant circuit of the air conditioning system 1, and the monitoring unit 44 monitors the carbon dioxide concentration in the room when the acquired rotation speed is lower than a preset reference rotation speed.
 これにより、設定温度と室内の温度との差が小さく、しかも圧縮機21の回転数が低い状態で、室内の絶対の湿度が上昇した場合、室内で、他の燃焼式の暖房機が使用されていると、より高い精度で推定することができる。このような場合に、室内の絶対湿度の上昇に基づく二酸化炭素濃度の監視を有効に行うことができる。 As a result, if the difference between the set temperature and the room temperature is small and the rotation speed of the compressor 21 is low, and the absolute humidity in the room increases, it can be estimated with greater accuracy that another combustion heater is being used in the room. In such cases, it is possible to effectively monitor the carbon dioxide concentration based on the increase in absolute humidity in the room.
(8)第8の態様に係る空気調和システム1は、(1)から(7)の何れか一つの空気調和システム1の室内機3を備える。 (8) The air conditioning system 1 according to the eighth aspect includes an indoor unit 3 of any one of the air conditioning systems 1 (1) to (7).
 この空気調和システム1によれば、簡易な構成で、他の燃焼式の暖房機の使用に伴う室内の二酸化炭素濃度の上昇を検出することができる。 This air conditioning system 1 has a simple configuration and can detect an increase in the carbon dioxide concentration in a room that occurs when another combustion-type heater is used.
(9)第9の態様に係る制御装置40は、空気調和システム1の室内機3に備えられた制御装置40であって、温度センサ31で検出される室内の温度、及び相対湿度センサ32で検出される前記室内の相対湿度を取得する情報取得部41と、取得された前記温度、及び前記相対湿度に基づいて、前記室内機3の運転を制御する運転制御部43と、前記室内機3の暖房運転時に、前記温度、及び前記相対湿度に基づいて、前記室内の絶対湿度を取得し、取得された前記絶対湿度に基づいて、前記室内の二酸化炭素濃度を監視する監視部44と、を備える。 (9) The control device 40 according to the ninth aspect is a control device 40 provided in an indoor unit 3 of an air conditioning system 1, and includes an information acquisition unit 41 that acquires the indoor temperature detected by a temperature sensor 31 and the indoor relative humidity detected by a relative humidity sensor 32, an operation control unit 43 that controls the operation of the indoor unit 3 based on the acquired temperature and relative humidity, and a monitoring unit 44 that acquires the indoor absolute humidity based on the temperature and the relative humidity during heating operation of the indoor unit 3, and monitors the carbon dioxide concentration in the room based on the acquired absolute humidity.
 この制御装置40によれば、簡易な構成で、他の燃焼式の暖房機の使用に伴う室内の二酸化炭素濃度の上昇を検出することができる。 This control device 40 has a simple configuration and can detect an increase in the carbon dioxide concentration in the room that occurs when other combustion heaters are used.
(10)第10の態様に係る空気調和システム1の室内機3の制御方法は、室内の温度、及び前記室内の相対湿度を取得するステップS12と、前記室内機3の暖房運転時に、前記温度、及び前記相対湿度に基づいて、前記室内の絶対湿度を取得するステップS13と、取得された前記絶対湿度に基づいて、前記室内の二酸化炭素濃度を監視するステップS14と、を含む。 (10) The method for controlling the indoor unit 3 of the air conditioning system 1 according to the tenth aspect includes step S12 of acquiring the indoor temperature and the indoor relative humidity, step S13 of acquiring the indoor absolute humidity based on the temperature and the relative humidity during heating operation of the indoor unit 3, and step S14 of monitoring the indoor carbon dioxide concentration based on the acquired absolute humidity.
 この空気調和システム1の室内機3の制御方法によれば、簡易な構成で、他の燃焼式の暖房機の使用に伴う室内の二酸化炭素濃度の上昇を検出することができる。 This method of controlling the indoor unit 3 of the air conditioning system 1 makes it possible, with a simple configuration, to detect an increase in the carbon dioxide concentration in the room that accompanies the use of another combustion-type heater.
(11)第11の態様に係るプログラムは、室内の温度、及び前記室内の相対湿度を取得するステップS12と、前記室内機3の暖房運転時に、前記温度、及び前記相対湿度に基づいて、前記室内の絶対湿度を取得するステップS13と、取得された前記絶対湿度に基づいて、前記室内の二酸化炭素濃度を監視するステップS14と、を、空気調和システム1の室内機3の制御装置40に実行させる。 (11) The program according to the eleventh aspect causes the control device 40 of the indoor unit 3 of the air conditioning system 1 to execute step S12 of acquiring the indoor temperature and the indoor relative humidity, step S13 of acquiring the indoor absolute humidity based on the temperature and the relative humidity during heating operation of the indoor unit 3, and step S14 of monitoring the indoor carbon dioxide concentration based on the acquired absolute humidity.
 このプログラムは、簡易な構成で、他の燃焼式の暖房機の使用に伴う室内の二酸化炭素濃度の上昇を検出する処理を、空気調和システム1の室内機3の制御装置40に実行させることができる。 This program has a simple configuration and can cause the control device 40 of the indoor unit 3 of the air conditioning system 1 to execute a process for detecting an increase in the carbon dioxide concentration in the room that accompanies the use of another combustion-type heater.
 上述した一態様によれば、簡易な構成で、他の燃焼式の暖房機の使用に伴う室内の二酸化炭素濃度の上昇を検出する。 According to one aspect described above, a simple configuration is used to detect an increase in the carbon dioxide concentration in a room that occurs when another combustion-type heater is used.
1…空気調和システム
2…室外機
3…室内機
21…圧縮機
25…室外機制御装置
31…温度センサ
32…相対湿度センサ
33…エバポレータ
40…制御装置
41…情報取得部
42…外部入力受付部
43…運転制御部
44…監視部
45…情報出力部
50…出力装置
Reference Signs List 1...Air conditioning system 2...Outdoor unit 3...Indoor unit 21...Compressor 25...Outdoor unit control device 31...Temperature sensor 32...Relative humidity sensor 33...Evaporator 40...Control device 41...Information acquisition unit 42...External input reception unit 43...Operation control unit 44...Monitoring unit 45...Information output unit 50...Output device

Claims (11)

  1.  空気調和システムの室内機であって、
     室内の温度を検出する温度センサと、
     前記室内の相対湿度を検出する相対湿度センサと、
     制御装置と、を備え、
     前記制御装置は、
     前記温度センサで検出される前記温度、及び前記相対湿度センサで検出される前記相対湿度を取得する情報取得部と、
     取得された前記温度、及び前記相対湿度に基づいて、前記室内機の運転を制御する運転制御部と、
     前記室内機の暖房運転時に、前記温度、及び前記相対湿度に基づいて、前記室内の絶対湿度を取得し、取得された前記絶対湿度に基づいて、前記室内の二酸化炭素濃度を監視する監視部と、を備える
     空気調和システムの室内機。
    An indoor unit of an air conditioning system,
    A temperature sensor for detecting the temperature inside the room;
    a relative humidity sensor for detecting the relative humidity in the room;
    A control device,
    The control device includes:
    an information acquisition unit that acquires the temperature detected by the temperature sensor and the relative humidity detected by the relative humidity sensor;
    an operation control unit that controls operation of the indoor unit based on the acquired temperature and relative humidity;
    a monitoring unit that acquires an absolute humidity in the room based on the temperature and the relative humidity during heating operation of the indoor unit, and monitors a carbon dioxide concentration in the room based on the acquired absolute humidity.
  2.  前記監視部の監視結果に基づき、前記室内の二酸化炭素濃度が高まっている場合に、前記室内の二酸化炭素濃度が高まっていることを示す情報を出力する情報出力部、を更に備える
     請求項1に記載の空気調和システムの室内機。
    The indoor unit of the air conditioning system according to claim 1 , further comprising: an information output unit that outputs, when the carbon dioxide concentration in the room is increasing based on a monitoring result of the monitoring unit, information indicating that the carbon dioxide concentration in the room is increasing.
  3.  前記情報は、室内の換気を促すためのものである
     請求項2に記載の空気調和システムの室内機。
    The indoor unit of the air conditioning system according to claim 2 , wherein the information is for encouraging ventilation in the room.
  4.  前記監視部は、単位時間あたりの前記絶対湿度の増加量が、予め設定された閾値以上である場合に、前記室内の二酸化炭素濃度が高まっていると判定する
     請求項1又は2に記載の空気調和システムの室内機。
    The indoor unit of the air conditioning system according to claim 1 or 2, wherein the monitoring unit determines that the carbon dioxide concentration in the room is increasing when the increase in the absolute humidity per unit time is equal to or greater than a preset threshold value.
  5.  外部からの入力に基づき、複数の運転モードが選択可能とされた外部入力受付部を更に備え、
     前記監視部は、前記外部入力受付部により、他の燃焼式の暖房機が使用されるモードが選択されている場合に、前記室内の二酸化炭素濃度の監視を行う
     請求項1又は2に記載の空気調和システムの室内機。
    Further comprising an external input receiving unit that allows a plurality of operation modes to be selected based on an external input,
    The indoor unit of the air conditioning system according to claim 1 or 2, wherein the monitoring unit monitors the carbon dioxide concentration in the room when a mode in which another combustion type heater is used is selected by the external input receiving unit.
  6.  前記監視部は、前記運転制御部に対して外部から設定された設定温度と、前記温度センサで検出される前記温度との差が、予め設定された設定値よりも小さい場合に、前記室内の二酸化炭素濃度の監視を行う
     請求項1又は2に記載の空気調和システムの室内機。
    3. The indoor unit of the air conditioning system according to claim 1 or 2, wherein the monitoring unit monitors the carbon dioxide concentration in the room when a difference between a set temperature externally set for the operation control unit and the temperature detected by the temperature sensor is smaller than a preset value.
  7.  前記情報取得部は、前記空気調和システムの冷媒回路内の冷媒を圧縮する圧縮機の回転数を取得し、
     前記監視部は、取得された前記回転数が、予め設定された基準回転数よりも低い場合に、前記室内の二酸化炭素濃度の監視を行う
     請求項6に記載の空気調和システムの室内機。
    The information acquisition unit acquires a rotation speed of a compressor that compresses a refrigerant in a refrigerant circuit of the air conditioning system,
    The indoor unit of the air conditioning system according to claim 6 , wherein the monitoring unit monitors the carbon dioxide concentration in the room when the acquired rotation speed is lower than a preset reference rotation speed.
  8.  請求項1又は2に記載の空気調和システムの室内機を備える
     空気調和システム。
    An air conditioning system comprising an indoor unit of the air conditioning system according to claim 1 or 2.
  9.  空気調和システムの室内機に備えられた制御装置であって、
     温度センサで検出される室内の温度、及び相対湿度センサで検出される前記室内の相対湿度を取得する情報取得部と、
     取得された前記温度、及び前記相対湿度に基づいて、前記室内機の運転を制御する運転制御部と、
     前記室内機の暖房運転時に、前記温度、及び前記相対湿度に基づいて、前記室内の絶対湿度を取得し、取得された前記絶対湿度に基づいて、前記室内の二酸化炭素濃度を監視する監視部と、を備える
     制御装置。
    A control device provided in an indoor unit of an air conditioning system,
    an information acquisition unit that acquires an indoor temperature detected by a temperature sensor and an indoor relative humidity detected by a relative humidity sensor;
    an operation control unit that controls operation of the indoor unit based on the acquired temperature and relative humidity;
    a monitoring unit that acquires an absolute humidity in the room based on the temperature and the relative humidity during heating operation of the indoor unit, and monitors a carbon dioxide concentration in the room based on the acquired absolute humidity.
  10.  室内の温度、及び前記室内の相対湿度を取得するステップと、
     室内機の暖房運転時に、前記温度、及び前記相対湿度に基づいて、前記室内の絶対湿度を取得するステップと、
     取得された前記絶対湿度に基づいて、前記室内の二酸化炭素濃度を監視するステップと、を含む
     空気調和システムの室内機の制御方法。
    obtaining a temperature in a room and a relative humidity in the room;
    acquiring an absolute humidity in the room based on the temperature and the relative humidity during a heating operation of the indoor unit;
    monitoring a carbon dioxide concentration in the room based on the acquired absolute humidity.
  11.  室内の温度、及び前記室内の相対湿度を取得するステップと、
     室内機の暖房運転時に、前記温度、及び前記相対湿度に基づいて、前記室内の絶対湿度を取得するステップと、
     取得された前記絶対湿度に基づいて、前記室内の二酸化炭素濃度を監視するステップと、を、空気調和システムの室内機の制御装置に実行させる
     プログラム。
    obtaining a temperature in a room and a relative humidity in the room;
    acquiring an absolute humidity in the room based on the temperature and the relative humidity during a heating operation of the indoor unit;
    and monitoring the carbon dioxide concentration in the room based on the acquired absolute humidity.
PCT/JP2023/031967 2022-09-29 2023-08-31 Indoor unit for air conditioning system, air conditioning system, control device, method for controlling indoor unit for air conditioning system, and program WO2024070491A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-156111 2022-09-29
JP2022156111A JP2024049712A (en) 2022-09-29 2022-09-29 Indoor unit of air conditioning system, air conditioning system, control device, and method and program for controlling indoor unit of air conditioning system

Publications (1)

Publication Number Publication Date
WO2024070491A1 true WO2024070491A1 (en) 2024-04-04

Family

ID=90477239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031967 WO2024070491A1 (en) 2022-09-29 2023-08-31 Indoor unit for air conditioning system, air conditioning system, control device, method for controlling indoor unit for air conditioning system, and program

Country Status (2)

Country Link
JP (1) JP2024049712A (en)
WO (1) WO2024070491A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591940A (en) * 1982-06-02 1984-01-07 Hitachi Plant Eng & Constr Co Ltd Control for intake of atmospheric air by difference of absolute humidity
JP2004278916A (en) * 2003-03-17 2004-10-07 Toho Gas Co Ltd Air-conditioning system
DE102006023182A1 (en) * 2006-05-17 2007-11-22 Siemens Ag Sensor arrangement for detecting characteristic values of the environment and method for generating corresponding output signals
WO2020262300A1 (en) * 2019-06-28 2020-12-30 ダイキン工業株式会社 Air conditioner indoor unit and air conditioner
WO2022180931A1 (en) * 2021-02-24 2022-09-01 三菱重工サーマルシステムズ株式会社 Air conditioner control device, air conditioner, air conditioning method, and air conditioning program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591940A (en) * 1982-06-02 1984-01-07 Hitachi Plant Eng & Constr Co Ltd Control for intake of atmospheric air by difference of absolute humidity
JP2004278916A (en) * 2003-03-17 2004-10-07 Toho Gas Co Ltd Air-conditioning system
DE102006023182A1 (en) * 2006-05-17 2007-11-22 Siemens Ag Sensor arrangement for detecting characteristic values of the environment and method for generating corresponding output signals
WO2020262300A1 (en) * 2019-06-28 2020-12-30 ダイキン工業株式会社 Air conditioner indoor unit and air conditioner
WO2022180931A1 (en) * 2021-02-24 2022-09-01 三菱重工サーマルシステムズ株式会社 Air conditioner control device, air conditioner, air conditioning method, and air conditioning program

Also Published As

Publication number Publication date
JP2024049712A (en) 2024-04-10

Similar Documents

Publication Publication Date Title
US10712036B2 (en) Fault detection diagnostic variable differential variable delay thermostat
US8755942B2 (en) Heating, ventilation and air conditioning system controller having a multifunctional indoor air quality sensor and method of controlling the system based on input from the sensor
US9845966B2 (en) Air conditioning system
US11118789B2 (en) Monitor for a natural gas-fired appliance
CN107367012B (en) High-temperature-resistant protection method, protection device and protection system for air conditioning system
US9019102B2 (en) Service method of gas appliances
JPWO2018220810A1 (en) Air conditioner
US10451303B1 (en) Electronic detection of vent blockage and blower malfunction in temperature control systems
WO2024070491A1 (en) Indoor unit for air conditioning system, air conditioning system, control device, method for controlling indoor unit for air conditioning system, and program
JP2018119755A (en) Air Conditioning System
JP2004278916A (en) Air-conditioning system
JP2007147167A (en) Wind direction control system, and wind direction control method
JPWO2019239830A1 (en) Air conditioning system
JP6666734B2 (en) Ventilation system
US11713891B2 (en) Carbon monoxide detection system
JP2007003084A (en) Remote control device
US11781768B2 (en) Time-based and sound-based diagnostics for a heating, ventilation, and air conditioning burner assembly
US9500566B2 (en) Service method of gas appliances
US11655993B2 (en) Sound-based diagnostics for a combustion air inducer
US11788993B2 (en) Sound-based prognostics for a combustion air inducer
US11598545B2 (en) Time-based and sound-based prognostics for restrictions within a heating, ventilation, and air conditioning system
US11668484B2 (en) Time-based and sound-based diagnostics for restrictions within a heating, ventilation, and air conditioning system
US11781785B2 (en) Feedback warning system using inducer pulse width modulation signal
US20230392809A1 (en) Apparatuses and Methods For Toxic Gas Detection and Disabling of Toxic Gas Emission Sources
US20170023921A1 (en) Method of controlling a remote controlled system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871731

Country of ref document: EP

Kind code of ref document: A1