WO2024029033A1 - Communication system and normality determination method - Google Patents

Communication system and normality determination method Download PDF

Info

Publication number
WO2024029033A1
WO2024029033A1 PCT/JP2022/029937 JP2022029937W WO2024029033A1 WO 2024029033 A1 WO2024029033 A1 WO 2024029033A1 JP 2022029937 W JP2022029937 W JP 2022029937W WO 2024029033 A1 WO2024029033 A1 WO 2024029033A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
control
user device
optical
user
Prior art date
Application number
PCT/JP2022/029937
Other languages
French (fr)
Japanese (ja)
Inventor
學 吉野
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/029937 priority Critical patent/WO2024029033A1/en
Publication of WO2024029033A1 publication Critical patent/WO2024029033A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking

Definitions

  • the present invention relates to a communication system and a normality determination method.
  • a cyber-physical system is a system in which a huge amount of sensing data obtained from the real world is analyzed on a computer, and the analysis results are fed back to achieve optimal control of the real world. It is expected that such cyber-physical systems will create new values and solutions.
  • APN photonics networks
  • APN is one of the transparent networks that transmits arbitrary user signals.
  • APN provides an end-to-end optical path, independent of specific communication protocols and optical modulation schemes.
  • signal path normality determination For example, when a communication abnormality occurs, in order to identify the location where the abnormality has occurred, the optical signal transmission path is divided, and signal path normality determination (normality monitoring) is performed for each divided section. In the signal path normality determination for each section, continuity of the optical signal is confirmed from one section to the other of the target section of the signal path normality determination.
  • the continuity check is made by performing optical-electrical conversion (hereinafter referred to as "OE conversion") of at least a part of the optical signal at the end point of the target section for determining the normality of the signal path, and terminating and determining Alternatively, determination is made using nonlinear optical effects or the like regarding the optical signal.
  • nonlinear optical effects, etc. refers to changes in the gain in gain media and light absorption media, the current and voltage applied to those media, and the changes in pump light and gain clamp light input to those media. This means using changes in intensity after passing through a medium, changes in light generated by nonlinear optical effects such as idler light, etc.
  • a loopback method is mainly used in which a response is returned from the other target section in response to a request from one of the target sections.
  • an OE converter that transmits a requested optical signal to one end point or beyond the target section for optical signal path normality determination and receives a response responds to the request at the other end point or beyond.
  • Optical-Electrical-Optical conversion (hereinafter referred to as "OEO conversion") is required at the turning point of the optical signal at which the received response is turned back.
  • OEO conversion Optical-Electrical-Optical conversion
  • FIG. 16 is a diagram showing an example of the frequency of the control signal and the frequency of the main signal (user signal).
  • the control signal is an AMCC (Auxiliary Management and Control Channel) signal.
  • a photonic gateway (hereinafter referred to as "Ph-GW") in the station transmits an AMCC signal whose frequency is superimposed on the main signal to devices constituting the network such as user equipment and other Ph-GWs.
  • a user device or another device constituting a network such as a Ph-GW may transmit an AMCC signal whose frequency is superimposed on a main signal to another user device or a device constituting a network such as Ph-GW.
  • Devices constituting the network such as user equipment and Ph-GW, may receive the AMCC signal.
  • an object of the present invention is to provide a communication system and a method for determining normality that are capable of determining the normality of a signal path in a transparent network.
  • One aspect of the present invention is a communication system including one or more control devices and one or more user devices, wherein a first user device or first control device is connected to an opposing second user device or second user device.
  • the second control device or the second control device responds with a second control signal to the first control signal transmitted from the second control device; determining whether a signal path including between the control device and the second user device or the second control device is normal based on the second control signal used in the response;
  • the first user device or the first control device returns the first control signal transmitted from the opposing second user device or second control device, and returns the first control signal to the second user device or the second control device.
  • the device or the second control device determines whether the signal path including between the first user device or the first control device and the second user device or the second control device is normal.
  • the communication system determines whether or not the received signal is received based on the returned first control signal.
  • One aspect of the present invention is a communication system including one or more control devices and one or more user devices, wherein a first user device or first control device is connected to an opposing second user device or second user device. generating and terminating a main signal in a signal format selected based on the signal format used by the second control device; returning the first main signal transmitted from the second user device or the second control device; The second user device or the second control device has a signal path including between the second user device or the second control device and the first user device or the first control device. The first user device or the first control device determines whether or not it is normal based on the returned first main signal, or the first user device or the first control device determines whether the second user device or the first control device is normal.
  • a second main signal transmitted from the second user device or the second control device is returned in a signal format selected based on a signal format used by the second control device, and the second main signal is returned to the second user device.
  • the second control device determines whether a signal path including between the second user device or the second control device and the first user device or the first control device is normal. is determined based on the returned second main signal, or the first user device or the first control device determines the second main signal of the opposing second user device or the second control device.
  • a third main signal transmitted from the second user equipment or the second control device that generates and terminates the main signal in a signal form selected based on the signal form to be used;
  • the second user device or the second control device connects the second user device or the second control device with the first user device or the first control device.
  • the first user device or the first control device determines whether or not a signal path including a the second main signal transmitted from the second user device or the second control device in a signal format selected based on a signal format used by the second user device or the second control device; the second user device or the second control device responds with a fourth main signal to the second user device or the second control device, and
  • the present invention is a communication system that determines whether a signal path including a signal path with a first control device is normal based on the fourth main signal used in a response.
  • One aspect of the present invention is a normality determination method executed by a communication system including one or more control devices and one or more user devices, wherein the first user device or the first control device responds with a second control signal to a first control signal transmitted from a user equipment or a second control device, and the second user equipment or the second control device Whether or not a signal path including between the device or the first control device and the second user device or the second control device is normal or not is determined by the second control signal used in the response. or the first user device or the first control device returns the first control signal transmitted from the second user device or the second control device and The second user device or the second control device is configured such that the signal path including between the first user device or the first control device and the second user device or the second control device is normal. This is a normality determination method for determining whether or not this is the case based on the returned first control signal.
  • One aspect of the present invention is a communication system including a first control device, a second control device, a first user device, and a second user device, wherein the first control device receives a first control signal instructing return. to the first user device, the second control device sends a second control signal instructing the return to the second user device, and the second user device transmits a second control signal to the first user device. and the first user device determines whether a signal path including between the first user device and the second user device is normal based on the returned main signal. It is a communication system that makes decisions based on
  • One aspect of the present invention is a communication system including a first user device and a second user device, wherein the second user device transmits an instruction signal representing a return instruction to the first user device, and Returning the control signal transmitted from one user device, the first user device transmits an instruction signal representing the return instruction to the second user device, and transmits a signal between the first user device and the second user device.
  • the communication system determines whether a signal path included in the communication path is normal based on the returned control signal.
  • FIG. 1 is a diagram showing a configuration example of a communication system in this embodiment.
  • 1 is a diagram showing a first example of a configuration of a communication system in a first embodiment
  • FIG. 2 is a diagram showing a second example of the configuration of a communication system in the first embodiment
  • FIG. 3 is a diagram showing a third example of the configuration of a communication system in the first embodiment. It is a figure showing the 4th example of composition of a communication system in a 1st embodiment.
  • FIG. 3 is a diagram showing a first example of the configuration of a communication system in a second embodiment.
  • FIG. 3 is a diagram showing a second example of the configuration of a communication system in a second embodiment.
  • FIG. 1 is a diagram showing an example of a hardware configuration of a communication system.
  • FIG. 3 is a diagram showing an example of the frequency of a control signal and the frequency of a main signal (user signal).
  • APN (Basic configuration example of APN) Since the APN employs a flat architecture, there is no need for the electrical termination of optical signals provided between layers in the communication network as a comparative example with the APN. APN has very low delay due to end-to-end optical path connections. Furthermore, APN has high flexibility and expandability in that it can easily provide a high-capacity, low-latency communication network for each function without depending on a specific communication protocol.
  • APN operates two types of optical nodes: photonic gateways (Ph-GW) and photonic exchanges (hereinafter referred to as "Ph-EX"), which minimize electrical processing such as exchange, multiplexing, and switching.
  • Ph-GW is connected to full mesh).
  • the Ph-GW is an optical node located at the entrance of a full mesh network and accommodates various user equipment.
  • Full mesh is a connection form in which all elements making up a communication network are directly connected to each other.
  • Ph-EX is an optical node that provides a huge number of optical paths. These vast numbers of optical paths transparently traverse the optical backbone network.
  • Ph-EX connects optical networks to which different optical multiplexing methods are applied by converting the optical multiplexing method.
  • the APN it is possible to directly connect arbitrary points (installation points of user devices) with optical signals without performing electrical processing. By allocating dedicated wavelengths to user services, it becomes possible to realize high-capacity, low-latency communications. With APN, it is possible to provide a variety of services by flexibly combining necessary service function processing at necessary points. Further, the APN can provide a communication environment that does not make the user aware of service types, protocols, optical wavelengths, etc.
  • Ph-GW has the five basic functions illustrated below.
  • the first basic function is to determine which wavelength the user equipment uses and remotely set wavelength information to the user equipment.
  • the wavelength In order to open an end-to-end optical path, the wavelength must be assigned to each optical path so that the wavelengths of optical signals do not overlap between the optical paths that share the transmission medium (optical fiber, etc.) within the APN.
  • the Ph-GW is required to have the function of allocating. Further, the Ph-GW is required to have a function of remotely setting wavelength information of an optical signal of a user equipment that is an end point of an optical path.
  • the second basic function is to communicate optical signals between ports on the access network side and ports on the full mesh network side when an optical path is opened. This function is to stop unnecessary signals.
  • the access network is a network between the Ph-GW and the user equipment
  • the full mesh network is a network between the Ph-GWs or between the Ph-GWs and the Ph-EX.
  • Ph-GW transmits optical signals input from the access network to the access network, optical signals input from the access network to the full mesh network, optical signals input from the full mesh network to the access network, and optical signals input from the full mesh network to the access network.
  • Optical signals input from the mesh network are transferred (distributed) as optical signals to the full mesh network.
  • the third basic function is the function of concentrating and distributing optical paths that share a transmission medium within a full mesh network.
  • the fourth basic function is a loopback function for directly optically connecting user devices housed in the same Ph-GW.
  • loopback By enabling loopback at the Ph-GW located at the entrance of the full mesh network, rather than loopback at the upper optical node, direct optical connection is achieved through the shortest route.
  • the fifth basic function is the extraction and insertion function.
  • the eject and insert functions enable electrical processing at the Ph-GW location in order to perform regenerative repeating of optical signals in terms of optical signal transmission and to perform service function processing.
  • FIG. 1 is a diagram showing a configuration example of a communication system 1 in each embodiment.
  • the communication system 1 is a communication system that communicates using a transparent communication network such as an all-photonics network (APN).
  • the communication system 1 transmits an optical signal from a device at one end of a section to be determined, photoelectrically converts the received signal at the device at the other end, and converts the received signal or a response according to the received signal into electrical light and transmits it.
  • the path of the optical signal in the section to be determined can be determined by converting the optical signal or control signal back to OEO, converting the returned optical signal or control signal to OE on the transmitting side, and checking the content of the signal. Determine normality.
  • the interval to be determined may include the areas between the user equipment 300 and the Ph-GW 100, between the Ph-GW 100 and the Ph-GW 100, and between the user equipment 300 and the user equipment 300.
  • the user device 300 and the Ph-GW 100 are illustrated as devices at the ends of the section.
  • the communication system 1 includes a Ph-GW 100-1, a Ph-GW 100-2, an APN controller 200, a user device 300-1, and a user device 300-2. Note that in order to simplify the explanation, two Ph-GWs and two user devices are shown in FIG. 1. In an actual communication system, a large number of Ph-GWs and user equipments are arranged, and there are cases where Ph-EX is interposed between Ph-GWs and user equipments are interposed only through a single Ph-GW. etc. is assumed.
  • the Ph-GW 100 is a device (transmission/reception device) that transmits and receives optical signals.
  • the Ph-GW 100 transmits and receives optical signals for monitoring and controlling the user device 300 and determining the normality of sections with the user device and other Ph-GWs 100. If the end point of the section does not reach the Ph-GW 100, the optical signal may pass through the Ph-GW 100.
  • the Ph-GW 100 is a device (distribution device) that distributes optical signals to destinations.
  • the Ph-GW 100-1 includes an optical distribution section 101-1, a wavelength demultiplexing section 102-1, and an access system management control section 103-1 (control device).
  • the Ph-GW 100-2 includes an optical distribution section 101-2, a wavelength demultiplexing section 102-2, and an access system management control section 103-2 (control device).
  • the light distribution unit 101 includes a plurality of input/output ports (not shown). Note that the wavelength multiplexing/demultiplexing section 102-2 is not necessarily placed in the path of the target optical signal.
  • the user device 300-1 includes an optical transceiver 301-1 (optical TRx) (not shown).
  • User equipment 300-2 includes an optical transceiver 301-2 (optical TRx) (not shown).
  • the optical distribution unit 101-1 and the optical distribution unit 101-2 transfer (distribute) optical signals input from the access network and the full mesh network as optical signals according to the destination. Thereby, the optical distribution section 101-1 and the optical distribution section 101-2 realize a loopback function (the fourth basic function described above) for direct optical connection.
  • the optical distribution unit 101-1 and the optical distribution unit 101-2 realize a loopback function (the above-mentioned fourth basic function) for directly optically connecting the user devices 300 housed in the same Ph-GW 100. . Further, the optical distribution section 101-1 and the optical distribution section 101-2 realize optical add/drop (the above-mentioned fifth basic function) to an electrical processing section (not shown).
  • the wavelength multiplexing/demultiplexing section 102-1 wavelength-multiplexes the optical signals that share the same path among the optical signals output from the optical distribution section 101-1.
  • the wavelength multiplexing/demultiplexing section 102-1 outputs the wavelength-multiplexed optical signal to the full mesh network.
  • the wavelength multiplexing/demultiplexing section 102-1 separates the wavelength multiplexed signal input from the full mesh network in units of wavelengths.
  • the wavelength multiplexing/demultiplexing section 102-2 wavelength-multiplexes optical signals having the same destination among the optical signals output from the optical distribution section 101-2.
  • the wavelength multiplexing/demultiplexing section 102-2 outputs the wavelength-multiplexed optical signal to the full mesh network.
  • the wavelength multiplexing/demultiplexing section 102-2 separates the wavelength multiplexed signal input from the full mesh network in units of wavelengths (the above-mentioned third basic function).
  • an access system management control unit 103-1 which is one of the devices (transmission/reception device) included in the Ph-GW 100 that transmits and receives optical signals, performs access system management at the time of initial connection of the user device 300-1. Control information is exchanged between the control unit 103-1 and the user device 300-1. Access system management control unit 103-1 transmits a wavelength setting instruction to user device 300-1.
  • the access system management control unit 103-2 exchanges control information between the access system management control unit 103-2 and the user device 300-2 at the time of initial connection of the user device 300-2.
  • the access system management control unit 103-2 transmits a wavelength setting instruction to the user device 300-2 (the first basic function described above).
  • the optical signals transmitted and received by the access system management control unit 103 may be demultiplexed onto the path to the user device 300 at any point.
  • access optical signals may be demultiplexed in wavelength multiplexing/demultiplexing section 102
  • access optical signals may be demultiplexed between wavelength multiplexing/demultiplexing section 102 and optical distribution section 101
  • optical The access optical signal may be demultiplexed in the distribution section 101, or the access optical signal may be demultiplexed between the optical distribution section 101 and the user equipment 300.
  • the access system management control unit 103 adds a control signal onto the main signal optical signal. It may be multiplexed in the form of frequency division multiplexing such as time division multiplexing, code division multiplexing, or AMCC, or the control signal may be multiplexed on the optical signal of the main signal in the form of intensity modulation, phase modulation, frequency modulation, or polarization modulation. Multiplexing may be performed by modulating.
  • multiplexing may be performed using a modulator or an amplifier or attenuator that can modulate the amplification factor or attenuation factor.
  • the explanation below will mainly be based on multiplexing the control signal onto the main optical signal, but it is clear that it can also be used to multiplex an access optical signal that is separate from the main optical signal. .
  • the main signal optical transmitter and optical receiver deviates from the normality determination, so in order to determine the normality of the section that is outside the normality determination, a loopback is performed between the optical transmitter and the optical receiver, or the normality is determined by means other than loopback. It is desirable to do so.
  • the loopback signal is looped back from the optical transmitter of the access system optical signal only when the normality of the optical transmitter and optical receiver of the main signal is determined, a single loopback signal can be generated. It is possible to notify the normality of the main signal optical transmitter and optical receiver.
  • the normality of the main signal optical transmitter and optical receiver, the access system optical signal optical transmitter and optical receiver, etc. may be separately determined and notified.
  • APNs that support a variety of social infrastructure networks are required to be able to set up optical paths for a variety of user devices so that dedicated networks for functionally specific wavelengths can be easily provided. Therefore, a mechanism is required in which an optical path is immediately opened just by connecting the user equipment 300-1 and the user equipment 300-2 to the optical fiber.
  • the user device 300-1 or the user device 300-2 reports its own device information and opposing device information to the nearest Ph-GW 100, for example.
  • the user device 300-1 or the user device 300-2 may report its own device information and opposing device information to the Ph-GW 100-1 or Ph-GW 100-2.
  • the notification may be made to a Ph-GW 100 other than the most recent one.
  • the user device 300-1 or the user device 300-2 may report its own device information and opposing device information to the Ph-GW 100-2 or Ph-GW 100-1.
  • the latter is suitable when, for example, when restoring a connection, the information on the PhGW to which the opposite device is connected is known.
  • the APN controller 200 performs wavelength resource management and optical path design within the APN.
  • the Ph-GW 100-1 or Ph-GW 100-2 in response to the notification from the user device 300-1 or the user device 300-2, sends the notification to the user device 300-1 or the user device 300-2. Determine the allocated wavelength for.
  • Ph-GW 100-1 or Ph-GW 100-2 notifies user equipment 300-1 or user equipment 300-2 of the wavelength.
  • an internal route of Ph-GW 100-1, an internal route of Ph-GW 100-2, and an internal route of Ph-EX are each set.
  • an internal route of Ph-GW 100-1, an internal route of Ph-GW 100-2, and a route connecting Ph-GW 100-1 and Ph-GW 100-2 are set.
  • Ph-GW100-1 and Ph-GW100-2 are connected via Ph-EX (not shown)
  • the internal route of Ph-GW100-1 and the internal path of Ph-GW100-1 and Ph-EX A route inside the Ph-EX (not shown), a route inside the Ph-EX (not shown) and the Ph-GW100-2, and a route inside the Ph-GW100-2 are set. .
  • the APN optical signals according to signals of various communication protocols are transmitted from user equipment 300-1 and user equipment 300-2. Therefore, a management control method that does not depend on communication protocols is required.
  • AMCC is used for such access system management control.
  • the user device 300-1 communicates via the Ph-GW 100 within the station.
  • the present embodiment is a communication system that includes a device that transmits and receives optical signals, and one opposing device uses a format (protocol and It selectively generates an optical signal of the modulation method, modulation rate, code format (form of main signal known in advance), and transmits the generated optical signal to the other opposing device.
  • the other opposing device returns and transmits the received optical signal or its response, and the opposing device receives the returned optical signal or its response (in a format that the other opposing device can transmit and receive).
  • a communication system that determines whether a signal path including a signal path between one opposing device and another opposing device is normal based on the received reflected optical signal or its response. .
  • format selection selecting an optical signal in a receivable format
  • generating and transmitting a signal, receiving and terminating the returned signal will be referred to as “generation, transmission, reception, and termination.”
  • one device (the device that selects and processes the signal format used by the opposite device) is Ph-GW, and the other device (the device that processes the signal format of its own device).
  • Ph-GW the device that processes the signal format of its own device.
  • An example is shown in which is the user equipment. That is, a system configuration pattern of "format selection + generation transmission/reception terminal side: Ph-GW" and "return side: user equipment” is shown.
  • FIG. 2 is a diagram showing a first example of the configuration of a communication system in the first embodiment.
  • the access system management control unit 103 determines the optical signal in a format (protocol, modulation method, modulation speed, code format) (form of main signal known in advance) that can be transmitted and received by the other device facing the judgment control unit 401. It includes a plurality of corresponding signal termination sections 402 (for example, signal termination sections 402a to 402d), a SW 403, a combination/separation section 404, an optical interface section (optical IF section) 405, and an optical interface section (optical IF section) 406.
  • the determination control unit 401 is a functional unit that determines the normality of the conduction section.
  • the determination control unit 401 instructs the selected signal termination unit 402 to transmit the main signal to the target user device.
  • the thick arrow represents the route of the main signal that is looped back.
  • the combiner/demultiplexer 404 multiplexes and demultiplexes the control signal onto the main signal selected by the SW 403 using an electrical stage.
  • the thick line arrow in FIG. 2 corresponds to "format selection + generation transmission/reception terminal side: Ph-GW” and “return side: user equipment.”
  • "Format selection + return side: Ph-GW” and "generation transmission reception termination side: User equipment route may be used. This is also the same in Figure 3-9, which will be described later, and Figure 12-14, which will be described later. .
  • FIG. 3 is a diagram showing a second example of the configuration of the communication system in the first embodiment.
  • the access system management control unit 103 determines the optical signal in a format (protocol, modulation method, modulation speed, code format) (form of main signal known in advance) that can be transmitted and received by the other device facing the judgment control unit 401. It includes a plurality of corresponding signal termination units 402 (for example, signal termination units 402a to 402d), a SW 403, a plurality of (for example, two) combining/separating units 404, and a plurality of (for example, four) optical interface units (optical IF units). .
  • the thick arrow represents the route of the main signal that is looped back.
  • the combiner/demultiplexer 404 multiplexes and demultiplexes the control signal onto the main signal selected by the SW 403 using an optical stage.
  • FIG. 4 is a diagram showing a third example of the configuration of the communication system in the first embodiment.
  • the access system management control unit 103 includes a determination control unit 401, a plurality of signal termination units 402 (for example, 402a to 402d), a SW 403, a plurality of (for example, four) combining/separating units, and a format that can be transmitted and received by the other opposing device (A plurality of (for example, eight) optical interface units (optical IF units) are provided that correspond to optical signals of various protocols, modulation methods, modulation speeds, and code formats (forms of main signals known in advance). The thick arrow represents the route of the main signal that is looped back.
  • the SW 403 selects the optical signal obtained by demultiplexing the control signal and the main signal using an electrical stage.
  • control signals are demultiplexed at the electrical stage.
  • the order from the signal termination section to the user equipment is the order of the SW403, the optical IF section, and the coupling/separation section, or the order of the signal termination section, instead of the order of the SW403, the combining/separating section, and the optical IF section.
  • the order of the optical IF section, SW 403, and combination/separation section for each section 402 may be adopted.
  • the order from the signal termination unit to the user equipment is the order of the optical IF unit, the combining/separating unit, and the SW, and the order of the optical IF unit, the combining/separating unit, and the SW, instead of the order of the combining/separating unit 404, the optical IF unit, and the SW. , SW, and the combining/separating section may be arranged in this order.
  • the combining/separating section may be a modulating section and a receiving section that receives at least a part of the signal, as shown in FIG. 8, which will be described later. 2 and 4 show the configuration of a system in which a main signal and a control signal are multiplexed and separated in an electrical stage by frequency division multiplexing or time division multiplexing.
  • FIG. 5 is a diagram showing a fourth example of the configuration of the communication system in the first embodiment.
  • the access system management control unit 103 includes a determination control unit 401, a plurality of signal termination units 402 (for example, 402a to 402d), a SW 403, a plurality of (for example, two) combination/separation units, and a format that can be transmitted and received by the other opposing device (A plurality of (for example, 10) optical interface units (optical IF units) are provided that correspond to optical signals of different protocols, modulation methods, modulation speeds, and code formats (forms of main signals known in advance).
  • the thick arrow represents the route of the main signal that is looped back.
  • a control signal is multiplexed and demultiplexed on the main signal selected by the SW 403 in an optical stage by a demultiplexer.
  • Figures 3 and 5 show, for example, wavelength division multiplexing with an optical signal for a control signal of a different wavelength so that beat noise with the main signal can be ignored, or polarization between the main signal and the main signal so that polarization fluctuations of the main signal can be ignored.
  • FIG. 2 to 5 are diagrams showing the communication system 1 of the first embodiment. 2 to 5, among the devices included in the communication system 1, only the devices related to one section that is the target of signal path normality determination are shown.
  • the access system management control unit 103 performs signal path normality determination for the user device 300 connected to its own device (Ph-GW 100).
  • the access system management control unit 103-2 or 103-1 in FIG. 1 performs signal path normality determination for the section with the user device 300-2.
  • the user device 300-2 performs signal path normality determination on the access system management control unit 103-2, the access system management control unit 103-1, and the user device 300-1. Further, the access system management control unit 103-2 or the access system management control unit 103-1 may perform signal path normality determination for the section with the user device 300-1, or the access system management control unit 103-1 may -2 may be performed for the section with the access system management control unit 103-1, or the access system management control unit 103-1 may perform the process for the section with the access system management control unit 103-2. .
  • the main signal generation/termination functional unit (signal form or format) is selected in accordance with the main signal format of the opposing device, even when the access system management control units perform the same, the corresponding path It is desirable to select a format that conforms to the format of the main signal used by the user equipment using the .
  • the main signal generation termination section (signal termination section) according to the protocol used by the user device 300 generates the main signal.
  • the Ph-GW is a relay device that only performs optical distribution without terminating the light. If the end point of the section for normality determination in this embodiment is installed in a relay device such as Ph-EX, which does not terminate the main signal, in the same way as Ph-GW, A generation termination section (signal termination section) is also provided.
  • the device on the Ph-GW side selects the main signal termination section according to the main signal used by the opposite device (in this case, the user device), and at the selected main signal termination section, the normality of the main signal is determined.
  • Generates a request for determination transmits a response regarding normality determination in response to the request in the opposite device (user device here), and transmits the received response to the selected main signal termination of the device on the Ph-GW side.
  • the device on the Ph-GW side selects the main signal termination section according to the main signal used by the opposite device (in this case, the user device), and the main signal is normally terminated at the selected main signal termination section. Generates a signal for gender determination, sends the normality determination signal back at the opposite device (in this case, the user device), and transmits the received return (loopback signal) to the selected device on the Ph-GW side. (terminated at the main signal termination section)
  • the access system management control section selects the termination section of the main signal of the protocol according to the user device.
  • a detection unit (not shown) may be provided to detect the format of the main signal, and selection may be made based on the detection result, or selection may be made based on a response to a request to the user device or a value declared from the user device. , you may choose based on the value held at the time of service contract, service order, or database, or choose whether to obtain or declare the MAC (Media Access Control) address of the transceiver that is transmitting and receiving the main signal, etc. It may be obtained from the address and estimated from the manufacturer and product type according to the address.
  • MAC Media Access Control
  • the access system management control unit instructs the user device to loop back the main signal (return instruction).
  • the instruction may be a control signal or a main signal.
  • the termination section (signal termination section) according to the user device may be selected after the instruction is given.
  • the instruction is given after selection because the instruction is made using the main signal.
  • the access system management control unit generates and transmits a downlink main signal for normality determination using a protocol according to the user device. Note that when no instruction is given by the control signal, it is not necessary to modulate the main signal with the control signal or to superimpose the control signal on the main signal.
  • the user equipment returns the downlink main signal or its response as the uplink main signal.
  • the returned upstream main signal is received and terminated by the access system management control unit and judged.
  • the loopback of the main signal of the user device is canceled with the passage of time or an instruction from the access system management control unit.
  • the instruction at this time may be a control signal or a main signal.
  • the protocol of the main signal transmitted and received by the user equipment is at least determined by obtaining instructions from the APN controller, information from the DB, or from the user equipment, or by receiving the main signal and determining whether it can be terminated as a normal signal. Choose one. This also applies to the description below.
  • A2 System configuration pattern where the user equipment loops back and multiple main signal termination units on the user equipment side (“format selection + loopback side: user equipment” and “generation transmission/reception termination side: Ph-GW side device”) , the user equipment selects the main signal termination section according to the main signal used by the opposite device (here, the device on the Ph-GW side), and selects the main signal termination section of the opposite device (here, the device on the Ph-GW side). , generates a request for normality determination using the main signal, transmits a response regarding normality determination in response to the request at the main signal termination section selected by the user equipment, and transmits the received response to the Ph-GW side.
  • the user equipment selects the main signal termination part according to the main signal used by the opposite device (here, the Ph-GW side device), and
  • the main signal termination section of the GW side device generates a normality determination signal using the main signal, and the selected main signal termination section of the user device returns and transmits the normality determination signal. Terminate the loopback signal at the main signal termination part of the opposing device (Ph-GW side device here) (not shown)
  • a main signal termination section (signal termination section) corresponding to the signal format used by the opposing device may be arranged in the user device.
  • the optical distribution unit and the like are set so that the access system management control unit and the user device can communicate.
  • the access system management control unit selects a main signal termination unit (signal termination unit) located in the user device.
  • the user equipment loops back the main signal at the selected signal termination.
  • the Ph-GW receives and terminates the returned uplink main signal, and determines normality.
  • a transmitting unit that transmits an optical signal that is returned by the opposing device for normality determination is placed in the Ph-GW, it is connected via an optical distribution unit.
  • a transmitting section (optical IF section) may be arranged.
  • a transmitting section (optical IF section) is installed at a position where an optical signal can be outputted to a folding device via an optical multiplexer/brancher or an optical multiplexer/demultiplexer installed outside the input port or output port of the optical distribution section. ) may be placed.
  • a transmission unit (optical IF unit) is placed in a monitoring unit that monitors the optical intensity of an optical signal on at least one of the input side and output side of the Ph-GW and exchanges control signals with a user device. may be done.
  • a transmission unit optical IF unit
  • a monitoring unit that monitors the optical intensity of an optical signal on at least one of the input side and output side of the Ph-GW and exchanges control signals with a user device. may be done.
  • light generated by an optical nonlinear effect of the light to be folded back may be output.
  • a monitor When exchanging main signals, a monitor is inserted in the middle of the main signal path to monitor the optical intensity and wavelength of the main signal and determine whether there are any abnormalities. It is used to extract and monitor a part of the data, etc., or to control the user equipment by inserting a control signal.
  • a control signal instead of branching a part of the main signal, etc. using a multiplexer/brancher or multiplexer/demultiplexer, or multiplexing a control signal with the main signal, light is generated using nonlinear optical effects, etc., which will be described later. That is, changes in the gain in gain media and light absorption media, changes in current and voltage applied to those media, pump light input to those media, and changes in gain clamp light after it passes through the medium. A change in intensity or a change in light generated by a nonlinear optical effect such as idler light may also be used. Note that these are not shown in FIG. 1.
  • a receiving section may be arranged in addition to the system management control section. For example, a position where the optical signal returned from the return device or at least part of its components can be inputted via an optical multiplexer/brancher or optical multiplexer/demultiplexer installed outside the input port or output port to the optical distribution section.
  • a receiving section may be placed in the receiver.
  • a receiving unit (optical IF unit) is placed in a monitoring unit that monitors the optical intensity of an optical signal on at least one of the input side and output side of the Ph-GW and exchanges control signals with a user device. may be done.
  • a receiving unit optical IF unit
  • a monitoring unit that monitors the optical intensity of an optical signal on at least one of the input side and output side of the Ph-GW and exchanges control signals with a user device.
  • the signal received at the receiving section (optical IF section) is looped back at the selected signal termination section 402 and output from the transmitting section (optical IF section).
  • the main signal is either looped back at the signal termination section or generated and terminated.
  • the optical IF unit is common for the control signal and the main signal (FIGS. 2 and 4), since they are common, both are transmitted and received at the optical IF unit. If at least one of the transmission and reception of the optical IF section is different between the control signal and the main signal (if both transmission and reception are different, as shown in Figures 3 and 5), different transmissions or receptions, or both, are performed in the optical IF section corresponding to the control signal or the main signal, respectively. .
  • the user side from the combining/separating unit 322 returns or generates and terminates the main signal on the UNI side.
  • the optical IF unit is common for the control signal and the main signal, since they are common, both are transmitted and received at the optical IF unit. If at least one of the transmission and reception of the optical IF section of the user equipment is different between the control signal and the main signal (like the access system management control section in FIGS. 3 and 5), the control signal or the main signal may be different from each other. This is performed at the corresponding optical IF section.
  • the combining/demultiplexing unit 404 multiplexes and demultiplexes the control signal on the main signal selected by the SW 403 using an electrical stage.
  • the combiner/demultiplexer 404 multiplexes and demultiplexes the control signal onto the main signal selected by the SW 403 using an optical stage.
  • the SW 403 selects the optical signal obtained by demultiplexing the control signal and the main signal using an electrical stage.
  • a control signal is multiplexed and demultiplexed on the main signal selected by the SW 403 in an optical stage by a demultiplexer.
  • the combining/separating section may be a modulating section and a receiving section that receives at least a part of the signal, as shown in FIG. 8, which will be described later.
  • the access system management control unit 103 transmits a main signal to the user device 300 (hereinafter referred to as "target user device") connected to the section targeted for signal path normality determination. In transmitting the main signal, the access system management control unit 103 transmits a main signal of a protocol that can be processed by the target user device. In order to realize such processing, the access system management control unit 103 uses the judgment control unit 401 to determine the format (protocol, modulation method, modulation speed, code format) (protocol, modulation method, modulation speed, code format) that can be transmitted and received by the other device that is facing the determination control unit 401.
  • the format protocol, modulation method, modulation speed, code format
  • a plurality of signal termination sections 402 (for example, 402a to 402d), SW 403, combining/separating section 404, optical interface section (optical IF section) 405, and optical interface section (optical IF section) 406, which correspond to the optical signal (in the form of main signal) Equipped with
  • the control signal and the main signal are branched at the electrical stage, the control signal is sent to the judgment control section, and the main signal is sent to the electrical SW at the signal termination section.
  • the output from the signal termination section is selected by an electric switch, superimposed on a control signal at an electric stage, inputted to an optical IF section, photoelectrically converted, and outputted as light.
  • the SW403 optical SW
  • the SW403 selectively outputs to the signal termination sections each equipped with an optical IF section, and the optical output from the signal termination section equipped with the optical IF section is sent to the optical switch. You can select and output.
  • the latter case is suitable when the requirements and configurations for the optical IF section differ for each signal termination section.
  • the required conditions are, for example, conditions regarding line width, frequency stability, transmission band, etc.
  • Specific examples of different configurations include, for example, direct detection and coherent detection using local light.
  • the input and output to the determination control section may be a combination of those shown in FIGS. 2, 3, and 5, and may be a combination of electricity and light or light and electricity. Note that in FIGS. 2 and 4, multiplexing is performed in electrical stages.
  • the determination control unit 401 When instructing with a control signal, the determination control unit 401 outputs a control signal indicating execution of loopback to the combination/separation unit 404.
  • the determination control unit 401 determines the normality of the route to be determined based on the received signal.
  • the signal from the Ph-GW may be determined by the user equipment, and the Ph-GW may receive the determination result.
  • the user equipment may receive the looped back signal at the Ph-GW and make a determination.
  • the user equipment transmits a loopback signal according to instructions from the Ph-GW, loops back at the Ph-GW, receives the looped back signal at the user equipment, makes a decision, and the user equipment uses the determination result to
  • the information may be transmitted to the Ph-GW using a control signal or a main signal. Note that in the first embodiment, control information can also be exchanged using the main signal.
  • the signal termination unit 402 generates a main signal in a format (protocol, modulation method, modulation rate, code format) (form of main signal known in advance) that can be transmitted and received by the user equipment, and outputs it to the SW 403.
  • a format protocol, modulation method, modulation rate, code format
  • the Ph-GW transmits a unidirectional transmitter or a loopback signal.
  • the user equipment receives and terminates the main signal for determining normality, determines normality, and notifies the Ph-GW of the result using a control signal or the like.
  • the user equipment loops back the main signal for loopback from the Ph-GW to the Ph-GW, receives and terminates the looped-back signal at the Ph-GW, and determines normality.
  • the signal termination unit 402 outputs information regarding reception of the main signal to the determination control unit 401.
  • the Ph-GW receives a one-way reception side or a loop pack signal
  • the user equipment generates and transmits a main signal for normality determination toward the Ph-GW according to instructions from the Ph-GW, etc.
  • the Ph-GW receives and terminates the main signal to determine normality.
  • the user equipment loops back the main signal for loopback from the Ph-GW to the Ph-GW, receives and terminates the looped-back signal at the Ph-GW, and determines normality.
  • the signal termination section 402 described above generates and transmits a main signal according to a specific protocol that can be used by the user equipment, and outputs it to the SW 403.
  • the signal termination unit 402 if the signal termination unit 402 cannot receive the main signal that is supposed to be looped back even after a predetermined period of time has elapsed, it outputs information indicating this to the determination control unit 401.
  • the signal termination unit 402 receives the main signal that has been looped back, it outputs information regarding the received main signal (an example of information regarding reception of the main signal) to the determination control unit 401 .
  • the information regarding the main signal is information used to determine the normality of the route. More specifically, the information regarding the main signal is, for example, information indicating whether or not loopback has been performed correctly and as requested.
  • the user equipment may generate and transmit a main signal according to a specific protocol that can be used by the user equipment, and the reception may be terminated at the Ph-GW to determine normality.
  • the user equipment In accordance with instructions from the Ph-GW, etc., the user equipment generates and transmits a main signal according to a protocol with characteristics that can be used by the user equipment, loops back at the Ph-GW, terminates reception at the user equipment, determines normality, The result may be notified to the Ph-GW etc. by a control signal or the like.
  • the SW 403 outputs the main signal output from the signal termination section 402 to the combining/separating section 404.
  • the SW 403 outputs the main signal output from the combining/separating section 404 to the signal termination section 402 according to the main signal.
  • the combining/separating unit 404 superimposes the control signal output from the determination control unit 401 on the main signal output from the signal termination unit 402.
  • the combining/separating unit 404 may frequency-superimpose the control signal on the main signal.
  • the combining/separating unit 404 separates a control signal from the signal received from the user device 300 and outputs the separated control signal to the determination control unit 401 .
  • the combining/separating section 404 outputs a signal (main signal) in which the control signal is separated to the signal terminating section 402 via the SW 403 .
  • the optical interface section 405 converts the electrical signal output from the combining/separating section 404 into an optical signal.
  • Optical interface unit 405 transmits the converted optical signal to user device 300 via an optical communication path.
  • the optical interface unit 406 receives the optical signal transmitted from the user device 300 via the optical communication path, and converts the received optical signal into an electrical signal.
  • the optical interface section 406 outputs the electrical signal obtained by the conversion to the combining/separating section 404 .
  • the user device 300 includes an optical transceiver 301 and a control unit 330.
  • the optical transceiver 301 includes an optical interface section 321 (optical IF section), a combining/separating section 322, a processing section 323, a UNI_PHY (Tx) 324, a UNI_PHY (Rx) 325, and an optical interface section 326 (optical IF section). ).
  • the optical interface unit 321 converts the optical signal received from the Ph-GW 100 into an electrical signal.
  • the optical interface section 321 outputs the electrical signal obtained by the conversion to the combining/separating section 322 .
  • the user equipment performs photoelectric conversion, and within the user equipment (UNI_PHY), during loopback, either all signals are looped back, some signals are looped back, and the rest is output to the user side, or loopback is performed. output to the user.
  • the combining/separating unit 322 separates the control signal from the signal received from the Ph-GW 100 and outputs the separated control signal to the control unit 330.
  • the combining/separating section 322 outputs a signal (main signal) in which the control signal is separated to the processing section 323 .
  • the combining/separating section 322 superimposes the control signal output from the control section 330 on the main signal output from the processing section 323 .
  • the combining/separating section 322 may frequency-superimpose the control signal on the main signal. Note that a user device configuration that includes a processing unit is only an example, and there is also a configuration that does not include a processing unit.
  • the processing unit 323 is, for example, a regenerative repeater, in which case it has an equalization (Reshaping) function, a retiming (Retiming) function, and an identification regeneration (Regenerating) function.
  • it is a conversion unit that converts a signal from an access network into a signal format transmitted by APN.
  • a framer that demultiplexes signals from an access network into transmission frames.
  • the processing unit 323 is, for example, a MAC, in which case it performs media access control on the main signal output from the combining/separating unit 322.
  • the processing unit 323 defines and allocates an address (MAC address) for identifying a device.
  • the processing unit 323 may control the signal transmission timing.
  • the MAC outputs the main signal to the UNI_PHY (Tx) 324.
  • the MAC may perform media access control on the electrical signal output from the UNI_PHY (Rx) 325.
  • the processing section 323 outputs the main signal to the combination/separation section 322.
  • the configurations of the combining/separating section 322 and the processing section 323 do not need to be limited to those described above.
  • the combining/separating section 322 may be placed closer to the network than the optical interface section 321 and the optical interface section 326.
  • the combining/separating unit 322 performs AMCC superimposition and separation on the optical signal.
  • the combining/separating section 322 and the processing section 323 may function as an OTN framer.
  • the normality of the route may be determined using "Ethernet (registered trademark) OAM (Operation Administration Maintenance)."
  • the normality of the path may be determined using the control channel of the lower header whose payload is the main signal (user signal).
  • the general communication channel (GCC) of the optical transport network (OTN) may be used to determine the health of the path.
  • the UNI_PHY (Tx) 324 is a transmission function unit in the physical layer of the user network interface.
  • the UNI_PHY (Tx) 324 performs predetermined reception processing on the electrical signal (main signal) output from the processing unit 323, and transmits the main signal to the user side.
  • the user side may be electrical or optical.
  • the UNI_PHY (Rx) 325 is a reception function unit in the physical layer of the user network interface.
  • the UNI_PHY (Rx) 325 receives a main signal from the user side, performs a predetermined transmission process, and outputs an electrical signal according to the main signal to the processing unit 323.
  • the user side may be electrical or optical.
  • the optical interface section 326 converts the control signal into an optical signal.
  • the optical interface section 326 transmits the optical signal obtained by the conversion to the Ph-GW 100.
  • the control signal receiving unit 331 receives from the combining/separating unit 322 the control signal separated by the combining/separating unit 322 .
  • the control signal receiving unit 331 operates according to information indicated by the received control signal. If the control signal is information indicating an instruction to execute a loopback, the control signal receiving unit 331 instructs the optical transceiver 301 to execute a loopback in accordance with the instruction. For example, the control signal receiving unit 331 instructs the UNI_PHY (Tx) 324 to perform loopback of the main signal.
  • the flow of processing for determining signal path normality in the first embodiment will be explained.
  • An example will be explained in which the Ph-GW generates and transmits a main signal for loopback, the user equipment loops back the main signal, and the Ph-GW receives and terminates the looped-back main signal.
  • the determination control unit 401 instructs the signal termination unit 402 to output the main signal according to a protocol that can be processed by the target user device.
  • the predetermined timing may be, for example, the timing at which a problem in communication with the user device 300 is detected.
  • this instruction may be an instruction from the APN controller 200 or an instruction from the access system management control unit 103.
  • the signal termination unit 402 Upon receiving the instruction, the signal termination unit 402 generates a main signal and outputs it to the SW 403.
  • the output main signal may be, for example, a signal with a predetermined content in the signal path normality determination.
  • the determination control unit 401 generates a control signal for instructing execution of loopback and outputs it to the combination/separation unit 404 .
  • the combining/separating section 404 superimposes the control signal on the main signal and outputs it to the optical interface section 405 .
  • the optical interface unit 405 converts the electrical signal input from the combining/separating unit 404 into an optical signal, and transmits the optical signal to the user device 300 via the transmission path. The procedure is to instruct the user device to loop back via a control signal or the like.
  • the optical interface unit 321 of the user device 300 Upon receiving the optical signal from the access system management control unit 103 , the optical interface unit 321 of the user device 300 converts the received optical signal into an electrical signal and outputs it to the combining/separating unit 322 .
  • the combining/separating unit 322 separates the received signal into a control signal and a main signal.
  • the combining/separating section 322 outputs a control signal to the control section 330 and outputs a main signal to the processing section 323.
  • control signal receiving section 331 of the control section 330 When the control signal receiving section 331 of the control section 330 receives the control signal from the combining/separating section 322, it operates according to the content of the control included in the control signal.
  • the control signal includes a signal indicating an instruction to perform loopback.
  • the control signal receiving unit 331 instructs the optical transceiver 301 to execute loopback of the main signal.
  • the main signal received by the optical transceiver 301 is the main signal transmitted from the signal termination section 402 that performs a protocol operation that can be processed by the optical transceiver 301. Therefore, the optical transceiver 301 can loop back the main signal without any problem. Since the response is usually slow compared to the control response and the main signal, the control signal is transmitted, and the main signal for loopback is transmitted after the user equipment is ready for loopback in response.
  • the processing unit 323 may serve as a loopback point to execute loopback processing, or the UNI_PHY (Tx) 324 or UNI_PHY (Rx) 325 may serve as a loopback point to execute loopback processing.
  • the loopback process may be implemented as a full channel loopback, a partial loopback, or a logical loopback, for example.
  • the control unit 330 may include an in-device return control unit 334, which will be described later.
  • the looped back main signal is converted into an optical signal at the optical interface unit 326 and transmitted to the access system management control unit 103.
  • the main signal is looped back between the optical IFs or immediately after the optical IF as seen from the access network (in Figures 2 to 5, the combining/separating section, etc.), and in the loop 2 equivalent, the main signal is looped back between the optical IFs or immediately after the optical IF as seen from the access network, and in the loop 2 equivalent, the main signal is returned between the optical IFs or immediately after the optical IF when viewed from the access network.
  • the process loops back just before Rx and Tx of UNI_PHY (processing section in FIGS. 2 to 5).
  • control signals such as AMCC are included, but even when looping back at the optical IF section, the control signal may be a different optical signal from the main signal, or the control signal may be removed.
  • the control signal may not be included in the return signal.
  • the control signal to be looped back is superimposed or multiplexed on the main signal to be looped back, which does not include the control signal, and the control signal and the main signal are looped back.
  • the main signal is looped back using a protocol that can be used by the user equipment, so the control signal may also be looped back, but this is not essential.
  • loopback of the control signal is essential, but loopback of the main signal is not essential.
  • the looped back main signal is converted into an electrical signal at the optical interface section 406, and is input to the signal termination section 402, which was the source of the main signal.
  • the signal termination unit 402 performs a predetermined evaluation on the input main signal according to the continuity check. For example, an evaluation may be made as to whether the loopback was performed correctly.
  • the signal termination unit 402 outputs information indicating the evaluation result to the determination control unit 401.
  • the determination control unit 401 performs a signal path normality determination regarding the target user device based on the evaluation result received from the signal termination unit 402.
  • the determination control unit 401 may output the determination result to another device or record it in a storage device as a log.
  • the main signal to be looped back is transmitted to the user device 300 using a signal of a protocol that can be processed by the user device 300. Therefore, loopback can be performed at a loopback point after the main signal passes through the path after optical-to-electrical conversion in the optical transceiver 301. Therefore, it is possible to determine the normality of the signal path including the inside of the user device 300 in a protocol-independent APN that does not depend on a specific communication protocol or modulation method.
  • one opposing device When a communication system includes an optical signal transmitting/receiving device, one opposing device (Ph-GW) selectively generates an optical signal in a format that can be transmitted and received by the other opposing device, and transmits the generated optical signal to the opposing device. Fold back to the device.
  • the other opposing device receives the reflected optical signal or its response (in a format that can be transmitted and received), and uses the received reflected optical signal or its response to communicate with the opposing device. Determine whether the signal path including the signal path with the other device is normal.
  • the configuration pattern is that the device on the Ph-GW side selects the main signal termination section according to the main signal used by the opposite device (here, the user device), and the main signal termination section of the opposite device (here, the user device) selects the main signal termination section.
  • Generates a request for normality determination using the main signal transmits a response regarding normality determination in response to the request at the main signal termination section selected by the Ph-GW side device, and transmits the received response to the user device.
  • the Ph-GW side selects the main signal termination section according to the main signal used by the opposite device (user device here), and terminates at the main signal termination portion of the opposite device (user device here).
  • the main signal termination unit generates a normality determination signal using the main signal, and the main signal termination unit selected by the Ph-GW side device returns the normality determination signal, and the received return ( (loopback signal) is terminated at the main signal termination section of the opposite device (user device here) (not shown)
  • the access system management control section selects the termination section of the main signal of the protocol according to the user device.
  • the access system management control unit instructs the user equipment to generate and transmit an uplink main signal for normality determination.
  • the instruction may be a control signal or a main signal.
  • the termination unit according to the user device may be selected after the instruction is given. Note that in the case of using the main signal, since the main signal is used for the instruction, the instruction is given after selection.
  • the user equipment generates and transmits an uplink main signal for normality determination.
  • the access system management control unit returns the uplink main signal or its response as a downlink main signal. That is, the signal received by the optical IF section 406 is returned by the selected signal termination section 402, and the optical IF section 405 outputs the returned signal. Note that when no instruction is given by the control signal, it is not necessary to modulate the main signal with the control signal or to superimpose the control signal on the main signal.
  • the returned downlink main signal is received, terminated, and determined by the user equipment.
  • the instruction at this time may be a control signal or a main signal.
  • the acquisition at this time may be either a control signal or a main signal.
  • connection when connecting the user device and the access system management control unit, the connection was changed at the optical distribution unit. Note that such a connection may be made in other ways.
  • the opposite device (Ph-GW side device in this case) transmits a response regarding normality determination in response to the request, and the received response is terminated at the selected main signal termination section of the user device.
  • the user equipment selects the main signal termination section corresponding to the main signal used by the opposite device (here, the device on the Ph-GW side), and uses the selected main signal termination section to perform normality determination using the main signal. Generates a signal, sends back a signal for determining its normality at the opposite device (Ph-GW side device here), and transmits the received return (loopback signal) to the selected main signal terminal of the user device. terminating in (not shown))
  • a main signal termination section (signal termination section) corresponding to the signal format used by the opposing device may be arranged in the user device.
  • the optical distribution unit and the like are set so that the access system management control unit and the user device can communicate.
  • the access system management control unit selects a main signal termination unit (signal termination unit) located in the user device.
  • the user equipment transmits the main signal at the selected signal termination.
  • Ph-GW returns the main signal.
  • the user equipment receives and terminates the returned downlink main signal, and determines normality.
  • the first user device (user device 300-1) or the first control device (access system management control unit 103-1) is connected to the opposing second user device (user device 300-2). Or transmitted from a second user device or second control device that generates and terminates a main signal in a signal format selected based on the signal format used by the second control device (access system management control unit 103-2).
  • the first main signal sent back is looped back.
  • the second user device or second control device determines whether the signal path including between the second user device or second control device and the first user device or first control device is normal. is determined based on the folded first main signal.
  • a first user device (user device 300-1) or a first control device (access system management control unit 103-1) is connected to an opposing second user device (user device 300-2) or a second control device.
  • the second user device (user device 300-2) or the second control device (access system management control unit 103) uses a signal format selected based on the signal format used by the device (access system management control unit 103-2). -2) may be looped back.
  • the first user device (user device 300-1) or the first control device (access system management control unit 103-1) is connected to the opposing second user device (user device 300-2) or second control device.
  • the second main signal transmitted from the third user device or the third control device may be looped back in a signal format selected based on the signal format used by the access system management control unit 103-2.
  • the second user device or second control device determines whether the signal path including between the second user device or second control device and the first user device or first control device is normal. may be determined based on the returned second main signal.
  • a first user device (user device 300-1) or a first control device (access system management control unit 103-1) is connected to an opposing second user device (user device 300-2) or a second control device.
  • the first signal transmitted from the second user device or the second control device that generates and terminates the main signal in the signal format selected based on the signal format used by the device (access system management control unit 103-2)
  • the main signal may be responded to with a second main signal or a third main signal.
  • the second user device or second control device determines whether the signal path including between the second user device or second control device and the first user device or first control device is normal. may be determined based on the second main signal or the third main signal used for the response.
  • a first user device (user device 300-1) or a first control device (access system management control unit 103-1) is connected to an opposing second user device (user device 300-2) or a second control device.
  • the second user device (user device 300-2) or the second control device (access system management control unit 103) uses a signal format selected based on the signal format used by the device (access system management control unit 103-2).
  • -2) may respond with a fourth main signal to the second main signal transmitted from the terminal.
  • the first user device (user device 300-1) or the first control device (access system management control unit 103-1) is connected to the opposing second user device (user device 300-2) or second control device.
  • the fourth main signal is transmitted from the third user device or the third control device in the signal format selected based on the signal format used by the You may respond with the main signal.
  • the second user device or second control device determines whether the signal path including between the second user device or second control device and the first user device or first control device is normal. may be determined based on the fourth main signal used for the response.
  • the generation and/or termination of the main signal for normality determination is performed by the device on the opposite side of the normality determination target section, for example, another Ph - Instruct the GW or user device, and in the case of termination, the determination result may be obtained from that device.
  • the signal termination unit may be configured to be used only when instructions cannot be given due to a break in the route, or when generation or termination is not performed according to the instructions even if instructions are given. Note that in a configuration other than the configuration shown in FIG. 7, which will be described later, in the case of an abnormality, the configuration example shown in FIG. 7, which will be described later, may be used.
  • Main signal loopback which instructs the opposing device to return, instructs the device on the opposite side of the normality determination target section, for example, another Ph-GW or user device, to respond to or return the main signal for normality determination.
  • the signal termination section may be configured to be used only when the instruction cannot be given due to a break in the route, or when the instruction is not responded to or returned in accordance with the instruction. Note that in a configuration other than the configuration shown in FIG. 7, which will be described later, in the case of an abnormality, the configuration example shown in FIG. 7, which will be described later, may be used.
  • Control signal loopback> 6 to 8 are diagrams showing the communication system 1 of the second embodiment. 6 to 8, among the devices included in the communication system 1, only the devices related to one section that is the target of the signal path normality determination are shown.
  • the access system management control unit 103 performs signal path normality determination on the user device 300 connected to its own device (Ph-GW 100).
  • the access system management control unit 103-2 in FIG. 1 performs a signal path normality determination on the user device 300-2.
  • the normality determination may be performed in sections other than "between the Ph-GW and the user device" described in the first embodiment.
  • the optical IF section connected to the combining/separating section 322 is the signal termination section of the main signal, and the loopback is performed.
  • the optical IF unit connected to the combining/separating unit 322 is on the control signal side, not on the signal termination side of the main signal.
  • the access system management control unit 103 transmits a control signal for instructing loopback to the user device 300 (target user device) connected to the section targeted for signal path normality determination.
  • the Ph-GW does not need to generate and terminate the main signal according to the protocol used by the user equipment 300.
  • the control signal is looped back by the determination control unit 401 and generated and terminated.
  • the access system management control unit 103 determines whether the internal signal path (internal path) of the access system management control unit 103 is normal based on the control signal returned by the determination control unit 401. Good too.
  • control signal loopback usually involves main signal processing.
  • control signals used may be transmitted by a plurality of user devices 300 (all user devices 300 of the communication system 1) each corresponding to optical signals of different transmission/reception formats (protocols, modulation methods, modulation speeds, and code formats). ) is a control signal commonly used in In particular, it is a control signal that is commonly used by user equipments with different main signal protocols. A specific example of such a control signal is, for example, AMCC.
  • control signal for at least one of the transmitting side and the receiving side that uses different optical IF sections, light sources, receivers, and main signals, and that does not depend on the format of the main signal.
  • control signals include Ethernet (registered trademark) OAM and OTN frame GCC.
  • Ethernet OAM can carry different protocols when encapsulated in Ethernet.
  • the OTN frame can pack client signals of different protocols within the OTN frame. Note that when using Ethernet (registered trademark) OAM, OTN frame GCC, etc., the control signal is time-division multiplexed with the main signal. Therefore, the delay may vary in Ethernet (registered trademark) OAM. However, other than that, the communication quality of the main signal itself is not affected.
  • the access system management control unit 103 includes a determination control unit 401, a combination/separation unit 404, an optical interface unit (optical IF unit) 405, and an optical interface unit (optical IF unit) 406.
  • the determination control unit 401 outputs a control signal indicating execution of loopback to the combination/separation unit 404.
  • the control signal used is a signal that can be used in common by a plurality of user devices 300 that correspond to optical signals of different transmission/reception formats (protocols, modulation methods, modulation speeds, and code formats).
  • the determination control unit 401 determines the normality of the route to be determined based on the received signal.
  • the combining/separating unit 404 superimposes the control signal output from the determination control unit 401 on the main signal output from another device (for example, a signal termination unit).
  • the combining/separating unit 404 superimposes a control signal (for example, AMCC) on the optical signal of the main signal to the user equipment 300 or the optical signal of another carrier.
  • the combining/separating unit 404 may frequency-superimpose the control signal on the main signal.
  • the combining/separating unit 404 separates a control signal from the signal received from the user device 300 and outputs the separated control signal to the determination control unit 401 .
  • the combining/separating unit 404 outputs a signal (main signal) from which the control signal is separated to another device (for example, a signal termination unit).
  • the light source for the optical signal used as the loopback signal may be separate from the light source for the main signal, or there may be multiple light sources.
  • the light source of the optical signal used as the loopback signal may be shared as the light source of the optical signal used as the main signal. If the light source for the main signal and the light source for the control signal are different light sources, the optical interface unit 406 may receive at least the signal from the light source for the control signal. If the main signal light source and the control signal light source are shared, the signal from that light source is received.
  • the loopback receiving section 310 may receive at least the signal of the light source of the control signal. If the main signal light source and the control signal light source are shared, the signal from that light source is received.
  • the optical interface section 405 converts the electrical signal output from the combining/separating section 404 into an optical signal.
  • the optical interface unit 405 transmits the optical signal obtained by the conversion to the user device 300 via an optical communication path.
  • the optical interface unit 406 receives the optical signal transmitted from the user device 300 via the optical communication path, and converts the received optical signal into an electrical signal.
  • the optical interface section 406 outputs the electrical signal obtained by the conversion to the combining/separating section 404 .
  • the user device 300 includes an optical transceiver 301 and a control section 330.
  • the optical transceiver 301 of the second embodiment has the same configuration as the optical transceiver 301 of the first embodiment, so a description thereof will be omitted.
  • the first embodiment when instructions, generation termination, or loopback are performed using only the main signal, there is no need to transmit the control signal to the control unit of the user device.
  • the second embodiment when the generation and termination of the main signal and the loopback are not essential, the transmission and reception of the control signal with the control unit in the user device is the main function. In this respect, the second embodiment is not similar to the first embodiment.
  • the control signal receiving section 331 receives from the combining/separating section 322 the control signals separated by the combining/separating section 322 .
  • the control signal receiving section 331 operates according to information indicated by the received control signal. If the control signal is information indicating an instruction to execute loopback, control signal receiving section 331 instructs return section 333 to execute loopback in accordance with the instruction.
  • the control signal transmitter 332 outputs the control signal to be transmitted to the combiner/separator 322.
  • loopback section 333 executes loopback processing in accordance with the instruction.
  • the target of loopback processing in the loopback unit 333 is, for example, a control signal.
  • the loopback process may be implemented as a full channel loopback, a partial loopback, or a logical loopback, for example.
  • the looped back control signal is converted into an optical signal by the optical interface unit 326 and transmitted to the access system management control unit 103.
  • optical signals such as continuous light (CW light) that are not based on the protocol of the user equipment can receive control signals (for example, AMCC) without damaging the optical IF section, etc. , an optical IF unit, etc. may transmit and receive the data.
  • control signals for example, AMCC
  • the optical signal may be unmodulated continuous light.
  • FIGS. 7 and 9 are suitable when the main signal does not reach the access system management control unit from the opposite side of the section where normality is to be determined.
  • FIGS. 7 and 9 it is assumed that the connection of the optical distribution unit is switched from the user device-user device path to the path between the user device and the access system management control unit.
  • Figures 6 and 8 which are assumed to connect and branch in the middle of the route without switching the connection of the optical distribution unit, the route is not switched, and the main signal is used for access system management from the opposite side of the section where normality is determined.
  • a combination/separation unit is built into the access system management control unit, but the result is substantially the same as in FIGS. 7 and 9.
  • FIGS. 6 and 8 the normal user device-to-user device connection is monitored, so there is no switching of the light distribution unit.
  • FIGS. 7 and 9 the normal user device-user device connection is switched to the user device-control unit for normality determination.
  • the optical distribution unit etc. are set so that the access system management control unit and the user device can communicate.
  • the access system management control unit instructs the user device 300 to loop back the control signal.
  • the instruction may be a control signal. The same applies below.
  • the main signal from outside the section for determining normality is modulated and the control signal is multiplexed (FIG. 8), or the control signal is multiplexed onto another optical signal (FIG. 6).
  • the main signal for multiplexing the control signal is not input, but unmodulated continuous light is used instead of the main signal to carry the control signal when the main signal does not come from outside the section for determining normality. etc. may also be entered.
  • the user equipment 300 modulates the uplink main signal using the downlink control signal or its response as an uplink control signal, or superimposes the downlink control signal or its response on the uplink main signal as an uplink control signal, and returns it in the uplink direction at the folding unit 333. .
  • the access system management control unit receives and terminates the return uplink control signal, and makes a determination.
  • the loopback of the control signal of the user device is canceled with the passage of time or an instruction from the access system management control unit. Note that the instruction may be a control signal. Note that if the control signal is multiplexed as another optical signal, the access system management control unit receives and terminates the control signal.
  • control signal When the control signal is multiplexed on the main signal, light is generated by branching a part of the upstream signal or by nonlinear optical effects, etc., and at least generates light that can read the control signal, and performs access system management and control. section terminates it. At least a portion of the uplink signal is output outside the section targeted for normality determination.
  • the optical distribution unit etc. are set so that the access system management control unit and the user device can communicate.
  • the access system management control unit selects the termination part (signal termination part) of the main signal of the protocol according to the user device.
  • the instruction may be a control signal.
  • the user equipment modulates the uplink main signal with the uplink control signal for normality determination, or superimposes the uplink control signal for normality determination on the uplink main signal, and transmits it in the uplink direction.
  • the access system management control unit modulates the downlink main signal using the uplink control signal or its response as a downlink control signal, or superimposes the uplink control signal or its response on the downlink main signal as a downlink control signal, and returns it in the downlink direction. ,Send.
  • the signal received by the optical IF section 406 is returned and the optical IF section 405 outputs it.
  • the user equipment 300 receives and terminates the returned downlink control signal, and makes a determination. With the passage of time or an instruction from the access system management control unit, generation of a control signal for determining the normality of the user device 300, and cancellation of modulation of the uplink main signal or superposition of the uplink main signal with the generated control signal,
  • the optical IF section acquires the determination result from the user device.
  • the instruction may be a control signal.
  • the access system uses an optical signal such as unmodulated continuous light instead of the main signal to carry the control signal when the main signal does not come from outside the section for determining normality. It is not generated by the management control unit.
  • the control signal is multiplexed by modulating the main signal from outside the section for determining normality (FIG. 8), or the control signal is multiplexed onto another optical signal (FIG. 6).
  • FIGS. 6 and 8 it is assumed that the monitor is originally built into the path during normal main signal conduction, so the path of the optical distribution section regarding the main signal is not changed.
  • FIGS. 7 and 9 all generation or all termination is performed without branching and multiplexing the main signal, and it is essential to change the connection so that the optical distribution section is connected to the access system control section.
  • the main signal and control signal are demultiplexed inside the access system management control unit, so they are similar to the monitor.
  • a transmission unit (optical IF unit) may be arranged.
  • a transmitting section (optical IF section) is installed at a position where an optical signal can be outputted to a folding device via an optical multiplexer/brancher or an optical multiplexer/demultiplexer installed outside the input port or output port to the optical distribution section. ) may be placed.
  • a transmission unit (optical IF unit) is placed in a monitoring unit that monitors the optical intensity of an optical signal on at least one of the input side and output side of the Ph-GW and exchanges control signals with a user device. may be done.
  • a transmission unit optical IF unit
  • a monitoring unit that monitors the optical intensity of an optical signal on at least one of the input side and output side of the Ph-GW and exchanges control signals with a user device. may be done.
  • light generated by an optical nonlinear effect of the light to be folded back may be output.
  • a receiving section may be arranged in addition to the system management control section. For example, a position where the optical signal reflected from the folding device or at least a part of its components can be inputted via an optical multiplexer/brancher or optical multiplexer/demultiplexer installed outside the input port or output port to the optical distribution unit.
  • a receiving section may be placed in the receiver.
  • a receiving unit (optical IF unit) is placed in a monitoring unit that monitors the optical intensity of an optical signal on at least one of the input side and output side of the Ph-GW and exchanges control signals with a user device. may be done.
  • a receiving unit optical IF unit
  • a monitoring unit that monitors the optical intensity of an optical signal on at least one of the input side and output side of the Ph-GW and exchanges control signals with a user device.
  • the access system management control unit 103 may determine the normality of the route using the AMCC signal of the APN.
  • the access system management control unit 103 may determine the normality of the route using "Ethernet (registered trademark) OAM (Operation Administration Maintenance)."
  • the access system management control unit 103 may determine the normality of the route using a control channel of a lower header whose payload is a main signal (user signal).
  • the normality of the route may be determined by using, for example, a general communication channel (GCC) of an optical transport network (OTN) as the control channel.
  • GCC general communication channel
  • OTN optical transport network
  • the determination control unit 401 At a predetermined timing, the determination control unit 401 generates a control signal for instructing execution of loopback and outputs it to the combination/separation unit 404.
  • the predetermined timing may be, for example, the timing at which a problem in communication with the user device 300 is detected. The timing may be in accordance with instructions from the controller.
  • the combining/separating section 404 outputs a control signal to the optical interface section 405.
  • the optical interface unit 405 converts the electrical signal input from the combining/separating unit 404 into an optical signal, and transmits the optical signal to the user device 300 via the transmission path.
  • the optical interface unit 321 of the user device 300 Upon receiving the optical signal from the access system management control unit 103 , the optical interface unit 321 of the user device 300 converts the received optical signal into an electrical signal and outputs it to the combining/separating unit 322 .
  • the combiner/separator 322 separates the control signal from the received signal and outputs the control signal to the controller 330 .
  • control signal receiving section 331 of the control section 330 When the control signal receiving section 331 of the control section 330 receives the control signal from the combining/separating section 322, it operates according to the content of the control included in the control signal.
  • the control signal includes a signal indicating an instruction to perform loopback.
  • the control signal receiving section 331 instructs the loopback section 333 to perform loopback of the control signal.
  • the return unit 333 performs loopback processing on the received control signal and outputs the control signal to the combination/separation unit 322 .
  • the looped back control signal is converted into an electrical signal at the optical interface section 406, and is input to the determination control section 401, which was the source of the control signal.
  • the determination control unit 401 performs a predetermined evaluation on the input control signal according to the continuity check. For example, an evaluation may be made as to whether the loopback was performed correctly.
  • the determination control unit 401 performs a signal path normality determination regarding the target user device based on the evaluation result.
  • the determination control unit 401 may output the determination result to another device or record it in a storage device as a log.
  • the first user device (user device 300-1) or the first control device (access system management control unit 103-1) is connected to the opposing second user device (user device 300-2). Alternatively, it responds with a second control signal to the first control signal transmitted from the second control device (access system management control unit 103-2).
  • the second user device or second control device determines whether the signal path including between the first user device or first control device and the second user device or second control device is normal. is determined based on the second control signal used in the response.
  • a first user device (user device 300-1) or a first control device (access system management control unit 103-1) is connected to an opposing second user device (user device 300-2) or a second control device.
  • the first control signal transmitted from the device may be returned.
  • the second user device or second control device determines whether the signal path including between the first user device or first control device and the second user device or second control device is normal. may be determined based on the returned first control signal.
  • the first control device (user device 300-1) differs from the main signal.
  • a second control signal is multiplexed onto another optical signal, and when the optical signal for carrying the second control signal reaches the control device, the second control signal is added to the optical signal for carrying the second control signal.
  • the signals may be multiplexed and whether or not the signal path is normal may be determined based on another optical signal or a second control signal multiplexed on the optical signal.
  • a control signal that can be processed by the user device 300 is transmitted to the user device 300. Therefore, loopback can be performed at a loopback point (return unit 333) after the main signal passes through the path after optical-to-electrical conversion in the optical transceiver 301. Therefore, in a protocol-independent APN that does not depend on a specific communication protocol or modulation method, the normality of the signal path including the inside of the user device 300 (for example, the optical interface unit 321, the combining/separating unit 322, and the optical interface unit 326) is determined. It becomes possible to do so.
  • control signal transmitting section 332 communicates with the Ph-GW via the combining/separating section 322.
  • control signal transmitter 332 responds to a loopback instruction.
  • control signal transmitter 332 responds to the Ph-GW with the result of the normality determination determined by the user device.
  • the access system management control unit 103 may loop back the control signal, loop back the main signal, or loop back both the control signal and the main signal.
  • a communication system includes devices that communicate with each other using optical signals, and one device transmits a control signal to another device using an optical signal. The other devices loop control signals or their responses back to one device.
  • a communication system that includes a device that transmits and receives a control signal by superimposing it on its own optical signal or an optical signal from another device, or modulating its own optical signal or an optical signal from another device.
  • One of the opposing devices generates and generates an optical signal in a format that can be transmitted and received by the other opposing device (an optical signal that can receive control signals such as AMCC without damaging the optical IF unit, etc.).
  • a control signal obtained by superimposing the generated optical signal or modulating the generated optical signal is transmitted to the other opposing device.
  • the other opposing device returns the received control signal or its response by superimposing it on its own optical signal or the optical signal from the other device, or modulating the own optical signal or the optical signal from the other device. and send.
  • One of the opposing devices superimposes or modulates the optical signal and receives the returned control signal or its response.
  • the opposing device determines whether the signal path including the signal path between the opposing device and the other opposing device is normal, based on the received returned control signal or its response. .
  • the device on the Ph-GW side selects the main signal termination section (signal termination section) according to the main signal used by the opposite device (in this case, the user device), and uses the selected main signal termination section to Generates a request for normality determination using the main signal, transmits a response regarding normality determination to the opposite device (user device here) in response to the request, and transmits the received response to the device on the Ph-GW side.
  • Terminate at the selected main signal termination section, or the device on the Ph-GW side selects the main signal termination section (signal termination section) according to the main signal used by the opposite device (in this case, the user device), and The signal termination section generates a normality determination signal using the main signal, the opposite device (here, the user device) returns the normality determination signal, and receives the received return (loopback signal).
  • the opposite device here, the user device
  • the device on the Ph-GW side in addition to the main signal normality determination request and its response, or the main signal normality determination signal and its return, the device on the Ph-GW side generates a request for normality determination using a control signal, the opposite device (user device here) transmits a response regarding normality determination in response to the request, and the received response is sent to the Ph-GW.
  • the device on the Ph-GW side terminates at the device on the GW side, or the device on the Ph-GW side generates a signal for determining normality using a control signal, and transmits the signal for determining normality at the opposite device (here, the user device) in return,
  • the received return (loopback signal) is terminated by the device on the Ph-GW side, or the user device generates a request for normality determination using a control signal, and the opposite device (here, the device on the Ph-GW side)
  • a response regarding normality determination is transmitted, and the received response is terminated at the user device, or the user device generates a normality determination signal using a control signal and generates a normality determination signal from the opposite device (here, Ph- (GW side device) sends back a signal for determining the normality, and the received return (loopback signal) is terminated at the user device)
  • the access system management control section selects the termination section of the main signal of the protocol according to the user device.
  • the access system management control unit instructs the user device to loop back the control signal.
  • the instruction may be a control signal or a main signal. However, control signals are more appropriate for obtaining instructions. The same applies below.
  • a termination unit corresponding to the user equipment may be selected after the instruction is given.
  • the access system management control unit generates a downlink main signal not limited to normality determination using a protocol according to the user equipment, and modulates the main signal with a downlink control signal for normality determination, or modulates the main signal with a downlink control signal for normality determination.
  • a downlink control signal for normality determination is superimposed and transmitted in the downlink direction.
  • the user equipment modulates the uplink main signal with the downlink control signal or its response as an uplink control signal, or superimposes the downlink control signal or its response on the uplink main signal as an uplink control signal, and transmits the signal back in the uplink direction.
  • the returned uplink control signal is received and terminated by the access system management control unit and judged.
  • the loopback of the control signal of the user device is canceled with the passage of time or an instruction from the access system management control unit. Note that the instruction may be a control signal or a main signal. Furthermore, after the loopback is released, the connection form of the light distribution section is returned to its original state.
  • C2 System configuration pattern where the user equipment loops back and multiple main signal termination units on the user equipment side (“format selection + loopback side: user equipment” and “generation transmission/reception termination side: Ph-GW side device”) , the user equipment selects the main signal termination section (signal termination section) according to the main signal used by the opposite device (here, the device on the Ph-GW side), and The main signal termination unit generates a request for normality determination using the main signal, and the main signal termination unit selected by the user equipment transmits a response regarding normality determination in response to the request, and transmits the received response.
  • format selection + loopback side: user equipment” and “generation transmission/reception termination side: Ph-GW side device” the user equipment selects the main signal termination section (signal termination section) according to the main signal used by the opposite device (here, the device on the Ph-GW side)
  • the main signal termination unit generates a request for normality determination using the main signal
  • the main signal termination unit selected by the user equipment transmits a response regarding normality determination in response
  • the user equipment terminates at the main signal termination section (signal termination section) according to the main signal used by the opposite device (here, the device on the Ph-GW side).
  • the main signal terminal of the opposite device (here, the device on the Ph-GW side) generates a signal for determining normality using the main signal, and the selected main signal terminal of the user device determines its normality.
  • the received return signal (loopback signal) is terminated at the main signal termination section of the opposing device (here, the device on the Ph-GW side). In this embodiment, the normality determination of the main signal is performed.
  • the Ph-GW side device In addition to the request and its response, or the main signal's normality judgment signal and its return, the Ph-GW side device generates a normality judgment request with a control signal, and the opposite device (here, the user device) generates a normality judgment request.
  • the opposite device here, the user device
  • a response regarding normality determination is transmitted, and the received response is terminated by a device on the Ph-GW side, or the device on the Ph-GW side generates a signal for determining normality using a control signal
  • the opposite device (user device in this case) sends back a signal for determining its normality, and the received return (loopback signal) is terminated by the Ph-GW side device, or the user device uses a control signal to indicate that the signal is normal.
  • the device Generates a request for normality determination, transmits a response regarding normality determination in response to the request in the opposite device (here, the device on the Ph-GW side), and terminates the received response in the user device, or
  • the device generates a normality determination signal using a control signal, the opposite device (here, the device on the Ph-GW side) returns the normality determination signal, and receives the received return (loopback signal). (terminated at user equipment (not shown))
  • a main signal termination section (signal termination section) corresponding to the signal format used by the opposing device may be arranged in the user device.
  • the optical distribution unit and the like are set so that the access system management control unit and the user device can communicate.
  • the access system management control unit selects a main signal termination unit (signal termination unit) located in the user device.
  • the user equipment loops back the main signal and control signal at the selected signal termination.
  • the Ph-GW receives and terminates the returned uplink main signal and control signal, and determines normality.
  • (D1) A system in which the Ph-GW loops back and multiple main signal termination units on the Ph-GW side ("format selection + loopback side: device on the Ph-GW side” and “generation transmission reception termination side: user equipment")
  • the configuration pattern is that the device on the Ph-GW side selects the main signal termination section (signal termination section) according to the main signal used by the opposite device (user device here), and then selects the main signal termination section (signal termination section) according to the main signal used by the opposite device (user device here).
  • the termination unit generates a request for normality determination using the main signal
  • the main signal termination unit selected by the device on the Ph-GW side transmits a response regarding normality determination in response to the request, and
  • the response is terminated at the main signal termination section of the user equipment, or the device on the Ph-GW side selects the main signal termination section (signal termination section) according to the main signal used by the opposite device (user equipment here).
  • the main signal terminal of the opposite device (user device in this case) generates a signal for determining normality using the main signal
  • the selected main signal terminal of the device on the Ph-GW side generates a signal for determining normality.
  • the main signal normality determination request and its response or
  • the device on the Ph-GW side generates a request for normality determination using a control signal, and the opposite device (in this case, the user device) determines the normality in response to the request.
  • a response related to the determination is sent and the received response is terminated by the Ph-GW side device, or the Ph-GW side device generates a normality determination signal using a control signal, device) returns a signal for determining the normality, and the received return (loopback signal) is terminated by the device on the Ph-GW side, or the user device generates a request for normality determination using a control signal.
  • the opposite device transmits a response related to the normality determination, and the received response is terminated at the user device, or the user device uses a control signal to determine the normality.
  • Generates a signal for determining the normality returns the signal for determining the normality at the opposite device (here, the device on the Ph-GW side), and terminates the received return (loopback signal) at the user device ( (not shown))
  • the access system management control section selects the termination section of the main signal of the protocol according to the user device.
  • the access system management control unit instructs the user device to generate and transmit a control signal for normality determination.
  • the instruction may be a control signal or a main signal.
  • a termination section (signal termination section) according to the user device may be selected after giving an instruction.
  • the user equipment modulates the uplink main signal not only for normality determination with the normality determination uplink control signal, or superimposes the normality determination uplink control signal on the uplink main signal, and transmits the modulated uplink main signal in the uplink direction.
  • the access system management control unit modulates the downlink main signal using the uplink control signal or its response as a downlink control signal, or superimposes the uplink control signal or its response as a downlink control signal on the downlink main signal, and transmits it back in the downlink direction. do. That is, the signal received by the optical IF section 406 is returned by the selected signal termination section 402 and output from the optical IF section 405.
  • the user equipment receives and terminates the returned downlink control signal, and makes a determination. With the passage of time or an instruction from the access system management control unit, the generation of a control signal for determining the normality of the user equipment, the modulation of the uplink main signal with the generated control signal, or the superimposition of the uplink main signal is canceled, and the judgment is made. Obtain the results from the user device.
  • the instruction may be a control signal or a main signal.
  • the acquisition may be a control signal or a main signal.
  • the connection form of the light distribution section is returned to its original state.
  • Ph-GW returns and multiple main signal termination units on the user equipment side (system configuration of "format selection + generation transmission/reception termination side: user equipment” and “return side: device on Ph-GW side") pattern, the user equipment side selects a main signal termination section (signal termination section) according to the main signal used by the opposite device (here, the device on the Ph-GW side), and uses the selected main signal termination section to transmit the main signal. Generates a request for normality determination, transmits a response regarding normality determination in response to the request in the opposite device (here, Ph-GW side device), and transmits the received response to the selected master of the user device.
  • Terminate at a signal termination section, or the user equipment selects a main signal termination section (signal termination section) according to the main signal used by the opposite device (here, the device on the Ph-GW side), and selects the selected main signal termination section. Then, the main signal is used to generate a normality determination signal, the opposite device (here, the device on the Ph-GW side) returns the normality determination signal, and the received return (loopback signal) is sent back.
  • the Ph-GW in addition to the main signal normality determination request and its response, or the main signal normality determination signal and its return, the Ph-GW
  • the side device in addition to the main signal normality determination request and its response, or the main signal normality determination signal and its return, the Ph-GW
  • the side device in addition to the main signal normality determination request and its response, or the main signal normality determination signal and its return, the Ph-GW
  • the side device generates a request for normality determination using a control signal
  • the opposite device in this case, the user device
  • transmits a response regarding normality determination in response to the request and the received response is sent to the Ph-GW side.
  • the opposite device in this case, the user device
  • the opposite device returns the normality determination signal
  • the received The return (loopback signal) is terminated at the device on the Ph-GW side, or the user device generates a request for normality determination using a control signal, and the opposite device (here, the device on the Ph-GW side) responds to the request.
  • a response regarding normality determination is transmitted, and the received response is terminated at the user equipment, or the user equipment generates a normality determination signal using a control signal and sends a response to the opposite equipment (here, the Ph-GW side).
  • device) returns a signal for determining its normality
  • the received return (loopback signal) is terminated at the user device (not shown).
  • a main signal termination section (signal termination section) corresponding to the signal format used by the opposing device may be arranged in the user device.
  • the optical distribution unit and the like are set so that the access system management control unit and the user device can communicate.
  • the access system management control unit selects a main signal termination unit (signal termination unit) located in the user device.
  • the user equipment transmits the main signal and the control signal at the selected signal termination.
  • the Ph-GW loops back the main signal and control signal.
  • the user equipment receives and terminates the returned downlink main signal and control signal, and determines normality.
  • (D1) it is looped back from the control unit 330 of the user device through the optical transmission path to the determination control unit 401 of the access system management control unit, looped back to the control unit 330 of the user device, and reaches the UNI of the user device 300. The same goes for not doing so.
  • the control signal is looped back or generated and terminated at the determination control unit 401, and the main signal is looped back or generated and terminated at the signal termination unit.
  • the multiplexing unit 404 multiplexes the signals.
  • the optical IF unit is common for the control signal and the main signal, since they are common, both are transmitted and received at the optical IF unit.
  • the optical IF section is different, different transmissions or receptions, or both, are performed by the optical IF sections corresponding to the control signal or the main signal, respectively.
  • control signal receiving unit 331 When looping back the main signal in addition to the control signal, the control signal receiving unit 331 also instructs the loopback unit 333 and UNI_PHY to execute the loopback according to the instruction.
  • the signal received by the receiving section (optical IF section) is looped back by the selected signal termination section 402, and the transmitting section (optical IF section) outputs it.
  • the main signal may be generated and terminated by the access system management control unit or may not be looped back, and the main signal modulated by the control signal or superimposed with the control signal by the access system management control unit may be The main signal may be generated, terminated, or folded back only when the main signal cannot be obtained from the section opposite to the target section.
  • the determination control unit 401 selects a signal termination unit 402 according to a protocol that can be processed by the target user device. The selection may be made based on information from databases inside and outside the Ph-GW, instructions from a control system such as an APN controller, determined from signals that can be received at the signal termination section, or made by the user. This may be performed based on the result of an inquiry to the device.
  • the determination control unit 401 instructs the selected signal termination unit 402 to transmit the main signal to the target user device (the Ph-GW receives the main signal for continuity check from the user device). , when determining normality).
  • the main signal (when the user equipment receives the main signal for continuity check from the Ph-GW and determine the normality), or transmit/receive the main signal (the main signal for continuity check from the Ph-GW is received by the user equipment)
  • the main signal for continuity check from the user equipment is looped back at the Ph-GW, received at the user equipment, and then the main signal for continuity confirmation is determined by the loopback. (when determining normality).
  • AMCC loopback There are two types of AMCC loopback: the entire signal including the AMCC signal and the main signal, and the AMCC signal only.
  • the user equipment 300 receives only the main signal that is not affected by AMCC and loops it back instead of outputting it to the user side. Therefore, AMCC is not included in the loopback of the main signal. Therefore, by receiving AMCC separately from the main signal and re-modulating the loopback of the main signal with AMCC, the entire signal is looped back. Therefore, when looping back the entire signal, there are cases where the timing of the downlink main signal and the downlink AMCC signal are synchronized so that they are the same as the uplink main signal and uplink AMCC signal that are looped back, and cases where they are not synchronized. There is.
  • channels in ISDN include two B channels for data communication and one D (Data) channel for communication control.
  • D Data
  • channels in ISDN include two B channels for data communication and one D (Data) channel for communication control.
  • a channel in the APN for example, if the main signal and AMCC are considered as channels, one or more designated channels, for example certain modifications to certain information in the AMCC signal, for example certain information in the AMCC signal, For example, it may be returned with corrections according to quality-related information such as error rate, an Ack or response to a Request, or RDI (Remote Defect Indication) such as a transmission failure notification in the upstream direction.
  • quality-related information such as error rate, an Ack or response to a Request, or RDI (Remote Defect Indication)
  • the AMCC signal and the main signal may each be sent back as multiple channels.
  • An example of a configuration in which quality information is returned is the configuration of the fourth embodiment described later.
  • the main signal from the device on the opposite side of the normality determination target section (for example, another Ph-GW or user equipment) is It may be configured such that the signal termination unit of the first embodiment is used only when the signal is not available.
  • a user device that uses main signals from other Ph-GWs or user devices and returns control signals and an opposing device (for example, another user device)
  • a normality determination or by using the main signal from another Ph-GW or user equipment, continue to conduct the signal light between the user equipment that loops back the control signal and the opposing equipment (for example, another user equipment). Then, either extract only the superimposed control signal and terminate it (using a wavelength filter, etc. if the wavelengths are different), or terminate only part of the branched signal light, or at least remove the signal light from the influence of nonlinear optical effects, etc. of the control signal. If the light that can receive the control signal is terminated but the main signal is transmitted, there is an effect that communication using the main signal can be continued even during normality determination.
  • the main signal may be used, and the signal termination section of the first embodiment may be used only when the main signal is not available.
  • a user device that uses main signals from other Ph-GWs or user devices and returns control signals and an opposing device (for example, another user device)
  • an opposing device for example, another user device
  • conduction of signal light between a user equipment that generates and terminates a control signal and a device facing the user equipment, such as another user equipment If the control signal is continued and only the superimposed control signal is extracted, or if the signal light is terminated with at least the control signal transferred due to some branched signal light or a nonlinear optical effect, the main signal is continued even during normality determination. This has the effect of allowing continuous communication.
  • control signal loopback since the control signal is used for determination, determination is possible even if the main signal does not correspond to the protocol of the user device or is unmodulated light (CW light).
  • FIG. 9 is a diagram showing a third embodiment of the communication system 1.
  • the third embodiment differs from the second embodiment in that the control section 330 further functions as an internal return control section 334, and is the same as the second embodiment in most other respects.
  • the third embodiment of the communication system 1 will be described below, focusing on the differences from the second embodiment of the communication system 1.
  • the access system management control unit 103 transmits a control signal for instructing loopback to the user device 300 (target user device) connected to the section targeted for signal path normality determination.
  • the loopback in the third embodiment corresponds to loop 2, and the normality of the path between the UNI_PHY and the MAC is also determined.
  • the determination control unit 401 performs signal path normality determination processing.
  • the determination control unit 401 outputs to the optical interface unit 405 a control signal indicating execution of loopback and execution of internal loopback using the main signal.
  • the determination control unit 401 determines the normality of the route to be determined based on the received signal.
  • the determination control unit 401 performs a signal path normality determination for the path including the inside of the optical transceiver 301 based on the result of intra-device loopback.
  • the user device 300 includes an optical transceiver 301 and a control section 330.
  • the optical transceiver 301 of the third embodiment has the same configuration as the optical transceiver 301 of the second embodiment, except that it performs internal loopback, so a description thereof will be omitted.
  • the control signal receiving section 331 receives from the combining/separating section 322 the control signals separated by the combining/separating section 322 .
  • the control signal receiving section 331 operates according to information indicated by the received control signal. If the control signal is information indicating an instruction to execute loopback, control signal receiving section 331 instructs return section 333 to execute loopback in accordance with the instruction. If the control signal further includes information indicating an instruction to execute intra-apparatus loopback, the control signal receiving section 331 instructs the intra-apparatus loopback control section 334 to execute intra-apparatus loopback.
  • the loopback section 333 Upon receiving an instruction to perform loopback from the control signal receiving section 331, the loopback section 333 executes loopback processing in accordance with the instruction.
  • the target of loopback processing in the loopback unit 333 is, for example, a control signal.
  • the loopback process may be implemented as a full channel loopback, a partial loopback, or a logical loopback, for example.
  • the loopback unit 333 may perform loopback, for example, to show the execution result of intra-device loopback.
  • the loopback unit 333 may be configured to loop back the control signal only when normal conduction is determined as a result of performing internal loopback.
  • the determination control unit 401 may determine that the signal path is normal in response to receiving the looped back control signal.
  • the loopback unit 333 may be configured to include, for example, information indicating the execution result of intra-apparatus loopback in the looped back control signal.
  • the determination control unit 401 may determine whether the signal path is normal based on information included in the looped back control signal.
  • the looped back control signal is converted into an optical signal by the optical interface unit 326 and transmitted to the access system management control unit 103.
  • the intra-device loopback control unit 334 controls the optical transceiver 301 to perform intra-device loopback using the main signal of a protocol compatible with the optical transceiver 301 of the device itself. In determining the normality of the signal path of the optical transceiver 301 by internal loopback, the internal loopback control unit 334 determines whether the main signal and the control signal pass through different routes in the optical transceiver 301, or if the main signal and the control signal When different transmitters are used for the main signal and the control signal, or when different receivers are used for the main signal and the control signal, intra-device loopback is performed for each route, transmitter, or receiver.
  • FIG. 9 is a diagram showing a specific example of folding back within the device in the third embodiment.
  • the device internal loopback control unit 334 of this embodiment when a plurality of transmitters with different specifications (for example, a main signal transmitter and a control signal transmitter) are included in the own device (optical transceiver 301), Intra-device loopback may be performed for each transmitter. The same applies to the receiver.
  • the optical interface section 321 includes a main signal Rx 321_1 and a control signal Rx 321_2.
  • the main signal Rx 321_1 processes the main signal and does not process the control signal.
  • the control signal Rx 321_2 processes the control signal and does not process the main signal.
  • the optical interface unit 326 includes a main signal Tx 326_1 and a control signal Tx 326_2.
  • the main signal Tx 326_1 processes the main signal and does not process the control signal.
  • the control signal Tx 326_2 processes the control signal and does not process the main signal.
  • intra-device loopback is performed for each of the main signal Rx 321_1 and the control signal Rx 321_2.
  • intra-device loopback is performed for each of the main signal Tx 326_1 and the control signal Tx 326_2.
  • the loop for normality determination in device loopback is a loop of the combining/separating unit 322, the processing unit 323, the UNI_PHY(Tx) 324, the UNI_PHY(Rx) 325, the processing unit 323, and the combining/separating unit 322.
  • the loop for normality determination during intra-device loopback may be a loop of the processing unit 323, UNI_PHY (Tx) 324, UNI_PHY (Rx) 325, and processing unit 323.
  • the loop for normality determination in the device internal loop may be a loop including the processing section 323, the combining/separating section 322, the optical interface section 326, the optical interface section 321, the combining/separating section 322, and the processing section 323. .
  • the main signal is It may be a loop between the side where the optical interface section 321 conducts, the side where the main signal conducts at the optical interface section 321, and the combining/separating section 322.
  • the loop for normality determination in the internal loop of the device includes the control section 330, the combining/separating section 322, the optical interface section 326 on which the main signal is conducted, the optical interface section 321 on the side where the main signal is conducted, A loop between the combining/separating section 322 and the control section 330 may be used.
  • the configuration is such that internal loopback within the device is executed via the respective routes.
  • internal loopback is performed by looping back the main signal so that it is input from the processing unit 323 to the processing unit 323 via the UNI_PHY (Tx) 324 and UNI_PHY (Rx) 325, and the signal path of the optical transceiver 301 is A normality determination may also be performed.
  • loopback within the device is performed by looping back the main signal so that it is input from the processing section 323 to the processing section 323 via the combining/separating section 322, the optical interface section 326, the optical interface section 321, and the combining/separating section 322. Then, the signal path normality of the optical transceiver 301 may be determined.
  • the intra-apparatus loopback control unit 334 outputs the determination result of the signal path normality determination by executing the intra-apparatus loopback to the loopback unit 333.
  • the determination control unit 401 At a predetermined timing, the determination control unit 401 generates a control signal for instructing execution of loopback, and outputs it to the optical interface unit 405.
  • the predetermined timing may be, for example, the timing at which a problem in communication with the user device 300 is detected.
  • the optical interface unit 405 converts the electrical signal input from the determination control unit 401 into an optical signal, and transmits the optical signal to the user device 300 via the transmission path.
  • the optical interface unit 321 of the user device 300 Upon receiving the optical signal from the access system management control unit 103 , the optical interface unit 321 of the user device 300 converts the received optical signal into an electrical signal and outputs it to the combining/separating unit 322 .
  • the combiner/separator 322 separates the control signal from the received signal and outputs the control signal to the controller 330 .
  • control signal receiving section 331 of the control section 330 When the control signal receiving section 331 of the control section 330 receives the control signal from the combining/separating section 322, it operates according to the content of the control included in the control signal.
  • the control signal includes a signal indicating an instruction to perform loopback.
  • the control signal receiving section 331 instructs the loopback section 333 to perform loopback of the control signal.
  • the control signal receiving unit 331 instructs the intra-device loopback control unit 334 to execute intra-device loopback.
  • the intra-device return control unit 334 executes intra-device return according to the instruction, and determines the normality of the signal path of the optical transceiver 301 based on the execution result.
  • the intra-device loopback control section 334 outputs the determination result to the loopback section 333.
  • the loopback unit 333 performs loopback processing on the received control signal according to the determination result of the internal loopback control unit 334. By executing the loopback process, the return section 333 outputs a control signal to the combination/separation section 322.
  • the looped back control signal is converted into an electrical signal at the optical interface section 406, and is input to the determination control section 401, which was the source of the control signal.
  • the determination control unit 401 performs a predetermined evaluation on the input control signal according to the continuity check. For example, an evaluation may be made regarding whether or not loopback has been performed correctly, or an evaluation may be made regarding the execution result of intra-device loopback.
  • the determination control unit 401 performs a signal path normality determination regarding the target user device based on the evaluation result.
  • the determination control unit 401 may output the determination result to another device or record it in a storage device as a log.
  • a control signal that can be processed by the user device 300 is transmitted to the user device 300. Therefore, loopback can be performed at a loopback point (return unit 333) after the main signal passes through the path after optical-to-electrical conversion in the optical transceiver 301. Therefore, it is possible to determine the normality of the signal path including the inside of the user device 300 in a protocol-independent APN that does not depend on a specific communication protocol or modulation method.
  • intra-device loopback is performed in the optical transceiver 301 of the user device 300, and the normality of the signal path within the device is determined. For example, the normality of the signal paths in the processing unit 323, UNI_PHY (Tx) 324, UNI_PHY (Rx) 325, and processing unit 323 is determined. At this time, since the signal is returned within the device, processing is naturally performed using a signal of a protocol that can be processed by the optical transceiver 301.
  • Normality may be determined by continuity confirmation or self-diagnosis function, which is not limited to loopback.
  • continuity confirmation or self-diagnosis function, which is not limited to loopback.
  • self-diagnosis function In order to avoid the situation where it is only possible to determine whether or not the transmission path is normal until the test signal is turned back at the turning point, it is necessary to ) may be equipped with a self-diagnosis function.
  • a means for creating a test signal and transmitting it via an optical transmission line when receiving a test start request or a test start response to a test start request (if it is on the transmitter/receiver side), a means for creating a test signal and transmitting it via an optical transmission line, and a means for transmitting the test signal via an optical transmission line.
  • a means for receiving a test signal via an optical transmission line When receiving a test start request or a test start response to a test start request (if it is on the return side), a means for receiving a test signal via an optical transmission line, a means for receiving a result of a self-diagnosis function, and a self-diagnosis function.
  • a function result When a function result is received, a response signal or return signal is created and transmitted via an optical transmission line.
  • the response or return signal may be sent separately from the self-diagnosis result.
  • the self-diagnosis function is also not limited to test signal return. If the self-diagnosis function is test signal loopback, for example, by providing a loopback switch in advance that directly connects the signal from the receiving section of the transmitting/receiving section directly to the transmitting section, and turning it on and off under control, the signal will be output only during the loopback test. Set to wrap. For example, when transmitting by ATM, the client signal is transmitted from the AAL5 terminal to the UNI, and when transmitting by OTN frame, the client signal is transmitted from the UNI to the OTN frame. This applies to the section up to the framer that is to be incorporated.
  • the ATM payload used in the test and the pseudo-random pattern included in the OTN client signal may be generated within the device, or they may be generated by the opposing device and then cut out and used within the device. good.
  • the determination may be made using the self-diagnosis function of each circuit through which the signal does not pass.
  • the self-diagnosis function For example, in the case of a frame buffer, only a small portion of the memory area is used for folded test signal data such as frame data only. In most areas, the test signal uses only a small portion of the memory area, so it is not possible to find abnormalities in most parts of the frame buffer only by looping tests. Therefore, a read/write test of the memory that makes up the buffer is performed as a self-diagnosis.
  • the second user device uses a predetermined signal inside the second user device to determine whether the signal path is normal or not. It is further determined (self-diagnosis) whether or not the inside of the user device No. 2 is normal.
  • FIG. 10 is a diagram showing a fourth embodiment of the communication system 1.
  • the fourth embodiment differs from the second embodiment in that the access system management control unit 103 further includes an error rate measurement unit 411, and is the same as the second embodiment in most other respects.
  • the fourth embodiment of the communication system 1 will be described below, focusing on the differences from the second embodiment of the communication system 1.
  • the access system management control unit 103 transmits a control signal for instructing loopback to the user device 300 (target user device) connected to the section targeted for signal path normality determination.
  • the error rate measurement unit 411 generates a signal for measuring the error rate and outputs it to the determination control unit 401.
  • the signal for measuring the error rate may be generated using any method.
  • the signal for measuring the error rate may be generated as a PRBS (Pseudo-Random Binary Sequence) pattern.
  • the error rate measurement unit 411 measures the error rate based on the control signal looped back in the user equipment 300. Error rate measurement section 411 outputs the measurement result to determination control section 401.
  • the determination control unit 401 performs signal path normality determination processing.
  • the determination control unit 401 outputs a control signal indicating execution of loopback to the optical interface unit 405.
  • the determination control section 401 Upon receiving the control signal transmitted from the user device 300, the determination control section 401 outputs the received signal to the error rate measurement section 411.
  • the determination control unit 401 determines the normality of the route to be determined based on the received signal and the measurement result in the error rate measurement unit 411.
  • the user device 300 has a configuration similar to that of the second embodiment, so a description thereof will be omitted.
  • the flow of processing for determining signal path normality in the fourth embodiment will be described.
  • the error rate measurement section 411 generates a signal for measuring the error rate and outputs it to the determination control section 401.
  • the determination control unit 401 generates a control signal for instructing execution of loopback, and outputs it to the optical interface unit 405.
  • This control signal includes a signal for measuring the error rate.
  • the predetermined timing may be, for example, the timing at which a problem in communication with the user device 300 is detected.
  • the optical interface unit 405 converts the electrical signal input from the determination control unit 401 into an optical signal, and transmits the optical signal to the user device 300 via the transmission path.
  • the operation in the user device 300 is the same as that in the second embodiment, so the explanation will be omitted.
  • the control signal looped back in the user device 300 is converted into an electrical signal in the optical interface section 406.
  • the error rate measuring section 411 measures the error rate based on the received signal. Error rate measurement section 411 outputs the measurement result to determination control section 401.
  • the determination control unit 401 performs a predetermined evaluation on the input control signal according to the continuity check. For example, an evaluation may be made as to whether the loopback was performed correctly.
  • the determination control unit 401 performs a signal path normality determination regarding the target user device based on the evaluation result.
  • the determination control unit 401 may determine that the signal path is abnormal if a predetermined condition indicating a poor error rate is satisfied.
  • the determination control unit 401 may output the determination result to another device or record it in a storage device as a log.
  • a control signal that can be processed by the user device 300 is transmitted to the user device 300. Therefore, loopback can be performed at a loopback point (return unit 333) after the main signal passes through the path after optical-to-electrical conversion in the optical transceiver 301. Therefore, it is possible to determine the normality of the signal path including the inside of the user device 300 in a protocol-independent APN that does not depend on a specific communication protocol or modulation method.
  • the error rate is measured based on the control signal. Therefore, it is possible to determine the normality of the signal path also from the viewpoint of error rate.
  • the user device 300 of the fourth embodiment may be configured to further include the intra-device loopback control section 334 of the third embodiment.
  • the intra-device loopback control unit 334 instructs the optical transceiver 301 to perform intra-device loopback.
  • the return unit 333 may perform loopback so as to indicate the execution result of intra-device return.
  • the determination control unit 401 may determine the normality of the signal path based on the measurement result of the error rate and the execution result of intra-device loopback.
  • the user device 300 of the fourth embodiment may have a configuration similar to that of the error rate measurement unit 411.
  • the user equipment 300 may measure the error in the downlink direction by measuring the downlink signal from the Ph-GW 100-2.
  • the user device 300 of the fourth embodiment may include a pseudo-random number generator.
  • the user equipment 300 transmits an uplink signal containing random numbers generated by a pseudo-random number generator to the Ph-GW 100-2, and the error rate measuring unit 411 of the Ph-GW 100-2 measures errors. Misdirection may also be measured.
  • the Ph-GW 100-2 may include both a pseudo-random number generator and an error rate measurement unit. In this case, downlink, return, and uplink errors may be measured.
  • the user device 300 may include both a pseudo-random number generator and an error rate measurement unit to measure uplink, turnback, and downlink errors.
  • the process of measuring the error rate may be executed in the user device 300.
  • FIG. 11 is a diagram showing a second example of the configuration of the communication system 1 in the fourth embodiment.
  • the control unit 330 of the user device 300 includes an error rate measurement unit 335.
  • the measurement result by the error rate measurement unit 335 is transmitted to the determination control unit 401 of the access system management control unit 103.
  • the determination control section 401 makes a determination based on the measurement results of the error rate measurement section 335.
  • the second control device transmits the control signal or main signal representing the signal for measuring the error rate to the second user device (user device 300-2). ) does not transmit the control signal or the main signal representing the signal for measuring the error rate to the second user equipment, and the control signal or the main signal that is returned by the second user equipment. It is further determined whether the signal path is normal based on the measurement result of the error rate based on the signal.
  • the second control device (access system management control unit 103-2) transmits a control signal or main signal representing a signal for measuring an error rate to a second user device (user device 300-2).
  • a control signal or main signal representing a signal for measuring an error rate
  • a second user device user device 300-2
  • FIG. 12 is a diagram showing a fifth embodiment of the communication system 1.
  • the access system management control unit 103 includes an FEC determination control unit 412.
  • the access system management control unit 103 may include an FEC judgment control unit 412 instead of the judgment control unit 401.
  • This embodiment differs from the second embodiment in that the control unit 330 of the user device 300 further includes an FEC switching unit 336, and is the same as the second embodiment in most other respects.
  • the fifth embodiment of the communication system 1 will be described below, focusing on the differences from the second embodiment of the communication system 1.
  • the access system management control unit 103 transmits a control signal for instructing loopback to the user device 300 (target user device) connected to the section targeted for signal path normality determination.
  • the FEC determination control unit 412 generates a control signal indicating execution of loopback, and adds an FEC (Forward Error Correction) error correction code to the control signal.
  • the FEC determination control unit 412 performs signal path normality determination processing by transmitting a control signal to which an FEC error correction code is attached to the user equipment 300.
  • the FEC determination control unit 412 outputs the control signal generated by the above-described processing to the optical interface unit 405.
  • the FEC determination control unit 412 determines the normality of the route to be determined based on the received signal. For example, the FEC determination control unit 412 may determine the normality of the route based on whether or not a predetermined process is performed on the control signal in the user device 300. As a specific example of the predetermined processing, a new error correction code is generated using a different encoding method from that used in the FEC determination control unit 412, and the new error is applied to the control signal. A possible process is to add a correction code.
  • the FEC determination control unit 412 adds an error correction code to the control signal and intentionally adds an error value to a numerical value within a range that can be corrected with the error correction code. In this case, it is possible that the user device 300 assigns the same error value to the control signal.
  • the FEC switching unit 336 of the control unit 330 of the user device 300 When the FEC switching unit 336 of the control unit 330 of the user device 300 receives an instruction to perform loopback from the control signal receiving unit 331, it executes loopback processing in accordance with the instruction.
  • the target of loopback processing in the FEC switching unit 336 is, for example, a control signal including an error correction code.
  • the FEC switching unit 336 generates a control signal for loopback by performing the above-described predetermined processing.
  • the FEC switching section 336 outputs the generated control signal to the combining/separating section 322.
  • the looped back control signal is converted into an optical signal by the optical interface unit 326 and transmitted to the access system management control unit 103.
  • the FEC determination control unit 412 At a predetermined timing, the FEC determination control unit 412 generates a control signal for instructing loopback, and adds an error correction code to the control signal.
  • the predetermined timing may be, for example, the timing at which a problem in communication with the user device 300 is detected.
  • the optical interface unit 405 converts the electrical signal input from the FEC determination control unit 412 into an optical signal, and transmits the optical signal to the user device 300 via the transmission path.
  • the optical interface unit 321 of the user device 300 Upon receiving the optical signal from the access system management control unit 103, the optical interface unit 321 of the user device 300 converts the received optical signal into an electrical signal and outputs it to the combining/separating unit 322.
  • the combiner/separator 322 separates the control signal from the received signal and outputs the control signal to the controller 330 .
  • control signal receiving section 331 of the control section 330 When the control signal receiving section 331 of the control section 330 receives the control signal from the combining/separating section 322, it operates according to the content of the control included in the control signal.
  • the control signal includes a signal instructing execution of loopback.
  • the control signal receiving section 331 instructs the FEC switching section 336 to perform loopback of the control signal.
  • the FEC switching unit 336 generates a control signal that is looped back to the access system management control unit 103 by performing predetermined processing on the received control signal.
  • the FEC switching section 336 outputs the generated control signal to the combining/separating section 322.
  • the control signal looped back at the user device 300 is converted into an electrical signal at the optical interface section 406.
  • the FEC determination control unit 412 determines whether a predetermined process is performed on the control signal in the user device 300 based on the received signal.
  • the FEC determination control unit 412 determines the normality of the route according to the determination result.
  • the FEC determination control unit 412 may output the determination result to another device or record it in a storage device as a log.
  • a control signal that can be processed by the user device 300 is transmitted to the user device 300. Therefore, loopback can be performed at the loopback point (FEC switching unit 336) after the main signal passes through the path after optical-to-electrical conversion in the optical transceiver 301. Therefore, it is possible to determine the normality of the signal path including the inside of the user device 300 in a protocol-independent APN that does not depend on a specific communication protocol or modulation method.
  • the user device 300 of the fifth embodiment may be configured to further include the intra-device loopback control section 334 of the third embodiment.
  • the intra-device loopback control unit 334 instructs the optical transceiver 301 to perform intra-device loopback.
  • the FEC switching unit 336 may perform loopback so as to indicate the execution result of intra-device loopback.
  • the FEC determination control unit 412 further determines the normality of the signal path based on the execution result of intra-device loopback. You may judge.
  • the second control device (access system management control unit 103-2) transmits a control signal to which an error correction code is attached to the second user device (user device 300-2), and It is further determined whether the signal path is normal based on whether predetermined processing has been performed on the control signal returned from the second user device (user device 300-2).
  • FIG. 13 is a diagram showing a sixth embodiment of the communication system 1.
  • each access system management control unit 103 instructs the user device 300 connected to its own device (Ph-GW 100) regarding execution of loopback.
  • This instruction is given using a control signal such as AMCC.
  • loopback is performed in communication between the user devices 300, thereby determining the signal path normality of the path between the user devices 300.
  • the determination control unit 401-1 of the access system management control unit 103-1 sends a control signal for performing a loopback to the user device 300-1 connected to the section that is subject to signal path normality determination. Send.
  • This control signal instructs to generate a main signal for loopback and transmit it to user equipment 300-2.
  • the determination control unit 401-2 of the access system management control unit 103-2 sends a control signal for performing a loopback to the user device 300-2 connected to the section that is subject to signal path normality determination. Send. This control signal instructs to receive the main signal for loopback and loop back.
  • the user device 300-1 includes an optical transceiver 301-1 and a control unit 330-1.
  • the control section 330-1 includes an LB signal generation section 337 and an LB signal determination section 338.
  • the LB signal generation unit 337 Upon receiving the loopback instruction from the determination control unit 401-1, the LB signal generation unit 337 transmits a main signal of a protocol that can be processed by the user device 300-2.
  • the LB signal determination unit 338 Upon receiving the main signal looped back from the opposing user device 300-2, the LB signal determination unit 338 performs a predetermined evaluation on the received main signal according to the continuity check. For example, an evaluation may be made as to whether the loopback was performed correctly.
  • the LB signal determination section 338 outputs information indicating the evaluation result to the determination control section 401.
  • the determination control unit 401-1 instructs the user device 300-1, which is one of the target user devices, to output a main signal for loopback using a control signal.
  • the determination control unit 401-2 instructs the user device 300-2, which is the other target user device, to execute loopback using a control signal.
  • the predetermined timing may be, for example, the timing at which a problem in communication with the user device 300 is detected.
  • the LB signal generation unit 337 of the user device 300-1 Upon receiving the instruction, the LB signal generation unit 337 of the user device 300-1 generates a main signal for loopback and outputs it to the optical transceiver 301-1.
  • the optical transceiver 301-1 converts the main signal into an optical signal and transmits it to the user device 300-2 via the Ph-GW 100-1 and Ph-GW 100-2.
  • the control unit 330-2 of the user device 300-2 controls the optical transceiver 301-2 of the user device 300-2 in response to receiving a control signal indicating loopback execution from the access system management control unit 103-2. Instructs main signal loopback.
  • the optical transceiver 301-2 Upon receiving an optical signal from the opposing user device 300-1, the optical transceiver 301-2 converts the received optical signal into an electrical signal.
  • the optical transceiver 301-2 loops back the main signal within the optical transceiver 301-2.
  • the processing unit 323 may serve as a loopback point and loopback processing may be executed, or the UNI_PHY (Tx) 324 or UNI_PHY (Rx) 325 may serve as a loopback point and loopback processing is executed. good.
  • the optical transceiver 301-2 converts the looped back main signal into an optical signal and transmits it to the user equipment 300-1 via the Ph-GW 100-2 and Ph-GW 100-1.
  • the looped back main signal is converted into an electrical signal by the optical transceiver 301-1 and input to the LB signal determining section 338.
  • the LB signal determination unit 338 performs a predetermined evaluation on the input main signal according to the continuity check. For example, an evaluation may be made as to whether the loopback was performed correctly.
  • the LB signal determination unit 338 transmits information indicating the evaluation result to the access system management control unit 103-1.
  • the determination control unit 401-1 of the access system management control unit 103-1 performs a signal path normality determination regarding the signal path between the user devices 300 based on the evaluation result received from the LB signal determination unit 338.
  • the determination control unit 401-1 may output the determination result to another device or record it in a storage device as a log.
  • the access system management control unit 103 executes a loopback for each user device 300 connected to the path that is the target of signal path normality determination. Instructions are given using control signals.
  • the control signal used here is a control signal that can be processed by each user device 300.
  • a main signal to be looped back is transmitted from one user device 300 (300-1) to the other user device 300 (300-2) using a signal of a protocol that can be processed by the user device 300. Therefore, loopback can be performed at a loopback point after the main signal passes through the path after optical-to-electrical conversion in the optical transceiver 301. Therefore, it is possible to determine the normality of the signal path including the inside of the user device 300 in a protocol-independent APN that does not depend on a specific communication protocol or modulation method.
  • FIG. 14 is a diagram showing a modification of the sixth embodiment.
  • loopback is executed in the optical transceiver 301-2 without going through the control unit 330-2.
  • loopback may be executed in the user device 300-2 via the control unit 330-2.
  • the signal to be looped back is the control signal.
  • the control signal transmitter 332 of the user device 300-1 transmits an instruction signal instructing loopback to the control signal receiver 331 of the user device 300-2.
  • Control signal transmitter 332 of user device 300-2 transmits an instruction signal instructing loopback to control signal receiver 331 of user device 300-1.
  • the LB signal generation section 337 and the LB signal determination section 338 do not necessarily need to be provided in the user device 300-1.
  • the LB signal generation section 337 and the LB signal determination section 338 may be provided in the Ph-GW 100-1, a communication device (relay device), etc. (not shown), or the like.
  • the device that receives the control signal for loopback execution from the access system management control section 103-1 is a communication device that includes the LB signal generation section 337 and the LB signal determination section 338.
  • one user device 300 may include a pseudo-random number generator, and the other user device 300 (300-2) may include an error rate determination unit.
  • one user device 300 transmits a signal containing random numbers generated by a pseudo-random number generator to the opposing user device 300 (the other user device), and the error rate measuring unit 411 of the other user device 300 makes an error.
  • the error in the direction from one user device 300 to the other user device 300 may be measured.
  • One user device 300 (300-1) may include both a pseudo-random number generator and an error rate measuring section. In this case, downlink, return, and uplink errors for one user device 300 may be measured.
  • the normality of the optical signal is determined by the control signal superimposed on the optical signal (main signal) or modulated in the optical signal (main signal) from Fig. 2 to Fig. 8. The normality is determined.
  • the communication system having the configuration (sub-configuration) illustrated in each figure from FIG. 2 to FIG. 5 is a transparent network that transmits main signals of various protocols. , the instruction from the APN controller, information from the DB, acquisition from the user equipment, or reception of the main signal and whether it can be terminated as a normal signal, and generates and terminates the optical signal of the selected protocol. , sends a signal to the user equipment and terminates the signal looped back by the user equipment, or loops back the signal transmitted from the user equipment to the user equipment and terminates the signal, and determines the normality (the user equipment In the case of loopback, the range of normality determination of the route inside the user device is wider).
  • the communication system having the configuration (main configuration) illustrated in each figure from FIG. 6 to FIG. 8 is a transparent network that transmits main signals of various protocols, and the main signal used in the transparent network is protocol-independent. The normality is determined by the loopback of the control signal.
  • a communication system that combines the configuration illustrated in each figure from FIG. 2 to FIG. 5 (secondary configuration) and the configuration illustrated in each figure from FIG. 6 to FIG. 8 (main configuration) is
  • the protocol of the main signals sent and received by the user equipment is determined by instructions from the APN controller, information from the DB, or obtained from the user equipment, or by receiving the main signal and determining whether the main signal is a normal signal.
  • the communication system illustrated in FIGS. 13 and 14 is a communication system that includes a first device and a second device that communicate with each other using optical signals, and the first device sends a control signal to the second device using the optical signal.
  • the second device returns the control signal or its response to the first device, the first device receives the returned control signal or its response, and the second device returns the control signal or its response to the signal path between the first device and the second device.
  • a communication system that determines whether a signal path including a signal path is normal or not.
  • the first control device transmits a first control signal (instruction signal representing a callback instruction) instructing return to the first user device. do.
  • the second control device transmits a second control signal (instruction signal representing a return instruction) instructing a return to the second user device.
  • the second user device returns the main signal transmitted from the first user device.
  • the first user device determines whether the signal path including between the first user device and the second user device is normal based on the returned main signal.
  • the second user device transmits an instruction signal representing a return instruction to the first user device.
  • the second user device returns the control signal transmitted from the first user device.
  • the first user device transmits an instruction signal representing a return instruction to the second user device.
  • the first user device determines whether the signal path including between the first user device and the second user device is normal based on the returned control signal.
  • the normality determination method executed by the communication system illustrated in FIGS. 13 and 14 is a communication method carried out by a communication system including a first device and a second device that communicate with each other using optical signals, in which the first device , transmitting the control signal to the second device as an optical signal; the second device returning the control signal or its response to the first device; and the first device receiving the returned control signal or its response. and a step of determining whether a signal path including a signal path between the first device and the second device is normal.
  • the communication system illustrated in each figure from FIG. 2 to FIG. 5 is a communication system comprising a first device and a second device facing each other and transmitting and receiving optical signals, and the first device is capable of transmitting and receiving optical signals to and from the second device. selectively generates an optical signal in a different format, transmits the generated optical signal to an opposing second device, the second device returns and transmits the received optical signal or its response, and the first device transmits the returned optical signal.
  • a communication system that receives a signal or its response and determines whether a signal path including a signal path between a first device and a second device is normal from the received folded optical signal or its response. It is.
  • the user device 300 loops back the main signal transmitted from the control device (access system management control unit) that generates and terminates the main signal.
  • the control device determines whether the signal path including the one between the control device and the user device is normal based on the returned main signal.
  • control device access system management control section
  • the user device may determine whether the signal path including the one between the user device and the control device that generates and terminates the main signal is normal, based on the returned main signal.
  • the control device may multiplex the control signal on an input optical signal different from the main signal, and determine whether the signal path is normal based on the control signal multiplexed on the input optical signal.
  • the input optical signal is an input optical signal, for example, unmodulated continuous light. Note that the input optical signal is an optical signal regardless of the form of the main signal used by the user equipment. Further, the optical power of the input optical signal is adjusted, for example, so that the input optical signal does not destroy the receiving side equipment (user equipment, etc.).
  • a communication system includes a first device and a second device that transmit an optical signal, the first device and the second device are devices facing each other, and the first device transmits an optical signal in a format that can be transmitted and received by the second device.
  • the second device generates a control signal and superimposes it on the generated optical signal or modulates the generated optical signal to a second device, and the second device superimposes it on its own optical signal or an optical signal from another device or transmits it to the second device.
  • the first device modulates the optical signal or the optical signal from another device and returns and transmits the received control signal or its response, and the first device superimposes it on the optical signal or modulates the optical signal and transmits the returned control signal or its response.
  • the communication system receives the control signal and determines whether the signal path including the signal path between the first device and the second device is normal based on the received looped-back control signal or its response.
  • a communication system comprising a first device and a second device that communicate with each other, the first device and the second device are devices facing each other, and the first device transmits an optical signal of its own device or an optical signal from another device.
  • a control signal that is superimposed on the optical signal of the own device or an optical signal from another device is transmitted to the second device, and the second device superimposes the control signal on the optical signal of the own device or the optical signal from the other device or
  • the first device modulates the optical signal or the optical signal from another device and returns and transmits the received control signal or its response, and the first device superimposes it on the optical signal or modulates the optical signal and transmits the returned control signal or its response.
  • the communication system receives the control signal and determines whether the signal path including the signal path between the first device and the second device is normal based on the received looped-back control signal or its response.
  • the user device 300 loops back the control signal transmitted from the control device (access system management control unit).
  • the control device determines whether the signal path including the one between the control device and the user device is normal based on the returned control signal.
  • the user equipment 300 not only determines whether the signal path is normal, but also loops back a predetermined signal inside the user equipment, and determines whether the inside of the user equipment is normal. You may further determine whether or not there is.
  • FIG. 15 is a diagram showing an example of the hardware configuration of the communication system 1 in the embodiment.
  • a processor 201 such as a CPU executes a program stored in a storage device 203 having a non-volatile recording medium (non-temporary recording medium) and a memory 202.
  • a non-volatile recording medium non-temporary recording medium
  • the determination control unit 401 and the control unit 330 described above may be configured using the processor 201 such as a CPU and a nonvolatile recording medium.
  • the program may be recorded on a computer-readable non-transitory recording medium.
  • Computer-readable non-transitory recording media include, for example, portable media such as flexible disks, magneto-optical disks, ROM (Read Only Memory), and CD-ROM (Compact Disc Read Only Memory), and hard disks built into computer systems. It is a non-temporary recording medium such as a storage device such as.
  • the communication unit 204 executes predetermined communication processing.
  • the communication unit 204 may acquire data of an optical signal transmitted through an optical fiber (eg, main signal data, wavelength data) and a program.
  • each functional unit of the communication system 1 uses, for example, an LSI (Large Scale Integrated Circuit), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array). It may be realized using hardware including an electronic circuit or circuitry.
  • LSI Large Scale Integrated Circuit
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the present invention is applicable to a communication system that communicates using a communication network such as an all-photonics network (APN).
  • a communication network such as an all-photonics network (APN).
  • APN all-photonics network
  • SYMBOLS 1 Communication system, 100... Ph-GW, 101... Optical distribution part, 102... Wavelength multiplexing/demultiplexing part, 103... Access system management control part, 200... APN controller, 201... Processor, 202... Memory, 203... Storage device , 204... Communication unit, 300... User device, 301... Optical transceiver, 321, 326... Optical interface unit, 322... Combining/separating unit, 323... Processing unit, 324... UNI_PHY (Tx), 325... UNI_PHY (Rx), 330... Control unit, 331... Control signal receiving unit, 332... Control signal transmitting unit, 333... Turning unit, 334... Device loopback control unit, 335...
  • Error rate measuring unit 336... FEC switching unit, 337... LB signal generation 338... LB signal judgment section, 401... Judgment control section, 402... Signal termination section, 403... SW, 404... Combination/separation section, 405, 406... Optical interface section, 411... Error rate measurement section, 412... FEC judgment control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

This communication system comprises one or more control devices and one or more user devices, wherein a first user device or a first control device responds, with a second control signal, to a first control signal transmitted from a second user device or a second control device, and the second user device or the second control device determines, on the basis of the second control signal used in the response, whether or not a signal route including a path between the first user device or the first control device and the second user device or the second control device is normal. The first user device or the first control device may loop back the first control signal transmitted from the second user device or the second control device, and the second user device or the second control device may determine, on the basis of the looped-back first control signal, whether or not the signal route including a path between the first user device or the first control device and the second user device or the second control device is normal.

Description

通信システム及び正常性判定方法Communication system and normality determination method
 本発明は、通信システム及び正常性判定方法に関する。 The present invention relates to a communication system and a normality determination method.
 IoT(Internet of Things)の普及と、社会及び産業のディジタル化の進展とに伴い、インターネット上を流れるデータ量は増加している。また、ベストエフォート型とは異なる型のサービスユースケースが登場している。そのようなサービスの高度化に向けて、帯域保証及び低遅延の要求が、通信ネットワークに対して高まっている。例えば、サイバーフィジカルシステムでは、現実世界(フィジカル空間)から得られた膨大なセンシングデータを欠損なくリアルタイムで情報処理基盤(サイバー空間)にアップロードすること、制御情報を高信頼及び低遅延で現実世界にフィードバックすること、並びに、高精細画像を伝送すること等が、トランスポート基盤に求められている。サイバーフィジカルシステムとは、現実世界から得られた膨大なセンシングデータがコンピュータ上で分析され、その分析結果がフィードバックされることで、現実世界の最適な制御を実現するシステムである。このようなサイバーフィジカルシステムによる新しい価値とソリューションの創出とが期待される。 With the spread of IoT (Internet of Things) and the progress of digitalization of society and industry, the amount of data flowing on the Internet is increasing. Additionally, service use cases of a type different from the best-effort type are emerging. Toward the advancement of such services, demands for guaranteed bandwidth and low latency are increasing for communication networks. For example, in cyber-physical systems, it is necessary to upload a huge amount of sensing data obtained from the real world (physical space) to the information processing infrastructure (cyber space) in real time without loss, and to transfer control information to the real world with high reliability and low delay. Transport infrastructure is required to provide feedback and transmit high-definition images. A cyber-physical system is a system in which a huge amount of sensing data obtained from the real world is analyzed on a computer, and the analysis results are fed back to achieve optimal control of the real world. It is expected that such cyber-physical systems will create new values and solutions.
 これらを踏まえ、大容量かつ低遅延が要求されるトラヒックを収容するための新たなアーキテクチャのネットワークとして、フォトニクス技術をベースとするオールフォトニクスネットワーク(APN : All Photonics Network)の検討が進められている(非特許文献1参照)。APNは、任意のユーザ信号を伝送するトランスペアレント・ネットワークの一つである。APNは、特定の通信プロトコル及び光変調方式に依存することなく、エンド・ツー・エンドで光パスを提供する。 Based on these considerations, all photonics networks (APNs) based on photonics technology are being considered as a new architectural network to accommodate traffic that requires large capacity and low latency. (See Non-Patent Document 1). APN is one of the transparent networks that transmits arbitrary user signals. APN provides an end-to-end optical path, independent of specific communication protocols and optical modulation schemes.
 しかしながら、様々なプロトコルの主信号をAPNにおいてトランスペアレントに伝送する光信号の経路の正常性を判定(導通確認)するための手法は、まだ確立されていない。以下、光信号の経路の正常性を判定することを「信号経路正常性判定」という。例えば、通信異常が発生した場合、異常の発生箇所を同定するため、光信号の伝送経路を区切り、区切った区間ごとに、信号経路正常性判定(正常性監視)が実行される。区間ごとの信号経路正常性判定では、信号経路正常性判定の対象区間の一方から他方まで光信号の導通を確認する。ここで、導通確認は、信号経路正常性判定の対象区間の端点で、光信号の少なくとも一部を光電変換(Optical-Electrical conversion)(以下「OE変換」という。)し、終端して判定、又はその光信号に関する非線形光学効果等を利用して判定する。ここで、非線形光学効果等を利用とは、利得媒体や光吸収媒体での利得や、それらの媒体に印加する電流や電圧の変化や、それらの媒体に入力するポンプ光や、ゲインクランプ光の媒体通過後の強度変化や、アイドラー光等の非線形光学効果等で生成される光の変化等を用いることを意味する。信号経路正常性判定では、対象区間の一方からの要求に応じ、他方から応答を折り返すループバックの手法が主に用いられる。光信号のループバックでは、光信号経路正常性判定の対象区間の一方の端点又はその先に要求の光信号を送信すると共に応答を受信するOE変換が、他方の端点又はその先で要求に応じた応答を折り返す光信号の折り返し点において、光・電気・光変換(Optical-Electrical-Optical conversion)(以下「OEO変換」という。)が必要である。従来のネットワークと異なり、トランスペアレント・ネットワークでは、正常性判定する区間毎に、光電変換し、ユーザ装置に応じた主信号のプロトコルに応じて終端する装置があるとは限らない。その区間ごとにその様な装置を備えて終端すると、トランスペアレントではなくなる。 However, a method for determining the normality (continuity check) of optical signal paths that transparently transmit main signals of various protocols in an APN has not yet been established. Hereinafter, determining the normality of the optical signal path will be referred to as "signal path normality determination." For example, when a communication abnormality occurs, in order to identify the location where the abnormality has occurred, the optical signal transmission path is divided, and signal path normality determination (normality monitoring) is performed for each divided section. In the signal path normality determination for each section, continuity of the optical signal is confirmed from one section to the other of the target section of the signal path normality determination. Here, the continuity check is made by performing optical-electrical conversion (hereinafter referred to as "OE conversion") of at least a part of the optical signal at the end point of the target section for determining the normality of the signal path, and terminating and determining Alternatively, determination is made using nonlinear optical effects or the like regarding the optical signal. Here, the use of nonlinear optical effects, etc. refers to changes in the gain in gain media and light absorption media, the current and voltage applied to those media, and the changes in pump light and gain clamp light input to those media. This means using changes in intensity after passing through a medium, changes in light generated by nonlinear optical effects such as idler light, etc. In signal path normality determination, a loopback method is mainly used in which a response is returned from the other target section in response to a request from one of the target sections. In optical signal loopback, an OE converter that transmits a requested optical signal to one end point or beyond the target section for optical signal path normality determination and receives a response responds to the request at the other end point or beyond. Optical-Electrical-Optical conversion (hereinafter referred to as "OEO conversion") is required at the turning point of the optical signal at which the received response is turned back. Unlike conventional networks, in transparent networks, there is not necessarily a device that performs photoelectric conversion and termination according to the protocol of the main signal depending on the user equipment for each section in which normality is determined. If each section is terminated with such a device, it will no longer be transparent.
 図16は、制御信号の周波数と主信号(ユーザ信号)の周波数との例を示す図である。図16では、制御信号は、AMCC(Auxiliary Management and Control Channel)信号である。APNでは、局内のフォトニックゲートウェイ(以下「Ph-GW」という。)は、主信号に周波数重畳されたAMCC信号を、ユーザ装置や他のPh-GW等のネットワークを構成する装置に送信する。ユーザ装置や他のPh-GW等のネットワークを構成する装置は、主信号に周波数重畳されたAMCC信号を、他のユーザ装置やPh-GW等のネットワークを構成する装置に送信してもよい。ユーザ装置やPh-GW等のネットワークを構成する装置は、AMCC信号を受信してもよい。 FIG. 16 is a diagram showing an example of the frequency of the control signal and the frequency of the main signal (user signal). In FIG. 16, the control signal is an AMCC (Auxiliary Management and Control Channel) signal. In the APN, a photonic gateway (hereinafter referred to as "Ph-GW") in the station transmits an AMCC signal whose frequency is superimposed on the main signal to devices constituting the network such as user equipment and other Ph-GWs. A user device or another device constituting a network such as a Ph-GW may transmit an AMCC signal whose frequency is superimposed on a main signal to another user device or a device constituting a network such as Ph-GW. Devices constituting the network, such as user equipment and Ph-GW, may receive the AMCC signal.
 上記事情に鑑み、本発明は、トランスペアレント・ネットワークにおいて信号の経路の正常性を判定することが可能である通信システム及び正常性判定方法を提供することを目的としている。 In view of the above circumstances, an object of the present invention is to provide a communication system and a method for determining normality that are capable of determining the normality of a signal path in a transparent network.
 本発明の一態様は、1以上の制御装置と、1以上のユーザ装置とを備える通信システムであって、第1のユーザ装置又は第1の制御装置は、対向する第2のユーザ装置又は第2の制御装置から送信された第1の制御信号に対して第2の制御信号で応答し、前記第2のユーザ装置又は前記第2の制御装置は、前記第1のユーザ装置又は前記第1の制御装置と前記第2のユーザ装置又は前記第2の制御装置との間を含む信号経路が正常であるか否かを、応答に用いられた前記第2の制御信号に基づいて判定する、又は、前記第1のユーザ装置又は前記第1の制御装置は、対向する前記第2のユーザ装置又は前記第2の制御装置から送信された前記第1の制御信号を折り返し、前記第2のユーザ装置又は前記第2の制御装置は、前記第1のユーザ装置又は前記第1の制御装置と前記第2のユーザ装置又は前記第2の制御装置との間を含む前記信号経路が正常であるか否かを、折り返された前記第1の制御信号に基づいて判定する、通信システムである。 One aspect of the present invention is a communication system including one or more control devices and one or more user devices, wherein a first user device or first control device is connected to an opposing second user device or second user device. the second control device or the second control device responds with a second control signal to the first control signal transmitted from the second control device; determining whether a signal path including between the control device and the second user device or the second control device is normal based on the second control signal used in the response; Alternatively, the first user device or the first control device returns the first control signal transmitted from the opposing second user device or second control device, and returns the first control signal to the second user device or the second control device. The device or the second control device determines whether the signal path including between the first user device or the first control device and the second user device or the second control device is normal. The communication system determines whether or not the received signal is received based on the returned first control signal.
 本発明の一態様は、1以上の制御装置と、1以上のユーザ装置とを備える通信システムであって、第1のユーザ装置又は第1の制御装置は、対向する第2のユーザ装置又は第2の制御装置の使用する信号形態に基づいて選択された信号形態の主信号を生成及び終端する前記第2のユーザ装置又は前記第2の制御装置から送信された第1の主信号を折り返し、前記第2のユーザ装置又は前記第2の制御装置は、前記第2のユーザ装置又は前記第2の制御装置と前記第1のユーザ装置又は前記第1の制御装置との間を含む信号経路が正常であるか否かを、折り返された前記第1の主信号に基づいて判定する、又は、前記第1のユーザ装置又は前記第1の制御装置は、対向する前記第2のユーザ装置又は前記第2の制御装置の使用する信号形態に基づいて選択された信号形態で前記第2のユーザ装置又は前記第2の制御装置から送信された第2の主信号を折り返し、前記第2のユーザ装置又は前記第2の制御装置は、前記第2のユーザ装置又は前記第2の制御装置と前記第1のユーザ装置又は前記第1の制御装置との間を含む信号経路が正常であるか否かを、折り返された前記第2の主信号に基づいて判定する、又は、前記第1のユーザ装置又は前記第1の制御装置は、対向する前記第2のユーザ装置又は前記第2の制御装置の使用する信号形態に基づいて選択された信号形態の前記主信号を生成及び終端する前記第2のユーザ装置又は前記第2の制御装置から送信された前記第1の主信号に対して第3の主信号で応答し、前記第2のユーザ装置又は前記第2の制御装置は、前記第2のユーザ装置又は前記第2の制御装置と前記第1のユーザ装置又は前記第1の制御装置との間を含む信号経路が正常であるか否かを、応答に用いられた前記第3の主信号に基づいて判定する、又は、前記第1のユーザ装置又は前記第1の制御装置は、対向する前記第2のユーザ装置又は前記第2の制御装置の使用する信号形態に基づいて選択された信号形態で前記第2のユーザ装置又は前記第2の制御装置から送信された前記第2の主信号に対して第4の主信号で応答し、前記第2のユーザ装置又は前記第2の制御装置は、前記第2のユーザ装置又は前記第2の制御装置と前記第1のユーザ装置又は前記第1の制御装置との間を含む信号経路が正常であるか否かを、応答に用いられた前記第4の主信号に基づいて判定する、通信システムである。 One aspect of the present invention is a communication system including one or more control devices and one or more user devices, wherein a first user device or first control device is connected to an opposing second user device or second user device. generating and terminating a main signal in a signal format selected based on the signal format used by the second control device; returning the first main signal transmitted from the second user device or the second control device; The second user device or the second control device has a signal path including between the second user device or the second control device and the first user device or the first control device. The first user device or the first control device determines whether or not it is normal based on the returned first main signal, or the first user device or the first control device determines whether the second user device or the first control device is normal. A second main signal transmitted from the second user device or the second control device is returned in a signal format selected based on a signal format used by the second control device, and the second main signal is returned to the second user device. Alternatively, the second control device determines whether a signal path including between the second user device or the second control device and the first user device or the first control device is normal. is determined based on the returned second main signal, or the first user device or the first control device determines the second main signal of the opposing second user device or the second control device. a third main signal transmitted from the second user equipment or the second control device that generates and terminates the main signal in a signal form selected based on the signal form to be used; In response with a main signal, the second user device or the second control device connects the second user device or the second control device with the first user device or the first control device. The first user device or the first control device determines whether or not a signal path including a the second main signal transmitted from the second user device or the second control device in a signal format selected based on a signal format used by the second user device or the second control device; the second user device or the second control device responds with a fourth main signal to the second user device or the second control device, and The present invention is a communication system that determines whether a signal path including a signal path with a first control device is normal based on the fourth main signal used in a response.
 本発明の一態様は、1以上の制御装置と、1以上のユーザ装置とを備える通信システムが実行する正常性判定方法であって、第1のユーザ装置又は第1の制御装置は、第2のユーザ装置又は第2の制御装置から送信された第1の制御信号に対して第2の制御信号で応答し、前記第2のユーザ装置又は前記第2の制御装置は、前記第1のユーザ装置又は前記第1の制御装置と前記第2のユーザ装置又は前記第2の制御装置との間を含む信号経路が正常であるか否かを、応答に用いられた前記第2の制御信号に基づいて判定する、又は、前記第1のユーザ装置又は前記第1の制御装置は、前記第2のユーザ装置又は前記第2の制御装置から送信された前記第1の制御信号を折り返し、前記第2のユーザ装置又は前記第2の制御装置は、前記第1のユーザ装置又は前記第1の制御装置と前記第2のユーザ装置又は前記第2の制御装置との間を含む前記信号経路が正常であるか否かを、折り返された前記第1の制御信号に基づいて判定する、正常性判定方法である。 One aspect of the present invention is a normality determination method executed by a communication system including one or more control devices and one or more user devices, wherein the first user device or the first control device responds with a second control signal to a first control signal transmitted from a user equipment or a second control device, and the second user equipment or the second control device Whether or not a signal path including between the device or the first control device and the second user device or the second control device is normal or not is determined by the second control signal used in the response. or the first user device or the first control device returns the first control signal transmitted from the second user device or the second control device and The second user device or the second control device is configured such that the signal path including between the first user device or the first control device and the second user device or the second control device is normal. This is a normality determination method for determining whether or not this is the case based on the returned first control signal.
 本発明の一態様は、第1制御装置と第2制御装置と第1ユーザ装置と第2ユーザ装置とを備える通信システムであって、前記第1制御装置は、折り返しを指示する第1制御信号を、前記第1ユーザ装置に送信し、前記第2制御装置は、前記折り返しを指示する第2制御信号を、前記第2ユーザ装置に送信し、前記第2ユーザ装置は、前記第1ユーザ装置から送信された主信号を折り返し、前記第1ユーザ装置は、前記第1ユーザ装置及び前記第2ユーザ装置の間を含む信号経路が正常であるか否かを、折り返された前記主信号に基づいて判定する、通信システムである。 One aspect of the present invention is a communication system including a first control device, a second control device, a first user device, and a second user device, wherein the first control device receives a first control signal instructing return. to the first user device, the second control device sends a second control signal instructing the return to the second user device, and the second user device transmits a second control signal to the first user device. and the first user device determines whether a signal path including between the first user device and the second user device is normal based on the returned main signal. It is a communication system that makes decisions based on
 本発明の一態様は、第1ユーザ装置と第2ユーザ装置とを備える通信システムであって、前記第2ユーザ装置は、折返指示を表す指示信号を前記第1ユーザ装置に送信し、前記第1ユーザ装置から送信された制御信号を折り返し、前記第1ユーザ装置は、前記折返指示を表す指示信号を前記第2ユーザ装置に送信し、前記第1ユーザ装置及び前記第2ユーザ装置の間を含む信号経路が正常であるか否かを、折り返された前記制御信号に基づいて判定する、通信システムである。 One aspect of the present invention is a communication system including a first user device and a second user device, wherein the second user device transmits an instruction signal representing a return instruction to the first user device, and Returning the control signal transmitted from one user device, the first user device transmits an instruction signal representing the return instruction to the second user device, and transmits a signal between the first user device and the second user device. The communication system determines whether a signal path included in the communication path is normal based on the returned control signal.
 本発明により、トランスペアレント・ネットワークにおいて信号の経路の正常性を判定することが可能である。 According to the present invention, it is possible to determine the normality of a signal path in a transparent network.
本実施形態における通信システムの構成例を示す図である。1 is a diagram showing a configuration example of a communication system in this embodiment. 第1実施形態における、通信システムの構成の第1例を示す図である。1 is a diagram showing a first example of a configuration of a communication system in a first embodiment; FIG. 第1実施形態における、通信システムの構成の第2例を示す図である。FIG. 2 is a diagram showing a second example of the configuration of a communication system in the first embodiment. 第1実施形態における、通信システムの構成の第3例を示す図である。FIG. 3 is a diagram showing a third example of the configuration of a communication system in the first embodiment. 第1実施形態における、通信システムの構成の第4例を示す図である。It is a figure showing the 4th example of composition of a communication system in a 1st embodiment. 第2実施形態における、通信システムの構成の第1例を示す図である。FIG. 3 is a diagram showing a first example of the configuration of a communication system in a second embodiment. 第2実施形態における、通信システムの構成の第2例を示す図である。FIG. 3 is a diagram showing a second example of the configuration of a communication system in a second embodiment. 第2実施形態における、通信システムの構成の第3例を示す図である。It is a figure showing the 3rd example of composition of a communication system in a 2nd embodiment. 第3実施形態における、通信システムの構成例を示す図である。It is a figure showing an example of composition of a communication system in a 3rd embodiment. 第4実施形態における、通信システムの構成の第1例を示す図である。It is a figure which shows the 1st example of the structure of a communication system in 4th Embodiment. 第4実施形態における、通信システムの構成の第2例を示す図である。It is a figure which shows the 2nd example of the structure of a communication system in 4th Embodiment. 第5実施形態における、通信システムの構成例を示す図である。It is a figure which shows the example of a structure of the communication system in 5th Embodiment. 第6実施形態における、通信システムの構成例を示す図である。It is a figure showing an example of composition of a communication system in a 6th embodiment. 第6実施形態における、通信システムの構成例の変形例を示す図である。It is a figure which shows the modification of the example of a structure of a communication system in 6th Embodiment. 通信システムのハードウェア構成例を示す図である。1 is a diagram showing an example of a hardware configuration of a communication system. 制御信号の周波数と主信号(ユーザ信号)の周波数との例を示す図である。FIG. 3 is a diagram showing an example of the frequency of a control signal and the frequency of a main signal (user signal).
 (APNの基本的な構成例)
 APNでは、フラットなアーキテクチャが採用されているので、APNとの比較例としての通信ネットワークにおいて階層間に設けられていた光信号の電気終端が不要である。APNでは、エンド・ツー・エンドな光パス接続により、遅延は非常に少ない。また、APNは、特定の通信プロトコルに依存せずに、大容量かつ低遅延な通信ネットワークを機能別で簡単に提供できるという高い柔軟性と拡張性を有する。
(Basic configuration example of APN)
Since the APN employs a flat architecture, there is no need for the electrical termination of optical signals provided between layers in the communication network as a comparative example with the APN. APN has very low delay due to end-to-end optical path connections. Furthermore, APN has high flexibility and expandability in that it can easily provide a high-capacity, low-latency communication network for each function without depending on a specific communication protocol.
 APNは、交換、多重及びスイッチングといった電気処理を極小化する光ノードとして、フォトニックゲートウェイ(Ph-GW)と、フォトニックエクスチェンジ(以下「Ph-EX」という。)との2種の光ノードを含む(Ph-GWはフルメッシュに接続される)。Ph-GWは、フルメッシュネットワークの入口に位置し、多様なユーザ装置を収容する光ノードである。フルメッシュとは、通信ネットワークを構成する全ての要素が個々に直接接続されるという接続形態である。Ph-EXは、膨大な数の光パスを提供する光ノードである。これらの膨大な数の光パスは、光バックボーンネットワークを、トランスペアレントに横断する。Ph-EXは、光多重方式を変換することによって、異なる光多重方式が適用された光ネットワーク同士を接続する。 APN operates two types of optical nodes: photonic gateways (Ph-GW) and photonic exchanges (hereinafter referred to as "Ph-EX"), which minimize electrical processing such as exchange, multiplexing, and switching. (Ph-GW is connected to full mesh). The Ph-GW is an optical node located at the entrance of a full mesh network and accommodates various user equipment. Full mesh is a connection form in which all elements making up a communication network are directly connected to each other. Ph-EX is an optical node that provides a huge number of optical paths. These vast numbers of optical paths transparently traverse the optical backbone network. Ph-EX connects optical networks to which different optical multiplexing methods are applied by converting the optical multiplexing method.
 このような構成により、APNでは、電気処理が実行されることなく、任意の地点(ユーザ装置の設置地点)間を光信号で直結することが可能である。ユーザ・サービスへの専用波長割当による大容量かつ低遅延な通信の実現が可能になる。APNでは、必要な地点で必要なサービス機能処理が柔軟に組み合わされることによって、多様なサービスを提供することが可能である。また、APNは、サービス種別、プロトコル及び光波長等を意識させない通信環境を提供することが可能である。 With such a configuration, in the APN, it is possible to directly connect arbitrary points (installation points of user devices) with optical signals without performing electrical processing. By allocating dedicated wavelengths to user services, it becomes possible to realize high-capacity, low-latency communications. With APN, it is possible to provide a variety of services by flexibly combining necessary service function processing at necessary points. Further, the APN can provide a communication environment that does not make the user aware of service types, protocols, optical wavelengths, etc.
 エンド・ツー・エンドでの光直結と、必要な地点でのサービス機能処理とを実現するため、Ph-GWは、以下に例示された5個の基本機能を有する。 In order to achieve end-to-end optical direct connection and service function processing at required points, Ph-GW has the five basic functions illustrated below.
 第1の基本機能は、どの波長をユーザ装置が使うかを決定し、波長情報をユーザ装置に遠隔設定するという機能である。エンド・ツー・エンドで光パスを開通するためには、APN内で伝送媒体(光ファイバ等)を共用する光パスの間で光信号の波長の重複が生じないように各光パスに波長を割り当てるという機能が、Ph-GWに求められる。また、光パスの端点であるユーザ装置の光信号の波長情報を遠隔設定するという機能が、Ph-GWに求められる。 The first basic function is to determine which wavelength the user equipment uses and remotely set wavelength information to the user equipment. In order to open an end-to-end optical path, the wavelength must be assigned to each optical path so that the wavelengths of optical signals do not overlap between the optical paths that share the transmission medium (optical fiber, etc.) within the APN. The Ph-GW is required to have the function of allocating. Further, the Ph-GW is required to have a function of remotely setting wavelength information of an optical signal of a user equipment that is an end point of an optical path.
 第2の基本機能は、光パスの開通に合わせて光信号をアクセスネットワーク側のポートとフルメッシュネットワーク側のポートとの間で疎通させることによって、ユーザ装置への波長情報の誤設定等に起因する不要な信号を停止させるという機能である。ここで、アクセスネットワークとは、Ph-GWとユーザ装置の間のネットワークであり、フルメッシュネットワークはPh-GW間或いはPh-GWとPh-EXからなるネットワークである。Ph-GWは、宛先によって、アクセスネットワークから入力された光信号をアクセスネットワークに、アクセスネットワークから入力された光信号をフルメッシュネットワークに、フルメッシュネットワークから入力された光信号をアクセスネットワークに、フルメッシュネットワークから入力された光信号をフルメッシュネットワークに、それぞれ光のまま転送(振分)する。 The second basic function is to communicate optical signals between ports on the access network side and ports on the full mesh network side when an optical path is opened. This function is to stop unnecessary signals. Here, the access network is a network between the Ph-GW and the user equipment, and the full mesh network is a network between the Ph-GWs or between the Ph-GWs and the Ph-EX. Depending on the destination, Ph-GW transmits optical signals input from the access network to the access network, optical signals input from the access network to the full mesh network, optical signals input from the full mesh network to the access network, and optical signals input from the full mesh network to the access network. Optical signals input from the mesh network are transferred (distributed) as optical signals to the full mesh network.
 第3の基本機能は、フルメッシュネットワーク内で伝送媒体を共用する光パスを、集線及び分配するという機能である。 The third basic function is the function of concentrating and distributing optical paths that share a transmission medium within a full mesh network.
 第4の基本機能は、同一のPh-GWに収容されるユーザ装置同士を光直結するための折り返しの機能である。上位の光ノードで折り返すのではなく、フルメッシュネットワークの入口に位置するPh-GWでの折り返しを可能とすることにより、最短経路で光直結を実現する。 The fourth basic function is a loopback function for directly optically connecting user devices housed in the same Ph-GW. By enabling loopback at the Ph-GW located at the entrance of the full mesh network, rather than loopback at the upper optical node, direct optical connection is achieved through the shortest route.
 第5の基本機能は、取出し及び挿入の機能である。光信号を伝送する観点で光信号の再生中継を行うために、及び、サービス機能処理を行うために、取出し及び挿入の機能は、Ph-GWの位置での電気処理を可能とする。 The fifth basic function is the extraction and insertion function. The eject and insert functions enable electrical processing at the Ph-GW location in order to perform regenerative repeating of optical signals in terms of optical signal transmission and to perform service function processing.
 図1は、各実施形態における通信システム1の構成例を示す図である。通信システム1は、オールフォトニクスネットワーク(APN)等のトランスペアレントな通信ネットワークを用いて通信する通信システムである。通信システム1は、判定対象の区間の一端の装置から光信号を送信し、他端の装置において受信した信号を光電変換し、受信した信号又は受信した信号に応じた応答を電光変換して送信、即ちOEO変換して光信号又は制御信号を折り返し、折返された光信号又は制御信号を送信側でOE変換して、信号の内容を確認することによって、判定対象の区間における光信号の経路の正常性を判定する。判定対象の区間には、ユーザ装置300とPh-GW100との間、Ph-GW100とPh-GW100との間、ユーザ装置300とユーザ装置300との間が含まれてもよい。区間の端の装置として、図1ではユーザ装置300と、Ph-GW100とを例示した。 FIG. 1 is a diagram showing a configuration example of a communication system 1 in each embodiment. The communication system 1 is a communication system that communicates using a transparent communication network such as an all-photonics network (APN). The communication system 1 transmits an optical signal from a device at one end of a section to be determined, photoelectrically converts the received signal at the device at the other end, and converts the received signal or a response according to the received signal into electrical light and transmits it. In other words, the path of the optical signal in the section to be determined can be determined by converting the optical signal or control signal back to OEO, converting the returned optical signal or control signal to OE on the transmitting side, and checking the content of the signal. Determine normality. The interval to be determined may include the areas between the user equipment 300 and the Ph-GW 100, between the Ph-GW 100 and the Ph-GW 100, and between the user equipment 300 and the user equipment 300. In FIG. 1, the user device 300 and the Ph-GW 100 are illustrated as devices at the ends of the section.
 通信システム1は、Ph-GW100-1と、Ph-GW100-2と、APNコントローラ200と、ユーザ装置300-1と、ユーザ装置300-2とを備える。なお、説明を簡潔にするため、図1では、Ph-GWとユーザ装置とはそれぞれ2台ずつ図示されている。実際の通信システムでは、Ph-GWとユーザ装置とはそれぞれ多数配置され、Ph-GWとPh-GWの間にPh-EXを介することや、ユーザ装置が単一のPh-GWのみを介すること等が想定される。 The communication system 1 includes a Ph-GW 100-1, a Ph-GW 100-2, an APN controller 200, a user device 300-1, and a user device 300-2. Note that in order to simplify the explanation, two Ph-GWs and two user devices are shown in FIG. 1. In an actual communication system, a large number of Ph-GWs and user equipments are arranged, and there are cases where Ph-EX is interposed between Ph-GWs and user equipments are interposed only through a single Ph-GW. etc. is assumed.
 Ph-GW100は、光信号を送信及び受信する装置(送受信装置)である。Ph-GW100は、ユーザ装置300の監視制御やユーザ装置や他のPh-GW100との区間の正常性判定のために光信号を送信したり受信したりする。区間の端点にPh-GW100にあたらない場合、光信号はPh-GW100を透過してもよい。 The Ph-GW 100 is a device (transmission/reception device) that transmits and receives optical signals. The Ph-GW 100 transmits and receives optical signals for monitoring and controlling the user device 300 and determining the normality of sections with the user device and other Ph-GWs 100. If the end point of the section does not reach the Ph-GW 100, the optical signal may pass through the Ph-GW 100.
 また、Ph-GW100は、光信号を宛先に振り分ける装置(振分装置)である。Ph-GW100-1は、光振分部101-1と、波長多重分離部102-1と、アクセス系管理制御部103-1(制御装置)とを備える。Ph-GW100-2は、光振分部101-2と、波長多重分離部102-2と、アクセス系管理制御部103-2(制御装置)とを備える。光振分部101は、複数の入出力ポート(不図示)を備える。なお、波長多重分離部102-2は、必ずしも対象の光信号の経路に配置されるとは限らない。 Additionally, the Ph-GW 100 is a device (distribution device) that distributes optical signals to destinations. The Ph-GW 100-1 includes an optical distribution section 101-1, a wavelength demultiplexing section 102-1, and an access system management control section 103-1 (control device). The Ph-GW 100-2 includes an optical distribution section 101-2, a wavelength demultiplexing section 102-2, and an access system management control section 103-2 (control device). The light distribution unit 101 includes a plurality of input/output ports (not shown). Note that the wavelength multiplexing/demultiplexing section 102-2 is not necessarily placed in the path of the target optical signal.
 ユーザ装置300-1は、光送受信機301-1(光TRx)(不図示)を備える。ユーザ装置300-2は、光送受信機301-2(光TRx)(不図示)を備える。 The user device 300-1 includes an optical transceiver 301-1 (optical TRx) (not shown). User equipment 300-2 includes an optical transceiver 301-2 (optical TRx) (not shown).
 光振分部101-1及び光振分部101-2は、アクセスネットワーク及びフルメッシュネットワークから入力された光信号を、宛先に応じて、光のまま転送(振分)する。これにより、光振分部101-1及び光振分部101-2は、光直結するための折り返しの機能(上記の第4の基本機能)を実現する。 The optical distribution unit 101-1 and the optical distribution unit 101-2 transfer (distribute) optical signals input from the access network and the full mesh network as optical signals according to the destination. Thereby, the optical distribution section 101-1 and the optical distribution section 101-2 realize a loopback function (the fourth basic function described above) for direct optical connection.
 光振分部101-1及び光振分部101-2は、同一のPh-GW100に収容されるユーザ装置300同士を光直結するための折り返し機能(上記の第4の基本機能)を実現する。また、光振分部101-1及び光振分部101-2は、電気処理部(不図示)への光アドドロップ(上記の第5の基本機能)を実現する。 The optical distribution unit 101-1 and the optical distribution unit 101-2 realize a loopback function (the above-mentioned fourth basic function) for directly optically connecting the user devices 300 housed in the same Ph-GW 100. . Further, the optical distribution section 101-1 and the optical distribution section 101-2 realize optical add/drop (the above-mentioned fifth basic function) to an electrical processing section (not shown).
 波長多重分離部102-1は、光振分部101-1から出力された光信号のうちで、同一経路を共用する光信号を波長多重する。波長多重分離部102-1は、波長多重された光信号を、フルメッシュネットワークに出力する。波長多重分離部102-1は、フルメッシュネットワークから入力された波長多重信号を、波長単位で分離する。 The wavelength multiplexing/demultiplexing section 102-1 wavelength-multiplexes the optical signals that share the same path among the optical signals output from the optical distribution section 101-1. The wavelength multiplexing/demultiplexing section 102-1 outputs the wavelength-multiplexed optical signal to the full mesh network. The wavelength multiplexing/demultiplexing section 102-1 separates the wavelength multiplexed signal input from the full mesh network in units of wavelengths.
 波長多重分離部102-2は、光振分部101-2から出力された光信号のうち宛先が同一の光信号を波長多重する。波長多重分離部102-2は、波長多重された光信号を、フルメッシュネットワークに出力する。波長多重分離部102-2は、フルメッシュネットワークから入力された波長多重信号を、波長単位で分離する(上記の第3の基本機能)。 The wavelength multiplexing/demultiplexing section 102-2 wavelength-multiplexes optical signals having the same destination among the optical signals output from the optical distribution section 101-2. The wavelength multiplexing/demultiplexing section 102-2 outputs the wavelength-multiplexed optical signal to the full mesh network. The wavelength multiplexing/demultiplexing section 102-2 separates the wavelength multiplexed signal input from the full mesh network in units of wavelengths (the above-mentioned third basic function).
 Ph-GW100は、Ph-GW100の備える光信号を送信及び受信する装置(送受信装置)の一つであるアクセス系管理制御部103-1は、ユーザ装置300-1の初期接続時に、アクセス系管理制御部103-1とユーザ装置300-1との間で制御情報をやり取りする。アクセス系管理制御部103-1は、ユーザ装置300-1に対して、波長設定指示を送信する。 In the Ph-GW 100, an access system management control unit 103-1, which is one of the devices (transmission/reception device) included in the Ph-GW 100 that transmits and receives optical signals, performs access system management at the time of initial connection of the user device 300-1. Control information is exchanged between the control unit 103-1 and the user device 300-1. Access system management control unit 103-1 transmits a wavelength setting instruction to user device 300-1.
 アクセス系管理制御部103-2は、ユーザ装置300-2の初期接続時に、アクセス系管理制御部103-2とユーザ装置300-2との間で制御情報をやり取りする。アクセス系管理制御部103-2は、ユーザ装置300-2に対して、波長設定指示を送信する(上記の第1の基本機能)。 The access system management control unit 103-2 exchanges control information between the access system management control unit 103-2 and the user device 300-2 at the time of initial connection of the user device 300-2. The access system management control unit 103-2 transmits a wavelength setting instruction to the user device 300-2 (the first basic function described above).
 アクセス系管理制御部103が送受信する光信号(以下「アクセス系光信号」という。)は、どのような地点でユーザ装置300への経路に多重分離されてもよい。例えば、波長多重分離部102においてアクセス系光信号が多重分離されてもよいし、波長多重分離部102と光振分部101との間でアクセス系光信号が多重分離されてもよいし、光振分部101においてアクセス系光信号が多重分離されてもよいし、光振分部101とユーザ装置300との間でアクセス系光信号が多重分離されてもよい。 The optical signals transmitted and received by the access system management control unit 103 (hereinafter referred to as "access system optical signals") may be demultiplexed onto the path to the user device 300 at any point. For example, access optical signals may be demultiplexed in wavelength multiplexing/demultiplexing section 102, access optical signals may be demultiplexed between wavelength multiplexing/demultiplexing section 102 and optical distribution section 101, or optical The access optical signal may be demultiplexed in the distribution section 101, or the access optical signal may be demultiplexed between the optical distribution section 101 and the user equipment 300.
 アクセス系管理制御部103は、主信号の光信号と空間分割多重や偏波分割多重や波長分割多重等で、アクセス系光信号を多重する代わりに、主信号の光信号上に制御信号を、時分割多重、符号分割多重、AMCC等の周波数分割多重の形で多重してもよいし、主信号の光信号上に制御信号を、強度変調、位相変調、周波数変調、偏波変調の形で変調することで多重してもよい。この場合は、合分岐器や合分波器等を用いて多重する代わりに、変調器や、増幅率や減衰率を変調できる増幅器や減衰器で多重してもよい。以下では主に、主信号の光信号上に制御信号を多重する形で説明するが、主信号の光信号とは別のアクセス系光信号を多重する場合に利用可能であることは明らかである。なお、ループバックする側で、アクセス系光信号を多重し、且つアクセス系光信号と主信号の光送信部や光受信部が別々である場合には、主信号の光送信部や光受信部が正常性判定から外れるため、正常性判定から外れた区間の正常性判定のために、更に光送信部と光受信部間でループバックしたり、ループバック以外の手段で正常性を判定したりすることが望ましい。また、それらの手法により、主信号の光送信部や光受信部の正常性を判定した際にのみ、アクセス系光信号の光送信部からループバック信号をループバックすれば、単一のループバックで、主信号の光送信部や光受信部の正常性まで通知することができる。勿論、主信号の光送信部や光受信部、アクセス系光信号の光送信部や光受信部等を別々に正常性判定し、それぞれ通知してもよい。 Instead of multiplexing the access system optical signal with the main signal optical signal by space division multiplexing, polarization division multiplexing, wavelength division multiplexing, etc., the access system management control unit 103 adds a control signal onto the main signal optical signal. It may be multiplexed in the form of frequency division multiplexing such as time division multiplexing, code division multiplexing, or AMCC, or the control signal may be multiplexed on the optical signal of the main signal in the form of intensity modulation, phase modulation, frequency modulation, or polarization modulation. Multiplexing may be performed by modulating. In this case, instead of multiplexing using a multiplexer/brancher, multiplexer/demultiplexer, etc., multiplexing may be performed using a modulator or an amplifier or attenuator that can modulate the amplification factor or attenuation factor. The explanation below will mainly be based on multiplexing the control signal onto the main optical signal, but it is clear that it can also be used to multiplex an access optical signal that is separate from the main optical signal. . Note that if the access optical signal is multiplexed on the loopback side and the access optical signal and main signal optical transmitter and optical receiver are separate, the main signal optical transmitter and optical receiver deviates from the normality determination, so in order to determine the normality of the section that is outside the normality determination, a loopback is performed between the optical transmitter and the optical receiver, or the normality is determined by means other than loopback. It is desirable to do so. In addition, by using these methods, if the loopback signal is looped back from the optical transmitter of the access system optical signal only when the normality of the optical transmitter and optical receiver of the main signal is determined, a single loopback signal can be generated. It is possible to notify the normality of the main signal optical transmitter and optical receiver. Of course, the normality of the main signal optical transmitter and optical receiver, the access system optical signal optical transmitter and optical receiver, etc. may be separately determined and notified.
 機能別波長の専用ネットワークが簡単に提供されるように、多様なユーザ装置に対する光パスが設定可能であることが、多様な社会基盤ネットワークを支えるAPNに求められる。そのため、ユーザ装置300-1及びユーザ装置300-2が光ファイバに接続されるだけで光パスが即座に開通する仕組みが必要である。 APNs that support a variety of social infrastructure networks are required to be able to set up optical paths for a variety of user devices so that dedicated networks for functionally specific wavelengths can be easily provided. Therefore, a mechanism is required in which an optical path is immediately opened just by connecting the user equipment 300-1 and the user equipment 300-2 to the optical fiber.
 第1に、ユーザ装置300-1又はユーザ装置300-2が、例えば、直近のPh-GW100に、自装置情報及び対向装置情報を申告する。ユーザ装置300-1又はユーザ装置300-2が、Ph-GW100-1又はPh-GW100-2に対して、自装置情報及び対向装置情報を申告してもよい。直近のPh-GW100に申告するとしたが、直近以外のPh-GW100に申告してもよい。例えば、ユーザ装置300-1又はユーザ装置300-2が、Ph-GW100-2又はPh-GW100-1に対して、自装置情報及び対向装置情報を申告してもよい。後者は、例えば、接続を復旧する場合等で、対向装置の接続するPhGWの情報を知っている場合に好適である。以下では、主に、直近に申告する場合で説明する。 First, the user device 300-1 or the user device 300-2 reports its own device information and opposing device information to the nearest Ph-GW 100, for example. The user device 300-1 or the user device 300-2 may report its own device information and opposing device information to the Ph-GW 100-1 or Ph-GW 100-2. Although it is assumed that the notification is made to the most recent Ph-GW 100, the notification may be made to a Ph-GW 100 other than the most recent one. For example, the user device 300-1 or the user device 300-2 may report its own device information and opposing device information to the Ph-GW 100-2 or Ph-GW 100-1. The latter is suitable when, for example, when restoring a connection, the information on the PhGW to which the opposite device is connected is known. Below, we will mainly explain the case where the most recent declaration is filed.
 第2に、APNコントローラ200は、APN内の波長リソース管理及び光パス設計を実行する。ユーザ装置300-1又はユーザ装置300-2からの申告に対して、Ph-GW100-1又はPh-GW100-2が、APNコントローラ200と連携して、ユーザ装置300-1又はユーザ装置300-2に対する割当波長を決定する。Ph-GW100-1又はPh-GW100-2が、ユーザ装置300-1又はユーザ装置300-2に波長を通知する。 Second, the APN controller 200 performs wavelength resource management and optical path design within the APN. In response to the notification from the user device 300-1 or the user device 300-2, the Ph-GW 100-1 or Ph-GW 100-2, in cooperation with the APN controller 200, sends the notification to the user device 300-1 or the user device 300-2. Determine the allocated wavelength for. Ph-GW 100-1 or Ph-GW 100-2 notifies user equipment 300-1 or user equipment 300-2 of the wavelength.
 第3に、Ph-GW100-1の内部の経路と、Ph-GW100-2の内部の経路と、Ph-EXの内部の経路とが、それぞれ設定される。図1では、Ph-GW100-1の内部の経路と、Ph-GW100-2の内部の経路と、Ph-GW100-1及びPh-GW100-2を接続する経路とが設定される。Ph-GW100-1とPh-GW100-2とがPh-EX(不図示)を介して接続されている場合、Ph-GW100-1の内部の経路と、Ph-GW100-1及びPh-EX(不図示)の経路と、Ph-EX(不図示)内部の経路と、Ph-EX(不図示)及びPh-GW100-2の経路と、Ph-GW100-2の内部の経路とが設定される。 Third, an internal route of Ph-GW 100-1, an internal route of Ph-GW 100-2, and an internal route of Ph-EX are each set. In FIG. 1, an internal route of Ph-GW 100-1, an internal route of Ph-GW 100-2, and a route connecting Ph-GW 100-1 and Ph-GW 100-2 are set. When Ph-GW100-1 and Ph-GW100-2 are connected via Ph-EX (not shown), the internal route of Ph-GW100-1 and the internal path of Ph-GW100-1 and Ph-EX ( A route inside the Ph-EX (not shown), a route inside the Ph-EX (not shown) and the Ph-GW100-2, and a route inside the Ph-GW100-2 are set. .
 APNでは、多様な通信プロトコルの信号に応じた光信号が、ユーザ装置300-1及びユーザ装置300-2から送信される。このため、通信プロトコルに依存しない管理制御方式が必要である。このようなアクセス系管理制御には、例えば、AMCCが用いられる。通信システム1では、ユーザ装置300-1は、局内のPh-GW100を介して通信する。 In the APN, optical signals according to signals of various communication protocols are transmitted from user equipment 300-1 and user equipment 300-2. Therefore, a management control method that does not depend on communication protocols is required. For example, AMCC is used for such access system management control. In the communication system 1, the user device 300-1 communicates via the Ph-GW 100 within the station.
 (第1実施形態)
 <主信号ループバック>
 図2から図5までの各図について、本実施形態は、光信号を送受信する装置を備える通信システムであって、対向する一方の装置は、対向する他方の装置が送受信可能な形式(プロトコルや変調方式や変調速度や符号の形態)(予め知得した主信号の形態)の光信号を選択生成し、生成した光信号を対向する他方の装置に送信する。対向する他方の装置は、受信した光信号又はその応答を折返して送信し、対向する一方の装置は、(対向する他方の装置が送受信可能な形式で)折り返された光信号又はその応答を受信し、受信した折返された光信号又はその応答から、対向する一方の装置と対向する他方の装置との間の信号経路を含む信号経路が正常であるか否かを判定する、通信システムである。
(First embodiment)
<Main signal loopback>
In each of the figures from FIG. 2 to FIG. 5, the present embodiment is a communication system that includes a device that transmits and receives optical signals, and one opposing device uses a format (protocol and It selectively generates an optical signal of the modulation method, modulation rate, code format (form of main signal known in advance), and transmits the generated optical signal to the other opposing device. The other opposing device returns and transmits the received optical signal or its response, and the opposing device receives the returned optical signal or its response (in a format that the other opposing device can transmit and receive). A communication system that determines whether a signal path including a signal path between one opposing device and another opposing device is normal based on the received reflected optical signal or its response. .
 以下、受信可能な形式の光信号を選択することを「形式選択」と表記する。以下、信号を生成して送信し、折り返された信号を受信して終端することを「生成送信受信終端」と表記する。 Hereinafter, selecting an optical signal in a receivable format will be referred to as "format selection." Hereinafter, generating and transmitting a signal, receiving and terminating the returned signal will be referred to as "generation, transmission, reception, and termination."
 図2から図5までの各図に、一方の装置(対向の利用する信号形式を選択して処理する装置)がPh-GWであり、他方の装置(自装置の信号形式で処理する装置)がユーザ装置である例を示す。すなわち、「形式選択+生成送信受信終端側:Ph-GW」かつ「折返側:ユーザ装置」のシステム構成パターンを示す。 In each figure from FIG. 2 to FIG. 5, one device (the device that selects and processes the signal format used by the opposite device) is Ph-GW, and the other device (the device that processes the signal format of its own device). An example is shown in which is the user equipment. That is, a system configuration pattern of "format selection + generation transmission/reception terminal side: Ph-GW" and "return side: user equipment" is shown.
 図2は、第1実施形態における、通信システムの構成の第1例を示す図である。アクセス系管理制御部103は、判定制御部401、対向する他方の装置が送受信可能な形式(プロトコルや変調方式や変調速度や符号の形態)(予め知得した主信号の形態)の光信号に対応する複数の信号終端部402(例えば、信号終端部402a~402d)、SW403、合分離部404、光インタフェース部(光IF部)405及び光インタフェース部(光IF部)406を備える。判定制御部401は、導通区間の正常性を判定する機能部である。判定制御部401は、選択された信号終端部402に対し、対象ユーザ装置に対して主信号を送信することを指示する。太線矢印は、ループバックされる主信号の経路を表す。図2では、合分離部404は、SW403で選択した主信号に、電気段で制御信号を多重分離する。図2の太線矢印は、「形式選択+生成送信受信終端側:Ph-GW」かつ「折返側:ユーザ装置」に相当する。「形式選択+折返側:Ph-GW」かつ「生成送信受信終端側:ユーザ装置のルートとしてもよい。これは、後述する図3-9と、後述する図12-14とにおいても同様である。 FIG. 2 is a diagram showing a first example of the configuration of a communication system in the first embodiment. The access system management control unit 103 determines the optical signal in a format (protocol, modulation method, modulation speed, code format) (form of main signal known in advance) that can be transmitted and received by the other device facing the judgment control unit 401. It includes a plurality of corresponding signal termination sections 402 (for example, signal termination sections 402a to 402d), a SW 403, a combination/separation section 404, an optical interface section (optical IF section) 405, and an optical interface section (optical IF section) 406. The determination control unit 401 is a functional unit that determines the normality of the conduction section. The determination control unit 401 instructs the selected signal termination unit 402 to transmit the main signal to the target user device. The thick arrow represents the route of the main signal that is looped back. In FIG. 2, the combiner/demultiplexer 404 multiplexes and demultiplexes the control signal onto the main signal selected by the SW 403 using an electrical stage. The thick line arrow in FIG. 2 corresponds to "format selection + generation transmission/reception terminal side: Ph-GW" and "return side: user equipment." "Format selection + return side: Ph-GW" and "generation transmission reception termination side: User equipment route may be used. This is also the same in Figure 3-9, which will be described later, and Figure 12-14, which will be described later. .
 図3は、第1実施形態における、通信システムの構成の第2例を示す図である。アクセス系管理制御部103は、判定制御部401、対向する他方の装置が送受信可能な形式(プロトコルや変調方式や変調速度や符号の形態)(予め知得した主信号の形態)の光信号に対応する複数の信号終端部402(例えば、信号終端部402a~402d)、SW403、複数(例えば2個)の合分離部404、複数(例えば4個)の光インタフェース部(光IF部)を備える。太線矢印は、ループバックされる主信号の経路を表す。図3では、合分離部404は、SW403で選択した主信号に、光段で制御信号を多重分離する。 FIG. 3 is a diagram showing a second example of the configuration of the communication system in the first embodiment. The access system management control unit 103 determines the optical signal in a format (protocol, modulation method, modulation speed, code format) (form of main signal known in advance) that can be transmitted and received by the other device facing the judgment control unit 401. It includes a plurality of corresponding signal termination units 402 (for example, signal termination units 402a to 402d), a SW 403, a plurality of (for example, two) combining/separating units 404, and a plurality of (for example, four) optical interface units (optical IF units). . The thick arrow represents the route of the main signal that is looped back. In FIG. 3, the combiner/demultiplexer 404 multiplexes and demultiplexes the control signal onto the main signal selected by the SW 403 using an optical stage.
 図4は、第1実施形態における、通信システムの構成の第3例を示す図である。アクセス系管理制御部103は、判定制御部401、複数の信号終端部402(例えば402a~402d)、SW403、複数(例えば4個)の合分離部、対向する他方の装置が送受信可能な形式(プロトコルや変調方式や変調速度や符号の形態)(予め知得した主信号の形態)の光信号に対応する複数(例えば8個)の光インタフェース部(光IF部)を備える。太線矢印は、ループバックされる主信号の経路を表す。図4では、合分離部が電気段で制御信号と主信号を多重分離した光信号を、SW403が選択する。 FIG. 4 is a diagram showing a third example of the configuration of the communication system in the first embodiment. The access system management control unit 103 includes a determination control unit 401, a plurality of signal termination units 402 (for example, 402a to 402d), a SW 403, a plurality of (for example, four) combining/separating units, and a format that can be transmitted and received by the other opposing device ( A plurality of (for example, eight) optical interface units (optical IF units) are provided that correspond to optical signals of various protocols, modulation methods, modulation speeds, and code formats (forms of main signals known in advance). The thick arrow represents the route of the main signal that is looped back. In FIG. 4, the SW 403 selects the optical signal obtained by demultiplexing the control signal and the main signal using an electrical stage.
 図2及び図4では、電気段で制御信号が多重分離されている。図2であれば、信号終端部からユーザ装置への順番は、SW403と合分離部と光IF部との順番の代わりに、SW403と光IF部と合分離部との順番、又は、信号終端部402毎の光IF部とSW403と合分離部との順番でもよい。図4であれば、信号終端部からユーザ装置への順番は、合分離部404と光IF部とSWの順番の代わりに、光IF部と合分離部とSWとの順番、及び、光IFとSWと合分離部との順番でもよい。合分離部は、後述の図8のように、変調部と、少なくとも一部を受信する受信部とでもよい。図2及び4は、主信号に制御信号を周波数分割多重や時分割多重で、電気段において多重分離するシステムの構成を表す。 In FIGS. 2 and 4, control signals are demultiplexed at the electrical stage. In FIG. 2, the order from the signal termination section to the user equipment is the order of the SW403, the optical IF section, and the coupling/separation section, or the order of the signal termination section, instead of the order of the SW403, the combining/separating section, and the optical IF section. The order of the optical IF section, SW 403, and combination/separation section for each section 402 may be adopted. In FIG. 4, the order from the signal termination unit to the user equipment is the order of the optical IF unit, the combining/separating unit, and the SW, and the order of the optical IF unit, the combining/separating unit, and the SW, instead of the order of the combining/separating unit 404, the optical IF unit, and the SW. , SW, and the combining/separating section may be arranged in this order. The combining/separating section may be a modulating section and a receiving section that receives at least a part of the signal, as shown in FIG. 8, which will be described later. 2 and 4 show the configuration of a system in which a main signal and a control signal are multiplexed and separated in an electrical stage by frequency division multiplexing or time division multiplexing.
 図5は、第1実施形態における、通信システムの構成の第4例を示す図である。アクセス系管理制御部103は、判定制御部401、複数の信号終端部402(例えば402a~402d)、SW403、複数(例えば2個)の合分離部、対向する他方の装置が送受信可能な形式(プロトコルや変調方式や変調速度や符号の形態)(予め知得した主信号の形態)の光信号に対応する複数(例えば10個)の光インタフェース部(光IF部)を備える。太線矢印は、ループバックされる主信号の経路を表す。図5では、SW403で選択した主信号に制御信号を光段で、合分離部が多重分離する。図3及び5は、例えば、主信号とのビート雑音が無視できるような波長の異なる制御信号用の光信号との波長分割多重や、主信号の偏波変動が無視できるように主信号と偏波分離可能な偏波が直交した異なる制御信号用の光信号との偏波分割多重等で、光段において主信号に制御信号を多重分離する通信システムの構成を表す。 FIG. 5 is a diagram showing a fourth example of the configuration of the communication system in the first embodiment. The access system management control unit 103 includes a determination control unit 401, a plurality of signal termination units 402 (for example, 402a to 402d), a SW 403, a plurality of (for example, two) combination/separation units, and a format that can be transmitted and received by the other opposing device ( A plurality of (for example, 10) optical interface units (optical IF units) are provided that correspond to optical signals of different protocols, modulation methods, modulation speeds, and code formats (forms of main signals known in advance). The thick arrow represents the route of the main signal that is looped back. In FIG. 5, a control signal is multiplexed and demultiplexed on the main signal selected by the SW 403 in an optical stage by a demultiplexer. Figures 3 and 5 show, for example, wavelength division multiplexing with an optical signal for a control signal of a different wavelength so that beat noise with the main signal can be ignored, or polarization between the main signal and the main signal so that polarization fluctuations of the main signal can be ignored. This represents the configuration of a communication system in which a control signal is multiplexed and demultiplexed into a main signal at an optical stage, such as by polarization division multiplexing with optical signals for different control signals whose polarizations are orthogonal to each other.
 図2から図5までは、第1実施形態の通信システム1を示す図である。図2から図5まででは、通信システム1に含まれる装置のうち、信号経路正常性判定の判定対象となる1つの区間に関わる装置のみを示している。第1実施形態では、アクセス系管理制御部103が、自装置(Ph-GW100)に接続されているユーザ装置300に対して信号経路正常性判定を行う。例えば、図1におけるアクセス系管理制御部103-2や103-1が、ユーザ装置300-2との区間に対して信号経路正常性判定を行う。 2 to 5 are diagrams showing the communication system 1 of the first embodiment. 2 to 5, among the devices included in the communication system 1, only the devices related to one section that is the target of signal path normality determination are shown. In the first embodiment, the access system management control unit 103 performs signal path normality determination for the user device 300 connected to its own device (Ph-GW 100). For example, the access system management control unit 103-2 or 103-1 in FIG. 1 performs signal path normality determination for the section with the user device 300-2.
 判定区間と方向によっては、ユーザ装置300―2が、アクセス系管理制御部103-2や、アクセス系管理制御部103-1やユーザ装置300-1に対して信号経路正常性判定を行う。また、アクセス系管理制御部103-2やアクセス系管理制御部103-1が、ユーザ装置300-1との区間に対して信号経路正常性判定を行ってもよいし、アクセス系管理制御部103-2がアクセス系管理制御部103-1との区間に対して行ってもよいし、アクセス系管理制御部103-1がアクセス系管理制御部103-2との区間に対して行ってもよい。但し、第1実施形態では、対向装置の主信号の形式に従う主信号の生成終端の機能部(信号の形態又は形式)が選択されるので、アクセス系管理制御部同士で行う場合も、当該経路を利用するユーザ装置の用いる主信号の形式に従う形態を選択するのが望ましい。 Depending on the determination interval and direction, the user device 300-2 performs signal path normality determination on the access system management control unit 103-2, the access system management control unit 103-1, and the user device 300-1. Further, the access system management control unit 103-2 or the access system management control unit 103-1 may perform signal path normality determination for the section with the user device 300-1, or the access system management control unit 103-1 may -2 may be performed for the section with the access system management control unit 103-1, or the access system management control unit 103-1 may perform the process for the section with the access system management control unit 103-2. . However, in the first embodiment, since the main signal generation/termination functional unit (signal form or format) is selected in accordance with the main signal format of the opposing device, even when the access system management control units perform the same, the corresponding path It is desirable to select a format that conforms to the format of the main signal used by the user equipment using the .
 第1実施形態では、主信号での通信時(即ち、初期接続やモニタ等を除く)において、ユーザ装置300の用いるプロトコルに応じた、主信号の生成終端部(信号終端部)が、主信号の終端を行わず、光振分しかしない中継装置であるPh―GWに備えられる。本実施形態の正常性判定する区間の端点を、主信号の終端を行わない中継装置であるPh―EX等においてPh-GW同様に設置する場合は、Ph―EX等の中継装置に主信号の生成終端部(信号終端部)を同様に備える。 In the first embodiment, when communicating using the main signal (that is, excluding initial connection, monitoring, etc.), the main signal generation termination section (signal termination section) according to the protocol used by the user device 300 generates the main signal. The Ph-GW is a relay device that only performs optical distribution without terminating the light. If the end point of the section for normality determination in this embodiment is installed in a relay device such as Ph-EX, which does not terminate the main signal, in the same way as Ph-GW, A generation termination section (signal termination section) is also provided.
 (A1)ユーザ装置が折り返し、かつ、Ph-GW側の複数の主信号終端部(「形式選択+生成送信受信終端側:Ph-GW側の装置」かつ「折返側:ユーザ装置」のシステム構成パターン、図示通り、Ph-GW側の装置が対向装置(ここではユーザ装置)の使用する主信号に応じた主信号終端部を選択し、選択した主信号終端部で、その主信号で正常性判定の要求を生成し、対向装置(ここではユーザ装置)でその要求に応じて正常性の判定に関する応答を送信し、受信した該応答を、Ph-GW側の装置の該選択した主信号終端部で終端する、又はPh-GW側の装置が対向装置(ここではユーザ装置)の使用する主信号に応じた主信号終端部を選択し、選択した主信号終端部で、その主信号で正常性判定の信号を生成し、対向装置(ここではユーザ装置)でその正常性の判定の信号を折返し送信し、受信した該折返し(ループバック信号)を、Ph-GW側の装置の該選択した主信号終端部で終端する) (A1) System configuration where the user equipment loops back and multiple main signal termination units on the Ph-GW side (“format selection + generation transmission/reception termination side: device on the Ph-GW side” and “return side: user equipment”) As shown in the pattern, the device on the Ph-GW side selects the main signal termination section according to the main signal used by the opposite device (in this case, the user device), and at the selected main signal termination section, the normality of the main signal is determined. Generates a request for determination, transmits a response regarding normality determination in response to the request in the opposite device (user device here), and transmits the received response to the selected main signal termination of the device on the Ph-GW side. or the device on the Ph-GW side selects the main signal termination section according to the main signal used by the opposite device (in this case, the user device), and the main signal is normally terminated at the selected main signal termination section. Generates a signal for gender determination, sends the normality determination signal back at the opposite device (in this case, the user device), and transmits the received return (loopback signal) to the selected device on the Ph-GW side. (terminated at the main signal termination section)
 アクセス系管理制御部とユーザ装置とが通信できるように光振分部等を設定する。アクセス系管理制御部がユーザ装置に応じたプロトコルの主信号の終端部を選択する。主信号の形式を検出する検出部(不図示)を備え、その検出結果によって選択してもよいし、ユーザ装置への要求の応答やユーザ装置からの申告された値によって選択してもよいし、サービス契約時やサービスオーダやデータベース上の保持された値によって選択してもよいし、主信号を送受している送受信器のMAC(Media Access Control)アドレスを、取得するか申告させるかデータベース等から入手し、そのアドレスに応じた製造会社や製品種別から推定してもよい。 Set up the optical distribution unit etc. so that the access system management control unit and the user device can communicate. The access system management control section selects the termination section of the main signal of the protocol according to the user device. A detection unit (not shown) may be provided to detect the format of the main signal, and selection may be made based on the detection result, or selection may be made based on a response to a request to the user device or a value declared from the user device. , you may choose based on the value held at the time of service contract, service order, or database, or choose whether to obtain or declare the MAC (Media Access Control) address of the transceiver that is transmitting and receiving the main signal, etc. It may be obtained from the address and estimated from the manufacturer and product type according to the address.
 アクセス系管理制御部が、ユーザ装置に主信号のループバックを指示(折返指示)する。指示は制御信号ででも、主信号ででもよい。制御信号での場合は指示してからユーザ装置に応じた終端部(信号終端部)を選択してもよい。主信号での場合は、主信号で指示するために選択後に指示となる。 The access system management control unit instructs the user device to loop back the main signal (return instruction). The instruction may be a control signal or a main signal. In the case of a control signal, the termination section (signal termination section) according to the user device may be selected after the instruction is given. In the case of using the main signal, the instruction is given after selection because the instruction is made using the main signal.
 アクセス系管理制御部が、ユーザ装置に応じたプロトコルで、正常性判定用の下り主信号を生成・送信する。なお、制御信号で指示等しない時は、主信号を制御信号で変調又は主信号に制御信号を重畳しなくてよい。ユーザ装置が、その下り主信号又はその応答を上り主信号として折返し送信する。 The access system management control unit generates and transmits a downlink main signal for normality determination using a protocol according to the user device. Note that when no instruction is given by the control signal, it is not necessary to modulate the main signal with the control signal or to superimpose the control signal on the main signal. The user equipment returns the downlink main signal or its response as the uplink main signal.
 なお、制御信号で応答等しない時は、主信号を制御信号で変調又は主信号に制御信号を重畳しなくてよい。その折り返しの上り主信号を、アクセス系管理制御部で受信・終端し判定する。時間経過又はアクセス系管理制御部からの指示で、ユーザ装置の主信号のループバックを解除する。このときの指示は制御信号ででも、主信号ででもよい。 Note that when there is no response to the control signal, it is not necessary to modulate the main signal with the control signal or to superimpose the control signal on the main signal. The returned upstream main signal is received and terminated by the access system management control unit and judged. The loopback of the main signal of the user device is canceled with the passage of time or an instruction from the access system management control unit. The instruction at this time may be a control signal or a main signal.
 ここで、ユーザ装置が送受信する主信号のプロトコルを、APNコントローラからの指示又はDBの情報又はユーザ装置から取得、又は、主信号を受信して正常な信号として、終端可能か判定することの少なくともいずれかで選択する。これは後述の記載でも同様である。 Here, the protocol of the main signal transmitted and received by the user equipment is at least determined by obtaining instructions from the APN controller, information from the DB, or from the user equipment, or by receiving the main signal and determining whether it can be terminated as a normal signal. Choose one. This also applies to the description below.
 (A2)ユーザ装置が折り返し、かつ、ユーザ装置側の複数の主信号終端部(「形式選択+折返側:ユーザ装置」かつ「生成送信受信終端側:Ph-GW側の装置」のシステム構成パターン、ユーザ装置が対向装置(ここではPh-GW側の装置)の使用する主信号に応じた主信号終端部を選択し、対向装置(ここではPh-GW側の装置)の主信号終端部で、その主信号で正常性判定の要求を生成し、ユーザ装置の選択した主信号終端部で、その要求に応じて正常性の判定に関する応答を送信し、受信した該応答を、Ph-GW側の装置の主信号終端部で終端する、又はユーザ装置が対向装置(ここではPh-GW側の装置)の使用する主信号に応じた主信号終端部を選択し、対向装置(ここではPh-GW側の装置)の主信号終端部で、その主信号で正常性判定の信号を生成し、ユーザ装置の選択した主信号終端部でその正常性の判定の信号を折返し送信し、受信した該折返し(ループバック信号)を、対向装置(ここではPh-GW側の装置)の主信号終端部で終端する(不図示)) (A2) System configuration pattern where the user equipment loops back and multiple main signal termination units on the user equipment side (“format selection + loopback side: user equipment” and “generation transmission/reception termination side: Ph-GW side device”) , the user equipment selects the main signal termination section according to the main signal used by the opposite device (here, the device on the Ph-GW side), and selects the main signal termination section of the opposite device (here, the device on the Ph-GW side). , generates a request for normality determination using the main signal, transmits a response regarding normality determination in response to the request at the main signal termination section selected by the user equipment, and transmits the received response to the Ph-GW side. or the user equipment selects the main signal termination part according to the main signal used by the opposite device (here, the Ph-GW side device), and The main signal termination section of the GW side device) generates a normality determination signal using the main signal, and the selected main signal termination section of the user device returns and transmits the normality determination signal. Terminate the loopback signal at the main signal termination part of the opposing device (Ph-GW side device here) (not shown)
 対向装置の使用する信号形式に対応した主信号終端部(信号終端部)が、ユーザ装置に配置されてもよい。アクセス系管理制御部とユーザ装置とが通信できるように光振分部等を設定する。アクセス系管理制御部が、ユーザ装置に配置された主信号終端部(信号終端部)を選択する。ユーザ装置は、選択された信号終端部で、主信号を折り返す。Ph-GWは、その折り返しの上り主信号を受信して終端し、正常性を判定する。 A main signal termination section (signal termination section) corresponding to the signal format used by the opposing device may be arranged in the user device. The optical distribution unit and the like are set so that the access system management control unit and the user device can communicate. The access system management control unit selects a main signal termination unit (signal termination unit) located in the user device. The user equipment loops back the main signal at the selected signal termination. The Ph-GW receives and terminates the returned uplink main signal, and determines normality.
 他の接続として、正常性判定のために、対向装置によって折り返される光信号を送信する送信部(光IF部)がPh-GWに配置される場合、光振分部を経由して接続されるアクセス系管理制御部以外に、送信部(光IF部)が配置されてもよい。例えば、光振分部への入力ポート又は出力ポートの外に設置される光合分岐器や光合分波器を介し、折り返す装置に向けて光信号を出力可能な位置に、送信部(光IF部)が配置されてもよい。例えば、Ph-GWの入力側及び出力側のうちの少なくとも一方における光信号の光強度をモニタしたり、ユーザ装置と制御信号をやり取りしたりする監視部に、送信部(光IF部)が配置されてもよい。光合分岐器や光合分波器を介し、合流又は合波した光が出力される代わりに、折り返されるための光の光学的非線形効果等によって、生成した光が出力されてもよい。 As another connection, if a transmitting unit (optical IF unit) that transmits an optical signal that is returned by the opposing device for normality determination is placed in the Ph-GW, it is connected via an optical distribution unit. In addition to the access system management control section, a transmitting section (optical IF section) may be arranged. For example, a transmitting section (optical IF section) is installed at a position where an optical signal can be outputted to a folding device via an optical multiplexer/brancher or an optical multiplexer/demultiplexer installed outside the input port or output port of the optical distribution section. ) may be placed. For example, a transmission unit (optical IF unit) is placed in a monitoring unit that monitors the optical intensity of an optical signal on at least one of the input side and output side of the Ph-GW and exchanges control signals with a user device. may be done. Instead of outputting combined or multiplexed light through an optical multiplexer/brancher or an optical multiplexer/demultiplexer, light generated by an optical nonlinear effect of the light to be folded back may be output.
 モニタは、主信号をやり取りする際に、主信号の光強度や波長を監視し、異常がないかどうか判定するために、主信号の経路の途中に挿入し、合分岐器や合分波器等で一部を抜き出して監視したり、制御信号を挿入してユーザ装置を制御したりするために用いられる。合分岐器や合分波器等で主信号等の一部を分岐したり、主信号等に制御信号を多重したりする代わりに、後述の非線形光学効果等を利用して光が生成されることに対応する処理、即ち、利得媒体や光吸収媒体での利得や、それらの媒体に印加する電流や電圧の変化や、それらの媒体に入力するポンプ光や、ゲインクランプ光の媒体通過後の強度変化や、アイドラー光等の非線形光学効果等で生成される光の変化を用いてもよい。なお、これらは、図1では不図示である。 When exchanging main signals, a monitor is inserted in the middle of the main signal path to monitor the optical intensity and wavelength of the main signal and determine whether there are any abnormalities. It is used to extract and monitor a part of the data, etc., or to control the user equipment by inserting a control signal. Instead of branching a part of the main signal, etc. using a multiplexer/brancher or multiplexer/demultiplexer, or multiplexing a control signal with the main signal, light is generated using nonlinear optical effects, etc., which will be described later. That is, changes in the gain in gain media and light absorption media, changes in current and voltage applied to those media, pump light input to those media, and changes in gain clamp light after it passes through the medium. A change in intensity or a change in light generated by a nonlinear optical effect such as idler light may also be used. Note that these are not shown in FIG. 1.
 正常性判定のために、対向装置によって折り返される光信号の少なくとも一部を受信する受信部(光IF部)がPh-GWに配置される場合、光振分部を経由して接続されるアクセス系管理制御部以外に受信部(光IF部)が配置されてもよい。例えば、光振分部への入力ポート又は出力ポートの外に設置される光合分岐器や光合分波器を介し、折り返す装置から折り返された光信号又はその成分の少なくとも一部を入力可能な位置に、受信部(光IF部)が配置されてもよい。例えば、Ph-GWの入力側及び出力側のうちの少なくとも一方における光信号の光強度をモニタしたり、ユーザ装置と制御信号をやり取りしたりする監視部に、受信部(光IF部)が配置されてもよい。光合分岐器や光合分波器を介し、分岐又は分波した光が入力される代わりに、折り返した光の光学的非線形効果等によって、生成した光が入力されてもよい。 When a receiving unit (optical IF unit) that receives at least part of the optical signal returned by the opposing device is placed in the Ph-GW for normality determination, the access connected via the optical distribution unit A receiving section (optical IF section) may be arranged in addition to the system management control section. For example, a position where the optical signal returned from the return device or at least part of its components can be inputted via an optical multiplexer/brancher or optical multiplexer/demultiplexer installed outside the input port or output port to the optical distribution section. A receiving section (optical IF section) may be placed in the receiver. For example, a receiving unit (optical IF unit) is placed in a monitoring unit that monitors the optical intensity of an optical signal on at least one of the input side and output side of the Ph-GW and exchanges control signals with a user device. may be done. Instead of inputting branched or demultiplexed light through an optical multiplexer/brancher or an optical multiplexer/demultiplexer, light generated by an optical nonlinear effect of folded light may be input.
 Ph-GW側でループバックする場合、受信部(光IF部)で受けた信号を、選択した信号終端部402で折り返し、送信部(光IF部)から出力する。 When looping back on the Ph-GW side, the signal received at the receiving section (optical IF section) is looped back at the selected signal termination section 402 and output from the transmitting section (optical IF section).
 アクセス系管理制御部103に関し、合分離部404よりネットワーク側は、主信号に関し、信号終端部で折り返すか、生成終端する。合分離部404よりユーザ側は、光IF部が制御信号と主信号で共通の場合(図2及び4)、共通なので、いずれも光IF部で送受信する。光IF部の送受の少なくとも一方が制御信号と主信号で異なる場合(送受ともに異なる場合、図3及び5)、異なる送信もしくは受信又は両方を制御信号又は主信号のそれぞれ対応する光IF部で行う。 Regarding the access system management control unit 103, on the network side from the combining/separating unit 404, the main signal is either looped back at the signal termination section or generated and terminated. On the user side from the combining/separating unit 404, if the optical IF unit is common for the control signal and the main signal (FIGS. 2 and 4), since they are common, both are transmitted and received at the optical IF unit. If at least one of the transmission and reception of the optical IF section is different between the control signal and the main signal (if both transmission and reception are different, as shown in Figures 3 and 5), different transmissions or receptions, or both, are performed in the optical IF section corresponding to the control signal or the main signal, respectively. .
 ユーザ装置300に関し、合分離部322よりユーザ側は、主信号に関し、UNI側で折り返すか、生成終端する。合分離部322よりネットワーク側は、光IF部が制御信号と主信号で共通の場合、共通なので、いずれも光IF部で送受信する。(図3及び5のアクセス系管理制御部のように)ユーザ装置の光IF部の送受の少なくとも一方が制御信号と主信号で異なる場合、異なる送信もしくは受信又は両方を、制御信号又は主信号のそれぞれ対応する光IF部で行う。 Regarding the user device 300, the user side from the combining/separating unit 322 returns or generates and terminates the main signal on the UNI side. On the network side from the combining/separating unit 322, if the optical IF unit is common for the control signal and the main signal, since they are common, both are transmitted and received at the optical IF unit. If at least one of the transmission and reception of the optical IF section of the user equipment is different between the control signal and the main signal (like the access system management control section in FIGS. 3 and 5), the control signal or the main signal may be different from each other. This is performed at the corresponding optical IF section.
 図2では、合分離部404は、SW403で選択した主信号に、電気段で制御信号を多重分離する。図3では、合分離部404は、SW403で選択した主信号に、光段で制御信号を多重分離する。図4では、合分離部が電気段で制御信号と主信号を多重分離した光信号を、SW403が選択する。図5では、SW403で選択した主信号に制御信号を光段で、合分離部が多重分離する。 In FIG. 2, the combining/demultiplexing unit 404 multiplexes and demultiplexes the control signal on the main signal selected by the SW 403 using an electrical stage. In FIG. 3, the combiner/demultiplexer 404 multiplexes and demultiplexes the control signal onto the main signal selected by the SW 403 using an optical stage. In FIG. 4, the SW 403 selects the optical signal obtained by demultiplexing the control signal and the main signal using an electrical stage. In FIG. 5, a control signal is multiplexed and demultiplexed on the main signal selected by the SW 403 in an optical stage by a demultiplexer.
 合分離部は、後述の図8のように、変調部と、少なくとも一部を受信する受信部とでもよい。 The combining/separating section may be a modulating section and a receiving section that receives at least a part of the signal, as shown in FIG. 8, which will be described later.
 アクセス系管理制御部103は、信号経路正常性判定の対象となっている区間に接続されているユーザ装置300(以下「対象ユーザ装置」という。)に対し、主信号を送信する。主信号の送信において、アクセス系管理制御部103は、対象ユーザ装置において処理可能なプロトコルの主信号を送信する。このような処理を実現するため、アクセス系管理制御部103は、判定制御部401、対向する他方の装置が送受信可能な形式(プロトコルや変調方式や変調速度や符号の形態)(予め知得した主信号の形態)の光信号に対応する複数の信号終端部402(例えば402a~402d)、SW403、合分離部404、光インタフェース部(光IF部)405及び光インタフェース部(光IF部)406を備える。 The access system management control unit 103 transmits a main signal to the user device 300 (hereinafter referred to as "target user device") connected to the section targeted for signal path normality determination. In transmitting the main signal, the access system management control unit 103 transmits a main signal of a protocol that can be processed by the target user device. In order to realize such processing, the access system management control unit 103 uses the judgment control unit 401 to determine the format (protocol, modulation method, modulation speed, code format) (protocol, modulation method, modulation speed, code format) that can be transmitted and received by the other device that is facing the determination control unit 401. A plurality of signal termination sections 402 (for example, 402a to 402d), SW 403, combining/separating section 404, optical interface section (optical IF section) 405, and optical interface section (optical IF section) 406, which correspond to the optical signal (in the form of main signal) Equipped with
 図2及び図3では、光IF部で光を終端し、光電変換した後に、電気段で制御信号と主信号を分岐し、制御信号は判定制御部に、主信号は電気SWで信号終端部に選択出力し、信号終端部からの出力を電気SWで選択し、電気段で制御信号と重畳し、光IF部に入力し、光電変換して光で出力する。図4に示したように、光終端せずに、SW403(光SW)で光IF部をそれぞれ備える信号終端部に選択出力し、光IF部を備える信号終端部からの光出力を光スイッチで選択して出力してもよい。後者の場合、信号終端部毎に光IF部への要求条件や構成が異なる場合に好適である。要求条件は、例えば線幅や周波数安定度や伝送帯域等に関する条件である。構成が異なる具体例は、例えば直接検波と局発光を用いるコヒーレント検波等である。また、判定制御部への入力と出力を、図2、3及び5の組合せとし、電気と光、又は光と電気の組合せとしてもよい。なお、図2及び4では、電気段で多重される。 In FIGS. 2 and 3, after the light is terminated at the optical IF section and photoelectrically converted, the control signal and the main signal are branched at the electrical stage, the control signal is sent to the judgment control section, and the main signal is sent to the electrical SW at the signal termination section. The output from the signal termination section is selected by an electric switch, superimposed on a control signal at an electric stage, inputted to an optical IF section, photoelectrically converted, and outputted as light. As shown in FIG. 4, without optical termination, the SW403 (optical SW) selectively outputs to the signal termination sections each equipped with an optical IF section, and the optical output from the signal termination section equipped with the optical IF section is sent to the optical switch. You can select and output. The latter case is suitable when the requirements and configurations for the optical IF section differ for each signal termination section. The required conditions are, for example, conditions regarding line width, frequency stability, transmission band, etc. Specific examples of different configurations include, for example, direct detection and coherent detection using local light. Furthermore, the input and output to the determination control section may be a combination of those shown in FIGS. 2, 3, and 5, and may be a combination of electricity and light or light and electricity. Note that in FIGS. 2 and 4, multiplexing is performed in electrical stages.
 制御信号で指示する場合、判定制御部401は、ループバックの実行を示す制御信号を、合分離部404に出力する。判定制御部401は、ユーザ装置300から送信された信号が信号終端部402において受信されると、受信された信号に基づいて判定対象の経路の正常性について判定する。Ph-GWからの信号をユーザ装置で判断し、その判断結果をPh-GWが受信してもよい。ユーザ装置が、ループバックされた信号をPh-GWで受信して判断してもよい。Ph-GWからの指示でユーザ装置が、ループバック用の信号を送信し、Ph-GWでループバックし、ループバックされた信号をユーザ装置で受信して判断し、ユーザ装置が判断結果を、制御信号や、主信号で、Ph-GWに伝えてもよい。なお、第1実施形態では、主信号で制御情報のやり取りも可能である。 When instructing with a control signal, the determination control unit 401 outputs a control signal indicating execution of loopback to the combination/separation unit 404. When the signal transmitted from the user device 300 is received by the signal termination unit 402, the determination control unit 401 determines the normality of the route to be determined based on the received signal. The signal from the Ph-GW may be determined by the user equipment, and the Ph-GW may receive the determination result. The user equipment may receive the looped back signal at the Ph-GW and make a determination. The user equipment transmits a loopback signal according to instructions from the Ph-GW, loops back at the Ph-GW, receives the looped back signal at the user equipment, makes a decision, and the user equipment uses the determination result to The information may be transmitted to the Ph-GW using a control signal or a main signal. Note that in the first embodiment, control information can also be exchanged using the main signal.
 信号終端部402は、ユーザ装置が送受信可能な形式(プロトコルや変調方式や変調速度や符号の形態)(予め知得した主信号の形態)の主信号を生成し、SW403に出力する。Ph-GWが一方向の送信側またはループバック信号を送信する場合がありえる。前者の場合、ユーザ装置が正常性判定の主信号を受信終端して正常性を判断し、その結果を制御信号等で、Ph-GWに通知する。後者の場合、ユーザ装置はPh-GWからのループバック用の主信号を、Ph-GWにループバックし、ループバックされた信号をPh-GWで受信終端して、正常性を判定する。 The signal termination unit 402 generates a main signal in a format (protocol, modulation method, modulation rate, code format) (form of main signal known in advance) that can be transmitted and received by the user equipment, and outputs it to the SW 403. There may be cases where the Ph-GW transmits a unidirectional transmitter or a loopback signal. In the former case, the user equipment receives and terminates the main signal for determining normality, determines normality, and notifies the Ph-GW of the result using a control signal or the like. In the latter case, the user equipment loops back the main signal for loopback from the Ph-GW to the Ph-GW, receives and terminates the looped-back signal at the Ph-GW, and determines normality.
 信号終端部402は、主信号の受信に関する情報を判定制御部401に出力する。Ph-GWが一方向の受信側またはループパック信号を受信する場合、前者の場合、Ph-GW等からの指示に従って、ユーザ装置が正常性判定の主信号をPh-GWに向かって生成送信し、その主信号をPh-GWが受信終端して正常性を判断する。後者の場合、ユーザ装置はPh-GWからのループバック用の主信号を、Ph-GWにループバックし、ループバックされた信号をPh-GWで受信終端して、正常性を判定する。(後者は、上述の信号終端部402は、ユーザ装置で可能な特定のプロトコルにしたがった主信号を生成送信し、SW403に出力する場合の一部である。) The signal termination unit 402 outputs information regarding reception of the main signal to the determination control unit 401. When the Ph-GW receives a one-way reception side or a loop pack signal, in the former case, the user equipment generates and transmits a main signal for normality determination toward the Ph-GW according to instructions from the Ph-GW, etc. , the Ph-GW receives and terminates the main signal to determine normality. In the latter case, the user equipment loops back the main signal for loopback from the Ph-GW to the Ph-GW, receives and terminates the looped-back signal at the Ph-GW, and determines normality. (The latter is a part of the case where the signal termination section 402 described above generates and transmits a main signal according to a specific protocol that can be used by the user equipment, and outputs it to the SW 403.)
 例えば、信号終端部402は、所定の時間が経過してもループバックされて返ってくるはずの主信号を受信できない場合には、そのことを示す情報を判定制御部401に出力する。信号終端部402は、ループバックされて返ってきた主信号を受信すると、受信された主信号に関する情報(主信号の受信に関する情報の一例)を判定制御部401に出力する。主信号に関する情報とは、経路の正常性の判定に使用される情報である。より具体的には、主信号に関する情報とは、例えば正しく要求通りにループバックが行われたか否かを示す情報である。 For example, if the signal termination unit 402 cannot receive the main signal that is supposed to be looped back even after a predetermined period of time has elapsed, it outputs information indicating this to the determination control unit 401. When the signal termination unit 402 receives the main signal that has been looped back, it outputs information regarding the received main signal (an example of information regarding reception of the main signal) to the determination control unit 401 . The information regarding the main signal is information used to determine the normality of the route. More specifically, the information regarding the main signal is, for example, information indicating whether or not loopback has been performed correctly and as requested.
 Ph-GW等からの指示に従い、ユーザ装置が、ユーザ装置で可能な特定のプロトコルに従った主信号を生成送信し、Ph-GWで受信終端して正常性を判定してもよい。Ph-GW等からの指示に従い、ユーザ装置が、ユーザ装置で可能な特性のプロトコルに従った主信号を生成送信し、Ph-GWでループバックし、ユーザ装置で受信終端し正常性判定し、その結果を制御信号等でPh-GW等に通知してもよい。 In accordance with instructions from the Ph-GW, etc., the user equipment may generate and transmit a main signal according to a specific protocol that can be used by the user equipment, and the reception may be terminated at the Ph-GW to determine normality. In accordance with instructions from the Ph-GW, etc., the user equipment generates and transmits a main signal according to a protocol with characteristics that can be used by the user equipment, loops back at the Ph-GW, terminates reception at the user equipment, determines normality, The result may be notified to the Ph-GW etc. by a control signal or the like.
 SW403は、信号終端部402から出力された主信号を合分離部404に出力する。SW403は、合分離部404から出力された主信号を、主信号に応じた信号終端部402に出力する。 The SW 403 outputs the main signal output from the signal termination section 402 to the combining/separating section 404. The SW 403 outputs the main signal output from the combining/separating section 404 to the signal termination section 402 according to the main signal.
 合分離部404は、信号終端部402から出力された主信号に対し、判定制御部401から出力された制御信号を重畳させる。例えば、合分離部404は、主信号に対して制御信号を周波数重畳してもよい。合分離部404は、ユーザ装置300から受信された信号から制御信号を分離し、分離された制御信号を判定制御部401に出力する。合分離部404は、制御信号が分離された信号(主信号)を、SW403を介して信号終端部402に出力する。 The combining/separating unit 404 superimposes the control signal output from the determination control unit 401 on the main signal output from the signal termination unit 402. For example, the combining/separating unit 404 may frequency-superimpose the control signal on the main signal. The combining/separating unit 404 separates a control signal from the signal received from the user device 300 and outputs the separated control signal to the determination control unit 401 . The combining/separating section 404 outputs a signal (main signal) in which the control signal is separated to the signal terminating section 402 via the SW 403 .
 光インタフェース部405は、合分離部404から出力された電気信号を光信号に変換する。光インタフェース部405は、変換された光信号を、光通信経路を介してユーザ装置300へ送信する。 The optical interface section 405 converts the electrical signal output from the combining/separating section 404 into an optical signal. Optical interface unit 405 transmits the converted optical signal to user device 300 via an optical communication path.
 光インタフェース部406は、ユーザ装置300から送信された光信号を、光通信経路を介して受信し、受信された光信号を電気信号に変換する。光インタフェース部406は、変換によって得られた電気信号を、合分離部404に出力する。 The optical interface unit 406 receives the optical signal transmitted from the user device 300 via the optical communication path, and converts the received optical signal into an electrical signal. The optical interface section 406 outputs the electrical signal obtained by the conversion to the combining/separating section 404 .
 ユーザ装置300は、光送受信機301及び制御部330を備える。光送受信機301は、光インタフェース部321(光IF部)と、合分離部322と、処理部323と、UNI_PHY(Tx)324と、UNI_PHY(Rx)325と、光インタフェース部326(光IF部)とを備える。 The user device 300 includes an optical transceiver 301 and a control unit 330. The optical transceiver 301 includes an optical interface section 321 (optical IF section), a combining/separating section 322, a processing section 323, a UNI_PHY (Tx) 324, a UNI_PHY (Rx) 325, and an optical interface section 326 (optical IF section). ).
 光インタフェース部321は、Ph-GW100から受信された光信号を、電気信号に変換する。光インタフェース部321は、変換によって得られた電気信号を、合分離部322に出力する。以下では、ユーザ装置は、光電変換し、ユーザ装置内(UNI_PHY)で、ループバック時は全信号をループバックするか、一部信号をループバックし、残りをユーザ側に出力するか、ループバックしつつユーザ側に出力する。 The optical interface unit 321 converts the optical signal received from the Ph-GW 100 into an electrical signal. The optical interface section 321 outputs the electrical signal obtained by the conversion to the combining/separating section 322 . In the following, the user equipment performs photoelectric conversion, and within the user equipment (UNI_PHY), during loopback, either all signals are looped back, some signals are looped back, and the rest is output to the user side, or loopback is performed. output to the user.
 合分離部322は、Ph-GW100から受信された信号から制御信号を分離し、分離された制御信号を制御部330に出力する。合分離部322は、制御信号が分離された信号(主信号)を処理部323に出力する。合分離部322は、処理部323から出力された主信号に対し、制御部330から出力された制御信号を重畳させる。例えば、合分離部322は、主信号に対して制御信号を周波数重畳してもよい。なお、ユーザ装置構成で処理部を備えるのは、一例であり、備えない構成もある。 The combining/separating unit 322 separates the control signal from the signal received from the Ph-GW 100 and outputs the separated control signal to the control unit 330. The combining/separating section 322 outputs a signal (main signal) in which the control signal is separated to the processing section 323 . The combining/separating section 322 superimposes the control signal output from the control section 330 on the main signal output from the processing section 323 . For example, the combining/separating section 322 may frequency-superimpose the control signal on the main signal. Note that a user device configuration that includes a processing unit is only an example, and there is also a configuration that does not include a processing unit.
 処理部323は、例えば、再生中継器であり、その場合、等化(Reshaping)機能、リタイミング(Retiming)機能、識別再生(Regenerating)機能を備える。例えば、多重部と分離部である。例えば、アクセスネットワークからの信号をAPNで伝送する信号形態に変換する変換部である。例えば、アクセスネットワークからの信号を伝送フレームに多重分離するフレーマである。処理部323は、例えば、MACであり、その場合、合分離部322から出力された主信号に対して、メディアアクセス制御を実行する。処理部323は、装置を識別するためのアドレス(MACアドレス)の定義及び割り当てを実行する。処理部323は、信号の送信タイミングを制御してもよい。MACは、主信号を、UNI_PHY(Tx)324に出力する。MACは、UNI_PHY(Rx)325から出力された電気信号に対して、メディアアクセス制御を実行してもよい。処理部323は、主信号を、合分離部322に出力する。 The processing unit 323 is, for example, a regenerative repeater, in which case it has an equalization (Reshaping) function, a retiming (Retiming) function, and an identification regeneration (Regenerating) function. For example, there is a multiplexing section and a separating section. For example, it is a conversion unit that converts a signal from an access network into a signal format transmitted by APN. For example, a framer that demultiplexes signals from an access network into transmission frames. The processing unit 323 is, for example, a MAC, in which case it performs media access control on the main signal output from the combining/separating unit 322. The processing unit 323 defines and allocates an address (MAC address) for identifying a device. The processing unit 323 may control the signal transmission timing. The MAC outputs the main signal to the UNI_PHY (Tx) 324. The MAC may perform media access control on the electrical signal output from the UNI_PHY (Rx) 325. The processing section 323 outputs the main signal to the combination/separation section 322.
 なお、合分離部322及び処理部323の構成は、上述されたものに限定される必要は無い。例えば、合分離部322が光インタフェース部321及び光インタフェース部326よりもネットワーク側に配置されてもよい。この場合、合分離部322は、光信号においてAMCCの重畳や分離を行う。また、制御信号がOTNフレームやGCC等でやりとりされる場合には、合分離部322及び処理部323相当がOTNフレーマとして機能してもよい。 Note that the configurations of the combining/separating section 322 and the processing section 323 do not need to be limited to those described above. For example, the combining/separating section 322 may be placed closer to the network than the optical interface section 321 and the optical interface section 326. In this case, the combining/separating unit 322 performs AMCC superimposition and separation on the optical signal. Furthermore, when control signals are exchanged using OTN frames, GCC, etc., the combining/separating section 322 and the processing section 323 may function as an OTN framer.
 「Ethernet(登録商標) OAM(Operation Administration Maintenance)」を用いて、経路の正常性を判定してよい。主信号(ユーザーユーザ信号)をペイロードとする下位のヘッダの制御チャネルを用いて、経路の正常性を判定してよい。例えば、光トランスポートネットワーク(OTN)の汎用通信チャネル(GCC : General Communication Channel)を用いて、経路の正常性を判定してよい。 The normality of the route may be determined using "Ethernet (registered trademark) OAM (Operation Administration Maintenance)." The normality of the path may be determined using the control channel of the lower header whose payload is the main signal (user signal). For example, the general communication channel (GCC) of the optical transport network (OTN) may be used to determine the health of the path.
 UNI_PHY(Tx)324は、ユーザ網インタフェースの物理層における送信機能部である。UNI_PHY(Tx)324は、処理部323から出力された電気信号(主信号)に対して、所定の受信処理を実行し、ユーザ側に主信号を送信する。なお、ユーザ側は電気の場合も光の場合もある。 The UNI_PHY (Tx) 324 is a transmission function unit in the physical layer of the user network interface. The UNI_PHY (Tx) 324 performs predetermined reception processing on the electrical signal (main signal) output from the processing unit 323, and transmits the main signal to the user side. Note that the user side may be electrical or optical.
 UNI_PHY(Rx)325は、ユーザ網インタフェースの物理層における受信機能部である。UNI_PHY(Rx)325は、ユーザ側から主信号を受信し、所定の送信処理を実行することによって、主信号に応じた電気信号を処理部323に出力する。なお、ユーザ側は電気の場合も光の場合もある。 The UNI_PHY (Rx) 325 is a reception function unit in the physical layer of the user network interface. The UNI_PHY (Rx) 325 receives a main signal from the user side, performs a predetermined transmission process, and outputs an electrical signal according to the main signal to the processing unit 323. Note that the user side may be electrical or optical.
 光インタフェース部326は、制御信号を光信号に変換する。光インタフェース部326は、変換によって得られた光信号をPh-GW100へ送信する。 The optical interface section 326 converts the control signal into an optical signal. The optical interface section 326 transmits the optical signal obtained by the conversion to the Ph-GW 100.
 制御信号受信部331は、合分離部322によって分離された制御信号を合分離部322から受信する。制御信号受信部331は、受信された制御信号が示す情報に応じて動作する。制御信号がループバックの実行の指示を示す情報である場合、制御信号受信部331は指示に応じて光送受信機301に対してループバックの実行を指示する。例えば、制御信号受信部331は、UNI_PHY(Tx)324に対して主信号のループバックの実行を指示する。 The control signal receiving unit 331 receives from the combining/separating unit 322 the control signal separated by the combining/separating unit 322 . The control signal receiving unit 331 operates according to information indicated by the received control signal. If the control signal is information indicating an instruction to execute a loopback, the control signal receiving unit 331 instructs the optical transceiver 301 to execute a loopback in accordance with the instruction. For example, the control signal receiving unit 331 instructs the UNI_PHY (Tx) 324 to perform loopback of the main signal.
 第1実施形態における信号経路正常性判定の処理の流れについて説明する。Ph-GWがループバック用の主信号を生成送信し、その主信号をユーザ装置がループバックし、ループバックされた主信号をPh-GWで受信終端する例で説明する。 The flow of processing for determining signal path normality in the first embodiment will be explained. An example will be explained in which the Ph-GW generates and transmits a main signal for loopback, the user equipment loops back the main signal, and the Ph-GW receives and terminates the looped-back main signal.
 所定のタイミングで判定制御部401は、対象ユーザ装置において処理可能なプロトコルに応じた信号終端部402に対し、主信号の出力を指示する。所定のタイミングは、例えばユーザ装置300との通信に不具合が検出されたタイミングであってもよい。なお、この指示は、APNコントローラ200からの指示であってもよいし、アクセス系管理制御部103からの指示であってもよい。 At a predetermined timing, the determination control unit 401 instructs the signal termination unit 402 to output the main signal according to a protocol that can be processed by the target user device. The predetermined timing may be, for example, the timing at which a problem in communication with the user device 300 is detected. Note that this instruction may be an instruction from the APN controller 200 or an instruction from the access system management control unit 103.
 指示を受けた信号終端部402は、主信号を生成しSW403へ出力する。出力される主信号は、例えば信号経路正常性判定において予め定められた内容の信号であってもよい。判定制御部401は、ループバックの実行を指示するための制御信号を生成し合分離部404に出力する。合分離部404は、制御信号を主信号に重畳させて光インタフェース部405に出力する。光インタフェース部405は、合分離部404から入力された電気信号を光信号に変換し、伝送路を介してユーザ装置300に光信号を送信する。手順としては、ユーザ装置に制御信号等を介しループバック指示する。その後に、ユーザ装置のプロトコルに応じた信号終端部にループバック信号を送信させることが正しい。これは、ユーザ装置が対応する前に、ループバック用信号を送信すると、通常流してはいけないループバック用の信号をユーザ装置がユーザ側に垂れ流してしまう恐れがあるからである。 Upon receiving the instruction, the signal termination unit 402 generates a main signal and outputs it to the SW 403. The output main signal may be, for example, a signal with a predetermined content in the signal path normality determination. The determination control unit 401 generates a control signal for instructing execution of loopback and outputs it to the combination/separation unit 404 . The combining/separating section 404 superimposes the control signal on the main signal and outputs it to the optical interface section 405 . The optical interface unit 405 converts the electrical signal input from the combining/separating unit 404 into an optical signal, and transmits the optical signal to the user device 300 via the transmission path. The procedure is to instruct the user device to loop back via a control signal or the like. After that, it is correct to have the signal termination section according to the protocol of the user equipment transmit the loopback signal. This is because if the loopback signal is transmitted before the user equipment responds, there is a risk that the user equipment will leak the loopback signal, which normally should not be transmitted, to the user side.
 ユーザ装置300の光インタフェース部321は、アクセス系管理制御部103から光信号を受信すると、受信された光信号を電気信号に変換して合分離部322に出力する。合分離部322は、受信された信号を制御信号と主信号に分離する。合分離部322は、制御信号を制御部330に出力し、主信号を処理部323に出力する。 Upon receiving the optical signal from the access system management control unit 103 , the optical interface unit 321 of the user device 300 converts the received optical signal into an electrical signal and outputs it to the combining/separating unit 322 . The combining/separating unit 322 separates the received signal into a control signal and a main signal. The combining/separating section 322 outputs a control signal to the control section 330 and outputs a main signal to the processing section 323.
 制御部330の制御信号受信部331は、合分離部322から制御信号を受けると、制御信号に含まれる制御の内容に応じて動作する。制御信号には、ループバックの実行の指示を示す信号が含まれている。この指示に応じて、制御信号受信部331は、光送受信機301に対して主信号のループバックの実行を指示する。光送受信機301において受信される主信号は、光送受信機301において処理可能なプロトコルの動作を行う信号終端部402から送信された主信号である。そのため、光送受信機301は、問題無く主信号についてループバックを行うことができる。制御の応答や主信号に比較すれば通常ゆっくりであるので、制御信号を送信し、それに応じてユーザ装置がループバックの準備ができてから、ループバック用の主信号を送信する。 When the control signal receiving section 331 of the control section 330 receives the control signal from the combining/separating section 322, it operates according to the content of the control included in the control signal. The control signal includes a signal indicating an instruction to perform loopback. In response to this instruction, the control signal receiving unit 331 instructs the optical transceiver 301 to execute loopback of the main signal. The main signal received by the optical transceiver 301 is the main signal transmitted from the signal termination section 402 that performs a protocol operation that can be processed by the optical transceiver 301. Therefore, the optical transceiver 301 can loop back the main signal without any problem. Since the response is usually slow compared to the control response and the main signal, the control signal is transmitted, and the main signal for loopback is transmitted after the user equipment is ready for loopback in response.
 例えば、処理部323がループバックポイントとなってループバック処理が実行されてもよいし、UNI_PHY(Tx)324やUNI_PHY(Rx)325がループバックポイントとなってループバック処理が実行されてもよい。ループバック処理は、例えば全チャネルループバックとして実施されてもよいし、部分的ループバックとして実施されてもよいし、論理ループバックとして実施されてもよい。また、光インタフェース部321、合分離部322又は処理部323でループバック処理が実行される場合には、光送受信機301の装置内において、後述する装置内折返しが実行されてもよい。この場合、例えば制御部330は、後述する装置内折返制御部334を備えてもよい。 For example, the processing unit 323 may serve as a loopback point to execute loopback processing, or the UNI_PHY (Tx) 324 or UNI_PHY (Rx) 325 may serve as a loopback point to execute loopback processing. . The loopback process may be implemented as a full channel loopback, a partial loopback, or a logical loopback, for example. Further, when loopback processing is executed in the optical interface unit 321, the combining/separating unit 322, or the processing unit 323, intra-device loopback, which will be described later, may be executed within the optical transceiver 301. In this case, for example, the control unit 330 may include an in-device return control unit 334, which will be described later.
 ループバックされた主信号は、光インタフェース部326において光信号に変換され、アクセス系管理制御部103に送信される。ループ1相当では、主信号は、光IF間やアクセスネットワークから見て光IFの直後(図2から図5まででは合分離部等)で折り返し、ループ2相当ではUNI_PHYのRxとTx間やアクセスネットワークから見てUNI_PHYのRxとTxの直前(図2から図5まででは処理部)で折り返す。光IF部で折り返す場合はAMCC等の制御信号は含まれている可能性はあるが、光IF部で折り返しても主信号とは別の光信号での制御信号の場合や、制御信号を取り除いた処理部やUNI_PHYで折り返す場合は、折返し信号に制御信号は含まれない場合がある。この状態で、制御信号もループバックを行う場合は、制御信号が含まれないループバックする主信号に、ループバックする制御信号を重畳するか多重し、制御信号と主信号のループバックを行う。本実施形態は、ユーザ装置が可能なプロトコルでの主信号ルーブバックなので、制御信号もループバックしてもよいが、必須ではない。逆に、後述の制御信号ループバックの実施形態では、制御信号のループバックが必須であるが、主信号のループバックは必須ではない。 The looped back main signal is converted into an optical signal at the optical interface unit 326 and transmitted to the access system management control unit 103. In the loop 1 equivalent, the main signal is looped back between the optical IFs or immediately after the optical IF as seen from the access network (in Figures 2 to 5, the combining/separating section, etc.), and in the loop 2 equivalent, the main signal is looped back between the optical IFs or immediately after the optical IF as seen from the access network, and in the loop 2 equivalent, the main signal is returned between the optical IFs or immediately after the optical IF when viewed from the access network. When viewed from the network, the process loops back just before Rx and Tx of UNI_PHY (processing section in FIGS. 2 to 5). When looping back at the optical IF section, there is a possibility that control signals such as AMCC are included, but even when looping back at the optical IF section, the control signal may be a different optical signal from the main signal, or the control signal may be removed. When the signal is returned by a processing unit or UNI_PHY, the control signal may not be included in the return signal. In this state, when the control signal is also looped back, the control signal to be looped back is superimposed or multiplexed on the main signal to be looped back, which does not include the control signal, and the control signal and the main signal are looped back. In this embodiment, the main signal is looped back using a protocol that can be used by the user equipment, so the control signal may also be looped back, but this is not essential. Conversely, in the control signal loopback embodiment described below, loopback of the control signal is essential, but loopback of the main signal is not essential.
 ループバックされた主信号は、光インタフェース部406において電気信号に変換され、主信号の送信元であった信号終端部402に入力される。信号終端部402は、入力された主信号について、導通確認に応じた所定の評価を行う。例えば、正しくループバックが行われたか否かに関する評価が行われてもよい。信号終端部402は、評価結果を示す情報を判定制御部401に出力する。判定制御部401は、信号終端部402から受けた評価結果に基づいて、対象ユーザ装置に関する信号経路正常性判定を行う。判定制御部401は、判定結果を他の装置に出力してもよいし、ログとして記憶装置に記録してもよい。 The looped back main signal is converted into an electrical signal at the optical interface section 406, and is input to the signal termination section 402, which was the source of the main signal. The signal termination unit 402 performs a predetermined evaluation on the input main signal according to the continuity check. For example, an evaluation may be made as to whether the loopback was performed correctly. The signal termination unit 402 outputs information indicating the evaluation result to the determination control unit 401. The determination control unit 401 performs a signal path normality determination regarding the target user device based on the evaluation result received from the signal termination unit 402. The determination control unit 401 may output the determination result to another device or record it in a storage device as a log.
 このように構成された第1実施形態の通信システム1によれば、ユーザ装置300において処理可能なプロトコルの信号を用いてループバックの対象となる主信号がユーザ装置300に送信される。そのため、光送受信機301において主信号が光・電気変換された後の経路を経由した後のループバックポイントでループバックを行うことができる。したがって、特定の通信プロトコルや変調方式に依存しないプロトコル無依存のAPNにおいて、ユーザ装置300の内部を含む信号経路の正常性を判定することが可能となる。 According to the communication system 1 of the first embodiment configured in this way, the main signal to be looped back is transmitted to the user device 300 using a signal of a protocol that can be processed by the user device 300. Therefore, loopback can be performed at a loopback point after the main signal passes through the path after optical-to-electrical conversion in the optical transceiver 301. Therefore, it is possible to determine the normality of the signal path including the inside of the user device 300 in a protocol-independent APN that does not depend on a specific communication protocol or modulation method.
 以上、ループバックで上り下り両方の区間の正常性を判定する処理について説明した。なお、アクセス系管理制御部103からユーザ装置300、ユーザ装置300からアクセス系管理制御部103の一方光の信号のみを導通し、その方向の正常性のみを判定してもよい。その場合、下り(アクセス系管理制御部103からユーザ装置300)であれば、ユーザ装置300が判定結果を制御信号で申告する。上り(ユーザ装置300からアクセス系管理制御部103)であれば、制御信号での指示に従ってユーザ装置300がアクセス系管理制御部103に信号を送る。 The process of determining the normality of both up and down sections using loopback has been described above. Note that only one optical signal may be conducted from the access system management control unit 103 to the user device 300 and from the user device 300 to the access system management control unit 103, and only the normality in that direction may be determined. In that case, if it is downlink (from the access system management control unit 103 to the user device 300), the user device 300 declares the determination result using a control signal. If it is an uplink (from the user device 300 to the access system management control unit 103), the user device 300 sends a signal to the access system management control unit 103 according to the instruction in the control signal.
 光信号の送受信装置を通信システムが備える場合、対向する一方の装置(Ph-GW)は、対向する他方の装置が送受信可能な形式の光信号を選択生成し、生成した光信号を対向する他方の装置に折り返す。対向する他方の装置(ユーザ装置)は、(送受信可能な形式で)折り返された光信号又はその応答を受信し、受信した折返された光信号又はその応答から、対向する一方の装置と対向する他方の装置との間の信号経路を含む信号経路が正常であるか否かを判定する。 When a communication system includes an optical signal transmitting/receiving device, one opposing device (Ph-GW) selectively generates an optical signal in a format that can be transmitted and received by the other opposing device, and transmits the generated optical signal to the opposing device. Fold back to the device. The other opposing device (user device) receives the reflected optical signal or its response (in a format that can be transmitted and received), and uses the received reflected optical signal or its response to communicate with the opposing device. Determine whether the signal path including the signal path with the other device is normal.
 (B1)Ph-GWで折り返し、かつ、Ph-GW側の複数の主信号終端部(「形式選択+折返側:Ph-GW側の装置」かつ「生成送信受信終端側:ユーザ装置」のシステム構成パターン、Ph-GW側の装置が対向装置(ここではユーザ装置)の使用する主信号に応じた主信号終端部を選択し、対向装置(ここではユーザ装置)の主信号終端部で、その主信号で正常性判定の要求を生成し、Ph-GW側の装置の選択した主信号終端部で、その要求に応じて正常性の判定に関する応答を送信し、受信した該応答を、ユーザ装置の主信号終端部で終端する、又はPh-GW側の装置が対向装置(ここではユーザ装置)の使用する主信号に応じた主信号終端部を選択し、対向装置(ここではユーザ装置)の主信号終端部で、その主信号で正常性判定の信号を生成し、Ph-GW側の装置の選択した主信号終端部でその正常性の判定の信号を折返し送信し、受信した該折返し(ループバック信号)を、対向装置(ここではユーザ装置)の主信号終端部で終端する(不図示)) (B1) System of loopback at Ph-GW and multiple main signal termination units on Ph-GW side (“format selection + loopback side: device on Ph-GW side” and “generation transmission/reception termination side: user equipment”) The configuration pattern is that the device on the Ph-GW side selects the main signal termination section according to the main signal used by the opposite device (here, the user device), and the main signal termination section of the opposite device (here, the user device) selects the main signal termination section. Generates a request for normality determination using the main signal, transmits a response regarding normality determination in response to the request at the main signal termination section selected by the Ph-GW side device, and transmits the received response to the user device. or the device on the Ph-GW side selects the main signal termination section according to the main signal used by the opposite device (user device here), and terminates at the main signal termination portion of the opposite device (user device here). The main signal termination unit generates a normality determination signal using the main signal, and the main signal termination unit selected by the Ph-GW side device returns the normality determination signal, and the received return ( (loopback signal) is terminated at the main signal termination section of the opposite device (user device here) (not shown)
 アクセス系管理制御部とユーザ装置とが通信できるように光振分部等を設定する。アクセス系管理制御部がユーザ装置に応じたプロトコルの主信号の終端部を選択する。アクセス系管理制御部が、正常性判定用の上り主信号を生成・送信するようユーザ装置に指示する。指示は制御信号ででも、主信号ででもよい。制御信号の場合は指示してからユーザ装置に応じた終端部を選択してもよい。なお、主信号での場合は、主信号で指示するために、選択後に指示となる。ユーザ装置が、正常性判定用の上り主信号を生成・送信する。なお、制御信号で応答等しない時は、主信号を制御信号で変調又は主信号に制御信号を重畳しなくてよい。アクセス系管理制御部が、その上り主信号又はその応答を下り主信号として折返し送信する。即ち、光IF部406で受けた信号を、選択した信号終端部402が折り返し、折り返された信号を光IF部405が出力する。なお、制御信号で指示等しない時は、主信号を制御信号で変調又は主信号に制御信号を重畳しなくてよい。その折り返しの下り主信号を、ユーザ装置で受信・終端し判定する。時間経過又はアクセス系管理制御部からの指示で、ユーザ装置の正常性判定用の主信号の生成及び送信を解除し、判定結果をユーザ装置から取得する。このときの指示は制御信号ででも、主信号ででもよい。このときの取得は制御信号でも、主信号でもよい。 Set up the optical distribution unit etc. so that the access system management control unit and the user device can communicate. The access system management control section selects the termination section of the main signal of the protocol according to the user device. The access system management control unit instructs the user equipment to generate and transmit an uplink main signal for normality determination. The instruction may be a control signal or a main signal. In the case of a control signal, the termination unit according to the user device may be selected after the instruction is given. Note that in the case of using the main signal, since the main signal is used for the instruction, the instruction is given after selection. The user equipment generates and transmits an uplink main signal for normality determination. Note that when there is no response to the control signal, it is not necessary to modulate the main signal with the control signal or to superimpose the control signal on the main signal. The access system management control unit returns the uplink main signal or its response as a downlink main signal. That is, the signal received by the optical IF section 406 is returned by the selected signal termination section 402, and the optical IF section 405 outputs the returned signal. Note that when no instruction is given by the control signal, it is not necessary to modulate the main signal with the control signal or to superimpose the control signal on the main signal. The returned downlink main signal is received, terminated, and determined by the user equipment. With the passage of time or an instruction from the access system management control unit, the generation and transmission of the main signal for determining the normality of the user device is canceled, and the determination result is acquired from the user device. The instruction at this time may be a control signal or a main signal. The acquisition at this time may be either a control signal or a main signal.
 ここで、ユーザ装置とアクセス系管理制御部の接続の際に、光振分部で接続替えして接続した。なお、このような接続は、他の態様で行われてもよい。 Here, when connecting the user device and the access system management control unit, the connection was changed at the optical distribution unit. Note that such a connection may be made in other ways.
 (B2)Ph-GWで折り返し、かつ、ユーザ装置側の複数の主信号終端部(「形式選択+生成送信受信終端側:ユーザ装置」かつ「折返側:Ph-GW側の装置」のシステム構成パターン、ユーザ装置側が対向装置(ここではPh-GW側の装置)の使用する主信号に応じた主信号終端部を選択し、選択した主信号終端部で、その主信号で正常性判定の要求を生成し、対向装置(ここではPh-GW側の装置)でその要求に応じて正常性の判定に関する応答を送信し、受信した該応答を、ユーザ装置の該選択した主信号終端部で終端する、又はユーザ装置が対向装置(ここではPh-GW側の装置)の使用する主信号に応じた主信号終端部を選択し、選択した主信号終端部で、その主信号で正常性判定の信号を生成し、対向装置(ここではPh-GW側の装置)でその正常性の判定の信号を折返し送信し、受信した該折返し(ループバック信号)を、ユーザ装置の該選択した主信号終端部で終端する(不図示)) (B2) System configuration of loopback at Ph-GW and multiple main signal termination units on user equipment side (“format selection + generation transmission/reception termination side: user equipment” and “return side: device on Ph-GW side”) Pattern, the user equipment side selects the main signal termination section according to the main signal used by the opposite device (here, the device on the Ph-GW side), and requests normality determination using the main signal at the selected main signal termination section. The opposite device (Ph-GW side device in this case) transmits a response regarding normality determination in response to the request, and the received response is terminated at the selected main signal termination section of the user device. Or, the user equipment selects the main signal termination section corresponding to the main signal used by the opposite device (here, the device on the Ph-GW side), and uses the selected main signal termination section to perform normality determination using the main signal. Generates a signal, sends back a signal for determining its normality at the opposite device (Ph-GW side device here), and transmits the received return (loopback signal) to the selected main signal terminal of the user device. terminating in (not shown))
 対向装置の使用する信号形式に対応した主信号終端部(信号終端部)が、ユーザ装置に配置されてもよい。アクセス系管理制御部とユーザ装置とが通信できるように光振分部等を設定する。アクセス系管理制御部が、ユーザ装置に配置された主信号終端部(信号終端部)を選択する。ユーザ装置は、選択された信号終端部で、主信号を送信する。Ph-GWは、主信号を折り返す。ユーザ装置は、その折り返しの下り主信号を受信して終端し、正常性を判定する。 A main signal termination section (signal termination section) corresponding to the signal format used by the opposing device may be arranged in the user device. The optical distribution unit and the like are set so that the access system management control unit and the user device can communicate. The access system management control unit selects a main signal termination unit (signal termination unit) located in the user device. The user equipment transmits the main signal at the selected signal termination. Ph-GW returns the main signal. The user equipment receives and terminates the returned downlink main signal, and determines normality.
 以上のように、例えば第1のユーザ装置(ユーザ装置300-1)又は第1の制御装置(アクセス系管理制御部103-1)は、対向する第2のユーザ装置(ユーザ装置300-2)又は第2の制御装置(アクセス系管理制御部103-2)の使用する信号形態に基づいて選択された信号形態の主信号を生成及び終端する第2のユーザ装置又は第2の制御装置から送信された第1の主信号を折り返す。第2のユーザ装置又は第2の制御装置は、第2のユーザ装置又は第2の制御装置と第1のユーザ装置又は第1の制御装置との間を含む信号経路が正常であるか否かを、折り返された第1の主信号に基づいて判定する。 As described above, for example, the first user device (user device 300-1) or the first control device (access system management control unit 103-1) is connected to the opposing second user device (user device 300-2). Or transmitted from a second user device or second control device that generates and terminates a main signal in a signal format selected based on the signal format used by the second control device (access system management control unit 103-2). The first main signal sent back is looped back. The second user device or second control device determines whether the signal path including between the second user device or second control device and the first user device or first control device is normal. is determined based on the folded first main signal.
 例えば第1のユーザ装置(ユーザ装置300-1)又は第1の制御装置(アクセス系管理制御部103-1)は、対向する第2のユーザ装置(ユーザ装置300-2)又は第2の制御装置(アクセス系管理制御部103-2)の使用する信号形態に基づいて選択された信号形態で第2のユーザ装置(ユーザ装置300-2)又は第2の制御装置(アクセス系管理制御部103-2)から送信された第2の主信号を折り返してもよい。第1のユーザ装置(ユーザ装置300-1)又は第1の制御装置(アクセス系管理制御部103-1)は、対向する第2のユーザ装置(ユーザ装置300-2)又は第2の制御装置(アクセス系管理制御部103-2)の使用する信号形態に基づいて選択された信号形態で第3のユーザ装置又は第3の制御装置から送信された第2の主信号を折り返してもよい。第2のユーザ装置又は第2の制御装置は、第2のユーザ装置又は第2の制御装置と第1のユーザ装置又は第1の制御装置との間を含む信号経路が正常であるか否かを、折り返された第2の主信号に基づいて判定してもよい。 For example, a first user device (user device 300-1) or a first control device (access system management control unit 103-1) is connected to an opposing second user device (user device 300-2) or a second control device. The second user device (user device 300-2) or the second control device (access system management control unit 103) uses a signal format selected based on the signal format used by the device (access system management control unit 103-2). -2) may be looped back. The first user device (user device 300-1) or the first control device (access system management control unit 103-1) is connected to the opposing second user device (user device 300-2) or second control device. The second main signal transmitted from the third user device or the third control device may be looped back in a signal format selected based on the signal format used by the access system management control unit 103-2. The second user device or second control device determines whether the signal path including between the second user device or second control device and the first user device or first control device is normal. may be determined based on the returned second main signal.
 例えば第1のユーザ装置(ユーザ装置300-1)又は第1の制御装置(アクセス系管理制御部103-1)は、対向する第2のユーザ装置(ユーザ装置300-2)又は第2の制御装置(アクセス系管理制御部103-2)の使用する信号形態に基づいて選択された信号形態の主信号を生成及び終端する第2のユーザ装置又は第2の制御装置から送信された第1の主信号に対して、第2の主信号又は第3の主信号で応答してもよい。第2のユーザ装置又は第2の制御装置は、第2のユーザ装置又は第2の制御装置と第1のユーザ装置又は第1の制御装置との間を含む信号経路が正常であるか否かを、応答に用いられた第2の主信号又は第3の主信号に基づいて判定してもよい。 For example, a first user device (user device 300-1) or a first control device (access system management control unit 103-1) is connected to an opposing second user device (user device 300-2) or a second control device. The first signal transmitted from the second user device or the second control device that generates and terminates the main signal in the signal format selected based on the signal format used by the device (access system management control unit 103-2) The main signal may be responded to with a second main signal or a third main signal. The second user device or second control device determines whether the signal path including between the second user device or second control device and the first user device or first control device is normal. may be determined based on the second main signal or the third main signal used for the response.
 例えば第1のユーザ装置(ユーザ装置300-1)又は第1の制御装置(アクセス系管理制御部103-1)は、対向する第2のユーザ装置(ユーザ装置300-2)又は第2の制御装置(アクセス系管理制御部103-2)の使用する信号形態に基づいて選択された信号形態で第2のユーザ装置(ユーザ装置300-2)又は第2の制御装置(アクセス系管理制御部103-2)から送信された第2の主信号に対して第4の主信号で応答してもよい。第1のユーザ装置(ユーザ装置300-1)又は第1の制御装置(アクセス系管理制御部103-1)は、対向する第2のユーザ装置(ユーザ装置300-2)又は第2の制御装置(アクセス系管理制御部103-2)の使用する信号形態に基づいて選択された信号形態で第3のユーザ装置又は第3の制御装置から送信された第2の主信号に対して第4の主信号で応答してもよい。第2のユーザ装置又は第2の制御装置は、第2のユーザ装置又は第2の制御装置と第1のユーザ装置又は第1の制御装置との間を含む信号経路が正常であるか否かを、応答に用いられた第4の主信号に基づいて判定してもよい。 For example, a first user device (user device 300-1) or a first control device (access system management control unit 103-1) is connected to an opposing second user device (user device 300-2) or a second control device. The second user device (user device 300-2) or the second control device (access system management control unit 103) uses a signal format selected based on the signal format used by the device (access system management control unit 103-2). -2) may respond with a fourth main signal to the second main signal transmitted from the terminal. The first user device (user device 300-1) or the first control device (access system management control unit 103-1) is connected to the opposing second user device (user device 300-2) or second control device. The fourth main signal is transmitted from the third user device or the third control device in the signal format selected based on the signal format used by the You may respond with the main signal. The second user device or second control device determines whether the signal path including between the second user device or second control device and the first user device or first control device is normal. may be determined based on the fourth main signal used for the response.
 (第1実施形態の変形例)
 Ph-GWが下り信号とすべき主信号を受取っていない場合(主信号が正常性判定の対象区間外からPh-GWに到達していない場合)等の対応を説明する。
(Modified example of the first embodiment)
A description will be given of what to do when the Ph-GW does not receive the main signal that should be used as a downlink signal (when the main signal does not reach the Ph-GW from outside the normality determination target section).
 対向装置から正常性の判定結果を受取る主信号ループバックでは、正常性判定用の主信号の生成又は終端のいずれか又はその両方を、正常性判定対象区間の反対側の装置、例えば他のPh―GWやユーザ装置に指示し、終端の場合は、その判定結果をその装置から取得してもよい。経路の断等で、指示できない場合や、指示しても指示に従って生成や終端がされない場合のみ、信号終端部を用いるように構成されてもよい。なお、後述の図7以外の構成において、異常の場合に、後述の図7の構成例が使用されてもよい。 In the main signal loopback that receives the normality determination result from the opposite device, the generation and/or termination of the main signal for normality determination is performed by the device on the opposite side of the normality determination target section, for example, another Ph - Instruct the GW or user device, and in the case of termination, the determination result may be obtained from that device. The signal termination unit may be configured to be used only when instructions cannot be given due to a break in the route, or when generation or termination is not performed according to the instructions even if instructions are given. Note that in a configuration other than the configuration shown in FIG. 7, which will be described later, in the case of an abnormality, the configuration example shown in FIG. 7, which will be described later, may be used.
 対向装置に折返指示する主信号ループバックでは、正常性判定用の主信号への応答又は折返しを、正常性判定対象区間の反対側の装置、例えば他のPh―GWやユーザ装置に指示してもよい。経路の断等で、指示できない場合や、指示しても指示に従って応答や折返しがされない場合のみ、信号終端部を用いるように構成されてもよい。なお、後述の図7以外の構成において、異常の場合に、後述の図7の構成例が使用されてもよい。 Main signal loopback, which instructs the opposing device to return, instructs the device on the opposite side of the normality determination target section, for example, another Ph-GW or user device, to respond to or return the main signal for normality determination. Good too. The signal termination section may be configured to be used only when the instruction cannot be given due to a break in the route, or when the instruction is not responded to or returned in accordance with the instruction. Note that in a configuration other than the configuration shown in FIG. 7, which will be described later, in the case of an abnormality, the configuration example shown in FIG. 7, which will be described later, may be used.
 (第2実施形態)
 <制御信号ループバック>
 図6から図8までは、第2実施形態の通信システム1を示す図である。図6から図8まででは、通信システム1に含まれる装置のうち、信号経路正常性判定の判定対象となる1つの区間に関わる装置のみを示している。第2実施形態では、アクセス系管理制御部103が、自装置(Ph-GW100)に接続されているユーザ装置300に対して信号経路正常性判定を行う例で説明する。例えば、図1におけるアクセス系管理制御部103-2が、ユーザ装置300-2に対して信号経路正常性判定を行う。第1実施形態に記載した「Ph-GWとユーザ装置との間」以外の区間の正常性判定を行ってもよい。
(Second embodiment)
<Control signal loopback>
6 to 8 are diagrams showing the communication system 1 of the second embodiment. 6 to 8, among the devices included in the communication system 1, only the devices related to one section that is the target of the signal path normality determination are shown. In the second embodiment, an example will be described in which the access system management control unit 103 performs signal path normality determination on the user device 300 connected to its own device (Ph-GW 100). For example, the access system management control unit 103-2 in FIG. 1 performs a signal path normality determination on the user device 300-2. The normality determination may be performed in sections other than "between the Ph-GW and the user device" described in the first embodiment.
 制御信号のループバックで、制御信号と主信号とで異なる光IF部に接続の場合、主信号に関し、合分離部322に接続する光IF部は主信号の信号終端部であり、ループバックする制御信号に関して、合分離部322に接続する光IF部は、主信号の信号終端部側ではなく制御信号側となる。 When looping back the control signal, when the control signal and the main signal are connected to different optical IF sections, the optical IF section connected to the combining/separating section 322 is the signal termination section of the main signal, and the loopback is performed. Regarding the control signal, the optical IF unit connected to the combining/separating unit 322 is on the control signal side, not on the signal termination side of the main signal.
 アクセス系管理制御部103は、信号経路正常性判定の対象となっている区間に接続されているユーザ装置300(対象ユーザ装置)に対し、ループバックを指示するための制御信号を送信する。第2実施形態におけるループバックでは、ユーザ装置300によって使用されるプロコトルに応じた主信号を、Ph-GWは生成及び終端する必要はない。 The access system management control unit 103 transmits a control signal for instructing loopback to the user device 300 (target user device) connected to the section targeted for signal path normality determination. In the loopback in the second embodiment, the Ph-GW does not need to generate and terminate the main signal according to the protocol used by the user equipment 300.
 アクセス系管理制御部103に関し、合分離部404よりネットワーク側は、制御信号に関し、判定制御部401で折り返し、生成終端する。つまり、アクセス系管理制御部103は、アクセス系管理制御部103の内部の信号経路(内部経路)が正常であるか否かを、判定制御部401によって折り返された制御信号に基づいて判定してもよい。 Regarding the access system management control unit 103, on the network side from the combination/separation unit 404, the control signal is looped back by the determination control unit 401 and generated and terminated. In other words, the access system management control unit 103 determines whether the internal signal path (internal path) of the access system management control unit 103 is normal based on the control signal returned by the determination control unit 401. Good too.
 ユーザ装置300に関し、合分離部322よりユーザ側は、制御信号に関し、制御部330で折り返すか、生成終端し、主信号に関し、UNI側で折り返すか、生成終端する。両方の場合は、合分離部322で多重する。合分離部322よりネットワーク側は、光IF部が制御信号と主信号で共通の場合、共通なので、いずれも光IF部で送受信する。ユーザ装置の光IF部の送受の少なくとも一方が制御信号と主信号で異なる場合、異なる送信もしくは受信又は両方を、制御信号又は主信号のそれぞれ対応する光IF部で行う。なお、通常、ユーザ装置においては、制御信号ループバックでも主信号処理を伴う。 Regarding the user device 300, on the user side from the combining/separating unit 322, the control signal is looped back or generated and terminated at the control unit 330, and the main signal is looped back or generated and terminated at the UNI side. In both cases, the combination/separation section 322 multiplexes the signals. On the network side from the combining/separating unit 322, if the optical IF unit is common for the control signal and the main signal, since they are common, both are transmitted and received at the optical IF unit. When at least one of the transmission and reception of the optical IF section of the user equipment is different between the control signal and the main signal, different transmissions or receptions, or both, are performed at the optical IF sections corresponding to the control signal or the main signal, respectively. Note that in a user device, control signal loopback usually involves main signal processing.
 第2実施形態におけるループバック自体では、制御信号が導通しない部分、例えば、UNI_PHYと処理部323との間の経路についての正常性は判定されない。使用される制御信号は、それぞれ異なる送受信形式(プロトコルや変調方式や変調速度や符号の形態)の光信号に対応する複数のユーザ装置300(通信システム1の全てのユーザ装置300であってもよい)において共通して使用される制御信号である。特に、主信号のプロトコルが異なるユーザ装置で共通して使用される制御信号である。このような制御信号の具体例として、例えばAMCCがある。例えば、異なる光IF部と光源と受信器と主信号とを用いる送信側又は受信側の少なくとも一方の制御信号であって、主信号の形式によらない制御信号がある。このような制御信号の他の具体例として、Ethernet(登録商標) OAMや、OTNフレームのGCC等がある。Ethernet(登録商標) OAMは、Ethernet(登録商標)でカプセル化すれば、異なるプロトコルを運べる。OTNフレームは、OTNフレーム内に異なるプロトコルのクライアント信号を詰め込める。なお、Ethernet(登録商標) OAMや、OTNフレームのGCC等を用いる場合、制御信号が主信号と時分割多重している。そのため、Ethernet(登録商標) OAMでは遅延変動されることはある。しかし、それ以外は主信号自体の通信品質自体には影響を与えない。これに対し、AMCCのループバックは主信号に重畳して変調される。そのため、主信号自体の通信品質に影響を与える可能性がある。このような処理を実現するため、アクセス系管理制御部103は、判定制御部401、合分離部404、光インタフェース部(光IF部)405及び光インタフェース部(光IF部)406を備える。 In the loopback itself in the second embodiment, the normality of the portion where the control signal is not conducted, for example, the path between the UNI_PHY and the processing unit 323 is not determined. The control signals used may be transmitted by a plurality of user devices 300 (all user devices 300 of the communication system 1) each corresponding to optical signals of different transmission/reception formats (protocols, modulation methods, modulation speeds, and code formats). ) is a control signal commonly used in In particular, it is a control signal that is commonly used by user equipments with different main signal protocols. A specific example of such a control signal is, for example, AMCC. For example, there is a control signal for at least one of the transmitting side and the receiving side that uses different optical IF sections, light sources, receivers, and main signals, and that does not depend on the format of the main signal. Other specific examples of such control signals include Ethernet (registered trademark) OAM and OTN frame GCC. Ethernet OAM can carry different protocols when encapsulated in Ethernet. The OTN frame can pack client signals of different protocols within the OTN frame. Note that when using Ethernet (registered trademark) OAM, OTN frame GCC, etc., the control signal is time-division multiplexed with the main signal. Therefore, the delay may vary in Ethernet (registered trademark) OAM. However, other than that, the communication quality of the main signal itself is not affected. On the other hand, AMCC loopback is modulated by being superimposed on the main signal. Therefore, the communication quality of the main signal itself may be affected. In order to realize such processing, the access system management control unit 103 includes a determination control unit 401, a combination/separation unit 404, an optical interface unit (optical IF unit) 405, and an optical interface unit (optical IF unit) 406.
 判定制御部401は、ループバックの実行を示す制御信号を合分離部404に出力する。使用される制御信号は、それぞれ異なる送受信形式(プロトコル、変調方式、変調速度及び符号の形態)の光信号に対応する複数のユーザ装置300において共通して使用可能な信号である。判定制御部401は、ユーザ装置300からループバックされた制御信号を受信すると、受信された信号に基づいて判定対象の経路の正常性について判定する。 The determination control unit 401 outputs a control signal indicating execution of loopback to the combination/separation unit 404. The control signal used is a signal that can be used in common by a plurality of user devices 300 that correspond to optical signals of different transmission/reception formats (protocols, modulation methods, modulation speeds, and code formats). Upon receiving the looped back control signal from the user device 300, the determination control unit 401 determines the normality of the route to be determined based on the received signal.
 合分離部404は、他の装置(例えば信号終端部)から出力された主信号に対し、判定制御部401から出力された制御信号を重畳させる。例えば、合分離部404は、ユーザ装置300への主信号の光信号や、別キャリアの光信号に対して、制御信号(例えばAMCC)を重畳させる。例えば、合分離部404は、主信号に対して制御信号を周波数重畳してもよい。合分離部404は、ユーザ装置300から受信された信号から制御信号を分離し、分離された制御信号を判定制御部401に出力する。合分離部404は、制御信号が分離された信号(主信号)を、他の装置(例えば信号終端部)に出力する。 The combining/separating unit 404 superimposes the control signal output from the determination control unit 401 on the main signal output from another device (for example, a signal termination unit). For example, the combining/separating unit 404 superimposes a control signal (for example, AMCC) on the optical signal of the main signal to the user equipment 300 or the optical signal of another carrier. For example, the combining/separating unit 404 may frequency-superimpose the control signal on the main signal. The combining/separating unit 404 separates a control signal from the signal received from the user device 300 and outputs the separated control signal to the determination control unit 401 . The combining/separating unit 404 outputs a signal (main signal) from which the control signal is separated to another device (for example, a signal termination unit).
 なお、ループバック信号として用いられる光信号の光源は、主信号の光源と別でもよいし、複数あってもよい。ループバック信号として用いられる光信号の光源は、主信号として用いられる光信号の光源として共用されてもよい。光インタフェース部406は、主信号の光源と制御信号の光源とが別光源である場合は少なくともその制御信号の光源の信号を受信してもよい。主信号の光源と制御信号の光源とが共用の場合は、その光源の信号を受信する。 Note that the light source for the optical signal used as the loopback signal may be separate from the light source for the main signal, or there may be multiple light sources. The light source of the optical signal used as the loopback signal may be shared as the light source of the optical signal used as the main signal. If the light source for the main signal and the light source for the control signal are different light sources, the optical interface unit 406 may receive at least the signal from the light source for the control signal. If the main signal light source and the control signal light source are shared, the signal from that light source is received.
 なお、ループバック受信部310は、主信号の光源と制御信号の光源とが別光源である場合は少なくともその制御信号の光源の信号を受信してもよい。主信号の光源と制御信号の光源とが共用の場合は、その光源の信号を受信する。 Note that when the light source of the main signal and the light source of the control signal are different light sources, the loopback receiving section 310 may receive at least the signal of the light source of the control signal. If the main signal light source and the control signal light source are shared, the signal from that light source is received.
 光インタフェース部405は、合分離部404から出力された電気信号を、光信号に変換する。光インタフェース部405は、変換によって得られた光信号を、光通信経路を介してユーザ装置300へ送信する。 The optical interface section 405 converts the electrical signal output from the combining/separating section 404 into an optical signal. The optical interface unit 405 transmits the optical signal obtained by the conversion to the user device 300 via an optical communication path.
 光インタフェース部406は、ユーザ装置300から送信された光信号を、光通信経路を介して受信し、受信された光信号を電気信号に変換する。光インタフェース部406は、変換によって得られた電気信号を、合分離部404に出力する。 The optical interface unit 406 receives the optical signal transmitted from the user device 300 via the optical communication path, and converts the received optical signal into an electrical signal. The optical interface section 406 outputs the electrical signal obtained by the conversion to the combining/separating section 404 .
 ユーザ装置300は、光送受信機301及び制御部330を備える。第2実施形態の光送受信機301は、第1実施形態における光送受信機301と同様の構成であるため説明を省略する。 The user device 300 includes an optical transceiver 301 and a control section 330. The optical transceiver 301 of the second embodiment has the same configuration as the optical transceiver 301 of the first embodiment, so a description thereof will be omitted.
 なお、第1実施形態において、指示、生成終端又は折返を主信号のみで実施する場合には、制御信号をユーザ装置の制御部に伝える必要は無い。第2実施形態において、主信号の生成終端、折返を必須としない場合には、ユーザ装置内の制御部との制御信号の授受が主となる。この点に関しては、第2実施形態は第1実施形態と同様ではない。 Note that in the first embodiment, when instructions, generation termination, or loopback are performed using only the main signal, there is no need to transmit the control signal to the control unit of the user device. In the second embodiment, when the generation and termination of the main signal and the loopback are not essential, the transmission and reception of the control signal with the control unit in the user device is the main function. In this respect, the second embodiment is not similar to the first embodiment.
 制御信号受信部331は、合分離部322によって分離された制御信号を合分離部322から受信する。制御信号受信部331は、受信された制御信号が示す情報に応じて動作する。制御信号がループバックの実行の指示を示す情報である場合、制御信号受信部331は指示に応じて折返部333に対してループバックの実行を指示する。 The control signal receiving section 331 receives from the combining/separating section 322 the control signals separated by the combining/separating section 322 . The control signal receiving section 331 operates according to information indicated by the received control signal. If the control signal is information indicating an instruction to execute loopback, control signal receiving section 331 instructs return section 333 to execute loopback in accordance with the instruction.
 制御信号送信部332は、送信対象となる制御信号を合分離部322に出力する。折返部333は、制御信号受信部331からループバックの実行の指示を受けると、指示に応じてループバック処理を実行する。折返部333におけるループバック処理の対象は、例えば制御信号である。ループバック処理は、例えば全チャネルループバックとして実施されてもよいし、部分的ループバックとして実施されてもよいし、論理ループバックとして実施されてもよい。ループバックされた制御信号は、光インタフェース部326において光信号に変換され、アクセス系管理制御部103に送信される。 The control signal transmitter 332 outputs the control signal to be transmitted to the combiner/separator 322. When receiving an instruction to perform loopback from control signal receiving section 331, loopback section 333 executes loopback processing in accordance with the instruction. The target of loopback processing in the loopback unit 333 is, for example, a control signal. The loopback process may be implemented as a full channel loopback, a partial loopback, or a logical loopback, for example. The looped back control signal is converted into an optical signal by the optical interface unit 326 and transmitted to the access system management control unit 103.
 図7及び9では、連続光(CW光)等の光で、ユーザ装置のプロコトルによらない光を光IF部等が破損せずに、制御信号(例えば、AMCC)が受信可能な光信号を、光IF部等が送受信してもよい。図7及び9では、制御信号ループバックでは、制御信号さえ送受できれば、第1実施形態のようにユーザ装置の信号形式に従った主信号を送受信しない。そのため、制御信号さえ乗れば、光信号は無変調の連続光でもよい。 In FIGS. 7 and 9, optical signals such as continuous light (CW light) that are not based on the protocol of the user equipment can receive control signals (for example, AMCC) without damaging the optical IF section, etc. , an optical IF unit, etc. may transmit and receive the data. In FIGS. 7 and 9, in the control signal loopback, as long as the control signal can be transmitted and received, the main signal according to the signal format of the user equipment is not transmitted and received as in the first embodiment. Therefore, as long as the control signal is used, the optical signal may be unmodulated continuous light.
 図7及び9は、正常性を判定する区間の反対側から主信号がアクセス系管理制御部に到達しない場合に好適である。図7及び9では、光振分部の接続をユーザ装置―ユーザ装置の経路から、ユーザ装置とアクセス系管理制御部との間の経路に切替することが想定される。光振分部の接続を切替せず、経路の途中で合分岐する想定の図6及び8も、経路の切替は実行せず、正常性を判定する区間の反対側から主信号がアクセス系管理制御部に到達しない場合は、図7及び9と異なり、アクセス系管理制御部の中に合分離部が内蔵されるが、図7及び9と実質同等となる。 7 and 9 are suitable when the main signal does not reach the access system management control unit from the opposite side of the section where normality is to be determined. In FIGS. 7 and 9, it is assumed that the connection of the optical distribution unit is switched from the user device-user device path to the path between the user device and the access system management control unit. In Figures 6 and 8, which are assumed to connect and branch in the middle of the route without switching the connection of the optical distribution unit, the route is not switched, and the main signal is used for access system management from the opposite side of the section where normality is determined. When the control unit is not reached, unlike in FIGS. 7 and 9, a combination/separation unit is built into the access system management control unit, but the result is substantially the same as in FIGS. 7 and 9.
 なお、図6及び8であれば、通常のユーザ装置-ユーザ装置の接続のままをモニタするため、光振分部の切替はない。図7及び9では、通常のユーザ装置-ユーザ装置の接続から、正常性判定のため、ユーザ装置-制御部に切替する。 Note that in FIGS. 6 and 8, the normal user device-to-user device connection is monitored, so there is no switching of the light distribution unit. In FIGS. 7 and 9, the normal user device-user device connection is switched to the user device-control unit for normality determination.
 アクセス系管理制御部とユーザ装置とが通信できるように、光振分部等が設定される。アクセス系管理制御部が、ユーザ装置300に制御信号のループバックを指示する。指示は、制御信号でよい。以下でも同様である。 The optical distribution unit etc. are set so that the access system management control unit and the user device can communicate. The access system management control unit instructs the user device 300 to loop back the control signal. The instruction may be a control signal. The same applies below.
 図6及び8では、正常性を判定する区間の外からの主信号を変調して制御信号を多重するか(図8)、別の光信号に制御信号が多重される(図6)。図8では、制御信号を多重するための主信号は入力しないが、正常性を判定する区間の外から主信号が来ない場合に制御信号を乗せるための主信号の代わりの無変調の連続光等を入力してもよい。 In FIGS. 6 and 8, the main signal from outside the section for determining normality is modulated and the control signal is multiplexed (FIG. 8), or the control signal is multiplexed onto another optical signal (FIG. 6). In Figure 8, the main signal for multiplexing the control signal is not input, but unmodulated continuous light is used instead of the main signal to carry the control signal when the main signal does not come from outside the section for determining normality. etc. may also be entered.
 上述のように図6及び8では、もともと通常の主信号導通時の経路に組み込まれたモニタが想定されているので、主信号に関する光振分部の経路は変更されない。逆に、図7及び9の場合は、主信号を分岐多重することなく全生成又は全終端であり、光振分部をアクセス系制御部に接続するように切替することが必須となる。 As mentioned above, in FIGS. 6 and 8, it is assumed that the monitor is originally built into the path during normal main signal conduction, so the path of the optical distribution section regarding the main signal is not changed. On the contrary, in the cases of FIGS. 7 and 9, all generation or all termination is performed without branching and multiplexing the main signal, and it is essential to switch to connect the optical distribution section to the access system control section.
 ユーザ装置300が、下り制御信号又はその応答を上り制御信号として上り主信号を変調、又は、下り制御信号又はその応答を上り制御信号として上り主信号に重畳し、折返部333で上り方向に折り返す。アクセス系管理制御部は、その折り返しの上り制御信号を、受信及び終端し、判定する。時間経過又はアクセス系管理制御部からの指示で、ユーザ装置の制御信号のループバックが解除される。なお、指示は制御信号でよい。なお、制御信号が別の光信号として多重されている場合は、アクセス系管理制御部は、制御信号を受信終端する。制御信号が主信号の上に多重されている場合は、上り信号の一部を分岐、または非線形光学効果等により光が生成され、少なくとも制御信号が読み取り可能な光を生成し、アクセス系管理制御部は、それを終端する。上り信号の少なくとも一部は、正常性判定する対象の区間の外に出力される。 The user equipment 300 modulates the uplink main signal using the downlink control signal or its response as an uplink control signal, or superimposes the downlink control signal or its response on the uplink main signal as an uplink control signal, and returns it in the uplink direction at the folding unit 333. . The access system management control unit receives and terminates the return uplink control signal, and makes a determination. The loopback of the control signal of the user device is canceled with the passage of time or an instruction from the access system management control unit. Note that the instruction may be a control signal. Note that if the control signal is multiplexed as another optical signal, the access system management control unit receives and terminates the control signal. When the control signal is multiplexed on the main signal, light is generated by branching a part of the upstream signal or by nonlinear optical effects, etc., and at least generates light that can read the control signal, and performs access system management and control. section terminates it. At least a portion of the uplink signal is output outside the section targeted for normality determination.
 アクセス系管理制御部とユーザ装置とが通信できるように、光振分部等が設定される。アクセス系管理制御部が、ユーザ装置に応じたプロトコルの主信号の終端部(信号終端部)を選択する。指示は、制御信号でよい。ユーザ装置が、正常性判定用の上り制御信号で上り主信号を変調、または、正常性判定用の上り制御信号を上り主信号に重畳し、上り方向に送信する。アクセス系管理制御部が、上り制御信号又はその応答を下り制御信号として下り主信号を変調し、又は、上り制御信号又はその応答を下り制御信号として下り主信号に重畳し、下り方向に折返して、送信する。即ち、光IF部406で受けた信号を折り返し、光IF部405が出力する。その折り返しの下り制御信号を、ユーザ装置300が受信及び終端し、判定する。時間経過又はアクセス系管理制御部からの指示で、ユーザ装置300の正常性判断用の制御信号の生成と、生成した制御信号での上り主信号の変調又は上り主信号の重畳とを解除し、光IF部が判定結果をユーザ装置から取得する。指示は制御信号でよい。 The optical distribution unit etc. are set so that the access system management control unit and the user device can communicate. The access system management control unit selects the termination part (signal termination part) of the main signal of the protocol according to the user device. The instruction may be a control signal. The user equipment modulates the uplink main signal with the uplink control signal for normality determination, or superimposes the uplink control signal for normality determination on the uplink main signal, and transmits it in the uplink direction. The access system management control unit modulates the downlink main signal using the uplink control signal or its response as a downlink control signal, or superimposes the uplink control signal or its response on the downlink main signal as a downlink control signal, and returns it in the downlink direction. ,Send. That is, the signal received by the optical IF section 406 is returned and the optical IF section 405 outputs it. The user equipment 300 receives and terminates the returned downlink control signal, and makes a determination. With the passage of time or an instruction from the access system management control unit, generation of a control signal for determining the normality of the user device 300, and cancellation of modulation of the uplink main signal or superposition of the uplink main signal with the generated control signal, The optical IF section acquires the determination result from the user device. The instruction may be a control signal.
 図6及び8では、主信号も、正常性を判定する区間の外から主信号が来ない場合に制御信号を乗せるための主信号の代わりの無変調の連続光等の光信号は、アクセス系管理制御部では生成されない。図6及び8では、正常性を判定する区間の外からの主信号を変調して制御信号を多重するか(図8)、別の光信号に制御信号が多重される(図6)。上述のように図6及び8では、もともと通常の主信号導通時の経路に組み込まれたモニタが想定されているので、主信号に関する光振分部の経路は変更されない。逆に、図7及び9の場合は、主信号を分岐多重することなく全生成又は全終端であり、光振分部をアクセス系制御部に接続するように接続替えすることが必須となる。 In Figures 6 and 8, the access system uses an optical signal such as unmodulated continuous light instead of the main signal to carry the control signal when the main signal does not come from outside the section for determining normality. It is not generated by the management control unit. In FIGS. 6 and 8, the control signal is multiplexed by modulating the main signal from outside the section for determining normality (FIG. 8), or the control signal is multiplexed onto another optical signal (FIG. 6). As described above, in FIGS. 6 and 8, it is assumed that the monitor is originally built into the path during normal main signal conduction, so the path of the optical distribution section regarding the main signal is not changed. On the contrary, in the cases of FIGS. 7 and 9, all generation or all termination is performed without branching and multiplexing the main signal, and it is essential to change the connection so that the optical distribution section is connected to the access system control section.
 図6及び図8は、アクセス系管理制御部の内部で主信号と制御信号を多重分離しているので、モニタと同様になる。 In FIGS. 6 and 8, the main signal and control signal are demultiplexed inside the access system management control unit, so they are similar to the monitor.
 図6及び図8では、正常性判定のために、対向装置によって折り返される光信号を送信する送信部(光IF部)がPh-GWに配置される場合、光振分部を経由して接続されるアクセス系管理制御部103以外に、送信部(光IF部)が配置されてもよい。例えば、光振分部への入力ポート又は出力ポートの外に設置される光合分岐器や光合分波器を介し、折返装置に向けて光信号を出力可能な位置に、送信部(光IF部)が配置されてもよい。例えば、Ph-GWの入力側及び出力側のうちの少なくとも一方における光信号の光強度をモニタしたり、ユーザ装置と制御信号をやり取りしたりする監視部に、送信部(光IF部)が配置されてもよい。光合分岐器や光合分波器を介し、合流又は合波した光が出力される代わりに、折り返されるための光の光学的非線形効果等によって、生成した光が出力されてもよい。 In FIGS. 6 and 8, when the transmitting unit (optical IF unit) that transmits the optical signal that is returned by the opposing device is placed in the Ph-GW for normality determination, the connection is made via the optical distribution unit. In addition to the access system management control unit 103, a transmission unit (optical IF unit) may be arranged. For example, a transmitting section (optical IF section) is installed at a position where an optical signal can be outputted to a folding device via an optical multiplexer/brancher or an optical multiplexer/demultiplexer installed outside the input port or output port to the optical distribution section. ) may be placed. For example, a transmission unit (optical IF unit) is placed in a monitoring unit that monitors the optical intensity of an optical signal on at least one of the input side and output side of the Ph-GW and exchanges control signals with a user device. may be done. Instead of outputting combined or multiplexed light through an optical multiplexer/brancher or an optical multiplexer/demultiplexer, light generated by an optical nonlinear effect of the light to be folded back may be output.
 正常性判定のために、対向装置によって折り返される光信号の少なくとも一部を受信する受信部(光IF部)がPh-GWに配置される場合、光振分部を経由して接続されるアクセス系管理制御部以外に、受信部(光IF部)が配置されてもよい。例えば、光振分部への入力ポート又は出力ポートの外に設置される光合分岐器や光合分波器を介し、折返装置から折り返された光信号又はその成分の少なくとも一部を入力可能な位置に、受信部(光IF部)が配置されてもよい。例えば、Ph-GWの入力側及び出力側のうちの少なくとも一方における光信号の光強度をモニタしたり、ユーザ装置と制御信号をやり取りしたりする監視部に、受信部(光IF部)が配置されてもよい。光合分岐器や光合分波器を介し、分岐又は分波した光が入力される代わりに、折り返した光の光学的非線形効果等によって、生成した光が入力されてもよい。 When a receiving unit (optical IF unit) that receives at least part of the optical signal returned by the opposing device is placed in the Ph-GW for normality determination, the access connected via the optical distribution unit A receiving section (optical IF section) may be arranged in addition to the system management control section. For example, a position where the optical signal reflected from the folding device or at least a part of its components can be inputted via an optical multiplexer/brancher or optical multiplexer/demultiplexer installed outside the input port or output port to the optical distribution unit. A receiving section (optical IF section) may be placed in the receiver. For example, a receiving unit (optical IF unit) is placed in a monitoring unit that monitors the optical intensity of an optical signal on at least one of the input side and output side of the Ph-GW and exchanges control signals with a user device. may be done. Instead of inputting branched or demultiplexed light through an optical multiplexer/brancher or an optical multiplexer/demultiplexer, light generated by an optical nonlinear effect of folded light may be input.
 実効的には、後述する図6から図8までの各図で、制御信号で変調するための光を挿入する場合に相当する。主信号とは独立した別光源からの制御信号を重畳する場合は、経路中の増幅器の利得を揃える等の理由が無い限り、ユーザ装置のプロコトルに応じない主信号や、無変調光(CW光)を挿入する必要性はない。 Effectively, this corresponds to the case where light for modulation with a control signal is inserted in each of the figures from FIG. 6 to FIG. 8, which will be described later. When superimposing a control signal from a separate light source independent of the main signal, unless there is a reason such as aligning the gains of amplifiers in the path, the main signal that does not comply with the protocol of the user equipment or unmodulated light (CW light) should be superimposed. ) is not necessary.
 アクセス系管理制御部103は、APNのAMCC信号を用いて、経路の正常性を判定してよい。アクセス系管理制御部103は、「Ethernet(登録商標) OAM(Operation Administration Maintenance)」を用いて、経路の正常性を判定してよい。アクセス系管理制御部103は、主信号(ユーザ信号)をペイロードとする下位のヘッダの制御チャネルを用いて、経路の正常性を判定してよい。制御チャネルとして、例えば、光トランスポートネットワーク(OTN)の汎用通信チャネル(GCC : General Communication Channel)を用いることで、経路の正常性が判定されてもよい。 The access system management control unit 103 may determine the normality of the route using the AMCC signal of the APN. The access system management control unit 103 may determine the normality of the route using "Ethernet (registered trademark) OAM (Operation Administration Maintenance)." The access system management control unit 103 may determine the normality of the route using a control channel of a lower header whose payload is a main signal (user signal). The normality of the route may be determined by using, for example, a general communication channel (GCC) of an optical transport network (OTN) as the control channel.
 第2実施形態における信号経路正常性判定の処理の流れについて説明する。
 以下では、制御信号ループバックに関する流れであり、正常性判定要求に対する、応答を受信する場合はそれに準ずる(折り返す指示に従って、所定のループバック用の情報を折り返す代わりに、要求に対して応答を返す)。
The flow of processing for determining signal path normality in the second embodiment will be described.
The following is a flow related to control signal loopback, and the same applies when receiving a response to a normality determination request (instead of returning predetermined loopback information according to the loopback instruction, a response is returned to the request. ).
 所定のタイミングで判定制御部401は、ループバックの実行を指示するための制御信号を生成し合分離部404に出力する。所定のタイミングは、例えばユーザ装置300との通信に不具合が検出されたタイミングであってもよい。コントローラからの指示に従ったタイミングであってもよい。合分離部404は、制御信号を光インタフェース部405に出力する。光インタフェース部405は、合分離部404から入力された電気信号を光信号に変換し、伝送路を介してユーザ装置300に光信号を送信する。 At a predetermined timing, the determination control unit 401 generates a control signal for instructing execution of loopback and outputs it to the combination/separation unit 404. The predetermined timing may be, for example, the timing at which a problem in communication with the user device 300 is detected. The timing may be in accordance with instructions from the controller. The combining/separating section 404 outputs a control signal to the optical interface section 405. The optical interface unit 405 converts the electrical signal input from the combining/separating unit 404 into an optical signal, and transmits the optical signal to the user device 300 via the transmission path.
 ユーザ装置300の光インタフェース部321は、アクセス系管理制御部103から光信号を受信すると、受信された光信号を電気信号に変換して合分離部322に出力する。合分離部322は、受信された信号から制御信号を分離し、制御信号を制御部330に出力する。 Upon receiving the optical signal from the access system management control unit 103 , the optical interface unit 321 of the user device 300 converts the received optical signal into an electrical signal and outputs it to the combining/separating unit 322 . The combiner/separator 322 separates the control signal from the received signal and outputs the control signal to the controller 330 .
 制御部330の制御信号受信部331は、合分離部322から制御信号を受けると、制御信号に含まれる制御の内容に応じて動作する。制御信号には、ループバックの実行の指示を示す信号が含まれている。この指示に応じて、制御信号受信部331は、折返部333に対して制御信号のループバックの実行を指示する。折返部333は、受信された制御信号についてループバック処理を行うことで、合分離部322に制御信号を出力する。 When the control signal receiving section 331 of the control section 330 receives the control signal from the combining/separating section 322, it operates according to the content of the control included in the control signal. The control signal includes a signal indicating an instruction to perform loopback. In response to this instruction, the control signal receiving section 331 instructs the loopback section 333 to perform loopback of the control signal. The return unit 333 performs loopback processing on the received control signal and outputs the control signal to the combination/separation unit 322 .
 ループバックされた制御信号は、光インタフェース部406において電気信号に変換され、制御信号の送信元であった判定制御部401に入力される。判定制御部401は、入力された制御信号について、導通確認に応じた所定の評価を行う。例えば、正しくループバックが行われたか否かに関する評価が行われてもよい。判定制御部401は、評価結果に基づいて、対象ユーザ装置に関する信号経路正常性判定を行う。判定制御部401は、判定結果を他の装置に出力してもよいし、ログとして記憶装置に記録してもよい。 The looped back control signal is converted into an electrical signal at the optical interface section 406, and is input to the determination control section 401, which was the source of the control signal. The determination control unit 401 performs a predetermined evaluation on the input control signal according to the continuity check. For example, an evaluation may be made as to whether the loopback was performed correctly. The determination control unit 401 performs a signal path normality determination regarding the target user device based on the evaluation result. The determination control unit 401 may output the determination result to another device or record it in a storage device as a log.
 以上のように、例えば第1のユーザ装置(ユーザ装置300-1)又は第1の制御装置(アクセス系管理制御部103-1)は、対向する第2のユーザ装置(ユーザ装置300-2)又は第2の制御装置(アクセス系管理制御部103-2)から送信された第1の制御信号に対して第2の制御信号で応答する。第2のユーザ装置又は第2の制御装置は、第1のユーザ装置又は第1の制御装置と第2のユーザ装置又は第2の制御装置との間を含む信号経路が正常であるか否かを、応答に用いられた第2の制御信号に基づいて判定する。 As described above, for example, the first user device (user device 300-1) or the first control device (access system management control unit 103-1) is connected to the opposing second user device (user device 300-2). Alternatively, it responds with a second control signal to the first control signal transmitted from the second control device (access system management control unit 103-2). The second user device or second control device determines whether the signal path including between the first user device or first control device and the second user device or second control device is normal. is determined based on the second control signal used in the response.
 例えば第1のユーザ装置(ユーザ装置300-1)又は第1の制御装置(アクセス系管理制御部103-1)は、対向する第2のユーザ装置(ユーザ装置300-2)又は第2の制御装置(アクセス系管理制御部103-2)から送信された第1の制御信号を折り返してもよい。第2のユーザ装置又は第2の制御装置は、第1のユーザ装置又は第1の制御装置と第2のユーザ装置又は第2の制御装置との間を含む信号経路が正常であるか否かを、折り返された第1の制御信号に基づいて判定してもよい。 For example, a first user device (user device 300-1) or a first control device (access system management control unit 103-1) is connected to an opposing second user device (user device 300-2) or a second control device. The first control signal transmitted from the device (access system management control unit 103-2) may be returned. The second user device or second control device determines whether the signal path including between the first user device or first control device and the second user device or second control device is normal. may be determined based on the returned first control signal.
 例えば第1の制御装置(ユーザ装置300-1)は、第2の制御信号を乗せるための光信号が第1の制御装置(ユーザ装置300-1)に到達しない場合には主信号とは異なる別の光信号に第2の制御信号を多重し、第2の制御信号を乗せるための光信号が制御装置に到達した場合には第2の制御信号を乗せるための光信号に第2の制御信号を多重し、信号経路が正常であるか否かを、別の光信号又は光信号に多重された第2の制御信号に基づいて判定してもよい。 For example, if the optical signal for carrying the second control signal does not reach the first control device (user device 300-1), the first control device (user device 300-1) differs from the main signal. A second control signal is multiplexed onto another optical signal, and when the optical signal for carrying the second control signal reaches the control device, the second control signal is added to the optical signal for carrying the second control signal. The signals may be multiplexed and whether or not the signal path is normal may be determined based on another optical signal or a second control signal multiplexed on the optical signal.
 このように構成された第2実施形態の通信システム1によれば、ユーザ装置300において処理可能な制御信号がユーザ装置300に送信される。そのため、光送受信機301において主信号が光・電気変換された後の経路を経由した後のループバックポイント(折返部333)でループバックを行うことができる。したがって、特定の通信プロトコルや変調方式に依存しないプロトコル無依存のAPNにおいて、ユーザ装置300の内部(例えば光インタフェース部321、合分離部322及び光インタフェース部326)を含む信号経路の正常性を判定することが可能となる。 According to the communication system 1 of the second embodiment configured in this way, a control signal that can be processed by the user device 300 is transmitted to the user device 300. Therefore, loopback can be performed at a loopback point (return unit 333) after the main signal passes through the path after optical-to-electrical conversion in the optical transceiver 301. Therefore, in a protocol-independent APN that does not depend on a specific communication protocol or modulation method, the normality of the signal path including the inside of the user device 300 (for example, the optical interface unit 321, the combining/separating unit 322, and the optical interface unit 326) is determined. It becomes possible to do so.
 このような処理は、他の信号経路正常性判定に比べて以下のような点で優れている。従来からある主信号のループバック処理では、その処理の可否はユーザ装置300において処理可能なプロトコルに依存してしまう。そのため、第1実施形態のように、局側においてユーザ装置300の使用する信号形式に応じた各種の主信号に対応した機器を追加で備える必要がある。これに対し、第2実施形態の通信システム1では、プロトコルの依存がなく、局側において各種の主信号に対応した機器を追加で備える必要がない。また、OTDRでは局側において専用の機器を追加で備える必要がある。これに対し、第2実施形態の通信システム1では、局側において専用の機器を追加で備える必要がない。また、モニタを設置する手法では、局側においてモニタ機器を追加で備える必要がある。これに対し、第2実施形態の通信システム1では、局側においてOTDR等の特別なモニタ機器を追加で備える必要がない。 This type of processing is superior to other signal path normality determinations in the following points. In the conventional main signal loopback processing, whether or not the processing can be performed depends on the protocol that can be processed by the user device 300. Therefore, as in the first embodiment, it is necessary to additionally provide equipment compatible with various main signals depending on the signal format used by the user equipment 300 on the station side. In contrast, in the communication system 1 of the second embodiment, there is no protocol dependence, and there is no need to additionally provide equipment compatible with various main signals on the station side. Furthermore, in OTDR, it is necessary to additionally provide dedicated equipment on the station side. In contrast, in the communication system 1 of the second embodiment, there is no need to additionally provide dedicated equipment on the station side. Furthermore, in the method of installing a monitor, it is necessary to additionally provide a monitor device on the station side. In contrast, in the communication system 1 of the second embodiment, there is no need to additionally provide special monitoring equipment such as an OTDR on the station side.
 なお、制御信号送信部332は、合分離部322を介し、Ph-GWと通信する。例えば、制御信号送信部332は、ループバック指示に応答する。例えば、制御信号送信部332は、ユーザ装置で判定した正常性判定の結果をPh-GWに応答する。 Note that the control signal transmitting section 332 communicates with the Ph-GW via the combining/separating section 322. For example, the control signal transmitter 332 responds to a loopback instruction. For example, the control signal transmitter 332 responds to the Ph-GW with the result of the normality determination determined by the user device.
 (第2実施形態の第1変形例)
 <主信号ループバック+制御信号ループバック>
(First modification of the second embodiment)
<Main signal loopback + control signal loopback>
 アクセス系管理制御部103は、制御信号ループバックをしてもよいし、主信号のループバックをしてもよいし、制御信号と主信号の両方のループバックをしてもよい。本実施形態で、互いに光信号を用いて通信する装置を備える通信システムであって、一つの装置は、制御信号を他の装置に光信号で送信する。他の装置は、制御信号又はその応答を一つの装置に折り返す。一つの装置は、折り返された制御信号又はその応答を受信し、一つの装置と他の装置との間の信号経路を含む信号経路が正常であるか否かを判定する、通信システムの例を示す。制御信号のループバックと主信号のループバックとの両方を行う場合には、制御信号と主信号が、それぞれループバックされる。 The access system management control unit 103 may loop back the control signal, loop back the main signal, or loop back both the control signal and the main signal. In this embodiment, a communication system includes devices that communicate with each other using optical signals, and one device transmits a control signal to another device using an optical signal. The other devices loop control signals or their responses back to one device. An example of a communication system in which one device receives a returned control signal or its response and determines whether a signal path including a signal path between one device and another device is normal. show. When looping back the control signal and looping back the main signal, both the control signal and the main signal are looped back.
 より具体的には、自装置の光信号又は他装置からの光信号に重畳又は自装置の光信号又は他装置からの光信号を変調して制御信号を送信及び受信する装置を備える通信システムであって、対向する一方の装置は、対向する他方の装置が送受信可能な形式の光信号(AMCC等の制御信号を光IF部等が破損せずに受信可能な光信号)を生成し、生成した光信号に重畳又は生成した光信号を変調した制御信号を、対向する他方の装置に送信する。対向する他方の装置は、自装置の光信号又は他装置からの光信号に重畳、又は、自装置の光信号又は他装置からの光信号を変調して、受信した制御信号又はその応答を折返して送信する。対向する一方の装置は、光信号に重畳又は光信号を変調して、折り返された制御信号又はその応答を受信する。対向する一方の装置は、受信した折返された制御信号又はその応答から、対向する一方の装置と対向する他方の装置との間の信号経路を含む信号経路が正常であるか否かを判定する。 More specifically, it is a communication system that includes a device that transmits and receives a control signal by superimposing it on its own optical signal or an optical signal from another device, or modulating its own optical signal or an optical signal from another device. One of the opposing devices generates and generates an optical signal in a format that can be transmitted and received by the other opposing device (an optical signal that can receive control signals such as AMCC without damaging the optical IF unit, etc.). A control signal obtained by superimposing the generated optical signal or modulating the generated optical signal is transmitted to the other opposing device. The other opposing device returns the received control signal or its response by superimposing it on its own optical signal or the optical signal from the other device, or modulating the own optical signal or the optical signal from the other device. and send. One of the opposing devices superimposes or modulates the optical signal and receives the returned control signal or its response. The opposing device determines whether the signal path including the signal path between the opposing device and the other opposing device is normal, based on the received returned control signal or its response. .
 (C1)ユーザ装置が折り返し、かつ、Ph-GW側の複数の主信号終端部(「形式選択+生成送信受信終端側:Ph-GW側の装置」かつ「折返側:ユーザ装置」のシステム構成パターン、図示通り、Ph-GW側の装置が対向装置(ここではユーザ装置)の使用する主信号に応じた主信号終端部(信号終端部)を選択し、選択した主信号終端部で、その主信号で正常性判定の要求を生成し、対向装置(ここではユーザ装置)でその要求に応じて正常性の判定に関する応答を送信し、受信した該応答を、Ph-GW側の装置の該選択した主信号終端部で終端する、又はPh-GW側の装置が対向装置(ここではユーザ装置)の使用する主信号に応じた主信号終端部(信号終端部)を選択し、選択した主信号終端部で、その主信号で正常性判定の信号を生成し、対向装置(ここではユーザ装置)でその正常性の判定の信号を折返し送信し、受信した該折返し(ループバック信号)を、Ph-GW側の装置の該選択した主信号終端部で終端する。本実施形態では主信号の正常性判定の要求とその応答、又は主信号の正常性判定の信号とその折返しに加えて、Ph-GW側の装置が制御信号で正常性判定の要求を生成し、対向装置(ここではユーザ装置)でその要求に応じて正常性の判定に関する応答を送信し、受信した該応答を、Ph-GW側の装置で終端する、又はPh-GW側の装置が制御信号で正常性判定の信号を生成し、対向装置(ここではユーザ装置)でその正常性の判定の信号を折返し送信し、受信した該折返し(ループバック信号)を、Ph-GW側の装置で終端する、又はユーザ装置が制御信号で正常性判定の要求を生成し、対向装置(ここではPh-GW側の装置)でその要求に応じて正常性の判定に関する応答を送信し、受信した該応答を、ユーザ装置で終端する、又はユーザ装置が制御信号で正常性判定の信号を生成し、対向装置(ここではPh-GW側の装置)でその正常性の判定の信号を折返し送信し、受信した該折返し(ループバック信号)を、ユーザ装置で終端する) (C1) System configuration in which the user equipment loops back and multiple main signal termination units on the Ph-GW side (“format selection + generation transmission/reception termination side: device on the Ph-GW side” and “return side: user equipment”) As shown in the pattern, the device on the Ph-GW side selects the main signal termination section (signal termination section) according to the main signal used by the opposite device (in this case, the user device), and uses the selected main signal termination section to Generates a request for normality determination using the main signal, transmits a response regarding normality determination to the opposite device (user device here) in response to the request, and transmits the received response to the device on the Ph-GW side. Terminate at the selected main signal termination section, or the device on the Ph-GW side selects the main signal termination section (signal termination section) according to the main signal used by the opposite device (in this case, the user device), and The signal termination section generates a normality determination signal using the main signal, the opposite device (here, the user device) returns the normality determination signal, and receives the received return (loopback signal). It is terminated at the selected main signal termination part of the device on the Ph-GW side.In this embodiment, in addition to the main signal normality determination request and its response, or the main signal normality determination signal and its return, The device on the Ph-GW side generates a request for normality determination using a control signal, the opposite device (user device here) transmits a response regarding normality determination in response to the request, and the received response is sent to the Ph-GW. - Terminates at the device on the GW side, or the device on the Ph-GW side generates a signal for determining normality using a control signal, and transmits the signal for determining normality at the opposite device (here, the user device) in return, The received return (loopback signal) is terminated by the device on the Ph-GW side, or the user device generates a request for normality determination using a control signal, and the opposite device (here, the device on the Ph-GW side) In response to the request, a response regarding normality determination is transmitted, and the received response is terminated at the user device, or the user device generates a normality determination signal using a control signal and generates a normality determination signal from the opposite device (here, Ph- (GW side device) sends back a signal for determining the normality, and the received return (loopback signal) is terminated at the user device)
 アクセス系管理制御部とユーザ装置とが通信できるように、光振分部等を設定する。アクセス系管理制御部が、ユーザ装置に応じたプロトコルの主信号の終端部を選択する。アクセス系管理制御部が、ユーザ装置に制御信号のループバックを指示する。指示は、制御信号でも、主信号でもよい。但し、指示の取得は、制御信号の方が適当である。以下も同様である。制御信号の場合は、指示してからユーザ装置に応じた終端部を選択してもよい。アクセス系管理制御部が、ユーザ装置に応じたプロトコルで、正常性判定用に限らない下り主信号を生成し、その主信号を正常性判定用の下り制御信号で変調、または、その主信号に正常性判定用の下り制御信号を重畳し、下り方向に送信する。ユーザ装置が、上り主信号を下り制御信号又はその応答を上り制御信号として変調、又は、上り主信号に下り制御信号又はその応答を上り制御信号として重畳し、上り方向に折返し送信する。その折り返しの上り制御信号を、アクセス系管理制御部が受信及び終端し、判定する。時間経過又はアクセス系管理制御部からの指示で、ユーザ装置の制御信号のループバックを解除する。なお、指示は、制御信号でもよいし、主信号でもよい。また、ループバック解除後は、光振分部の接続形態は戻される。 Set up the optical distribution unit, etc. so that the access system management control unit and the user device can communicate. The access system management control section selects the termination section of the main signal of the protocol according to the user device. The access system management control unit instructs the user device to loop back the control signal. The instruction may be a control signal or a main signal. However, control signals are more appropriate for obtaining instructions. The same applies below. In the case of a control signal, a termination unit corresponding to the user equipment may be selected after the instruction is given. The access system management control unit generates a downlink main signal not limited to normality determination using a protocol according to the user equipment, and modulates the main signal with a downlink control signal for normality determination, or modulates the main signal with a downlink control signal for normality determination. A downlink control signal for normality determination is superimposed and transmitted in the downlink direction. The user equipment modulates the uplink main signal with the downlink control signal or its response as an uplink control signal, or superimposes the downlink control signal or its response on the uplink main signal as an uplink control signal, and transmits the signal back in the uplink direction. The returned uplink control signal is received and terminated by the access system management control unit and judged. The loopback of the control signal of the user device is canceled with the passage of time or an instruction from the access system management control unit. Note that the instruction may be a control signal or a main signal. Furthermore, after the loopback is released, the connection form of the light distribution section is returned to its original state.
 (C2)ユーザ装置が折り返し、かつ、ユーザ装置側の複数の主信号終端部(「形式選択+折返側:ユーザ装置」かつ「生成送信受信終端側:Ph-GW側の装置」のシステム構成パターン、ユーザ装置が対向装置(ここではPh-GW側の装置)の使用する主信号に応じた主信号終端部(信号終端部)を選択し、対向装置(ここではPh-GW側の装置)の主信号終端部で、その主信号で正常性判定の要求を生成し、ユーザ装置の選択した主信号終端部で、その要求に応じて正常性の判定に関する応答を送信し、受信した該応答を、Ph-GW側の装置の主信号終端部で終端する、又はユーザ装置が対向装置(ここではPh-GW側の装置)の使用する主信号に応じた主信号終端部(信号終端部)を選択し、対向装置(ここではPh-GW側の装置)の主信号終端部で、その主信号で正常性判定の信号を生成し、ユーザ装置の選択した主信号終端部でその正常性の判定の信号を折返し送信し、受信した該折返し(ループバック信号)を、対向装置(ここではPh-GW側の装置)の主信号終端部で終端する。本実施形態では主信号の正常性判定の要求とその応答、又は主信号の正常性判定の信号とその折返しに加えて、Ph-GW側の装置が制御信号で正常性判定の要求を生成し、対向装置(ここではユーザ装置)でその要求に応じて正常性の判定に関する応答を送信し、受信した該応答を、Ph-GW側の装置で終端する、又はPh-GW側の装置が制御信号で正常性判定の信号を生成し、対向装置(ここではユーザ装置)でその正常性の判定の信号を折返し送信し、受信した該折返し(ループバック信号)を、Ph-GW側の装置で終端する、又はユーザ装置が制御信号で正常性判定の要求を生成し、対向装置(ここではPh-GW側の装置)でその要求に応じて正常性の判定に関する応答を送信し、受信した該応答を、ユーザ装置で終端する、又はユーザ装置が制御信号で正常性判定の信号を生成し、対向装置(ここではPh-GW側の装置)でその正常性の判定の信号を折返し送信し、受信した該折返し(ループバック信号)を、ユーザ装置で終端する(不図示)) (C2) System configuration pattern where the user equipment loops back and multiple main signal termination units on the user equipment side (“format selection + loopback side: user equipment” and “generation transmission/reception termination side: Ph-GW side device”) , the user equipment selects the main signal termination section (signal termination section) according to the main signal used by the opposite device (here, the device on the Ph-GW side), and The main signal termination unit generates a request for normality determination using the main signal, and the main signal termination unit selected by the user equipment transmits a response regarding normality determination in response to the request, and transmits the received response. , terminate at the main signal termination section of the device on the Ph-GW side, or the user equipment terminates at the main signal termination section (signal termination section) according to the main signal used by the opposite device (here, the device on the Ph-GW side). The main signal terminal of the opposite device (here, the device on the Ph-GW side) generates a signal for determining normality using the main signal, and the selected main signal terminal of the user device determines its normality. The received return signal (loopback signal) is terminated at the main signal termination section of the opposing device (here, the device on the Ph-GW side).In this embodiment, the normality determination of the main signal is performed. In addition to the request and its response, or the main signal's normality judgment signal and its return, the Ph-GW side device generates a normality judgment request with a control signal, and the opposite device (here, the user device) generates a normality judgment request. In response to the request, a response regarding normality determination is transmitted, and the received response is terminated by a device on the Ph-GW side, or the device on the Ph-GW side generates a signal for determining normality using a control signal, The opposite device (user device in this case) sends back a signal for determining its normality, and the received return (loopback signal) is terminated by the Ph-GW side device, or the user device uses a control signal to indicate that the signal is normal. Generates a request for normality determination, transmits a response regarding normality determination in response to the request in the opposite device (here, the device on the Ph-GW side), and terminates the received response in the user device, or The device generates a normality determination signal using a control signal, the opposite device (here, the device on the Ph-GW side) returns the normality determination signal, and receives the received return (loopback signal). (terminated at user equipment (not shown))
 対向装置の使用する信号形式に対応した主信号終端部(信号終端部)が、ユーザ装置に配置されてもよい。アクセス系管理制御部とユーザ装置とが通信できるように光振分部等を設定する。アクセス系管理制御部が、ユーザ装置に配置された主信号終端部(信号終端部)を選択する。ユーザ装置は、選択された信号終端部で、主信号及び制御信号を折り返す。Ph-GWは、その折り返しの上り主信号及び制御信号を受信して終端し、正常性を判定する。 A main signal termination section (signal termination section) corresponding to the signal format used by the opposing device may be arranged in the user device. The optical distribution unit and the like are set so that the access system management control unit and the user device can communicate. The access system management control unit selects a main signal termination unit (signal termination unit) located in the user device. The user equipment loops back the main signal and control signal at the selected signal termination. The Ph-GW receives and terminates the returned uplink main signal and control signal, and determines normality.
 (D1)Ph-GWが折り返し、かつ、Ph-GW側の複数の主信号終端部(「形式選択+折返側:Ph-GW側の装置」かつ「生成送信受信終端側:ユーザ装置」のシステム構成パターン、Ph-GW側の装置が対向装置(ここではユーザ装置)の使用する主信号に応じた主信号終端部(信号終端部)を選択し、対向装置(ここではユーザ装置)の主信号終端部で、その主信号で正常性判定の要求を生成し、Ph-GW側の装置の選択した主信号終端部で、その要求に応じて正常性の判定に関する応答を送信し、受信した該応答を、ユーザ装置の主信号終端部で終端する、又はPh-GW側の装置が対向装置(ここではユーザ装置)の使用する主信号に応じた主信号終端部(信号終端部)を選択し、対向装置(ここではユーザ装置)の主信号終端部で、その主信号で正常性判定の信号を生成し、Ph-GW側の装置の選択した主信号終端部でその正常性の判定の信号を折返し送信し、受信した該折返し(ループバック信号)を、対向装置(ここではユーザ装置)の主信号終端部で終端する。本実施形態では主信号の正常性判定の要求とその応答、又は主信号の正常性判定の信号とその折返しに加えて、Ph-GW側の装置が制御信号で正常性判定の要求を生成し、対向装置(ここではユーザ装置)でその要求に応じて正常性の判定に関する応答を送信し、受信した該応答を、Ph-GW側の装置で終端する、又はPh-GW側の装置が制御信号で正常性判定の信号を生成し、対向装置(ここではユーザ装置)でその正常性の判定の信号を折返し送信し、受信した該折返し(ループバック信号)を、Ph-GW側の装置で終端する、又はユーザ装置が制御信号で正常性判定の要求を生成し、対向装置(ここではPh-GW側の装置)でその要求に応じて正常性の判定に関する応答を送信し、受信した該応答を、ユーザ装置で終端する、又はユーザ装置が制御信号で正常性判定の信号を生成し、対向装置(ここではPh-GW側の装置)でその正常性の判定の信号を折返し送信し、受信した該折返し(ループバック信号)を、ユーザ装置で終端する(不図示)) (D1) A system in which the Ph-GW loops back and multiple main signal termination units on the Ph-GW side ("format selection + loopback side: device on the Ph-GW side" and "generation transmission reception termination side: user equipment") The configuration pattern is that the device on the Ph-GW side selects the main signal termination section (signal termination section) according to the main signal used by the opposite device (user device here), and then selects the main signal termination section (signal termination section) according to the main signal used by the opposite device (user device here). The termination unit generates a request for normality determination using the main signal, and the main signal termination unit selected by the device on the Ph-GW side transmits a response regarding normality determination in response to the request, and The response is terminated at the main signal termination section of the user equipment, or the device on the Ph-GW side selects the main signal termination section (signal termination section) according to the main signal used by the opposite device (user equipment here). , the main signal terminal of the opposite device (user device in this case) generates a signal for determining normality using the main signal, and the selected main signal terminal of the device on the Ph-GW side generates a signal for determining normality. is sent back, and the received return (loopback signal) is terminated at the main signal termination section of the opposing device (here, the user device).In this embodiment, the main signal normality determination request and its response, or In addition to the main signal for normality determination and its return, the device on the Ph-GW side generates a request for normality determination using a control signal, and the opposite device (in this case, the user device) determines the normality in response to the request. A response related to the determination is sent and the received response is terminated by the Ph-GW side device, or the Ph-GW side device generates a normality determination signal using a control signal, device) returns a signal for determining the normality, and the received return (loopback signal) is terminated by the device on the Ph-GW side, or the user device generates a request for normality determination using a control signal. Then, in response to the request, the opposite device (Ph-GW side device in this case) transmits a response related to the normality determination, and the received response is terminated at the user device, or the user device uses a control signal to determine the normality. Generates a signal for determining the normality, returns the signal for determining the normality at the opposite device (here, the device on the Ph-GW side), and terminates the received return (loopback signal) at the user device ( (not shown))
 アクセス系管理制御部とユーザ装置とが通信できるように、光振分部等を設定する。アクセス系管理制御部が、ユーザ装置に応じたプロトコルの主信号の終端部を選択する。アクセス系管理制御部が、正常性判定用の制御信号を生成及び送信するよう、ユーザ装置に指示する。指示は制御信号でも、主信号でもよい。制御信号の場合は、指示してからユーザ装置に応じた終端部(信号終端部)を選択してもよい。ユーザ装置が、正常性判定用に限らない上り主信号を正常性判定用の上り制御信号で変調、または、上り主信号に正常性判定用の上り制御信号を重畳し、上り方向に送信する。アクセス系管理制御部が、上り制御信号又はその応答を下り制御信号として下り主信号を変調し、又は、上り制御信号又はその応答を下り制御信号として下り主信号に重畳し、下り方向に折返し送信する。即ち、光IF部406で受けた信号を、選択した信号終端部402が折り返し、光IF部405から出力する。 Set up the optical distribution unit, etc. so that the access system management control unit and the user device can communicate. The access system management control section selects the termination section of the main signal of the protocol according to the user device. The access system management control unit instructs the user device to generate and transmit a control signal for normality determination. The instruction may be a control signal or a main signal. In the case of a control signal, a termination section (signal termination section) according to the user device may be selected after giving an instruction. The user equipment modulates the uplink main signal not only for normality determination with the normality determination uplink control signal, or superimposes the normality determination uplink control signal on the uplink main signal, and transmits the modulated uplink main signal in the uplink direction. The access system management control unit modulates the downlink main signal using the uplink control signal or its response as a downlink control signal, or superimposes the uplink control signal or its response as a downlink control signal on the downlink main signal, and transmits it back in the downlink direction. do. That is, the signal received by the optical IF section 406 is returned by the selected signal termination section 402 and output from the optical IF section 405.
 その折り返しの下り制御信号を、ユーザ装置が受信及び終端し、判定する。時間経過又はアクセス系管理制御部からの指示で、ユーザ装置の正常性判断用の制御信号の生成と、生成した制御信号での上り主信号の変調又は上り主信号の重畳とを解除し、判定結果をユーザ装置から取得する。指示は、制御信号でもよいし、主信号でもよい。取得は、制御信号でもよいし、主信号でもよい。また、ループバック解除後は、光振分部の接続形態は戻される。 The user equipment receives and terminates the returned downlink control signal, and makes a determination. With the passage of time or an instruction from the access system management control unit, the generation of a control signal for determining the normality of the user equipment, the modulation of the uplink main signal with the generated control signal, or the superimposition of the uplink main signal is canceled, and the judgment is made. Obtain the results from the user device. The instruction may be a control signal or a main signal. The acquisition may be a control signal or a main signal. Furthermore, after the loopback is released, the connection form of the light distribution section is returned to its original state.
 (D2)Ph-GWが折り返し、かつ、ユーザ装置側の複数の主信号終端部(「形式選択+生成送信受信終端側:ユーザ装置」かつ「折返側:Ph-GW側の装置」のシステム構成パターン、ユーザ装置側が対向装置(ここではPh-GW側の装置)の使用する主信号に応じた主信号終端部(信号終端部)を選択し、選択した主信号終端部で、その主信号で正常性判定の要求を生成し、対向装置(ここではPh-GW側の装置)でその要求に応じて正常性の判定に関する応答を送信し、受信した該応答を、ユーザ装置の該選択した主信号終端部で終端する、又はユーザ装置が対向装置(ここではPh-GW側の装置)の使用する主信号に応じた主信号終端部(信号終端部)を選択し、選択した主信号終端部で、その主信号で正常性判定の信号を生成し、対向装置(ここではPh-GW側の装置)でその正常性の判定の信号を折返し送信し、受信した該折返し(ループバック信号)を、ユーザ装置の該選択した主信号終端部で終端する。本実施形態では主信号の正常性判定の要求とその応答、又は主信号の正常性判定の信号とその折返しに加えて、Ph-GW側の装置が制御信号で正常性判定の要求を生成し、対向装置(ここではユーザ装置)でその要求に応じて正常性の判定に関する応答を送信し、受信した該応答を、Ph-GW側の装置で終端する、又はPh-GW側の装置が制御信号で正常性判定の信号を生成し、対向装置(ここではユーザ装置)でその正常性の判定の信号を折返し送信し、受信した該折返し(ループバック信号)を、Ph-GW側の装置で終端する、又はユーザ装置が制御信号で正常性判定の要求を生成し、対向装置(ここではPh-GW側の装置)でその要求に応じて正常性の判定に関する応答を送信し、受信した該応答を、ユーザ装置で終端する、又はユーザ装置が制御信号で正常性判定の信号を生成し、対向装置(ここではPh-GW側の装置)でその正常性の判定の信号を折返し送信し、受信した該折返し(ループバック信号)を、ユーザ装置で終端する(不図示)) (D2) Ph-GW returns and multiple main signal termination units on the user equipment side (system configuration of "format selection + generation transmission/reception termination side: user equipment" and "return side: device on Ph-GW side") pattern, the user equipment side selects a main signal termination section (signal termination section) according to the main signal used by the opposite device (here, the device on the Ph-GW side), and uses the selected main signal termination section to transmit the main signal. Generates a request for normality determination, transmits a response regarding normality determination in response to the request in the opposite device (here, Ph-GW side device), and transmits the received response to the selected master of the user device. Terminate at a signal termination section, or the user equipment selects a main signal termination section (signal termination section) according to the main signal used by the opposite device (here, the device on the Ph-GW side), and selects the selected main signal termination section. Then, the main signal is used to generate a normality determination signal, the opposite device (here, the device on the Ph-GW side) returns the normality determination signal, and the received return (loopback signal) is sent back. , is terminated at the selected main signal termination section of the user equipment.In this embodiment, in addition to the main signal normality determination request and its response, or the main signal normality determination signal and its return, the Ph-GW The side device generates a request for normality determination using a control signal, the opposite device (in this case, the user device) transmits a response regarding normality determination in response to the request, and the received response is sent to the Ph-GW side. or the device on the Ph-GW side generates a normality determination signal using a control signal, and the opposite device (in this case, the user device) returns the normality determination signal, and the received The return (loopback signal) is terminated at the device on the Ph-GW side, or the user device generates a request for normality determination using a control signal, and the opposite device (here, the device on the Ph-GW side) responds to the request. In response, a response regarding normality determination is transmitted, and the received response is terminated at the user equipment, or the user equipment generates a normality determination signal using a control signal and sends a response to the opposite equipment (here, the Ph-GW side). device) returns a signal for determining its normality, and the received return (loopback signal) is terminated at the user device (not shown).
 対向装置の使用する信号形式に対応した主信号終端部(信号終端部)が、ユーザ装置に配置されてもよい。アクセス系管理制御部とユーザ装置とが通信できるように光振分部等を設定する。アクセス系管理制御部が、ユーザ装置に配置された主信号終端部(信号終端部)を選択する。ユーザ装置は、選択された信号終端部で、主信号及び制御信号を送信する。Ph-GWは、主信号及び制御信号を折り返す。ユーザ装置は、その折り返しの下り主信号及び制御信号を受信して終端し、正常性を判定する。 A main signal termination section (signal termination section) corresponding to the signal format used by the opposing device may be arranged in the user device. The optical distribution unit and the like are set so that the access system management control unit and the user device can communicate. The access system management control unit selects a main signal termination unit (signal termination unit) located in the user device. The user equipment transmits the main signal and the control signal at the selected signal termination. The Ph-GW loops back the main signal and control signal. The user equipment receives and terminates the returned downlink main signal and control signal, and determines normality.
 上記(C1)及び(D1)では、制御信号だけでなく主信号もループバックしてもよいし、制御信号のみループバックして、主信号は透過してもよい。後者の場合、図に示された折返しの太線矢印(ループバック)は、図6から図8のように、正常性の判定経路はユーザ装置300のUNIまで到達せず、合分離部322で折り返しとなり、信号終端部の代わりに、判定制御部401で生成終端する((C1)の場合)。(D1)の場合は、ユーザ装置の制御部330から光伝送路を経てアクセス系管理制御部の判定制御部401で折り返し、ユーザ装置の制御部330にループバックされ、ユーザ装置300のUNIまで到達しないのは同様である。 In (C1) and (D1) above, not only the control signal but also the main signal may be looped back, or only the control signal may be looped back and the main signal may be transmitted. In the latter case, the thick line arrow (loopback) shown in the figure indicates that the normality determination path does not reach the UNI of the user device 300 and loops back at the combining/separating unit 322, as shown in FIGS. 6 to 8. The signal is generated and terminated by the determination control unit 401 instead of the signal termination unit (in the case of (C1)). In the case of (D1), it is looped back from the control unit 330 of the user device through the optical transmission path to the determination control unit 401 of the access system management control unit, looped back to the control unit 330 of the user device, and reaches the UNI of the user device 300. The same goes for not doing so.
 なお、図7及び9では、「主信号ループバック+制御信号ループバック」の組合せは実施できない(なお、図2-5では、「主信号ループバック」と、「主信号ループバック+制御信号ループバックの組合せ」とのいずれも選択できる)。 In addition, in Figures 7 and 9, the combination of "main signal loopback + control signal loopback" cannot be implemented (in addition, in Figure 2-5, the combination of "main signal loopback" and "main signal loopback + control signal loop" is not possible). (You can choose any combination of backs).
 アクセス系管理制御部103に関し、合分離部404よりネットワーク側は、制御信号に関し、判定制御部401で折り返すか、生成終端し、主信号に関し、信号終端部で折り返すか、生成終端する。両方の場合は、合分離部404で多重される。合分離部404よりユーザ側は、光IF部が制御信号と主信号で共通の場合、共通なので、いずれも光IF部で送受信する。光IF部の送受の少なくとも一方が制御信号と主信号で異なる場合、異なる送信もしくは受信又は両方を制御信号又は主信号のそれぞれ対応する光IF部で行う。 Regarding the access system management control unit 103, on the network side from the combination/separation unit 404, the control signal is looped back or generated and terminated at the determination control unit 401, and the main signal is looped back or generated and terminated at the signal termination unit. In both cases, the multiplexing unit 404 multiplexes the signals. On the user side from the combining/separating unit 404, if the optical IF unit is common for the control signal and the main signal, since they are common, both are transmitted and received at the optical IF unit. When at least one of the transmission and reception of the control signal and the main signal by the optical IF section is different, different transmissions or receptions, or both, are performed by the optical IF sections corresponding to the control signal or the main signal, respectively.
 制御信号に加えて主信号もループバックする場合、制御信号受信部331は指示に応じて折返部333及びUNI_PHYに対してもループバックの実行を指示する。 When looping back the main signal in addition to the control signal, the control signal receiving unit 331 also instructs the loopback unit 333 and UNI_PHY to execute the loopback according to the instruction.
 Ph-GW側でループバックする場合、受信部(光IF部)で受けた信号を、選択した信号終端部402で折り返し、送信部(光IF部)が出力する。 When looping back on the Ph-GW side, the signal received by the receiving section (optical IF section) is looped back by the selected signal termination section 402, and the transmitting section (optical IF section) outputs it.
 また、主信号をアクセス系管理制御部で生成及び終端するか、折り返さなくともよいし、アクセス系管理制御部が制御信号で変調したり、制御信号を重畳したりする主信号が、正常性判定の対象区間と反対の区間から得られない場合のみ、主信号を生成、終端又は折り返すとしてもよい。 Also, the main signal may be generated and terminated by the access system management control unit or may not be looped back, and the main signal modulated by the control signal or superimposed with the control signal by the access system management control unit may be The main signal may be generated, terminated, or folded back only when the main signal cannot be obtained from the section opposite to the target section.
 判定制御部401は、対象ユーザ装置において処理可能なプロトコルに応じた信号終端部402を選択する。選択は、Ph-GW内外のデータベースからの情報や、APNコントローラ等の制御システムからの指示で行われてもよいし、信号終端部で受信できる信号から判別して行われてもよいし、ユーザ装置への問い合わせ結果に基づいて行われてもよい。判定制御部401は、選択された信号終端部402に対し、対象ユーザ装置に対して主信号を送信することを指示する(ユーザ装置からの導通確認用の主信号をPh-GWで受信して、正常性判定する場合)。主信号を受信(Ph-GWからの導通確認用の主信号をユーザ装置で受信して、正常性判定する場合)、又は、主信号を送受信(Ph-GWからの導通確認用の主信号をユーザ装置でループバックしPh-GWで受信し、ループバックで正常性判定する場合、ユーザ装置からの導通確認用の主信号をPh-GWでループバックし、ユーザ装置で受信し、ループバックで正常性判定する場合)してもよい。 The determination control unit 401 selects a signal termination unit 402 according to a protocol that can be processed by the target user device. The selection may be made based on information from databases inside and outside the Ph-GW, instructions from a control system such as an APN controller, determined from signals that can be received at the signal termination section, or made by the user. This may be performed based on the result of an inquiry to the device. The determination control unit 401 instructs the selected signal termination unit 402 to transmit the main signal to the target user device (the Ph-GW receives the main signal for continuity check from the user device). , when determining normality). Receive the main signal (when the user equipment receives the main signal for continuity check from the Ph-GW and determine the normality), or transmit/receive the main signal (the main signal for continuity check from the Ph-GW is received by the user equipment) When looping back at the user equipment, receiving it at the Ph-GW, and determining normality using the loopback, the main signal for continuity check from the user equipment is looped back at the Ph-GW, received at the user equipment, and then the main signal for continuity confirmation is determined by the loopback. (when determining normality).
 AMCCのループバックでは、AMCC信号と主信号を含んだ信号全体とAMCC信号のみとの2種類のループバックがある。信号全体の場合、ユーザ装置300はAMCCの影響を受けない主信号のみを受信し、ユーザ側に出力する代わりに、ループバックする。そのため、主信号のループバックにはAMCCは含まれない。そこで、AMCCを主信号とは別途で受信し、主信号のループバックをAMCCで再変調することで、信号全体をループバックする。このため、信号全体のループバックでは、下りの主信号と下りのAMCC信号のタイミングがループバックする上りの主信号と上りのAMCC信号と同じ信号となるように同期する場合と、同期しない場合とがある。 There are two types of AMCC loopback: the entire signal including the AMCC signal and the main signal, and the AMCC signal only. In the case of the entire signal, the user equipment 300 receives only the main signal that is not affected by AMCC and loops it back instead of outputting it to the user side. Therefore, AMCC is not included in the loopback of the main signal. Therefore, by receiving AMCC separately from the main signal and re-modulating the loopback of the main signal with AMCC, the entire signal is looped back. Therefore, when looping back the entire signal, there are cases where the timing of the downlink main signal and the downlink AMCC signal are synchronized so that they are the same as the uplink main signal and uplink AMCC signal that are looped back, and cases where they are not synchronized. There is.
 同期する場合は、主信号の変調方式によらず、分離してから、主信号とAMCC信号のそれぞれの折り返し点を経て、多重するまでの時間を揃える必要がある。時間で同期し、かつAMCCの変調インデックスも送信側と合わせることで、AMCCの影響まで加味した状態で再生した信号を送り戻すことができる。 In the case of synchronization, regardless of the modulation method of the main signal, it is necessary to align the time from separation to multiplexing through the respective turning points of the main signal and AMCC signal. By synchronizing in time and matching the AMCC modulation index with the transmitting side, it is possible to send back the reproduced signal while taking into account the influence of AMCC.
 同期しない場合は、簡易に多重できる。AMCC信号のみの場合、AMCCでの制御信号のみ送り返す。この場合、主信号は任意となるため、主信号の通信を阻害することなく、ループバック試験が可能となる。 If not synchronized, it can be easily multiplexed. If there is only an AMCC signal, only the AMCC control signal is sent back. In this case, since the main signal is arbitrary, a loopback test can be performed without interfering with communication of the main signal.
 なお、上記のISDNの例は、説明のためのアナロジーである。ISDNの考え方を本実施形態に適用する。ISDNでチャネルとは、BRI(Basic Rate Interface)であれば、データ通信用の2つのBチャネルと通信制御用の1つのD(Data)チャネルである。APNでのチャネルの定義によるが、例えば主信号とAMCCをチャネルと見做せば1または複数の指定されたチャネル、例えばAMCC信号のある情報についてある特定の修正、例えばAMCC信号内のある情報、例えば誤り率等の品質関連の情報や、Requestに対するAckや応答や、上流方向への送信故障通知等のRDI(Remote Defect Indication)の応じた修正を加えて返送することがある。品質情報やRDI等はAMCC信号側でなく、主信号の測定結果や故障通知として、主信号側で返送してもよい。複数のチャネルとして、AMCC信号と主信号のそれぞれで返送してもよい。品質情報が返信される構成の例としては、後述する第4実施形態の構成がある。 Note that the above ISDN example is an analogy for explanation. The ISDN concept is applied to this embodiment. In the case of BRI (Basic Rate Interface), channels in ISDN include two B channels for data communication and one D (Data) channel for communication control. Depending on the definition of a channel in the APN, for example, if the main signal and AMCC are considered as channels, one or more designated channels, for example certain modifications to certain information in the AMCC signal, for example certain information in the AMCC signal, For example, it may be returned with corrections according to quality-related information such as error rate, an Ack or response to a Request, or RDI (Remote Defect Indication) such as a transmission failure notification in the upstream direction. The quality information, RDI, etc. may be returned not on the AMCC signal side but on the main signal side as a measurement result of the main signal or a failure notification. The AMCC signal and the main signal may each be sent back as multiple channels. An example of a configuration in which quality information is returned is the configuration of the fourth embodiment described later.
 (第2実施形態の第2変形例)
 制御信号を重畳する主信号を利用できない場合について説明する。
(Second modification of the second embodiment)
A case where the main signal on which the control signal is superimposed cannot be used will be described.
 制御信号で変調又は制御信号を重畳する主信号の生成又は終端のいずれか又はその両方を行わず、正常性判定対象区間の反対側の装置(例えば他のPh―GWやユーザ装置)からの主信号を利用し、利用できない場合のみ第1実施形態の信号終端部を用いるように構成されてもよい。 The main signal from the device on the opposite side of the normality determination target section (for example, another Ph-GW or user equipment) is It may be configured such that the signal termination unit of the first embodiment is used only when the signal is not available.
 図6、8及び14のように構成されることによって、他のPh―GWやユーザ装置からの主信号を利用し、制御信号を折り返すユーザ装置と対向する装置(例えば他のユーザ装置)とで正常性判定を行う場合、又は、他のPh―GWやユーザ装置からの主信号を利用し、制御信号を折り返すユーザ装置と対向する装置(例えば他のユーザ装置)との信号光の導通を継続し、重畳した制御信号のみ抜き出し(波長が異なれば波長フィルタ等で)終端か、分岐した一部の信号光のみを終端するか、信号光の少なくとも制御信号の非線形光学効果等の影響を受け少なくとも制御信号が受信できる光を終端するが主信号は透過する場合は、正常性判定中も主信号による通信を継続できるという効果がある。 By being configured as shown in FIGS. 6, 8, and 14, a user device that uses main signals from other Ph-GWs or user devices and returns control signals and an opposing device (for example, another user device) When performing a normality determination, or by using the main signal from another Ph-GW or user equipment, continue to conduct the signal light between the user equipment that loops back the control signal and the opposing equipment (for example, another user equipment). Then, either extract only the superimposed control signal and terminate it (using a wavelength filter, etc. if the wavelengths are different), or terminate only part of the branched signal light, or at least remove the signal light from the influence of nonlinear optical effects, etc. of the control signal. If the light that can receive the control signal is terminated but the main signal is transmitted, there is an effect that communication using the main signal can be continued even during normality determination.
 折り返す制御信号で変調もしくは折り返す制御信号を重畳する主信号の生成もしくは終端のいずれか又はその両方を行わず、正常性判定対象区間の反対側の装置(例えば他のPh―GWやユーザ装置)からの主信号を利用し、利用できない場合のみ第1実施形態の信号終端部を用いるように構成されてもよい。 without generating or terminating the main signal that modulates with the return control signal or superimposing the return control signal, and without generating or terminating the main signal and/or from the device on the opposite side of the normality determination target section (for example, another Ph-GW or user equipment). The main signal may be used, and the signal termination section of the first embodiment may be used only when the main signal is not available.
 図6、8及び14のように構成されることによって、他のPh―GWやユーザ装置からの主信号を利用し、制御信号を折り返すユーザ装置と対向する装置(例えば他のユーザ装置)とで正常性判定を行う場合、又は、他のPh―GWやユーザ装置からの主信号を利用し、制御信号を生成及び終端するユーザ装置と対向する装置、例えば他のユーザ装置との信号光の導通を継続し、重畳した制御信号のみ抜きだすか、分岐した一部の信号光や非線形光学効果等により信号光の少なくとも制御信号が転写された光を終端する場合は、正常性判定中も主信号による通信を継続できる効果がある。 By being configured as shown in FIGS. 6, 8, and 14, a user device that uses main signals from other Ph-GWs or user devices and returns control signals and an opposing device (for example, another user device) When performing a normality determination, or by using the main signal from another Ph-GW or user equipment, conduction of signal light between a user equipment that generates and terminates a control signal and a device facing the user equipment, such as another user equipment. If the control signal is continued and only the superimposed control signal is extracted, or if the signal light is terminated with at least the control signal transferred due to some branched signal light or a nonlinear optical effect, the main signal is continued even during normality determination. This has the effect of allowing continuous communication.
 なお、制御信号ループバックの場合は、制御信号で判定するので、ユーザ装置のプロコトルに応じない主信号であっても、無変調光(CW光)であっても、判定は可能である。 Note that in the case of control signal loopback, since the control signal is used for determination, determination is possible even if the main signal does not correspond to the protocol of the user device or is unmodulated light (CW light).
 (第3実施形態)
 図9は、通信システム1の第3実施形態を示す図である。第3実施形態では、制御部330がさらに装置内折返制御部334として機能するという点で第2実施形態と異なり、他の大部分の点では第2実施形態と一致する。以下、通信システム1の第3実施形態について、通信システム1の第2実施形態と異なる点を中心に説明する。
(Third embodiment)
FIG. 9 is a diagram showing a third embodiment of the communication system 1. The third embodiment differs from the second embodiment in that the control section 330 further functions as an internal return control section 334, and is the same as the second embodiment in most other respects. The third embodiment of the communication system 1 will be described below, focusing on the differences from the second embodiment of the communication system 1.
 アクセス系管理制御部103は、信号経路正常性判定の対象となっている区間に接続されているユーザ装置300(対象ユーザ装置)に対し、ループバックを指示するための制御信号を送信する。第3実施形態におけるループバックは、ループ2相当であり、UNI_PHYとMACとの間の経路についての正常性も判定される。 The access system management control unit 103 transmits a control signal for instructing loopback to the user device 300 (target user device) connected to the section targeted for signal path normality determination. The loopback in the third embodiment corresponds to loop 2, and the normality of the path between the UNI_PHY and the MAC is also determined.
 判定制御部401は、信号経路正常性判定の処理を行う。判定制御部401は、ループバックの実行と主信号を用いた装置内折返しの実行とを示す制御信号を、光インタフェース部405に出力する。判定制御部401は、ユーザ装置300から送信された制御信号を受信すると、受信された信号に基づいて判定対象の経路の正常性について判定する。このとき、判定制御部401は、装置内折返しの結果に基づいて、光送受信機301の内部を含む経路について信号経路正常性判定を行う。 The determination control unit 401 performs signal path normality determination processing. The determination control unit 401 outputs to the optical interface unit 405 a control signal indicating execution of loopback and execution of internal loopback using the main signal. Upon receiving the control signal transmitted from the user device 300, the determination control unit 401 determines the normality of the route to be determined based on the received signal. At this time, the determination control unit 401 performs a signal path normality determination for the path including the inside of the optical transceiver 301 based on the result of intra-device loopback.
 ユーザ装置300は、光送受信機301及び制御部330を備える。第3実施形態の光送受信機301は、装置内折返しを実行する点を除けば、第2実施形態における光送受信機301と同様の構成であるため説明を省略する。 The user device 300 includes an optical transceiver 301 and a control section 330. The optical transceiver 301 of the third embodiment has the same configuration as the optical transceiver 301 of the second embodiment, except that it performs internal loopback, so a description thereof will be omitted.
 制御信号受信部331は、合分離部322によって分離された制御信号を合分離部322から受信する。制御信号受信部331は、受信された制御信号が示す情報に応じて動作する。制御信号がループバックの実行の指示を示す情報である場合、制御信号受信部331は指示に応じて折返部333に対してループバックの実行を指示する。制御信号がさらに装置内折返しの実行の指示を示す情報を含む場合、制御信号受信部331は、装置内折返制御部334に装置内折返しの実行を指示する。 The control signal receiving section 331 receives from the combining/separating section 322 the control signals separated by the combining/separating section 322 . The control signal receiving section 331 operates according to information indicated by the received control signal. If the control signal is information indicating an instruction to execute loopback, control signal receiving section 331 instructs return section 333 to execute loopback in accordance with the instruction. If the control signal further includes information indicating an instruction to execute intra-apparatus loopback, the control signal receiving section 331 instructs the intra-apparatus loopback control section 334 to execute intra-apparatus loopback.
 折返部333は、制御信号受信部331からループバックの実行の指示を受けると、指示に応じてループバック処理を実行する。折返部333におけるループバック処理の対象は、例えば制御信号である。ループバック処理は、例えば全チャネルループバックとして実施されてもよいし、部分的ループバックとして実施されてもよいし、論理ループバックとして実施されてもよい。 Upon receiving an instruction to perform loopback from the control signal receiving section 331, the loopback section 333 executes loopback processing in accordance with the instruction. The target of loopback processing in the loopback unit 333 is, for example, a control signal. The loopback process may be implemented as a full channel loopback, a partial loopback, or a logical loopback, for example.
 折返部333は、例えば装置内折返しの実行結果を示すようにループバックを実行してもよい。例えば、折返部333は、装置内折返しの実行の結果として正常な導通が判定された場合にのみ、制御信号をループバックするように構成されてもよい。この場合、判定制御部401は、ループバックされた制御信号を受信することに応じて信号経路が正常だと判定してもよい。折返部333は、例えば装置内折返しの実行結果を示す情報を、ループバックされた制御信号に含めるように構成されてもよい。この場合、判定制御部401は、ループバックされた制御信号に含まれた情報に基づいて、信号経路が正常か否かを判定してもよい。ループバックされた制御信号は、光インタフェース部326において光信号に変換され、アクセス系管理制御部103に送信される。 The loopback unit 333 may perform loopback, for example, to show the execution result of intra-device loopback. For example, the loopback unit 333 may be configured to loop back the control signal only when normal conduction is determined as a result of performing internal loopback. In this case, the determination control unit 401 may determine that the signal path is normal in response to receiving the looped back control signal. The loopback unit 333 may be configured to include, for example, information indicating the execution result of intra-apparatus loopback in the looped back control signal. In this case, the determination control unit 401 may determine whether the signal path is normal based on information included in the looped back control signal. The looped back control signal is converted into an optical signal by the optical interface unit 326 and transmitted to the access system management control unit 103.
 装置内折返制御部334は、自装置の光送受信機301で対応可能なプロトコルの主信号を用いて装置内折返しを実行するように光送受信機301を制御する。装置内折返しによる光送受信機301の信号経路正常性判定では、装置内折返制御部334は、光送受信機301において主信号と制御信号とが異なる経路を経由する場合、又は、主信号と制御信号とで異なる送信機が用いられる場合、又は、主信号と制御信号とで異なる受信機が用いられる場合には、それぞれの経路又は送信機又は受信機毎に装置内折返しを実行する。 The intra-device loopback control unit 334 controls the optical transceiver 301 to perform intra-device loopback using the main signal of a protocol compatible with the optical transceiver 301 of the device itself. In determining the normality of the signal path of the optical transceiver 301 by internal loopback, the internal loopback control unit 334 determines whether the main signal and the control signal pass through different routes in the optical transceiver 301, or if the main signal and the control signal When different transmitters are used for the main signal and the control signal, or when different receivers are used for the main signal and the control signal, intra-device loopback is performed for each route, transmitter, or receiver.
 図9は、第3実施形態における装置内折返しの具体例を示す図である。本実施形態の装置内折返制御部334では、仕様が異なる複数の送信機(例えば主信号用の送信機と、制御信号用の送信機)が自装置(光送受信機301)に含まれる場合には、それぞれの送信機について装置内折返しが実行されてもよい。受信機についても同様である。 FIG. 9 is a diagram showing a specific example of folding back within the device in the third embodiment. In the device internal loopback control unit 334 of this embodiment, when a plurality of transmitters with different specifications (for example, a main signal transmitter and a control signal transmitter) are included in the own device (optical transceiver 301), Intra-device loopback may be performed for each transmitter. The same applies to the receiver.
 例えば、図9において、光インタフェース部321は主信号用Rx321_1と、制御信号用Rx321_2と、をそれぞれ備える。主信号用Rx321_1は主信号について処理を行い制御信号については処理を行わない。同様に、制御信号用Rx321_2は制御信号について処理を行い主信号については処理を行わない。図9において、光インタフェース部326は主信号用Tx326_1と、制御信号用Tx326_2と、をそれぞれ備える。主信号用Tx326_1は主信号について処理を行い制御信号については処理を行わない。同様に、制御信号用Tx326_2は制御信号について処理を行い主信号については処理を行わない。このような構成において、主信号用Rx321_1と制御信号用Rx321_2とについて、それぞれ装置内折返しが実行される。同様に、主信号用Tx326_1と制御信号用Tx326_2とについて、それぞれ装置内折返しが実行される。 For example, in FIG. 9, the optical interface section 321 includes a main signal Rx 321_1 and a control signal Rx 321_2. The main signal Rx 321_1 processes the main signal and does not process the control signal. Similarly, the control signal Rx 321_2 processes the control signal and does not process the main signal. In FIG. 9, the optical interface unit 326 includes a main signal Tx 326_1 and a control signal Tx 326_2. The main signal Tx 326_1 processes the main signal and does not process the control signal. Similarly, the control signal Tx 326_2 processes the control signal and does not process the main signal. In such a configuration, intra-device loopback is performed for each of the main signal Rx 321_1 and the control signal Rx 321_2. Similarly, intra-device loopback is performed for each of the main signal Tx 326_1 and the control signal Tx 326_2.
 例えば、装置内折返しにおける正常性判定のループは、合分離部322と、処理部323と、UNI_PHY(Tx)324と、UNI_PHY(Rx)325と、処理部323と、合分離部322とのループである。例えば、装置内折返しにおける正常性判定のループは、処理部323と、UNI_PHY(Tx)324と、UNI_PHY(Rx)325と、処理部323とのループでもよい。例えば、装置内折返しにおける正常性判定のループは、処理部323と、合分離部322と、光インタフェース部326と、光インタフェース部321と、合分離部322と、処理部323とのループでもよい。 For example, the loop for normality determination in device loopback is a loop of the combining/separating unit 322, the processing unit 323, the UNI_PHY(Tx) 324, the UNI_PHY(Rx) 325, the processing unit 323, and the combining/separating unit 322. It is. For example, the loop for normality determination during intra-device loopback may be a loop of the processing unit 323, UNI_PHY (Tx) 324, UNI_PHY (Rx) 325, and processing unit 323. For example, the loop for normality determination in the device internal loop may be a loop including the processing section 323, the combining/separating section 322, the optical interface section 326, the optical interface section 321, the combining/separating section 322, and the processing section 323. .
 例えば、装置内折返しにおける正常性判定のループは、光IF部の光源又は受信部の少なくともいずれかが、主信号と制御信号とで異なる場合、合分離部322と、光インタフェース部326で主信号が導通する側と、光インタフェース部321で主信号が導通する側と、合分離部322とのループでもよい。例えば、装置内折返しにおける正常性判定のループは、制御部330と、合分離部322と、光インタフェース部326で主信号が導通する側と、光インタフェース部321で主信号が導通する側と、合分離部322と、制御部330とのループでもよい。 For example, in the loop of normality determination in the internal loop of the device, if at least one of the light source or the receiving section of the optical IF section differs between the main signal and the control signal, the main signal is It may be a loop between the side where the optical interface section 321 conducts, the side where the main signal conducts at the optical interface section 321, and the combining/separating section 322. For example, the loop for normality determination in the internal loop of the device includes the control section 330, the combining/separating section 322, the optical interface section 326 on which the main signal is conducted, the optical interface section 321 on the side where the main signal is conducted, A loop between the combining/separating section 322 and the control section 330 may be used.
 また、主信号と制御信号とが別経路を経由する場合には、それぞれの経路を介して装置内折返しが実行されるように構成される。 Furthermore, when the main signal and the control signal pass through different routes, the configuration is such that internal loopback within the device is executed via the respective routes.
 例えば、処理部323からUNI_PHY(Tx)324、UNI_PHY(Rx)325を経由して処理部323に入力するように主信号をループバックさせることによって装置内折返しが実行され光送受信機301の信号経路正常性判定が行われてもよい。さらに、処理部323から合分離部322、光インタフェース部326、光インタフェース部321、合分離部322を経由して処理部323に入力するように主信号をループバックさせることによって装置内折返しが実行され光送受信機301の信号経路正常性判定が行われてもよい。装置内折返制御部334は、装置内折返しの実行による信号経路正常性判定の判定結果を折返部333に出力する。 For example, internal loopback is performed by looping back the main signal so that it is input from the processing unit 323 to the processing unit 323 via the UNI_PHY (Tx) 324 and UNI_PHY (Rx) 325, and the signal path of the optical transceiver 301 is A normality determination may also be performed. Furthermore, loopback within the device is performed by looping back the main signal so that it is input from the processing section 323 to the processing section 323 via the combining/separating section 322, the optical interface section 326, the optical interface section 321, and the combining/separating section 322. Then, the signal path normality of the optical transceiver 301 may be determined. The intra-apparatus loopback control unit 334 outputs the determination result of the signal path normality determination by executing the intra-apparatus loopback to the loopback unit 333.
 第3実施形態における信号経路正常性判定の処理の流れについて説明する。所定のタイミングで判定制御部401は、ループバックの実行を指示するための制御信号を生成し、光インタフェース部405に出力する。所定のタイミングは、例えばユーザ装置300との通信に不具合が検出されたタイミングであってもよい。光インタフェース部405は、判定制御部401から入力された電気信号を光信号に変換し、伝送路を介してユーザ装置300に光信号を送信する。 The flow of processing for determining signal path normality in the third embodiment will be explained. At a predetermined timing, the determination control unit 401 generates a control signal for instructing execution of loopback, and outputs it to the optical interface unit 405. The predetermined timing may be, for example, the timing at which a problem in communication with the user device 300 is detected. The optical interface unit 405 converts the electrical signal input from the determination control unit 401 into an optical signal, and transmits the optical signal to the user device 300 via the transmission path.
 ユーザ装置300の光インタフェース部321は、アクセス系管理制御部103から光信号を受信すると、受信された光信号を電気信号に変換して合分離部322に出力する。合分離部322は、受信された信号から制御信号を分離し、制御信号を制御部330に出力する。 Upon receiving the optical signal from the access system management control unit 103 , the optical interface unit 321 of the user device 300 converts the received optical signal into an electrical signal and outputs it to the combining/separating unit 322 . The combiner/separator 322 separates the control signal from the received signal and outputs the control signal to the controller 330 .
 制御部330の制御信号受信部331は、合分離部322から制御信号を受けると、制御信号に含まれる制御の内容に応じて動作する。制御信号には、ループバックの実行の指示を示す信号が含まれている。この指示に応じて、制御信号受信部331は、折返部333に対して制御信号のループバックの実行を指示する。また、制御信号受信部331は、装置内折返制御部334に対して装置内折返しの実行を指示する。 When the control signal receiving section 331 of the control section 330 receives the control signal from the combining/separating section 322, it operates according to the content of the control included in the control signal. The control signal includes a signal indicating an instruction to perform loopback. In response to this instruction, the control signal receiving section 331 instructs the loopback section 333 to perform loopback of the control signal. Further, the control signal receiving unit 331 instructs the intra-device loopback control unit 334 to execute intra-device loopback.
 装置内折返制御部334は、指示に応じて装置内折返しを実行し、その実行結果に基づいて光送受信機301の信号経路正常性を判定する。装置内折返制御部334は、判定結果を折返部333に出力する。折返部333は、装置内折返制御部334の判定結果に応じて、受信された制御信号についてループバック処理を行う。ループバック処理の実行により、折返部333は合分離部322に制御信号を出力する。 The intra-device return control unit 334 executes intra-device return according to the instruction, and determines the normality of the signal path of the optical transceiver 301 based on the execution result. The intra-device loopback control section 334 outputs the determination result to the loopback section 333. The loopback unit 333 performs loopback processing on the received control signal according to the determination result of the internal loopback control unit 334. By executing the loopback process, the return section 333 outputs a control signal to the combination/separation section 322.
 ループバックされた制御信号は、光インタフェース部406において電気信号に変換され、制御信号の送信元であった判定制御部401に入力される。判定制御部401は、入力された制御信号について、導通確認に応じた所定の評価を行う。例えば、正しくループバックが行われたか否かに関する評価が行われてもよいし、装置内折返しの実行結果に関する評価が行われてもよい。判定制御部401は、評価結果に基づいて、対象ユーザ装置に関する信号経路正常性判定を行う。判定制御部401は、判定結果を他の装置に出力してもよいし、ログとして記憶装置に記録してもよい。 The looped back control signal is converted into an electrical signal at the optical interface section 406, and is input to the determination control section 401, which was the source of the control signal. The determination control unit 401 performs a predetermined evaluation on the input control signal according to the continuity check. For example, an evaluation may be made regarding whether or not loopback has been performed correctly, or an evaluation may be made regarding the execution result of intra-device loopback. The determination control unit 401 performs a signal path normality determination regarding the target user device based on the evaluation result. The determination control unit 401 may output the determination result to another device or record it in a storage device as a log.
 このように構成された第3実施形態の通信システム1によれば、ユーザ装置300において処理可能な制御信号がユーザ装置300に送信される。そのため、光送受信機301において主信号が光・電気変換された後の経路を経由した後のループバックポイント(折返部333)でループバックを行うことができる。したがって、特定の通信プロトコルや変調方式に依存しないプロトコル無依存のAPNにおいて、ユーザ装置300の内部を含む信号経路の正常性を判定することが可能となる。 According to the communication system 1 of the third embodiment configured in this way, a control signal that can be processed by the user device 300 is transmitted to the user device 300. Therefore, loopback can be performed at a loopback point (return unit 333) after the main signal passes through the path after optical-to-electrical conversion in the optical transceiver 301. Therefore, it is possible to determine the normality of the signal path including the inside of the user device 300 in a protocol-independent APN that does not depend on a specific communication protocol or modulation method.
 また、第3実施形態の通信システム1によれば、ユーザ装置300の光送受信機301において装置内折返しが実行され、装置内の信号経路について信号経路正常性が判定される。例えば、処理部323、UNI_PHY(Tx)324、UNI_PHY(Rx)325及び処理部323における信号経路の正常性が判定される。このとき、装置内折返しであるため、当然のことながら光送受信機301において処理可能なプロトコルの信号を用いた処理が行われる。したがって、特定の通信プロトコルや変調方式に依存しないプロトコル無依存のAPNにおいて、ユーザ装置300の内部(特に、MACやUNI_PHYのようなプロトコルに依存する装置)を含む信号経路の正常性を判定することが可能となる。このような処理は、上述した第2実施形態と同様に、他の信号経路正常性判定に比べて優れている。 Furthermore, according to the communication system 1 of the third embodiment, intra-device loopback is performed in the optical transceiver 301 of the user device 300, and the normality of the signal path within the device is determined. For example, the normality of the signal paths in the processing unit 323, UNI_PHY (Tx) 324, UNI_PHY (Rx) 325, and processing unit 323 is determined. At this time, since the signal is returned within the device, processing is naturally performed using a signal of a protocol that can be processed by the optical transceiver 301. Therefore, in a protocol-independent APN that does not depend on a specific communication protocol or modulation method, it is possible to determine the normality of the signal path including the inside of the user device 300 (in particular, devices that depend on protocols such as MAC and UNI_PHY). becomes possible. Similar to the second embodiment described above, such processing is superior to other signal path normality determinations.
 折り返しに限らない導通確認や自己診断機能により、正常性判定を行ってもよい。試験信号が折り返し点で折り返されてくるまでの伝送経路について正常であるか否かを判定することしかできないということがないように、試験信号の伝送経路に関係しない部分(試験信号が流れない部分)の自己診断機能を備えてもよい。 Normality may be determined by continuity confirmation or self-diagnosis function, which is not limited to loopback. In order to avoid the situation where it is only possible to determine whether or not the transmission path is normal until the test signal is turned back at the turning point, it is necessary to ) may be equipped with a self-diagnosis function.
 例えば、試験開始要求或いは試験開始要求に対する試験開始応答を受信したとき(送受信側であれば)、試験信号を作成し、光伝送路を介して送信する手段と、光伝送路を介して試験信号を受信する手段と、自己診断機能の結果を受信する手段と、自己診断機能の結果を受信したとき、光伝送路を介して試験終了要求を送信する手段とを有する。 For example, when receiving a test start request or a test start response to a test start request (if it is on the transmitter/receiver side), a means for creating a test signal and transmitting it via an optical transmission line, and a means for transmitting the test signal via an optical transmission line. , means for receiving the result of the self-diagnosis function, and means for transmitting a test termination request via the optical transmission line when the result of the self-diagnosis function is received.
 試験開始要求或いは試験開始要求に対する試験開始応答を受信したとき(折返し側であれば)、光伝送路を介して試験信号を受信する手段と、自己診断機能の結果を受信する手段と、自己診断機能の結果を受信したとき、応答信号又は折返し信号を作成し、光伝送路を介して送信する手段とを有する(応答又は折返し信号の送信は、自己診断結果とは別途でもよい。別途出ない場合も、自己診断機能で異常を検出した場合、異常個所を識別するデータを送信する方が望ましい。) When receiving a test start request or a test start response to a test start request (if it is on the return side), a means for receiving a test signal via an optical transmission line, a means for receiving a result of a self-diagnosis function, and a self-diagnosis function. When a function result is received, a response signal or return signal is created and transmitted via an optical transmission line. (The response or return signal may be sent separately from the self-diagnosis result. (In this case, if an abnormality is detected by the self-diagnosis function, it is preferable to send data that identifies the abnormality.)
 自己診断機能も、試験信号折返しに限定されない。自己診断機能が、試験信号折返しの場合、例えば、予め送受信部の受信部からの信号をそのまま送信部に直結する折り返しスイッチを設けておいて、制御によってオンオフさせることで、折返し試験時にのみ信号が折り返されるように設定する。例えば、ATMで伝送する場合のAAL5終端部からUNIの区間、OTNフレームで伝送する場合の機器内のOTNフレームで伝送するクライアント信号をユーザ側と授受するクライアント信号のUNIからOTNフレームにクライアント信号を組み込むフレーマ―までに区間がこれに該当する。試験で用いるATMでのペイロードや、OTNでのクライアント信号に搭載する擬似ランダムパターン等は、装置内で生成してもよいし、対向装置で生成し、それを切り出しして装置内で用いてもよい。 The self-diagnosis function is also not limited to test signal return. If the self-diagnosis function is test signal loopback, for example, by providing a loopback switch in advance that directly connects the signal from the receiving section of the transmitting/receiving section directly to the transmitting section, and turning it on and off under control, the signal will be output only during the loopback test. Set to wrap. For example, when transmitting by ATM, the client signal is transmitted from the AAL5 terminal to the UNI, and when transmitting by OTN frame, the client signal is transmitted from the UNI to the OTN frame. This applies to the section up to the framer that is to be incorporated. The ATM payload used in the test and the pseudo-random pattern included in the OTN client signal may be generated within the device, or they may be generated by the opposing device and then cut out and used within the device. good.
 試験信号の折返しをしない場合、信号が経由しない各回路の自己診断機能で判定してもよい。例えば、フレームバッファであれば、フレームデータのみのような折り返し試験信号のデータでは、ごく一部のメモリ領域しか使用されない。ほとんどの領域で試験信号は、ごく一部のメモリ領域しか使用されないため、折り返し試験のみではフレームバッファの大半の部分における異常を見つけることはできない。そこでバッファを構成するメモリの読み書き試験を行い、自己診断とする。 If the test signal is not looped back, the determination may be made using the self-diagnosis function of each circuit through which the signal does not pass. For example, in the case of a frame buffer, only a small portion of the memory area is used for folded test signal data such as frame data only. In most areas, the test signal uses only a small portion of the memory area, so it is not possible to find abnormalities in most parts of the frame buffer only by looping tests. Therefore, a read/write test of the memory that makes up the buffer is performed as a self-diagnosis.
 以上のように、例えば第2のユーザ装置(ユーザ装置300-2)は、信号経路が正常であるか否かの判定に加え、第2のユーザ装置の内部において所定の信号を用いて、第2のユーザ装置の内部が正常であるか否かを更に判定(自己診断)する。 As described above, for example, the second user device (user device 300-2) uses a predetermined signal inside the second user device to determine whether the signal path is normal or not. It is further determined (self-diagnosis) whether or not the inside of the user device No. 2 is normal.
 (第4実施形態)
 図10は、通信システム1の第4実施形態を示す図である。第4実施形態では、アクセス系管理制御部103がさらに誤り率測定部411を備えるという点で第2実施形態と異なり、他の大部分の点では第2実施形態と一致する。以下、通信システム1の第4実施形態について、通信システム1の第2実施形態と異なる点を中心に説明する。
(Fourth embodiment)
FIG. 10 is a diagram showing a fourth embodiment of the communication system 1. The fourth embodiment differs from the second embodiment in that the access system management control unit 103 further includes an error rate measurement unit 411, and is the same as the second embodiment in most other respects. The fourth embodiment of the communication system 1 will be described below, focusing on the differences from the second embodiment of the communication system 1.
 アクセス系管理制御部103は、信号経路正常性判定の対象となっている区間に接続されているユーザ装置300(対象ユーザ装置)に対し、ループバックを指示するための制御信号を送信する。 The access system management control unit 103 transmits a control signal for instructing loopback to the user device 300 (target user device) connected to the section targeted for signal path normality determination.
 誤り率測定部411は、誤り率を測定するための信号を生成し、判定制御部401に出力する。誤り率を測定するための信号は、どのような方式で生成されてもよい。例えば、誤り率を測定するための信号は、PRBS(Pseudo-Random Binary Sequence:疑似ランダム2値信号列)パターンとして生成されてもよい。誤り率測定部411は、ユーザ装置300においてループバックされた制御信号に基づいて、誤り率を測定する。誤り率測定部411は、測定結果を判定制御部401に出力する。 The error rate measurement unit 411 generates a signal for measuring the error rate and outputs it to the determination control unit 401. The signal for measuring the error rate may be generated using any method. For example, the signal for measuring the error rate may be generated as a PRBS (Pseudo-Random Binary Sequence) pattern. The error rate measurement unit 411 measures the error rate based on the control signal looped back in the user equipment 300. Error rate measurement section 411 outputs the measurement result to determination control section 401.
 判定制御部401は、信号経路正常性判定の処理を行う。判定制御部401は、ループバックの実行を示す制御信号を、光インタフェース部405に出力する。判定制御部401は、ユーザ装置300から送信された制御信号を受信すると、受信された信号を誤り率測定部411に出力する。判定制御部401は、受信された信号と、誤り率測定部411における測定結果と、に基づいて判定対象の経路の正常性について判定する。 The determination control unit 401 performs signal path normality determination processing. The determination control unit 401 outputs a control signal indicating execution of loopback to the optical interface unit 405. Upon receiving the control signal transmitted from the user device 300, the determination control section 401 outputs the received signal to the error rate measurement section 411. The determination control unit 401 determines the normality of the route to be determined based on the received signal and the measurement result in the error rate measurement unit 411.
 ユーザ装置300は、第2実施形態と同様の構成であるため説明を省略する。
 第4実施形態における信号経路正常性判定の処理の流れについて説明する。所定のタイミングで誤り率測定部411は、誤り率を測定するための信号を生成して判定制御部401に出力する。判定制御部401は、ループバックの実行を指示するための制御信号を生成し、光インタフェース部405に出力する。この制御信号は、誤り率を測定するための信号を含む。所定のタイミングは、例えばユーザ装置300との通信に不具合が検出されたタイミングであってもよい。光インタフェース部405は、判定制御部401から入力された電気信号を光信号に変換し、伝送路を介してユーザ装置300に光信号を送信する。
The user device 300 has a configuration similar to that of the second embodiment, so a description thereof will be omitted.
The flow of processing for determining signal path normality in the fourth embodiment will be described. At a predetermined timing, the error rate measurement section 411 generates a signal for measuring the error rate and outputs it to the determination control section 401. The determination control unit 401 generates a control signal for instructing execution of loopback, and outputs it to the optical interface unit 405. This control signal includes a signal for measuring the error rate. The predetermined timing may be, for example, the timing at which a problem in communication with the user device 300 is detected. The optical interface unit 405 converts the electrical signal input from the determination control unit 401 into an optical signal, and transmits the optical signal to the user device 300 via the transmission path.
 ユーザ装置300における動作は、第2実施形態と同様であるため説明を省略する。ユーザ装置300においてループバックされた制御信号は、光インタフェース部406において電気信号に変換される。誤り率測定部411は、受信された信号に基づいて、誤り率を測定する。誤り率測定部411は、測定結果を判定制御部401に出力する。判定制御部401は、入力された制御信号について、導通確認に応じた所定の評価を行う。例えば、正しくループバックが行われたか否かに関する評価が行われてもよい。判定制御部401は、評価結果に基づいて、対象ユーザ装置に関する信号経路正常性判定を行う。判定制御部401は、例えループバックが正しく行われていたとしても、誤り率が悪いことを示す所定の条件を満たす場合には、信号経路が異常であると判定してもよい。判定制御部401は、判定結果を他の装置に出力してもよいし、ログとして記憶装置に記録してもよい。 The operation in the user device 300 is the same as that in the second embodiment, so the explanation will be omitted. The control signal looped back in the user device 300 is converted into an electrical signal in the optical interface section 406. The error rate measuring section 411 measures the error rate based on the received signal. Error rate measurement section 411 outputs the measurement result to determination control section 401. The determination control unit 401 performs a predetermined evaluation on the input control signal according to the continuity check. For example, an evaluation may be made as to whether the loopback was performed correctly. The determination control unit 401 performs a signal path normality determination regarding the target user device based on the evaluation result. Even if the loopback is performed correctly, the determination control unit 401 may determine that the signal path is abnormal if a predetermined condition indicating a poor error rate is satisfied. The determination control unit 401 may output the determination result to another device or record it in a storage device as a log.
 このように構成された第4実施形態の通信システム1によれば、ユーザ装置300において処理可能な制御信号がユーザ装置300に送信される。そのため、光送受信機301において主信号が光・電気変換された後の経路を経由した後のループバックポイント(折返部333)でループバックを行うことができる。したがって、特定の通信プロトコルや変調方式に依存しないプロトコル無依存のAPNにおいて、ユーザ装置300の内部を含む信号経路の正常性を判定することが可能となる。 According to the communication system 1 of the fourth embodiment configured in this way, a control signal that can be processed by the user device 300 is transmitted to the user device 300. Therefore, loopback can be performed at a loopback point (return unit 333) after the main signal passes through the path after optical-to-electrical conversion in the optical transceiver 301. Therefore, it is possible to determine the normality of the signal path including the inside of the user device 300 in a protocol-independent APN that does not depend on a specific communication protocol or modulation method.
 また、第4実施形態の通信システム1によれば、制御信号に基づいて誤り率が測定される。そのため、誤り率という観点でも信号経路正常性を判定することが可能となる。 Furthermore, according to the communication system 1 of the fourth embodiment, the error rate is measured based on the control signal. Therefore, it is possible to determine the normality of the signal path also from the viewpoint of error rate.
 (変形例)
 第4実施形態のユーザ装置300において、第3実施形態における装置内折返制御部334をさらに備えるように構成されてもよい。この場合、制御信号のループバックにおいて装置内折返制御部334は光送受信機301に対し装置内折返しの実行を指示する。折返部333は、装置内折返しの実行結果を示すようにループバックを実行してもよい。判定制御部401は、誤り率の測定結果と、装置内折返しの実行結果と、に基づいて信号経路の正常性を判定してもよい。
(Modified example)
The user device 300 of the fourth embodiment may be configured to further include the intra-device loopback control section 334 of the third embodiment. In this case, when looping back the control signal, the intra-device loopback control unit 334 instructs the optical transceiver 301 to perform intra-device loopback. The return unit 333 may perform loopback so as to indicate the execution result of intra-device return. The determination control unit 401 may determine the normality of the signal path based on the measurement result of the error rate and the execution result of intra-device loopback.
 第4実施形態のユーザ装置300において誤り率測定部411と同様の構成を備えてもよい。この場合、ユーザ装置300は、Ph-GW100-2からの下り方向の信号を測定することで、下り方向の誤りを測定してもよい。 The user device 300 of the fourth embodiment may have a configuration similar to that of the error rate measurement unit 411. In this case, the user equipment 300 may measure the error in the downlink direction by measuring the downlink signal from the Ph-GW 100-2.
 第4実施形態のユーザ装置300は、擬似乱数発生器を備えてもよい。この場合、ユーザ装置300は、疑似乱数発生器によって発生した乱数を含む上り信号をPh-GW100-2に送信し、Ph-GW100-2の誤り率測定部411が誤りを測定することで、上り方向の誤りを測定してもよい。Ph-GW100-2に疑似乱数発生器と誤り率測定部とを共に備えてもよい。この場合、下り、折返し、上りのそれぞれの誤りを測定してもよい。ユーザ装置300に疑似乱数発生器と誤り率測定部とを共に備え、上り、折返し、下りの誤りを測定してもよい。 The user device 300 of the fourth embodiment may include a pseudo-random number generator. In this case, the user equipment 300 transmits an uplink signal containing random numbers generated by a pseudo-random number generator to the Ph-GW 100-2, and the error rate measuring unit 411 of the Ph-GW 100-2 measures errors. Misdirection may also be measured. The Ph-GW 100-2 may include both a pseudo-random number generator and an error rate measurement unit. In this case, downlink, return, and uplink errors may be measured. The user device 300 may include both a pseudo-random number generator and an error rate measurement unit to measure uplink, turnback, and downlink errors.
 第4実施形態において、誤り率測定部411が行う処理のうち誤り率の測定の処理については、ユーザ装置300において実行されても良い。 In the fourth embodiment, among the processes performed by the error rate measuring unit 411, the process of measuring the error rate may be executed in the user device 300.
 図11は、第4実施形態における、通信システム1の構成の第2例を示す図である。この場合、ユーザ装置300の制御部330が、誤り率測定部335を備えている。誤り率測定部335による測定結果は、アクセス系管理制御部103の判定制御部401へ送信される。判定制御部401は、誤り率測定部335の測定結果に基づいて判定を行う。 FIG. 11 is a diagram showing a second example of the configuration of the communication system 1 in the fourth embodiment. In this case, the control unit 330 of the user device 300 includes an error rate measurement unit 335. The measurement result by the error rate measurement unit 335 is transmitted to the determination control unit 401 of the access system management control unit 103. The determination control section 401 makes a determination based on the measurement results of the error rate measurement section 335.
 以上のように、例えば第2の制御装置(アクセス系管理制御部103-2)は、誤り率を測定するための信号を表す制御信号又は主信号を第2のユーザ装置(ユーザ装置300-2)が第2の制御装置に送信しない場合、誤り率を測定するための信号を表す制御信号又は主信号を第2のユーザ装置に送信し、第2のユーザ装置によって折り返された制御信号又は主信号に基づく誤り率の測定結果に更に基づいて、信号経路が正常であるか否かを判定する。 As described above, for example, the second control device (access system management control unit 103-2) transmits the control signal or main signal representing the signal for measuring the error rate to the second user device (user device 300-2). ) does not transmit the control signal or the main signal representing the signal for measuring the error rate to the second user equipment, and the control signal or the main signal that is returned by the second user equipment. It is further determined whether the signal path is normal based on the measurement result of the error rate based on the signal.
 例えば第2の制御装置(アクセス系管理制御部103-2)は、誤り率を測定するための信号を表す制御信号又は主信号を第2のユーザ装置(ユーザ装置300-2)が第2の制御装置に送信する場合、第2のユーザ装置から送信された制御信号又は主信号に基づく誤り率の測定結果に更に基づいて、信号経路が正常であるか否かを判定してもよい。 For example, the second control device (access system management control unit 103-2) transmits a control signal or main signal representing a signal for measuring an error rate to a second user device (user device 300-2). When transmitting to the control device, it may be determined whether the signal path is normal based further on the error rate measurement result based on the control signal or main signal transmitted from the second user device.
 (第5実施形態)
 図12は、通信システム1の第5実施形態を示す図である。第5実施形態では、アクセス系管理制御部103が、FEC判定制御部412を備える。アクセス系管理制御部103が、判定制御部401に代えてFEC判定制御部412を備えてもよい。ユーザ装置300の制御部330が、FEC切替部336をさらに備えるという点で第2実施形態と異なり、他の大部分の点では第2実施形態と一致する。以下、通信システム1の第5実施形態について、通信システム1の第2実施形態と異なる点を中心に説明する。
(Fifth embodiment)
FIG. 12 is a diagram showing a fifth embodiment of the communication system 1. In the fifth embodiment, the access system management control unit 103 includes an FEC determination control unit 412. The access system management control unit 103 may include an FEC judgment control unit 412 instead of the judgment control unit 401. This embodiment differs from the second embodiment in that the control unit 330 of the user device 300 further includes an FEC switching unit 336, and is the same as the second embodiment in most other respects. The fifth embodiment of the communication system 1 will be described below, focusing on the differences from the second embodiment of the communication system 1.
 アクセス系管理制御部103は、信号経路正常性判定の対象となっている区間に接続されているユーザ装置300(対象ユーザ装置)に対し、ループバックを指示するための制御信号を送信する。 The access system management control unit 103 transmits a control signal for instructing loopback to the user device 300 (target user device) connected to the section targeted for signal path normality determination.
 FEC判定制御部412は、ループバックの実行を示す制御信号を生成し、その制御信号に対してFEC(Forward Error Correction)の誤り訂正符号を付与する。FEC判定制御部412は、ユーザ装置300に対して、FECの誤り訂正符号が付与された制御信号を送信することによって、信号経路正常性判定の処理を行う。FEC判定制御部412は、上述した処理で生成された制御信号を、光インタフェース部405に出力する。 The FEC determination control unit 412 generates a control signal indicating execution of loopback, and adds an FEC (Forward Error Correction) error correction code to the control signal. The FEC determination control unit 412 performs signal path normality determination processing by transmitting a control signal to which an FEC error correction code is attached to the user equipment 300. The FEC determination control unit 412 outputs the control signal generated by the above-described processing to the optical interface unit 405.
 FEC判定制御部412は、ユーザ装置300からループバックされた制御信号を受信すると、受信された信号に基づいて判定対象の経路の正常性について判定する。例えば、ユーザ装置300において制御信号に対し予め定められた所定の処理が施されているか否か、に基づいてFEC判定制御部412は経路の正常性について判定してもよい。所定の処理の具体例として、誤り訂正符号の符号化方式を、FEC判定制御部412で使用するものと異なる符号化方式で新たに誤り訂正符号を生成し、制御信号に対してその新たな誤り訂正符号を付与する、という処理がありえる。また、所定の処理の他の具体例として、FEC判定制御部412で誤り訂正符号を制御信号に付与し、その誤り訂正符号で誤り訂正可能な範囲の数値に対してわざと誤り値を付与した場合において、ユーザ装置300において制御信号に対して同じ誤り値を付与する、という処理がありえる。 Upon receiving the looped back control signal from the user device 300, the FEC determination control unit 412 determines the normality of the route to be determined based on the received signal. For example, the FEC determination control unit 412 may determine the normality of the route based on whether or not a predetermined process is performed on the control signal in the user device 300. As a specific example of the predetermined processing, a new error correction code is generated using a different encoding method from that used in the FEC determination control unit 412, and the new error is applied to the control signal. A possible process is to add a correction code. Further, as another specific example of the predetermined processing, a case where the FEC determination control unit 412 adds an error correction code to the control signal and intentionally adds an error value to a numerical value within a range that can be corrected with the error correction code. In this case, it is possible that the user device 300 assigns the same error value to the control signal.
 ユーザ装置300の制御部330のFEC切替部336は、制御信号受信部331からループバックの実行の指示を受けると、指示に応じてループバック処理を実行する。FEC切替部336におけるループバック処理の対象は、例えば誤り訂正符号を含む制御信号である。FEC切替部336は、上述した所定の処理を実施することによって、ループバックするための制御信号を生成する。FEC切替部336は、生成された制御信号を合分離部322に出力する。ループバックされた制御信号は、光インタフェース部326において光信号に変換され、アクセス系管理制御部103に送信される。 When the FEC switching unit 336 of the control unit 330 of the user device 300 receives an instruction to perform loopback from the control signal receiving unit 331, it executes loopback processing in accordance with the instruction. The target of loopback processing in the FEC switching unit 336 is, for example, a control signal including an error correction code. The FEC switching unit 336 generates a control signal for loopback by performing the above-described predetermined processing. The FEC switching section 336 outputs the generated control signal to the combining/separating section 322. The looped back control signal is converted into an optical signal by the optical interface unit 326 and transmitted to the access system management control unit 103.
 第5実施形態における信号経路正常性判定の処理の流れについて説明する。所定のタイミングでFEC判定制御部412は、ループバックを指示するための制御信号を生成し、制御信号に対し誤り訂正符号を付与する。所定のタイミングは、例えばユーザ装置300との通信に不具合が検出されたタイミングであってもよい。光インタフェース部405は、FEC判定制御部412から入力された電気信号を光信号に変換し、伝送路を介してユーザ装置300に光信号を送信する。 The flow of processing for determining signal path normality in the fifth embodiment will be explained. At a predetermined timing, the FEC determination control unit 412 generates a control signal for instructing loopback, and adds an error correction code to the control signal. The predetermined timing may be, for example, the timing at which a problem in communication with the user device 300 is detected. The optical interface unit 405 converts the electrical signal input from the FEC determination control unit 412 into an optical signal, and transmits the optical signal to the user device 300 via the transmission path.
 ユーザ装置300の光インタフェース部321は、アクセス系管理制御部103から光信号を受信すると、受信された光信号を電気信号に変換して合分離部322に出力する。合分離部322は、受信された信号から制御信号を分離し、制御信号を制御部330に出力する。 Upon receiving the optical signal from the access system management control unit 103, the optical interface unit 321 of the user device 300 converts the received optical signal into an electrical signal and outputs it to the combining/separating unit 322. The combiner/separator 322 separates the control signal from the received signal and outputs the control signal to the controller 330 .
 制御部330の制御信号受信部331は、合分離部322から制御信号を受けると、制御信号に含まれる制御の内容に応じて動作する。制御信号には、ループバックの実行の指示を示す信号が含まれている。この指示に応じて、制御信号受信部331は、FEC切替部336に対して制御信号のループバックの実行を指示する。FEC切替部336は、受信された制御信号に対し予め定められた所定の処理を実行することで、アクセス系管理制御部103へループバックする制御信号を生成する。FEC切替部336は、生成された制御信号を合分離部322に出力する。 When the control signal receiving section 331 of the control section 330 receives the control signal from the combining/separating section 322, it operates according to the content of the control included in the control signal. The control signal includes a signal instructing execution of loopback. In response to this instruction, the control signal receiving section 331 instructs the FEC switching section 336 to perform loopback of the control signal. The FEC switching unit 336 generates a control signal that is looped back to the access system management control unit 103 by performing predetermined processing on the received control signal. The FEC switching section 336 outputs the generated control signal to the combining/separating section 322.
 ユーザ装置300においてループバックされた制御信号は、光インタフェース部406において電気信号に変換される。FEC判定制御部412は、受信された信号に基づいて、ユーザ装置300において制御信号に対し予め定められた所定の処理が施されているか否かを判定する。FEC判定制御部412は、この判定結果に応じて、経路の正常性について判定する。FEC判定制御部412は、判定結果を他の装置に出力してもよいし、ログとして記憶装置に記録してもよい。 The control signal looped back at the user device 300 is converted into an electrical signal at the optical interface section 406. The FEC determination control unit 412 determines whether a predetermined process is performed on the control signal in the user device 300 based on the received signal. The FEC determination control unit 412 determines the normality of the route according to the determination result. The FEC determination control unit 412 may output the determination result to another device or record it in a storage device as a log.
 このように構成された第5実施形態の通信システム1によれば、ユーザ装置300において処理可能な制御信号がユーザ装置300に送信される。そのため、光送受信機301において主信号が光・電気変換された後の経路を経由した後のループバックポイント(FEC切替部336)でループバックを行うことができる。したがって、特定の通信プロトコルや変調方式に依存しないプロトコル無依存のAPNにおいて、ユーザ装置300の内部を含む信号経路の正常性を判定することが可能となる。 According to the communication system 1 of the fifth embodiment configured in this way, a control signal that can be processed by the user device 300 is transmitted to the user device 300. Therefore, loopback can be performed at the loopback point (FEC switching unit 336) after the main signal passes through the path after optical-to-electrical conversion in the optical transceiver 301. Therefore, it is possible to determine the normality of the signal path including the inside of the user device 300 in a protocol-independent APN that does not depend on a specific communication protocol or modulation method.
 第5実施形態のユーザ装置300において、第3実施形態における装置内折返制御部334をさらに備えるように構成されてもよい。この場合、制御信号のループバックにおいて装置内折返制御部334は光送受信機301に対し装置内折返しの実行を指示する。FEC切替部336は、装置内折返しの実行結果を示すようにループバックを実行してもよい。FEC判定制御部412は、ユーザ装置300において制御信号に対し予め定められた所定の処理が施されているか否か、に加えてさらに、装置内折返しの実行結果に基づいて信号経路の正常性を判定してもよい。 The user device 300 of the fifth embodiment may be configured to further include the intra-device loopback control section 334 of the third embodiment. In this case, when looping back the control signal, the intra-device loopback control unit 334 instructs the optical transceiver 301 to perform intra-device loopback. The FEC switching unit 336 may perform loopback so as to indicate the execution result of intra-device loopback. In addition to determining whether predetermined processing is performed on the control signal in the user device 300, the FEC determination control unit 412 further determines the normality of the signal path based on the execution result of intra-device loopback. You may judge.
 以上のように、例えば第2の制御装置(アクセス系管理制御部103-2)は、誤り訂正符号が付与された制御信号を第2のユーザ装置(ユーザ装置300-2)に送信し、第2のユーザ装置(ユーザ装置300-2)から折り返された制御信号に対して所定の処理が施されているか否かに更に基づいて、信号経路が正常であるか否かを判定する。 As described above, for example, the second control device (access system management control unit 103-2) transmits a control signal to which an error correction code is attached to the second user device (user device 300-2), and It is further determined whether the signal path is normal based on whether predetermined processing has been performed on the control signal returned from the second user device (user device 300-2).
 (第6実施形態)
 図13は、通信システム1の第6実施形態を示す図である。第6実施形態では、それぞれのアクセス系管理制御部103が、自装置(Ph-GW100)に接続されているユーザ装置300に対してループバックの実行に関する指示を行う。この指示は、AMCC等の制御信号を用いて行われる。この制御信号に応じて、ユーザ装置300同士の通信においてループバックを行うことで、ユーザ装置300間の経路について信号経路正常性判定が行われる。
(Sixth embodiment)
FIG. 13 is a diagram showing a sixth embodiment of the communication system 1. In the sixth embodiment, each access system management control unit 103 instructs the user device 300 connected to its own device (Ph-GW 100) regarding execution of loopback. This instruction is given using a control signal such as AMCC. In response to this control signal, loopback is performed in communication between the user devices 300, thereby determining the signal path normality of the path between the user devices 300.
 アクセス系管理制御部103-1の判定制御部401-1は、信号経路正常性判定の対象となっている区間に接続されているユーザ装置300-1に対し、ループバック実施のための制御信号を送信する。この制御信号では、ループバックのための主信号を生成してユーザ装置300-2に送信することが指示される。 The determination control unit 401-1 of the access system management control unit 103-1 sends a control signal for performing a loopback to the user device 300-1 connected to the section that is subject to signal path normality determination. Send. This control signal instructs to generate a main signal for loopback and transmit it to user equipment 300-2.
 アクセス系管理制御部103-2の判定制御部401-2は、信号経路正常性判定の対象となっている区間に接続されているユーザ装置300-2に対し、ループバック実施のための制御信号を送信する。この制御信号では、ループバックのための主信号を受信してループバックすることが指示される。 The determination control unit 401-2 of the access system management control unit 103-2 sends a control signal for performing a loopback to the user device 300-2 connected to the section that is subject to signal path normality determination. Send. This control signal instructs to receive the main signal for loopback and loop back.
 ユーザ装置300-1は、光送受信機301-1及び制御部330-1を備える。制御部330-1は、LB信号生成部337及びLB信号判定部338を備える。 The user device 300-1 includes an optical transceiver 301-1 and a control unit 330-1. The control section 330-1 includes an LB signal generation section 337 and an LB signal determination section 338.
 LB信号生成部337は、判定制御部401-1からループバックの指示を受けると、ユーザ装置300-2において処理可能なプロトコルの主信号を送信する。 Upon receiving the loopback instruction from the determination control unit 401-1, the LB signal generation unit 337 transmits a main signal of a protocol that can be processed by the user device 300-2.
 LB信号判定部338は、対向するユーザ装置300-2からループバックされた主信号を受信すると、受信された主信号について、導通確認に応じた所定の評価を行う。例えば、正しくループバックが行われたか否かに関する評価が行われてもよい。LB信号判定部338は、評価結果を示す情報を判定制御部401に出力する。 Upon receiving the main signal looped back from the opposing user device 300-2, the LB signal determination unit 338 performs a predetermined evaluation on the received main signal according to the continuity check. For example, an evaluation may be made as to whether the loopback was performed correctly. The LB signal determination section 338 outputs information indicating the evaluation result to the determination control section 401.
 第6実施形態における信号経路正常性判定の処理の流れについて説明する。所定のタイミングで判定制御部401-1は、対象ユーザ装置の一方であるユーザ装置300-1に対し、ループバック用の主信号の出力を制御信号で指示する。所定のタイミングで判定制御部401-2は、対象ユーザ装置の他方であるユーザ装置300-2に対し、ループバックの実行を制御信号で指示する。所定のタイミングは、例えばユーザ装置300との通信に不具合が検出されたタイミングであってもよい。 The flow of processing for determining signal path normality in the sixth embodiment will be described. At a predetermined timing, the determination control unit 401-1 instructs the user device 300-1, which is one of the target user devices, to output a main signal for loopback using a control signal. At a predetermined timing, the determination control unit 401-2 instructs the user device 300-2, which is the other target user device, to execute loopback using a control signal. The predetermined timing may be, for example, the timing at which a problem in communication with the user device 300 is detected.
 指示を受けたユーザ装置300-1のLB信号生成部337は、ループバック用の主信号を生成し光送受信機301-1へ出力する。光送受信機301-1は、主信号を光信号に変換し、Ph-GW100-1及びPh-GW100-2を介してユーザ装置300-2へ送信する。 Upon receiving the instruction, the LB signal generation unit 337 of the user device 300-1 generates a main signal for loopback and outputs it to the optical transceiver 301-1. The optical transceiver 301-1 converts the main signal into an optical signal and transmits it to the user device 300-2 via the Ph-GW 100-1 and Ph-GW 100-2.
 ユーザ装置300-2の制御部330-2は、ループバックの実行を示す制御信号をアクセス系管理制御部103-2から受信することに応じて、自装置の光送受信機301-2に対して主信号のループバックを指示する。光送受信機301-2は、対向するユーザ装置300-1から光信号を受信すると、受信された光信号を電気信号に変換する。光送受信機301-2は、光送受信機301-2内で主信号をループバックする。このとき、処理部323がループバックポイントとなってループバック処理が実行されてもよいし、UNI_PHY(Tx)324やUNI_PHY(Rx)325がループバックポイントとなってループバック処理が実行されてもよい。光送受信機301-2は、ループバックされる主信号を光信号に変換し、Ph-GW100-2及びPh-GW100-1を介してユーザ装置300-1へ送信する。 The control unit 330-2 of the user device 300-2 controls the optical transceiver 301-2 of the user device 300-2 in response to receiving a control signal indicating loopback execution from the access system management control unit 103-2. Instructs main signal loopback. Upon receiving an optical signal from the opposing user device 300-1, the optical transceiver 301-2 converts the received optical signal into an electrical signal. The optical transceiver 301-2 loops back the main signal within the optical transceiver 301-2. At this time, the processing unit 323 may serve as a loopback point and loopback processing may be executed, or the UNI_PHY (Tx) 324 or UNI_PHY (Rx) 325 may serve as a loopback point and loopback processing is executed. good. The optical transceiver 301-2 converts the looped back main signal into an optical signal and transmits it to the user equipment 300-1 via the Ph-GW 100-2 and Ph-GW 100-1.
 ループバックされた主信号は、光送受信機301-1において電気信号に変換され、LB信号判定部338に入力される。LB信号判定部338は、入力された主信号について、導通確認に応じた所定の評価を行う。例えば、正しくループバックが行われたか否かに関する評価が行われてもよい。LB信号判定部338は、評価結果を示す情報をアクセス系管理制御部103-1に送信する。アクセス系管理制御部103-1の判定制御部401-1は、LB信号判定部338から受けた評価結果に基づいて、ユーザ装置300間の信号経路に関する信号経路正常性判定を行う。判定制御部401-1は、判定結果を他の装置に出力してもよいし、ログとして記憶装置に記録してもよい。 The looped back main signal is converted into an electrical signal by the optical transceiver 301-1 and input to the LB signal determining section 338. The LB signal determination unit 338 performs a predetermined evaluation on the input main signal according to the continuity check. For example, an evaluation may be made as to whether the loopback was performed correctly. The LB signal determination unit 338 transmits information indicating the evaluation result to the access system management control unit 103-1. The determination control unit 401-1 of the access system management control unit 103-1 performs a signal path normality determination regarding the signal path between the user devices 300 based on the evaluation result received from the LB signal determination unit 338. The determination control unit 401-1 may output the determination result to another device or record it in a storage device as a log.
 このように構成された第6実施形態の通信システム1によれば、信号経路正常性判定の対象となる経路に接続された各ユーザ装置300に対し、アクセス系管理制御部103からループバックの実行について制御信号を用いた指示が行われる。ここで用いられる制御信号は、各ユーザ装置300において処理可能な制御信号である。さらに、ユーザ装置300において処理可能なプロトコルの信号を用いてループバックの対象となる主信号が一方のユーザ装置300(300-1)から他方のユーザ装置300(300-2)に送信される。そのため、光送受信機301において主信号が光・電気変換された後の経路を経由した後のループバックポイントでループバックを行うことができる。したがって、特定の通信プロトコルや変調方式に依存しないプロトコル無依存のAPNにおいて、ユーザ装置300の内部を含む信号経路の正常性を判定することが可能となる。 According to the communication system 1 of the sixth embodiment configured in this way, the access system management control unit 103 executes a loopback for each user device 300 connected to the path that is the target of signal path normality determination. Instructions are given using control signals. The control signal used here is a control signal that can be processed by each user device 300. Furthermore, a main signal to be looped back is transmitted from one user device 300 (300-1) to the other user device 300 (300-2) using a signal of a protocol that can be processed by the user device 300. Therefore, loopback can be performed at a loopback point after the main signal passes through the path after optical-to-electrical conversion in the optical transceiver 301. Therefore, it is possible to determine the normality of the signal path including the inside of the user device 300 in a protocol-independent APN that does not depend on a specific communication protocol or modulation method.
 (第6実施形態の変形例)
 図14は、第6実施形態における変形例を示す図である。先に説明した図13の例では、ユーザ装置300-2では、制御部330-2を介さずに光送受信機301-2でループバックが実行されている。これに対し、図14に示されるように、ユーザ装置300-2では、制御部330-2を介してループバックが実行されてもよい。ただし、この場合はループバックの対象となる信号が制御信号である。
(Modified example of the sixth embodiment)
FIG. 14 is a diagram showing a modification of the sixth embodiment. In the example of FIG. 13 described above, in the user equipment 300-2, loopback is executed in the optical transceiver 301-2 without going through the control unit 330-2. On the other hand, as shown in FIG. 14, loopback may be executed in the user device 300-2 via the control unit 330-2. However, in this case, the signal to be looped back is the control signal.
 ユーザ装置300-1の制御信号送信部332は、ループバックを指示する指示信号を、ユーザ装置300-2の制御信号受信部331に送信する。ユーザ装置300-2の制御信号送信部332は、ループバックを指示する指示信号を、ユーザ装置300-1の制御信号受信部331に送信する。 The control signal transmitter 332 of the user device 300-1 transmits an instruction signal instructing loopback to the control signal receiver 331 of the user device 300-2. Control signal transmitter 332 of user device 300-2 transmits an instruction signal instructing loopback to control signal receiver 331 of user device 300-1.
 LB信号生成部337とLB信号判定部338とは、必ずしもユーザ装置300-1に備えられる必要は無い。例えば、Ph-GW100-1や不図示の通信装置(中継装置)等にLB信号生成部337とLB信号判定部338とが備えられてもよい。この場合、アクセス系管理制御部103-1からループバックの実行についての制御信号が届く装置は、LB信号生成部337とLB信号判定部338とを備える通信装置になる。 The LB signal generation section 337 and the LB signal determination section 338 do not necessarily need to be provided in the user device 300-1. For example, the LB signal generation section 337 and the LB signal determination section 338 may be provided in the Ph-GW 100-1, a communication device (relay device), etc. (not shown), or the like. In this case, the device that receives the control signal for loopback execution from the access system management control section 103-1 is a communication device that includes the LB signal generation section 337 and the LB signal determination section 338.
 第6実施形態において、一方のユーザ装置300(300-1)が擬似乱数発生器を備え、他方のユーザ装置300(300-2)が誤り率判定部を備えてもよい。この場合、一方のユーザ装置300は、疑似乱数発生器によって発生した乱数を含む信号を対向するユーザ装置300(他方のユーザ装置)に送信し、他方のユーザ装置300の誤り率測定部411が誤りを測定することで、一方のユーザ装置300から他方のユーザ装置300へ向けた方向の誤りを測定してもよい。一方のユーザ装置300(300-1)が疑似乱数発生器と誤り率測定部とを共に備えてもよい。この場合、一方のユーザ装置300にとっての下り、折返し、上りのそれぞれの誤りを測定してもよい。 In the sixth embodiment, one user device 300 (300-1) may include a pseudo-random number generator, and the other user device 300 (300-2) may include an error rate determination unit. In this case, one user device 300 transmits a signal containing random numbers generated by a pseudo-random number generator to the opposing user device 300 (the other user device), and the error rate measuring unit 411 of the other user device 300 makes an error. By measuring , the error in the direction from one user device 300 to the other user device 300 may be measured. One user device 300 (300-1) may include both a pseudo-random number generator and an error rate measuring section. In this case, downlink, return, and uplink errors for one user device 300 may be measured.
 以上に説明したように、図2から図5までは「様々なプロトコルの光信号(主信号)を送受信するユーザ装置の内部を含む信号の経路(伝送路区間+少なくとも一部のユーザ装置内)の正常性の判断となり、図2から図8までは「光信号(主信号)に重畳又は光信号(主信号)を変調した制御信号により光信号(主信号)の経路(伝送路区間)の正常性を判定となる。 As explained above, from FIG. 2 to FIG. The normality of the optical signal (main signal) is determined by the control signal superimposed on the optical signal (main signal) or modulated in the optical signal (main signal) from Fig. 2 to Fig. 8. The normality is determined.
 図2から図5までの各図に例示された構成(副次的な構成)の通信システムは、様々なプロトコルの主信号を伝送するトランスペアレント・ネットワークにおいて、ユーザ装置の送受する主信号のプロトコルを、APNコントローラからの指示又はDBの情報又はユーザ装置から取得又は主信号を受信して正常な信号として終端可能かであるかのいずれかで選択し、選択したプロトコルの光信号を生成・終端し、ユーザ装置に信号を送信してユーザ装置がループバックした信号を終端又はユーザ装置から送信された信号をユーザ装置にループバックしてユーザ装置が終端して、正常性を判定する(ユーザ装置でループバックする場合の方が、ユーザ装置内部の経路の正常性判定の範囲が広い)。 The communication system having the configuration (sub-configuration) illustrated in each figure from FIG. 2 to FIG. 5 is a transparent network that transmits main signals of various protocols. , the instruction from the APN controller, information from the DB, acquisition from the user equipment, or reception of the main signal and whether it can be terminated as a normal signal, and generates and terminates the optical signal of the selected protocol. , sends a signal to the user equipment and terminates the signal looped back by the user equipment, or loops back the signal transmitted from the user equipment to the user equipment and terminates the signal, and determines the normality (the user equipment In the case of loopback, the range of normality determination of the route inside the user device is wider).
 または、図6から図8までの各図に例示された構成(主たる構成)の通信システムは、様々なプロトコルの主信号を伝送するトランスペアレント・ネットワークにおいて、トランスペアレント・ネットワークで用いる主信号のプロトコル無依存の制御信号のループバックにより、正常性を判断する。 Alternatively, the communication system having the configuration (main configuration) illustrated in each figure from FIG. 6 to FIG. 8 is a transparent network that transmits main signals of various protocols, and the main signal used in the transparent network is protocol-independent. The normality is determined by the loopback of the control signal.
 または、図2から図5までの各図に例示された構成(副次的な構成)と、図6から図8までの各図に例示された構成(主たる構成)との組合せの通信システムは、様々なプロトコルの主信号を伝送するトランスペアレント・ネットワークにおいて、ユーザ装置の送受する主信号のプロトコルを、APNコントローラからの指示又はDBの情報又はユーザ装置から取得又は主信号を受信して正常な信号として終端可能かのいずれかで選択し、選択したプロトコルの光信号を生成・終端し、その状態で、トランスペアレント・ネットワークで用いる主信号のプロトコル無依存の制御信号のループバックにより、正常性を判断する。 Alternatively, a communication system that combines the configuration illustrated in each figure from FIG. 2 to FIG. 5 (secondary configuration) and the configuration illustrated in each figure from FIG. 6 to FIG. 8 (main configuration) is In a transparent network that transmits main signals of various protocols, the protocol of the main signals sent and received by the user equipment is determined by instructions from the APN controller, information from the DB, or obtained from the user equipment, or by receiving the main signal and determining whether the main signal is a normal signal. Generates and terminates the optical signal of the selected protocol, and in that state determines the normality by looping back the protocol-independent control signal of the main signal used in the transparent network. do.
 図13及び14に例示された通信システムは、互いに光信号を用いて通信する第1装置及び第2装置を備える通信システムであって、第1装置は、制御信号を第2装置に光信号で送信し、第2装置は、制御信号又はその応答を第1装置に折返し、第1装置は、折り返された制御信号又はその応答を受信し、第1装置と第2装置との間の信号経路を含む信号経路が正常であるか否かを判定する、通信システムである。 The communication system illustrated in FIGS. 13 and 14 is a communication system that includes a first device and a second device that communicate with each other using optical signals, and the first device sends a control signal to the second device using the optical signal. the second device returns the control signal or its response to the first device, the first device receives the returned control signal or its response, and the second device returns the control signal or its response to the signal path between the first device and the second device. A communication system that determines whether a signal path including a signal path is normal or not.
 図13に例示された通信システムでは、第1制御装置(アクセス系管理制御部103-1)は、折り返しを指示する第1制御信号(折返指示を表す指示信号)を、第1ユーザ装置に送信する。第2制御装置(アクセス系管理制御部103-2)は、折り返しを指示する第2制御信号(折返指示を表す指示信号)を、第2ユーザ装置に送信する。第2ユーザ装置は、第1ユーザ装置から送信された主信号を、折り返す。第1ユーザ装置は、第1ユーザ装置及び第2ユーザ装置の間を含む信号経路が正常であるか否かを、折り返された主信号に基づいて判定する。 In the communication system illustrated in FIG. 13, the first control device (access system management control unit 103-1) transmits a first control signal (instruction signal representing a callback instruction) instructing return to the first user device. do. The second control device (access system management control unit 103-2) transmits a second control signal (instruction signal representing a return instruction) instructing a return to the second user device. The second user device returns the main signal transmitted from the first user device. The first user device determines whether the signal path including between the first user device and the second user device is normal based on the returned main signal.
 図14に例示された通信システムでは、第2ユーザ装置は、折返指示を表す指示信号を第1ユーザ装置に送信する。第2ユーザ装置は、第1ユーザ装置から送信された制御信号を、折り返す。第1ユーザ装置は、折返指示を表す指示信号を第2ユーザ装置に送信する。第1ユーザ装置は、第1ユーザ装置及び第2ユーザ装置の間を含む信号経路が正常であるか否かを、折り返された制御信号に基づいて判定する。 In the communication system illustrated in FIG. 14, the second user device transmits an instruction signal representing a return instruction to the first user device. The second user device returns the control signal transmitted from the first user device. The first user device transmits an instruction signal representing a return instruction to the second user device. The first user device determines whether the signal path including between the first user device and the second user device is normal based on the returned control signal.
 図13及び14に例示された通信システムが実行する正常性判定方法は、互いに光信号を用いて通信する第1装置及び第2装置を備える通信システムが行う通信方法であって、第1装置が、制御信号を第2装置に光信号で送信するステップと、第2装置が制御信号又はその応答を第1装置に折り返するステップと、第1装置が、折り返された制御信号又はその応答を受信し、第1装置と第2装置との間の信号経路を含む信号経路が正常であるか否かを判定するステップと、を有する正常性判定方法である。 The normality determination method executed by the communication system illustrated in FIGS. 13 and 14 is a communication method carried out by a communication system including a first device and a second device that communicate with each other using optical signals, in which the first device , transmitting the control signal to the second device as an optical signal; the second device returning the control signal or its response to the first device; and the first device receiving the returned control signal or its response. and a step of determining whether a signal path including a signal path between the first device and the second device is normal.
 図2から図5までの各図に例示された通信システムは、光信号を送受信し対向する第1装置及び第2装置を備える通信システムであって、第1装置は、第2装置が送受信可能な形式の光信号を選択生成し、生成した光信号を対向する第2装置に送信し、第2装置は、受信した光信号又はその応答を折返し送信し、第1装置は、折り返された光信号又はその応答を受信し、受信した折返された光信号又はその応答から、第1装置と第2装置との間の信号経路を含む信号経路が正常であるか否かを判定する、通信システムである。 The communication system illustrated in each figure from FIG. 2 to FIG. 5 is a communication system comprising a first device and a second device facing each other and transmitting and receiving optical signals, and the first device is capable of transmitting and receiving optical signals to and from the second device. selectively generates an optical signal in a different format, transmits the generated optical signal to an opposing second device, the second device returns and transmits the received optical signal or its response, and the first device transmits the returned optical signal. A communication system that receives a signal or its response and determines whether a signal path including a signal path between a first device and a second device is normal from the received folded optical signal or its response. It is.
 図2から図5までの各図に例示された通信システムでは、ユーザ装置300は、主信号を生成及び終端する制御装置(アクセス系管理制御部)から送信された主信号を、折り返す。制御装置は、制御装置とユーザ装置との間を含む信号経路が正常であるか否かを、折り返された主信号に基づいて判定する。 In the communication systems illustrated in the figures from FIGS. 2 to 5, the user device 300 loops back the main signal transmitted from the control device (access system management control unit) that generates and terminates the main signal. The control device determines whether the signal path including the one between the control device and the user device is normal based on the returned main signal.
 図2から図5までの各図に例示された通信システムでは、制御装置(アクセス系管理制御部)は、ユーザ装置から送信された主信号を、折り返してもよい。ユーザ装置は、主信号を生成及び終端する制御装置とユーザ装置との間を含む信号経路が正常であるか否かを、折り返された主信号に基づいて判定してもよい。 In the communication systems illustrated in the figures from FIG. 2 to FIG. 5, the control device (access system management control section) may return the main signal transmitted from the user device. The user device may determine whether the signal path including the one between the user device and the control device that generates and terminates the main signal is normal, based on the returned main signal.
 図2から図5までの各図に例示された通信システムでは、制御装置(アクセス系管理制御部)は、制御装置が判定を実行する場合、主信号に制御信号を多重し、信号経路が正常であるか否かを制御信号に更に基づいて判定してもよい。制御装置は、主信号とは異なる入力光信号に制御信号を多重し、信号経路が正常であるか否かを、入力光信号に多重された制御信号に基づいて判定してもよい。入力光信号は、入力された光信号であって、例えば、無変調の連続光である。なお、入力光信号は、ユーザ装置の使用する主信号の形態によらない光信号である。また、入力光信号の光パワーは例えば調整されており、入力光信号は受信側の装置(ユーザ装置等)を破壊しない。 In the communication systems illustrated in the figures from FIG. 2 to FIG. It may be further determined based on the control signal whether or not. The control device may multiplex the control signal on an input optical signal different from the main signal, and determine whether the signal path is normal based on the control signal multiplexed on the input optical signal. The input optical signal is an input optical signal, for example, unmodulated continuous light. Note that the input optical signal is an optical signal regardless of the form of the main signal used by the user equipment. Further, the optical power of the input optical signal is adjusted, for example, so that the input optical signal does not destroy the receiving side equipment (user equipment, etc.).
 図2から図8までの各図に例示された通信システムは、自装置の光信号又は他装置からの光信号に重畳又は自装置の光信号又は他装置からの光信号を変調して制御信号を送信する第1装置及び第2装置を備える通信システムであって、第1装置及び第2装置は互いに対向する装置であり、第1装置は、第2装置が送受信可能な形式の光信号を生成し、生成した光信号に重畳又は生成した光信号を変調した制御信号を第2装置に送信し、第2装置は、自装置の光信号又は他装置からの光信号に重畳又は自装置の光信号又は他装置からの光信号を変調して、受信した制御信号又はその応答を折返し送信し、第1装置は、光信号に重畳又は光信号を変調して折り返された制御信号又はその応答を受信し、受信した折返された制御信号又はその応答から、第1装置と第2装置との間の信号経路を含む信号経路が正常であるか否かを判定する、通信システムである。 The communication system illustrated in each figure from FIG. 2 to FIG. A communication system includes a first device and a second device that transmit an optical signal, the first device and the second device are devices facing each other, and the first device transmits an optical signal in a format that can be transmitted and received by the second device. The second device generates a control signal and superimposes it on the generated optical signal or modulates the generated optical signal to a second device, and the second device superimposes it on its own optical signal or an optical signal from another device or transmits it to the second device. The first device modulates the optical signal or the optical signal from another device and returns and transmits the received control signal or its response, and the first device superimposes it on the optical signal or modulates the optical signal and transmits the returned control signal or its response. The communication system receives the control signal and determines whether the signal path including the signal path between the first device and the second device is normal based on the received looped-back control signal or its response.
 図6から図8までの各図に例示された通信システムは、自装置の光信号又は他装置からの光信号に重畳又は自装置の光信号又は他装置からの光信号を変調して制御信号を通信する第1装置及び第2装置を備える通信システムであって、第1装置及び第2装置は互いに対向する装置であり、第1装置は、自装置の光信号又は他装置からの光信号に重畳又は自装置の光信号又は他装置からの光信号を変調した制御信号を第2装置に送信し、第2装置は、自装置の光信号又は他装置からの光信号に重畳又は自装置の光信号又は他装置からの光信号を変調して、受信した制御信号又はその応答を折返し送信し、第1装置は、光信号に重畳又は光信号を変調し折り返された制御信号又はその応答を受信し、受信した折返された制御信号又はその応答から、第1装置と第2装置との間の信号経路を含む信号経路が正常であるか否かを判定する、通信システムである。 The communication system illustrated in each of the figures from FIG. 6 to FIG. A communication system comprising a first device and a second device that communicate with each other, the first device and the second device are devices facing each other, and the first device transmits an optical signal of its own device or an optical signal from another device. A control signal that is superimposed on the optical signal of the own device or an optical signal from another device is transmitted to the second device, and the second device superimposes the control signal on the optical signal of the own device or the optical signal from the other device or The first device modulates the optical signal or the optical signal from another device and returns and transmits the received control signal or its response, and the first device superimposes it on the optical signal or modulates the optical signal and transmits the returned control signal or its response. The communication system receives the control signal and determines whether the signal path including the signal path between the first device and the second device is normal based on the received looped-back control signal or its response.
 図6から図8までの各図に例示された通信システムでは、ユーザ装置300は、制御装置(アクセス系管理制御部)から送信された制御信号を、折り返す。制御装置は、制御装置とユーザ装置との間を含む信号経路が正常であるか否かを、折り返された制御信号に基づいて判定する。 In the communication systems illustrated in the figures from FIG. 6 to FIG. 8, the user device 300 loops back the control signal transmitted from the control device (access system management control unit). The control device determines whether the signal path including the one between the control device and the user device is normal based on the returned control signal.
 図9に例示された通信システムでは、ユーザ装置300は、信号経路が正常であるか否かの判定に加え、ユーザ装置の内部において所定の信号の折返しを実行し、ユーザ装置の内部が正常であるか否かを更に判定してもよい。 In the communication system illustrated in FIG. 9, the user equipment 300 not only determines whether the signal path is normal, but also loops back a predetermined signal inside the user equipment, and determines whether the inside of the user equipment is normal. You may further determine whether or not there is.
 (ハードウェア構成例)
 図15は、実施形態における、通信システム1のハードウェア構成例を示す図である。通信システム1の各機能部のうちの一部又は全部は、CPU等のプロセッサ201が、不揮発性の記録媒体(非一時的記録媒体)を有する記憶装置203とメモリ202とに記憶されたプログラムを実行することにより、ソフトウェアとして実現される。例えば、上述した判定制御部401や制御部330は、CPU等のプロセッサ201と不揮発性の記録媒体を用いて構成されてもよい。プログラムは、コンピュータ読み取り可能な非一時的記録媒体に記録されてもよい。コンピュータ読み取り可能な非一時的記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD-ROM(Compact Disc Read Only Memory)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置などの非一時的記録媒体である。通信部204は、所定の通信処理を実行する。通信部204は、光ファイバを伝送される光信号のデータ(例えば、主信号データ、波長データ)と、プログラムとを取得してもよい。
(Hardware configuration example)
FIG. 15 is a diagram showing an example of the hardware configuration of the communication system 1 in the embodiment. Some or all of the functional units of the communication system 1 are configured such that a processor 201 such as a CPU executes a program stored in a storage device 203 having a non-volatile recording medium (non-temporary recording medium) and a memory 202. By executing it, it is realized as software. For example, the determination control unit 401 and the control unit 330 described above may be configured using the processor 201 such as a CPU and a nonvolatile recording medium. The program may be recorded on a computer-readable non-transitory recording medium. Computer-readable non-transitory recording media include, for example, portable media such as flexible disks, magneto-optical disks, ROM (Read Only Memory), and CD-ROM (Compact Disc Read Only Memory), and hard disks built into computer systems. It is a non-temporary recording medium such as a storage device such as. The communication unit 204 executes predetermined communication processing. The communication unit 204 may acquire data of an optical signal transmitted through an optical fiber (eg, main signal data, wavelength data) and a program.
 通信システム1の各機能部の一部又は全部は、例えば、LSI(Large Scale Integrated circuit)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)又はFPGA(Field Programmable Gate Array)等を用いた電子回路(electronic circuit又はcircuitry)を含むハードウェアを用いて実現されてもよい。 A part or all of each functional unit of the communication system 1 uses, for example, an LSI (Large Scale Integrated Circuit), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array). It may be realized using hardware including an electronic circuit or circuitry.
 各実施形態は、組み合わされてもよい。 Each embodiment may be combined.
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and includes designs within the scope of the gist of the present invention.
 本発明は、オールフォトニクスネットワーク(APN)等の通信ネットワークを用いて通信する通信システムに適用可能である。 The present invention is applicable to a communication system that communicates using a communication network such as an all-photonics network (APN).
1…通信システム、100…Ph-GW、101…光振分部、102…波長多重分離部、103…アクセス系管理制御部、200…APNコントローラ、201…プロセッサ、202…メモリ、203…記憶装置、204…通信部、300…ユーザ装置、301…光送受信機、321,326…光インタフェース部、322…合分離部、323…処理部、324…UNI_PHY(Tx)、325…UNI_PHY(Rx)、330…制御部、331…制御信号受信部、332…制御信号送信部、333…折返部、334…装置内折返制御部、335…誤り率測定部、336…FEC切替部、337…LB信号生成部、338…LB信号判定部、401…判定制御部、402…信号終端部、403…SW、404…合分離部、405,406…光インタフェース部、411…誤り率測定部、412…FEC判定制御部 DESCRIPTION OF SYMBOLS 1... Communication system, 100... Ph-GW, 101... Optical distribution part, 102... Wavelength multiplexing/demultiplexing part, 103... Access system management control part, 200... APN controller, 201... Processor, 202... Memory, 203... Storage device , 204... Communication unit, 300... User device, 301... Optical transceiver, 321, 326... Optical interface unit, 322... Combining/separating unit, 323... Processing unit, 324... UNI_PHY (Tx), 325... UNI_PHY (Rx), 330... Control unit, 331... Control signal receiving unit, 332... Control signal transmitting unit, 333... Turning unit, 334... Device loopback control unit, 335... Error rate measuring unit, 336... FEC switching unit, 337... LB signal generation 338... LB signal judgment section, 401... Judgment control section, 402... Signal termination section, 403... SW, 404... Combination/separation section, 405, 406... Optical interface section, 411... Error rate measurement section, 412... FEC judgment control unit

Claims (9)

  1.  1以上の制御装置と、1以上のユーザ装置とを備える通信システムであって、
     第1のユーザ装置又は第1の制御装置は、対向する第2のユーザ装置又は第2の制御装置から送信された第1の制御信号に対して第2の制御信号で応答し、
     前記第2のユーザ装置又は前記第2の制御装置は、前記第1のユーザ装置又は前記第1の制御装置と前記第2のユーザ装置又は前記第2の制御装置との間を含む信号経路が正常であるか否かを、応答に用いられた前記第2の制御信号に基づいて判定する、
     又は、
     前記第1のユーザ装置又は前記第1の制御装置は、対向する前記第2のユーザ装置又は前記第2の制御装置から送信された前記第1の制御信号を折り返し、
     前記第2のユーザ装置又は前記第2の制御装置は、前記第1のユーザ装置又は前記第1の制御装置と前記第2のユーザ装置又は前記第2の制御装置との間を含む前記信号経路が正常であるか否かを、折り返された前記第1の制御信号に基づいて判定する、
     通信システム。
    A communication system comprising one or more control devices and one or more user devices,
    The first user device or the first control device responds with a second control signal to the first control signal transmitted from the opposing second user device or second control device,
    The second user device or the second control device has a signal path including between the first user device or the first control device and the second user device or the second control device. determining whether or not it is normal based on the second control signal used in the response;
    Or
    The first user device or the first control device returns the first control signal transmitted from the opposing second user device or the second control device,
    The second user device or the second control device may be connected to the signal path including between the first user device or the first control device and the second user device or the second control device. determining whether or not is normal based on the returned first control signal;
    Communications system.
  2.  前記第1の制御装置は、前記第2の制御信号を乗せるための光信号が前記第1の制御装置に到達しない場合には主信号とは異なる別の光信号に前記第2の制御信号を多重し、前記第2の制御信号を乗せるための光信号が前記制御装置に到達した場合には前記第2の制御信号を乗せるための光信号に前記第2の制御信号を多重し、前記信号経路が正常であるか否かを、前記別の光信号又は前記光信号に多重された前記第2の制御信号に基づいて判定する、請求項1に記載の通信システム。 The first control device transmits the second control signal to another optical signal different from the main signal when the optical signal for carrying the second control signal does not reach the first control device. When the optical signal for carrying the second control signal reaches the control device, the second control signal is multiplexed on the optical signal for carrying the second control signal, and the optical signal for carrying the second control signal is multiplexed. The communication system according to claim 1, wherein whether or not a route is normal is determined based on the other optical signal or the second control signal multiplexed on the optical signal.
  3.  1以上の制御装置と、1以上のユーザ装置とを備える通信システムであって、
     第1のユーザ装置又は第1の制御装置は、対向する第2のユーザ装置又は第2の制御装置の使用する信号形態に基づいて選択された信号形態の主信号を生成及び終端する前記第2のユーザ装置又は前記第2の制御装置から送信された第1の主信号を折り返し、
     前記第2のユーザ装置又は前記第2の制御装置は、前記第2のユーザ装置又は前記第2の制御装置と前記第1のユーザ装置又は前記第1の制御装置との間を含む信号経路が正常であるか否かを、折り返された前記第1の主信号に基づいて判定する、
     又は、
     前記第1のユーザ装置又は前記第1の制御装置は、対向する前記第2のユーザ装置又は前記第2の制御装置の使用する信号形態に基づいて選択された信号形態で前記第2のユーザ装置又は前記第2の制御装置から送信された第2の主信号を折り返し、
     前記第2のユーザ装置又は前記第2の制御装置は、前記第2のユーザ装置又は前記第2の制御装置と前記第1のユーザ装置又は前記第1の制御装置との間を含む信号経路が正常であるか否かを、折り返された前記第2の主信号に基づいて判定する、
     又は、
     前記第1のユーザ装置又は前記第1の制御装置は、対向する前記第2のユーザ装置又は前記第2の制御装置の使用する信号形態に基づいて選択された信号形態の前記主信号を生成及び終端する前記第2のユーザ装置又は前記第2の制御装置から送信された前記第1の主信号に対して第3の主信号で応答し、
     前記第2のユーザ装置又は前記第2の制御装置は、前記第2のユーザ装置又は前記第2の制御装置と前記第1のユーザ装置又は前記第1の制御装置との間を含む信号経路が正常であるか否かを、応答に用いられた前記第3の主信号に基づいて判定する、
     又は、
     前記第1のユーザ装置又は前記第1の制御装置は、対向する前記第2のユーザ装置又は前記第2の制御装置の使用する信号形態に基づいて選択された信号形態で前記第2のユーザ装置又は前記第2の制御装置から送信された前記第2の主信号に対して第4の主信号で応答し、
     前記第2のユーザ装置又は前記第2の制御装置は、前記第2のユーザ装置又は前記第2の制御装置と前記第1のユーザ装置又は前記第1の制御装置との間を含む信号経路が正常であるか否かを、応答に用いられた前記第4の主信号に基づいて判定する、
     通信システム。
    A communication system comprising one or more control devices and one or more user devices,
    The first user device or the first control device generates and terminates a main signal in a signal form selected based on the signal form used by the opposing second user device or second control device. returning the first main signal transmitted from the user device or the second control device;
    The second user device or the second control device has a signal path including between the second user device or the second control device and the first user device or the first control device. determining whether or not it is normal based on the returned first main signal;
    Or
    The first user device or the first control device transmits a signal to the second user device in a signal format selected based on a signal format used by the opposing second user device or second control device. or returning the second main signal transmitted from the second control device,
    The second user device or the second control device has a signal path including between the second user device or the second control device and the first user device or the first control device. determining whether or not it is normal based on the returned second main signal;
    Or
    The first user device or the first control device generates the main signal in a signal format selected based on the signal format used by the opposing second user device or the second control device. responding with a third main signal to the first main signal transmitted from the second user device or the second control device terminating;
    The second user device or the second control device has a signal path including between the second user device or the second control device and the first user device or the first control device. determining whether or not it is normal based on the third main signal used in the response;
    Or
    The first user device or the first control device transmits a signal to the second user device in a signal format selected based on a signal format used by the opposing second user device or second control device. or responding with a fourth main signal to the second main signal transmitted from the second control device,
    The second user device or the second control device has a signal path including between the second user device or the second control device and the first user device or the first control device. determining whether or not it is normal based on the fourth main signal used in the response;
    Communications system.
  4.  前記第2のユーザ装置は、前記信号経路が正常であるか否かの判定に加え、前記第2のユーザ装置の内部において所定の信号を用いて、前記第2のユーザ装置の内部が正常であるか否かを更に判定する、請求項1又は請求項3に記載の通信システム。 In addition to determining whether the signal path is normal, the second user equipment determines whether the inside of the second user equipment is normal by using a predetermined signal inside the second user equipment. The communication system according to claim 1 or claim 3, further determining whether or not there is.
  5.  前記第2の制御装置は、誤り率を測定するための信号を表す制御信号又は主信号を前記第2のユーザ装置が前記第2の制御装置に送信しない場合、前記誤り率を測定するための信号を表す前記制御信号又は前記主信号を前記第2のユーザ装置に送信し、前記第2のユーザ装置によって折り返された前記制御信号又は前記主信号に基づく前記誤り率の測定結果に更に基づいて、前記信号経路が正常であるか否かを判定する、
     又は、
     前記第2の制御装置は、前記誤り率を測定するための信号を表す前記制御信号又は前記主信号を前記第2のユーザ装置が前記第2の制御装置に送信する場合、前記第2のユーザ装置から送信された前記制御信号又は前記主信号に基づく前記誤り率の測定結果に更に基づいて、前記信号経路が正常であるか否かを判定する、
     請求項1又は請求項3に記載の通信システム。
    When the second user equipment does not transmit a control signal or a main signal representing a signal for measuring the error rate to the second control device, the second control device is configured to transmit a signal for measuring the error rate. further based on a measurement result of the error rate based on the control signal or the main signal that is returned by the second user equipment by transmitting the control signal or the main signal representing the signal to the second user equipment; , determining whether the signal path is normal;
    Or
    When the second user equipment transmits the control signal or the main signal representing a signal for measuring the error rate to the second control equipment, the second control equipment further determining whether the signal path is normal based on a measurement result of the error rate based on the control signal or the main signal transmitted from the device;
    The communication system according to claim 1 or claim 3.
  6.  前記第2の制御装置は、誤り訂正符号が付与された制御信号を前記第2のユーザ装置に送信し、前記第2のユーザ装置から折り返された前記制御信号に対して所定の処理が施されているか否かに更に基づいて、前記信号経路が正常であるか否かを判定する、請求項1又は請求項3に記載の通信システム。 The second control device transmits a control signal provided with an error correction code to the second user device, and performs predetermined processing on the control signal returned from the second user device. 4. The communication system according to claim 1, further determining whether the signal path is normal based on whether the signal path is normal or not.
  7.  1以上の制御装置と、1以上のユーザ装置とを備える通信システムが実行する正常性判定方法であって、
     第1のユーザ装置又は第1の制御装置は、第2のユーザ装置又は第2の制御装置から送信された第1の制御信号に対して第2の制御信号で応答し、
     前記第2のユーザ装置又は前記第2の制御装置は、前記第1のユーザ装置又は前記第1の制御装置と前記第2のユーザ装置又は前記第2の制御装置との間を含む信号経路が正常であるか否かを、応答に用いられた前記第2の制御信号に基づいて判定する、
     又は、
     前記第1のユーザ装置又は前記第1の制御装置は、前記第2のユーザ装置又は前記第2の制御装置から送信された前記第1の制御信号を折り返し、
     前記第2のユーザ装置又は前記第2の制御装置は、前記第1のユーザ装置又は前記第1の制御装置と前記第2のユーザ装置又は前記第2の制御装置との間を含む前記信号経路が正常であるか否かを、折り返された前記第1の制御信号に基づいて判定する、
     正常性判定方法。
    A normality determination method executed by a communication system including one or more control devices and one or more user devices, the method comprising:
    The first user equipment or the first control device responds with a second control signal to the first control signal transmitted from the second user equipment or the second control device,
    The second user device or the second control device has a signal path including between the first user device or the first control device and the second user device or the second control device. determining whether or not it is normal based on the second control signal used in the response;
    Or
    The first user device or the first control device returns the first control signal transmitted from the second user device or the second control device,
    The second user device or the second control device may be connected to the signal path including between the first user device or the first control device and the second user device or the second control device. determining whether or not is normal based on the returned first control signal;
    Normality determination method.
  8.  第1制御装置と第2制御装置と第1ユーザ装置と第2ユーザ装置とを備える通信システムであって、
     前記第1制御装置は、折り返しを指示する第1制御信号を、前記第1ユーザ装置に送信し、
     前記第2制御装置は、前記折り返しを指示する第2制御信号を、前記第2ユーザ装置に送信し、
     前記第2ユーザ装置は、前記第1ユーザ装置から送信された主信号を折り返し、
     前記第1ユーザ装置は、前記第1ユーザ装置及び前記第2ユーザ装置の間を含む信号経路が正常であるか否かを、折り返された前記主信号に基づいて判定する、
     通信システム。
    A communication system comprising a first control device, a second control device, a first user device, and a second user device,
    The first control device transmits a first control signal instructing return to the first user device,
    The second control device transmits a second control signal instructing the return to the second user device,
    The second user device returns the main signal transmitted from the first user device,
    The first user device determines whether a signal path including between the first user device and the second user device is normal based on the returned main signal.
    Communications system.
  9.  第1ユーザ装置と第2ユーザ装置とを備える通信システムであって、
     前記第2ユーザ装置は、折返指示を表す指示信号を前記第1ユーザ装置に送信し、前記第1ユーザ装置から送信された制御信号を折り返し、
     前記第1ユーザ装置は、前記折返指示を表す指示信号を前記第2ユーザ装置に送信し、前記第1ユーザ装置及び前記第2ユーザ装置の間を含む信号経路が正常であるか否かを、折り返された前記制御信号に基づいて判定する、
     通信システム。
    A communication system comprising a first user device and a second user device,
    The second user device transmits an instruction signal representing a return instruction to the first user device, returns the control signal transmitted from the first user device,
    The first user device transmits an instruction signal representing the return instruction to the second user device, and determines whether a signal path including between the first user device and the second user device is normal. making a determination based on the returned control signal;
    Communications system.
PCT/JP2022/029937 2022-08-04 2022-08-04 Communication system and normality determination method WO2024029033A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029937 WO2024029033A1 (en) 2022-08-04 2022-08-04 Communication system and normality determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/029937 WO2024029033A1 (en) 2022-08-04 2022-08-04 Communication system and normality determination method

Publications (1)

Publication Number Publication Date
WO2024029033A1 true WO2024029033A1 (en) 2024-02-08

Family

ID=89848704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029937 WO2024029033A1 (en) 2022-08-04 2022-08-04 Communication system and normality determination method

Country Status (1)

Country Link
WO (1) WO2024029033A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252579A (en) * 2007-03-30 2008-10-16 Kddi Corp Node arranged by using wavelength selection switch, and inter-node connection confirming method
WO2022054779A1 (en) * 2020-09-14 2022-03-17 日本電気株式会社 Failure detection apparatus, cable branching device, and transmission path surveillance method
WO2022091396A1 (en) * 2020-10-30 2022-05-05 日本電信電話株式会社 Optical communication device, optical communication system, and optical communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252579A (en) * 2007-03-30 2008-10-16 Kddi Corp Node arranged by using wavelength selection switch, and inter-node connection confirming method
WO2022054779A1 (en) * 2020-09-14 2022-03-17 日本電気株式会社 Failure detection apparatus, cable branching device, and transmission path surveillance method
WO2022091396A1 (en) * 2020-10-30 2022-05-05 日本電信電話株式会社 Optical communication device, optical communication system, and optical communication method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONDA KAZUAKI; KANAI TAKUYA; TANAKA YASUNARI; HARA KAZUTAKA; KANEKO SHIN; KANI JUN-ICHI; YOSHIDA TOMOAKI: "Photonic Gateway for Direct and Protocol-Independent End-to-End User Connections", 2021 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), OSA, 6 June 2021 (2021-06-06), pages 1 - 3, XP033947063 *
SHIN KANEKO, KAZUKI HARA, JUNICHI KANI, TSUYOSHI SEKI, MITSUTAKA KAWAHARA, TAKASHI MIYAMURA, HIDEKI MAEDA: "Novel System Architecture toward the Realization of All-photonics Network", JOURNAL OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, DENSHI JOHO TSUSHIN GAKKAI, TOKYO., JP, vol. 104, no. 5, 1 May 2021 (2021-05-01), JP , pages 471 - 477, XP009552366, ISSN: 0913-5693 *
TANAKA YASUNARI; KANAI TAKUYA; HARA KAZUTAKA; CHEN MINGCHEN; HONDA KAZUAKI; SHINDO TAKAHIKO; KANEKO SHIN; NAKAMURA HIROTAKA; KANI : "Extraction of AMCC Signal Superposed by SOA-Integrated EA-DFB Laser for In-Service Monitoring in All-Photonics Network", JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE, USA, vol. 40, no. 17, 29 June 2022 (2022-06-29), USA, pages 5783 - 5792, XP011918189, ISSN: 0733-8724, DOI: 10.1109/JLT.2022.3187462 *

Similar Documents

Publication Publication Date Title
US8971706B2 (en) Link discovery, verification, and failure isolation in an optical communication system
JP5545212B2 (en) Wavelength path communication node device, wavelength path communication control method, program, and recording medium
US8280244B2 (en) Optical ring network system
US8433190B2 (en) Hot-swapping in-line optical amplifiers in an optical network
US6532320B1 (en) Equipments, transpondor and methods for optical fiber transmission
US7447398B2 (en) Optical crossconnect apparatus
EP1161117B1 (en) Photonic network node
JP4899589B2 (en) Optical network, optical network protection method and node
US20050191054A1 (en) Optical network with selective mode switching
JP2002223197A (en) Optical network system having quality control function
JP2007503186A (en) Optical ring network with selective signal regeneration function and wavelength conversion function
WO2007095805A1 (en) A loading, detecting and monitoring method and apparatus for optical channel-associated signal
JP4994300B2 (en) Optical termination device
KR20130116415A (en) Method and apparatus for protection switching in optical transport network
EP2399371B1 (en) Path-level protection for digitally wrapped payloads
US11838048B2 (en) SD-FEC defect propagation across regeneration nodes in support of single and multi-carrier super channel protection in ROADM networks
US7548693B2 (en) Relay transmission apparatus
WO2010121512A1 (en) Data communication method, data communication system and related apparatus
US20230403485A1 (en) Optical communication apparatus, optical communication system and optical communication method
CN103997371B (en) Detection method, the device and system of optical signal
WO2024029033A1 (en) Communication system and normality determination method
CA2307256C (en) Signal quality monitoring system and method
EP1361776A1 (en) Method and apparatus for supporting operations and maintenance functionality in an optical burst switching network
WO2024029035A1 (en) Communication system and normality determination unit
WO2024029032A1 (en) Communication system, first optical communication device, and transmission path characteristics identification method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954022

Country of ref document: EP

Kind code of ref document: A1