WO2024029183A1 - Additive fabrication processing system, and additive fabrication operator selection apparatus and method - Google Patents

Additive fabrication processing system, and additive fabrication operator selection apparatus and method Download PDF

Info

Publication number
WO2024029183A1
WO2024029183A1 PCT/JP2023/020614 JP2023020614W WO2024029183A1 WO 2024029183 A1 WO2024029183 A1 WO 2024029183A1 JP 2023020614 W JP2023020614 W JP 2023020614W WO 2024029183 A1 WO2024029183 A1 WO 2024029183A1
Authority
WO
WIPO (PCT)
Prior art keywords
modeling
fabrication
manufacturing
quality
specifications
Prior art date
Application number
PCT/JP2023/020614
Other languages
French (fr)
Japanese (ja)
Inventor
友則 木村
啓嗣 川中
雄亮 保田
勝煥 朴
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024029183A1 publication Critical patent/WO2024029183A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing

Definitions

  • the present invention relates to an additive manufacturing processing system, an additive manufacturing operator selection device, and a method for selecting an additive manufacturing operator.
  • Additive manufacturing is used for rapid prototyping of aftermarket parts, molds and specialized mechanical parts.
  • the manufacturer primarily designs, and the modeling business undertakes the modeling recipe design and modeling.
  • the quality of the completed additively shaped object is checked by the modeling business or the manufacturer, and then applied to the equipment.
  • design and quality checks and additive manufacturing companies it is difficult to improve quality and yield by linking design, manufacturing recipe design, manufacturing, and quality.
  • Patent Document 1 states that it is possible to provide additionally shaped parts that meet required specifications, and it is also possible to appropriately select a vendor.
  • the present invention provides an additive manufacturing processing system and additive manufacturing system that proposes candidate manufacturing companies based on the desired quality confirmation items when requesting a manufacturing company to produce an additively formed object and performing quality confirmation using monitoring data.
  • the purpose is to provide a device and method for selecting a modeling business.
  • a front process in which a modeling business is determined using the required modeling specifications from a modeling client, a design process in which a design is implemented according to the required modeling specifications, and a design process There is a modeling recipe generation process in which the modeling conditions are set so that the model data created in the process becomes a model that satisfies the client's requirements, a printing process in which the modeling is performed by the modeling company determined in the front process, and a manufacturing process in the printing process.
  • the process includes a quality evaluation process in which the quality of the modeled object is evaluated using the monitoring data of the modeled object, and the modeled object is delivered to the client after quality confirmation.
  • a printing equipment database that holds data on printing equipment held by a printing business operator
  • a printing monitoring equipment database holding data on printing monitoring equipment held by a printing business operator
  • a computer a computer
  • a modeling business that owns manufacturing equipment capable of manufacturing the object indicated by the required specifications by referring to the modeling equipment database using the required specifications from the modeling client, and using the required specifications.
  • An additive manufacturing business selection device characterized by extracting manufacturing businesses that have monitoring equipment that can confirm the quality indicated by required specifications by referring to a modeling monitoring equipment database.”
  • It includes a quality evaluation process that evaluates the quality of the modeled object based on object monitoring data, and the modeled object after quality confirmation is delivered to the client.
  • the modeled object indicated by the required specification is evaluated using the required specifications.
  • An additive manufacturing processing method characterized by extracting a manufacturing business that owns manufacturing equipment capable of manufacturing and that also owns monitoring equipment that can confirm the quality indicated by the required specifications using the required specifications. ”.
  • an additive manufacturing processing system an additive manufacturing operator selection method, and a device that support the selection of a manufacturing operator according to desired quality check items when requesting an additively manufactured object, for example.
  • FIG. 1 is a diagram showing an example of an additive modeling processing system according to an embodiment of the present invention.
  • 1 is a diagram illustrating an example of an additive manufacturing operator selection method and apparatus according to an embodiment of the present invention.
  • Example 1 the overall flow of the modeling process will be explained, in Example 2, the front process will be explained, and in Example 3, the desirable quality items to be checked for the model will be explained below.
  • FIG. 1 shows an example of an additive printing processing system (printing platform) according to an embodiment of the present invention.
  • the processing steps S are a front step S1, a design step S2, a modeling recipe generation step S3, a modeling step S4, and a quality evaluation step S5.
  • the embodiment of the present invention is characterized in that a front step S1 for selecting a business operator is provided at the beginning of the series of processing steps S.
  • modeling process S4 itself is executed by the modeling business operator 20.
  • Other processes SP front process S1, design process S2, modeling recipe generation process S3, quality evaluation process S5 may be handled by individual businesses, but preferably between the client 10 and the modeling business 20. It is preferable that the modeling platform business operator 30, which is an intermediary, handles the other processes SP consistently.
  • the client 10 when the client 10 requests the production of an additional model, it has the function of determining the appropriate modeling business 20 to carry out the modeling, as well as organizing the requests of the client 10 and meeting the requested specifications of the client 10. It has the function of searching for similar cases according to the requirements and showing examples of additive manufacturing. It also has a function to share information with customers regarding procurement issues and manufacturing issues, such as when it is difficult to perform additive manufacturing in accordance with customer requests in the design process S2 described below.
  • the modeling equipment is determined based on the modeling dimensions and materials determined in the design process S2, and the client is determined based on the order status, the equipment owned by the collaborating manufacturing business 20, and the equipment operating status.
  • the modeling business operator 20 can increase the number of modeling request destinations (modeling business operators 20). You can also perform cost analysis and create estimates based on design information and client information.
  • a suitable design is implemented according to the required specifications. It is determined whether the designed shape can be manufactured based on the overhang angle, dimensions, internal structure, etc. of the completed modeling drawing. If it is determined that modeling is not possible, the process is returned to the front process S1 and the required specifications are readjusted with the customer (requester 10). If it is determined that the designed shape can be manufactured, materials and post-processes (cutting, surface treatment) are determined according to customer requirements (strength, specific gravity, corrosion resistance, surface roughness, etc.). In additive manufacturing, the design takes into account deformation and heat during manufacturing, and also considers the placement of supports. Decide the printing device according to the printing size and printing material. Set the printing posture, support, and number of pieces to be printed according to the printing capacity of the printing device. The completed three-dimensional model data is sent to the modeling recipe step S3 using three-dimensional CAD data or the like.
  • modeling conditions are set so that the three-dimensional model data created in the design step S2 becomes an additionally shaped object that satisfies customer requirements.
  • the quality of additively shaped objects changes depending on the modeling conditions. In addition to the characteristics of the additively shaped object, quality includes the presence or absence of defects that occur during modeling and heterogeneous areas such as specific metal structures (pores, cracks, structural abnormalities, and geometric abnormalities).
  • the modeling business operator 20 acquires monitoring data DM during additive modeling.
  • the monitoring data DM include data DM1 based on visible light monitoring, data DM2 based on electromagnetic wave monitoring, and data DM3 based on acoustic monitoring.
  • the monitoring data DM is passed from the modeling operator 20 to the modeling platform operator 30, and the quality evaluation step S5 is implemented.
  • defect information of the additively molded product is output from the monitoring data DM obtained in the modeling step S4, and the quality of the additively molded product is determined from the output result.
  • Quality can be determined arbitrarily with respect to defect rate, defect size, density, defect position, number density of inclusions, material properties, etc. The quality determination described here may be performed not only after modeling, but also at the same time as modeling.
  • the modeling platform business operator 30 evaluates the quality of the additional model created by the modeling business operator 20 based on the monitoring data DM provided by the modeling business operator 20, and in order to obtain approval from the client 10, The quality information is presented to the client, and if approval is obtained, the additional model is delivered from the modeling business 20 to the client 10.
  • a front process S1 is provided.
  • the front process S1 when requesting an additionally shaped object to a modeling business operator 20 and performing quality confirmation using monitoring data DM, it is possible to propose a modeling business operator 20 as a candidate based on desired quality confirmation items. I can do it.
  • the selection of an additive manufacturing business which is the process of the front process S1
  • the modeling business 20 is equipped with sufficient equipment to manufacture products that can satisfy the specifications requested by the client 10.
  • the other point is whether it is possible or not, and other matters are the ability to objectively guarantee the quality of the additively created object and present enough back data (monitoring data DM) to convince the client 10.
  • the point is whether or not there is a system in place (equipped with monitoring equipment).
  • FIG. 2 shows a method showing the equipment and flow for selecting an additive manufacturing business according to a second embodiment of the present invention.
  • reference numeral 100 denotes an additive modeling operator selection device that receives input from the input unit 200 and displays processing results and the like on the display unit 300 as appropriate.
  • the additive manufacturing operator selection device 100 has two sets of databases DB created in advance. One of them is a fabrication equipment database DB1 that holds data on fabrication equipment owned by the fabrication business 20, and the other is a fabrication monitoring equipment database that holds data on fabrication monitoring equipment held by the fabrication business 20. It is DB2.
  • the above-mentioned modeling equipment data and modeling monitoring equipment data are held in advance.
  • a first requirement specification and a second requirement specification are obtained as requirement specifications that organize the requests of the client 10.
  • modeling data D1A such as the shape, size, and material of the desired object as the first required specification is inputted from the input unit 200. Furthermore, as a second required specification, quality items to be checked for the model are input as quality item data D1B.
  • the modeling data D1A obtained in the modeling information input step S1 is compared with the modeling equipment database DB1, which is a database of the modeling capabilities of each modeling business 20, to create a model that allows the desired modeling.
  • the modeling machine information D2 regarding the machine is output.
  • the quality item data D1B obtained in the fabrication information input step S11 is compared with the fabrication monitoring device database DB2, and fabrication monitoring device information D3 regarding the fabrication monitoring device from which information on the desired quality item can be obtained.
  • the molding monitoring equipment database DB2 is a database of the capabilities of the molding monitoring equipment possessed by each molding business operator 20, and furthermore, the molding monitoring equipment and quality items are associated with each other.
  • the modeling equipment database DB1 is referred to to extract the information D4 of the modeling business that owns the modeling machine outputted in the modeling equipment information output step S12, and the modeling monitoring equipment database DB2 is also referred to. Then, the modeling business operator information D4 that owns the modeling monitoring equipment outputted in the modeling monitoring equipment information output step is extracted, and the modeling business operator 20 that owns both devices and facilities is identified.
  • the modeling business operator D4 obtained in the modeling business operator selection process S14 is output as a modeling request destination candidate.
  • the additive manufacturing business selection device 100 determines whether the additive manufacturing business 20 is equipped with sufficient equipment and capable of manufacturing products that can satisfy the specifications requested by the client 10, and which is capable of manufacturing products that meet the specifications requested by the client 10, and which additive manufacturing businesses 20 have been manufactured by other manufacturers.
  • a business operator that has a system that can objectively guarantee the quality of the product and present enough back data (monitoring data DM) to satisfy the client 10 is finally selected.
  • Embodiment 3 desirable items regarding the quality item data D1B to be checked for the modeled object will be described below. In addition, desirable monitoring equipment and monitoring data will be explained.
  • quality includes the presence or absence of defects that occur during modeling and non-uniformities such as specific metal structures.
  • heterogeneity is classified into four categories: pores, cracks, structural abnormalities, and geometric abnormalities.
  • pores are caused by gas remaining in the additive-molded object during additive-molding.
  • gas is used to manufacture the metal powder, so it is assumed that gas components remaining in the metal powder become pores in the modeled object.
  • excessive heat input during additive manufacturing causes pores to be formed in connection with metal melting phenomena such as Marangoni convection caused by changes in the surface tension of the molten pool, evaporation of elements, and keyhole formation. If the energy of the molten pool is insufficient and the powder particles cannot be melted, voids (hereinafter referred to as LOF) due to unfused portions (LOF) are generated.
  • LOFs are typically irregularly shaped and may contain unfused powder.
  • cracks are also one of the defects that occur in additive-molded objects.
  • the aforementioned pores and LOF remain in the form of cracks. Cracks may also occur if there is a difference in linear expansion coefficient between the substrate and the additive structure, or if there is a large thermal gradient in the molten pool during solidification.
  • Geometric anomalies are related to dimensional changes and surface roughness. This relates to the stability of the melt value, and changes in the size and shape of the molten pool have a large effect on the dimensions and surface roughness. To minimize these geometric anomalies, a stable weld pool size and shape is required.
  • the pores including LOF), cracks, structural abnormalities, and geometric abnormalities mentioned above are all thought to be formed due to melting phenomena during additive manufacturing, and therefore are related to melting phenomena during additive manufacturing.
  • By monitoring the information obtained it is possible to judge the quality of the additive-molded object. It is also believed that the occurrence of cracks can be determined by an acoustic sensor that captures the impact when cracks occur as sound.
  • monitoring data DM There are various methods of additive manufacturing. For example, it is a powder bed fusion method, in which a flat sheet of metal powder is irradiated with a laser beam (L-PBF: Laser Powder Bed Fusion) or an electron beam (EBM: Electron Beam Melting), etc. and additive manufacturing.
  • L-PBF Laser Powder Bed Fusion
  • EBM Electron Beam Melting
  • the directional energy sedimentary method (Directed ENERGY DEPOSITION) method is formed while exciting metal powder, and LMD (LASER METAL DEPOSITION), DMP (DIRECT METAL PRINTINTIN). G), etc.
  • LMD LASER METAL DEPOSITION
  • DMP DIRECT METAL PRINTINTIN
  • Melting in additive manufacturing is caused by laser irradiation, and the molten pool is affected by modeling parameters such as laser output and scanning speed, as well as material properties such as the enthalpy required to melt the metal powder and laser reflectance.
  • One of the changes in the molten pool is the temperature change in the molten pool, and the status of the molten pool can be estimated by monitoring information related to the temperature change in the molten pool.
  • L-PBF a plasma plume consisting of reflected and scattered laser, electromagnetic waves such as infrared rays depending on the temperature, ionized gas and metal vapor is emitted from the molten pool. Since the electromagnetic waves and plasma plume emitted from the molten pool change depending on the state and temperature of the molten pool, they are important indicators for detecting the formation of various defects related to the melting phenomenon and determining quality.
  • monitoring data DM In order to obtain the above-mentioned monitoring data DM, an appropriate monitoring device is required.
  • Common monitoring devices in additive manufacturing include visible light monitoring, electromagnetic wave monitoring, and acoustic monitoring.
  • electromagnetic wave monitoring will be explained in detail.
  • Electromagnetic wave monitoring mainly involves observing infrared rays (wavelength from 700 nm) whose intensity changes depending on temperature, and includes optical tomography (OT), photodiodes, two-color thermometers, thermography, spectrometers, etc.
  • Photodiodes and two-color thermometers used for detailed observation of the molten pool do not have spatial resolution, but they are installed coaxially with the laser and measured, and compared with the set laser irradiation pattern. By doing so, the spatial relationship can be determined.
  • OT and thermography using CCD and CMOS cameras are characterized by spatial resolution. Therefore, in addition to the measurement method in which the laser is installed coaxially with the laser, it is also possible to monitor the entire printing area from the top of the printing chamber (hereinafter referred to as non-coaxial). Also, like the photodiode and the like described above, the wavelength range to be observed is selected using a spectral filter.
  • the wavelength, sampling rate, resolution, etc. selected for each monitoring device are different, and the installation position of the monitoring device is different for each printing device. For this reason, if you have decided on a quality item that you would like to check through electromagnetic wave monitoring, it is important to request a manufacturing business that has appropriate monitoring equipment for that quality item.
  • the client 10 should specifically specify the dimensions and material type of the additional object as the desired additional object information. Furthermore, as the desired quality of the shaped object, it is preferable to specifically specify the characteristics of the additionally shaped object and the type of heterogeneous portions such as defects and specific metal structures that occur during modeling. These heterogeneities include pores, cracks, structural abnormalities, and geometric abnormalities.
  • an additive modeling machine is selected from the modeling capability of the modeling equipment database DB1 based on the information of the inputted additive manufacturing object.
  • a modeling monitoring device corresponding to the desired additional-printed product quality information is selected.
  • a printing request destination that has equipment including the printing equipment and printing monitoring equipment selected up to this point is selected, and the requester can receive printing information.
  • Modeling business operator 30 Modeling platform operator 100: Additive modeling operator selection device 200: Input section 300: Display section DB1: Modeling equipment database DB2: Modeling monitoring equipment database S: Processing process S1: Front process S2: Design process S3: Modeling recipe generation process S4: Modeling process S5: Quality evaluation process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Powder Metallurgy (AREA)

Abstract

Provided are an additive fabrication processing system, and an additive fabrication operator selection method and apparatus that propose a candidate fabrication operator on the basis of desired quality confirmation items, when a request for an additively fabricated product is made to a fabrication operator and quality confirmation is implemented on the basis of monitoring data. The additive fabrication processing system is characterized by comprising: a front step of determining a fabrication operator by using required fabrication specifications from a fabrication client; a design step of implementing a design according to the required fabrication specifications; a fabrication recipe generation step of setting a fabrication condition such that model data created in the design step gives a fabricated product satisfying the requirements from the client; a fabrication step of conducting fabrication by the fabrication operator determined in the front step; and a quality assessment step of assessing the quality of the fabricated product on the basis of monitoring data of the fabricated product manufactured in the fabrication step. The fabricated item after quality confirmation is delivered to the client. In the front step, a fabrication operator is extracted that possesses a manufacturing facility including a fabrication facility database that holds data of a fabrication facility possessed by the fabrication operator, and a fabrication monitoring device database that holds data of a fabrication monitoring device possessed by the fabrication operator, the manufacturing facility being capable of manufacturing a fabricated product indicated by the required specifications by using the required specifications and referencing the fabrication facility database, the fabrication operator further possessing a monitoring device capable of confirming the quality indicated by the required specifications by using the required specifications and referencing the fabrication monitoring device database.

Description

付加造形処理システム、付加造形事業者選定装置並びに方法Additive manufacturing processing system, additive manufacturing operator selection device and method
 本発明は、付加造形事業者を選定するための付加造形処理システム、付加造形事業者選定装置並びに方法に関する。 The present invention relates to an additive manufacturing processing system, an additive manufacturing operator selection device, and a method for selecting an additive manufacturing operator.
 付加造形は、アフターマーケット部品、金型や特殊な機械部品のラピッドプロトタイピングのために使用されている。付加造形では、主としてメーカが設計し、造形事業者が造形レシピ設計、および造形を請け負う。完成した付加造形物は造形事業者、あるいはメーカが品質を確認し、機器に適用される。しかしながら、設計・品質確認をするメーカと付加造形事業者に分かれていることから、設計・造形レシピ設計・造形・品質を連成して、品質や歩留まりを向上することが難しい。 Additive manufacturing is used for rapid prototyping of aftermarket parts, molds and specialized mechanical parts. In additive modeling, the manufacturer primarily designs, and the modeling business undertakes the modeling recipe design and modeling. The quality of the completed additively shaped object is checked by the modeling business or the manufacturer, and then applied to the equipment. However, because there are separate manufacturers who perform design and quality checks and additive manufacturing companies, it is difficult to improve quality and yield by linking design, manufacturing recipe design, manufacturing, and quality.
 この点に関して例えば、特許文献1では要求仕様を満たす付加造形部品提供を可能とするとともに、適切に業者を選定することができるとしている。 Regarding this point, for example, Patent Document 1 states that it is possible to provide additionally shaped parts that meet required specifications, and it is also possible to appropriately select a vendor.
特開2020-166383号公報JP2020-166383A
 付加造形品の管理にはノウハウが要求されるため、設計・造形レシピ設計・造形・品質確認の全てを依頼者が実施することは困難である。第3者が設計・造形レシピ設計・造形・品質確認を請け負うことで、効率よく付加造形物の製造が可能である。しかしながら、近年の造形設備の進歩は著しいため、造形設備を自社で導入することは現実的ではない。
一方で、造形のみ造形事業者に、依頼する場合には造形物の品質確認のために1度第3者に付加造形物を送付し、品質確認後にメーカに付加造形物を送付するため納期が増大する課題がある。
Since know-how is required to manage additively shaped products, it is difficult for the client to carry out all of the design, modeling recipe design, modeling, and quality confirmation. By having a third party undertake design, modeling recipe design, modeling, and quality confirmation, it is possible to efficiently manufacture additively shaped objects. However, because of the remarkable progress in printing equipment in recent years, it is not realistic to introduce printing equipment in-house.
On the other hand, when requesting a modeling business only for the modeling, the delivery date may be longer because the additive-printed object is sent to a third party once to confirm the quality of the object, and then sent to the manufacturer after the quality check. There are growing challenges.
 付加造形物を造形中にモニタリングし、品質を推定する試みが為されている。モニタリングデータを活用した品質の推定は、付加造形品を送付することなくデータの送付のみで分析を進めることができ、納期抑制が期待できる。一方で、付加造形のモニタリング対象は赤外線、可視光、音響など様々な種類があり、またモニタリング機器毎にサンプリングレートや分解能が異なる。このため、造形依頼者がモニタリングデータによる品質確認を実施したい場合には、適切なモニタリング対象、モニタリング機器を選定する必要がある。 Attempts have been made to monitor additively shaped objects during printing and estimate their quality. Estimating quality using monitoring data allows analysis to proceed by simply sending the data without sending the additively manufactured product, and is expected to reduce delivery times. On the other hand, there are various types of monitoring targets for additive manufacturing, such as infrared rays, visible light, and sound, and each monitoring device has a different sampling rate and resolution. For this reason, if a modeling client wants to perform quality confirmation using monitoring data, it is necessary to select appropriate monitoring targets and monitoring equipment.
 そこで本発明では、付加造形物を造形事業者に依頼し、品質確認をモニタリングデータにて実施する際に、希望する品質確認項目から候補となる造形事業者を提案する、付加造形処理システム、付加造形事業者選定装置並びに方法を提供することを目的とする。 Therefore, the present invention provides an additive manufacturing processing system and additive manufacturing system that proposes candidate manufacturing companies based on the desired quality confirmation items when requesting a manufacturing company to produce an additively formed object and performing quality confirmation using monitoring data. The purpose is to provide a device and method for selecting a modeling business.
 以上のことから本発明においては、「造形の依頼者からの造形の要求仕様を用いて造形事業者を決定するフロント工程と、造形の要求仕様に応じて設計を実施する設計工程と、設計工程で作製したモデルデータが依頼者の要求を満足する造形物となるように造形条件を設定する造形レシピ生成工程と、フロント工程で決定した造形事業者により造形を行う造形工程と、造形工程で製造された造形物のモニタリングデータにより造形物の品質を評価する品質評価工程を含んでおり、品質確認後の造形品を依頼者に納品するとともに、フロント工程では、造形事業者が保有する造形設備のデータを保有する造形設備データベースと、造形事業者が保有する造形モニタリング機器のデータを保有する造形モニタリング機器データベースを備え、要求仕様を用いて造形設備データベースを参照して要求仕様が示す造形物を製造可能な製造設備を保有する造形事業者であって、かつ要求仕様を用いて造形モニタリング機器データベースを参照して要求仕様が示す品質を確認可能なモニタリング機器を保有する造形事業者を抽出することを特徴とする付加造形処理システム」としたものである。 From the above, in the present invention, "a front process in which a modeling business is determined using the required modeling specifications from a modeling client, a design process in which a design is implemented according to the required modeling specifications, and a design process" There is a modeling recipe generation process in which the modeling conditions are set so that the model data created in the process becomes a model that satisfies the client's requirements, a printing process in which the modeling is performed by the modeling company determined in the front process, and a manufacturing process in the printing process. The process includes a quality evaluation process in which the quality of the modeled object is evaluated using the monitoring data of the modeled object, and the modeled object is delivered to the client after quality confirmation. Equipped with a molding equipment database that holds data and a molding monitoring equipment database that holds data on molding monitoring equipment owned by the molding business, and uses the required specifications to refer to the molding equipment database and manufacture the molded object indicated by the required specifications. Extracting manufacturing businesses that have available manufacturing equipment and that also have monitoring equipment that can check the quality indicated by the required specifications by referring to the manufacturing monitoring equipment database using the required specifications. This is an additive manufacturing processing system with special features.
 また本発明においては、「造形事業者が保有する造形設備のデータを保有する造形設備データベースと、造形事業者が保有する造形モニタリング機器のデータを保有する造形モニタリング機器データベースと、計算機を備え、計算機により、造形の依頼者からの造形の要求仕様を用いて造形設備データベースを参照して要求仕様が示す造形物を製造可能な製造設備を保有する造形事業者であって、かつ要求仕様を用いて造形モニタリング機器データベースを参照して要求仕様が示す品質を確認可能なモニタリング機器を保有する造形事業者を抽出することを特徴とする付加造形事業者選定装置」としたものである。 In addition, in the present invention, "a printing equipment database that holds data on printing equipment held by a printing business operator, a printing monitoring equipment database holding data on printing monitoring equipment held by a printing business operator, and a computer are provided. Accordingly, a modeling business that owns manufacturing equipment capable of manufacturing the object indicated by the required specifications by referring to the modeling equipment database using the required specifications from the modeling client, and using the required specifications. "An additive manufacturing business selection device characterized by extracting manufacturing businesses that have monitoring equipment that can confirm the quality indicated by required specifications by referring to a modeling monitoring equipment database."
 また本発明においては、「造形の依頼者からの造形の要求仕様を用いて造形事業者を決定するフロント工程と、造形の要求仕様に応じて設計を実施する設計工程と、設計工程で作製したモデルデータが依頼者の要求を満足する造形物となるように造形条件を設定する造形レシピ生成工程と、フロント工程で決定した造形事業者により造形を行う造形工程と、造形工程で製造された造形物のモニタリングデータにより造形物の品質を評価する品質評価行程を含んでおり、品質確認後の造形品を依頼者に納品するとともに、フロント工程では、要求仕様を用いて要求仕様が示す造形物を製造可能な製造設備を保有する造形事業者であって、かつ要求仕様を用いて要求仕様が示す品質を確認可能なモニタリング機器を保有する造形事業者を抽出することを特徴とする付加造形処理方法」としたものである。 In addition, in the present invention, "a front process in which a modeling business is determined using the required modeling specifications from a modeling client, a design process in which a design is implemented according to the required modeling specifications, and a A printing recipe generation process in which printing conditions are set so that the model data becomes a printed object that satisfies the client's requirements, a printing process in which printing is performed by a printing company determined in the front process, and a printing process in which the printing process produces a printed object. It includes a quality evaluation process that evaluates the quality of the modeled object based on object monitoring data, and the modeled object after quality confirmation is delivered to the client.In addition, in the front process, the modeled object indicated by the required specification is evaluated using the required specifications. An additive manufacturing processing method characterized by extracting a manufacturing business that owns manufacturing equipment capable of manufacturing and that also owns monitoring equipment that can confirm the quality indicated by the required specifications using the required specifications. ”.
 また本発明においては、「計算機により、造形の依頼者からの造形の要求仕様を用いて要求仕様が示す造形物を製造可能な製造設備を保有する造形事業者であって、かつ要求仕様を用いて要求仕様が示す品質を確認可能なモニタリング機器を保有する造形事業者を抽出することを特徴とする付加造形業者選定方法」としたものである。 In addition, in the present invention, ``a modeling business that owns manufacturing equipment capable of manufacturing a modeled object indicated by the required specifications using a computer using the required modeling specifications from a client for modeling, and that uses the required specifications] ``A method for selecting additive manufacturing companies that is characterized by extracting manufacturing companies that have monitoring equipment that can confirm the quality indicated by the required specifications.''
 本発明によれば、例えば付加造形物の依頼にあたって、希望する品質確認項目に応じた造形事業者の選定を支援する、付加造形処理システム、付加造形事業者選定方法並びに装置を提供することができる。 According to the present invention, it is possible to provide an additive manufacturing processing system, an additive manufacturing operator selection method, and a device that support the selection of a manufacturing operator according to desired quality check items when requesting an additively manufactured object, for example. .
本発明の実施例に係る付加造形処理システムの例を示す図。1 is a diagram showing an example of an additive modeling processing system according to an embodiment of the present invention. 本発明の実施例に係る付加造形事業者選定方法並びに装置の例を示す図。1 is a diagram illustrating an example of an additive manufacturing operator selection method and apparatus according to an embodiment of the present invention.
 以下、本発明の実施例について図面を参照しながら具体的に説明する。なお本発明は、ここで取り挙げた実施例に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で公知技術と適宜組み合わせたり公知技術に基づいて改良したりすることが可能である。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. The present invention is not limited to the embodiments mentioned here, and may be appropriately combined with known techniques or improved based on known techniques without departing from the technical idea of the invention. be.
 実施例1では造形処理工程の全体の流れについて説明し、実施例2ではフロント工程の処理について説明し、実施例3では造形物の確認すべき品質項目について、望ましい事項を以下に説明する。 In Example 1, the overall flow of the modeling process will be explained, in Example 2, the front process will be explained, and in Example 3, the desirable quality items to be checked for the model will be explained below.
 実施例1では、造形処理工程の全体の流れ(付加造形処理システム)について説明する。図1は、本発明の実施例に係る付加造形処理システムの例(造形プラットフォーム)を示している。 In Example 1, the overall flow of the modeling processing process (additive modeling processing system) will be described. FIG. 1 shows an example of an additive printing processing system (printing platform) according to an embodiment of the present invention.
 ここには、依頼者10が付加造形物の作製を依頼してから、モニタリングによる品質確認を経て造形事業者20から最終成果物である付加造形物が納品されるまでの一連の処理工程Sを記述している。この処理工程Sが、フロント工程S1、設計工程S2、造形レシピ生成工程S3、造形工程S4、品質評価工程S5である。 Here, a series of processing steps S are shown, from when the client 10 requests the production of an additively-printed object, until the final product, the additively-printed object, is delivered from the modeling business 20 through quality confirmation through monitoring. It is described. The processing steps S are a front step S1, a design step S2, a modeling recipe generation step S3, a modeling step S4, and a quality evaluation step S5.
 ただし、依頼者10は付加造形物の作製を依頼するに際し、数多い造形事業者20の誰にその作製を依頼するのが適切であるのか、未だ決定していない。このことから本発明の実施例においては、一連の処理工程Sの先頭に事業者選定を行うフロント工程S1を設けたことを特徴としている。 However, the client 10 has not yet decided which of the numerous modeling businesses 20 is appropriate to request the production of the additional object. For this reason, the embodiment of the present invention is characterized in that a front step S1 for selecting a business operator is provided at the beginning of the series of processing steps S.
 またここで、造形工程S4自体は造形事業者20が実行する。その他の工程SP(フロント工程S1、設計工程S2、造形レシピ生成工程S3、品質評価工程S5)は、個々の事業者が対応してもよいが、望ましくは依頼者10と造形事業者20の間を仲介する仲介者である造形プラットフォーム事業者30がその他の工程SPを一貫して対応するのが好適である。 Here, the modeling process S4 itself is executed by the modeling business operator 20. Other processes SP (front process S1, design process S2, modeling recipe generation process S3, quality evaluation process S5) may be handled by individual businesses, but preferably between the client 10 and the modeling business 20. It is preferable that the modeling platform business operator 30, which is an intermediary, handles the other processes SP consistently.
 以下本発明の実施例の説明においては、造形プラットフォーム事業者30による対応を念頭において各処理工程の詳細について説明する。 In the following description of the embodiments of the present invention, details of each processing step will be explained with consideration given to the response by the modeling platform operator 30.
 フロント工程S1では、依頼者10が付加造形物の作製を依頼するに際し、造形を行うに適切な造形事業者20を決定する機能とともに、依頼者10の要求を整理し、依頼者10の要求仕様に応じて類似の事例を探索し、付加造形実施例を示す機能を有する。また以下で説明する設計工程S2において顧客要求に応じた付加造形が困難である場合など、調達課題・製造課題も顧客と情報共有する機能を有する。 In the front process S1, when the client 10 requests the production of an additional model, it has the function of determining the appropriate modeling business 20 to carry out the modeling, as well as organizing the requests of the client 10 and meeting the requested specifications of the client 10. It has the function of searching for similar cases according to the requirements and showing examples of additive manufacturing. It also has a function to share information with customers regarding procurement issues and manufacturing issues, such as when it is difficult to perform additive manufacturing in accordance with customer requests in the design process S2 described below.
 これにより、設計工程S2が完了後、設計工程S2で決定された造形寸法や材料から造形装置を決定し、受注状況や協力する造形事業者20の保有設備、設備稼働状況から依頼先を決定し、納期回答をすることができる。また造形事業者20が任意に造形能力(造形可能サイズ、造形材量種類など)をフロント工程S1に登録することで、造形依頼先(造形事業者20)を増やすことができる。また設計情報、依頼先情報からコスト分析を行い、見積もりを作成できる。 As a result, after the design process S2 is completed, the modeling equipment is determined based on the modeling dimensions and materials determined in the design process S2, and the client is determined based on the order status, the equipment owned by the collaborating manufacturing business 20, and the equipment operating status. , we can give you an answer regarding the delivery date. In addition, by arbitrarily registering the modeling ability (printable size, type of modeling material, etc.) in the front process S1, the modeling business operator 20 can increase the number of modeling request destinations (modeling business operators 20). You can also perform cost analysis and create estimates based on design information and client information.
 設計工程S2では、要求仕様に応じて適した設計を実施する。完成した造形図面のオーバーハング角、寸法、内部構造などから、設計した造形形状の造形可否を判断する。造形が不可能と判断される場合はフロント工程S1に差し戻して、要求仕様について、顧客(依頼者10)と再調整する。設計した造形形状が造形可能と判断される場合、顧客要求(強度、比重、耐食性、表面粗さなど)に応じた材料、および後工程(切削、表面処理)を決定する。付加造形では造形中の変形や熱を考慮してサポートの配置等も考慮して設計する。造形サイズ、造形材料に応じて造形装置を決定する。造形装置の造形能力に応じた造形姿勢、サポート、造形個数を設定する。完成した3次元モデルデータは3次元CADデータなどにより造形レシピ工程S3に送られる。 In the design process S2, a suitable design is implemented according to the required specifications. It is determined whether the designed shape can be manufactured based on the overhang angle, dimensions, internal structure, etc. of the completed modeling drawing. If it is determined that modeling is not possible, the process is returned to the front process S1 and the required specifications are readjusted with the customer (requester 10). If it is determined that the designed shape can be manufactured, materials and post-processes (cutting, surface treatment) are determined according to customer requirements (strength, specific gravity, corrosion resistance, surface roughness, etc.). In additive manufacturing, the design takes into account deformation and heat during manufacturing, and also considers the placement of supports. Decide the printing device according to the printing size and printing material. Set the printing posture, support, and number of pieces to be printed according to the printing capacity of the printing device. The completed three-dimensional model data is sent to the modeling recipe step S3 using three-dimensional CAD data or the like.
 造形レシピ生成工程S3では、設計工程S2で作製した3次元モデルデータが顧客要求を満足する付加造形物となるよう、造形条件を設定する。付加造形物は造形条件によっての品質が変化する。品質には付加造形物の特性の他に、造形中に生じる欠陥や特異的な金属組織などの不均質部の有無(ポア、クラック、組織的異常、および幾何学的異常)がある。造形プラットフォーム事業者30を適用する場合には、ここまでの工程が造形プラットフォーム事業者30により一貫して実行され、決定された設計仕様などが決定された造形事業者20に渡される。 In the modeling recipe generation step S3, modeling conditions are set so that the three-dimensional model data created in the design step S2 becomes an additionally shaped object that satisfies customer requirements. The quality of additively shaped objects changes depending on the modeling conditions. In addition to the characteristics of the additively shaped object, quality includes the presence or absence of defects that occur during modeling and heterogeneous areas such as specific metal structures (pores, cracks, structural abnormalities, and geometric abnormalities). When applying the modeling platform business operator 30, the steps up to this point are consistently executed by the modeling platform business operator 30, and the determined design specifications and the like are passed to the determined modeling business operator 20.
 造形事業者20における造形工程S4では、設計工程S2で完成した3次元モデルデータ、および造形レシピ生成工程S3で完成した造形レシピに基づいて付加造形を実施する。付加造形はフロント工程S1で選定された造形事業者20に依頼する。造形事業者20は付加造形時にモニタリングデータDMを取得する。モニタリングデータDMとして可視光モニタリングによるデータDM1、電磁波モニタリングによるデータDM2、音響モニタリングによるデータDM3などが挙げられる。 In the modeling process S4 in the modeling business 20, additive modeling is performed based on the three-dimensional model data completed in the design process S2 and the modeling recipe completed in the modeling recipe generation process S3. Additional modeling is requested to the modeling business operator 20 selected in the front process S1. The modeling business operator 20 acquires monitoring data DM during additive modeling. Examples of the monitoring data DM include data DM1 based on visible light monitoring, data DM2 based on electromagnetic wave monitoring, and data DM3 based on acoustic monitoring.
 造形プラットフォーム事業者30を適用する場合には、モニタリングデータDMが造形事業者20から造形プラットフォーム事業者30に渡され、品質評価工程S5が実施される。品質評価工程S5では、造形工程S4で得たモニタリングデータDMから、付加造形品の欠陥情報を出力し、出力結果より付加造形品の品質を判定する。品質の判定は、欠陥率、欠陥サイズ、密度、欠陥位置、介在物の数密度、材料特性などについて、任意に設定できる。ここで述べた品質判定は造形後に実施する他に、造形と同時に実施しても良い。 When applying the modeling platform operator 30, the monitoring data DM is passed from the modeling operator 20 to the modeling platform operator 30, and the quality evaluation step S5 is implemented. In the quality evaluation step S5, defect information of the additively molded product is output from the monitoring data DM obtained in the modeling step S4, and the quality of the additively molded product is determined from the output result. Quality can be determined arbitrarily with respect to defect rate, defect size, density, defect position, number density of inclusions, material properties, etc. The quality determination described here may be performed not only after modeling, but also at the same time as modeling.
 次に造形プラットフォーム事業者30は、造形事業者20が作成した付加造形物の品質を、造形事業者20が提供するモニタリングデータDMをもとにして評価し、依頼者10の承認を得るべく、品質情報を依頼者に提示し、承認が得られた場合には造形事業者20から依頼者10への付加造形物の納品を行う。 Next, the modeling platform business operator 30 evaluates the quality of the additional model created by the modeling business operator 20 based on the monitoring data DM provided by the modeling business operator 20, and in order to obtain approval from the client 10, The quality information is presented to the client, and if approval is obtained, the additional model is delivered from the modeling business 20 to the client 10.
 以上が、図1における造形処理工程の全体の流れであり、本発明の実施例ではフロント工程S1を設けた点に特徴を有する。フロント工程S1を設けることで、付加造形物を造形事業者20に依頼し、品質確認をモニタリングデータDMにて実施する際に、希望する品質確認項目から候補となる造形事業者20を提案することができる。 The above is the entire flow of the modeling process in FIG. 1, and the embodiment of the present invention is characterized in that a front process S1 is provided. By providing the front process S1, when requesting an additionally shaped object to a modeling business operator 20 and performing quality confirmation using monitoring data DM, it is possible to propose a modeling business operator 20 as a candidate based on desired quality confirmation items. I can do it.
 実施例2では、フロント工程S1の処理である付加造形事業者選定について説明する。
ここで、造形事業者20の選定にあたり、留意すべき事項の一つは、造形事業者20が依頼者10の要求する仕様を満足することができる製品を製作できるだけの設備を備えており製作が可能かどうかという点であり、他の事項はそのようにして制作した付加造形物の品質を客観的に保証し、依頼者10に納得してもらえるに足るバックデータ(モニタリングデータDM)を提示できる体制にある(モニタリング機器を備える)かどうかという点である。
In the second embodiment, the selection of an additive manufacturing business, which is the process of the front process S1, will be explained.
Here, when selecting the modeling business 20, one of the things to keep in mind is that the modeling business 20 is equipped with sufficient equipment to manufacture products that can satisfy the specifications requested by the client 10. The other point is whether it is possible or not, and other matters are the ability to objectively guarantee the quality of the additively created object and present enough back data (monitoring data DM) to convince the client 10. The point is whether or not there is a system in place (equipped with monitoring equipment).
 図2は、本発明の実施例2に係る付加造形事業者選定の設備と流れを示す方法を示している。図2において100は、入力部200からの入力を得て、処理結果などを適宜表示部300に表示する付加造形事業者選定装置である。 FIG. 2 shows a method showing the equipment and flow for selecting an additive manufacturing business according to a second embodiment of the present invention. In FIG. 2, reference numeral 100 denotes an additive modeling operator selection device that receives input from the input unit 200 and displays processing results and the like on the display unit 300 as appropriate.
 付加造形事業者選定装置100は、予め作成した2組のデータベースDBを保有している。その一つは、造形事業者20が保有する造形設備のデータを保有する造形設備データベースDB1であり、他の一つは造形事業者20が保有する造形モニタリング機器のデータを保有する造形モニタリング機器データベースDB2である。 The additive manufacturing operator selection device 100 has two sets of databases DB created in advance. One of them is a fabrication equipment database DB1 that holds data on fabrication equipment owned by the fabrication business 20, and the other is a fabrication monitoring equipment database that holds data on fabrication monitoring equipment held by the fabrication business 20. It is DB2.
 付加造形事業者選定装置100を用いた処理によれば、上記した造形設備データ並びに造形モニタリング機器データを予め保持している。これに対し、依頼者10の要求を整理した要求仕様として、第1の要求仕様と第2の要求仕様を得る。 According to the process using the additive manufacturing operator selection device 100, the above-mentioned modeling equipment data and modeling monitoring equipment data are held in advance. On the other hand, a first requirement specification and a second requirement specification are obtained as requirement specifications that organize the requests of the client 10.
 まず造形情報入力工程S11では、造形の依頼者10からの情報を元に、第1の要求仕様として希望する造形物の形状、大きさ、材質などの造形データD1Aを入力部200から入力する。また第2の要求仕様として造形物の確認すべき品質項目を品質項目データD1Bとして入力する。 First, in the modeling information input step S11, based on information from the modeling client 10, modeling data D1A such as the shape, size, and material of the desired object as the first required specification is inputted from the input unit 200. Furthermore, as a second required specification, quality items to be checked for the model are input as quality item data D1B.
 次に造形設備情報出力工程S12では、造形情報入力工程S1で得た造形データD1Aを、各造形事業者20の造形能力をデータベース化した造形設備データベースDB1と照らし合わせ、希望の造形が可能な造形機に関する造形機情報D2を出力する。 Next, in the modeling equipment information output step S12, the modeling data D1A obtained in the modeling information input step S1 is compared with the modeling equipment database DB1, which is a database of the modeling capabilities of each modeling business 20, to create a model that allows the desired modeling. The modeling machine information D2 regarding the machine is output.
 造形モニタリング機器情報出力工程S13では、造形情報入力工程S11で得た品質項目データD1Bを、造形モニタリング機器データベースDB2に照らし合わせ、希望の品質項目の情報が得られる造形モニタリング機器に関する造形モニタリング機器情報D3を出力する。造形モニタリング機器データベースDB2は、各造形事業者20が有する造形モニタリング機器の能力をデータベース化したものであり、さらに造形モニタリング機器と品質項目が関連付けられている。 In the fabrication monitoring device information output step S13, the quality item data D1B obtained in the fabrication information input step S11 is compared with the fabrication monitoring device database DB2, and fabrication monitoring device information D3 regarding the fabrication monitoring device from which information on the desired quality item can be obtained. Output. The molding monitoring equipment database DB2 is a database of the capabilities of the molding monitoring equipment possessed by each molding business operator 20, and furthermore, the molding monitoring equipment and quality items are associated with each other.
 次に造形事業者選定工程S14では、造形設備データベースDB1を参照して造形設備情報出力工程S12で出力された造形機を保有する造形事業者情報D4を抽出し、また造形モニタリング機器データベースDB2を参照して造形モニタリング機器情報出力工程で出力された造形モニタリング機器を保有する造形事業者情報D4を抽出し、双方の機器や設備をともに保有している造形事業者20を特定する。 Next, in the modeling business selection step S14, the modeling equipment database DB1 is referred to to extract the information D4 of the modeling business that owns the modeling machine outputted in the modeling equipment information output step S12, and the modeling monitoring equipment database DB2 is also referred to. Then, the modeling business operator information D4 that owns the modeling monitoring equipment outputted in the modeling monitoring equipment information output step is extracted, and the modeling business operator 20 that owns both devices and facilities is identified.
 最終的に、情報出力工程S15では、造形事業者選定工程S14で得られた造形事業者D4を、造形依頼先候補として出力する。 Finally, in the information output step S15, the modeling business operator D4 obtained in the modeling business operator selection process S14 is output as a modeling request destination candidate.
 かくして付加造形事業者選定装置100により、造形事業者20が依頼者10の要求する仕様を満足することができる製品を製作できるだけの設備を備えており製作が可能であり、かつ他制作した付加造形物の品質を客観的に保証し、依頼者10に納得してもらえるに足るバックデータ(モニタリングデータDM)を提示できる体制にある事業者が最終的に選定される。 In this way, the additive manufacturing business selection device 100 determines whether the additive manufacturing business 20 is equipped with sufficient equipment and capable of manufacturing products that can satisfy the specifications requested by the client 10, and which is capable of manufacturing products that meet the specifications requested by the client 10, and which additive manufacturing businesses 20 have been manufactured by other manufacturers. A business operator that has a system that can objectively guarantee the quality of the product and present enough back data (monitoring data DM) to satisfy the client 10 is finally selected.
 実施例3では、造形物の確認すべき品質項目データD1Bについて、望ましい事項を以下に説明する。また、望ましいモニタリング機器やモニタリングデータについて説明する。 In Embodiment 3, desirable items regarding the quality item data D1B to be checked for the modeled object will be described below. In addition, desirable monitoring equipment and monitoring data will be explained.
 まず品質項目を設定するときには、品質に係る不均質部を考慮すべきである。品質には付加造形物の特性の他に、造形中に生じる欠陥や特異的な金属組織などの不均質部の有無がある。ここでは不均質部をポア、クラック、組織的異常、および幾何学的異常の4項目に分類して述べる。 First of all, when setting quality items, you should consider the heterogeneity related to quality. In addition to the characteristics of the additively shaped object, quality includes the presence or absence of defects that occur during modeling and non-uniformities such as specific metal structures. Here, the heterogeneity is classified into four categories: pores, cracks, structural abnormalities, and geometric abnormalities.
 不均質部のうちポアは、付加造形中に付加造形物内に残留したガスに起因する。金属粉末を製造に用いられるガスアトマイズ法では、金属粉末の製造にガスを用いるため、金属粉末内に残留したガス成分が造形物中でポアになると推察される。また、付加造形における過大な入熱は溶融池の表面張力の変化に起因したマランゴニ対流や、元素の蒸発、キーホール形成といった金属の溶融現象に関連してポアを形成する。溶融池のエネルギーが不十分な場合、粉末粒子を溶融できなくなると未溶融部(LOF:Lack of Fusion)による空隙(以下LOFと記載)が生じる。LOFは通常、不規則な形状であることが多く、未溶融の粉末を含むことがある。 Among the heterogeneous parts, pores are caused by gas remaining in the additive-molded object during additive-molding. In the gas atomization method used to manufacture metal powder, gas is used to manufacture the metal powder, so it is assumed that gas components remaining in the metal powder become pores in the modeled object. In addition, excessive heat input during additive manufacturing causes pores to be formed in connection with metal melting phenomena such as Marangoni convection caused by changes in the surface tension of the molten pool, evaporation of elements, and keyhole formation. If the energy of the molten pool is insufficient and the powder particles cannot be melted, voids (hereinafter referred to as LOF) due to unfused portions (LOF) are generated. LOFs are typically irregularly shaped and may contain unfused powder.
 不均質部のうちクラックに関して、亀裂も付加造形物に生じる欠陥の1つである。前述のポアやLOFが亀裂状となって残るものである。また基板と付加造形物の線膨張係数に違いがある場合、または凝固の進行中に溶融池に大きな熱勾配がある場合に亀裂が生じる可能性がある。 With regard to cracks among the heterogeneous parts, cracks are also one of the defects that occur in additive-molded objects. The aforementioned pores and LOF remain in the form of cracks. Cracks may also occur if there is a difference in linear expansion coefficient between the substrate and the additive structure, or if there is a large thermal gradient in the molten pool during solidification.
 続いて不均質部のうち、組織的な不均質性(異方性、介在物)について述べる。一般的に、造形における入熱量を変化させると、付加造形物の金属組織が変化する。溶融池の温度勾配の変化に伴って凝固速度が変化し、造形物の組織異方性などの微細構造に影響を与える。また酸素による酸化物の形成など、造形中の雰囲気や金属粉末中の不純物も微細組織に影響を及ぼす。金属組織の変化は付加造形物の機械的特性の変化に直結する。 Next, among the heterogeneous parts, structural heterogeneity (anisotropy, inclusions) will be described. Generally, when the amount of heat input during modeling is changed, the metal structure of the additionally-shaped object changes. The solidification rate changes with changes in the temperature gradient of the molten pool, which affects the microstructure such as the structural anisotropy of the modeled object. Additionally, the atmosphere during modeling and impurities in the metal powder, such as the formation of oxides due to oxygen, also affect the microstructure. Changes in the metallographic structure are directly linked to changes in the mechanical properties of the additive structure.
 最後に不均質部のうち幾何学的な異常について述べる。幾何学的な異常は寸法変化と表面粗さに関するものである。溶融値の安定性に関するものであり、溶融池のサイズ・形状変化は寸法や表面粗さに大きな影響を与える。こうした幾何学的異常を最小限に抑えるには、安定した溶融池のサイズ・形状が必要とされる。 Finally, we will discuss geometric abnormalities among the heterogeneous parts. Geometric anomalies are related to dimensional changes and surface roughness. This relates to the stability of the melt value, and changes in the size and shape of the molten pool have a large effect on the dimensions and surface roughness. To minimize these geometric anomalies, a stable weld pool size and shape is required.
 ここまで述べたポア(LOFを含む)、クラック、組織的異常、および幾何学的異常はいずれも付加造形中の溶融現象に起因して形成すると考えられることから、付加造形中に溶融現象に関連する情報をモニタリングすることで、付加造形物の品質を判定することが可能となる。また、クラックが生じる際の衝撃を音響として捉える音響センサによっても、クラックの発生を判定できると考えられる。 The pores (including LOF), cracks, structural abnormalities, and geometric abnormalities mentioned above are all thought to be formed due to melting phenomena during additive manufacturing, and therefore are related to melting phenomena during additive manufacturing. By monitoring the information obtained, it is possible to judge the quality of the additive-molded object. It is also believed that the occurrence of cracks can be determined by an acoustic sensor that captures the impact when cracks occur as sound.
 以上のことから、造形物の確認すべき品質項目としては上記の点を考慮したものとするのがよい。 次に、望ましいモニタリング機器やモニタリングデータDMについて説明する。まずモニタリングデータDMについて説明する。付加製造には様々な方式がある。例えば、粉末床溶融結合(Powder Bed Fusion)方式であり、平らに敷き詰めた金属粉末に対して、レーザビーム(L-PBF:Laser Powder Bed Fusion)や電子ビーム(EBM:Electron Beam Melting)等を照射して、付加製造する。 From the above, it is best to consider the above points as quality items that should be checked for the modeled object. Next, desirable monitoring equipment and monitoring data DM will be explained. First, the monitoring data DM will be explained. There are various methods of additive manufacturing. For example, it is a powder bed fusion method, in which a flat sheet of metal powder is irradiated with a laser beam (L-PBF: Laser Powder Bed Fusion) or an electron beam (EBM: Electron Beam Melting), etc. and additive manufacturing.
 一方で、指向性エネルギー堆積(Directed Energy Deposition)方式は、金属粉末を吐出しながら付加製造を行うもので、LMD(Laser Metal Deposition)、やDMP(Direct Metal Printing)等がある。ここでは代表として、L-PBFにおける溶融池のモニタリングについて述べる。 On the other hand, the directional energy sedimentary method (Directed ENERGY DEPOSITION) method is formed while exciting metal powder, and LMD (LASER METAL DEPOSITION), DMP (DIRECT METAL PRINTINTIN). G), etc. Here, we will discuss monitoring of the molten pool in L-PBF as a representative example.
 付加造形における溶融はレーザーの照射によって生じ、溶融池はレーザーの出力やスキャン速度などの造形における造形パラメータ、および金属粉末の溶解に必要なエンタルピー、レーザーの反射率といった材料特性に影響される。 Melting in additive manufacturing is caused by laser irradiation, and the molten pool is affected by modeling parameters such as laser output and scanning speed, as well as material properties such as the enthalpy required to melt the metal powder and laser reflectance.
 溶融池の変化の1つとして、溶融池の温度変化があり、溶融池の温度変化に関連した情報をモニタリングすることで溶融池の状況を推測することができる。L-PBFでは、反射、散乱されるレーザー、温度に応じた赤外線などの電磁波、イオン化されたガスと金属蒸気で構成されるプラズマプルームが溶融池から放出される。溶融池から放出される電磁波やプラズマプルームは溶融池の状態、温度により変化することから、溶融現象に関連する各種の欠陥の形成を捉え、品質を判定するために重要な指標となる。 One of the changes in the molten pool is the temperature change in the molten pool, and the status of the molten pool can be estimated by monitoring information related to the temperature change in the molten pool. In L-PBF, a plasma plume consisting of reflected and scattered laser, electromagnetic waves such as infrared rays depending on the temperature, ionized gas and metal vapor is emitted from the molten pool. Since the electromagnetic waves and plasma plume emitted from the molten pool change depending on the state and temperature of the molten pool, they are important indicators for detecting the formation of various defects related to the melting phenomenon and determining quality.
 上記モニタリングデータDMを得るには、適切なモニタリング機器である必要がある。
付加造形における一般的なモニタリング機器として可視光モニタリング、電磁波モニタリング、音響モニタリングが挙げられる。ここでは、電磁波モニタリングについて詳細に説明する。
In order to obtain the above-mentioned monitoring data DM, an appropriate monitoring device is required.
Common monitoring devices in additive manufacturing include visible light monitoring, electromagnetic wave monitoring, and acoustic monitoring. Here, electromagnetic wave monitoring will be explained in detail.
 電磁波モニタリングは、主として温度により強度が変化する赤外線(波長700nm~)を観測するものであり、光トモグラフィ(OT:Optical Tomography)、フォトダイオード、2色温度計、サーモグラフィ、分光器などがある。溶融池の詳細な観察(メルトプールモニタリング)に用いられるフォトダイオードや2色温度計は、空間分解能を有さないが、レーザーと同軸となるよう設置して測定し、設定したレーザー照射パターンと比較することで空間的な位置関係を決定できる。溶融池からの熱放射の他にレーザー光の反射散乱も考慮する必要があるが、一般的にはスペクトルフィルターで所望の波長のみ観察する。 Electromagnetic wave monitoring mainly involves observing infrared rays (wavelength from 700 nm) whose intensity changes depending on temperature, and includes optical tomography (OT), photodiodes, two-color thermometers, thermography, spectrometers, etc. Photodiodes and two-color thermometers used for detailed observation of the molten pool (melt pool monitoring) do not have spatial resolution, but they are installed coaxially with the laser and measured, and compared with the set laser irradiation pattern. By doing so, the spatial relationship can be determined. In addition to thermal radiation from the molten pool, it is also necessary to consider reflection and scattering of laser light, but generally only the desired wavelength is observed using a spectral filter.
 CCDやCMOSカメラを用いるOTやサーモグラフィは空間分解能を有する特徴がある。このためレーザーと同軸に設置する測定方法の他に、造形チャンバの上部等から造形領域全体をモニタリングすることが可能である(以下では非同軸と記載)。また前述のフォトダイオード等と同様に、スペクトルフィルターによって、観察する波長範囲を選択している。 OT and thermography using CCD and CMOS cameras are characterized by spatial resolution. Therefore, in addition to the measurement method in which the laser is installed coaxially with the laser, it is also possible to monitor the entire printing area from the top of the printing chamber (hereinafter referred to as non-coaxial). Also, like the photodiode and the like described above, the wavelength range to be observed is selected using a spectral filter.
 このように付加造形中の同軸・非同軸での電磁波モニタリングによって、溶融に関連した情報を観測することが可能である。溶融池の変化(温度、対流、大きさ、溶融深さなど)は欠陥の形成に関連することから、付加造形物に形成した欠陥と、電磁波モニタリングの関係を整理することで欠陥位置を類推可能となる。 In this way, it is possible to observe information related to melting by coaxial and non-coaxial electromagnetic wave monitoring during additive manufacturing. Since changes in the molten pool (temperature, convection, size, fusion depth, etc.) are related to defect formation, it is possible to infer the defect location by arranging the relationship between defects formed in additive-molded objects and electromagnetic wave monitoring. becomes.
 モニタリング機器毎に選択する波長、サンプリングレート、分解能などが異なり、また造形装置毎にモニタリング機器の設置位置が異なる。このため、電磁波モニタリングによって確認したい品質項目が決まっている場合、その品質項目に応じた適切なモニタリング機器を有する造形事業者に依頼することが重要である。 The wavelength, sampling rate, resolution, etc. selected for each monitoring device are different, and the installation position of the monitoring device is different for each printing device. For this reason, if you have decided on a quality item that you would like to check through electromagnetic wave monitoring, it is important to request a manufacturing business that has appropriate monitoring equipment for that quality item.
 以上のことから、造形物の品質を立証するためのモニタリングにおいては、上記のモニタリングデータを提供可能なモニタリング機器を保有している必要がある。製品仕様を満たす付加造成物を作製できる機器を保有していると同時に、その品質を証明可能なモニタリングデータが提供可能なモニタリング機器を保有していることが造形物事業者の要件として求められる。 From the above, when monitoring to verify the quality of a modeled object, it is necessary to have monitoring equipment that can provide the above monitoring data. Manufacturers of built objects are required to have equipment that can produce additive objects that meet product specifications, as well as monitoring equipment that can provide monitoring data that can prove their quality.
 また以上のことを勘案すると、図1のフロント工程S1において、依頼者10は所望の付加造形物情報として、付加造形物の寸法および材料種類を具体的に指定するのがよい。
また所望の造形物品質として、付加造形物の特性、造形中に生じる欠陥や特異的な金属組織などの不均質部の種別を具体的に指定するのがよい。これらは不均質部としてはポア、クラック、組織的異常、および幾何学的異常などである。
Considering the above, in the front process S1 of FIG. 1, the client 10 should specifically specify the dimensions and material type of the additional object as the desired additional object information.
Furthermore, as the desired quality of the shaped object, it is preferable to specifically specify the characteristics of the additionally shaped object and the type of heterogeneous portions such as defects and specific metal structures that occur during modeling. These heterogeneities include pores, cracks, structural abnormalities, and geometric abnormalities.
 係る具体的指定により、フロント工程S1では、入力された付加造形物の情報に基づき、造形設備データベースDB1の造形能力から付加造形機が選定される。続いて、入力された所望の付加造形物品質情報と、造形モニタリング機器情報データベースDB2の造形モニタリング機器/品質項目の関連付けから、所望の付加造形物品質情報に対応した造形モニタリング機器が選定される。ここまでで選定された造形機器、および造形モニタリング機器で構成された設備を有する造形依頼先が選定され、依頼者は造形情報を受け取ることができる。 According to such specific designation, in the front process S1, an additive modeling machine is selected from the modeling capability of the modeling equipment database DB1 based on the information of the inputted additive manufacturing object. Next, from the association between the inputted desired additional-structured product quality information and the modeling monitoring device/quality item of the modeling monitoring device information database DB2, a modeling monitoring device corresponding to the desired additional-printed product quality information is selected. A printing request destination that has equipment including the printing equipment and printing monitoring equipment selected up to this point is selected, and the requester can receive printing information.
10:依頼者
20:造形事業者
30:造形プラットフォーム事業者
100:付加造形事業者選定装置
200:入力部
300:表示部
DB1:造形設備データベース
DB2:造形モニタリング機器データベース
S:処理工程
S1:フロント工程
S2:設計工程
S3:造形レシピ生成工程
S4:造形工程
S5:品質評価工程
10: Client 20: Modeling business operator 30: Modeling platform operator 100: Additive modeling operator selection device 200: Input section 300: Display section DB1: Modeling equipment database DB2: Modeling monitoring equipment database S: Processing process S1: Front process S2: Design process S3: Modeling recipe generation process S4: Modeling process S5: Quality evaluation process

Claims (13)

  1.  造形の依頼者からの造形の要求仕様を用いて造形事業者を決定するフロント工程と、造形の要求仕様に応じて設計を実施する設計工程と、前記設計工程で作製したモデルデータが依頼者の要求を満足する造形物となるように造形条件を設定する造形レシピ生成工程と、前記フロント工程で決定した造形事業者により造形を行う造形工程と、前記造形工程で製造された造形物のモニタリングデータにより造形物の品質を評価する品質評価工程を含んでおり、品質確認後の造形品を前記依頼者に納品するとともに、
     前記フロント工程では、前記造形事業者が保有する造形設備のデータを保有する造形設備データベースと、造形事業者が保有する造形モニタリング機器のデータを保有する造形モニタリング機器データベースを備え、前記要求仕様を用いて前記造形設備データベースを参照して前記要求仕様が示す造形物を製造可能な製造設備を保有する造形事業者であって、かつ前記要求仕様を用いて前記造形モニタリング機器データベースを参照して前記要求仕様が示す品質を確認可能なモニタリング機器を保有する造形事業者を抽出することを特徴とする付加造形処理システム。
    There is a front process in which a modeling business is determined using the required modeling specifications from the modeling client, a design process in which a design is implemented according to the required modeling specifications, and a model data created in the design process is transferred to the client. A printing recipe generation process in which printing conditions are set to produce a printed object that satisfies the requirements, a printing process in which printing is performed by a printing company determined in the front process, and monitoring data for the printed object manufactured in the printing process. It includes a quality evaluation process in which the quality of the modeled object is evaluated using
    The front process is equipped with a molding equipment database that holds data on molding equipment owned by the molding business and a molding monitoring equipment database that holds data on molding monitoring equipment owned by the molding business, and uses the required specifications. A manufacturing business that owns manufacturing equipment capable of manufacturing the object indicated by the required specifications by referring to the molding equipment database, and using the required specifications to refer to the molding monitoring equipment database and making the request. An additive manufacturing processing system characterized by extracting manufacturing businesses that have monitoring equipment that can confirm the quality indicated by specifications.
  2.  請求項1に記載の付加造形処理システムであって、
     前記フロント工程と、前記設計工程と、前記造形レシピ生成工程と、前記品質評価工程の処理を、前記依頼者と前記造形事業者の間を仲介する仲介者である造形プラットフォーム事業者が一貫して対応することを特徴とする付加造形処理システム。
    The additive modeling processing system according to claim 1,
    The processing of the front process, the design process, the printing recipe generation process, and the quality evaluation process is carried out consistently by the printing platform operator, which is an intermediary between the client and the printing operator. An additive manufacturing processing system that is compatible with
  3.  請求項1に記載の付加造形処理システムであって、
     前記品質評価工程の結果を前記造形レシピ生成工程にフィードバックし、前記造形レシピ生成工程が新たな造形レシピを作製することを特徴とする付加造形処理システム。
    The additive modeling processing system according to claim 1,
    An additive modeling processing system characterized in that the results of the quality evaluation process are fed back to the modeling recipe generation process, and the modeling recipe generation process creates a new modeling recipe.
  4.  請求項1に記載の付加造形処理システムであって、
     前記品質評価工程の結果を前記設計工程にフィードバックし、前記設計工程が新たな設計をすることを特徴とする付加造形処理システム。
    The additive modeling processing system according to claim 1,
    An additive manufacturing processing system characterized in that the results of the quality evaluation process are fed back to the design process, and the design process creates a new design.
  5.  造形事業者が保有する造形設備のデータを保有する造形設備データベースと、造形事業者が保有する造形モニタリング機器のデータを保有する造形モニタリング機器データベースと、計算機を備え、前記計算機により、造形の依頼者からの造形の要求仕様を用いて前記造形設備データベースを参照して前記要求仕様が示す造形物を製造可能な製造設備を保有する造形事業者であって、かつ前記要求仕様を用いて前記造形モニタリング機器データベースを参照して前記要求仕様が示す品質を確認可能なモニタリング機器を保有する造形事業者を抽出することを特徴とする付加造形事業者選定装置。 A molding equipment database that holds data on molding equipment held by the molding business operator, a molding monitoring equipment database that holds data on the molding monitoring equipment held by the molding business operator, and a computer, and the computer allows the molding requester to A manufacturing business that owns manufacturing equipment capable of manufacturing a molded object indicated by the required specifications by referring to the modeling equipment database using the required specifications for modeling, and monitors the modeling using the required specifications. An additive manufacturing business selection device characterized in that a manufacturing business that has monitoring equipment capable of confirming quality indicated by the required specifications is extracted by referring to an equipment database.
  6.  請求項5に記載の付加造形事業者選定装置であって、
     前記要求仕様は、希望する造形物の形状、大きさ、材質の造形データを第1の要求仕様として含み、第1の要求仕様により前記造形設備データベースを参照することを特徴とする付加造形事業者選定装置。
    The additive manufacturing operator selection device according to claim 5,
    The additive manufacturing business is characterized in that the required specifications include modeling data regarding the shape, size, and material of the desired object as a first required specification, and the first required specification refers to the modeling equipment database. Selection device.
  7.  請求項5に記載の付加造形事業者選定装置であって、
     前記要求仕様は、造形物の確認すべき品質項目に関する品質項目データを第2の要求仕様として含み、第2の要求仕様により前記造形モニタリング機器データベースを参照することを特徴とする付加造形事業者選定装置。
    The additive manufacturing operator selection device according to claim 5,
    The additive manufacturing business selection is characterized in that the required specifications include quality item data regarding quality items to be checked for the molded object as a second required specification, and the modeling monitoring equipment database is referred to by the second required specifications. Device.
  8.  請求項5に記載の付加造形事業者選定装置であって、
     前記要求仕様は、希望する造形物の形状、大きさ、材質の造形データを第1の要求仕様として含み、第1の要求仕様により前記造形設備データベースを参照し、前記要求仕様は、造形物の確認すべき品質項目に関する品質項目データを第2の要求仕様として含み、第2の要求仕様により前記造形モニタリング機器データベースを参照することを特徴とする付加造形事業者選定装置。
    The additive manufacturing operator selection device according to claim 5,
    The required specifications include modeling data regarding the shape, size, and material of the desired object as a first required specification, and the first required specification refers to the modeling equipment database. An additive manufacturing operator selection device comprising quality item data regarding quality items to be confirmed as a second required specification, and referring to the modeling monitoring equipment database based on the second required specification.
  9.  請求項7に記載の付加造形事業者選定装置であって、
     前記品質項目として内部欠陥位置、内部欠陥寸法、密度、欠陥率のうち少なくとも1つを含むことを特徴とする付加造形業者選定装置。
    The additive manufacturing operator selection device according to claim 7,
    An additive manufacturing contractor selection device characterized in that the quality item includes at least one of internal defect position, internal defect size, density, and defect rate.
  10.  請求項7に記載の付加造形事業者選定装置であって、
     前記品質項目として寸法、表面粗さのうち少なくとも1つを含むことを特徴とする付加造形業者選定装置。
    The additive manufacturing operator selection device according to claim 7,
    An additive modeling vendor selection device, wherein the quality item includes at least one of dimensions and surface roughness.
  11.  請求項7に記載の付加造形事業者選定装置であって、
     前記品質項目として組織(偏析、結晶粒径、析出物・晶出物数密度、析出物・晶出物サイズ、結晶方向)、引張特性、衝撃値、疲労強度、耐食性のうち少なくとも1つを含むことを特徴とする付加造形業者選定装置。
    The additive manufacturing operator selection device according to claim 7,
    The quality items include at least one of microstructure (segregation, grain size, precipitate/crystalline number density, precipitate/crystalline size, crystal direction), tensile properties, impact value, fatigue strength, and corrosion resistance. An additive manufacturing vendor selection device characterized by:
  12.  造形の依頼者からの造形の要求仕様を用いて造形事業者を決定するフロント工程と、造形の要求仕様に応じて設計を実施する設計工程と、前記設計工程で作製したモデルデータが依頼者の要求を満足する造形物となるように造形条件を設定する造形レシピ生成工程と、前記フロント工程で決定した造形事業者により造形を行う造形工程と、前記造形工程で製造された造形物のモニタリングデータにより造形物の品質を評価する品質評価行程を含んでおり、品質確認後の造形品を前記依頼者に納品するとともに、
     前記フロント工程では、前記要求仕様を用いて前記要求仕様が示す造形物を製造可能な製造設備を保有する造形事業者であって、かつ前記要求仕様を用いて前記要求仕様が示す品質を確認可能なモニタリング機器を保有する造形事業者を抽出することを特徴とする付加造形処理方法。
    There is a front process in which a modeling business is determined using the required modeling specifications from the modeling client, a design process in which a design is implemented according to the required modeling specifications, and a model data created in the design process is transferred to the client. A printing recipe generation process in which printing conditions are set to produce a printed object that satisfies the requirements, a printing process in which printing is performed by a printing company determined in the front process, and monitoring data for the printed object manufactured in the printing process. The process includes a quality evaluation process in which the quality of the modeled object is evaluated using
    In the front process, the manufacturing business is a manufacturing business that owns manufacturing equipment capable of manufacturing the object indicated by the required specifications using the required specifications, and is capable of confirming the quality indicated by the required specifications using the required specifications. An additive manufacturing processing method characterized by extracting manufacturing businesses that own monitoring equipment.
  13.  計算機により、造形の依頼者からの造形の要求仕様を用いて前記要求仕様が示す造形物を製造可能な製造設備を保有する造形事業者であって、かつ前記要求仕様を用いて前記要求仕様が示す品質を確認可能なモニタリング機器を保有する造形事業者を抽出することを特徴とする付加造形業者選定方法。 A modeling business that owns manufacturing equipment capable of manufacturing a modeled object indicated by the required specifications using a computer using the required specifications from the modeling client, and that uses the required specifications to produce the required specifications. A method for selecting additive manufacturing companies characterized by extracting manufacturing companies that have monitoring equipment that can confirm the quality shown.
PCT/JP2023/020614 2022-08-01 2023-06-02 Additive fabrication processing system, and additive fabrication operator selection apparatus and method WO2024029183A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-122571 2022-08-01
JP2022122571A JP2024019842A (en) 2022-08-01 2022-08-01 Additional molding treatment system, additional molding entrepreneur selection apparatus and method therefor

Publications (1)

Publication Number Publication Date
WO2024029183A1 true WO2024029183A1 (en) 2024-02-08

Family

ID=89848771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020614 WO2024029183A1 (en) 2022-08-01 2023-06-02 Additive fabrication processing system, and additive fabrication operator selection apparatus and method

Country Status (2)

Country Link
JP (1) JP2024019842A (en)
WO (1) WO2024029183A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035133A1 (en) * 2014-09-02 2016-03-10 株式会社日立製作所 Information processing system and production mediation method
JP2017094728A (en) * 2015-11-19 2017-06-01 ゼネラル・エレクトリック・カンパニイ Acoustic monitoring method for additive manufacturing processes
JP2020166383A (en) * 2019-03-28 2020-10-08 株式会社日立製作所 Manufacturer selection assist system and manufacturer selection assist method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035133A1 (en) * 2014-09-02 2016-03-10 株式会社日立製作所 Information processing system and production mediation method
JP2017094728A (en) * 2015-11-19 2017-06-01 ゼネラル・エレクトリック・カンパニイ Acoustic monitoring method for additive manufacturing processes
JP2020166383A (en) * 2019-03-28 2020-10-08 株式会社日立製作所 Manufacturer selection assist system and manufacturer selection assist method

Also Published As

Publication number Publication date
JP2024019842A (en) 2024-02-14

Similar Documents

Publication Publication Date Title
Spears et al. In-process sensing in selective laser melting (SLM) additive manufacturing
Bennett et al. Thermal effect on clad dimension for laser deposited Inconel 718
Seifi et al. Overview of materials qualification needs for metal additive manufacturing
Barua et al. Vision-based defect detection in laser metal deposition process
Biegler et al. Finite element analysis of in-situ distortion and bulging for an arbitrarily curved additive manufacturing directed energy deposition geometry
Lednev et al. In situ elemental analysis and failures detection during additive manufacturing process utilizing laser induced breakdown spectroscopy
Farahmand et al. Parametric study and multi-criteria optimization in laser cladding by a high power direct diode laser
Wang et al. Review on adaptive control of laser-directed energy deposition
Xie et al. The full-field strain distribution and the evolution behavior during additive manufacturing through in-situ observation
Yang et al. Monitoring and detection of meltpool and spatter regions in laser powder bed fusion of super alloy Inconel 625
Zhao et al. Unit block–based process planning strategy of WAAM for complex shell–shaped component
Kemerling et al. Residual stress evaluation of components produced via direct metal laser sintering
Nassar et al. Sensing for directed energy deposition and powder bed fusion additive manufacturing at Penn State University
Liu et al. Review on scanning pattern evaluation in laser-based additive manufacturing
Mazzarisi et al. Thermal monitoring of laser metal deposition strategies using infrared thermography
Piscopo et al. Influence of high-productivity process parameters on the surface quality and residual stress state of AISI 316L components produced by directed energy deposition
Baier et al. Thermal process monitoring and control for a near-net-shape Wire and Arc Additive Manufacturing
WO2024029183A1 (en) Additive fabrication processing system, and additive fabrication operator selection apparatus and method
Ali et al. Fabrication of thin walls with and without close loop control as a function of scan strategy via direct energy deposition
Wang et al. Process parameters, product quality monitoring, and control of powder bed fusion
Park et al. Development of a predictive system for SLM product quality
Lupi et al. Laser powder bed additive manufacturing: A review on the four drivers for an online control
Renzo et al. Multiaxial fatigue behavior of additively manufactured Ti6Al4V alloy: Axial–torsional proportional loads
Haley et al. Review of in situ process monitoring for metal hybrid directed energy deposition
Bäreis et al. Electron-optical in-situ crack monitoring during electron beam powder bed fusion of the Ni-Base superalloy CMSX-4

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849744

Country of ref document: EP

Kind code of ref document: A1