WO2024057825A1 - Drone device for coating and coating method - Google Patents

Drone device for coating and coating method Download PDF

Info

Publication number
WO2024057825A1
WO2024057825A1 PCT/JP2023/029886 JP2023029886W WO2024057825A1 WO 2024057825 A1 WO2024057825 A1 WO 2024057825A1 JP 2023029886 W JP2023029886 W JP 2023029886W WO 2024057825 A1 WO2024057825 A1 WO 2024057825A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
angle
drone
coating
drone body
Prior art date
Application number
PCT/JP2023/029886
Other languages
French (fr)
Japanese (ja)
Inventor
薫 津田
悟郎 千財
Original Assignee
ナノフロンティアテクノロジー株式会社
Zenbot株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナノフロンティアテクノロジー株式会社, Zenbot株式会社 filed Critical ナノフロンティアテクノロジー株式会社
Publication of WO2024057825A1 publication Critical patent/WO2024057825A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/60Arrangements for mounting, supporting or holding spraying apparatus
    • B05B15/62Arrangements for supporting spraying apparatus, e.g. suction cups
    • B05B15/625Arrangements for supporting spraying apparatus, e.g. suction cups designed to be placed on the ground
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/60Arrangements for mounting, supporting or holding spraying apparatus
    • B05B15/68Arrangements for adjusting the position of spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides

Definitions

  • the present invention relates to a coating drone device and a coating method.
  • a solar thermal power generation system is known that condenses sunlight and uses it as a heat source to rotate a turbine and generate electricity (see, for example, Patent Document 1).
  • Solar thermal power generation systems are equipped with a heat collector that converts concentrated sunlight into heat, and this heat collector is installed on top of a tall tower 100 to 200 meters above the ground.
  • Pyromark 2500 (registered trademark) is known as a heat collecting film used in this heat collector.
  • the heat collecting film coated on the heat collectors mentioned above is constantly exposed to high temperatures of over 600°C, which causes severe deterioration of the film and requires maintenance such as recoating to maintain power generation efficiency. be.
  • the temperature of the heat collector is lowered and reapplication is performed automatically or manually on a high tower.
  • Another method is to use a drone to apply the coating, but it is difficult to control the flight attitude of conventional drones when applying the coating. Due to the principle of positional movement in a multicopter, it is necessary to tilt the aircraft in order to offset the effects of crosswinds and maintain the three-dimensional position of the aircraft. Additionally, the attitude of the aircraft constantly changes due to pilot operations and position control to maintain a constant distance between the coating surface and the aircraft. For this reason, when the nozzle is fixed to the fuselage, the nozzle constantly swings as the attitude of the fuselage changes, making it difficult to determine the spray direction, making it difficult to perform high-precision coating required for recoating the heat collector.
  • This method is safe and low-cost by combining flight control that automatically keeps the distance of the aircraft to the coating surface constant and spray control that automatically stabilizes the spray direction of the nozzle by compensating for the shaking of the aircraft. This enables high-precision coating.
  • an object of the present invention is to provide a coating drone device and a coating method that can perform maintenance coating safely, at low cost, and with high precision.
  • the coating drone device of the present invention is a coating drone device having a drone body portion and a spray portion including a nozzle portion for spraying a liquid, and the drone body portion has a front-rear tilt angle and a left-right tilt angle of the drone body portion.
  • a position information acquisition unit that acquires the position coordinates of the drone body
  • a distance information acquisition unit that calculates the coating distance from the drone body to the application target; and a drone body.
  • the controller has a control unit that changes the position of the drone body based on the current position information and the coating distance, and changes the nozzle angle of the nozzle unit based on the current tilt angle of the drone body and the coating distance.
  • the present invention has a spray control unit that controls the nozzle angle of the nozzle unit, and the spray control unit controls the deviation of the nozzle injection direction (spray trajectory) caused by the obtained inclination angle and the relationship between the roll center of the drone body and the nozzle unit.
  • the present invention is characterized in that the amount of correction of the nozzle angle in the vertical and horizontal directions is calculated in consideration of the offset of the nozzle position in the vertical and horizontal directions caused by the distance, and the nozzle is tilted by the nozzle angle that takes into account the amount of correction.
  • the spray section connects a container containing a liquid, a pressure feeding device that pumps the liquid and pumps air, and a container and a nozzle to supply the liquid to the nozzle. It includes a first pipe part and a second pipe part that connects the nozzle part and a pressure feeding device to supply air to the nozzle part, and the liquid agent supplied from the first pipe part is transferred to the second pipe part. It is preferable that the air supplied from the nozzle be injected to the front of the nozzle through the nozzle.
  • the coating method of the present invention is a coating method using a coating drone device having a drone body section and a spray section equipped with a nozzle section for spraying a liquid agent, wherein the attitude information acquisition section is configured to tilt the drone device forward and backward.
  • the angle and the tilt angle including the left and right tilt angle are acquired, the position information acquisition unit acquires the position coordinates of the drone body, the distance information acquisition unit detects the current distance from the drone body to the application target, and performs control.
  • the spray control unit changes the position of the drone body based on the current position information and current distance of the drone body and a preset target application distance, and the spray control unit changes the position of the drone body based on the current inclination angle of the drone body and the target application distance.
  • the nozzle angle of the nozzle unit is controlled to be changed based on the distance, and the nozzle angle correction calculation unit calculates the deviation in the nozzle injection direction (spray trajectory) caused by the obtained inclination angle of the drone body and the roll of the drone body.
  • the nozzle angle correction amount in the vertical and horizontal directions is calculated by taking into account the nozzle position offset in the vertical and horizontal directions caused by the distance between the center and the nozzle section, and the spray control section adjusts the nozzle angle based on the nozzle angle correction amount. It is characterized by tilting the nozzle.
  • a liquid agent is stored in a container, and a pressure feeding device pumps the liquid agent contained in the container and also pumps air, and the liquid agent is delivered through a first pipe section connecting the container and a nozzle section.
  • Air is supplied to the nozzle part through a second pipe part that connects the nozzle part and the pressure feeding device, and the liquid agent supplied from the first pipe part is supplied from the second pipe part. It is preferable to inject the air through the nozzle part to the front of the nozzle part.
  • FIG. 1 is an external view showing the configuration of a coating drone device according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of a coating drone device according to an embodiment of the present invention. It is a block diagram showing the composition of the control part which constitutes the drone device for application concerning an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining the coating distance in the coating drone device according to the embodiment of the present invention.
  • FIG. 6 is a diagram for explaining control of the nozzle angle in the vertical direction.
  • FIG. 6 is a diagram for explaining control of the nozzle angle in the left-right direction.
  • It is a schematic diagram showing the composition of the spray part which constitutes the application drone device concerning an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a stabilizer mechanism for controlling the vertical direction of a nozzle, (a) is a diagram in a normal state, (b) is a diagram when the nozzle stabilizer is tilted downward, (c) is a diagram when the nozzle stabilizer is tilted upward.
  • FIG. 4 is a diagram for explaining a stabilizer mechanism for simultaneously controlling the vertical and horizontal directions of a nozzle, (a) is a diagram in a normal state, and (b) is a diagram in which the nozzle stabilizer is panned and tilted in the upper left direction. (c) is a diagram when the nozzle stabilizer is panned and tilted in the lower left direction.
  • FIG. 4 is a diagram for explaining vertical control of the nozzle, (a) is a diagram in a normal state, (b) is a diagram when the nozzle is tilted downward, and (c) is a diagram when the nozzle is tilted upward.
  • FIG. 4 is a diagram for explaining the left-right direction control of the nozzle, (a) is a diagram in a normal state, and (b) is a diagram when the nozzle is rotated (panned) to the left (counterclockwise). , (c) are diagrams when the nozzle is rotated (panned) to the right (clockwise).
  • FIG. 2 is a diagram showing an example of a case where the drone body is tilted to the left or right when viewed from the rear; (a) is a diagram in a normal state, and (b) is a diagram showing a state in which the drone body is tilted to the left side.
  • FIG. 11 is a diagram showing an example of a drone body rotating left and right (yaw axis direction) when viewed from above, where (a) shows the normal state and (b) shows the state rotated counterclockwise. It is a flow chart for explaining processing of flight control of a coating drone device concerning an embodiment of the present invention. It is a flow chart for explaining processing of nozzle angle control of a coating drone device concerning an embodiment of the present invention.
  • Drone device for coating 10 Drone body section 11 Drone main body section 12 Communication section 14 Control section 141 Flight control section 142 Spray control section 1411 Flight command acquisition section 1412 Aircraft position coordinate correction amount calculation section 1413 Coating object distance correction amount calculation section 1414 Aircraft attitude angle correction amount calculation unit 1415 Flight drive signal generation unit 1421 Nozzle control command acquisition unit 1422 Spray distance calculation unit 1423 Nozzle angle correction calculation unit 1424 Nozzle angle correction execution unit 1425 Spray valve/needle opening/closing control execution unit 15 IMU (attitude information acquisition unit) 16 GPS receiver 18 Distance sensor 20 Spray section 201 Air source 2011 Air compressor/air tank 2012 Liquid pressure regulator/pressure gauge 2013 Air pressure regulator/pressure gauge 203 Air tube 205 Ink tank section 2051 Release valve (release valve) 2052 Pressurized ink tank 207 Ink tube 209 Air tube 22 Flight main body part 221 Flight mechanism part 222 Flight drive part 24 Camera 26 Battery 28 Propeller guard 30 Nozzle cover 32 Memory 34 Nozzle unit 341 Nozzle 3411 Ink input part 3412 Air input part 343 Nozzle Act
  • a coating drone device (hereinafter referred to as a "drone device” unless otherwise required) 1 according to the present embodiment will be described with reference to FIGS. 1 to 3.
  • the drone device 1 of this embodiment is used for maintenance such as recoating to prevent aging of a heat collecting film used in a heat collector installed on a high tower 100 to 200 m above the ground.
  • the coating target is not limited to the heat collecting film.
  • the drone device 1 includes a drone body section 10 and a spray section (paint supply device) 20.
  • the drone body section 10 includes a communication section 12, a control section 14, an IMU (Inertial Measurement Unit) body inclination angle acquisition section 15, a GPS (Global Positioning System) reception section 16, a ranging sensor 18, a camera 24, and a flight sensor 18. It has a flight main body section 22 including a mechanism section 221 and a flight drive section 222, a battery 26, and a memory 32.
  • the nozzle unit 34 includes a nozzle 341, a nozzle actuator 343 including a nozzle tilt actuator 3431 and a nozzle pan actuator 3432, and a spray on-off actuator 345.
  • the nozzle stabilizer may be a three-axis stabilizer by adding an actuator to the roll axis.
  • the propeller guard 28 and the nozzle cover 30 are illustrated in FIG. 1 for convenience, these are not essential components of the present invention.
  • the control unit 14 mainly performs flight control of the drone body 11, and in particular, performs flight control to maintain the three-dimensional coordinate position of the drone and at the same time maintain a constant distance from the injection nozzle to the injection target (coating target). It has a control section 141 and a spray control section 142 that controls the spray angle of the nozzle and the opening/closing of the spray valve.
  • the flight control unit 141 includes a flight command acquisition unit 1411, an aircraft position coordinate correction amount calculation unit 1412, a coating target distance correction amount calculation unit 1413, an aircraft attitude angle correction amount calculation unit 1414, and a flight drive signal.
  • the generating unit 1415 generates a drive control signal to the flight drive signal generation unit 1415 according to the flight command acquired by the flight command acquisition unit 1411 and the aircraft attitude correction angle calculated by the aircraft attitude angle correction amount calculation unit 1414.
  • the generated drive control signal is output to a motor section (not shown) in the flight mechanism section 221 via the flight drive section 222 to control the flight drive of the drone device 1.
  • the drone device 1 performs various movement operations such as takeoff, landing, ascent, descent, right turn, left turn, forward movement, backward movement, right shift (right rolling), right yawing, left shift (left rolling), and left yawing. Being able to do so.
  • the tilt angle of the aircraft with respect to the vertical direction is determined by an angle sensor (tilt sensor), an acceleration sensor, and a gyro sensor (for example, IMU15 that combines a 3-axis gyro sensor and an accelerometer). Control can be performed based on the acquired tilt angle information, and the aircraft position can be controlled based on distance measurement sensor and GPS information, etc., which will be described later.
  • the flight mechanism section 221 has a propeller mechanism attached to the tips of a plurality of arms, and the flight drive section 222 sends a drive control signal (drive instruction) from the flight control section 141 to the flight mechanism section 221 to control the drone device 1. drive.
  • the ranging sensor 18 is fixed to the drone body 10, and the optical signal emitted from the light source (LED or laser diode) inside the sensor and the ultrasonic signal emitted from the transducer are used to detect the surrounding three-dimensional model (for example, the object to be coated). (wall surface)), it is reflected, and based on the reflected signal detected by the sensor, the distance measurement sensor 18 calculates and outputs the coating measurement distance to the coating target. Specifically, the actual coating distance from the tip of the nozzle 341 to the coating target (spray distance) is calculated. Information on this coating distance is stored in the memory 32.
  • a geomagnetic sensor In order to detect the direction, altitude (height), and rotation angle of the drone device 1, a geomagnetic sensor, an altitude sensor (an atmospheric pressure sensor or a distance sensor directed downwards), an acceleration sensor, and a gyro sensor are used, respectively. are attached and connected to the control section 14, respectively.
  • the current position (three-dimensional coordinates) of the drone device 1 is determined by position information (latitude, longitude) from the GPS receiver 16 and altitude information (ground or sea level) from a barometric pressure sensor or a ranging sensor directed downwards.
  • the current position is calculated by the body position coordinate correction amount calculation unit 1412 based on the height from Based on the distance information between this calculated current position and the surface to be coated obtained and calculated by the distance sensor 18, the drone device 1 must maintain a position relative to the surface to be coated in order to perform optimal coating.
  • the difference between the preset suitable distance and the current horizontal longitudinal position of the drone device 1 is calculated by the coating target distance correction amount calculation unit 1413, and the horizontal longitudinal position of the drone device 1 is calculated by the coating target distance correction amount calculation unit 1413.
  • the amount of attitude change necessary to correct the distance to the coating target surface is calculated by the aircraft attitude angle correction amount calculation unit 1414, and the flight drive signal generation unit 1415 calculates the flight A command is generated and output from flight control section 141 to flight drive section 222 as a drive control signal.
  • radio waves from mobile phone base stations radio waves from wireless communication (Wi-Fi (registered trademark), Bluetooth (registered trademark), etc.) access points and beacon devices, GPS
  • Wi-Fi registered trademark
  • Bluetooth registered trademark
  • GPS GPS
  • RTK real-time kinematics
  • the spray control unit 142 includes a nozzle control command acquisition unit 1421, a nozzle angle correction calculation unit 1423, a nozzle angle correction execution unit 1424, and a spray valve/needle opening/closing execution unit 1425.
  • the attitude of the drone body 10 is horizontal (not tilted forward, backward, left, or right), and the direction of the nozzle 341 is also horizontal (initial nozzle direction: not tilted vertically but panned horizontally).
  • the correction value of the nozzle angle with respect to the horizontal or vertical direction is determined by the body inclination angle acquisition unit ( It is calculated based on the values (three-dimensional angular velocity and acceleration values) acquired by the IMU 15).
  • the nozzle angle correction calculation unit 1423 is configured to return the inclination of the nozzle to the horizontal direction when the injection direction of the nozzle is inclined with respect to the horizontal direction, and as shown in FIG.
  • a correction value for the nozzle angle for correcting the spray trajectory is calculated by taking into consideration the shift in the vertical and horizontal directions of the nozzle tip position due to the distance offset to the tip.
  • the nozzle angle refers to the vertical angle of the nozzle and the horizontal angle of the nozzle.
  • the nozzle angle correction execution unit 1424 executes nozzle angle control based on the nozzle control command received from the external terminal device via the communication unit 12 and the correction value calculated by the nozzle angle correction calculation unit 1423.
  • the spray valve/needle opening/closing execution unit 1425 executes opening/closing of the spray valve/needle upon receiving an opening/closing instruction signal from an external terminal device via the communication unit 12.
  • the camera 24 is fixed to the drone body 10 and is used to photograph the nozzle, the spray trajectory, and the object to be coated. Activation of the camera 24 begins with activation of the drone device. Images obtained by the camera 24 are transmitted through the communication unit 12 to an external portable device (not shown) of a nozzle operator on the ground.
  • the memory 32 stores various data for controlling the control unit 14, and in this embodiment, the distance setting value between the coating target surface and the nozzle tip, the position (coordinates) of the drone device 1, and the target angle of the nozzle. etc. is stored.
  • the communication unit 12 receives flight control information and spray control information of the drone device 1 from an external portable device (not shown), and supplies the information to the control unit 14.
  • the control unit 14 receives control information via the communication unit 12 and controls the drone device 1 and the nozzle unit.
  • a portable notebook computer a smartphone, a high-performance portable terminal called a tablet, and a radio-controlled transmitter are used, but the present invention is not limited to these, and a dedicated remote transmitter/receiver may also be used.
  • a dedicated application program for processing the various information mentioned above is installed on these portable notebook computers, smartphones, and tablets so that they can connect and communicate with the drone device 1 through the communication section 12. It is fine as long as it is.
  • the battery 26 is mainly a driving power source for the drone device 1, and a battery remaining amount check unit (not shown) detects, for example, the remaining battery amount of the battery 26 of the drone device 1, and the remaining battery amount is determined to meet a predetermined standard. A warning will be issued if the value is less than the value.
  • the nozzle unit 34 of the drone device 1 of this embodiment mainly includes a nozzle actuator 343 and a spray-on-off actuator 345, which are composed of a nozzle 341, a nozzle tilt actuator 3431, and a nozzle pan actuator 3432.
  • the nozzle stabilizer may be a three-axis stabilizer by adding an actuator to the roll axis. Further, the structure of the stabilizer only needs to be able to appropriately correct the spray trajectory, and does not necessarily have to be a two-axis or three-axis stabilizer along the vertical and horizontal directions.
  • the nozzle 341 includes an ink input section 3411 that inputs a liquid agent (liquid paint: for example, an ink paint for forming a heat-collecting film) and an air input section 3412 that inputs air, and discharges (sprays) the liquid agent in the form of a mist. It is designed to be The nozzle 341 may eject the liquid paint radially or linearly.
  • a pressurized ink tank 2052 is connected to the ink input section 3411 via an ink tube 207.
  • An air pressure regulator/pressure gauge 2013 is connected to the air input section 3412 via an air tube 209.
  • the nozzle tilt actuator 3431 has a function of rotating the inclination of the nozzle 341 in the vertical direction (vertical direction).
  • the nozzle pan actuator 3432 has a function of rotating the inclination of the nozzle 341 in the left-right direction (horizontal direction).
  • the spray on/off actuator 345 is for starting/stopping the spraying of the liquid agent (liquid paint) from the nozzle 341.
  • the spray unit 20 of the drone device 1 of this embodiment includes an air compressor/air tank 2011, a hydraulic pressure regulator/pressure gauge 2012, and an air pressure regulator/pressure gauge 2013, as shown in FIGS. 1 and 7. It has an air source 201 consisting of an air source 201, an air tube 203 for a paint route, an ink tank portion 205, an ink tube 207, and an air tube 209 for an air route.
  • the air tube 203, the ink tube 207, and the air tube 209 are tubes that extend in the front-rear direction and have a substantially cylindrical cross section.
  • the ink tank section 205 includes a pressurized ink tank 2052 that accommodates a liquid agent (liquid paint) and a release valve 2051 that reduces the pressure of pressurized air from the pressurized ink tank 2052.
  • the air compressor/air tank 2011 is configured as an air tank filled with air or an air compressor that compresses air to create high-pressure air.
  • the liquid pressure regulator/pressure gauge 2012 includes a valve that adjusts the high-pressure air supplied from the air compressor/air tank 2011 to a predetermined pressure, and a pressure gauge that measures the air pressure applied within the pressurized ink tank 2052. be done.
  • the air pressure regulator/pressure gauge 2013 includes a valve that adjusts high-pressure air supplied from the air compressor/air tank 2011 to a predetermined pressure, and a pressure gauge that measures the air pressure input to the nozzle 341. .
  • the air tube 209 is a tube for sending high-pressure air supplied from the air compressor/air tank 2011 to the air input section 3412 via the air pressure regulator/pressure gauge 2013.
  • the air tube 203 is a tube for sending high-pressure air supplied from the air compressor/air tank 2011 to the pressurized ink tank 2052 via the hydraulic regulator/pressure gauge 2012
  • the ink tube 207 is a tube for sending high-pressure air supplied from the air compressor/air tank 2011 to the pressurized ink tank 2052.
  • This is a tube for delivering the liquid agent (liquid paint) supplied from 2052 to the ink input section 3411.
  • the pressurized ink tank 2052 is equipped with a pressure release valve (release valve) 2051.
  • step S101 the control unit 14 activates the communication unit 12, and communication is started.
  • step S102 the control unit 14 acquires the current 3D position coordinates (three-dimensional coordinates) of the drone device 1 from the GPS reception unit 16.
  • step S103 the control unit 14 calculates the difference (target 3D position difference) between the 3D position coordinates specified by the pilot (target 3D position coordinates) and the current 3D position coordinates.
  • the difference between the current position coordinates and the target 3D position coordinates at that time is calculated, and the difference information, which will be described later, is the target 3D position difference.
  • Control is performed to keep the drone device 1 at the target position based on the difference information of the coating distance.
  • step S104 the control unit 14 refers to the output value of the distance measurement sensor 18 and detects the distance (actually measured distance including offset) between the drone device 1 and the object to be coated.
  • step S105 the control unit 14 calculates an offset distance correction value based on the current tilt angle of the drone body 10 and the distance from the center of gravity (CG) of the drone device 1 to the nozzle tip.
  • step S106 the control unit 14 calculates the difference in the offset distance correction value (target coating distance difference) from the measured distance including the offset, and in order to perform optimal coating, the control unit 14 applies the drone device 1 to the coating target surface.
  • the difference (target coating distance difference) from a preset suitable distance that must be maintained is calculated (see FIG. 4).
  • step S107 the control unit 14 determines whether or not the position of the drone device 1 needs to be corrected. That is, the position of the drone device 1 is determined based on whether there is a target 3D position difference and a target coating distance difference (steps S103, S106), which are the differences between the current 3D position coordinates and the target 3D position coordinates calculated in advance. It is determined whether correction is necessary. Here, if it is determined that correction of the position of the drone device 1 is not necessary, the control unit 14 generates a flight control command based on the calculated target 3D position coordinates of the drone device 1 in step S108. , a flight control command is executed in step S110.
  • a target 3D position difference and a target coating distance difference step S103, S106
  • step S109 the control unit 14 calculates the difference between the target 3D position specified by the pilot and the current position and the preset application target. Correction processing (mixing correction processing) of the position of the drone device 1 is performed based on the target coating distance difference calculated from the difference between the distance to the surface and the current distance.
  • the control unit 14 generates a flight control command based on the target 3D position difference of the drone device 1 subjected to the mixing correction process in step S108, and executes the flight control command in step S110.
  • step S201 the control unit 14 activates the communication unit 12, and communication is started.
  • step S202 a control command for the nozzle spray direction (nozzle direction command) specified by the nozzle operator is obtained, and the control command is analyzed.
  • step S203 the acquired control command is converted into a target nozzle angle (the target nozzle angle is calculated).
  • the paint spraying direction of the nozzle 341 is determined by the deviation of the nozzle spraying direction (spray trajectory) caused by the tilt of the aircraft and the distance between the roll center (center point of aircraft rotation) of the drone body 10 and the nozzle tip.
  • the injection direction is changed by simultaneously correcting the
  • the inclination of the nozzle 341 is calculated based on the deviation between the aircraft inclination angle of the drone device 1 acquired by the IMU 15 and the nozzle injection direction (spray trajectory).
  • a dedicated sensor may also be provided separately.
  • step S204 the IMU 15 detects the body inclination angle of the drone body part 10.
  • step S205 the spray control unit 142 adjusts the target nozzle angle (target coating position) based on the current body inclination angle of the drone body 10 and the target coating distance (distance from the nozzle tip to the coating target).
  • the target nozzle angle can be calculated by applying trigonometric functions (using tan ⁇ and hypotenuse distance) if the current aircraft inclination angle, the distance between the aircraft roll center and the nozzle tip, and the target application distance can be specified.
  • the nozzle angle correction calculation unit 1423 calculates the amount of correction of the nozzle vertical angle in consideration of the offset caused by the detected body inclination angle (see FIG. 8).
  • FIG. 8(a) is a diagram showing a state in which the aircraft is in a horizontal state and the nozzle 341 is not tilted
  • FIG. 8(b) is a diagram showing a state in which the front of the aircraft is tilted downward, and the above calculation is not performed.
  • 8(c) is a diagram showing a state in which the nozzle 341 is tilted upward from the horizontal based on the calculated correction amount
  • FIG. 8(c) shows a state in which the front of the aircraft is tilted upward
  • FIG. 8(a) is a diagram showing a state in which the aircraft is in a horizontal state and the nozzle 341 is not tilted
  • FIG. 8(b) is a diagram showing a state in which the front of the aircraft is tilted downward
  • 8(c) is a diagram showing a state
  • FIG. 4 is a diagram showing a state in which the nozzle 341 is tilted downward from the horizontal based on the correction amount. Note that the angle correction of the nozzle of a two-axis stabilizer replaces the tilt of the aircraft in the longitudinal and horizontal directions (pitch and roll directions) with the tilt of the nozzle in the vertical and horizontal directions (tilt and pan directions). are corrected at the same time.
  • step S206 the nozzle angle correction execution unit 1424 generates a control command for tilting the nozzle by the nozzle angle in consideration of the above-mentioned correction amount, and executes the nozzle angle control command in step S207.
  • FIG. 9 is a diagram for explaining the vertical direction control of the nozzle 341, (a) is a diagram in a normal state, (b) is a diagram when the nozzle 341 is tilted downward, ( c) is a diagram when the nozzle 341 is tilted upward.
  • the nozzle vertical direction angle control shown in FIG. 9(b) is performed when the nozzle 341 is lowered based on the above-mentioned correction amount calculated when the front of the aircraft is tilted upward (see FIG. 8(c)). The tilt is controlled in the direction.
  • the nozzle vertical direction angle control shown in FIG. 9(c) the nozzle 341 is moved upward based on the above-mentioned correction amount calculated when the front of the aircraft is tilted downward (see FIG. 8(b)).
  • the tilt is controlled in the direction.
  • FIG. 12(b) corresponds to FIG. 9(b)
  • FIG. 12(c) corresponds to FIG. 9(c).
  • FIG. 11 is a diagram showing the case where two axes (vertical direction (tilt) and horizontal direction (pan)) are moved simultaneously, but since the tilt control has been described above, it will be omitted, and the following explanation will refer to FIG. 13. The left and right direction control will be explained. Note that when controlling two axes at the same time, the tilt control described above and the pan control described below are performed simultaneously. Although two axes, tilt and pan, are necessary and sufficient for correcting the spray trajectory, the nozzle stabilizer may be a three-axis stabilizer that also controls the roll axis in addition to pan and tilt.
  • FIG. 13 is a diagram for explaining the left-right direction control of the nozzle, (a) is a diagram in a normal state, and (b) is a diagram when the nozzle is rotated to the left (counterclockwise). (c) is a diagram when the nozzle is rotated to the right (clockwise).
  • the nozzle 341 is controlled to rotate in the left direction based on the nozzle angle control command from the nozzle operator (see FIG. 6(b)).
  • the nozzle 341 is controlled to rotate in the right direction based on a nozzle angle control command from the nozzle operator. Note that FIG. 10(b) corresponds to FIG. 13(b), and FIG. 10(c) corresponds to FIG. 13(c).
  • FIG. 14 is a diagram illustrating an example of a case where the drone body is tilted to the left or right (rolling of the drone body), and is a diagram of the drone body seen from the front. Note that the arrow in the figure indicates the direction of movement of the drone body. Due to disturbances, aircraft maneuvering, and control to maintain the aircraft's 3D position coordinates, the aircraft changed from the normal state shown in Figure 14(a) to the state tilted to the left (rolling) as shown in Figure 14(b). In this case, the drone body 10 moves to the left side when viewed from the rear of the drone body, or stops in place if a crosswind is blowing.
  • the drone body 10 changes from the normal state shown in FIG. 14(a) to the state tilted (rolling) to the right side as shown in FIG. 14(c), the drone body 10 is and move to the right, or stay where you are if there is a crosswind.
  • the inclination angle of the drone body 10 is obtained, and the nozzle angle is calculated based on the obtained inclination angle.
  • the amount of correction for the nozzle angle and the offset in the vertical and horizontal directions of the spray trajectory is calculated according to the angle (so as to cancel the inclination), and the operation of the nozzle is controlled based on the amount of correction.
  • FIG. 15 is a diagram showing an example when the aircraft rotates left and right (aircraft yawing), and is a view of the aircraft from above. Due to disturbances, aircraft maneuvering, and control to maintain the aircraft's 3D position coordinates, the normal state shown in Figure 15(a) turned counterclockwise (yawed) as shown in Figure 15(b). If this happens, the aircraft's heading at that time is obtained from the magnetic sensor, and the rotation angle is calculated based on the obtained heading. Then, a correction amount for the yaw of the aircraft is calculated according to the rotation angle, and the operation of the aircraft is controlled based on the correction amount.
  • the coating drone device 1 according to this embodiment has the above configuration and operation, and the effects of the coating drone device 1 according to this embodiment will be described below.
  • the coating drone device 1 includes a drone body section 10 and a spray section 20 that includes a nozzle section that sprays a liquid agent.
  • the drone body section 10 includes an IMU 15 that acquires the tilt angle including the longitudinal tilt angle and the left and right tilt angle of the drone device 1, a GPS receiving section 16 that acquires the position coordinates of the drone body section 10, and an object to be coated from the drone body section 10.
  • the position of the drone body 10 is changed based on the distance measurement sensor 18 that detects the coating distance to the drone body 10, the current position information of the drone body 10, and the coating distance, and the current inclination angle of the drone body 10 is set in advance. It has a control unit 14 that changes the nozzle angle of the nozzle 341 based on the determined coating distance.
  • the control unit 14 includes a spray control unit 142 that controls the nozzle angle of the nozzle 341.
  • the spray control unit 142 takes into consideration the deviation in the nozzle injection direction caused by the obtained inclination angle and the offset in the nozzle position in the vertical and horizontal directions caused by the distance between the roll center of the drone body 10 and the nozzle 341 in the vertical and horizontal directions.
  • the inclination of the drone body 10 required to correct the inclination angle and positional deviation of the drone body 10 caused by disturbances, drifts, etc., and the inclination of the drone body 10 caused by the pilot's operation Even if a deviation in the injection direction of the nozzle 341 occurs, the deviation in the injection direction of the nozzle 341 can be corrected.
  • the nozzle is tilted by the nozzle angle based on the amount of correction of the nozzle angle in the vertical and horizontal directions, taking into account the deviation and offset of the nozzle jet direction caused by the aircraft body tilt angle. It is possible to continue spraying the liquid agent toward the target application target without deviation even when the liquid agent is sprayed.
  • the coating target is a heat collecting film, for example, it is possible to perform high-precision coating without stopping the operation of the power plant, so maintenance coating can be performed safely and at low cost (reducing maintenance costs, etc.). can be carried out
  • the spray unit 20 includes a pressurized ink tank 2052 that accommodates a liquid, an air compressor/air tank 2011 that pumps the liquid and air, and a pressurized ink tank 2052 that contains a liquid.
  • An ink tube 207 connects the nozzle unit 2052 and the nozzle unit 34 to supply liquid to the nozzle unit 34
  • an air tube 209 connects the nozzle unit 34 and the air compressor/air tank 2011 to supply air to the nozzle unit 34.
  • the liquid agent supplied from the ink tube 207 is jetted forward of the nozzle unit 34 via the nozzle unit 34 by air supplied (forced) from the air tube 209.
  • the liquid agent discharged from the nozzle unit 34 of the coating drone device 1 is powerfully sprayed by the forced air, so that it can be targeted even from a predetermined distance away from the surface to be coated. It is possible to spray accurately to the application position.
  • the embodiments of the present invention are not limited to the embodiments described above, and various changes can be made without departing from the gist of the present invention.
  • the present invention can be applied to roofs of private houses, walls of high-rise buildings, etc.

Abstract

[Problem] To provide a drone device for coating and a coating method capable of performing maintenance coating safely and inexpensively. [Solution] The drone body part 10 has an IMU 15 that acquires the tilt angle of a drone device 1, a GPS receiver 16 that acquires the location coordinates of the drone body part 10, a distance sensor 18 that calculates the coating distance from the drone body part 10 to the coating target, and a control unit 14 that changes the position of the drone body part 10 and changes the nozzle angle of a nozzle 341 based on the current tilt angle of the drone body part 10 and the coating distance. The spray control unit 142 that constitutes the control unit 14 computes the discrepancy in the nozzle spray direction arising due to the acquired tilt angle and computes correction of the nozzle angle in the up/down and right/left directions by taking into consideration offset of the nozzle position in the vertical/horizontal directions arising due to the distance between the roll center of the drone body part 10 and the nozzle 341.

Description

塗布用ドローン装置および塗布方法Coating drone device and coating method クロスリファレンスcross reference
 本出願は、2022年9月15日に日本国において出願された特願2022-146939に基づき優先権を主張し、当該出願に記載された内容は全て、参照によりそのまま本明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2022-146939 filed in Japan on September 15, 2022, and all contents described in this application are incorporated herein by reference without modification. .
 本発明は、塗布用ドローン装置および塗布方法に関するものである。 The present invention relates to a coating drone device and a coating method.
 太陽光を集光して熱源として利用してタービンを回して発電する太陽熱発電システムが知られている(例えば、特許文献1を参照)。太陽熱発電システムは集光された太陽光を熱に変える集熱器を備えており、この集熱器は地上100~200mの高いタワーの上に設置されている。この集熱器に用いられる集熱膜としては、Pyromark2500(登録商標)が知られている。 A solar thermal power generation system is known that condenses sunlight and uses it as a heat source to rotate a turbine and generate electricity (see, for example, Patent Document 1). Solar thermal power generation systems are equipped with a heat collector that converts concentrated sunlight into heat, and this heat collector is installed on top of a tall tower 100 to 200 meters above the ground. Pyromark 2500 (registered trademark) is known as a heat collecting film used in this heat collector.
米国公開特許公報US20140123646A1United States Published Patent Publication US20140123646A1
 ところで、上記した集熱器に塗布されている集熱膜は、常に600℃以上の高温にさらされているため膜の劣化が激しく、発電効率を維持するために再塗布等のメンテナンスが必要である。 By the way, the heat collecting film coated on the heat collectors mentioned above is constantly exposed to high temperatures of over 600°C, which causes severe deterioration of the film and requires maintenance such as recoating to maintain power generation efficiency. be.
 メンテナンスを行う場合には、集熱器の温度を下げて、高いタワー上で自動もしくは手動で再塗布を行っている。ドローンで塗布するという方法もあるが、従来のドローンでは塗布の際の飛行姿勢の制御が難しい。マルチコプターにおける位置移動の原理上、横風などの影響を相殺し、機体の3次元の位置を保つためには、機体を傾ける必要が生じる。また、パイロットの操作や、塗布面と機体との距離を一定に保つための位置制御によっても、機体の姿勢は常に変化する。このため、ノズルを機体に固定した場合、機体の姿勢変化と共にノズルも常に揺れてしまい、スプレー方向が定まらず、集熱器の再塗布に必要な高精度塗布が難しい。本方法では、塗布面に対する機体の距離を自動的に一定に保つ飛行制御と、機体の揺れを補正する形でノズルの噴霧方向を自動的にスタビライズするスプレー制御を組み合わせることにより、安全に低コストで、高精度塗布ができる。 When performing maintenance, the temperature of the heat collector is lowered and reapplication is performed automatically or manually on a high tower. Another method is to use a drone to apply the coating, but it is difficult to control the flight attitude of conventional drones when applying the coating. Due to the principle of positional movement in a multicopter, it is necessary to tilt the aircraft in order to offset the effects of crosswinds and maintain the three-dimensional position of the aircraft. Additionally, the attitude of the aircraft constantly changes due to pilot operations and position control to maintain a constant distance between the coating surface and the aircraft. For this reason, when the nozzle is fixed to the fuselage, the nozzle constantly swings as the attitude of the fuselage changes, making it difficult to determine the spray direction, making it difficult to perform high-precision coating required for recoating the heat collector. This method is safe and low-cost by combining flight control that automatically keeps the distance of the aircraft to the coating surface constant and spray control that automatically stabilizes the spray direction of the nozzle by compensating for the shaking of the aircraft. This enables high-precision coating.
 そこで本発明の課題は、安全に低コストで、高精度なメンテナンス塗布を実施することができる塗布用ドローン装置および塗布方法を提供することである。 Therefore, an object of the present invention is to provide a coating drone device and a coating method that can perform maintenance coating safely, at low cost, and with high precision.
 この発明の塗布用ドローン装置は、ドローン機体部と液剤を噴射するノズル部を備えたスプレー部を有する塗布用ドローン装置であって、ドローン機体部は、ドローン機体部の前後傾斜角度および左右傾斜角度を含む傾斜角を取得する姿勢情報取得部と、ドローン機体部の位置座標を取得する位置情報取得部と、ドローン機体部から塗布対象までの塗布距離を算出する距離情報取得部と、ドローン機体部の現在の位置情報と塗布距離に基づいてドローン機体部の位置を変更させ、ドローン機体部の現在の傾斜角と塗布距離に基づいてノズル部のノズル角度を変更させる制御部を有し、制御部はノズル部のノズル角度を制御するスプレー制御部を有し、スプレー制御部は、取得された傾斜角度によって生じるノズル噴射方向(スプレー軌道)のずれと、ドローン機体部のロールセンターとノズル部との距離によって生じる垂直水平方向のノズル位置のオフセットを考慮して上下左右方向におけるノズル角度の補正量を計算し、その補正量を考慮したノズル角度だけノズルを傾かせることを特徴とする。 The coating drone device of the present invention is a coating drone device having a drone body portion and a spray portion including a nozzle portion for spraying a liquid, and the drone body portion has a front-rear tilt angle and a left-right tilt angle of the drone body portion. a position information acquisition unit that acquires the position coordinates of the drone body; a distance information acquisition unit that calculates the coating distance from the drone body to the application target; and a drone body. The controller has a control unit that changes the position of the drone body based on the current position information and the coating distance, and changes the nozzle angle of the nozzle unit based on the current tilt angle of the drone body and the coating distance. has a spray control unit that controls the nozzle angle of the nozzle unit, and the spray control unit controls the deviation of the nozzle injection direction (spray trajectory) caused by the obtained inclination angle and the relationship between the roll center of the drone body and the nozzle unit. The present invention is characterized in that the amount of correction of the nozzle angle in the vertical and horizontal directions is calculated in consideration of the offset of the nozzle position in the vertical and horizontal directions caused by the distance, and the nozzle is tilted by the nozzle angle that takes into account the amount of correction.
 この発明の塗布用ドローン装置において、スプレー部は、液剤を収容する容器と、液剤を圧送するとともに空気を圧送する圧送装置と、容器とノズル部とを接続して液剤を前記ノズル部に供給する第1の管部と、ノズル部と圧送装置とを接続して空気をノズル部に供給する第2の管部とを備え、第1の管部から供給された液剤は、第2の管部から供給された空気によってノズル部を介してノズル部の前方へ噴射されることが好ましい。 In the coating drone device of the present invention, the spray section connects a container containing a liquid, a pressure feeding device that pumps the liquid and pumps air, and a container and a nozzle to supply the liquid to the nozzle. It includes a first pipe part and a second pipe part that connects the nozzle part and a pressure feeding device to supply air to the nozzle part, and the liquid agent supplied from the first pipe part is transferred to the second pipe part. It is preferable that the air supplied from the nozzle be injected to the front of the nozzle through the nozzle.
 この発明の塗布方法は、ドローン機体部と、液剤を噴射するノズル部を備えたスプレー部とを有する塗布用ドローン装置を使用した塗布方法であって、姿勢情報取得部が、ドローン装置の前後傾斜角度および左右傾斜角度を含む傾斜角を取得し、位置情報取得部が、ドローン機体部の位置座標を取得し、距離情報取得部が、ドローン機体部から塗布対象までの現在距離を検出し、制御部が、ドローン機体部の現在の位置情報と現在距離とあらかじめ設定された目標塗布距離に基づいてドローン機体部の位置を変更させ、スプレー制御部が、ドローン機体部の現在の傾斜角と目標塗布距離に基づいてノズル部のノズル角度を変更するよう制御し、ノズル角度補正計算部が、取得されたドローン機体部の傾斜角によって生じるノズル噴射方向(スプレー軌道)のずれと、ドローン機体部のロールセンターとノズル部との距離によって生じる垂直水平方向のノズル位置のオフセットを考慮して上下左右方向におけるノズル角度の補正量を計算し、スプレー制御部が、ノズル角度の補正量を考慮したノズル角度だけノズルを傾かせることを特徴とする。 The coating method of the present invention is a coating method using a coating drone device having a drone body section and a spray section equipped with a nozzle section for spraying a liquid agent, wherein the attitude information acquisition section is configured to tilt the drone device forward and backward. The angle and the tilt angle including the left and right tilt angle are acquired, the position information acquisition unit acquires the position coordinates of the drone body, the distance information acquisition unit detects the current distance from the drone body to the application target, and performs control. The spray control unit changes the position of the drone body based on the current position information and current distance of the drone body and a preset target application distance, and the spray control unit changes the position of the drone body based on the current inclination angle of the drone body and the target application distance. The nozzle angle of the nozzle unit is controlled to be changed based on the distance, and the nozzle angle correction calculation unit calculates the deviation in the nozzle injection direction (spray trajectory) caused by the obtained inclination angle of the drone body and the roll of the drone body. The nozzle angle correction amount in the vertical and horizontal directions is calculated by taking into account the nozzle position offset in the vertical and horizontal directions caused by the distance between the center and the nozzle section, and the spray control section adjusts the nozzle angle based on the nozzle angle correction amount. It is characterized by tilting the nozzle.
 この発明の塗布方法において、液剤を容器に収容し、圧送装置によって容器に収容された液剤を圧送するとともに空気を圧送し、容器とノズル部とを接続する第1の管部を介して液剤をノズル部に供給し、ノズル部と圧送装置とを接続する第2の管部を介して空気をノズル部に供給し、第1の管部から供給されてきた液剤を第2の管部から供給された空気によってノズル部を介してノズル部の前方へ噴射することが好ましい。 In the coating method of the present invention, a liquid agent is stored in a container, and a pressure feeding device pumps the liquid agent contained in the container and also pumps air, and the liquid agent is delivered through a first pipe section connecting the container and a nozzle section. Air is supplied to the nozzle part through a second pipe part that connects the nozzle part and the pressure feeding device, and the liquid agent supplied from the first pipe part is supplied from the second pipe part. It is preferable to inject the air through the nozzle part to the front of the nozzle part.
 本発明によれば、安全に低コストで高精度なメンテナンス塗布を実施することができる塗布用ドローン装置および塗布方法を提供することである。 According to the present invention, it is an object of the present invention to provide a coating drone device and a coating method that can safely perform maintenance coating with high accuracy at low cost.
本発明の実施形態に係る塗布用ドローン装置の構成を示す外観図である。1 is an external view showing the configuration of a coating drone device according to an embodiment of the present invention. 本発明の実施形態に係る塗布用ドローン装置の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of a coating drone device according to an embodiment of the present invention. 本発明の実施形態に係る塗布用ドローン装置を構成する制御部の構成を示すブロック図である。It is a block diagram showing the composition of the control part which constitutes the drone device for application concerning an embodiment of the present invention. 本発明の実施形態に係る塗布用ドローン装置における塗布距離を説明するための図である。FIG. 3 is a diagram for explaining the coating distance in the coating drone device according to the embodiment of the present invention. ノズル角度の上下方向への制御を説明するための図である。FIG. 6 is a diagram for explaining control of the nozzle angle in the vertical direction. ノズル角度の左右方向への制御を説明するための図である。FIG. 6 is a diagram for explaining control of the nozzle angle in the left-right direction. 本発明の実施形態に係る塗布用ドローン装置を構成するスプレー部の構成を示す模式図である。It is a schematic diagram showing the composition of the spray part which constitutes the application drone device concerning an embodiment of the present invention. (a)は機体が水平状態にありノズルも傾き制御されていない状態を示した図であり、(b)は機体前方が下方向に傾いた状態でノズルが上方向に傾き制御されている状態を示した図であり、(c)は機体前方が上方向に傾いた状態でノズルが下方向に傾き制御されている状態を示した図である。(a) is a diagram showing a state in which the aircraft is in a horizontal state and the nozzle is not controlled to tilt, and (b) is a diagram in which the front of the aircraft is tilted downward and the nozzle is controlled to tilt upward. (c) is a diagram showing a state in which the nozzle is controlled to tilt downward while the front of the aircraft is tilted upward. ノズルの上下方向を制御するためのスタビライザー機構を説明するための図であり、(a)は通常状態の図であり、(b)はノズルスタビライザーを下方向にチルトさせた場合の図であり、(c)はノズルスタビライザーを上方向にチルトさせた場合の図である。FIG. 3 is a diagram for explaining a stabilizer mechanism for controlling the vertical direction of a nozzle, (a) is a diagram in a normal state, (b) is a diagram when the nozzle stabilizer is tilted downward, (c) is a diagram when the nozzle stabilizer is tilted upward. ノズルの左右方向を制御するためのスタビライザー機構を説明するための図である。It is a figure for explaining the stabilizer mechanism for controlling the left-right direction of a nozzle. ノズルの上下方向および左右方向を同時に制御するためのスタビライザー機構を説明するための図であり、(a)は通常状態の図であり、(b)はノズルスタビライザーを左上方向にパンとチルトさせた場合の図であり、(c)はノズルスタビライザーを左下方向にパンとチルトさせた場合の図である。FIG. 4 is a diagram for explaining a stabilizer mechanism for simultaneously controlling the vertical and horizontal directions of a nozzle, (a) is a diagram in a normal state, and (b) is a diagram in which the nozzle stabilizer is panned and tilted in the upper left direction. (c) is a diagram when the nozzle stabilizer is panned and tilted in the lower left direction. ノズルの上下方向制御を説明するための図であり、(a)は通常状態の図であり、(b)はノズルを下方向にチルトさせた場合の図であり、(c)はノズルを上方向にチルトさせた場合の図である。FIG. 4 is a diagram for explaining vertical control of the nozzle, (a) is a diagram in a normal state, (b) is a diagram when the nozzle is tilted downward, and (c) is a diagram when the nozzle is tilted upward. It is a figure when it is made to tilt in the direction. ノズルの左右方向制御を説明するための図であり、(a)は通常状態の図であり、(b)はノズルを左方向(反時計回り)に回転(パン)させた場合の図であり、(c)はノズルを右方向(時計回り)に回転(パン)させた場合の図である。FIG. 4 is a diagram for explaining the left-right direction control of the nozzle, (a) is a diagram in a normal state, and (b) is a diagram when the nozzle is rotated (panned) to the left (counterclockwise). , (c) are diagrams when the nozzle is rotated (panned) to the right (clockwise). ドローン機体部を後方から見て左右に傾いた場合の一例を示した図であり、(a)は通常状態の図であり、(b)は機体の左側に傾いた状態を示した図であり、(c)は機体の右側に傾いた状態を示した図である。FIG. 2 is a diagram showing an example of a case where the drone body is tilted to the left or right when viewed from the rear; (a) is a diagram in a normal state, and (b) is a diagram showing a state in which the drone body is tilted to the left side. , (c) is a diagram showing a state in which the aircraft is tilted to the right. ドローン機体部を上から見て左右(ヨー軸方向)に回転した場合の一例を示した図であり、(a)は通常の状態を示す図であり、(b)は反時計回りに回転した状態を示す図である。FIG. 11 is a diagram showing an example of a drone body rotating left and right (yaw axis direction) when viewed from above, where (a) shows the normal state and (b) shows the state rotated counterclockwise. 本発明の実施形態に係る塗布用ドローン装置の飛行制御の処理を説明するためのフローチャートである。It is a flow chart for explaining processing of flight control of a coating drone device concerning an embodiment of the present invention. 本発明の実施形態に係る塗布用ドローン装置のノズル角度制御の処理を説明するためのフローチャートである。It is a flow chart for explaining processing of nozzle angle control of a coating drone device concerning an embodiment of the present invention.
 1 塗布用ドローン装置
 10 ドローン機体部
 11 ドローン本体部
 12 通信部
 14 制御部
 141 飛行制御部
 142 スプレー制御部
 1411 飛行コマンド取得部
 1412 機体位置座標補正量計算部
 1413 塗布対象物距離補正量計算部
 1414 機体姿勢角度補正量計算部 
 1415 飛行駆動信号生成部
 1421 ノズル制御コマンド取得部
 1422 噴霧距離計算部
 1423 ノズル角度補正計算部
 1424 ノズル角度補正実行部
 1425 噴霧バルブ/ニードル開閉制御実行部
 15 IMU(姿勢情報取得部)
 16 GPS受信機
 18 測距センサー
 20 スプレー部
 201 エア源
 2011 エアコンプレッサー/エアタンク
 2012 液圧レギュレータ/圧力計
 2013 エア圧レギュレータ/圧力計
 203 エアチューブ
 205 インクタンク部
 2051 開放バルブ(開放弁)
 2052 加圧式インクタンク
 207 インクチューブ
 209 エアチューブ
 22 飛行本体部
 221 飛行機構部
 222 飛行駆動部
 24 カメラ
 26 バッテリー
 28 プロペラガード
 30 ノズルカバー
 32 メモリ
 34 ノズルユニット
 341 ノズル
 3411 インク入力部
 3412 エア入力部
 343 ノズルアクチュエータ
 3431 ノズルチルトアクチュエータ
 3432 ノズルパンアクチュエータ
 345 スプレーオンオフアクチュエータ
1 Drone device for coating 10 Drone body section 11 Drone main body section 12 Communication section 14 Control section 141 Flight control section 142 Spray control section 1411 Flight command acquisition section 1412 Aircraft position coordinate correction amount calculation section 1413 Coating object distance correction amount calculation section 1414 Aircraft attitude angle correction amount calculation unit
1415 Flight drive signal generation unit 1421 Nozzle control command acquisition unit 1422 Spray distance calculation unit 1423 Nozzle angle correction calculation unit 1424 Nozzle angle correction execution unit 1425 Spray valve/needle opening/closing control execution unit 15 IMU (attitude information acquisition unit)
16 GPS receiver 18 Distance sensor 20 Spray section 201 Air source 2011 Air compressor/air tank 2012 Liquid pressure regulator/pressure gauge 2013 Air pressure regulator/pressure gauge 203 Air tube 205 Ink tank section 2051 Release valve (release valve)
2052 Pressurized ink tank 207 Ink tube 209 Air tube 22 Flight main body part 221 Flight mechanism part 222 Flight drive part 24 Camera 26 Battery 28 Propeller guard 30 Nozzle cover 32 Memory 34 Nozzle unit 341 Nozzle 3411 Ink input part 3412 Air input part 343 Nozzle Actuator 3431 Nozzle tilt actuator 3432 Nozzle pan actuator 345 Spray on-off actuator
 以下、本発明に係る塗布用ドローン装置の実施形態(実施例)の一例について図面を参照しながら詳細に説明する。 Hereinafter, an example of an embodiment (example) of a coating drone device according to the present invention will be described in detail with reference to the drawings.
 以下、本実施形態にかかる塗布用ドローン装置(以下、特に区別する必要がなければ「ドローン装置」と呼ぶ。)1の構成について図1~図3を参照して説明する。なお、本実施形態のドローン装置1は、地上100~200mの高いタワーの上に設置されている集熱器に用いられる集熱膜の経年劣化に対する再塗布等のメンテナンスに利用され、再塗布対象を集熱膜であるものとして説明するが、本発明の特徴はドローン装置の機体飛行制御およびスプレー制御にあるので塗布対象は集熱膜に限定されない。 Hereinafter, the configuration of a coating drone device (hereinafter referred to as a "drone device" unless otherwise required) 1 according to the present embodiment will be described with reference to FIGS. 1 to 3. Note that the drone device 1 of this embodiment is used for maintenance such as recoating to prevent aging of a heat collecting film used in a heat collector installed on a high tower 100 to 200 m above the ground. will be described assuming that it is a heat collecting film, but since the feature of the present invention lies in the aircraft flight control and spray control of a drone device, the coating target is not limited to the heat collecting film.
[ドローン装置の構成]
 以下に、ドローン装置1の構成について詳細に説明する。ドローン装置1は、ドローン機体部10およびスプレー部(塗料供給装置)20を有して構成されている。ドローン機体部10は、通信部12、制御部14、IMU(Inertial Measurement Unit:慣性計測装置)機体傾斜角度取得部15、GPS(Global Positioning System)受信部16、測距センサー18、カメラ24、飛行機構部221および飛行駆動部222を備えた飛行本体部22、バッテリー26、およびメモリ32を有している。ノズルユニット34は、ノズル341、ノズルチルトアクチュエータ3431とノズルパンアクチュエータ3432を含むノズルアクチュエータ343およびスプレーオンオフアクチュエータ345を有して構成されている。なお、ノズルのスタビライザーは、ロール軸にアクチュエーターを追加し、3軸スタビライザーとしてもよい。また、図1には便宜上プロペラガード28とノズルカバー30が図示されているが、これらは本発明の必須構成要件ではない。
[Configuration of drone device]
Below, the configuration of the drone device 1 will be explained in detail. The drone device 1 includes a drone body section 10 and a spray section (paint supply device) 20. The drone body section 10 includes a communication section 12, a control section 14, an IMU (Inertial Measurement Unit) body inclination angle acquisition section 15, a GPS (Global Positioning System) reception section 16, a ranging sensor 18, a camera 24, and a flight sensor 18. It has a flight main body section 22 including a mechanism section 221 and a flight drive section 222, a battery 26, and a memory 32. The nozzle unit 34 includes a nozzle 341, a nozzle actuator 343 including a nozzle tilt actuator 3431 and a nozzle pan actuator 3432, and a spray on-off actuator 345. Note that the nozzle stabilizer may be a three-axis stabilizer by adding an actuator to the roll axis. Further, although the propeller guard 28 and the nozzle cover 30 are illustrated in FIG. 1 for convenience, these are not essential components of the present invention.
[ドローン本体部11を構成する各部の説明]
 制御部14は、主にドローン本体部11の飛行制御を行い、特にドローンの3次元座標位置を保つと同時に噴射ノズルから噴射対象(塗布対象)までの距離を一定に保つように飛行制御する飛行制御部141と、ノズルの噴射角度や噴霧バルブの開閉に関する制御を行うスプレー制御部142を有する。
[Description of each part constituting the drone main body 11]
The control unit 14 mainly performs flight control of the drone body 11, and in particular, performs flight control to maintain the three-dimensional coordinate position of the drone and at the same time maintain a constant distance from the injection nozzle to the injection target (coating target). It has a control section 141 and a spray control section 142 that controls the spray angle of the nozzle and the opening/closing of the spray valve.
 飛行制御部141は、図3に示すように、飛行コマンド取得部1411、機体位置座標補正量計算部1412、塗布対象物距離補正量計算部1413、機体姿勢角度補正量計算部1414、飛行駆動信号生成部1415を有し、飛行コマンド取得部1411にて取得した飛行コマンドと、機体姿勢角度補正量計算部1414によって算出された機体姿勢補正角度に応じ、飛行駆動信号生成部1415に駆動制御信号を生成させ、生成された駆動制御信号を飛行機構部221内のモータ部(図示せず)に飛行駆動部222を介して出力させて、ドローン装置1の飛行駆動を制御する。これによりドローン装置1は、離陸、着陸、上昇、下降、右旋回、左旋回、前進、後進、右シフト(右ローリング)、右ヨーイング、左シフト(左ローリング)、左ヨーイングなどの各種移動動作をすることができるようにされている。なお、右シフト、左シフトによる機体姿勢制御については、機体の鉛直方向に対する傾き角を角度センサー(傾斜センサー)、加速度センサー、ジャイロセンサー(例えば3軸のジャイロセンサーと加速度計を組み合わせたIMU15)によって取得し、取得された傾き角の情報に基づいて制御できるようにされ、機体位置制御については後述する測距センサーおよびGPS情報等に基づいて制御できるようにされている。 As shown in FIG. 3, the flight control unit 141 includes a flight command acquisition unit 1411, an aircraft position coordinate correction amount calculation unit 1412, a coating target distance correction amount calculation unit 1413, an aircraft attitude angle correction amount calculation unit 1414, and a flight drive signal. The generating unit 1415 generates a drive control signal to the flight drive signal generation unit 1415 according to the flight command acquired by the flight command acquisition unit 1411 and the aircraft attitude correction angle calculated by the aircraft attitude angle correction amount calculation unit 1414. The generated drive control signal is output to a motor section (not shown) in the flight mechanism section 221 via the flight drive section 222 to control the flight drive of the drone device 1. As a result, the drone device 1 performs various movement operations such as takeoff, landing, ascent, descent, right turn, left turn, forward movement, backward movement, right shift (right rolling), right yawing, left shift (left rolling), and left yawing. Being able to do so. In addition, regarding the aircraft attitude control by right shift and left shift, the tilt angle of the aircraft with respect to the vertical direction is determined by an angle sensor (tilt sensor), an acceleration sensor, and a gyro sensor (for example, IMU15 that combines a 3-axis gyro sensor and an accelerometer). Control can be performed based on the acquired tilt angle information, and the aircraft position can be controlled based on distance measurement sensor and GPS information, etc., which will be described later.
 飛行機構部221は複数のアームの先端にプロペラ機構が取り付けられたものであり、飛行駆動部222は飛行機構部221に飛行制御部141からの駆動制御信号(駆動指示)を送りドローン装置1を駆動させる。 The flight mechanism section 221 has a propeller mechanism attached to the tips of a plurality of arms, and the flight drive section 222 sends a drive control signal (drive instruction) from the flight control section 141 to the flight mechanism section 221 to control the drone device 1. drive.
 測距センサー18は、ドローン機体部10に固定され、センサー内部の光源(LEDやレーザダイオード)から照射された光信号やトランスデューサーから発せられた超音波信号が、周辺立体モデル(例えば、塗布対象(壁面))にあたると反射され、センサーで感知された反射信号に基づいて測距センサー18から塗布対象までの塗布計測距離を算出し出力する。具体的には、測距センサー18から塗布対象までの塗布計測距離とノズル341の先端から測距センサー18までの距離の差分に基づいてノズル341の先端から塗布対象までの実際の塗布距離(噴霧距離)が算出される。この塗布距離の情報はメモリ32に記憶される。なお、図示しないがドローン装置1の方位、高度(高さ)および回転角度を検出するためにそれぞれ地磁気センサー、高度センサー(気圧センサー又は機体下方に向けられた測距センサー)、加速度センサーおよびジャイロセンサーが取り付けられ、それぞれ制御部14に接続されている。 The ranging sensor 18 is fixed to the drone body 10, and the optical signal emitted from the light source (LED or laser diode) inside the sensor and the ultrasonic signal emitted from the transducer are used to detect the surrounding three-dimensional model (for example, the object to be coated). (wall surface)), it is reflected, and based on the reflected signal detected by the sensor, the distance measurement sensor 18 calculates and outputs the coating measurement distance to the coating target. Specifically, the actual coating distance from the tip of the nozzle 341 to the coating target (spray distance) is calculated. Information on this coating distance is stored in the memory 32. Although not shown, in order to detect the direction, altitude (height), and rotation angle of the drone device 1, a geomagnetic sensor, an altitude sensor (an atmospheric pressure sensor or a distance sensor directed downwards), an acceleration sensor, and a gyro sensor are used, respectively. are attached and connected to the control section 14, respectively.
 ここで、ドローン装置1の現在位置(3次元座標)は、GPS受信部16からの位置情報(緯度、経度)や気圧センサーまたは機体下方に向けられた測距センサーからの高度情報(地上又は海面からの高さ)に基づいて機体位置座標補正量計算部1412によって算出され、算出された現在位置はメモリ32に記憶される。この算出された現在位置と、測距センサー18で取得・計算した塗布対象面との距離情報を元に、最適な塗布を行うために、塗布対象面に対しドローン装置1が保たなければならない、あらかじめ設定された好適な距離と、現在のドローン装置1の水平前後方向位置の差分(目標噴霧距離差分)が塗布対象物距離補正量計算部1413によって算出され、ドローン装置1の前後方向の位置が、塗布対象面に対して好適な距離となるように修正する為に必要となる姿勢変化量が機体姿勢角度補正量計算部1414によって計算され、飛行駆動信号生成部1415によってこれらを総合した飛行コマンドが生成され、飛行制御部141から飛行駆動部222へ駆動制御信号として出力される。なお、より正確な位置情報を得るために、携帯電話基地局からの電波や、無線通信(Wi-Fi(登録商標)、ブルートゥース(登録商標)等)のアクセスポイントやビーコン装置からの電波、GPSの座標情報を高精度に補正するRTK(リアルタイム・キネマティック)を用いて現在位置を検出するようにしてもよい。 Here, the current position (three-dimensional coordinates) of the drone device 1 is determined by position information (latitude, longitude) from the GPS receiver 16 and altitude information (ground or sea level) from a barometric pressure sensor or a ranging sensor directed downwards. The current position is calculated by the body position coordinate correction amount calculation unit 1412 based on the height from Based on the distance information between this calculated current position and the surface to be coated obtained and calculated by the distance sensor 18, the drone device 1 must maintain a position relative to the surface to be coated in order to perform optimal coating. The difference between the preset suitable distance and the current horizontal longitudinal position of the drone device 1 (target spray distance difference) is calculated by the coating target distance correction amount calculation unit 1413, and the horizontal longitudinal position of the drone device 1 is calculated by the coating target distance correction amount calculation unit 1413. However, the amount of attitude change necessary to correct the distance to the coating target surface is calculated by the aircraft attitude angle correction amount calculation unit 1414, and the flight drive signal generation unit 1415 calculates the flight A command is generated and output from flight control section 141 to flight drive section 222 as a drive control signal. In addition, in order to obtain more accurate location information, radio waves from mobile phone base stations, radio waves from wireless communication (Wi-Fi (registered trademark), Bluetooth (registered trademark), etc.) access points and beacon devices, GPS The current position may be detected using RTK (real-time kinematics) that corrects coordinate information with high precision.
 スプレー制御部142は、図3に示すようにノズル制御コマンド取得部1421、ノズル角度補正計算部1423、ノズル角度補正実行部1424および噴霧バルブ/ニードル開閉実行部1425を有する。例えば最初にドローン機体部10の姿勢が水平状態(前後左右に傾いていない状態)であってノズル341の方向も水平方向(初期ノズル方向:上下方向にチルトしておらず左右方向にパンしていない状態)である場合で、その後ドローン機体部10の姿勢が水平状態でなくなり、ドローン機体部10の姿勢が変化したときの水平方向または鉛直方向に対するノズル角度の補正値は機体傾斜角度取得部(IMU15)で取得された値(3次元の角速度と加速度の値)を基に算出される。ノズル角度補正計算部1423は、ノズルの噴射方向が水平に対して傾斜していた場合にノズルの傾斜を水平方向に戻すため、および図8に示すように、ドローン機体部10のロールセンターからノズル先端までの距離オフセットに起因するノズル先端位置の上下左右方向のシフトを加味(考慮)し、スプレー軌道を補正するためのノズル角度の補正値を演算する。 As shown in FIG. 3, the spray control unit 142 includes a nozzle control command acquisition unit 1421, a nozzle angle correction calculation unit 1423, a nozzle angle correction execution unit 1424, and a spray valve/needle opening/closing execution unit 1425. For example, initially, the attitude of the drone body 10 is horizontal (not tilted forward, backward, left, or right), and the direction of the nozzle 341 is also horizontal (initial nozzle direction: not tilted vertically but panned horizontally). When the attitude of the drone body 10 is no longer horizontal and the attitude of the drone body 10 changes, the correction value of the nozzle angle with respect to the horizontal or vertical direction is determined by the body inclination angle acquisition unit ( It is calculated based on the values (three-dimensional angular velocity and acceleration values) acquired by the IMU 15). The nozzle angle correction calculation unit 1423 is configured to return the inclination of the nozzle to the horizontal direction when the injection direction of the nozzle is inclined with respect to the horizontal direction, and as shown in FIG. A correction value for the nozzle angle for correcting the spray trajectory is calculated by taking into consideration the shift in the vertical and horizontal directions of the nozzle tip position due to the distance offset to the tip.
 ここで、ノズル角度とは、ノズルの上下方向角度やノズルの左右方向角度をいう。以降、上下方向角度と左右方向角度を区別するときは「ノズル上下方向角度」、「ノズル左右方向角度」と表現し、区別しないときは単に「ノズル角度」と呼ぶ。ノズル角度補正実行部1424は、通信部12を介して外部端末装置から受け取るノズル制御コマンドと、ノズル角度補正計算部1423で計算された補正値に基づいてノズル角度の制御を実行する。噴霧バルブ/ニードル開閉実行部1425は、噴霧バルブ/ニードルの開閉を、通信部12を介して外部端末装置からの開閉指示信号を受けて実行する。 Here, the nozzle angle refers to the vertical angle of the nozzle and the horizontal angle of the nozzle. Hereinafter, when the vertical angle and the horizontal angle are to be distinguished, they will be expressed as "nozzle vertical angle" and "nozzle horizontal angle", and when not distinguished, they will simply be referred to as "nozzle angle". The nozzle angle correction execution unit 1424 executes nozzle angle control based on the nozzle control command received from the external terminal device via the communication unit 12 and the correction value calculated by the nozzle angle correction calculation unit 1423. The spray valve/needle opening/closing execution unit 1425 executes opening/closing of the spray valve/needle upon receiving an opening/closing instruction signal from an external terminal device via the communication unit 12.
 カメラ24は、ドローン機体部10に固定され、ノズル、スプレー軌道および塗布対象物を撮影するためのものである。カメラ24の起動はドローン装置の起動にて開始される。カメラ24の撮像により得られた画像は、通信部12を通じて地上のノズルオペレーターの外部携帯装置(図示せず)へ伝送される。 The camera 24 is fixed to the drone body 10 and is used to photograph the nozzle, the spray trajectory, and the object to be coated. Activation of the camera 24 begins with activation of the drone device. Images obtained by the camera 24 are transmitted through the communication unit 12 to an external portable device (not shown) of a nozzle operator on the ground.
 メモリ32は、制御部14の制御のための各種データを記憶するもので、本実施の形態では、塗布対象面とノズル先端の距離設定値、ドローン装置1の位置(座標)やノズルの目標角度等の情報を記憶する。 The memory 32 stores various data for controlling the control unit 14, and in this embodiment, the distance setting value between the coating target surface and the nozzle tip, the position (coordinates) of the drone device 1, and the target angle of the nozzle. etc. is stored.
 通信部12は、外部携帯装置(図示せず)からのドローン装置1の飛行制御情報およびスプレー制御情報を受信して、制御部14に供給する。制御部14は、通信部12を介して制御情報を受信し、ドローン装置1およびノズルユニットを制御する。 The communication unit 12 receives flight control information and spray control information of the drone device 1 from an external portable device (not shown), and supplies the information to the control unit 14. The control unit 14 receives control information via the communication unit 12 and controls the drone device 1 and the nozzle unit.
 なお、外部携帯装置としては、携帯型ノートパソコンや、スマートフォン、タブレットと呼ばれる高機能携帯端末およびラジコン送信機を用いるが、これに限定されず専用のリモート送受信機を用いてもよい。また、これら携帯型ノートパソコンや、スマートフォン、タブレットには、上記の各種情報の処理を行うための専用のアプリケーションプログラムがインストールされ、通信部12を通じて、ドローン装置1と接続して通信ができるようになっていればよい。 Note that as the external portable device, a portable notebook computer, a smartphone, a high-performance portable terminal called a tablet, and a radio-controlled transmitter are used, but the present invention is not limited to these, and a dedicated remote transmitter/receiver may also be used. In addition, a dedicated application program for processing the various information mentioned above is installed on these portable notebook computers, smartphones, and tablets so that they can connect and communicate with the drone device 1 through the communication section 12. It is fine as long as it is.
 バッテリー26は、主にドローン装置1の駆動電源であり、バッテリー残量チェック部(図示せず)によって、例えばドローン装置1のバッテリー26のバッテリー残量を検出して、バッテリー残量が所定の基準値未満の場合に警告等が出されるようになっている。 The battery 26 is mainly a driving power source for the drone device 1, and a battery remaining amount check unit (not shown) detects, for example, the remaining battery amount of the battery 26 of the drone device 1, and the remaining battery amount is determined to meet a predetermined standard. A warning will be issued if the value is less than the value.
[ノズルユニット34を構成する各部の説明]
 図1、図9~図13に示すように、 本形態のドローン装置1のノズルユニット34は、主に、ノズル341、ノズルチルトアクチュエータ3431およびノズルパンアクチュエータ3432からなるノズルアクチュエータ343、スプレーオンオフアクチュエータ345を有して構成されているが、ノズルのスタビライザーは、ロール軸にアクチュエーターを追加し、3軸スタビライザーとしてもよい。また、スタビライザーの構造はスプレー軌道を適正に補正できればよく、必ずしも垂直水平方向に沿った2軸・3軸スタビライザーでなくともよい。
[Description of each part constituting the nozzle unit 34]
As shown in FIGS. 1 and 9 to 13, the nozzle unit 34 of the drone device 1 of this embodiment mainly includes a nozzle actuator 343 and a spray-on-off actuator 345, which are composed of a nozzle 341, a nozzle tilt actuator 3431, and a nozzle pan actuator 3432. However, the nozzle stabilizer may be a three-axis stabilizer by adding an actuator to the roll axis. Further, the structure of the stabilizer only needs to be able to appropriately correct the spray trajectory, and does not necessarily have to be a two-axis or three-axis stabilizer along the vertical and horizontal directions.
 ノズル341は、液剤(液体塗料:例えば集熱膜を成膜するためのインク塗料)を入力するインク入力部3411とエアを入力するエア入力部3412を備え、液剤が霧状で吐出(噴霧)されるように設計されている。ノズル341は、液体塗料を放射状に吐出してもよく、直線状に吐出してもよい。インク入力部3411にはインクチューブ207を介して加圧式インクタンク2052が接続されている。エア入力部3412にはエアチューブ209を介してエア圧レギュレータ/圧力計2013が接続されている。 The nozzle 341 includes an ink input section 3411 that inputs a liquid agent (liquid paint: for example, an ink paint for forming a heat-collecting film) and an air input section 3412 that inputs air, and discharges (sprays) the liquid agent in the form of a mist. It is designed to be The nozzle 341 may eject the liquid paint radially or linearly. A pressurized ink tank 2052 is connected to the ink input section 3411 via an ink tube 207. An air pressure regulator/pressure gauge 2013 is connected to the air input section 3412 via an air tube 209.
 ノズルチルトアクチュエータ3431は、ノズル341の傾きを上下方向(垂直方向)に回転させる機能を有する。ノズルパンアクチュエータ3432は、ノズル341の傾きを左右方向(水平方向)に回転させる機能を有する。スプレーオンオフアクチュエータ345 は、ノズル341からの液剤(液体塗料)の噴射の開始/停止を行わせるためのものである。 The nozzle tilt actuator 3431 has a function of rotating the inclination of the nozzle 341 in the vertical direction (vertical direction). The nozzle pan actuator 3432 has a function of rotating the inclination of the nozzle 341 in the left-right direction (horizontal direction). The spray on/off actuator 345 is for starting/stopping the spraying of the liquid agent (liquid paint) from the nozzle 341.
[スプレー部20を構成する各部の説明]
 図2に示すように、 本形態のドローン装置1のスプレー部20は、図1および図7に示すように、エアコンプレッサー/エアタンク2011、液圧レギュレータ/圧力計2012およびエア圧レギュレータ/圧力計2013からなるエア源201、塗料ルート用のエアチューブ203、インクタンク部205、インクチューブ207、エアルート用のエアチューブ209を有している。エアチューブ203、インクチューブ207およびエアチューブ209は前後方向に延びる断面略円筒形状のチューブである。
[Description of each part constituting the spray section 20]
As shown in FIG. 2, the spray unit 20 of the drone device 1 of this embodiment includes an air compressor/air tank 2011, a hydraulic pressure regulator/pressure gauge 2012, and an air pressure regulator/pressure gauge 2013, as shown in FIGS. 1 and 7. It has an air source 201 consisting of an air source 201, an air tube 203 for a paint route, an ink tank portion 205, an ink tube 207, and an air tube 209 for an air route. The air tube 203, the ink tube 207, and the air tube 209 are tubes that extend in the front-rear direction and have a substantially cylindrical cross section.
 インクタンク部205は、液剤(液体塗料)を収容する加圧式インクタンク2052と加圧式インクタンク2052からの加圧されたエアの減圧を行う開放バルブ(開放弁)2051とを有して構成されている。エアコンプレッサー/エアタンク2011は、エア(空気)が充填されたエアタンクまたは空気を圧縮して高圧エアを作るエアコンプレッサーとして構成されている。液圧レギュレータ/圧力計2012は、エアコンプレッサー/エアタンク2011から供給される高圧のエアを所定の圧力に調整するバルブと加圧式インクタンク2052内にかかるエア圧力を計測する圧力計とを含んで構成される。エア圧レギュレータ/圧力計2013は、エアコンプレッサー/エアタンク2011から供給される高圧のエアを所定の圧力に調整するバルブとノズル341に入力されるエア圧力を計測する圧力計とを含んで構成される。 The ink tank section 205 includes a pressurized ink tank 2052 that accommodates a liquid agent (liquid paint) and a release valve 2051 that reduces the pressure of pressurized air from the pressurized ink tank 2052. ing. The air compressor/air tank 2011 is configured as an air tank filled with air or an air compressor that compresses air to create high-pressure air. The liquid pressure regulator/pressure gauge 2012 includes a valve that adjusts the high-pressure air supplied from the air compressor/air tank 2011 to a predetermined pressure, and a pressure gauge that measures the air pressure applied within the pressurized ink tank 2052. be done. The air pressure regulator/pressure gauge 2013 includes a valve that adjusts high-pressure air supplied from the air compressor/air tank 2011 to a predetermined pressure, and a pressure gauge that measures the air pressure input to the nozzle 341. .
 エアチューブ209は、エアコンプレッサー/エアタンク2011から供給される高圧のエアをエア圧レギュレータ/圧力計2013を介してエア入力部3412に送出するためのチューブである。エアチューブ203は、エアコンプレッサー/エアタンク2011から供給される高圧のエアを液圧レギュレータ/圧力計2012を介して加圧式インクタンク2052に送出するためのチューブであり、インクチューブ207は加圧式インクタンク2052から供給される液剤(液体塗料)をインク入力部3411に送出するためのチューブである。また、加圧式インクタンク2052には圧開放バルブ(開放弁)2051が備わっている。 The air tube 209 is a tube for sending high-pressure air supplied from the air compressor/air tank 2011 to the air input section 3412 via the air pressure regulator/pressure gauge 2013. The air tube 203 is a tube for sending high-pressure air supplied from the air compressor/air tank 2011 to the pressurized ink tank 2052 via the hydraulic regulator/pressure gauge 2012, and the ink tube 207 is a tube for sending high-pressure air supplied from the air compressor/air tank 2011 to the pressurized ink tank 2052. This is a tube for delivering the liquid agent (liquid paint) supplied from 2052 to the ink input section 3411. Further, the pressurized ink tank 2052 is equipped with a pressure release valve (release valve) 2051.
[ドローン装置1の制御部14の処理]
 以下、本実施形態にかかるドローン装置1の制御部14の処理について図4~図17を参照して説明する。
[Processing of the control unit 14 of the drone device 1]
The processing of the control unit 14 of the drone device 1 according to this embodiment will be described below with reference to FIGS. 4 to 17.
<ドローン装置1の飛行制御(機体姿勢制御)>
 以下に、図16のフローチャートを参照してドローン装置の飛行制御について説明する。ドローン装置1の起動が開始されると、ステップS101において、制御部14が通信部12を起動させ、通信が開始される。ステップS102において、制御部14は、GPS受信部16からドローン装置1の現在の3D位置座標(3次元座標)を取得する。次に、ステップS103において、制御部14は、パイロットが指定する3D位置座標(目標3D位置座標)と現在の3D位置座標との差分(目標3D位置差分)を計算する。すなわち、ドローン装置1の現在の3D位置座標が目標3D位置座標とは相違する場合にその時の現在位置座標と目標3D位置座標との差分をとって、その差分情報である目標3D位置差分と後述する塗布距離の差分情報に基づいてドローン装置1を目標位置にとどまらせるための制御が行われる。
<Flight control of drone device 1 (aircraft attitude control)>
Below, flight control of the drone device will be explained with reference to the flowchart of FIG. 16. When activation of the drone device 1 is started, in step S101, the control unit 14 activates the communication unit 12, and communication is started. In step S102, the control unit 14 acquires the current 3D position coordinates (three-dimensional coordinates) of the drone device 1 from the GPS reception unit 16. Next, in step S103, the control unit 14 calculates the difference (target 3D position difference) between the 3D position coordinates specified by the pilot (target 3D position coordinates) and the current 3D position coordinates. That is, when the current 3D position coordinates of the drone device 1 are different from the target 3D position coordinates, the difference between the current position coordinates and the target 3D position coordinates at that time is calculated, and the difference information, which will be described later, is the target 3D position difference. Control is performed to keep the drone device 1 at the target position based on the difference information of the coating distance.
 次に、ステップS104において、制御部14は、測距センサー18の出力値を参照し、ドローン装置1と塗布対象物との距離(オフセット込みの実測距離)を検知する。次に、ステップS105において、制御部14は、ドローン機体部10の現在の傾き角度とドローン装置1の重心(CG)からノズル先端までの距離をもとにオフセット距離補正値を算出する。次に、制御部14は、ステップS106において、オフセット込みの計測距離からオフセット距離補正値の差分(目標塗布距離差分)を計算し、最適な塗布を行うために、塗布対象面に対しドローン装置1が保たなければならない、あらかじめ設定された好適な距離との差分(目標塗布距離差分)を算出する(図4参照)。 Next, in step S104, the control unit 14 refers to the output value of the distance measurement sensor 18 and detects the distance (actually measured distance including offset) between the drone device 1 and the object to be coated. Next, in step S105, the control unit 14 calculates an offset distance correction value based on the current tilt angle of the drone body 10 and the distance from the center of gravity (CG) of the drone device 1 to the nozzle tip. Next, in step S106, the control unit 14 calculates the difference in the offset distance correction value (target coating distance difference) from the measured distance including the offset, and in order to perform optimal coating, the control unit 14 applies the drone device 1 to the coating target surface. The difference (target coating distance difference) from a preset suitable distance that must be maintained is calculated (see FIG. 4).
 次に、ステップS107において、制御部14は、ドローン装置1の位置の補正が必要か否かを判定する。すなわち、現在の3D位置座標とあらかじめ計算された目標3D位置座標との差分である目標3D位置差分および目標塗布距離差分(ステップS103,S106)があるか否かに基づいてドローン装置1の位置の補正の要否が判定される。ここで、ドローン装置1の位置の補正が必要でないと判定された場合には、制御部14は、ステップS108において上記計算されたドローン装置1の目標3D位置座標に基づいて飛行制御コマンドを生成し、ステップS110において飛行制御コマンドを実行する。一方、ドローン装置1の位置の補正が必要であると判定された場合には、ステップS109において、制御部14は、パイロットが指定した目標3D位置と現在位置との差分およびあらかじめ設定された塗布対象面との距離と現在の距離との差分から算出した目標塗布距離差分に基づいてドローン装置1の位置の補正処理(ミキシング補正処理)を行う。次に、制御部14は、ステップS108において上記ミキシング補正処理されたドローン装置1の目標3D位置差分に基づいて飛行制御コマンドを生成し、ステップS110において飛行制御コマンドを実行する。 Next, in step S107, the control unit 14 determines whether or not the position of the drone device 1 needs to be corrected. That is, the position of the drone device 1 is determined based on whether there is a target 3D position difference and a target coating distance difference (steps S103, S106), which are the differences between the current 3D position coordinates and the target 3D position coordinates calculated in advance. It is determined whether correction is necessary. Here, if it is determined that correction of the position of the drone device 1 is not necessary, the control unit 14 generates a flight control command based on the calculated target 3D position coordinates of the drone device 1 in step S108. , a flight control command is executed in step S110. On the other hand, if it is determined that the position of the drone device 1 needs to be corrected, in step S109, the control unit 14 calculates the difference between the target 3D position specified by the pilot and the current position and the preset application target. Correction processing (mixing correction processing) of the position of the drone device 1 is performed based on the target coating distance difference calculated from the difference between the distance to the surface and the current distance. Next, the control unit 14 generates a flight control command based on the target 3D position difference of the drone device 1 subjected to the mixing correction process in step S108, and executes the flight control command in step S110.
[ドローン装置のノズル角制御について]
 以下に、図17のフローチャートを参照してドローン装置のノズル角制御について説明する。ドローン装置1の起動が開始されると、ステップS201において、制御部14が通信部12を起動させ、通信が開始される。ステップS202において、ノズルオペレーターによって指定されたノズル噴霧方向の制御コマンド(ノズル方向コマンド)を取得し、制御コマンドが解析される。ステップS203において、取得された制御コマンドを目標ノズル角度に変換する(目標ノズル角度を計算する)。なお、ノズル341の塗料噴射方向は機体が傾けば機体の傾きと、ドローン機体部10のロールセンター(機体回転の中心点)とノズル先端部の距離に起因するノズル噴射方向(スプレー軌道)のずれを同時に補正するようにして噴射方向を変化させる。ここでは、ノズル341の傾きは、IMU15で取得されたドローン装置1の機体傾斜角度と上記ノズル噴射方向(スプレー軌道)のずれに基づいて算出されるが、ノズル341にだけ使用するIMU(ノズル使用専用センサ)を別個設けるようにしてもよい。
[About nozzle angle control of drone equipment]
The nozzle angle control of the drone device will be described below with reference to the flowchart in FIG. 17. When activation of the drone device 1 is started, in step S201, the control unit 14 activates the communication unit 12, and communication is started. In step S202, a control command for the nozzle spray direction (nozzle direction command) specified by the nozzle operator is obtained, and the control command is analyzed. In step S203, the acquired control command is converted into a target nozzle angle (the target nozzle angle is calculated). Note that the paint spraying direction of the nozzle 341 is determined by the deviation of the nozzle spraying direction (spray trajectory) caused by the tilt of the aircraft and the distance between the roll center (center point of aircraft rotation) of the drone body 10 and the nozzle tip. The injection direction is changed by simultaneously correcting the Here, the inclination of the nozzle 341 is calculated based on the deviation between the aircraft inclination angle of the drone device 1 acquired by the IMU 15 and the nozzle injection direction (spray trajectory). A dedicated sensor) may also be provided separately.
 次に、ステップS204において、IMU15によってドローン機体部10の機体傾斜角が検出される。 Next, in step S204, the IMU 15 detects the body inclination angle of the drone body part 10.
 次に、ステップS205において、スプレー制御部142は、ドローン機体部10の現在の機体傾斜角および目標塗布距離(ノズル先端から塗布対象までの距離)に基づいて目標ノズル角度(目標とする塗布位置に向かって噴射可能なノズル上下方向角度や左右方向角度をいう。以降、上下方向角度と左右方向角度を区別するときは「目標ノズル上下方向角度」、「目標ノズル左右方向角度」と表現し、区別しないときは単に「目標ノズル角度」と呼ぶ。)を計算する。なお、この目標ノズル角度の計算は上述した現在の機体傾斜角、機体ロールセンターとノズル先端までの距離、および目標塗布距離が特定できれば、三角関数(tanθと斜辺距離を利用)を応用して求めることができる。ノズル角度補正計算部1423は、検出された機体傾斜角度によって生じるオフセット(図8参照)を考慮してノズル上下方向角度の補正量を計算する。なお、図8(a)は機体が水平状態にありノズル341も傾き制御されていない状態を示した図であり、図8(b)は機体前方が下方向に傾いた状態にあり上述の計算された補正量に基づいてノズル341が水平よりも上方向に傾き制御されている状態を示した図であり、図8(c)は機体前方が上方向に傾いた状態にあり上述の計算された補正量に基づいてノズル341が水平よりも下方向に傾き制御されている状態を示した図である。なお、2軸スタビライザーのノズルの角度補正は、機体の前後左右方向(ピッチおよびロール方向)の傾きをノズルの上下左右方向(チルトおよびパン方向)の傾きに置き換えられ、各回転軸が3次元的に同時に補正される。 Next, in step S205, the spray control unit 142 adjusts the target nozzle angle (target coating position) based on the current body inclination angle of the drone body 10 and the target coating distance (distance from the nozzle tip to the coating target). Refers to the vertical angle and horizontal angle of the nozzle that can inject toward the target.Hereafter, when distinguishing between the vertical angle and the horizontal angle, they will be expressed as "target nozzle vertical angle" and "target nozzle horizontal angle." (If not, simply call it the "target nozzle angle.") Note that this target nozzle angle can be calculated by applying trigonometric functions (using tanθ and hypotenuse distance) if the current aircraft inclination angle, the distance between the aircraft roll center and the nozzle tip, and the target application distance can be specified. be able to. The nozzle angle correction calculation unit 1423 calculates the amount of correction of the nozzle vertical angle in consideration of the offset caused by the detected body inclination angle (see FIG. 8). Note that FIG. 8(a) is a diagram showing a state in which the aircraft is in a horizontal state and the nozzle 341 is not tilted, and FIG. 8(b) is a diagram showing a state in which the front of the aircraft is tilted downward, and the above calculation is not performed. 8(c) is a diagram showing a state in which the nozzle 341 is tilted upward from the horizontal based on the calculated correction amount, and FIG. 8(c) shows a state in which the front of the aircraft is tilted upward, FIG. 4 is a diagram showing a state in which the nozzle 341 is tilted downward from the horizontal based on the correction amount. Note that the angle correction of the nozzle of a two-axis stabilizer replaces the tilt of the aircraft in the longitudinal and horizontal directions (pitch and roll directions) with the tilt of the nozzle in the vertical and horizontal directions (tilt and pan directions). are corrected at the same time.
 次に、ステップS206において、ノズル角度補正実行部1424は、上述した補正量を考慮したノズル角度だけノズルを傾かせるための制御コマンドを生成し、ステップS207でノズル角度の制御コマンドを実行する。 Next, in step S206, the nozzle angle correction execution unit 1424 generates a control command for tilting the nozzle by the nozzle angle in consideration of the above-mentioned correction amount, and executes the nozzle angle control command in step S207.
 以下に、上述したノズル角度の制御コマンドを実行した場合のノズル角度の上下方向(チルト)制御、左右方向(パン)制御について説明する。図9は、ノズル341の上下方向制御を説明するための図であり、(a)は通常状態の図であり、(b)はノズル341を下方向にチルトさせた場合の図であり、(c)はノズル341を上方向にチルトさせた場合の図である。 Below, the vertical direction (tilt) control and horizontal direction (pan) control of the nozzle angle when the above-mentioned nozzle angle control command is executed will be explained. FIG. 9 is a diagram for explaining the vertical direction control of the nozzle 341, (a) is a diagram in a normal state, (b) is a diagram when the nozzle 341 is tilted downward, ( c) is a diagram when the nozzle 341 is tilted upward.
 図9(b)に示すノズル上下方向角度制御は、機体前方が上方向に傾いた状態(図8(c)参照)にあった場合に計算された上述の補正量に基づいてノズル341が下方向に傾き制御される。図9(c)に示すノズル上下方向角度制御は、機体前方が下方向に傾いた状態(図8(b)参照)にあった場合に計算された上述の補正量に基づいてノズル341が上方向に傾き制御される。なお、図12(b)は図9(b)に対応し、図12(c)は図9(c)に対応している。 The nozzle vertical direction angle control shown in FIG. 9(b) is performed when the nozzle 341 is lowered based on the above-mentioned correction amount calculated when the front of the aircraft is tilted upward (see FIG. 8(c)). The tilt is controlled in the direction. In the nozzle vertical direction angle control shown in FIG. 9(c), the nozzle 341 is moved upward based on the above-mentioned correction amount calculated when the front of the aircraft is tilted downward (see FIG. 8(b)). The tilt is controlled in the direction. Note that FIG. 12(b) corresponds to FIG. 9(b), and FIG. 12(c) corresponds to FIG. 9(c).
 図11は、2軸(上下方向(チルト)、左右方向(パン))を同時に動かした場合の図であるが、チルト制御については上述したので省略し、以下の説明では図13を参照しノズルの左右方向制御について説明する。なお、2軸を同時に制御する場合には上記したチルト制御と以下で説明するパン制御を同時に行うことになる。なお、スプレー軌道の補正を行う為にはチルトとパンの2軸で必要十分であるが、ノズルスタビライザーは、パンとチルトに加えてロール軸も制御する3軸スタビライザーであってもよい。 FIG. 11 is a diagram showing the case where two axes (vertical direction (tilt) and horizontal direction (pan)) are moved simultaneously, but since the tilt control has been described above, it will be omitted, and the following explanation will refer to FIG. 13. The left and right direction control will be explained. Note that when controlling two axes at the same time, the tilt control described above and the pan control described below are performed simultaneously. Although two axes, tilt and pan, are necessary and sufficient for correcting the spray trajectory, the nozzle stabilizer may be a three-axis stabilizer that also controls the roll axis in addition to pan and tilt.
 図13は、ノズルの左右方向制御を説明するための図であり、(a)は通常状態の図であり、(b)はノズルを左方向(反時計回り)に回転させた場合の図であり、(c)はノズルを右方向(時計回り)に回転させた場合の図である。 FIG. 13 is a diagram for explaining the left-right direction control of the nozzle, (a) is a diagram in a normal state, and (b) is a diagram when the nozzle is rotated to the left (counterclockwise). (c) is a diagram when the nozzle is rotated to the right (clockwise).
 図13(b)に示すノズル左右方向角度制御は、ノズルオペレーターのノズル角制御コマンド基づいてノズル341が左方向に回転制御される(図6(b)参照)。図13(c)に示すノズル左右方向角度制御は、ノズルオペレーターのノズル角制御コマンドに基づいてノズル341が右方向に回転制御される。なお、図10(b)は図13(b)に対応し、図10(c)は図13(c)に対応している。 In the nozzle lateral direction angle control shown in FIG. 13(b), the nozzle 341 is controlled to rotate in the left direction based on the nozzle angle control command from the nozzle operator (see FIG. 6(b)). In the nozzle left-right direction angle control shown in FIG. 13(c), the nozzle 341 is controlled to rotate in the right direction based on a nozzle angle control command from the nozzle operator. Note that FIG. 10(b) corresponds to FIG. 13(b), and FIG. 10(c) corresponds to FIG. 13(c).
[機体の傾きの他の例によるノズルの動作制御]
 図14は、ドローン機体部が左右に傾いた場合の例(機体のローリング)を示した図であり、ドローン機体部を前方から見た図である。なお、図中の矢印はドローン機体部の移動方向を示す。外乱や機体操縦、機体の3D位置座標を維持するための制御により、図14(a)に示す通常の状態から図14(b)に示すように機体の左側に傾いた(ローリングした)状態になった場合にはドローン機体部10はドローン機体部の後方から見て左側に移動、または横風が吹いている場合はその場に止まる。図14(a)に示す通常の状態から図14(c)に示すように機体の右側に傾いた(ローリングした)状態になった場合には、ドローン機体部10はドローン機体部の後方から見て右側に移動、または横風が吹いている場合はその場に止まる。この場合、ドローン機体部10の傾斜角が取得され、取得された傾斜角に基づいてノズル角度が計算される。そして、その角度に応じて(傾きをキャンセルするように)ノズル角度やスプレー軌道の垂直水平方向のオフセットの補正量を計算し、その補正量に基づいてノズルの動作が制御される。
[Nozzle operation control based on other examples of aircraft inclination]
FIG. 14 is a diagram illustrating an example of a case where the drone body is tilted to the left or right (rolling of the drone body), and is a diagram of the drone body seen from the front. Note that the arrow in the figure indicates the direction of movement of the drone body. Due to disturbances, aircraft maneuvering, and control to maintain the aircraft's 3D position coordinates, the aircraft changed from the normal state shown in Figure 14(a) to the state tilted to the left (rolling) as shown in Figure 14(b). In this case, the drone body 10 moves to the left side when viewed from the rear of the drone body, or stops in place if a crosswind is blowing. When the drone body 10 changes from the normal state shown in FIG. 14(a) to the state tilted (rolling) to the right side as shown in FIG. 14(c), the drone body 10 is and move to the right, or stay where you are if there is a crosswind. In this case, the inclination angle of the drone body 10 is obtained, and the nozzle angle is calculated based on the obtained inclination angle. Then, the amount of correction for the nozzle angle and the offset in the vertical and horizontal directions of the spray trajectory is calculated according to the angle (so as to cancel the inclination), and the operation of the nozzle is controlled based on the amount of correction.
 図15は、機体が左右に回転した場合の例(機体のヨーイング)を示した図であり、機体を上方から見た図である。外乱や機体操縦、機体の3D位置座標を維持するための制御により、図15(a)に示す通常の状態から図15(b)に示すように反時計回りに回転した(ヨーイングした)状態になった場合には、磁気センサーからそのときの機体のヘディングを取得して、取得されたヘディングに基づいてその回転角度が計算される。そして、その回転角度に応じて機体のヨーイングの補正量を計算し、その補正量に基づいて機体の動作が制御される。 FIG. 15 is a diagram showing an example when the aircraft rotates left and right (aircraft yawing), and is a view of the aircraft from above. Due to disturbances, aircraft maneuvering, and control to maintain the aircraft's 3D position coordinates, the normal state shown in Figure 15(a) turned counterclockwise (yawed) as shown in Figure 15(b). If this happens, the aircraft's heading at that time is obtained from the magnetic sensor, and the rotation angle is calculated based on the obtained heading. Then, a correction amount for the yaw of the aircraft is calculated according to the rotation angle, and the operation of the aircraft is controlled based on the correction amount.
(実施形態の効果の説明)
 本実施形態にかかる塗布用ドローン装置1は、以上のごとき構成、作用からなり、以下、この実施形態にかかる塗布用ドローン装置1の効果について説明する。
(Explanation of effects of embodiment)
The coating drone device 1 according to this embodiment has the above configuration and operation, and the effects of the coating drone device 1 according to this embodiment will be described below.
 本実施形態にかかる塗布用ドローン装置1は、ドローン機体部10と液剤を噴射するノズル部を備えたスプレー部20を有する。ドローン機体部10は、ドローン装置1の前後傾斜角度および左右傾斜角度を含む傾斜角を取得するIMU15と、ドローン機体部10の位置座標を取得するGPS受信部16と、ドローン機体部10から塗布対象までの塗布距離を検出する測距センサー18と、ドローン機体部10の現在の位置情報と塗布距離に基づいてドローン機体部10の位置を変更させ、ドローン機体部10の現在の傾斜角とあらかじめ設定された塗布距離に基づいてノズル341のノズル角度を変更させる制御部14を有する。制御部14はノズル341のノズル角度を制御するスプレー制御部142を有する。スプレー制御部142は、取得された傾斜角度によって生じるノズル噴射方向のずれと、ドローン機体部10のロールセンターとノズル341との距離によって生じる垂直水平方向のノズル位置のオフセットを考慮して上下左右方向におけるノズル角度補正量を計算するノズル角度補正計算部1423を含み、その補正量を考慮したノズル角度だけノズルを傾かせる。 The coating drone device 1 according to the present embodiment includes a drone body section 10 and a spray section 20 that includes a nozzle section that sprays a liquid agent. The drone body section 10 includes an IMU 15 that acquires the tilt angle including the longitudinal tilt angle and the left and right tilt angle of the drone device 1, a GPS receiving section 16 that acquires the position coordinates of the drone body section 10, and an object to be coated from the drone body section 10. The position of the drone body 10 is changed based on the distance measurement sensor 18 that detects the coating distance to the drone body 10, the current position information of the drone body 10, and the coating distance, and the current inclination angle of the drone body 10 is set in advance. It has a control unit 14 that changes the nozzle angle of the nozzle 341 based on the determined coating distance. The control unit 14 includes a spray control unit 142 that controls the nozzle angle of the nozzle 341. The spray control unit 142 takes into consideration the deviation in the nozzle injection direction caused by the obtained inclination angle and the offset in the nozzle position in the vertical and horizontal directions caused by the distance between the roll center of the drone body 10 and the nozzle 341 in the vertical and horizontal directions. includes a nozzle angle correction calculation unit 1423 that calculates a nozzle angle correction amount in , and tilts the nozzle by a nozzle angle that takes the correction amount into consideration.
 したがって、上記した構成によれば、外乱やドリフト等によって発生するドローン機体部10の傾斜角度や位置ずれを補正する為に必要となる機体の傾きや、パイロットの操作によるドローン機体部10の傾きによるノズル341の噴射方向ずれが生じた場合でも、そのノズル341の噴射方向のずれを修正することができる。具体的には、機体傾斜角度によって生じるノズル噴射方向のずれとオフセットを考慮した上下左右方向におけるノズル角度の補正量に基づくノズル角度分だけノズルを傾かせるので、ドローン機体部が傾斜した場合であっても目標とする塗布対象に向かってずれることなく液剤を噴射し続けることが可能である。これにより、塗布対象を例えば集熱膜とした場合には、発電所の稼働を止めずに高精度塗布することができるので、安全に、かつ、低コスト(メンテナンス費用の低減等)でメンテナンス塗布を実施することができる Therefore, according to the above configuration, the inclination of the drone body 10 required to correct the inclination angle and positional deviation of the drone body 10 caused by disturbances, drifts, etc., and the inclination of the drone body 10 caused by the pilot's operation Even if a deviation in the injection direction of the nozzle 341 occurs, the deviation in the injection direction of the nozzle 341 can be corrected. Specifically, the nozzle is tilted by the nozzle angle based on the amount of correction of the nozzle angle in the vertical and horizontal directions, taking into account the deviation and offset of the nozzle jet direction caused by the aircraft body tilt angle. It is possible to continue spraying the liquid agent toward the target application target without deviation even when the liquid agent is sprayed. As a result, when the coating target is a heat collecting film, for example, it is possible to perform high-precision coating without stopping the operation of the power plant, so maintenance coating can be performed safely and at low cost (reducing maintenance costs, etc.). can be carried out
 さらに、本実施形態にかかる塗布用ドローン装置1は、スプレー部20が、液剤を収容する加圧式インクタンク2052と、液剤を圧送するとともに空気を圧送するエアコンプレッサー/エアタンク2011と、加圧式インクタンク2052とノズルユニット34とを接続して液剤をノズルユニット34に供給するインクチューブ207と、ノズルユニット34とエアコンプレッサー/エアタンク2011とを接続して空気をノズルユニット34に供給するエアチューブ209とを備え、インクチューブ207から供給された液剤は、エアチューブ209から供給(圧送)された空気によってノズルユニット34を介してノズルユニット34の前方へ噴射される。 Further, in the coating drone device 1 according to the present embodiment, the spray unit 20 includes a pressurized ink tank 2052 that accommodates a liquid, an air compressor/air tank 2011 that pumps the liquid and air, and a pressurized ink tank 2052 that contains a liquid. An ink tube 207 connects the nozzle unit 2052 and the nozzle unit 34 to supply liquid to the nozzle unit 34, and an air tube 209 connects the nozzle unit 34 and the air compressor/air tank 2011 to supply air to the nozzle unit 34. The liquid agent supplied from the ink tube 207 is jetted forward of the nozzle unit 34 via the nozzle unit 34 by air supplied (forced) from the air tube 209.
 したがって、上記した構成によれば、塗布用ドローン装置1のノズルユニット34から吐出される液剤が圧送された空気によって強力に噴射されるので、塗布対象面から所定距離離れたところからでも目標とする塗布位置に対して正確に噴射させることができる。 Therefore, according to the above configuration, the liquid agent discharged from the nozzle unit 34 of the coating drone device 1 is powerfully sprayed by the forced air, so that it can be targeted even from a predetermined distance away from the surface to be coated. It is possible to spray accurately to the application position.
 なお、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。例えば、塗布対象が民家の屋根、高層ビルの壁面等においても本発明を適用できる。

 
Note that the embodiments of the present invention are not limited to the embodiments described above, and various changes can be made without departing from the gist of the present invention. For example, the present invention can be applied to roofs of private houses, walls of high-rise buildings, etc.

Claims (4)

  1.  ドローン機体部と液剤を噴射するノズル部を備えたスプレー部を有する塗布用ドローン装置であって、
     前記ドローン機体部は、
     前記ドローン装置の前後傾斜角度および左右傾斜角度を含む傾斜角を取得する姿勢情報取得部と、
     前記ドローン機体部の位置座標を取得する位置情報取得部と、
     前記ドローン機体部から塗布対象までの現在距離を検出する距離情報取得部と、 
     前記ドローン機体部の現在の位置情報と前記現在距離とあらかじめ設定された目標塗布距離に基づいて前記ドローン機体部の位置を変更させ、前記ドローン機体部の現在の傾斜角と前記目標塗布距離に基づいて前記ノズル部のノズル角度を変更させる制御部を有し、
     前記制御部は前記ノズル部のノズル角度を制御するスプレー制御部を有し、
     前記スプレー制御部は、取得された前記傾斜角によって生じるノズル噴射方向のずれと、前記ドローン機体部のロールセンターと前記ノズル部との距離によって生じる垂直水平方向のノズル位置のオフセットを考慮して上下左右方向におけるノズル角度の補正量を計算するノズル角度補正計算部を含み、その補正量を考慮したノズル角度だけノズルを傾かせる、
     ことを特徴とする塗布用ドローン装置。
    A coating drone device having a drone body and a spray section including a nozzle section for spraying a liquid,
    The drone body section is
    an attitude information acquisition unit that acquires an inclination angle including a longitudinal inclination angle and a lateral inclination angle of the drone device;
    a position information acquisition unit that acquires position coordinates of the drone body;
    a distance information acquisition unit that detects the current distance from the drone body to the application target;
    The position of the drone body is changed based on the current position information of the drone body, the current distance, and a preset target coating distance, and the position of the drone body is changed based on the current tilt angle of the drone body and the target coating distance. a control unit for changing the nozzle angle of the nozzle unit,
    The control unit includes a spray control unit that controls a nozzle angle of the nozzle unit,
    The spray control unit adjusts the vertical and horizontal nozzle positions in consideration of a deviation in the nozzle jet direction caused by the obtained inclination angle and an offset in the nozzle position in the vertical and horizontal directions caused by the distance between the roll center of the drone body and the nozzle unit. It includes a nozzle angle correction calculation unit that calculates the amount of correction of the nozzle angle in the horizontal direction, and tilts the nozzle by the nozzle angle that takes into account the amount of correction.
    A coating drone device characterized by:
  2.  前記スプレー部は、
     前記液剤を収容する容器と、
     前記液剤を圧送するとともに空気を圧送する圧送装置と、
     前記容器と前記ノズル部とを接続して前記液剤を前記ノズル部に供給する第1の管部と、
     前記ノズル部と前記圧送装置とを接続して前記空気を前記ノズル部に供給する第2の管部とを備え、
     前記第1の管部から供給された液剤は、前記第2の管部から供給された空気によって前記ノズル部を介して前記ノズル部の前方へ噴射される、
     ことを特徴とする請求項1に記載の塗布用ドローン装置。
    The spray part is
    a container containing the liquid agent;
    a pumping device that pumps the liquid agent and pumps air;
    a first pipe section that connects the container and the nozzle section and supplies the liquid agent to the nozzle section;
    a second pipe section that connects the nozzle section and the pressure feeding device and supplies the air to the nozzle section;
    The liquid agent supplied from the first pipe part is injected forward of the nozzle part via the nozzle part by air supplied from the second pipe part.
    The coating drone device according to claim 1, characterized in that:
  3.  ドローン機体部と、液剤を噴射するノズル部を備えたスプレー部とを有する塗布用ドローン装置を使用した塗布方法であって、
     姿勢情報取得部が、前記ドローン装置の前後傾斜角度および左右傾斜角度を含む傾斜角を取得し、
     位置情報取得部が、前記ドローン機体部の位置座標を取得し、
     距離情報取得部が、前記ドローン機体部から塗布対象までの現在距離を検出し、
     制御部が、前記ドローン機体部の現在の位置情報と前記現在距離とあらかじめ設定された目標塗布距離に基づいて前記ドローン機体部の位置を変更させ、
     スプレー制御部が、前記ドローン機体部の現在の傾斜角と前記目標塗布距離に基づいて前記ノズル部のノズル角度を変更するよう制御し、
     ノズル角度補正計算部が、取得された前記ドローン機体部の傾斜角によって生じるノズル噴射方向のずれと、前期ドローン機体部のロールセンターと前記ノズル部との距離によって生じる垂直水平方向のノズル位置のオフセットを考慮して上下左右方向におけるノズル角度の補正量を計算し、
     前記スプレー制御部が、前記ノズル角度の補正量を考慮したノズル角度だけノズルを傾かせる、
     ことを特徴とする塗布方法。
    A coating method using a coating drone device having a drone body section and a spray section equipped with a nozzle section that sprays a liquid agent,
    an attitude information acquisition unit acquires an inclination angle including a longitudinal inclination angle and a left-right inclination angle of the drone device;
    a position information acquisition unit acquires position coordinates of the drone body;
    a distance information acquisition unit detects the current distance from the drone body to the application target;
    a control unit changes the position of the drone body based on current position information of the drone body, the current distance, and a preset target coating distance;
    a spray control unit controls to change a nozzle angle of the nozzle unit based on the current inclination angle of the drone body and the target application distance;
    The nozzle angle correction calculation unit calculates a deviation in the nozzle jet direction caused by the obtained inclination angle of the drone body and an offset in the nozzle position in the vertical and horizontal directions caused by the distance between the roll center of the earlier drone body and the nozzle. Calculate the amount of correction for the nozzle angle in the vertical and horizontal directions by considering
    the spray control unit tilts the nozzle by a nozzle angle that takes into account the amount of correction of the nozzle angle;
    A coating method characterized by:
  4.  前記液剤を容器に収容し、
     圧送装置によって容器に収容された液剤を圧送するとともに空気を圧送し、
     前記容器と前記ノズル部とを接続する第1の管部を介して前記液剤を前記ノズル部に供給し、
     前記ノズル部と前記圧送装置とを接続する第2の管部を介して前記空気を前記ノズル部に供給し、
     前記第1の管部から供給されてきた液剤を前記第2の管部から供給された空気によって前記ノズル部を介して前記ノズル部の前方へ噴射する、
     ことを特徴とする請求項3に記載の塗布方法。
    storing the liquid agent in a container;
    The liquid agent contained in the container is pumped by a pumping device, and the air is also pumped,
    Supplying the liquid agent to the nozzle part via a first pipe part connecting the container and the nozzle part,
    Supplying the air to the nozzle part via a second pipe part connecting the nozzle part and the pressure feeding device,
    Injecting the liquid agent supplied from the first pipe section to the front of the nozzle section via the nozzle section using air supplied from the second pipe section.
    The coating method according to claim 3, characterized in that:
PCT/JP2023/029886 2022-09-15 2023-08-18 Drone device for coating and coating method WO2024057825A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-146939 2022-09-15
JP2022146939 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024057825A1 true WO2024057825A1 (en) 2024-03-21

Family

ID=90274781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029886 WO2024057825A1 (en) 2022-09-15 2023-08-18 Drone device for coating and coating method

Country Status (1)

Country Link
WO (1) WO2024057825A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138576A1 (en) * 2018-01-15 2019-07-18 株式会社ドローンネット Remote operation spray device
JP2019136651A (en) * 2018-02-09 2019-08-22 日本製鉄株式会社 Flight type injector and coating method
WO2020075562A1 (en) * 2018-10-12 2020-04-16 株式会社プロドローン Unmanned aircraft and coating method
WO2021235423A1 (en) * 2020-05-19 2021-11-25 東洋製罐株式会社 Discharge device of flying body
JP2022512172A (en) * 2018-12-10 2022-02-02 バイエル アクチェンゲゼルシャフト Spray vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138576A1 (en) * 2018-01-15 2019-07-18 株式会社ドローンネット Remote operation spray device
JP2019136651A (en) * 2018-02-09 2019-08-22 日本製鉄株式会社 Flight type injector and coating method
WO2020075562A1 (en) * 2018-10-12 2020-04-16 株式会社プロドローン Unmanned aircraft and coating method
JP2022512172A (en) * 2018-12-10 2022-02-02 バイエル アクチェンゲゼルシャフト Spray vehicle
WO2021235423A1 (en) * 2020-05-19 2021-11-25 東洋製罐株式会社 Discharge device of flying body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIDA KIRI, KENTA KOJIMA, TADAHIRO HASEGAWA, SHIN'ICHI YUTA, KENTARO NIMURA, SATOKO ABIKO, NAOHIRO SHIMAJI: "Semi-autonomous Flight for Jet Spraying Drones to Inspect and Repair Structures", NIHON ROBOTTO GAKKAISHI - JOURNAL OF THE ROBOTICS SOCIETY OF JAPAN, ROBOTICS SOCIETY OF JAPAN, TOKYO, JP, vol. 39, no. 8, 1 January 2021 (2021-01-01), JP , pages 759 - 762, XP093146249, ISSN: 0289-1824, DOI: 10.7210/jrsj.39.759 *

Similar Documents

Publication Publication Date Title
US20230019134A1 (en) Unmanned aerial vehicle for painting structures
US11771076B2 (en) Flight control method, information processing device, program and recording medium
CN107899166B (en) Accurate fire extinguishing system and method based on unmanned aerial vehicle and intelligent fire-fighting robot
CN111670143B (en) Aerial fluid spray system
US10657832B2 (en) Method and apparatus for target relative guidance
ES2397546T3 (en) Precision approach control
US8666571B2 (en) Flight control system for flying object
RU2718460C1 (en) Multi-copter with air screws of various purpose
CN108255190B (en) Accurate landing method based on multiple sensors and tethered unmanned aerial vehicle using same
CN109436329B (en) Device and method for accurately transmitting rescue articles in air by small unmanned aerial vehicle
CN205750557U (en) A kind of plant protection unmanned plane using differential GPS to navigate
JP6676846B1 (en) Unmanned aerial vehicle
US20220080237A1 (en) An Apparatus and Method for Firefighting
CN110546338A (en) system comprising at least one first device that is controlled to be movable and at least one second device arranged on the first device for applying a material
CN106292687A (en) A kind of agricultural unmanned vehicle sprayer apparatus and spraying method thereof
JP6592680B1 (en) Unmanned aerial vehicle
WO2020111096A1 (en) Work planning device, control method for work planning device, and, control program therefor, and drone
WO2020137554A1 (en) Drone, method of controlling drone, and drone control program
US20220250746A1 (en) Unmanned aerial vehicle
EP3673295B1 (en) High accuracy remote coordinate machine
JP2022029823A (en) Control system of unmanned air vehicle and control method of unmanned air vehicle
WO2024057825A1 (en) Drone device for coating and coating method
JP2018090096A (en) Unmanned jetting device, jetting method and jetting program
JP2021075277A (en) Unmanned aircraft for spreading chemical liquid
JP2022158631A (en) flight device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865184

Country of ref document: EP

Kind code of ref document: A1