WO2024062646A1 - System that performs communication and wireless power transmission, base station, wireless processing device, and antenna system - Google Patents

System that performs communication and wireless power transmission, base station, wireless processing device, and antenna system Download PDF

Info

Publication number
WO2024062646A1
WO2024062646A1 PCT/JP2023/005291 JP2023005291W WO2024062646A1 WO 2024062646 A1 WO2024062646 A1 WO 2024062646A1 JP 2023005291 W JP2023005291 W JP 2023005291W WO 2024062646 A1 WO2024062646 A1 WO 2024062646A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
communication
power transmission
wireless
antenna
Prior art date
Application number
PCT/JP2023/005291
Other languages
French (fr)
Japanese (ja)
Inventor
直輝 長谷川
悠太 中本
昂 平川
裕貴 ▲高▼木
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Publication of WO2024062646A1 publication Critical patent/WO2024062646A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to a system, a base station, a wireless processing device, and an antenna system that can perform communication and wireless power transfer (WPT).
  • WPT wireless power transfer
  • a communication system that performs communication between a base station and a terminal device using at least part of a plurality of radio resources set in a radio frame (for example, see Patent Document 1).
  • a system that performs wireless power transmission (WPT) using a mobile communication base station is being considered as a power supply infrastructure that supplies power to the terminal device.
  • WPT wireless power transmission
  • One of the issues with such a system is that the downlink wireless power transmission dummy signal and communication signal to the terminal device and the uplink communication signal from the terminal device are amplified by individual amplifiers suitable for each signal. .
  • An antenna system is an antenna system provided in a base station that can communicate by selectively using a plurality of radio resources.
  • the antenna system includes an array antenna having a plurality of antenna elements, and a dummy signal for downlink wireless power transmission, a downlink communication signal, and an uplink communication signal connected to each of the plurality of antenna elements.
  • a plurality of radio signal processing units that amplify a plurality of high frequency signals with different amplifiers and multiplex and transmit/receive the plurality of high frequency signals via the antenna element are provided.
  • each of the plurality of wireless signal processing units includes a first phase shifter for controlling the phase of the dummy signal for wireless power transmission transmitted from the antenna element; a first amplifier that amplifies a dummy signal; a second phase shifter that controls the phase of the downlink communication signal transmitted from the antenna element; and a second amplifier that amplifies the downlink communication signal. , a third amplifier for amplifying the uplink communication signal received via the antenna element, and a third phase shifter for controlling the phase of the uplink communication signal.
  • the first amplifier may be a bias adjustment type high efficiency amplifier or a waveform processing type high efficiency amplifier
  • the second amplifier is an amplifier that improves efficiency in a linear region.
  • the third amplifier may be a low noise amplifier.
  • each of the plurality of radio signal processing units multiplexes the dummy signal for wireless power transmission, the downlink communication signal, and the uplink communication signal using a time division duplex (TDD) method.
  • TDD time division duplex
  • a frame for wireless power transmission used for the dummy signal for wireless power transmission a frame for downlink communication used for the downlink communication signal, and an uplink used for the uplink communication signal.
  • a frame for communication is time-divided and allocated to a communication frame, and the multiplexing processing unit synchronizes with the frame for wireless power transmission, the frame for downlink communication, and the frame for uplink communication, Connections between signal processing paths of the dummy signal for wireless power transmission, the downlink communication signal, and the uplink communication signal and the antenna element may be switched.
  • each of the plurality of wireless signal processing units multiplexes the dummy signal for wireless power transmission, the downlink communication signal, and the uplink communication signal using a frequency division duplexing (FDD) method.
  • FDD frequency division duplexing
  • the array antenna may include a wireless power transmission array antenna used to transmit the wireless power transmission dummy signal, and a communication array antenna used to transmit the downlink communication signal and receive the uplink communication signal
  • the wireless signal processing units may include a plurality of wireless power transmission wireless signal processing units connected to each of the antenna elements of the wireless power transmission array antenna, amplifying the high-frequency signal of the wireless power transmission dummy signal with a wireless power transmission amplifier and transmitting it via the antenna element, and a plurality of communication wireless signal processing units connected to each of the antenna elements of the communication array antenna, amplifying the high-frequency signals of the downlink communication signal and the uplink communication signal with different amplifiers, and multiplexing and transmitting the high-frequency signals via the antenna elements.
  • a wireless processing device includes any of the antenna systems described above and an input/output signal processing unit connected to the antenna system.
  • the input/output signal processing unit converts a downlink intermediate frequency signal including the dummy signal for wireless power transmission and the downlink communication signal into an intermediate frequency signal of the dummy signal for wireless power transmission and the downlink communication.
  • a signal separation unit that separates the signal into an intermediate frequency signal; and a signal separation unit that mixes the intermediate frequency signal of the dummy signal for wireless power transmission and a local oscillation signal of a predetermined frequency to generate a high frequency signal of the dummy signal for wireless power transmission.
  • a first mixer that generates a high frequency signal of the downlink communication signal
  • a second mixer that mixes the intermediate frequency signal of the downlink communication signal and the local oscillation signal to generate a high frequency signal of the downlink communication signal
  • a third mixer that mixes the high frequency signal of the communication signal and the local oscillation signal to generate the intermediate frequency signal of the uplink communication signal.
  • a base station is a base station of a mobile communication system. This base station generates a downlink intermediate frequency signal including the dummy signal for wireless power transmission and the downlink communication signal with the radio processing device, and generates an uplink intermediate frequency signal including the uplink communication signal. and a communication signal processing unit that processes.
  • a remote wireless head device having the wireless processing device; and a communication signal located at a position remote from the remote wireless head device and connected to the remote wireless head device via a wired communication line.
  • the baseband unit device may include a baseband unit device having a processing section.
  • a system is a system that performs wireless power transmission from the base station to a terminal device.
  • the terminal device includes a wireless processing unit that receives a transmission signal including the dummy signal for wireless power transmission transmitted from the base station, and a reception signal that receives the transmission signal including the dummy signal for wireless power transmission. It has a power output unit that outputs power as received power.
  • FIG. 1 is an explanatory diagram showing an example of the overall configuration of a system according to an embodiment.
  • FIG. 2 is a block diagram illustrating an example of the configuration of a base station and a terminal device that constitute the system according to the embodiment.
  • FIG. 3A is an explanatory diagram illustrating an example of arrangement of symbol points in QAM primary modulation of a communication signal transmitted from a base station according to the embodiment.
  • FIG. 3B is an explanatory diagram showing an example of an arrangement of symbol points in the modulation of a WPT dummy signal transmitted from the base station.
  • 5 is a graph showing an example of input/output power characteristics and efficiency characteristics of an amplifier of a base station according to the present embodiment.
  • FIG. 1 is an explanatory diagram showing an example of the overall configuration of a system according to an embodiment.
  • FIG. 2 is a block diagram illustrating an example of the configuration of a base station and a terminal device that constitute the system according to the embodiment.
  • FIG. 3A is an explanatory diagram
  • FIG. 1 is a block diagram illustrating an example of the configuration of an antenna system applicable to a base station according to an embodiment.
  • 6 is a block diagram showing an example of the configuration of a radio signal processing unit that constitutes the antenna system of FIG. 5 .
  • 6 is an explanatory diagram showing an example of a frame structure of a signal transmitted and received by the antenna system of FIG. 5.
  • FIG. FIG. 3 is a block diagram showing another example of the configuration of an antenna system applicable to the base station according to the embodiment.
  • 9 is a block diagram illustrating an example of the configuration of a radio signal processing unit that constitutes the antenna system of FIG. 8.
  • FIG. 1 is a block diagram illustrating an example of the configuration of an antenna system with a separate antenna configuration applicable to a base station according to an embodiment.
  • FIG. 11A is a block diagram illustrating an example of a configuration of a wireless signal processing unit for wireless power transmission (WPT) and a wireless signal processing unit for communication that configure the antenna system of FIG. 10.
  • FIG. 11B is a block diagram illustrating an example of the configuration of a wireless signal processing unit for wireless power transmission (WPT) and a wireless signal processing unit for communication that configure the antenna system of FIG. 10.
  • 11 is a block diagram illustrating another example of the configuration of a wireless signal processing unit for communication that constitutes the antenna system of FIG. 10.
  • FIG. FIG. 2 is a block diagram illustrating an example of a configuration of an input/output signal processing unit of a wireless processing device in a base station according to an embodiment.
  • 1 is an explanatory diagram showing an example of power supply to each of a plurality of terminal devices by beamforming from a base station according to an embodiment;
  • the system according to the embodiment described in this specification is a system capable of wireless power transmission (WPT) from a mobile communication base station to a terminal device (e.g., a mobile communication UE (mobile station) or an IoT device) to be powered.
  • the system according to the embodiment is a system that effectively utilizes unused wireless resources (resource blocks) that are not used for communication among a plurality of wireless resources (resource blocks) set in a downlink wireless frame to a terminal device such as a UE, for wireless power transmission (WPT) to the terminal device.
  • the system according to the embodiment may be a wireless communication system between a base station and a terminal device having a wireless power transmission (WPT) function from the base station to the terminal device.
  • the system according to the embodiment may also be a wireless power transmission (WPT) system from a base station to a terminal device having a wireless communication function between the base station and the terminal device.
  • WPT wireless power transmission
  • the downlink wireless power transmission dummy signal and communication signal transmitted from the base station and the uplink communication signal received at the base station are each transmitted through individual amplifiers suitable for each signal. can be amplified.
  • FIG. 1 is an explanatory diagram showing an example of a schematic configuration of a system according to the present embodiment.
  • the system of the present embodiment includes a cellular base station 10 that forms a communication area (cell) 10A, and is capable of wirelessly communicating with the base station 10 by connecting to the base station 10 when located in the communication area 10A. It has a terminal device (hereinafter also referred to as "UE" (user equipment)) 20 to which power is supplied.
  • UE user equipment
  • the UE 20 may be a mobile station of a mobile communication system, or may be a combination of a communication device (for example, a mobile communication module) and various devices.
  • the UE 20 includes, for example, an array antenna having a plurality of antenna elements.
  • the UE 20 may be an IoT device (also referred to as "IoT equipment").
  • a base station 10 is equipped with a plurality of array antennas 110 having a large number of antenna elements, and can perform communication using a massive MIMO (hereinafter also referred to as "mMIMO") transmission method with a plurality of UEs 20.
  • mMIMO is a wireless transmission technology that achieves high-capacity, high-speed communication by transmitting and receiving data using the array antenna 110.
  • communication can be performed using an MU (Multi User)-MIMO transmission method that performs beamforming to form beams 10B in time division or simultaneously for each of the plurality of UEs 20.
  • MU Multi User
  • a part of the communication area 10A is a wireless power transmission area (hereinafter referred to as "WPT area") 10A' where wireless power transmission is performed from the base station 10 to the terminal device 20.
  • the WPT area 10A' may be a smaller area than the communication area 10A as shown in the figure, or may be an area having the same or approximately the same size and position as the communication area 10A.
  • unused radio resources that are not used for communication among resource blocks that are a plurality of radio resources (time/frequency resources) constituting a downlink radio frame from the base station 10 are ) is used as a wireless power transmission block.
  • the base station 10 transmits a dummy signal for wireless power transmission (hereinafter also referred to as "WPT dummy signal") to a wireless power transmission block (WPT block), which is a wireless resource that is not used for communication.
  • WPT dummy signal a dummy signal for wireless power transmission
  • WPT block wireless power transmission block
  • a technology called lean carrier has been proposed in which the minimum necessary reference signals (RS) and control signals are placed only on some subcarriers of a radio frame. Therefore, it is expected that wireless power transmission to the UE 20 will be performed by effectively utilizing the unused radio resources in the radio frame.
  • RS reference signals
  • the radio waves of communication signals transmitted and received between the base station 10 and the UE 20 and the radio waves of the transmission signal to which the WPT dummy signal is assigned are transmitted from the base station 10 to the UE 20, for example, are millimeter waves or microwaves.
  • FIG. 2 is a block diagram illustrating an example of the main configurations of the base station 10 and the terminal equipment (UE) 20 that constitute the system according to the embodiment.
  • the base station 10 includes an antenna 110, a communication signal processing unit 120, and a wireless processing device (wireless processing unit) 130.
  • the base station 10 in FIG. 2 may include a remote radio head device (RRH) having a radio processing device 130 and a baseband unit (BBU) device having a communication signal processing section 120.
  • the baseband unit (BBU) device is located at a remote location from the remote radio head device (RRH) and is connected to the remote radio head device via a wired communication line (for example, an optical line made of optical fiber).
  • the antenna 110 is, for example, an array antenna having a large number of antenna elements as shown in FIG.
  • the antenna 110 may be singular or plural.
  • a plurality of antennas 110 may be arranged corresponding to a plurality of sector cells.
  • the communication signal processing unit 120 processes signals such as various user data and control information transmitted and received with the UE 20.
  • the communication signal processing unit 120 During downlink communication to the UE 20, the communication signal processing unit 120 generates a downlink transmission signal including a WPT dummy signal using an unused radio resource that is not used for communication among a plurality of radio resources. do.
  • the WPT dummy signal can be generated by modulating with a modulation method that has a smaller PAPR (peak power to average power ratio) (also referred to as "wave height ratio") than the communication signal.
  • the WPT dummy signal may be a modulated signal that is modulated using a Zadoff-Chu sequence code and has a constant amplitude and a phase that changes over time.
  • the signal may be a signal modulated at a plurality of symbol points having the maximum amplitude or near the maximum amplitude.
  • the generation of the transmission signal includes primary modulation such as QAM (quadrature amplitude modulation) for communication signals and modulation with small PAPR for WPT dummy signals, and secondary modulation such as OFDM (orthogonal frequency division multiplexing) modulation. But that's fine.
  • primary modulation such as QAM (quadrature amplitude modulation) for communication signals and modulation with small PAPR for WPT dummy signals
  • secondary modulation such as OFDM (orthogonal frequency division multiplexing) modulation. But that's fine.
  • the radio processing device 130 transmits the transmission signal generated by the communication signal processing unit 120 from the antenna 110 to the UE 20, and outputs the reception signal received from the UE 20 via the antenna 110 to the communication signal processing unit 120.
  • the process of including a WPT dummy signal using unused wireless resources in the downlink communication transmission signal to the UE 20, and the generation of control signals (trigger signals) used for signal separation and signal synthesis, etc. described later, are performed by mobile communication. This may be done based on subframes that constitute the radio frame.
  • the process of including a WPT dummy signal using unused radio resources in a transmission signal for downlink communication to UE 20 may be performed autonomously by base station 10, or may be performed based on a request or instruction from UE 20 or a request or instruction from an external platform (e.g., a server, a cloud system).
  • an external platform e.g., a server, a cloud system.
  • the wireless processing device 130 controls one or more beams formed by the array antenna 110 based on the BF control signal. Furthermore, the radio processing device 130 transmits a downlink transmission signal including the WPT dummy signal generated by the communication signal processing unit 120 to the UE 20 via the antenna 110.
  • the base station 10 performs beamforming (BF) control to form individual beams 10B for each UE 20 or for each UE group in the target area to which a plurality of UEs 20 belong.
  • Wireless power transfer may be performed separately or for each UE group.
  • BF control for each UE 20 or for each UE group may be performed by digital BF control in the frequency domain in the communication signal processing unit 120, or by analog BF control in the radio processing device 130.
  • the radio processing device 130 includes an input/output signal processing section 131, a radio signal processing section (hereinafter also referred to as "RF signal processing section") 132, and an antenna system 133 having an antenna 110.
  • RF signal processing section a radio signal processing section
  • antenna system 133 having an antenna 110.
  • the UE 20 includes an antenna 210, a wireless processing section 220, a communication signal processing section 230, a power output section 240, and a battery 250.
  • Antenna 210 is, for example, a small array antenna having a plurality of antenna elements.
  • the wireless processing unit 220 transmits transmission signals such as feedback information and user data generated by the communication signal processing unit 230 from the antenna 210 to the base station 10, and transmits received signals received from the base station 10 via the antenna 210 to communication. It is also output to the signal processing section 230.
  • the wireless processing unit 220 receives a transmission signal including a WPT dummy signal transmitted from the base station 10.
  • the power output unit 240 includes, for example, a rectifier, and outputs the power of the received signal that has received the transmission signal including the WPT dummy signal from the base station 10 as the received power for battery charging.
  • the battery 250 can be charged by the received power output from the power output unit 240.
  • FIG. 3A is an explanatory diagram showing an example of the arrangement of symbol points 41 in QAM primary modulation of a communication signal transmitted from the base station 10 according to the present embodiment.
  • FIG. 3A is a diagram of a constellation showing the arrangement of a plurality of symbol points (64-value symbol points) in the case of the 64QAM method.
  • FIG. 3B is an explanatory diagram showing an example of arrangement of symbol points in modulation of the WPT dummy signal transmitted from the base station 10 according to the present embodiment.
  • the horizontal axis shows in-phase channel components
  • the vertical axis shows orthogonal channel components.
  • an OFDM modulated signal with a lower PAPR (peak-to-average power ratio) than the communication signal is used as the WPT dummy signal.
  • a WPT dummy signal may be used that is an OFDM modulated signal modulated only by the outermost or surrounding symbol points 41S with the largest amplitude among the multiple symbol points 41 of the QAM method for the communication signal.
  • a WPT dummy signal may be used that is composed of an OFDM modulated signal modulated at symbol points 42 whose phase changes with the amplitude constant over time.
  • the OFDM modulated signal at symbol point 42 in FIG. 3B can be generated using, for example, a Zadoff-Chu sequence code.
  • FIG. 4 is a graph showing an example of the characteristics of the output power Pout [dBm] and the amplifier efficiency PAE [%] with respect to the input power Pin [dBm] of the amplifier of the base station 10 according to the present embodiment.
  • Curve A in the figure is a simulation calculation result of input/output characteristics indicating AC output power Pout [dBm] with respect to AC input power Pin [dBm] of the amplifier.
  • the broken line curves B, C, and D in the figure are indicators of efficiency with respect to the input power Pin [dBm] of the amplifier suitable for uplink (UL) communication signals, downlink (DL) communication signals, and WPT dummy signals, respectively.
  • a region where the relationship between input power Pin and output power Pout is linear or nearly linear is suitable for low-noise amplification of UL communication signals and power amplification of DL communication signals.
  • characteristics of an amplifier suitable for amplifying UL communication signals include, for example, high PAPR (peak power to average power ratio), high linearity, wide dynamic range, and low noise.
  • characteristics of a power amplifier suitable for amplifying DL communication signals include, for example, high PAPR, high linearity, and wide dynamic range. Examples of this power amplifier include amplifiers that improve efficiency in a linear region, such as a Doherty amplifier, an envelope tracking amplifier, and an outphasing amplifier. It is.
  • the saturation region of the input/output characteristic A in FIG. 4 is a region where the output power Pout is saturated or almost saturated with respect to an increase in the input power Pin.
  • the peak of the efficiency PAE of the power amplifier is located in a region near the boundary between the linear region and the saturation region, and this region is suitable for high output and high efficiency power amplification of the WPT dummy signal.
  • the characteristics of a power amplifier suitable for amplifying a WPT dummy signal include, for example, high efficiency, low PAPR, and large output power.
  • this power amplifier examples include bias-adjustable high-efficiency amplifiers such as class A amplifiers, class B amplifiers, class C amplifiers, and class AB amplifiers, or waveform processing amplifiers such as class E amplifiers, class F amplifiers, and class J amplifiers. Examples include high-efficiency amplifiers of the type.
  • the WPT dummy signal an OFDM modulated signal whose PAPR (peak power to average power ratio) is lower than that of the communication signal may be used.
  • a plurality of signal processing paths corresponding to the WPT dummy signal, DL communication signal, and UL communication signal are configured, and each signal is A suitable separate amplifier is provided.
  • FIG. 5 is a block diagram showing an example of the configuration of the antenna system 133 applicable to the base station 10 according to the embodiment.
  • the antenna system 133 includes an array antenna 110 consisting of a plurality (N) of antenna elements 1101(1) to 1101(N), and a TDD (time division duplex) type RF connected to the array antenna 110.
  • a signal processing section 132 is provided.
  • the RF signal processing unit 132 includes a plurality of (N) radio signal processing units (hereinafter referred to as “RF signal 1320(1) to 1320(N). Each of the plurality of RF signal processing units 1320(1) to 1320(N) is connected to a corresponding antenna element 1101(1) to 1101(N), and processes downlink WPT dummy signals and DL communication signals as well as uplink UL.
  • a WPT dummy RF signal, a DL communication RF signal, and a UL communication RF signal, which are high-frequency transmission signals of communication signals, are amplified by a plurality of different amplifiers and multiplexed using a TDD (time division duplex) method.
  • TDD time division duplex
  • the RF signal processing units 1320(1) to 1320(N) each control the phase of the WPT dummy RF signal, the DL communication RF signal, and the UL communication RF signal to a predetermined phase, thereby controlling the antenna element 1101(1). -1101(N) to transmit and receive each signal by performing beamforming control.
  • FIG. 6 is a block diagram showing an example of the configuration of an RF signal processing unit 1320 constituting the antenna system 133 of FIG. 5. Note that since the multiple RF signal processing units 1320(1) to 1320(N) have similar configurations, FIG. 6 describes one RF signal processing unit 1320 with the identification number in parentheses omitted.
  • the RF signal processing unit 1320 includes a first phase shifter 1321W for controlling the phase of the WPT dummy RF signal transmitted from the antenna element 1101, and a first amplifier (power amplifier) for amplifying the WPT dummy RF signal. ) 1322W. Furthermore, the RF signal processing unit 1320 includes a second phase shifter 1321D for controlling the phase of the DL communication RF signal transmitted from the antenna element 1101, and a second amplifier (power amplifier) 1322D for amplifying the DL communication RF signal. , a third amplifier (low noise amplifier) 1322U that amplifies the UL communication RF signal received via the antenna element 1101, and a third phase shifter 1321U that controls the phase of the UL communication RF signal.
  • the RF signal processing unit 1320 includes a signal changeover switch 1323 as a multiplexing processing section that multiplexes the WPT dummy RF signal, the DL communication RF signal, and the UL communication RF signal using a time division duplex (TDD) method.
  • the signal changeover switch 1323 switches the connections between the signal processing paths of the WPT dummy RF signal, the DL communication RF signal, and the UL communication RF signal and the antenna element 1101 based on a predetermined control signal.
  • the control signal may be generated, for example, in the communication signal processing unit 120 based on predetermined baseband scheduling information.
  • FIG. 7 is an explanatory diagram showing an example of the frame structure of the WPT dummy signal, DL communication signal, and UL communication signal transmitted and received by the antenna system 133 of FIG. 5.
  • the periods marked “WPT”, “DL”, and “UL” in FIG. 7 are the periods during which a WPT dummy signal is transmitted, which is assigned to the frame 30 of wireless communication between the base station 10 and the terminal device 20. 32, a DL communication frame 31D for transmitting a DL communication signal, and a UL communication frame 31U for receiving a UL communication signal.
  • the hatched period in FIG. 7 is a guard period in which no signal is transmitted or received.
  • the signal changeover switch 1323 switches each of the WPT dummy RF signal, DL communication RF signal, and UL communication RF signal in synchronization with the WPT frame 32, DL communication frame 31D, and UL communication frame 31U.
  • the connection between the antenna element 1101 and three signal processing paths via the amplifiers 1322W, 1322D, and 1322U may be switched.
  • the WPT dummy RF signal output from the first amplifier (power amplifier) 1322W during the WPT frame 32 is supplied to the antenna element 1101.
  • the DL communication RF signal output from the second amplifier (power amplifier) 1322D during the period of the DL communication frame 31D is supplied to the antenna element 1101, and the UL communication RF signal output from the antenna element 1101 during the period of the UL communication frame 31U.
  • the communication RF signal is provided to a third amplifier (low noise amplifier) 1322U.
  • FIG. 8 is a block diagram showing another example of the configuration of the antenna system 133 applicable to the base station 10 according to the embodiment.
  • the antenna system 133 includes an array antenna 110 consisting of a plurality (N) of antenna elements 1101(1) to 1101(N), and an FDD (frequency division duplex) type RF connected to the array antenna 110.
  • a signal processing section 132 is provided.
  • the RF signal processing unit 132 includes a plurality of (N) radio signal processing units (RF signal processing units) corresponding one-to-one to the plurality (N) of antenna elements 1101(1) to 1101(N) of the array antenna 110. ) 1325(1) to 1325(N). Each of the plurality of RF signal processing units 1325(1) to 1325(N) is connected to a corresponding antenna element 1101(1) to 1101(N), and receives a WPT dummy RF signal, a DL communication RF signal, and a UL communication RF signal. It is amplified by a plurality of different amplifiers and multiplexed using FDD (frequency division duplexing).
  • FDD frequency division duplexing
  • the RF signal processing units 1325(1) to 1325(N) each control the phase of the WPT dummy RF signal, the DL communication RF signal, and the UL communication RF signal to a predetermined phase, thereby controlling the antenna element 1101(1). -1101(N) to transmit and receive each signal by performing beamforming control.
  • FIG. 9 is a block diagram showing an example of the configuration of the RF signal processing unit 1325 that constitutes the antenna system 133 in FIG. 8. Note that since the plurality of RF signal processing units 1325(1) to 1325(N) have similar configurations, one RF signal processing unit 1325 will be described in FIG. 9, with the identification number in parentheses omitted.
  • the RF signal processing unit 1325 includes a first phase shifter 1321W for controlling the phase of the WPT dummy RF signal transmitted from the antenna element 1101, and a first amplifier (power amplifier) for amplifying the WPT dummy RF signal. ) 1322W. Furthermore, the RF signal processing unit 1325 includes a second phase shifter 1321D for controlling the phase of the DL communication RF signal transmitted from the antenna element 1101, and a second amplifier (power amplifier) 1322D for amplifying the DL communication RF signal. , a third amplifier (low noise amplifier) 1322U that amplifies the UL communication RF signal received via the antenna element 1101, and a third phase shifter 1321U that controls the phase of the UL communication RF signal.
  • the RF signal processing unit 1325 also uses an antenna duplexer (DUP) as a multiplexing processing unit that multiplexes WPT dummy RF signals, DL communication RF signals, and UL communication RF signals using a frequency division duplexing (FDD) method. 1326.
  • DUP antenna duplexer
  • FDD frequency division duplexing
  • the antenna duplexer 1326 includes, for example, a transmission filter 1327W connected to the output terminal of the first amplifier (power amplifier) 1322W, a transmission filter 1327D connected to the output terminal of the second amplifier (power amplifier) 1322D, and a third transmission filter 1327W connected to the output terminal of the second amplifier (power amplifier) 1322D. It has a receiving filter 1327U connected to the input end of an amplifier (low noise amplifier) 1322U.
  • the transmission filter 1327W is a bandpass filter (BPF) whose passband is the frequency Fw of the WPT dummy RF signal and whose stopband is the frequency Fu of the UL communication RF signal.
  • BPF bandpass filter
  • the transmission filter 1327D is a bandpass filter (BPF) whose passband is the frequency Fd of the DL communication RF signal and whose stopband is the frequency Fu of the UL communication RF signal.
  • the reception filter 1327U is a bandpass filter (BPF) whose passband is the frequency Fu of the UL communication RF signal and whose stopband is the frequencies Fw and Fd of the WPT dummy RF signal and the DL communication RF signal.
  • Output ends of transmission filters 1327W, 1327D and input end of reception filter 1327U of antenna duplexer 1326 are connected to antenna element 1101 via a phase shifter.
  • the WPT dummy RF signal of frequency Fw output from the first amplifier (power amplifier) 1322W and the DL communication RF signal of frequency Fd output from the second amplifier (power amplifier) 1322D are combined and sent to the antenna.
  • the signal is supplied to element 1101.
  • the UL communication RF signal of frequency Fu output from antenna element 1101 is supplied to third amplifier (low noise amplifier) 1322U.
  • FIG. 10 is a block diagram illustrating an example of the configuration of an antenna system 133 with a separate antenna configuration applicable to the base station 10 according to the embodiment.
  • the array antenna 110 described above includes an array antenna for wireless power transmission (WPT) (hereinafter also referred to as "WPT array antenna”) 110W and an array antenna for communication (hereinafter also referred to as "communication array antenna”).
  • WPT array antenna an array antenna for wireless power transmission
  • communication array antenna hereinafter also referred to as "communication array antenna”
  • the antenna system 133 includes a WPT array antenna 110W including a plurality of (Nw) antenna elements 1101W(1) to 1101W(Nw), and an RF signal processing unit for wireless power transmission (WPT) connected to the WPT array antenna 110W.
  • 132W a communication array antenna 110C including a plurality of (Nc) antenna elements 1101C(1) to 1101C(Nc), and a communication RF signal processing unit 132C connected to the communication array antenna 110C.
  • the RF signal processing unit 132W for wireless power transmission has a plurality of (Nw) radio signals corresponding one-to-one to the plurality (Nw) of antenna elements 1101W(1) to 1101W(Nw) of the array antenna 110. It has a signal processing unit (hereinafter also referred to as "WPT dummy RF signal processing unit") 1320W (1) to 1320W (Nw). A plurality of WPT dummy RF signal processing units 1320W(1) to 1320(Nw) are connected to corresponding antenna elements 1101W(1) to 1101W(Nw), respectively.
  • the WPT dummy RF signal processing units 1320W(1) to 1320W(Nw) each control the phase of the WPT dummy RF signal to a predetermined phase, thereby transmitting the signal via the antenna elements 1101W(1) to 1101W(Nw).
  • a WPT dummy RF signal is transmitted by performing beamforming control.
  • the communication RF signal processing unit 132C includes a plurality of (Nc) radio signal processing units (Nc) corresponding one-to-one to the plurality (Nc) of antenna elements 1101C(1) to 1101C(Nc) of the communication array antenna 110C. (hereinafter also referred to as "communication RF signal processing unit") 1320C(1) to 1320C(Nc).
  • the plurality of communication RF signal processing units 1320C(1) to 1320C(Nc) are respectively connected to the corresponding antenna elements 1101C(1) to 1101C(Nc), and transmit downlink DL communication RF signals and UL communication RF signals to each other.
  • the signal is amplified by a plurality of different amplifiers and multiplexed using a TDD (time division duplex) method or an FDD (frequency division duplex) method. Furthermore, the communication RF signal processing units 1320C(1) to 1320C(Nc) control the phases of the DL communication RF signal and the UL communication RF signal to predetermined phases, thereby controlling the antenna elements 1101C(1) to 1101C(Nc), respectively. ) to perform beamforming control to transmit and receive each signal.
  • TDD time division duplex
  • FDD frequency division duplex
  • FIGS. 11A and 11B are block diagrams showing an example of the configuration of an RF signal processing unit 1320W for wireless power transmission (WPT) and an RF signal processing unit 1320C for communication, respectively, which constitute the antenna system 133 of FIG. 10.
  • WPT wireless power transmission
  • RF signal processing unit 1320C for communication, respectively, which constitute the antenna system 133 of FIG. 10.
  • the plurality of WPT dummy RF signal processing units 1320W and communication RF signal processing units 1320C each have the same configuration, so in FIGS. I will explain about it.
  • the WPT dummy RF signal processing unit 1320W includes a first phase shifter 1321W for controlling the phase of the WPT dummy RF signal transmitted from the antenna element 1101W of the WPT array antenna 110W, and a first phase shifter 1321W for amplifying the WPT dummy RF signal.
  • a first amplifier (power amplifier) 1322W is provided.
  • the communication RF signal processing unit 1320C includes a second phase shifter 1321D for controlling the phase of the DL communication RF signal transmitted from the antenna element 1101C, and a second amplifier (power amplifier) 1322D, a third amplifier (low noise amplifier) 1322U for amplifying the UL communication RF signal received via the antenna element 1101C, and a third phase shifter 1321U for controlling the phase of the UL communication RF signal. Equipped with.
  • the communication RF signal processing unit 1320C includes a signal changeover switch 1328 as a multiplexing processing unit that multiplexes the DL communication RF signal and the UL communication RF signal using a time division duplex (TDD) method.
  • the signal changeover switch 1328 switches the connection between the signal processing paths of the DL communication RF signal and the UL communication RF signal and the antenna element 1101C based on a predetermined control signal.
  • the control signal may be generated, for example, in the communication signal processing unit 120 based on predetermined baseband scheduling information.
  • FIG. 12 is a block diagram showing another example of the configuration of the communication RF signal processing unit 1320C that constitutes the antenna system 133 in FIG. 10.
  • the communication RF signal processing unit 1320C will be described with the identification numbers in parentheses omitted. Further, in FIG. 12, description of parts similar to the configuration of FIG. 9 described above will be omitted.
  • the communication RF signal processing unit 1320C includes a second phase shifter 1321D for controlling the phase of the DL communication RF signal transmitted from the antenna element 1101C, and a second amplifier (power amplifier) 1322D, a third amplifier (low noise amplifier) 1322U for amplifying the UL communication RF signal received via the antenna element 1101C, and a third phase shifter 1321U for controlling the phase of the UL communication RF signal. Equipped with
  • the communication RF signal processing unit 1320C includes an antenna duplexer (DUP) 1329 as a multiplexing processing unit that multiplexes the DL communication RF signal and the UL communication RF signal using a frequency division duplexing (FDD) method.
  • DUP antenna duplexer
  • the DL communication RF signal of frequency Fd output from the second amplifier (power amplifier) 1322D is supplied to the antenna element 1101C
  • the UL communication RF signal of frequency Fu output from the antenna element 1101C is supplied to the antenna element 1101C.
  • 3 amplifier (low noise amplifier) 1322U 3 amplifier (low noise amplifier) 1322U.
  • FIG. 13 is a block diagram showing an example of the configuration of the input/output signal processing unit 131 of the wireless processing device (wireless processing unit) 130 in the base station 10 according to the embodiment.
  • the input/output signal processing section 131 includes a signal separation section 1311, a first mixer 1312, a second mixer 1313, a third mixer 1314, and a local oscillator 1315.
  • the signal separation unit 1311 converts the downlink intermediate frequency signal (baseband signal) output from the communication signal processing unit 120 into an intermediate frequency signal of the WPT dummy signal (WPT-IT) and an intermediate frequency signal of the DL communication signal (DL -IF).
  • the first mixer 1312 mixes the intermediate frequency signal (WPT-IT) of the WPT dummy signal and the local oscillation signal (LO) of a predetermined frequency output from the local oscillator 1315 to generate a WPT dummy RF signal, and RF The signal is output to the signal processing section 132.
  • the second mixer 1313 mixes the intermediate frequency signal (DL-IF) of the DL communication signal and the local oscillation signal (LO) of a predetermined frequency output from the local oscillator 1315 to generate a DL communication RF signal, and RF The signal is output to the signal processing section 132.
  • the third mixer 1314 mixes the UL communication RF signal input from the RF signal processing unit 132 and the local oscillation signal (LO) of a predetermined frequency output from the local oscillator 1315 to generate an intermediate frequency signal (LO) of the UL communication signal.
  • UL-IF mixes the UL communication RF signal input from the RF signal processing unit 132 and the local oscillation signal (LO) of a predetermined frequency output from the local oscillator 1315 to generate an intermediate frequency signal (LO) of the UL communication signal.
  • UL-IF and outputs it to the communication signal processing section 120.
  • unused radio resources are effectively used as wireless power transfer blocks (WPT blocks), and from the base station 10 to the UE 20.
  • WPT wireless power transfer
  • the downlink WPT dummy signal and DL communication signal transmitted from the base station 10 and the uplink UL communication signal received at the base station 10 can be amplified by individual amplifiers suitable for each signal. .
  • FIG. 14 is an explanatory diagram showing an example of power supply to each UE by beamforming from a base station 10 to multiple UEs 20 according to this embodiment.
  • multiple UEs 20(1) to 20(3) are present in a WPT area 10A' (see FIG. 1 above) within a communication area 10A, and power may be supplied to each UE 20(1) to 20(3) via beams 10B(1) to 10B(3) formed for each UE.
  • Beams 10B(1) to 10B(3) may be formed by switching in a time division manner, for example.
  • the downlink WPT dummy signal and DL communication signal transmitted from the base station 10 and the uplink UL communication signal received at the base station 10 are individually It can be amplified with an amplifier.
  • the base station 10 uses a low output power with a high margin to prevent the generation of spurious signals for the communication signal.
  • power can be supplied to the terminal device 20 by using wireless resources that are not used for communication between the base station 10 and the terminal device 20.
  • the present invention can provide a power supply infrastructure capable of supplying power to a large number of terminal devices 20 that can receive radio waves transmitted from the base station 10, so that Goal 9 of the Sustainable Development Goals (SDGs) We can contribute to the achievement of "Let's create a foundation for industry and technological innovation.”
  • SDGs Sustainable Development Goals
  • processing steps and components of the system, wireless processing device, terminal device (UE, IoT device), base station, mobile station, relay device, and control device described in this specification can be implemented by various means. Can be done. For example, these steps and components may be implemented in hardware, firmware, software, or a combination thereof.
  • the processing unit or other means used may be one or more of an application specific integrated circuit (ASIC), a digital signal processor (DSP), a digital signal processor (DSPD), a programmable logic device (PLD), a field programmable a gate array (FPGA), processor, controller, microcontroller, microprocessor, electronic device, other electronic unit, computer, or combination thereof designed to perform the functions described herein; It may be implemented inside.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • DSPD digital signal processor
  • PLD programmable logic device
  • FPGA field programmable a gate array
  • the means used to implement the components described above may include programs (e.g., procedures, functions, modules, instructions) that perform the functions described herein. , etc.).
  • any computer/processor readable medium tangibly embodying firmware and/or software code such as a processing unit, may be used to implement the above steps and components described herein. It may be used for implementation.
  • the firmware and/or software code may be stored in memory and executed by a computer or processor, eg, in a controller.
  • the memory may be implemented within the computer or processor, or external to the processor.
  • the firmware and/or software code may also be stored in, for example, random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), programmable read-only memory (PROM), electrically erasable PROM (EEPROM), etc. ), flash memory, floppy disks, compact disks (CDs), digital versatile disks (DVDs), magnetic or optical data storage devices, etc. good.
  • RAM random access memory
  • ROM read-only memory
  • NVRAM non-volatile random access memory
  • PROM programmable read-only memory
  • EEPROM electrically erasable PROM
  • flash memory floppy disks
  • CDs compact disks
  • DVDs digital versatile disks
  • magnetic or optical data storage devices etc. good.
  • the code may be executed by one or more computers or processors and may cause the computers or processors to perform certain aspects of the functionality described herein.
  • the medium may be a non-temporary recording medium.
  • the code of the program may be read and executed by a computer, processor, or other device or apparatus, and its format is not limited to a specific format.
  • the code of the program may be a source code, an object code, or a binary code, or may be a mixture of two or more of these codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

Provided is a base station antenna system that can amplify downlink wireless power transmission dummy signals and communication signals, and uplink communication signals with individual amplifiers suitable for the respective signals. The antenna system comprises: an array antenna having a plurality of antenna elements; and a plurality of wireless signal processing units that are respectively connected to the plurality of antenna elements, amplify a plurality of high-frequency signals of downlink wireless power transmission dummy signals, downlink communication signals, and uplink communication signals by means of different amplifiers, and multiplex and transmit/receive the plurality of high-frequency signals via the antenna elements.

Description

通信及び無線電力伝送を行うシステム、基地局、無線処理装置及びアンテナシステムSystems, base stations, wireless processing equipment, and antenna systems for communication and wireless power transmission
 本発明は、通信及び無線電力伝送(WPT)を行うことができるシステム、基地局、無線処理装置及びアンテナシステムに関するものである。 The present invention relates to a system, a base station, a wireless processing device, and an antenna system that can perform communication and wireless power transfer (WPT).
 従来、無線フレームに設定された複数の無線リソースの少なくとも一部を用いて基地局と端末装置との間で通信を行う通信システムが知られている(例えば、特許文献1参照)。 Conventionally, a communication system is known that performs communication between a base station and a terminal device using at least part of a plurality of radio resources set in a radio frame (for example, see Patent Document 1).
国際公開第2017/164220号International Publication No. 2017/164220
 従来の通信システムにおいて基地局に接続して通信する端末装置として、内蔵電池から供給される電力を主に利用する携帯型の端末装置がある。この端末装置では、内蔵電池の残量が少なくなったときに内蔵電池を充電する煩雑な作業が必要である。また、内蔵電池ではなく有線接続の電源ラインから供給される電力を利用する端末装置は、そのような電源ラインを利用可能な場所での使用に制限される。このように基地局に接続して通信を行う様々な端末装置への給電をまかなうことができるような給電インフラが未整備である。 In conventional communication systems, as a terminal device that connects to a base station and communicates, there is a portable terminal device that mainly uses power supplied from a built-in battery. This terminal device requires a complicated task of charging the built-in battery when its remaining capacity is low. Further, terminal devices that use power supplied from a wired power line instead of a built-in battery are limited to use in locations where such a power line can be used. In this way, power supply infrastructure that can supply power to various terminal devices that connect to base stations and communicate is not yet developed.
 第5世代及びその後の次世代の移動通信システムでは、基地局に接続して通信する端末装置(例えば、ユーザ装置、IoTデバイス等)が急増してくるのが予想され、膨大なトラフィックを捌く通信インフラの整備が進められている。しかしながら、上記通信を行う膨大な数の端末装置への給電をまかなうことができる給電インフラは未整備のままである。 In the 5th generation and subsequent next generation mobile communication systems, it is expected that the number of terminal devices (e.g., user equipment, IoT devices, etc.) that connect to base stations and communicate will rapidly increase, and communication that will handle a huge amount of traffic will be necessary. Infrastructure development is progressing. However, the power supply infrastructure capable of supplying power to the huge number of terminal devices that perform the above communication remains underdeveloped.
 上記端末装置へ給電する給電インフラとして、移動通信の基地局を用いて無線電力伝送(WPT)を行うシステムが検討されている。かかるシステムの課題の一つとして、端末装置への下りリンクの無線電力伝送用ダミー信号及び通信信号と端末装置からの上りリンクの通信信号を各信号に適した個別の増幅器で増幅することがある。 A system that performs wireless power transmission (WPT) using a mobile communication base station is being considered as a power supply infrastructure that supplies power to the terminal device. One of the issues with such a system is that the downlink wireless power transmission dummy signal and communication signal to the terminal device and the uplink communication signal from the terminal device are amplified by individual amplifiers suitable for each signal. .
 本発明の一態様に係るアンテナシステムは、複数の無線リソースを選択的に用いて通信可能な基地局に備えるアンテナシステムである。個のアンテナシステムは、複数のアンテナ素子を有するアレーアンテナと、前記複数のアンテナ素子のそれぞれに接続され、下りリンクの無線電力伝送用のダミー信号、下りリンクの通信信号及び上りリンクの通信信号の複数の高周波信号を互いに異なる増幅器で増幅し、前記アンテナ素子を介して、前記複数の高周波信号を多重化して送受信する複数の無線信号処理ユニットと、を備える。 An antenna system according to one aspect of the present invention is an antenna system provided in a base station that can communicate by selectively using a plurality of radio resources. The antenna system includes an array antenna having a plurality of antenna elements, and a dummy signal for downlink wireless power transmission, a downlink communication signal, and an uplink communication signal connected to each of the plurality of antenna elements. A plurality of radio signal processing units that amplify a plurality of high frequency signals with different amplifiers and multiplex and transmit/receive the plurality of high frequency signals via the antenna element are provided.
 前記アンテナシステムにおいて、前記複数の無線信号処理ユニットはそれぞれ、前記アンテナ素子から送信される前記無線電力伝送用のダミー信号の位相を制御するための第1移相器と、前記無線電力伝送用のダミー信号を増幅する第1増幅器と、前記アンテナ素子から送信される前記下りリンクの通信信号の位相を制御するための第2移相器と、前記下りリンクの通信信号を増幅する第2増幅器と、前記アンテナ素子を介して受信された前記上りリンクの通信信号を増幅する第3増幅器と、前記上りリンクの通信信号の位相を制御するための第3位相器と、を備えてもよい。 In the antenna system, each of the plurality of wireless signal processing units includes a first phase shifter for controlling the phase of the dummy signal for wireless power transmission transmitted from the antenna element; a first amplifier that amplifies a dummy signal; a second phase shifter that controls the phase of the downlink communication signal transmitted from the antenna element; and a second amplifier that amplifies the downlink communication signal. , a third amplifier for amplifying the uplink communication signal received via the antenna element, and a third phase shifter for controlling the phase of the uplink communication signal.
 前記アンテナシステムにおいて、前記第1増幅器は、バイアス調整型の高効率増幅器又は波形処理型の高効率増幅器であってもよく、前記第2増幅器は、線形領域での効率改善を行う増幅器であってもよく、前記第3増幅器は、低ノイズ増幅器であってもよい。 In the antenna system, the first amplifier may be a bias adjustment type high efficiency amplifier or a waveform processing type high efficiency amplifier, and the second amplifier is an amplifier that improves efficiency in a linear region. Alternatively, the third amplifier may be a low noise amplifier.
 前記アンテナシステムにおいて、前記複数の無線信号処理ユニットはそれぞれ、前記無線電力伝送用のダミー信号、前記下りリンクの通信信号及び前記上りリンクの通信信号を時分割複信(TDD)方式で多重化する多重化処理部を備えてもよい。 In the antenna system, each of the plurality of radio signal processing units multiplexes the dummy signal for wireless power transmission, the downlink communication signal, and the uplink communication signal using a time division duplex (TDD) method. A multiplexing processing section may be included.
 前記アンテナシステムにおいて、前記無線電力伝送用のダミー信号に用いられる無線電力伝送用のフレーム、前記下りリンクの通信信号に用いられる下りリンク通信用のフレーム及び前記上りリンクの通信信号に用いられる上りリンク通信用のフレームが時分割されて通信フレームに割り当てられ、前記多重化処理部は、前記無線電力伝送用のフレーム、前記下りリンク通信用のフレーム及び前記上りリンク通信用のフレームに同期させて、前記無線電力伝送用のダミー信号、前記下りリンクの通信信号及び前記上りリンクの通信信号のそれぞれの信号処理経路と前記アンテナ素子との接続を切り替えてもよい。 In the antenna system, a frame for wireless power transmission used for the dummy signal for wireless power transmission, a frame for downlink communication used for the downlink communication signal, and an uplink used for the uplink communication signal. A frame for communication is time-divided and allocated to a communication frame, and the multiplexing processing unit synchronizes with the frame for wireless power transmission, the frame for downlink communication, and the frame for uplink communication, Connections between signal processing paths of the dummy signal for wireless power transmission, the downlink communication signal, and the uplink communication signal and the antenna element may be switched.
 前記アンテナシステムにおいて、前記複数の無線信号処理ユニットはそれぞれ、前記無線電力伝送用のダミー信号、前記下りリンクの通信信号及び前記上りリンクの通信信号を周波数分割複信(FDD)方式で多重化する多重化処理部を備えてもよい。 In the antenna system, each of the plurality of wireless signal processing units multiplexes the dummy signal for wireless power transmission, the downlink communication signal, and the uplink communication signal using a frequency division duplexing (FDD) method. A multiplexing processing section may be included.
 前記アンテナシステムにおいて、前記アレーアンテナは、前記無線電力伝送用のダミー信号の送信に用いられる無線電力伝送用のアレーアンテナと、前記下りリンクの通信信号の送信及び前記上りリンクの通信信号の受信に用いられる通信用のアレーアンテナと、を有し、前記複数の無線信号処理ユニットは、前記無線電力伝送用のアレーアンテナの複数のアンテナ素子のそれぞれに接続され、前記無線電力伝送用のダミー信号の高周波信号を無線電力伝送用の増幅器で増幅し、前記アンテナ素子を介して送信する複数の無線電力伝送用の無線信号処理ユニットと、前記通信用のアレーアンテナの複数のアンテナ素子のそれぞれに接続され、前記下りリンクの通信信号及び前記上りリンクの通信信号の複数の高周波信号を互いに異なる増幅器で増幅し、前記アンテナ素子を介して前記複数の高周波信号を多重化して送受信する複数の通信用の無線信号処理ユニットと、を有してもよい。 In the antenna system, the array antenna may include a wireless power transmission array antenna used to transmit the wireless power transmission dummy signal, and a communication array antenna used to transmit the downlink communication signal and receive the uplink communication signal, and the wireless signal processing units may include a plurality of wireless power transmission wireless signal processing units connected to each of the antenna elements of the wireless power transmission array antenna, amplifying the high-frequency signal of the wireless power transmission dummy signal with a wireless power transmission amplifier and transmitting it via the antenna element, and a plurality of communication wireless signal processing units connected to each of the antenna elements of the communication array antenna, amplifying the high-frequency signals of the downlink communication signal and the uplink communication signal with different amplifiers, and multiplexing and transmitting the high-frequency signals via the antenna elements.
 本発明の他の態様に係る無線処理装置は、前記いずれかのアンテナシステムと、前記アンテナシステムに接続された入出力信号処理部と、を備える。前記入出力信号処理部は、前記無線電力伝送用のダミー信号及び前記下りリンクの通信信号を含む下りリンク中間周波信号を、前記無線電力伝送用のダミー信号の中間周波信号と前記下りリンクの通信信号の中間周波信号とに分離する信号分離部と、前記無線電力伝送用のダミー信号の中間周波信号と所定周波数の局部発振信号とを混合して前記無線電力伝送用のダミー信号の高周波信号を生成する第1混合器と、前記下りリンクの通信信号の中間周波信号と前記局部発振信号とを混合して前記下りリンクの通信信号の高周波信号を生成する第2混合器と、前記上りリンクの通信信号の高周波信号と前記局部発振信号とを混合して前記上りリンクの通信信号の中間周波信号を生成する第3混合器と、を有する。 A wireless processing device according to another aspect of the present invention includes any of the antenna systems described above and an input/output signal processing unit connected to the antenna system. The input/output signal processing unit converts a downlink intermediate frequency signal including the dummy signal for wireless power transmission and the downlink communication signal into an intermediate frequency signal of the dummy signal for wireless power transmission and the downlink communication. a signal separation unit that separates the signal into an intermediate frequency signal; and a signal separation unit that mixes the intermediate frequency signal of the dummy signal for wireless power transmission and a local oscillation signal of a predetermined frequency to generate a high frequency signal of the dummy signal for wireless power transmission. a first mixer that generates a high frequency signal of the downlink communication signal; a second mixer that mixes the intermediate frequency signal of the downlink communication signal and the local oscillation signal to generate a high frequency signal of the downlink communication signal; and a third mixer that mixes the high frequency signal of the communication signal and the local oscillation signal to generate the intermediate frequency signal of the uplink communication signal.
 本発明の更に他の態様に係る基地局は、移動通信システムの基地局である。この基地局は、前記無線処理装置と、前記無線電力伝送用のダミー信号及び前記下りリンクの通信信号を含む下りリンク中間周波信号を生成し、前記上りリンクの通信信号を含む上りリンク中間周波信号を処理する通信信号処理部と、を備える。 A base station according to still another aspect of the present invention is a base station of a mobile communication system. This base station generates a downlink intermediate frequency signal including the dummy signal for wireless power transmission and the downlink communication signal with the radio processing device, and generates an uplink intermediate frequency signal including the uplink communication signal. and a communication signal processing unit that processes.
 前記基地局において、前記無線処理装置を有する遠隔無線ヘッド装置と、前記遠隔無線ヘッド装置から離れた位置に配置され、有線の通信回線を介して前記遠隔無線ヘッド装置に接続された、前記通信信号処理部を有するベースバンドユニット装置と、を備えてもよい。 In the base station, a remote wireless head device having the wireless processing device; and a communication signal located at a position remote from the remote wireless head device and connected to the remote wireless head device via a wired communication line. The baseband unit device may include a baseband unit device having a processing section.
 本発明の更に他の態様に係るシステムは、前記基地局から端末装置に無線電力伝送を行うシステムである。前記端末装置は、前記基地局から送信された前記無線電力伝送用のダミー信号を含む送信信号を受信する無線処理部と、前記無線電力伝送用のダミー信号を含む送信信号を受信した受信信号の電力を、受電電力として出力する電力出力部と、を有する。 A system according to yet another aspect of the present invention is a system that performs wireless power transmission from the base station to a terminal device. The terminal device includes a wireless processing unit that receives a transmission signal including the dummy signal for wireless power transmission transmitted from the base station, and a reception signal that receives the transmission signal including the dummy signal for wireless power transmission. It has a power output unit that outputs power as received power.
 本発明によれば、下りリンクの無線電力伝送用ダミー信号及び通信信号と上りリンクの通信信号を各信号に適した個別の増幅器で増幅することができる。 According to the present invention, it is possible to amplify downlink wireless power transmission dummy signals and communication signals and uplink communication signals with individual amplifiers suitable for each signal.
図1は、実施形態に係るシステムの全体構成の一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of the overall configuration of a system according to an embodiment. 図2は、実施形態に係るシステムを構成する基地局及び端末装置の構成の一例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of the configuration of a base station and a terminal device that constitute the system according to the embodiment. 図3Aは、実施形態に係る基地局から送信される通信信号のQAM方式の一次変調におけるシンボル点の配置の一例を示す説明図である。FIG. 3A is an explanatory diagram illustrating an example of arrangement of symbol points in QAM primary modulation of a communication signal transmitted from a base station according to the embodiment. 図3Bは、同基地局から送信されるWPTダミー信号の変調におけるシンボル点の配置の一例を示す説明図である。FIG. 3B is an explanatory diagram showing an example of an arrangement of symbol points in the modulation of a WPT dummy signal transmitted from the base station. 本実施形態に係る基地局の増幅器の入出力電力特性及び効率特性の一例を示すグラフである。5 is a graph showing an example of input/output power characteristics and efficiency characteristics of an amplifier of a base station according to the present embodiment. 実施形態に係る基地局に適用可能なアンテナシステムの構成の一例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of the configuration of an antenna system applicable to a base station according to an embodiment. 図5のアンテナシステムを構成する無線信号処理ユニットの構成の一例を示すブロック図である。6 is a block diagram showing an example of the configuration of a radio signal processing unit that constitutes the antenna system of FIG. 5 . 図5のアンテナシステムで送受信される信号のフレーム構成の一例を示す説明図である。6 is an explanatory diagram showing an example of a frame structure of a signal transmitted and received by the antenna system of FIG. 5. FIG. 実施形態に係る基地局に適用可能なアンテナシステムの構成の他の例を示すブロック図である。FIG. 3 is a block diagram showing another example of the configuration of an antenna system applicable to the base station according to the embodiment. 図8のアンテナシステムを構成する無線信号処理ユニットの構成の一例を示すブロック図である。9 is a block diagram illustrating an example of the configuration of a radio signal processing unit that constitutes the antenna system of FIG. 8. FIG. 実施形態に係る基地局に適用可能なセパレートアンテナ構成のアンテナシステムの構成の一例を示すブロック図である。1 is a block diagram illustrating an example of the configuration of an antenna system with a separate antenna configuration applicable to a base station according to an embodiment. FIG. 図11Aは、図10のアンテナシステムを構成する無線電力伝送(WPT)用の無線信号処理ユニット及び通信用の無線信号処理ユニットの構成の一例を示すブロック図である。FIG. 11A is a block diagram illustrating an example of a configuration of a wireless signal processing unit for wireless power transmission (WPT) and a wireless signal processing unit for communication that configure the antenna system of FIG. 10. 図11Bは、図10のアンテナシステムを構成する無線電力伝送(WPT)用の無線信号処理ユニット及び通信用の無線信号処理ユニットの構成の一例を示すブロック図である。FIG. 11B is a block diagram illustrating an example of the configuration of a wireless signal processing unit for wireless power transmission (WPT) and a wireless signal processing unit for communication that configure the antenna system of FIG. 10. 図10のアンテナシステムを構成する通信用の無線信号処理ユニットの構成の他の例を示すブロック図である。11 is a block diagram illustrating another example of the configuration of a wireless signal processing unit for communication that constitutes the antenna system of FIG. 10. FIG. 実施形態に係る基地局における無線処理装置の入出力信号処理部の構成の一例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of a configuration of an input/output signal processing unit of a wireless processing device in a base station according to an embodiment. 実施形態に係る基地局から複数の端末装置へのビームフォーミングによる端末装置毎の給電の一例を示す説明図である。1 is an explanatory diagram showing an example of power supply to each of a plurality of terminal devices by beamforming from a base station according to an embodiment; FIG.
 以下、図面を参照して本発明の実施形態について説明する。
 本書に記載された実施形態に係るシステムは、移動通信の基地局から給電対象の端末装置(例えば、移動通信のUE(移動局)やIoTデバイス)に対して無線電力伝送(WPT)することができるシステムである。実施形態のシステムは、例えば、UEなどの端末装置への下りリンクの無線フレームに設定された複数の無線リソース(リソースブロック)のうち通信に使用されていない通信未使用の無線リソース(リソースブロック)を端末装置への無線電力伝送(WPT)に有効活用したシステムである。実施形態のシステムは、基地局から端末装置への無線電力伝送(WPT)機能を有する、基地局と端末装置との間の無線通信システムであってもよい。また、実施形態のシステムは、基地局と端末装置との間の無線通信機能を有する、基地局から端末装置への無線電力伝送(WPT)システムであってもよい。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The system according to the embodiment described in this specification is a system capable of wireless power transmission (WPT) from a mobile communication base station to a terminal device (e.g., a mobile communication UE (mobile station) or an IoT device) to be powered. The system according to the embodiment is a system that effectively utilizes unused wireless resources (resource blocks) that are not used for communication among a plurality of wireless resources (resource blocks) set in a downlink wireless frame to a terminal device such as a UE, for wireless power transmission (WPT) to the terminal device. The system according to the embodiment may be a wireless communication system between a base station and a terminal device having a wireless power transmission (WPT) function from the base station to the terminal device. The system according to the embodiment may also be a wireless power transmission (WPT) system from a base station to a terminal device having a wireless communication function between the base station and the terminal device.
 特に、本実施形態のシステムでは、基地局から送信される下りリンクの無線電力伝送用ダミー信号及び通信信号と基地局で受信された上りリンクの通信信号をそれぞれ、各信号に適した個別の増幅器で増幅することができる。 In particular, in the system of this embodiment, the downlink wireless power transmission dummy signal and communication signal transmitted from the base station and the uplink communication signal received at the base station are each transmitted through individual amplifiers suitable for each signal. can be amplified.
 図1は、本実施形態に係るシステムの概略構成の一例を示す説明図である。本実施形態のシステムは、通信エリア(セル)10Aを形成するセルラー方式の基地局10と、通信エリア10Aに在圏しているときに基地局10に接続して基地局10と無線通信可能な給電対象の端末装置(以下「UE」(ユーザ装置)ともいう。)20と、を有する。 FIG. 1 is an explanatory diagram showing an example of a schematic configuration of a system according to the present embodiment. The system of the present embodiment includes a cellular base station 10 that forms a communication area (cell) 10A, and is capable of wirelessly communicating with the base station 10 by connecting to the base station 10 when located in the communication area 10A. It has a terminal device (hereinafter also referred to as "UE" (user equipment)) 20 to which power is supplied.
 UE20は、移動通信システムの移動局でもよいし、通信装置(例えば移動通信モジュール)と各種デバイスとを組み合わせたものであってもよい。UE20は、例えば複数のアンテナ素子を有するアレーアンテナを備える。UE20はIoTデバイス(「IoT機器」ともいう。)であってもよい。 The UE 20 may be a mobile station of a mobile communication system, or may be a combination of a communication device (for example, a mobile communication module) and various devices. The UE 20 includes, for example, an array antenna having a plurality of antenna elements. The UE 20 may be an IoT device (also referred to as "IoT equipment").
 図1において、基地局10は、多数のアンテナ素子を有する複数のアレーアンテナ110を備え、複数のUE20との間でmassive MIMO(以下「mMIMO」ともいう。)伝送方式の通信を行うことができる。mMIMOは、アレーアンテナ110を用いてデータ送受信を行うことにより大容量・高速通信を実現する無線伝送技術である。また、複数のUE20のそれぞれに対して時分割で又は同時にビーム10Bを形成するビームフォーミングを行うMU(Multi User)-MIMO伝送方式で通信を行うことができる。多素子のアレーアンテナを用いてMU-MIMO伝送を行うことにより、各UE20の通信環境に応じてUE20ごとに適切なビームを向けて通信できるため、セル全体の通信品質を改善できる。また、同一の無線リソース(時間・周波数リソース)を用いて複数のUE20との通信ができるため、システム容量を拡大することができる。 In FIG. 1, a base station 10 is equipped with a plurality of array antennas 110 having a large number of antenna elements, and can perform communication using a massive MIMO (hereinafter also referred to as "mMIMO") transmission method with a plurality of UEs 20. . mMIMO is a wireless transmission technology that achieves high-capacity, high-speed communication by transmitting and receiving data using the array antenna 110. Furthermore, communication can be performed using an MU (Multi User)-MIMO transmission method that performs beamforming to form beams 10B in time division or simultaneously for each of the plurality of UEs 20. By performing MU-MIMO transmission using a multi-element array antenna, it is possible to direct and communicate an appropriate beam to each UE 20 according to the communication environment of each UE 20, thereby improving the communication quality of the entire cell. Moreover, since communication with a plurality of UEs 20 can be performed using the same radio resource (time/frequency resource), system capacity can be expanded.
 また、図1において、通信エリア10A内の一部は、基地局10から端末装置20に向けて無線電力伝送を行う無線電力伝送エリア(以下「WPTエリア」という。)10A'になっている。WPTエリア10A'は図示のように通信エリア10Aよりも狭いエリアでもよいし、通信エリア10Aと同じ又はほぼ同じサイズ及び位置のエリアであってもよい。 Further, in FIG. 1, a part of the communication area 10A is a wireless power transmission area (hereinafter referred to as "WPT area") 10A' where wireless power transmission is performed from the base station 10 to the terminal device 20. The WPT area 10A' may be a smaller area than the communication area 10A as shown in the figure, or may be an area having the same or approximately the same size and position as the communication area 10A.
 WPTエリア10A'では、基地局10からの下りリンクの無線フレームを構成する複数の無線リソース(時間・周波数リソース)であるリソースブロックのうち通信に用いられていない通信未使用の無線リソース(リソースブロック)を無線電力伝送ブロックとして活用している。基地局10は、UE20への下りリンクの無線フレームにおいて、通信未使用の無線リソースである無線電力伝送ブロック(WPTブロック)に無線電力伝送用のダミー信号(以下「WPTダミー信号」ともいう。)を割り当てた送信信号を生成してUE20に送信する。 In the WPT area 10A', unused radio resources (resource blocks) that are not used for communication among resource blocks that are a plurality of radio resources (time/frequency resources) constituting a downlink radio frame from the base station 10 are ) is used as a wireless power transmission block. In the downlink radio frame to the UE 20, the base station 10 transmits a dummy signal for wireless power transmission (hereinafter also referred to as "WPT dummy signal") to a wireless power transmission block (WPT block), which is a wireless resource that is not used for communication. A transmission signal is generated and transmitted to the UE 20.
 特に、第5世代又はそれ以降の世代の移動通信システムにおいては、無線フレームの一部のサブキャリアのみに必要最小限の参照信号(RS)や制御信号を配置するリーンキャリアという技術が提案されており、無線フレームにおける通信未使用の無線リソースの部分を有効活用してUE20への無線電力伝送を行うことが期待される。 In particular, in 5th generation or later generation mobile communication systems, a technology called lean carrier has been proposed in which the minimum necessary reference signals (RS) and control signals are placed only on some subcarriers of a radio frame. Therefore, it is expected that wireless power transmission to the UE 20 will be performed by effectively utilizing the unused radio resources in the radio frame.
 基地局10とUE20との間で送受信される通信の信号の電波及び基地局10からUE20に送信されるWPTダミー信号を割り当てた送信信号の電波は、例えば、ミリ波又はマイクロ波である。 The radio waves of communication signals transmitted and received between the base station 10 and the UE 20 and the radio waves of the transmission signal to which the WPT dummy signal is assigned are transmitted from the base station 10 to the UE 20, for example, are millimeter waves or microwaves.
 図2は、実施形態に係るシステムを構成する基地局10及び端末装置(UE)20の主要構成の一例を示すブロック図である。基地局10は、アンテナ110と通信信号処理部120と無線処理装置(無線処理部)130とを備える。 FIG. 2 is a block diagram illustrating an example of the main configurations of the base station 10 and the terminal equipment (UE) 20 that constitute the system according to the embodiment. The base station 10 includes an antenna 110, a communication signal processing unit 120, and a wireless processing device (wireless processing unit) 130.
 なお、図2の基地局10において、無線処理装置130を有する遠隔無線ヘッド装置(RRH)と、通信信号処理部120を有するベースバンドユニット(BBU)装置と、を備えてもよい。ベースバンドユニット(BBU)装置は、遠隔無線ヘッド装置(RRH)から離れた位置に配置され、有線の通信回線(例えば光ファイバーからなる光回線)を介して遠隔無線ヘッド装置に接続される。 Note that the base station 10 in FIG. 2 may include a remote radio head device (RRH) having a radio processing device 130 and a baseband unit (BBU) device having a communication signal processing section 120. The baseband unit (BBU) device is located at a remote location from the remote radio head device (RRH) and is connected to the remote radio head device via a wired communication line (for example, an optical line made of optical fiber).
 アンテナ110は、例えば、図1に示すように多数のアンテナ素子を有するアレーアンテナである。アンテナ110は単数でもよいし複数であってもよい。例えば、アンテナ110は複数のセクタセルに対応させて複数配置してもよい。 The antenna 110 is, for example, an array antenna having a large number of antenna elements as shown in FIG. The antenna 110 may be singular or plural. For example, a plurality of antennas 110 may be arranged corresponding to a plurality of sector cells.
 通信信号処理部120は、UE20との間で送受信される各種のユーザデータや制御情報等の信号を処理する。 The communication signal processing unit 120 processes signals such as various user data and control information transmitted and received with the UE 20.
 通信信号処理部120は、UE20に対する下りリンクの通信の際に、複数の無線リソースのうち通信に使用されていない通信未使用の無線リソースを用いたWPTダミー信号を含む下りリンクの送信信号を生成する。例えば、WPTダミー信号は、通信信号よりもPAPR(ピーク電力対平均電力比)(「波高比」ともいう。)が小さい変調方式で変調して生成することができる。例えば、WPTダミー信号は、Zadoff-Chu系列の符号を用いて変調され、時間に対して振幅が一定で位相が変化する変調信号であってもよく、また、デジタル変調方式の複数のシンボル点のうち振幅が最大又は最大近傍の複数のシンボル点で変調された信号であってもよい。また例えば、送信信号の生成は、通信信号用のQAM(直交振幅変調)やWPTダミー信号用のPAPRが小さい変調等の一次変調、並びに、OFDM(直交周波数多重)変調等の二次変調を含んでもよい。 During downlink communication to the UE 20, the communication signal processing unit 120 generates a downlink transmission signal including a WPT dummy signal using an unused radio resource that is not used for communication among a plurality of radio resources. do. For example, the WPT dummy signal can be generated by modulating with a modulation method that has a smaller PAPR (peak power to average power ratio) (also referred to as "wave height ratio") than the communication signal. For example, the WPT dummy signal may be a modulated signal that is modulated using a Zadoff-Chu sequence code and has a constant amplitude and a phase that changes over time. The signal may be a signal modulated at a plurality of symbol points having the maximum amplitude or near the maximum amplitude. For example, the generation of the transmission signal includes primary modulation such as QAM (quadrature amplitude modulation) for communication signals and modulation with small PAPR for WPT dummy signals, and secondary modulation such as OFDM (orthogonal frequency division multiplexing) modulation. But that's fine.
 無線処理装置130は、通信信号処理部120で生成した送信信号をアンテナ110からUE20に送信したり、UE20からアンテナ110を介して受信した受信信号を通信信号処理部120に出力したりする。 The radio processing device 130 transmits the transmission signal generated by the communication signal processing unit 120 from the antenna 110 to the UE 20, and outputs the reception signal received from the UE 20 via the antenna 110 to the communication signal processing unit 120.
 UE20に対する下りリンク通信の送信信号に通信未使用の無線リソースを用いたWPTダミー信号を含める処理や、後述の信号の分離や信号の合成等に用いる制御信号(トリガー信号)の生成は、移動通信の無線フレームを構成するサブフレームに基づいて行ってもよい。 The process of including a WPT dummy signal using unused wireless resources in the downlink communication transmission signal to the UE 20, and the generation of control signals (trigger signals) used for signal separation and signal synthesis, etc. described later, are performed by mobile communication. This may be done based on subframes that constitute the radio frame.
 また、UE20に対する下りリンク通信の送信信号に、通信未使用の無線リソースを用いたWPTダミー信号を含める処理は、基地局10が自律的に行ってもよいし、UE20からの要求若しくは指示又は外部プラットフォーム(例えば、サーバ、クラウドシステム)からの要求若しくは指示に基づいて行ってもよい。 Furthermore, the process of including a WPT dummy signal using unused radio resources in a transmission signal for downlink communication to UE 20 may be performed autonomously by base station 10, or may be performed based on a request or instruction from UE 20 or a request or instruction from an external platform (e.g., a server, a cloud system).
 また、本実施形態において、無線処理装置130は、BF制御信号に基づいてアレーアンテナ110で形成される一又は複数のビームを制御する。また、無線処理装置130は、通信信号処理部120で生成されたWPTダミー信号を含む下りリンクの送信信号を、アンテナ110を介してUE20に送信する。 Furthermore, in this embodiment, the wireless processing device 130 controls one or more beams formed by the array antenna 110 based on the BF control signal. Furthermore, the radio processing device 130 transmits a downlink transmission signal including the WPT dummy signal generated by the communication signal processing unit 120 to the UE 20 via the antenna 110.
 基地局10は、UE20に対する下りリンクの通信の際に、UE20毎に又は複数のUE20が属するターゲットエリアのUEグループ毎に、個別のビーム10Bを形成するビームフォーミング(BF)制御を行い、UE20毎に又はUEグループ毎に無線電力伝送を行ってもよい。UE20毎又はUEグループ毎のBF制御は、通信信号処理部120における周波数領域のデジタルBF制御で行ってもよいし、無線処理装置130におけるアナログBF制御で行ってもよい。 During downlink communication to the UE 20, the base station 10 performs beamforming (BF) control to form individual beams 10B for each UE 20 or for each UE group in the target area to which a plurality of UEs 20 belong. Wireless power transfer may be performed separately or for each UE group. BF control for each UE 20 or for each UE group may be performed by digital BF control in the frequency domain in the communication signal processing unit 120, or by analog BF control in the radio processing device 130.
 図2において、無線処理装置130は、入出力信号処理部131と、無線信号処理部(以下、「RF信号処理部」ともいう。)132及びアンテナ110を有するアンテナシステム133と、を備える。 In FIG. 2, the radio processing device 130 includes an input/output signal processing section 131, a radio signal processing section (hereinafter also referred to as "RF signal processing section") 132, and an antenna system 133 having an antenna 110.
 図2において、UE20は、アンテナ210と無線処理部220と通信信号処理部230と電力出力部240と電池250とを含む。アンテナ210は、例えば複数のアンテナ素子を有する小型のアレーアンテナである。無線処理部220は、通信信号処理部230で生成したフィードバック情報やユーザデータ等の送信信号をアンテナ210から基地局10に送信したり、基地局10からアンテナ210を介して受信した受信信号を通信信号処理部230に出力したりする。 In FIG. 2, the UE 20 includes an antenna 210, a wireless processing section 220, a communication signal processing section 230, a power output section 240, and a battery 250. Antenna 210 is, for example, a small array antenna having a plurality of antenna elements. The wireless processing unit 220 transmits transmission signals such as feedback information and user data generated by the communication signal processing unit 230 from the antenna 210 to the base station 10, and transmits received signals received from the base station 10 via the antenna 210 to communication. It is also output to the signal processing section 230.
 本実施形態において、無線処理部220は、基地局10から送信されたWPTダミー信号を含む送信信号を受信する。また、電力出力部240は、例えば整流器を有し、基地局10からのWPTダミー信号を含む送信信号を受信した受信信号の電力を、電池充電用の受電電力として出力する。電力出力部240から出力された受電電力により、電池250を充電することができる。 In this embodiment, the wireless processing unit 220 receives a transmission signal including a WPT dummy signal transmitted from the base station 10. Further, the power output unit 240 includes, for example, a rectifier, and outputs the power of the received signal that has received the transmission signal including the WPT dummy signal from the base station 10 as the received power for battery charging. The battery 250 can be charged by the received power output from the power output unit 240.
 図3Aは、本実施形態に係る基地局10から送信される通信信号のQAM方式の一次変調におけるシンボル点41の配置の一例を示す説明図である。図3Aは、64QAM方式の場合の複数のシンボル点(64値のシンボル点)の配置を示すコンスタレーションの図である。また、図3Bは、本実施形態に係る基地局10から送信されるWPTダミー信号の変調におけるシンボル点の配置の一例を示す説明図である。図3A及び図3Bにおいて、横軸は同相チャネル成分を示し,縦軸は直交チャネル成分を示している。 FIG. 3A is an explanatory diagram showing an example of the arrangement of symbol points 41 in QAM primary modulation of a communication signal transmitted from the base station 10 according to the present embodiment. FIG. 3A is a diagram of a constellation showing the arrangement of a plurality of symbol points (64-value symbol points) in the case of the 64QAM method. Further, FIG. 3B is an explanatory diagram showing an example of arrangement of symbol points in modulation of the WPT dummy signal transmitted from the base station 10 according to the present embodiment. In FIGS. 3A and 3B, the horizontal axis shows in-phase channel components, and the vertical axis shows orthogonal channel components.
 本実施形態では、WPTダミー信号として、PAPR(ピーク電力対平均電力比)が通信信号よりも低いOFDM変調信号を用いる。例えば、図3Aにおいて、通信信号用のQAM方式の複数のシンボル点41のうち、振幅が最大である最外周又は最外周周辺の複数のシンボル点41Sのみで変調されたOFDM変調信号からなるWPTダミー信号を用いてもよい。 In this embodiment, an OFDM modulated signal with a lower PAPR (peak-to-average power ratio) than the communication signal is used as the WPT dummy signal. For example, in FIG. 3A, a WPT dummy signal may be used that is an OFDM modulated signal modulated only by the outermost or surrounding symbol points 41S with the largest amplitude among the multiple symbol points 41 of the QAM method for the communication signal.
 また、図3Bのコンスタレーション図に示すように、時間に対して振幅が一定の条件で位相が変化するシンボル点42で変調されたOFDM変調信号からなるWPTダミー信号を用いてもよい。図3Bのシンボル点42でOFDM変調信号は、例えばZadoff-Chu系列の符号を用いて生成することができる。 Furthermore, as shown in the constellation diagram of FIG. 3B, a WPT dummy signal may be used that is composed of an OFDM modulated signal modulated at symbol points 42 whose phase changes with the amplitude constant over time. The OFDM modulated signal at symbol point 42 in FIG. 3B can be generated using, for example, a Zadoff-Chu sequence code.
 図4は、本実施形態に係る基地局10の増幅器の入力電力Pin[dBm]に対する出力電力Pout[dBm]及びアンプ効率PAE[%]の特性の一例を示すグラフである。図中の曲線Aは、増幅器の交流の入力電力Pin[dBm]に対する交流の出力電力Pout[dBm]を示す入出力特性のシミュレーション計算結果である。また、図中の破線の曲線B,C,Dはそれぞれ、上りリンク(UL)通信信号、下りリンク(DL)通信信号及びWPTダミー信号に適した増幅器の入力電力Pin[dBm]に対する効率の指標値の一つであるPAE(電力付加効率)[%]のシミュレーション計算結果である。ここで、増幅器のPAE[%]は、(Pout-Pin)/Pdcで定義される。Pdcは増幅器に入力(印加)される直流電力である。 FIG. 4 is a graph showing an example of the characteristics of the output power Pout [dBm] and the amplifier efficiency PAE [%] with respect to the input power Pin [dBm] of the amplifier of the base station 10 according to the present embodiment. Curve A in the figure is a simulation calculation result of input/output characteristics indicating AC output power Pout [dBm] with respect to AC input power Pin [dBm] of the amplifier. In addition, the broken line curves B, C, and D in the figure are indicators of efficiency with respect to the input power Pin [dBm] of the amplifier suitable for uplink (UL) communication signals, downlink (DL) communication signals, and WPT dummy signals, respectively. This is a simulation calculation result of PAE (power added efficiency) [%], which is one of the values. Here, the PAE [%] of the amplifier is defined as (Pout-Pin)/Pdc. Pdc is DC power input (applied) to the amplifier.
 図4の入出力特性Aにおいて、入力電力Pinと出力電力Poutとの関係が線形又はほぼ線形の関係にある領域は、UL通信信号の低ノイズ増幅及びDL通信信号の電力増幅に適する。特に、UL通信信号の増幅に適する増幅器の特性としては、例えば、高PAPR(ピーク電力対平均電力比)、高リニアリティ、広ダナミックレンジ及び低ノイズが要求される。また、DL通信信号の増幅に適する電力増幅器の特性としては、例えば、高PAPR、高リニアリティ及び広ダナミックレンジが要求される。この電力増幅器としては、例えば、ドハティ増幅器、エンベロープトラッキング増幅器、アウトフェージング増幅器などの線形領域での効率改善を行う増幅器が挙げられる。
である。
In the input/output characteristic A of FIG. 4, a region where the relationship between input power Pin and output power Pout is linear or nearly linear is suitable for low-noise amplification of UL communication signals and power amplification of DL communication signals. In particular, characteristics of an amplifier suitable for amplifying UL communication signals include, for example, high PAPR (peak power to average power ratio), high linearity, wide dynamic range, and low noise. Furthermore, characteristics of a power amplifier suitable for amplifying DL communication signals include, for example, high PAPR, high linearity, and wide dynamic range. Examples of this power amplifier include amplifiers that improve efficiency in a linear region, such as a Doherty amplifier, an envelope tracking amplifier, and an outphasing amplifier.
It is.
 また、図4の入出力特性Aの飽和領域は、入力電力Pinの増加に対して出力電力Poutが飽和又はほぼ飽和している領域である。線形領域と飽和領域の境界の近傍の領域に、電力増幅器の効率PAEのピークが位置し、この領域は、WPTダミー信号の高出力及び高効率の電力増幅に適する。WPTダミー信号の増幅に適する電力増幅器の特性としては、例えば、高効率、低PAPR及び大出力電力が要求される。この電力増幅器としては、例えば、A級増幅器、B級増幅器、C級増幅器、AB級増幅器などのバイアス調整型の高効率増幅器、又は、E級増幅器、F級増幅器、J級増幅器などの波形処理型の高効率増幅器が挙げられる。WPTダミー信号として、PAPR(ピーク電力対平均電力比)が通信信号よりも低いOFDM変調信号を用いてもよい。 Further, the saturation region of the input/output characteristic A in FIG. 4 is a region where the output power Pout is saturated or almost saturated with respect to an increase in the input power Pin. The peak of the efficiency PAE of the power amplifier is located in a region near the boundary between the linear region and the saturation region, and this region is suitable for high output and high efficiency power amplification of the WPT dummy signal. The characteristics of a power amplifier suitable for amplifying a WPT dummy signal include, for example, high efficiency, low PAPR, and large output power. Examples of this power amplifier include bias-adjustable high-efficiency amplifiers such as class A amplifiers, class B amplifiers, class C amplifiers, and class AB amplifiers, or waveform processing amplifiers such as class E amplifiers, class F amplifiers, and class J amplifiers. Examples include high-efficiency amplifiers of the type. As the WPT dummy signal, an OFDM modulated signal whose PAPR (peak power to average power ratio) is lower than that of the communication signal may be used.
 上記構成の基地局10において、WPTダミー信号、DL通信信号及びUL通信信号をそれぞれ、各信号に適した増幅器で増幅したい、という課題がある。 In the base station 10 having the above configuration, there is a problem in that it is desired to amplify each of the WPT dummy signal, DL communication signal, and UL communication signal with an amplifier suitable for each signal.
 そこで、本実施形態の基地局10のアンテナシステム133では、WPTダミー信号、DL通信信号及びUL通信信号それぞれに対応する複数の信号処理パスを構成し、複数の信号処理パスのそれぞれに各信号に適した個別の増幅器を設けている。 Therefore, in the antenna system 133 of the base station 10 of this embodiment, a plurality of signal processing paths corresponding to the WPT dummy signal, DL communication signal, and UL communication signal are configured, and each signal is A suitable separate amplifier is provided.
 図5は、実施形態に係る基地局10に適用可能なアンテナシステム133の構成の一例を示すブロック図である。図5において、アンテナシステム133は、複数(N個)のアンテナ素子1101(1)~1101(N)からなるアレーアンテナ110と、アレーアンテナ110に接続されたTDD(時分割複信)方式のRF信号処理部132とを備える。 FIG. 5 is a block diagram showing an example of the configuration of the antenna system 133 applicable to the base station 10 according to the embodiment. In FIG. 5, the antenna system 133 includes an array antenna 110 consisting of a plurality (N) of antenna elements 1101(1) to 1101(N), and a TDD (time division duplex) type RF connected to the array antenna 110. A signal processing section 132 is provided.
 RF信号処理部132は、アレーアンテナ110の複数(N個)のアンテナ素子1101(1)~1101(N)に1対1で対応する複数(N個)の無線信号処理ユニット(以下「RF信号処理ユニット」ともいう。)1320(1)~1320(N)を有する。複数のRF信号処理ユニット1320(1)~1320(N)はそれぞれ、対応するアンテナ素子1101(1)~1101(N)に接続され、下りリンクのWPTダミー信号及びDL通信信号並びに上りリンクのUL通信信号の高周波の送信信号であるWPTダミーRF信号、DL通信RF信号及びUL通信RF信号を互いに異なる複数の増幅器で増幅し、TDD(時分割複信)方式で多重化する。また、RF信号処理ユニット1320(1)~1320(N)はそれぞれ、WPTダミーRF信号、DL通信RF信号及びUL通信RF信号の位相を所定の位相に制御することにより、アンテナ素子1101(1)~1101(N)を介したビームフォーミング制御を行って各信号を送受信する。 The RF signal processing unit 132 includes a plurality of (N) radio signal processing units (hereinafter referred to as “RF signal 1320(1) to 1320(N). Each of the plurality of RF signal processing units 1320(1) to 1320(N) is connected to a corresponding antenna element 1101(1) to 1101(N), and processes downlink WPT dummy signals and DL communication signals as well as uplink UL. A WPT dummy RF signal, a DL communication RF signal, and a UL communication RF signal, which are high-frequency transmission signals of communication signals, are amplified by a plurality of different amplifiers and multiplexed using a TDD (time division duplex) method. In addition, the RF signal processing units 1320(1) to 1320(N) each control the phase of the WPT dummy RF signal, the DL communication RF signal, and the UL communication RF signal to a predetermined phase, thereby controlling the antenna element 1101(1). -1101(N) to transmit and receive each signal by performing beamforming control.
 図6は、図5のアンテナシステム133を構成するRF信号処理ユニット1320の構成の一例を示すブロック図である。なお、複数のRF信号処理ユニット1320(1)~1320(N)は同様な構成を有するので、図6では、括弧書きの識別番号を省略した一つのRF信号処理ユニット1320について説明する。 FIG. 6 is a block diagram showing an example of the configuration of an RF signal processing unit 1320 constituting the antenna system 133 of FIG. 5. Note that since the multiple RF signal processing units 1320(1) to 1320(N) have similar configurations, FIG. 6 describes one RF signal processing unit 1320 with the identification number in parentheses omitted.
 図6において、RF信号処理ユニット1320は、アンテナ素子1101から送信されるWPTダミーRF信号の位相を制御するための第1移相器1321Wと、WPTダミーRF信号を増幅する第1増幅器(電力増幅器)1322Wとを備える。更に、RF信号処理ユニット1320は、アンテナ素子1101から送信されるDL通信RF信号の位相を制御するための第2移相器1321Dと、DL通信RF信号を増幅する第2増幅器(電力増幅器)1322Dと、アンテナ素子1101を介して受信されたUL通信RF信号を増幅する第3増幅器(低ノイズ増幅器)1322Uと、UL通信RF信号の位相を制御するための第3位相器1321Uと、を備える。 In FIG. 6, the RF signal processing unit 1320 includes a first phase shifter 1321W for controlling the phase of the WPT dummy RF signal transmitted from the antenna element 1101, and a first amplifier (power amplifier) for amplifying the WPT dummy RF signal. ) 1322W. Furthermore, the RF signal processing unit 1320 includes a second phase shifter 1321D for controlling the phase of the DL communication RF signal transmitted from the antenna element 1101, and a second amplifier (power amplifier) 1322D for amplifying the DL communication RF signal. , a third amplifier (low noise amplifier) 1322U that amplifies the UL communication RF signal received via the antenna element 1101, and a third phase shifter 1321U that controls the phase of the UL communication RF signal.
 また、RF信号処理ユニット1320は、WPTダミーRF信号、DL通信RF信号及びUL通信RF信号を時分割複信(TDD)方式で多重化する多重化処理部としての信号切替スイッチ1323を備える。信号切替スイッチ1323は、所定の制御信号に基づいて、WPTダミーRF信号、DL通信RF信号及びUL通信RF信号それぞれの信号処理パスとアンテナ素子1101との接続を切り替える。制御信号は、例えば、通信信号処理部120において所定のベースバンドのスケジューリング情報に基づいて生成してもよい。 Further, the RF signal processing unit 1320 includes a signal changeover switch 1323 as a multiplexing processing section that multiplexes the WPT dummy RF signal, the DL communication RF signal, and the UL communication RF signal using a time division duplex (TDD) method. The signal changeover switch 1323 switches the connections between the signal processing paths of the WPT dummy RF signal, the DL communication RF signal, and the UL communication RF signal and the antenna element 1101 based on a predetermined control signal. The control signal may be generated, for example, in the communication signal processing unit 120 based on predetermined baseband scheduling information.
 図7は、図5のアンテナシステム133で送受信されるWPTダミー信号、DL通信信号及びUL通信信号のフレーム構成の一例を示す説明図である。図7中の「WPT」、「DL」及び「UL」を付した期間はそれぞれ、基地局10と端末装置20との間の無線通信のフレーム30に割り当てられた、WPTダミー信号を送信するWPT用フレーム32、DL通信信号を送信するDL通信用フレーム31D及びUL通信信号を受信するUL通信用フレーム31Uである。また、図7中のハッチングを付した期間は、信号の送受信を行わないガード期間である。 FIG. 7 is an explanatory diagram showing an example of the frame structure of the WPT dummy signal, DL communication signal, and UL communication signal transmitted and received by the antenna system 133 of FIG. 5. The periods marked “WPT”, “DL”, and “UL” in FIG. 7 are the periods during which a WPT dummy signal is transmitted, which is assigned to the frame 30 of wireless communication between the base station 10 and the terminal device 20. 32, a DL communication frame 31D for transmitting a DL communication signal, and a UL communication frame 31U for receiving a UL communication signal. Furthermore, the hatched period in FIG. 7 is a guard period in which no signal is transmitted or received.
 信号切替スイッチ1323は、図7に示すように、WPT用フレーム32、DL通信用フレーム31D及びUL通信用フレーム31Uに同期させて、WPTダミーRF信号、DL通信RF信号及びUL通信RF信号それぞれの増幅器1322W、1322D、1322Uを介した3つの信号処理経路とアンテナ素子1101との接続を切り替えてもよい。例えば、信号切替スイッチ1323の信号処理経路の切替により、WPT用フレーム32の期間において第1増幅器(電力増幅器)1322Wから出力されたWPTダミーRF信号がアンテナ素子1101に供給される。また、DL通信用フレーム31Dの期間において第2増幅器(電力増幅器)1322Dから出力されたDL通信RF信号がアンテナ素子1101に供給され、UL通信用フレーム31Uの期間においてアンテナ素子1101から出力されたUL通信RF信号が第3増幅器(低ノイズ増幅器)1322Uに供給される。 As shown in FIG. 7, the signal changeover switch 1323 switches each of the WPT dummy RF signal, DL communication RF signal, and UL communication RF signal in synchronization with the WPT frame 32, DL communication frame 31D, and UL communication frame 31U. The connection between the antenna element 1101 and three signal processing paths via the amplifiers 1322W, 1322D, and 1322U may be switched. For example, by switching the signal processing path of the signal changeover switch 1323, the WPT dummy RF signal output from the first amplifier (power amplifier) 1322W during the WPT frame 32 is supplied to the antenna element 1101. Further, the DL communication RF signal output from the second amplifier (power amplifier) 1322D during the period of the DL communication frame 31D is supplied to the antenna element 1101, and the UL communication RF signal output from the antenna element 1101 during the period of the UL communication frame 31U. The communication RF signal is provided to a third amplifier (low noise amplifier) 1322U.
 図8は、実施形態に係る基地局10に適用可能なアンテナシステム133の構成の他の例を示すブロック図である。図8において、アンテナシステム133は、複数(N個)のアンテナ素子1101(1)~1101(N)からなるアレーアンテナ110と、アレーアンテナ110に接続されたFDD(周波数分割複信)方式のRF信号処理部132とを備える。 FIG. 8 is a block diagram showing another example of the configuration of the antenna system 133 applicable to the base station 10 according to the embodiment. In FIG. 8, the antenna system 133 includes an array antenna 110 consisting of a plurality (N) of antenna elements 1101(1) to 1101(N), and an FDD (frequency division duplex) type RF connected to the array antenna 110. A signal processing section 132 is provided.
 RF信号処理部132は、アレーアンテナ110の複数(N個)のアンテナ素子1101(1)~1101(N)に1対1で対応する複数(N個)の無線信号処理ユニット(RF信号処理ユニット)1325(1)~1325(N)を有する。複数のRF信号処理ユニット1325(1)~1325(N)はそれぞれ、対応するアンテナ素子1101(1)~1101(N)に接続され、WPTダミーRF信号、DL通信RF信号及びUL通信RF信号を互いに異なる複数の増幅器で増幅し、FDD(周波数分割複信)方式で多重化する。また、RF信号処理ユニット1325(1)~1325(N)はそれぞれ、WPTダミーRF信号、DL通信RF信号及びUL通信RF信号の位相を所定の位相に制御することにより、アンテナ素子1101(1)~1101(N)を介したビームフォーミング制御を行って各信号を送受信する。 The RF signal processing unit 132 includes a plurality of (N) radio signal processing units (RF signal processing units) corresponding one-to-one to the plurality (N) of antenna elements 1101(1) to 1101(N) of the array antenna 110. ) 1325(1) to 1325(N). Each of the plurality of RF signal processing units 1325(1) to 1325(N) is connected to a corresponding antenna element 1101(1) to 1101(N), and receives a WPT dummy RF signal, a DL communication RF signal, and a UL communication RF signal. It is amplified by a plurality of different amplifiers and multiplexed using FDD (frequency division duplexing). Furthermore, the RF signal processing units 1325(1) to 1325(N) each control the phase of the WPT dummy RF signal, the DL communication RF signal, and the UL communication RF signal to a predetermined phase, thereby controlling the antenna element 1101(1). -1101(N) to transmit and receive each signal by performing beamforming control.
 図9は、図8のアンテナシステム133を構成するRF信号処理ユニット1325の構成の一例を示すブロック図である。なお、複数のRF信号処理ユニット1325(1)~1325(N)は同様な構成を有するので、図9では、括弧書きの識別番号を省略した一つのRF信号処理ユニット1325について説明する。 FIG. 9 is a block diagram showing an example of the configuration of the RF signal processing unit 1325 that constitutes the antenna system 133 in FIG. 8. Note that since the plurality of RF signal processing units 1325(1) to 1325(N) have similar configurations, one RF signal processing unit 1325 will be described in FIG. 9, with the identification number in parentheses omitted.
 図9において、RF信号処理ユニット1325は、アンテナ素子1101から送信されるWPTダミーRF信号の位相を制御するための第1移相器1321Wと、WPTダミーRF信号を増幅する第1増幅器(電力増幅器)1322Wとを備える。更に、RF信号処理ユニット1325は、アンテナ素子1101から送信されるDL通信RF信号の位相を制御するための第2移相器1321Dと、DL通信RF信号を増幅する第2増幅器(電力増幅器)1322Dと、アンテナ素子1101を介して受信されたUL通信RF信号を増幅する第3増幅器(低ノイズ増幅器)1322Uと、UL通信RF信号の位相を制御するための第3位相器1321Uと、を備える。 In FIG. 9, the RF signal processing unit 1325 includes a first phase shifter 1321W for controlling the phase of the WPT dummy RF signal transmitted from the antenna element 1101, and a first amplifier (power amplifier) for amplifying the WPT dummy RF signal. ) 1322W. Furthermore, the RF signal processing unit 1325 includes a second phase shifter 1321D for controlling the phase of the DL communication RF signal transmitted from the antenna element 1101, and a second amplifier (power amplifier) 1322D for amplifying the DL communication RF signal. , a third amplifier (low noise amplifier) 1322U that amplifies the UL communication RF signal received via the antenna element 1101, and a third phase shifter 1321U that controls the phase of the UL communication RF signal.
 また、RF信号処理ユニット1325は、WPTダミーRF信号、DL通信RF信号及びUL通信RF信号を周波数分割複信(FDD)方式で多重化する多重化処理部としてのアンテナ共用器(DUP:Duplexer)1326を備える。 The RF signal processing unit 1325 also uses an antenna duplexer (DUP) as a multiplexing processing unit that multiplexes WPT dummy RF signals, DL communication RF signals, and UL communication RF signals using a frequency division duplexing (FDD) method. 1326.
 アンテナ共用器1326は、例えば、第1増幅器(電力増幅器)1322Wの出力端に接続される送信フィルタ1327Wと、第2増幅器(電力増幅器)1322Dの出力端に接続される送信フィルタ1327Dと、第3増幅器(低ノイズ増幅器)1322Uの入力端に接続される受信フィルタ1327Uとを有する。送信フィルタ1327Wは、WPTダミーRF信号の周波数Fwを通過域とし、UL通信RF信号の周波数Fuを阻止域とするバンドパスフィルタ(BPF)である。送信フィルタ1327Dは、DL通信RF信号の周波数Fdを通過域とし、UL通信RF信号の周波数Fuを阻止域とするバンドパスフィルタ(BPF)である。受信フィルタ1327Uは、UL通信RF信号の周波数Fuを通過域とし、WPTダミーRF信号及びDL通信RF信号の周波数Fw、Fdを阻止域とするバンドパスフィルタ(BPF)である。アンテナ共用器1326の送信フィルタ1327W、1327Dの出力端及び受信フィルタ1327Uの入力端が移相器を介してアンテナ素子1101に接続される。 The antenna duplexer 1326 includes, for example, a transmission filter 1327W connected to the output terminal of the first amplifier (power amplifier) 1322W, a transmission filter 1327D connected to the output terminal of the second amplifier (power amplifier) 1322D, and a third transmission filter 1327W connected to the output terminal of the second amplifier (power amplifier) 1322D. It has a receiving filter 1327U connected to the input end of an amplifier (low noise amplifier) 1322U. The transmission filter 1327W is a bandpass filter (BPF) whose passband is the frequency Fw of the WPT dummy RF signal and whose stopband is the frequency Fu of the UL communication RF signal. The transmission filter 1327D is a bandpass filter (BPF) whose passband is the frequency Fd of the DL communication RF signal and whose stopband is the frequency Fu of the UL communication RF signal. The reception filter 1327U is a bandpass filter (BPF) whose passband is the frequency Fu of the UL communication RF signal and whose stopband is the frequencies Fw and Fd of the WPT dummy RF signal and the DL communication RF signal. Output ends of transmission filters 1327W, 1327D and input end of reception filter 1327U of antenna duplexer 1326 are connected to antenna element 1101 via a phase shifter.
 アンテナ共用器1326において、第1増幅器(電力増幅器)1322Wから出力された周波数FwのWPTダミーRF信号と第2増幅器(電力増幅器)1322Dから出力された周波数FdのDL通信RF信号は合成されてアンテナ素子1101に供給される。また、アンテナ素子1101から出力された周波数FuのUL通信RF信号は、第3増幅器(低ノイズ増幅器)1322Uに供給される。 In the antenna duplexer 1326, the WPT dummy RF signal of frequency Fw output from the first amplifier (power amplifier) 1322W and the DL communication RF signal of frequency Fd output from the second amplifier (power amplifier) 1322D are combined and sent to the antenna. The signal is supplied to element 1101. Further, the UL communication RF signal of frequency Fu output from antenna element 1101 is supplied to third amplifier (low noise amplifier) 1322U.
 図10は、実施形態に係る基地局10に適用可能なセパレートアンテナ構成のアンテナシステム133の構成の一例を示すブロック図である。図10の構成例では、前述のアレーアンテナ110として、無線電力伝送(WPT)用のアレーアンテナ(以下「WPTアレーアンテナ」ともいう。)110W及び通信用のアレーアンテナ(以下「通信アレーアンテナ」ともいう。)110Cを別々に備えている。アンテナシステム133は、複数(Nw個)のアンテナ素子1101W(1)~1101W(Nw)からなるWPTアレーアンテナ110Wと、WPTアレーアンテナ110Wに接続された無線電力伝送(WPT)用のRF信号処理部132Wと、複数(Nc個)のアンテナ素子1101C(1)~1101C(Nc)からなる通信アレーアンテナ110Cと、通信アレーアンテナ110Cに接続された通信用のRF信号処理部132Cとを備える。 FIG. 10 is a block diagram illustrating an example of the configuration of an antenna system 133 with a separate antenna configuration applicable to the base station 10 according to the embodiment. In the configuration example of FIG. 10, the array antenna 110 described above includes an array antenna for wireless power transmission (WPT) (hereinafter also referred to as "WPT array antenna") 110W and an array antenna for communication (hereinafter also referred to as "communication array antenna"). ) 110C is separately provided. The antenna system 133 includes a WPT array antenna 110W including a plurality of (Nw) antenna elements 1101W(1) to 1101W(Nw), and an RF signal processing unit for wireless power transmission (WPT) connected to the WPT array antenna 110W. 132W, a communication array antenna 110C including a plurality of (Nc) antenna elements 1101C(1) to 1101C(Nc), and a communication RF signal processing unit 132C connected to the communication array antenna 110C.
 無線電力伝送(WPT)用のRF信号処理部132Wは、アレーアンテナ110の複数(Nw個)のアンテナ素子1101W(1)~1101W(Nw)に1対1で対応する複数(Nw個)の無線信号処理ユニット(以下「WPTダミーRF信号処理ユニット」ともいう。)1320W(1)~1320W(Nw)を有する。複数のWPTダミーRF信号処理ユニット1320W(1)~1320(Nw)はそれぞれ、対応するアンテナ素子1101W(1)~1101W(Nw)に接続される。また、WPTダミーRF信号処理ユニット1320W(1)~1320W(Nw)はそれぞれ、WPTダミーRF信号の位相を所定の位相に制御することにより、アンテナ素子1101W(1)~1101W(Nw)を介したビームフォーミング制御を行ってWPTダミーRF信号を送信する。 The RF signal processing unit 132W for wireless power transmission (WPT) has a plurality of (Nw) radio signals corresponding one-to-one to the plurality (Nw) of antenna elements 1101W(1) to 1101W(Nw) of the array antenna 110. It has a signal processing unit (hereinafter also referred to as "WPT dummy RF signal processing unit") 1320W (1) to 1320W (Nw). A plurality of WPT dummy RF signal processing units 1320W(1) to 1320(Nw) are connected to corresponding antenna elements 1101W(1) to 1101W(Nw), respectively. In addition, the WPT dummy RF signal processing units 1320W(1) to 1320W(Nw) each control the phase of the WPT dummy RF signal to a predetermined phase, thereby transmitting the signal via the antenna elements 1101W(1) to 1101W(Nw). A WPT dummy RF signal is transmitted by performing beamforming control.
 通信用のRF信号処理部132Cは、通信アレーアンテナ110Cの複数(Nc個)のアンテナ素子1101C(1)~1101C(Nc)に1対1で対応する複数(Nc個)の無線信号処理ユニット(以下「通信RF信号処理ユニット」ともいう。)1320C(1)~1320C(Nc)を有する。複数の通信RF信号処理ユニット1320C(1)~1320C(Nc)はそれぞれ、対応するアンテナ素子1101C(1)~1101C(Nc)に接続され、下りリンクのDL通信RF信号及びUL通信RF信号を互いに異なる複数の増幅器で増幅し、TDD(時分割複信)方式又はFDD(周波数分割複信)方式で多重化する。また、通信RF信号処理ユニット1320C(1)~1320C(Nc)はそれぞれ、DL通信RF信号及びUL通信RF信号の位相を所定の位相に制御することにより、アンテナ素子1101C(1)~1101C(Nc)を介したビームフォーミング制御を行って各信号を送受信する。 The communication RF signal processing unit 132C includes a plurality of (Nc) radio signal processing units (Nc) corresponding one-to-one to the plurality (Nc) of antenna elements 1101C(1) to 1101C(Nc) of the communication array antenna 110C. (hereinafter also referred to as "communication RF signal processing unit") 1320C(1) to 1320C(Nc). The plurality of communication RF signal processing units 1320C(1) to 1320C(Nc) are respectively connected to the corresponding antenna elements 1101C(1) to 1101C(Nc), and transmit downlink DL communication RF signals and UL communication RF signals to each other. The signal is amplified by a plurality of different amplifiers and multiplexed using a TDD (time division duplex) method or an FDD (frequency division duplex) method. Furthermore, the communication RF signal processing units 1320C(1) to 1320C(Nc) control the phases of the DL communication RF signal and the UL communication RF signal to predetermined phases, thereby controlling the antenna elements 1101C(1) to 1101C(Nc), respectively. ) to perform beamforming control to transmit and receive each signal.
 図11A及び図11Bはそれぞれ、図10のアンテナシステム133を構成する無線電力伝送(WPT)用のRF信号処理ユニット1320W及び通信用のRF信号処理ユニット1320Cの構成の一例を示すブロック図である。なお、複数のWPTダミーRF信号処理ユニット1320W及び通信RF信号処理ユニット1320Cはそれぞれ同様な構成を有するので、図図11A及び図11Bでは、括弧書きの識別番号を省略したRF信号処理ユニット1320W,1320Cについて説明する。 11A and 11B are block diagrams showing an example of the configuration of an RF signal processing unit 1320W for wireless power transmission (WPT) and an RF signal processing unit 1320C for communication, respectively, which constitute the antenna system 133 of FIG. 10. Note that the plurality of WPT dummy RF signal processing units 1320W and communication RF signal processing units 1320C each have the same configuration, so in FIGS. I will explain about it.
 図11Aにおいて、WPTダミーRF信号処理ユニット1320Wは、WPTアレーアンテナ110Wのアンテナ素子1101Wから送信されるWPTダミーRF信号の位相を制御するための第1移相器1321Wと、WPTダミーRF信号を増幅する第1増幅器(電力増幅器)1322Wとを備える。 In FIG. 11A, the WPT dummy RF signal processing unit 1320W includes a first phase shifter 1321W for controlling the phase of the WPT dummy RF signal transmitted from the antenna element 1101W of the WPT array antenna 110W, and a first phase shifter 1321W for amplifying the WPT dummy RF signal. A first amplifier (power amplifier) 1322W is provided.
 図11Bにおいて、通信RF信号処理ユニット1320Cは、アンテナ素子1101Cから送信されるDL通信RF信号の位相を制御するための第2移相器1321Dと、DL通信RF信号を増幅する第2増幅器(電力増幅器)1322Dと、アンテナ素子1101Cを介して受信されたUL通信RF信号を増幅する第3増幅器(低ノイズ増幅器)1322Uと、UL通信RF信号の位相を制御するための第3位相器1321Uと、を備える。 In FIG. 11B, the communication RF signal processing unit 1320C includes a second phase shifter 1321D for controlling the phase of the DL communication RF signal transmitted from the antenna element 1101C, and a second amplifier (power amplifier) 1322D, a third amplifier (low noise amplifier) 1322U for amplifying the UL communication RF signal received via the antenna element 1101C, and a third phase shifter 1321U for controlling the phase of the UL communication RF signal. Equipped with.
 また、通信RF信号処理ユニット1320Cは、DL通信RF信号及びUL通信RF信号を時分割複信(TDD)方式で多重化する多重化処理部としての信号切替スイッチ1328を備える。信号切替スイッチ1328は、所定の制御信号に基づいて、DL通信RF信号及びUL通信RF信号それぞれの信号処理パスとアンテナ素子1101Cとの接続を切り替える。制御信号は、例えば、通信信号処理部120において所定のベースバンドのスケジューリング情報に基づいて生成してもよい。 Furthermore, the communication RF signal processing unit 1320C includes a signal changeover switch 1328 as a multiplexing processing unit that multiplexes the DL communication RF signal and the UL communication RF signal using a time division duplex (TDD) method. The signal changeover switch 1328 switches the connection between the signal processing paths of the DL communication RF signal and the UL communication RF signal and the antenna element 1101C based on a predetermined control signal. The control signal may be generated, for example, in the communication signal processing unit 120 based on predetermined baseband scheduling information.
 図12は、図10のアンテナシステム133を構成する通信RF信号処理ユニット1320Cの構成の他の例を示すブロック図である。なお、図12では、括弧書きの識別番号を省略した通信RF信号処理ユニット1320Cについて説明する。また、図12において、前述の図9の構成と同様な部分については、説明を省略する。 FIG. 12 is a block diagram showing another example of the configuration of the communication RF signal processing unit 1320C that constitutes the antenna system 133 in FIG. 10. In addition, in FIG. 12, the communication RF signal processing unit 1320C will be described with the identification numbers in parentheses omitted. Further, in FIG. 12, description of parts similar to the configuration of FIG. 9 described above will be omitted.
 図12において、通信RF信号処理ユニット1320Cは、アンテナ素子1101Cから送信されるDL通信RF信号の位相を制御するための第2移相器1321Dと、DL通信RF信号を増幅する第2増幅器(電力増幅器)1322Dと、アンテナ素子1101Cを介して受信されたUL通信RF信号を増幅する第3増幅器(低ノイズ増幅器)1322Uと、UL通信RF信号の位相を制御するための第3位相器1321Uと、を備える。 In FIG. 12, the communication RF signal processing unit 1320C includes a second phase shifter 1321D for controlling the phase of the DL communication RF signal transmitted from the antenna element 1101C, and a second amplifier (power amplifier) 1322D, a third amplifier (low noise amplifier) 1322U for amplifying the UL communication RF signal received via the antenna element 1101C, and a third phase shifter 1321U for controlling the phase of the UL communication RF signal. Equipped with
 また、通信RF信号処理ユニット1320Cは、DL通信RF信号及びUL通信RF信号を周波数分割複信(FDD)方式で多重化する多重化処理部としてのアンテナ共用器(DUP)1329を備える。アンテナ共用器1329において、第2増幅器(電力増幅器)1322Dから出力された周波数FdのDL通信RF信号はアンテナ素子1101Cに供給され、アンテナ素子1101Cから出力された周波数FuのUL通信RF信号は、第3増幅器(低ノイズ増幅器)1322Uに供給される。 Furthermore, the communication RF signal processing unit 1320C includes an antenna duplexer (DUP) 1329 as a multiplexing processing unit that multiplexes the DL communication RF signal and the UL communication RF signal using a frequency division duplexing (FDD) method. In the antenna duplexer 1329, the DL communication RF signal of frequency Fd output from the second amplifier (power amplifier) 1322D is supplied to the antenna element 1101C, and the UL communication RF signal of frequency Fu output from the antenna element 1101C is supplied to the antenna element 1101C. 3 amplifier (low noise amplifier) 1322U.
 図13は、実施形態に係る基地局10における無線処理装置(無線処理部)130の入出力信号処理部131の構成の一例を示すブロック図である。図13において、入出力信号処理部131は、信号分離部1311と第1混合器1312と第2混合器1313と第3混合器1314と局部発振器1315とを備える。 FIG. 13 is a block diagram showing an example of the configuration of the input/output signal processing unit 131 of the wireless processing device (wireless processing unit) 130 in the base station 10 according to the embodiment. In FIG. 13, the input/output signal processing section 131 includes a signal separation section 1311, a first mixer 1312, a second mixer 1313, a third mixer 1314, and a local oscillator 1315.
 信号分離部1311は、通信信号処理部120から出力された下りリンクの中間周波信号(ベースバンド信号)を、WPTダミー信号の中間周波信号(WPT-IT)とDL通信信号の中間周波信号(DL-IF)とに分離する。第1混合器1312は、WPTダミー信号の中間周波信号(WPT-IT)と局部発振器1315から出力された所定周波数の局部発振信号(LO)とを混合してWPTダミーRF信号を生成し、RF信号処理部132に出力する。第2混合器1313は、DL通信信号の中間周波信号(DL-IF)と局部発振器1315から出力された所定周波数の局部発振信号(LO)とを混合してDL通信RF信号を生成し、RF信号処理部132に出力する。第3混合器1314は、RF信号処理部132から入力されたUL通信RF信号と局部発振器1315から出力された所定周波数の局部発振信号(LO)とを混合してUL通信信号の中間周波信号(UL-IF)を生成し、通信信号処理部120に出力する。 The signal separation unit 1311 converts the downlink intermediate frequency signal (baseband signal) output from the communication signal processing unit 120 into an intermediate frequency signal of the WPT dummy signal (WPT-IT) and an intermediate frequency signal of the DL communication signal (DL -IF). The first mixer 1312 mixes the intermediate frequency signal (WPT-IT) of the WPT dummy signal and the local oscillation signal (LO) of a predetermined frequency output from the local oscillator 1315 to generate a WPT dummy RF signal, and RF The signal is output to the signal processing section 132. The second mixer 1313 mixes the intermediate frequency signal (DL-IF) of the DL communication signal and the local oscillation signal (LO) of a predetermined frequency output from the local oscillator 1315 to generate a DL communication RF signal, and RF The signal is output to the signal processing section 132. The third mixer 1314 mixes the UL communication RF signal input from the RF signal processing unit 132 and the local oscillation signal (LO) of a predetermined frequency output from the local oscillator 1315 to generate an intermediate frequency signal (LO) of the UL communication signal. UL-IF) and outputs it to the communication signal processing section 120.
 上記構成の図1~図13のシステムによれば、基地局10からUE20への下りリンク通信において、通信未使用の無線リソースを無線電力伝送ブロック(WPTブロック)として有効活用し、基地局10からUE20への無線電力伝送(WPT)を行うことができる。また、基地局10から送信される下りリンクのWPTダミー信号及びDL通信信号と基地局10で受信された上りリンクのUL通信信号をそれぞれ、各信号に適した個別の増幅器で増幅することができる。 According to the system shown in FIGS. 1 to 13 having the above configuration, in downlink communication from the base station 10 to the UE 20, unused radio resources are effectively used as wireless power transfer blocks (WPT blocks), and from the base station 10 to the UE 20. Wireless power transfer (WPT) to the UE 20 can be performed. Further, the downlink WPT dummy signal and DL communication signal transmitted from the base station 10 and the uplink UL communication signal received at the base station 10 can be amplified by individual amplifiers suitable for each signal. .
 図14は、本実施形態に係る基地局10から複数のUE20へのビームフォーミングによるUE毎の給電の一例を示す説明図である。本実施形態において、図9に示すように通信エリア10A内のWPTエリア10A'(前述の図1参照)に複数のUE20(1)~20(3)が在圏し、UE毎に形成したビーム10B(1)~10B(3)を介して各UE20(1)~20(3)に給電してもよい。ビーム10B(1)~10B(3)は、例えば時分割で切り替えて形成してもよい。 FIG. 14 is an explanatory diagram showing an example of power supply to each UE by beamforming from a base station 10 to multiple UEs 20 according to this embodiment. In this embodiment, as shown in FIG. 9, multiple UEs 20(1) to 20(3) are present in a WPT area 10A' (see FIG. 1 above) within a communication area 10A, and power may be supplied to each UE 20(1) to 20(3) via beams 10B(1) to 10B(3) formed for each UE. Beams 10B(1) to 10B(3) may be formed by switching in a time division manner, for example.
 以上、本実施形態によれば、基地局10から送信される下りリンクのWPTダミー信号及びDL通信信号と基地局10で受信された上りリンクのUL通信信号をそれぞれ、各信号に適した個別の増幅器で増幅することができる。 As described above, according to the present embodiment, the downlink WPT dummy signal and DL communication signal transmitted from the base station 10 and the uplink UL communication signal received at the base station 10 are individually It can be amplified with an amplifier.
 また、本実施形態によれば、通信信号よりも低いPAPRを有するWPTダミー信号を用いることにより、基地局10において、通信信号についてはスプリアスが発生しないように高いマージンをとった低めの出力電力の範囲で増幅できるとともに、WPTダミー信号を増幅するときの電力増幅器の高出力化及び高効率化を図ることができる。 Further, according to the present embodiment, by using a WPT dummy signal having a PAPR lower than that of the communication signal, the base station 10 uses a low output power with a high margin to prevent the generation of spurious signals for the communication signal. In addition to being able to amplify the WPT dummy signal within a certain range, it is also possible to increase the output and efficiency of the power amplifier when amplifying the WPT dummy signal.
 また、本実施形態によれば、基地局10と端末装置20との間の通信未使用の無線リソースを利用して端末装置20への給電を行うことができる。 Furthermore, according to the present embodiment, power can be supplied to the terminal device 20 by using wireless resources that are not used for communication between the base station 10 and the terminal device 20.
 また、本発明は、基地局10から送信された電波を受信可能な多数の端末装置20への給電をまかなうことができる給電インフラを提供できるため、持続可能な開発目標(SDGs)の目標9「産業と技術革新の基盤をつくろう」の達成に貢献できる。 Furthermore, the present invention can provide a power supply infrastructure capable of supplying power to a large number of terminal devices 20 that can receive radio waves transmitted from the base station 10, so that Goal 9 of the Sustainable Development Goals (SDGs) We can contribute to the achievement of "Let's create a foundation for industry and technological innovation."
 なお、本明細書で説明された処理工程並びにシステム、無線処理装置、端末装置(UE、IoTデバイス)、基地局、移動局、中継装置及び制御装置の構成要素は、様々な手段によって実装することができる。例えば、これらの工程及び構成要素は、ハードウェア、ファームウェア、ソフトウェア、又は、それらの組み合わせで実装されてもよい。 Note that the processing steps and components of the system, wireless processing device, terminal device (UE, IoT device), base station, mobile station, relay device, and control device described in this specification can be implemented by various means. Can be done. For example, these steps and components may be implemented in hardware, firmware, software, or a combination thereof.
 ハードウェア実装については、実体(例えば、各種無線通信装置、基地局装置(Node B、Node G)、端末装置、ハードディスクドライブ装置、又は、光ディスクドライブ装置)において上記工程及び構成要素を実現するために用いられる処理ユニット等の手段は、1つ又は複数の、特定用途向けIC(ASIC)、デジタルシグナルプロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブル・ロジック・デバイス(PLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明された機能を実行するようにデザインされた他の電子ユニット、コンピュータ、又は、それらの組み合わせの中に実装されてもよい。 Regarding hardware implementation, in order to realize the above steps and components in entities (e.g., various wireless communication devices, base station devices (Node B, Node G), terminal devices, hard disk drive devices, or optical disk drive devices) The processing unit or other means used may be one or more of an application specific integrated circuit (ASIC), a digital signal processor (DSP), a digital signal processor (DSPD), a programmable logic device (PLD), a field programmable a gate array (FPGA), processor, controller, microcontroller, microprocessor, electronic device, other electronic unit, computer, or combination thereof designed to perform the functions described herein; It may be implemented inside.
 また、ファームウェア及び/又はソフトウェア実装については、上記構成要素を実現するために用いられる処理ユニット等の手段は、本明細書で説明された機能を実行するプログラム(例えば、プロシージャ、関数、モジュール、インストラクション、などのコード)で実装されてもよい。一般に、ファームウェア及び/又はソフトウェアのコードを明確に具体化する任意のコンピュータ/プロセッサ読み取り可能な媒体が、本明細書で説明された上記工程及び構成要素を実現するために用いられる処理ユニット等の手段の実装に利用されてもよい。例えば、ファームウェア及び/又はソフトウェアコードは、例えば制御装置において、メモリに記憶され、コンピュータやプロセッサにより実行されてもよい。そのメモリは、コンピュータやプロセッサの内部に実装されてもよいし、又は、プロセッサの外部に実装されてもよい。また、ファームウェア及び/又はソフトウェアコードは、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブルリードオンリーメモリ(PROM)、電気的消去可能PROM(EEPROM)、フラッシュメモリ、フロッピー(登録商標)ディスク、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、磁気又は光データ記憶装置、などのような、コンピュータやプロセッサで読み取り可能な媒体に記憶されてもよい。そのコードは、1又は複数のコンピュータやプロセッサにより実行されてもよく、また、コンピュータやプロセッサに、本明細書で説明された機能性のある態様を実行させてもよい。 Additionally, for firmware and/or software implementations, the means used to implement the components described above, such as processing units, may include programs (e.g., procedures, functions, modules, instructions) that perform the functions described herein. , etc.). In general, any computer/processor readable medium tangibly embodying firmware and/or software code, such as a processing unit, may be used to implement the above steps and components described herein. It may be used for implementation. For example, the firmware and/or software code may be stored in memory and executed by a computer or processor, eg, in a controller. The memory may be implemented within the computer or processor, or external to the processor. The firmware and/or software code may also be stored in, for example, random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), programmable read-only memory (PROM), electrically erasable PROM (EEPROM), etc. ), flash memory, floppy disks, compact disks (CDs), digital versatile disks (DVDs), magnetic or optical data storage devices, etc. good. The code may be executed by one or more computers or processors and may cause the computers or processors to perform certain aspects of the functionality described herein.
 また、前記媒体は非一時的な記録媒体であってもよい。また、前記プログラムのコードは、コンピュータ、プロセッサ、又は他のデバイス若しくは装置機械で読み込んで実行可能であればよく、その形式は特定の形式に限定されない。例えば、前記プログラムのコードは、ソースコード、オブジェクトコード及びバイナリコードのいずれでもよく、また、それらのコードの2以上が混在したものであってもよい。 Additionally, the medium may be a non-temporary recording medium. Further, the code of the program may be read and executed by a computer, processor, or other device or apparatus, and its format is not limited to a specific format. For example, the code of the program may be a source code, an object code, or a binary code, or may be a mixture of two or more of these codes.
 また、本明細書で開示された実施形態の説明は、当業者が本開示を製造又は使用するのを可能にするために提供される。本開示に対するさまざまな修正は当業者には容易に明白になり、本明細書で定義される一般的原理は、本開示の趣旨又は範囲から逸脱することなく、他のバリエーションに適用可能である。それゆえ、本開示は、本明細書で説明される例及びデザインに限定されるものではなく、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲に認められるべきである。 The description of the embodiments disclosed herein is also provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to this disclosure will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other variations without departing from the spirit or scope of this disclosure. Therefore, this disclosure is not to be limited to the examples and designs described herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
10    :基地局
10A   :通信エリア
10A'  :WPTエリア
10B   :ビーム
20    :端末装置
30    :フレーム
31D   :DL通信用フレーム
31U   :UL通信用フレーム
32    :WPT用フレーム
110   :アンテナ
110   :アレーアンテナ
110C  :通信アレーアンテナ
110W  :WPTアレーアンテナ
120   :通信信号処理部
130   :無線処理装置(無線処理部)
131   :入出力信号処理部
132   :RF信号処理部
132C  :通信用のRF信号処理部
132W  :無線電力伝送(WPT)用のRF信号処理部
133   :アンテナシステム
1101  :アンテナ素子
1311  :信号分離部
1312  :第1混合器
1313  :第2混合器
1314  :第3混合器
1315  :局部発振器
1320  :RF信号処理ユニット
1320C :通信RF信号処理ユニット
1320W :WPTダミーRF信号処理ユニット
1321D :第2移相器
1321U :第3位相器
1321W :第1移相器
1322D :第2増幅器(電力増幅器)
1322U :第3増幅器(低ノイズ増幅器)
1322W :第1増幅器(電力増幅器)
1323  :信号切替スイッチ
1325  :RF信号処理ユニット
1326  :アンテナ共用器
1327D :送信フィルタ
1327U :受信フィルタ
1327W :送信フィルタ
1328  :信号切替スイッチ
1329  :アンテナ共用器
10: Base station 10A: Communication area 10A': WPT area 10B: Beam 20: Terminal device 30: Frame 31D: DL communication frame 31U: UL communication frame 32: WPT frame 110: Antenna 110: Array antenna 110C: Communication array antenna 110W: WPT array antenna 120: Communication signal processing unit 130: Radio processing device (radio processing unit)
131: Input/Output signal processing unit 132: RF signal processing unit 132C: RF signal processing unit for communication 132W: RF signal processing unit for wireless power transmission (WPT) 133: Antenna system 1101: Antenna element 1311: Signal separation unit 1312: First mixer 1313: Second mixer 1314: Third mixer 1315: Local oscillator 1320: RF signal processing unit 1320C: Communication RF signal processing unit 1320W: WPT dummy RF signal processing unit 1321D: Second phase shifter 1321U: Third phase shifter 1321W: First phase shifter 1322D: Second amplifier (power amplifier)
1322U: Third amplifier (low noise amplifier)
1322W: First amplifier (power amplifier)
1323: signal changeover switch 1325: RF signal processing unit 1326: antenna duplexer 1327D: transmission filter 1327U: reception filter 1327W: transmission filter 1328: signal changeover switch 1329: antenna duplexer

Claims (11)

  1.  複数の無線リソースを選択的に用いて通信可能な基地局に備えるアンテナシステムであって、
     複数のアンテナ素子を有するアレーアンテナと、
     前記複数のアンテナ素子のそれぞれに接続され、下りリンクの無線電力伝送用のダミー信号、下りリンクの通信信号及び上りリンクの通信信号の複数の高周波信号を互いに異なる増幅器で増幅し、前記アンテナ素子を介して、前記複数の高周波信号を多重化して送受信する複数の無線信号処理ユニットと、
    を備える、ことを特徴とするアンテナシステム。
    An antenna system provided in a base station capable of communicating by selectively using a plurality of radio resources, the antenna system comprising:
    an array antenna having a plurality of antenna elements;
    A plurality of high frequency signals connected to each of the plurality of antenna elements, a dummy signal for downlink wireless power transmission, a downlink communication signal, and an uplink communication signal are amplified by different amplifiers, and the antenna element is a plurality of wireless signal processing units that multiplex and transmit/receive the plurality of high frequency signals via the plurality of radio frequency signals;
    An antenna system comprising:
  2.  請求項1のアンテナシステムにおいて、
     前記複数の無線信号処理ユニットはそれぞれ、
      前記アンテナ素子から送信される前記無線電力伝送用のダミー信号の位相を制御するための第1移相器と、
      前記無線電力伝送用のダミー信号を増幅する第1増幅器と、
      前記アンテナ素子から送信される前記下りリンクの通信信号の位相を制御するための第2移相器と、
      前記下りリンクの通信信号を増幅する第2増幅器と、
      前記アンテナ素子を介して受信された前記上りリンクの通信信号を増幅する第3増幅器と、
      前記上りリンクの通信信号の位相を制御するための第3位相器と、
    を備える、ことを特徴とするアンテナシステム。
    The antenna system of claim 1,
    Each of the plurality of wireless signal processing units includes:
    a first phase shifter for controlling the phase of the dummy signal for wireless power transmission transmitted from the antenna element;
    a first amplifier that amplifies the dummy signal for wireless power transmission;
    a second phase shifter for controlling the phase of the downlink communication signal transmitted from the antenna element;
    a second amplifier that amplifies the downlink communication signal;
    a third amplifier that amplifies the uplink communication signal received via the antenna element;
    a third phase shifter for controlling the phase of the uplink communication signal;
    An antenna system comprising:
  3.  請求項2のアンテナシステムにおいて、
     前記第1増幅器は、バイアス調整型の高効率増幅器又は波形処理型の高効率増幅器であり、
     前記第2増幅器は、線形領域での効率改善を行う増幅器であり、
     前記第3増幅器は、低ノイズ増幅器である、
    ことを特徴とするアンテナシステム。
    The antenna system of claim 2,
    The first amplifier is a bias adjustment type high efficiency amplifier or a waveform processing type high efficiency amplifier,
    The second amplifier is an amplifier that improves efficiency in a linear region,
    the third amplifier is a low noise amplifier;
    An antenna system characterized by:
  4.  請求項1のアンテナシステムにおいて、
     前記複数の無線信号処理ユニットはそれぞれ、前記無線電力伝送用のダミー信号、前記下りリンクの通信信号及び前記上りリンクの通信信号を時分割複信(TDD)方式で多重化する多重化処理部を備える、ことを特徴とするアンテナシステム。
    The antenna system of claim 1,
    Each of the plurality of wireless signal processing units includes a multiplexing processing section that multiplexes the dummy signal for wireless power transmission, the downlink communication signal, and the uplink communication signal using a time division duplex (TDD) method. An antenna system comprising:
  5.  請求項4のアンテナシステムにおいて、
     前記無線電力伝送用のダミー信号に用いられる無線電力伝送用のフレーム、前記下りリンクの通信信号に用いられる下りリンク通信用のフレーム及び前記上りリンクの通信信号に用いられる上りリンク通信用のフレームが時分割されて通信フレームに割り当てられ、
     前記多重化処理部は、前記無線電力伝送用のフレーム、前記下りリンク通信用のフレーム及び前記上りリンク通信用のフレームに同期させて、前記無線電力伝送用のダミー信号、前記下りリンクの通信信号及び前記上りリンクの通信信号それぞれの信号処理経路と前記アンテナ素子との接続を切り替える、
    ことを特徴とするアンテナシステム。
    The antenna system of claim 4,
    A wireless power transmission frame used for the dummy signal for wireless power transmission, a downlink communication frame used for the downlink communication signal, and an uplink communication frame used for the uplink communication signal. time-divided and allocated to communication frames,
    The multiplexing processing unit generates the dummy signal for wireless power transmission and the downlink communication signal in synchronization with the frame for wireless power transmission, the frame for downlink communication, and the frame for uplink communication. and switching the connection between the signal processing path of each of the uplink communication signals and the antenna element,
    An antenna system characterized by:
  6.  請求項1のアンテナシステムにおいて、
     前記複数の無線信号処理ユニットはそれぞれ、前記無線電力伝送用のダミー信号、前記下りリンクの通信信号及び前記上りリンクの通信信号を周波数分割複信(FDD)方式で多重化する多重化処理部を備える、ことを特徴とするアンテナシステム。
    The antenna system of claim 1,
    Each of the plurality of wireless signal processing units includes a multiplexing processing section that multiplexes the dummy signal for wireless power transmission, the downlink communication signal, and the uplink communication signal using a frequency division duplexing (FDD) method. An antenna system comprising:
  7.  請求項1のアンテナシステムにおいて、
     前記アレーアンテナは、
      前記無線電力伝送用のダミー信号の送信に用いられる無線電力伝送用のアレーアンテナと、
      前記下りリンクの通信信号の送信及び前記上りリンクの通信信号の受信に用いられる通信用のアレーアンテナと、を有し、
     前記複数の無線信号処理ユニットは、
      前記無線電力伝送用のアレーアンテナの複数のアンテナ素子のそれぞれに接続され、前記無線電力伝送用のダミー信号の高周波信号を無線電力伝送用の増幅器で増幅し、前記アンテナ素子を介して送信する複数の無線電力伝送用の無線信号処理ユニットと、
      前記通信用のアレーアンテナの複数のアンテナ素子のそれぞれに接続され、前記下りリンクの通信信号及び前記上りリンクの通信信号の複数の高周波信号を互いに異なる増幅器で増幅し、前記アンテナ素子を介して前記複数の高周波信号を多重化して送受信する複数の通信用の無線信号処理ユニットと、を有する、
    ことを特徴とするアンテナシステム。
    The antenna system of claim 1,
    The array antenna is
    an array antenna for wireless power transmission used for transmitting the dummy signal for wireless power transmission;
    a communication array antenna used for transmitting the downlink communication signal and receiving the uplink communication signal,
    The plurality of wireless signal processing units are
    A plurality of antenna elements connected to each of the plurality of antenna elements of the array antenna for wireless power transmission, amplifying a high frequency signal of the dummy signal for wireless power transmission with an amplifier for wireless power transmission, and transmitting the amplified signal through the antenna element. a wireless signal processing unit for wireless power transmission;
    connected to each of a plurality of antenna elements of the communication array antenna, a plurality of high frequency signals of the downlink communication signal and the uplink communication signal are amplified by mutually different amplifiers, and the high frequency signals of the downlink communication signal and the uplink communication signal are amplified by different amplifiers, a plurality of wireless signal processing units for communication that multiplex and transmit/receive a plurality of high frequency signals;
    An antenna system characterized by:
  8.  請求項1乃至7のいずれかのアンテナシステムと、前記アンテナシステムに接続された入出力信号処理部と、を備える無線処理装置であって、
     前記入出力信号処理部は、
      前記無線電力伝送用のダミー信号及び前記下りリンクの通信信号を含む下りリンク中間周波信号を、前記無線電力伝送用のダミー信号の中間周波信号と前記下りリンクの通信信号の中間周波信号とに分離する信号分離部と、
      前記無線電力伝送用のダミー信号の中間周波信号と所定周波数の局部発振信号とを混合して前記無線電力伝送用のダミー信号の高周波信号を生成する第1混合器と、
      前記下りリンクの通信信号の中間周波信号と前記局部発振信号とを混合して前記下りリンクの通信信号の高周波信号を生成する第2混合器と、
      前記上りリンクの通信信号の高周波信号と前記局部発振信号とを混合して前記上りリンクの通信信号の中間周波信号を生成する第3混合器と、
    を有する、ことを特徴とする無線処理装置。
    A wireless processing device comprising the antenna system according to any one of claims 1 to 7 and an input/output signal processing unit connected to the antenna system,
    The input/output signal processing section is
    Separating the downlink intermediate frequency signal including the dummy signal for wireless power transmission and the downlink communication signal into an intermediate frequency signal of the dummy signal for wireless power transmission and an intermediate frequency signal of the downlink communication signal. a signal separation unit that
    a first mixer that mixes an intermediate frequency signal of the dummy signal for wireless power transmission and a local oscillation signal of a predetermined frequency to generate a high frequency signal of the dummy signal for wireless power transmission;
    a second mixer that mixes the intermediate frequency signal of the downlink communication signal and the local oscillation signal to generate a high frequency signal of the downlink communication signal;
    a third mixer that mixes the high frequency signal of the uplink communication signal and the local oscillation signal to generate an intermediate frequency signal of the uplink communication signal;
    A wireless processing device comprising:
  9.  移動通信システムの基地局であって、
     請求項6の無線処理装置と、前記無線電力伝送用のダミー信号及び前記下りリンクの通信信号を含む下りリンク中間周波信号を生成し、前記上りリンクの通信信号を含む上りリンク中間周波信号を処理する通信信号処理部と、を備える、ことを特徴とする基地局。
    A base station for a mobile communication system,
    The wireless processing device according to claim 6, generating a downlink intermediate frequency signal including the dummy signal for wireless power transmission and the downlink communication signal, and processing the uplink intermediate frequency signal including the uplink communication signal. A base station comprising: a communication signal processing unit that performs a communication signal processing unit.
  10.  請求項9の基地局において、
     前記無線処理装置を有する遠隔無線ヘッド装置と、
     前記遠隔無線ヘッド装置から離れた位置に配置され、有線の通信回線を介して前記遠隔無線ヘッド装置に接続された、前記通信信号処理部を有するベースバンドユニット装置と、
    を備える、
    ことを特徴とする基地局。
    The base station according to claim 9,
    a remote wireless head device having the wireless processing device;
    a baseband unit device having the communication signal processing section, the baseband unit device being disposed at a position remote from the remote wireless head device and connected to the remote wireless head device via a wired communication line;
    Equipped with
    A base station characterized by:
  11.  請求項9の基地局から端末装置に無線電力伝送を行うシステムであって、
     前記端末装置は、前記基地局から送信された前記無線電力伝送用のダミー信号を含む送信信号を受信する無線処理部と、前記無線電力伝送用のダミー信号を含む送信信号を受信した受信信号の電力を、受電電力として出力する電力出力部と、を有する、
    ことを特徴とするシステム。
    A system for wireless power transmission from a base station to a terminal device according to claim 9,
    The terminal device includes a wireless processing unit that receives a transmission signal including the dummy signal for wireless power transmission transmitted from the base station, and a reception signal that receives the transmission signal including the dummy signal for wireless power transmission. a power output unit that outputs power as received power;
    A system characterized by:
PCT/JP2023/005291 2022-09-22 2023-02-15 System that performs communication and wireless power transmission, base station, wireless processing device, and antenna system WO2024062646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022151132A JP7281592B1 (en) 2022-09-22 2022-09-22 Communication and wireless power transmission system, base station, wireless processing device and antenna system
JP2022-151132 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024062646A1 true WO2024062646A1 (en) 2024-03-28

Family

ID=86395918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005291 WO2024062646A1 (en) 2022-09-22 2023-02-15 System that performs communication and wireless power transmission, base station, wireless processing device, and antenna system

Country Status (2)

Country Link
JP (1) JP7281592B1 (en)
WO (1) WO2024062646A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120155344A1 (en) * 2010-12-16 2012-06-21 Qualcomm Incorporated Out-of-band communication on harmonics of the primary carrier in a wireless power system
US20190334386A1 (en) * 2018-04-30 2019-10-31 Ossia Inc. Conformal wave selector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120155344A1 (en) * 2010-12-16 2012-06-21 Qualcomm Incorporated Out-of-band communication on harmonics of the primary carrier in a wireless power system
US20190334386A1 (en) * 2018-04-30 2019-10-31 Ossia Inc. Conformal wave selector

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HASEGAWA NAOKI, NAKAMOTO YUTA, HIRAKAWA TAKASHI, OHTA YOSHICHIKA: "Function Expansion of B5G/6G Mobile Base Stations for Wireless Power Transfer", 2022 ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), IEEE, 29 November 2022 (2022-11-29) - 2 December 2022 (2022-12-02), pages 348 - 349, XP093150065, ISBN: 978-4-902339-56-7, DOI: 10.23919/APMC55665.2022.9999953 *
YUTA NAKAMOTO , NAOKI HASEGAWA , AKIRA HIRAKAWA , YUKI TAKAGI , YOSHIMOTO OTA: "Study on modulation methods suitable for wireless power transmission", PROCEEDINGS OF THE 2020 IEICE GENERAL CONFERENCE (COMMUNICATION 1, no. BI-3-4, 1 March 2022 (2022-03-01), pages SS-21 - SS-22, XP009553382 *

Also Published As

Publication number Publication date
JP2024046006A (en) 2024-04-03
JP7281592B1 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
US11197172B2 (en) Multiple-antenna system for cell-specific and user-specific transmission
TWI578715B (en) Envelope tracking in connection with simultaneous transmission in one or more frequency bands
US10027354B2 (en) Phased array weighting for power efficiency improvement with high peak-to-average power ratio signals
US8515495B2 (en) MIMO communication system
CN106464280B (en) For controlling the method and radio node of wireless radio transmission
US9125183B2 (en) Compact transceiver architecture for achieving device to device (D2D) communication using uplink and downlink carrier frequencies
US11528180B2 (en) System and method for hybrid transmitter
US20230397105A1 (en) Reducing radio unit power consumption
US20240097870A1 (en) 6G ORAN STAR Array With Simultaneous Transmit And Receive
EP3469723A1 (en) Device and method for a wireless communication system
WO2024062646A1 (en) System that performs communication and wireless power transmission, base station, wireless processing device, and antenna system
EP4131776A1 (en) Wireless communication device, system, and signal processing method
KR20210074739A (en) Apparatus and method for transmitting and receiving signals on mutiple bands in wireless communication system
CN115336183A (en) Transceiver phase shifting for beamforming
WO2024053130A1 (en) System for performing wireless power transmission, base station, method, and program
JP2014520492A (en) Multi-input multi-output signal transmission method and multi-input multi-output signal transmission apparatus
WO2024062645A1 (en) System for performing wireless power transmission, base station, method, and program
KR20120106474A (en) Rf repeater and method of processing signal for mobile communication
EP4262083A1 (en) Power amplifier in wireless communication system, and electronic device comprising same
US20230309187A1 (en) Communication apparatus and communication method
CN117692916A (en) Signal processing system, remote radio unit and antenna unit
CN117676937A (en) Base station system, antenna switching method, device and network equipment
KR20120116790A (en) Radio transmitter for digital trs basestation, rf transmitter, and method of linearizing power amplifier
JPH10163955A (en) Cellular mobile communication system base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867778

Country of ref document: EP

Kind code of ref document: A1