WO2024013969A1 - Camera device including lens unit - Google Patents

Camera device including lens unit Download PDF

Info

Publication number
WO2024013969A1
WO2024013969A1 PCT/JP2022/027808 JP2022027808W WO2024013969A1 WO 2024013969 A1 WO2024013969 A1 WO 2024013969A1 JP 2022027808 W JP2022027808 W JP 2022027808W WO 2024013969 A1 WO2024013969 A1 WO 2024013969A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens unit
camera device
lens
contact
positioning
Prior art date
Application number
PCT/JP2022/027808
Other languages
French (fr)
Japanese (ja)
Inventor
賢一 竹内
秀則 篠原
武志 芳賀
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/027808 priority Critical patent/WO2024013969A1/en
Publication of WO2024013969A1 publication Critical patent/WO2024013969A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • the present invention relates to a camera device having a lens unit.
  • Automotive stereo cameras which are a type of external world recognition sensor for advanced driving assistance systems (ADAS) and autonomous driving (AD) systems, use left and right images captured synchronously by the left and right cameras.
  • This is a device that calculates parallax information and measures the distance to an imaged object (another vehicle, pedestrian, obstacle, etc.) (hereinafter referred to as “distance measurement”).
  • Distance measurement by the camera device is based on parallax information between the left and right images, so in order to achieve accurate distance measurement, it is necessary to accurately fix the left and right camera modules to the housing so that the parallax information can be calculated accurately. There is a need to.
  • FIG. 8 is an exploded perspective view of the main parts of a general camera device, viewed from the front.
  • This camera device includes a highly rigid casing 100 that forms the front outer shell of the camera device, a left camera module 1L fixed to the back left side of the casing 100, and a right camera module 1L fixed to the back right side of the casing 100. It is equipped with 1R.
  • the distance between the optical axes of both camera modules is the baseline length L
  • the angle around the optical axis of the left camera module 1L is the roll angle ⁇ L
  • the angle around the optical axis of the right camera module 1R is the roll angle ⁇ R
  • an in-vehicle imaging device disclosed in Patent Document 1 is known.
  • paragraph 0018 of the same document states ⁇ The present invention provides an in-vehicle imaging device that is capable of highly accurate optical axis adjustment of the imaging unit with respect to the casing while minimizing precision machining of the casing.
  • Paragraph 0019 states, ⁇ The present invention provides a lens, and an optical axis of the lens as a normal line, when viewed from the optical axis direction of the lens.
  • an image sensor section having a lens holder having three reference surfaces arranged so as to surround the lens; an insertion section through which the lens holder is inserted; an opposing surface facing the reference surface; a casing having three adhesive filling parts arranged so as to surround the insertion part and penetrating from the opposing surface side to the opposite side of the opposing surface, the imaging element section and the casing; "is characterized in that the mutual positional relationship is fixed only by the adhesive in the three adhesive filling parts.”
  • Patent Document 1 discloses a method in which adhesive is filled in the adhesive filling portion of the housing with the reference surface of the lens holder in contact with the facing surface of the housing, and the positional relationship between the housing and the lens holder is adjusted. By fixing it, highly accurate optical axis adjustment is possible.
  • Patent Document 1 also discloses that adhesives are used to fix the positional relationship between the housing and the lens holder, making it easier to precisely process and mold the housing. The cost is reduced by minimizing the required processing cost (see paragraph 0059 of the same document, etc.).
  • the camera module 20L1 of this embodiment shown in FIGS. 5A and 5B is held in the lens holder 21L1.
  • a concave shape 25L1 and a convex shape 26L1 having a height recessed from the reference surface 24L1 are formed inside the concave shape 25L1, as shown in FIG. 5C, on the reference surface 24L1 whose normal is the optical axis of the lens.
  • the concave shape 25L1 and the convex shape 26L1 are formed at positions that serve as landmarks when looking into the reference surface 24L1 from the adhesive filling portion 14L of the housing 10.”
  • the position of the lens holder must be adjusted so that the marks (concave shape, convex shape) on the reference surface can be seen when looking at the reference surface of the lens holder from the adhesive filled part of the housing.
  • the marks concave shape, convex shape
  • the position of the lens holder must be adjusted so that the marks (concave shape, convex shape) on the reference surface can be seen when looking at the reference surface of the lens holder from the adhesive filled part of the housing.
  • the mark is a reference for adjusting the position of the lens holder, and the mark itself does not have the function of regulating the positional relationship between the housing and the lens holder. There was also the problem that the accuracy of the relationship could not be ensured sufficiently.
  • the present invention provides a camera device that can reduce production costs by shortening the assembly work time when attaching the camera module to the housing, and also improve the accuracy of attaching the camera module to the housing.
  • the purpose is to
  • a camera device of the present invention includes a lens barrel section in which a plurality of lenses are housed, and a reference surface that is perpendicular to the optical axis of the lenses and that abuts on an external contact surface. and a positioning structure that fixes the center position of the lens or restricts movement in the rotational direction while the reference surface is in contact with the contact surface.
  • the camera device of the present invention it is possible to reduce production costs by shortening the assembly work time when attaching the camera module to the casing, and to improve the accuracy of attaching the camera module to the casing.
  • FIG. 1 is an exploded perspective view of main parts of a camera device according to an embodiment, seen from the rear.
  • FIG. 2 is a perspective view of a camera module according to an embodiment.
  • FIG. 2 is a top view of a camera module according to an embodiment.
  • FIG. 3 is an enlarged view of the left camera module mounting portion on the back surface of the casing in one embodiment.
  • FIG. 3 is a diagram illustrating a manufacturing procedure of a camera module according to an embodiment.
  • FIG. 3 is a diagram illustrating a manufacturing procedure of a camera module according to an embodiment.
  • FIG. 3 is a diagram illustrating a manufacturing procedure of a camera module according to an embodiment.
  • FIG. 3 is a diagram illustrating a manufacturing procedure of a camera module according to an embodiment.
  • FIG. 3 is a diagram illustrating a manufacturing procedure of a camera module according to an embodiment.
  • FIG. 1 is an exploded perspective view of the main parts of a general camera device, seen from the front.
  • FIG. 1 is an exploded perspective view of the main parts of the camera device of this embodiment, viewed from the rear.
  • the structure of the camera device of this embodiment is basically the same as that of FIG. 8 described above, but differs in the shape of the contact portion between the housing 100 and the camera module 1, which will be described later.
  • the camera device of this embodiment includes a main control that controls the camera module 1, processes the output signal of the camera module 1 to generate an image, and calculates parallax information by comparing the left and right images.
  • a substrate, a back cover that covers the back of the casing 100, and the like are also provided, but these are not shown in FIG.
  • FIG. 2 is a perspective view of the camera module 1
  • FIG. 3 is a top view of the camera module 1.
  • the camera module 1 includes a lens unit 10, an image sensor board 20, and wiring 30.
  • the lens unit 10 is a resin component that holds a plurality of lenses and also fixes the camera module 1 to the housing 100.
  • a plurality of reference planes 12 arranged on the same plane perpendicular to the optical axis and a plurality of positioning pins 13 which are a structure for fixing the camera module 1 to the housing 100 are integrally molded.
  • three reference planes 12 are arranged in a substantially equilateral triangle shape to surround the lens barrel part 11, and two positioning pins are arranged on the same plane that includes the optical axis of the lens barrel part 11.
  • reference planes 12 are arranged so as to surround the lens barrel part 11, and two or more positioning pins 13 are arranged so as to surround the lens barrel part 11,
  • the number and arrangement of the reference plane 12 and the positioning pins 13 are not limited to those shown in the drawings.
  • the image sensor board 20 is a board on which the image sensor 21 is arranged on the optical axis of the lens barrel section 11, and is fixed to the lens unit 10 in a procedure described later.
  • the image sensor 21 is a CMOS image sensor or the like that captures an image in the optical axis direction through the lens barrel section 11.
  • the wiring 30 is FPC (Flexible printed circuits), FFC (Flexible Flat Cable), etc., which connects the image sensor board 20 and the main control board.
  • FPC Flexible printed circuits
  • FFC Flexible Flat Cable
  • FIG. 4 is a rear view of the housing 100, showing an enlarged view of the vicinity of the fixed portion of the left camera module 1L. Note that the structure near the fixing part of the right camera module 1R is also the same, so the description of the right fixing part will be omitted below.
  • three contact surfaces 101 are provided on the back surface of the housing 100 at positions facing the three reference surfaces 12 of the lens unit 10, and are connected to one positioning pin 13 of the lens unit 10.
  • a positioning hole 102 is provided at an opposing position, and a positioning elongated hole 103 is provided at a position opposing the other positioning pin 13.
  • the left camera The module 1L can be fixed to the housing 100. Note that since the positioning elongated hole 103 is formed long in the linear direction connecting the positioning hole 102 and the positioning elongated hole 103, even if there is some variation in the distance between the positioning pins 13 of the lens unit 10, both positioning pins 13 can be inserted into the positioning hole 102 and the positioning elongated hole 103.
  • the pin of the lens unit 10 is inserted into the hole of the housing 100 to position both of them, but it is also possible to insert the pin of the housing 100 into the hole of the lens unit 10 to position both of them. Also good. Furthermore, a recess into which the lens unit 10 is fitted may be provided in the housing 100 so that both can be positioned.
  • the plurality of reference surfaces 12 of the lens unit 10 are formed on the same plane perpendicular to the optical axis of the lens barrel portion 11 of the lens unit 10 (that is, the optical axis of the camera module 1). Further, since the plurality of contact surfaces 101 of the housing 100 are formed as planes facing each of the plurality of reference surfaces 12 formed on the same plane, the contact surfaces 101 are also formed on the same plane. will be done.
  • the reference plane 12 which is normal to the optical axis of the left and right lens units 10
  • the reference planes 12 of the left and right camera modules 1L, 1R are pressed against the same plane, the same state is achieved, and the optical axes of the left and right camera modules 1L, 1R perpendicular to the same plane become parallel.
  • the left and right optical axes should be parallel to each other, the distance between the optical axes (baseline length L) of the left and right camera modules 1L and 1R should be within a specified value, and, It is necessary to keep the left and right roll angles ⁇ L and ⁇ R within specified values.
  • the pair of positioning pins 13 provided on the lens unit 10 are fitted into the positioning hole 102 and the positioning elongated hole 103 of the housing 100, so that each positioning pin 13 is attached to the housing.
  • This serves as a reference for positioning with respect to the body 100 and a reference for roll rotation with respect to the housing 100, making it possible to simultaneously suppress errors in the position of the camera module 1 and the roll angle ⁇ .
  • the roll angle ⁇ is the rotation angle of the camera module 1 with the optical axis as the rotation axis.
  • this roll angle ⁇ exists, it causes rotation of the image captured by the image sensor 21. do. Therefore, even if the roll angle ⁇ is fixed by the positioning pin 13 of the lens unit 10, if the image sensor 21 itself has the roll angle ⁇ with respect to the optical axis, rotation of the captured image will occur. It turns out.
  • FIG. 5A is a perspective view of the adjustment jig 200 and the lens unit 10 before being fixed, viewed from above, and the arrow in the figure indicates the moving direction of the lens unit 10.
  • the adjustment jig 200 has a substantially U-shaped structure with a pair of protrusions, and is provided with a through hole 201 at a position scheduled to face the reference surface 12 of the lens unit 10.
  • the orthogonal coordinate system in the figure is a coordinate system set such that the X axis points in the long side direction of the lens unit 10, the Y axis points in the short side direction of the lens unit 10, and the Z axis points in the optical axis of the lens unit 10. be.
  • FIG. 5B is a perspective view of the lens unit 10 and adjustment jig 200 of FIG. 5A viewed from below.
  • a contact surface 202, a positioning V-groove 203, and a positioning plane 204 are formed on the bottom surface of the adjustment jig 200.
  • the contact surface 202 is a plane formed to surround the lower end of the through hole 201 and simulates the function of the contact surface 101 in FIG. It is formed in the planned position.
  • the positioning V-groove 203 is a groove on the adjustment jig 200 that simulates the function of the positioning hole 102 in FIG.
  • the positioning plane 204 is a plane that simulates the function of the positioning elongated hole 103 in FIG.
  • FIG. 5C is a perspective view showing the lens unit 10 fixed to the adjustment jig 200.
  • one positioning pin 13 of the lens unit 10 is made tangential to the two surfaces of the positioning V-groove 203 of the adjustment jig 200, and the other positioning pin 13 is made tangential to the positioning plane 204, so that the housing can be fixed.
  • a state in which the positioning pin 13 of the lens unit 10 is fixed to the positioning hole 102 and the positioning elongated hole 103 of 100 is simulated, and movement of the lens unit 10 in the X-axis and Y-axis directions is regulated.
  • the lens unit 10 is fixed to the adjustment jig 200.
  • a method of fixing the lens unit 10 to the adjustment jig 200 a method of mechanically fixing the lens unit 10 may be adopted, and in that case, the through hole 201 may be omitted.
  • the tip of the positioning pin 13 is positioned at a position farther from the contact surface 202 in the optical axis direction with the reference surface 12 in contact with the contact surface 202.
  • This adjustment method is an adjustment method that simultaneously adjusts the vertical position (focus adjustment direction) and horizontal position (center optical axis position) of the image sensor 21 with respect to the lens unit 10, as well as the image tilt and roll angle of the lens unit 10. be.
  • FIG. 6 shows the center collimator C0 and peripheral collimator C1 installed in the imaging direction of the lens unit 10, and the image sensor board 20 and wiring 30 placed on the back side of the lens unit 10 in order to implement Active Alignment. show.
  • the lens unit 10 is fixed to an adjustment jig 200 (not shown), and the relative relationship between the lens unit 10 and the image sensor substrate 20 can be adjusted.
  • the central collimator C0 is a collimator placed on the object side so as to be coaxial with the optical axis of the lens unit 10.
  • the peripheral collimators C1 are four collimators arranged parallel to the central collimator C0 along the four sides of a virtual rectangular column whose central axis is the optical axis of the lens unit 10. Therefore, the peripheral collimators C1 are arranged one by one in the first to fourth quadrants of the XY coordinate system of the lens unit 10 shown in FIG. It becomes.
  • each collimator has, for example, a crosshair reticle, and this crosshair reticle can be observed at an infinite distance.
  • FIG. 7 is a diagram showing a procedure for adjusting the position and attitude of the image sensor 21 with respect to the lens unit 10, and R0 and R1 in the figure represent images formed on the image sensor 21 via the lens unit 10, respectively.
  • This is a reticle cross image of the central collimator C0 and the peripheral collimator C1.
  • the peripheral collimators C1 are arranged one by one from the first quadrant to the fourth quadrant of the XY coordinate system of the lens unit 10 in FIG.
  • the reticle cross images R1 of the peripheral collimator C1 are formed one by one from the first quadrant to the fourth quadrant.
  • the reticle cross image R0 captured through the lens unit 10 is set to the desired coordinates of the image sensor 21 (for example, the optical axis is If the camera module 1 is designed to be placed at the center of the image sensor 21, it is assumed that the camera module 1 is shifted from the center coordinates of the image sensor 21.
  • the position of the image sensor 21 with respect to the lens unit 10 i.e., the position of the image sensor 21 on which the image sensor 21 is arranged
  • position of the substrate 20 position of the substrate 20
  • the relative relationship between the lens unit 10 and the image sensor 21 is adjusted to an ideal position without rotation around the optical axis. Specifically, from the coordinates of the four reticle cross images R1 projected on the XY coordinate system of the image sensor 21, the XY coordinate system of the image sensor 21 is calculated relative to the XY coordinate system of the lens unit 10 defined by the peripheral collimator C1. The rotation angle is calculated, and the rotation adjustment of the image sensor 21 (that is, the rotation adjustment of the image sensor substrate 20) is performed so that the roll angle ⁇ of both XY coordinate systems becomes 0.
  • the relative relationship can be fixed at an ideal position without rotation around the optical axis.
  • SYMBOLS 1 Camera module, 10... Lens unit, 11... Lens barrel part, 12... Reference surface, 13... Positioning pin, 20... Image sensor board, 21... Image sensor, 30... Wiring, 100... Housing, 101... Contact Surface, 102...Positioning hole, 103...Positioning slot, 200...Adjustment jig, 201...Through hole, 202...Abutment surface, 203...V groove for positioning, 204...Plane for positioning, C0...Center collimator, R0... Reticle cross image of central collimator, C1... peripheral collimator, R1... reticle cross image of peripheral collimator

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

Provided is a camera device that reduces production costs by shortening the time of assembly work when a camera module is mounted to a housing, and that can also enhance mounting accuracy of the camera module to the housing. Accordingly, this camera device is configured to include a lens unit including: a lens barrel part in which a plurality of lenses are stored; a reference surface, which is a surface perpendicular to the optical axis of the lenses, and which is made to abut an external abutting surface; and a positioning structure that fixes the center position of the lenses or restricts the movement in the rotating direction thereof, in a state where the reference surface is made to abut the abutting surface.

Description

レンズユニットを有するカメラ装置Camera device with lens unit
 本発明は、レンズユニットを有するカメラ装置に関する。 The present invention relates to a camera device having a lens unit.
 先進運転支援システム(ADAS)や自動運転(AD)システム用の外界認識センサの一種である自動車用ステレオカメラ(以下、「カメラ装置」と称する)は、左右のカメラで同期撮像した左右の画像から視差情報を算出し、撮像した物体(他車両、歩行者、障害物など)までの距離を計測(以下、「測距」と称する)するデバイスである。カメラ装置による測距は左右画像の視差情報を元にするため、正確な測距を実現するには、左右のカメラモジュールを精度よく筐体に固定して、視差情報を正確に算出できるようにする必要がある。 Automotive stereo cameras (hereinafter referred to as "camera devices"), which are a type of external world recognition sensor for advanced driving assistance systems (ADAS) and autonomous driving (AD) systems, use left and right images captured synchronously by the left and right cameras. This is a device that calculates parallax information and measures the distance to an imaged object (another vehicle, pedestrian, obstacle, etc.) (hereinafter referred to as "distance measurement"). Distance measurement by the camera device is based on parallax information between the left and right images, so in order to achieve accurate distance measurement, it is necessary to accurately fix the left and right camera modules to the housing so that the parallax information can be calculated accurately. There is a need to.
 図8は、一般的なカメラ装置の要部を前方から見た分解斜視図である。このカメラ装置は、カメラ装置の前外殻をなす高剛性の筐体100と、筐体100の背面左側に固定する左側のカメラモジュール1Lと、筐体100の背面右側に固定する右側のカメラモジュール1Rを備えている。両カメラモジュールの光軸間の距離を基線長L、左側のカメラモジュール1Lの光軸周りの角度をロール角θL、右側のカメラモジュール1Rの光軸周りの角度をロール角θRとした場合、このカメラ装置で所望の測距精度を確保するには、両光軸の平行度、基線長L、ロール角θL、θRの誤差を、カメラ装置の仕様で許容される所定範囲内に抑制する必要がある。 FIG. 8 is an exploded perspective view of the main parts of a general camera device, viewed from the front. This camera device includes a highly rigid casing 100 that forms the front outer shell of the camera device, a left camera module 1L fixed to the back left side of the casing 100, and a right camera module 1L fixed to the back right side of the casing 100. It is equipped with 1R. If the distance between the optical axes of both camera modules is the baseline length L, the angle around the optical axis of the left camera module 1L is the roll angle θL, and the angle around the optical axis of the right camera module 1R is the roll angle θR, then this In order to ensure the desired distance measurement accuracy with a camera device, it is necessary to suppress the errors in the parallelism of both optical axes, the baseline length L, and the roll angles θL and θR within a predetermined range allowed by the camera device specifications. be.
 ここで、カメラ装置の筐体にカメラモジュールを高精度に取り付けるための従来技術として、特許文献1の車載撮像装置が知られている。例えば、同文献の段落0018には、「本発明は、・・・、筐体への精密な加工を極力抑えつつ、筐体に対する撮像部の高精度な光軸調整が可能な車載撮像装置を提供することを目的とする。」と記載されており、段落0019には「本発明は、・・・、レンズ、および前記レンズの光軸を法線とし、前記レンズの光軸方向から見たときに前記レンズを囲むように配置されている3ヶ所の基準面が形成されているレンズホルダを有する撮像素子部と、前記レンズホルダを挿通する挿通部、前記基準面に対向する対向面、前記対向面側から前記対向面の反対面側まで貫通する、前記挿通部を囲むように配置されている3個の接着剤充填部を有する筐体と、を備え、前記撮像素子部と前記筐体とは、3個の前記接着剤充填部内の接着剤によってのみ互いの位置関係が固定されたことを特徴とする。」と記載されている。 Here, as a conventional technique for attaching a camera module to a housing of a camera device with high precision, an in-vehicle imaging device disclosed in Patent Document 1 is known. For example, paragraph 0018 of the same document states, ``The present invention provides an in-vehicle imaging device that is capable of highly accurate optical axis adjustment of the imaging unit with respect to the casing while minimizing precision machining of the casing. Paragraph 0019 states, ``The present invention provides a lens, and an optical axis of the lens as a normal line, when viewed from the optical axis direction of the lens. an image sensor section having a lens holder having three reference surfaces arranged so as to surround the lens; an insertion section through which the lens holder is inserted; an opposing surface facing the reference surface; a casing having three adhesive filling parts arranged so as to surround the insertion part and penetrating from the opposing surface side to the opposite side of the opposing surface, the imaging element section and the casing; "is characterized in that the mutual positional relationship is fixed only by the adhesive in the three adhesive filling parts."
 このように、特許文献1には、筐体の対向面にレンズホルダの基準面を接触させた状態で筐体の接着剤充填部に接着剤を充填し、筐体とレンズホルダの位置関係を固定することで、高精度な光軸調整を可能にしている。 In this way, Patent Document 1 discloses a method in which adhesive is filled in the adhesive filling portion of the housing with the reference surface of the lens holder in contact with the facing surface of the housing, and the positional relationship between the housing and the lens holder is adjusted. By fixing it, highly accurate optical axis adjustment is possible.
特許第6941686号公報Patent No. 6941686
 近年、カメラ装置の更なる低コスト化が求められており、特許文献1でも、筐体とレンズホルダの位置関係の固定に接着剤を使用することで、筐体への精密な加工や成型に要する加工コストを極力抑えて、低コスト化を図っている(同文献の段落0059など参照)。 In recent years, there has been a demand for further cost reduction of camera devices, and Patent Document 1 also discloses that adhesives are used to fix the positional relationship between the housing and the lens holder, making it easier to precisely process and mold the housing. The cost is reduced by minimizing the required processing cost (see paragraph 0059 of the same document, etc.).
 また、組立作業効率を高めて低コスト化を図るためのカメラ構造に関して、例えば、同文献の段落0065には「図5Aおよび図5Bに示す本実施例のカメラモジュール20L1では、レンズホルダ21L1に保持されるレンズの光軸を法線とする基準面24L1上に、図5Cに示すように、凹形状25L1、およびその内部に基準面24L1より窪んだ高さの凸形状26L1が形成されている。凹形状25L1および凸形状26L1は、筐体10の接着剤充填部14Lから基準面24L1を覗いた際に目印となる位置に形成されている。」との記載がある。 Regarding the camera structure for improving assembly work efficiency and reducing costs, for example, paragraph 0065 of the same document states, ``In the camera module 20L1 of this embodiment shown in FIGS. 5A and 5B, the camera module 20L1 is held in the lens holder 21L1. As shown in FIG. 5C, a concave shape 25L1 and a convex shape 26L1 having a height recessed from the reference surface 24L1 are formed inside the concave shape 25L1, as shown in FIG. 5C, on the reference surface 24L1 whose normal is the optical axis of the lens. The concave shape 25L1 and the convex shape 26L1 are formed at positions that serve as landmarks when looking into the reference surface 24L1 from the adhesive filling portion 14L of the housing 10."
 しかしながら、このカメラ構造を採用しても、筐体の接着剤充填部からレンズホルダの基準面を覗いた際に基準面の目印(凹形状、凸形状)が見えるようにレンズホルダの位置を調整した後、筐体の接着剤充填部に接着剤を充填して筐体とレンズホルダの位置関係を固定する、という組立手順に変わりはないため、接着剤充填部を覗きながらのレンズホルダの位置調整作業を必要とする分だけ生産効率が悪化し、更なる低コスト化の障害となっていた。また、目印はレンズホルダの位置調整作業を行うための基準であり、目印自体に筐体とレンズホルダの位置関係を規制する機能が無いため、目印を設けただけでは筐体とレンズホルダの位置関係の精度を十分に担保できないという問題もあった。 However, even if this camera structure is adopted, the position of the lens holder must be adjusted so that the marks (concave shape, convex shape) on the reference surface can be seen when looking at the reference surface of the lens holder from the adhesive filled part of the housing. After that, there is no change in the assembly procedure of filling the adhesive-filled part of the housing with adhesive and fixing the positional relationship between the housing and the lens holder, so please check the position of the lens holder while looking into the adhesive-filled part. The production efficiency deteriorated due to the adjustment work required, which became an obstacle to further cost reduction. In addition, the mark is a reference for adjusting the position of the lens holder, and the mark itself does not have the function of regulating the positional relationship between the housing and the lens holder. There was also the problem that the accuracy of the relationship could not be ensured sufficiently.
 そこで、本発明では、カメラモジュールを筐体に取り付ける際の組立作業時間を短縮することで生産コストを低減しつつ、カメラモジュールの筐体への取り付け精度も高めることができる、カメラ装置を提供することを目的とする。 Therefore, the present invention provides a camera device that can reduce production costs by shortening the assembly work time when attaching the camera module to the housing, and also improve the accuracy of attaching the camera module to the housing. The purpose is to
 上記課題を解決するため、本発明のカメラ装置は、複数のレンズが格納された鏡筒部と、前記レンズの光軸に垂直な面であって外部の当接面に当接される基準面と、前記基準面が前記当接面に当接された状態で、前記レンズの中心位置を固定するまたは回転方向の移動を規制する位置決め構造と、を有する、レンズユニットを有するカメラ装置とした。 In order to solve the above problems, a camera device of the present invention includes a lens barrel section in which a plurality of lenses are housed, and a reference surface that is perpendicular to the optical axis of the lenses and that abuts on an external contact surface. and a positioning structure that fixes the center position of the lens or restricts movement in the rotational direction while the reference surface is in contact with the contact surface.
 本発明のカメラ装置により、カメラモジュールを筐体に取り付ける際の組立作業時間を短縮することで生産コストを低減しつつ、カメラモジュールの筐体への取り付け精度も高めることができる。 With the camera device of the present invention, it is possible to reduce production costs by shortening the assembly work time when attaching the camera module to the casing, and to improve the accuracy of attaching the camera module to the casing.
一実施例のカメラ装置の要部を後方から見た分解斜視図。FIG. 1 is an exploded perspective view of main parts of a camera device according to an embodiment, seen from the rear. 一実施例のカメラモジュールの斜視図。FIG. 2 is a perspective view of a camera module according to an embodiment. 一実施例のカメラモジュールの上面図。FIG. 2 is a top view of a camera module according to an embodiment. 一実施例の筐体の背面の左カメラモジュール取付部の拡大図。FIG. 3 is an enlarged view of the left camera module mounting portion on the back surface of the casing in one embodiment. 一実施例のカメラモジュールの製造手順を説明する図。FIG. 3 is a diagram illustrating a manufacturing procedure of a camera module according to an embodiment. 一実施例のカメラモジュールの製造手順を説明する図。FIG. 3 is a diagram illustrating a manufacturing procedure of a camera module according to an embodiment. 一実施例のカメラモジュールの製造手順を説明する図。FIG. 3 is a diagram illustrating a manufacturing procedure of a camera module according to an embodiment. 一実施例のカメラモジュールの製造手順を説明する図。FIG. 3 is a diagram illustrating a manufacturing procedure of a camera module according to an embodiment. 一実施例のカメラモジュールの製造手順を説明する図。FIG. 3 is a diagram illustrating a manufacturing procedure of a camera module according to an embodiment. 一般的なカメラ装置の要部を前方から見た分解斜視図。FIG. 1 is an exploded perspective view of the main parts of a general camera device, seen from the front.
 以下、図面を用いて、本発明のカメラ装置の実施例を説明する。 Embodiments of the camera device of the present invention will be described below with reference to the drawings.
 <カメラ装置の構造>
 まず、図1から図4を用いて、一実施例のカメラ装置の構造を説明する。
<Structure of camera device>
First, the structure of a camera device according to an embodiment will be explained using FIGS. 1 to 4.
 図1は、本実施例のカメラ装置の要部を後方から見た分解斜視図である。本実施例のカメラ装置の構造は、基本的には、上記した図8のものと同等であるが、筐体100とカメラモジュール1の接触部の形状が後述する点で相違する。なお、本実施例のカメラ装置には、カメラモジュール1を制御したり、カメラモジュール1の出力信号を処理して画像を生成したり、左右画像を比較して視差情報を算出したりする主制御基板や、筐体100の背面を覆う背面カバー等も設けられるが、図1ではそれらの表示を省略している。 FIG. 1 is an exploded perspective view of the main parts of the camera device of this embodiment, viewed from the rear. The structure of the camera device of this embodiment is basically the same as that of FIG. 8 described above, but differs in the shape of the contact portion between the housing 100 and the camera module 1, which will be described later. Note that the camera device of this embodiment includes a main control that controls the camera module 1, processes the output signal of the camera module 1 to generate an image, and calculates parallax information by comparing the left and right images. A substrate, a back cover that covers the back of the casing 100, and the like are also provided, but these are not shown in FIG.
 図2は、カメラモジュール1の斜視図であり、図3は、カメラモジュール1の上面図である。両図に示すように、カメラモジュール1は、レンズユニット10と、撮像素子基板20と、配線30を有している。 2 is a perspective view of the camera module 1, and FIG. 3 is a top view of the camera module 1. As shown in both figures, the camera module 1 includes a lens unit 10, an image sensor board 20, and wiring 30.
 レンズユニット10は、複数のレンズを保持するとともに、カメラモジュール1を筐体100に固定するための樹脂製部品であり、複数のレンズを直列に格納した鏡筒部11と、鏡筒部11の光軸に垂直な同一平面上に配置した複数の基準面12と、カメラモジュール1を筐体100に固定するための構造体である複数の位置決めピン13を一体成型したものである。なお、図2と図3では、鏡筒部11を囲むように略正三角形状に配置した3つの基準面12と、鏡筒部11の光軸を含む同一平面上に配置した2つの位置決めピン13を設けた構造を例示しているが、3つ以上の基準面12を鏡筒部11を囲むように配置し、2つ以上の位置決めピン13を鏡筒部11を囲むように配置すれば、基準面12と位置決めピン13の数や配置は図示するものに限定されない。 The lens unit 10 is a resin component that holds a plurality of lenses and also fixes the camera module 1 to the housing 100. A plurality of reference planes 12 arranged on the same plane perpendicular to the optical axis and a plurality of positioning pins 13 which are a structure for fixing the camera module 1 to the housing 100 are integrally molded. In addition, in FIGS. 2 and 3, three reference planes 12 are arranged in a substantially equilateral triangle shape to surround the lens barrel part 11, and two positioning pins are arranged on the same plane that includes the optical axis of the lens barrel part 11. 13, but if three or more reference planes 12 are arranged so as to surround the lens barrel part 11, and two or more positioning pins 13 are arranged so as to surround the lens barrel part 11, The number and arrangement of the reference plane 12 and the positioning pins 13 are not limited to those shown in the drawings.
 撮像素子基板20は、鏡筒部11の光軸上に撮像素子21を配置した基板であり、後述する手順でレンズユニット10に固定される。なお、撮像素子21は、鏡筒部11を介して光軸方向を撮像する、CMOSイメージセンサー等である。 The image sensor board 20 is a board on which the image sensor 21 is arranged on the optical axis of the lens barrel section 11, and is fixed to the lens unit 10 in a procedure described later. Note that the image sensor 21 is a CMOS image sensor or the like that captures an image in the optical axis direction through the lens barrel section 11.
 配線30は、撮像素子基板20と主制御基板等を接続する、FPC(Flexible printed circuits)やFFC(Flexible Flat Cable)などである。 The wiring 30 is FPC (Flexible printed circuits), FFC (Flexible Flat Cable), etc., which connects the image sensor board 20 and the main control board.
 図4は、筐体100の背面図であり、左側のカメラモジュール1Lの固定部の近傍を拡大表示したものである。なお、右側のカメラモジュール1Rの固定部の近傍も同等の構造であるため、以下では、右側の固定部については説明を省略する。 FIG. 4 is a rear view of the housing 100, showing an enlarged view of the vicinity of the fixed portion of the left camera module 1L. Note that the structure near the fixing part of the right camera module 1R is also the same, so the description of the right fixing part will be omitted below.
 ここに示すように、筐体100の背面には、レンズユニット10の3つの基準面12と対向する位置に3つの当接面101が設けられており、レンズユニット10の一方の位置決めピン13と対向する位置に位置決め穴102が設けられており、他方の位置決めピン13と対向する位置に位置決め長孔103が設けられている。 As shown here, three contact surfaces 101 are provided on the back surface of the housing 100 at positions facing the three reference surfaces 12 of the lens unit 10, and are connected to one positioning pin 13 of the lens unit 10. A positioning hole 102 is provided at an opposing position, and a positioning elongated hole 103 is provided at a position opposing the other positioning pin 13.
 このような構造により、3つの基準面12を相対する当接面101に当接させ、かつ、2つの位置決めピン13を相対する位置決め穴102と位置決め長孔103に挿入した状態で、左側のカメラモジュール1Lを筐体100に固定することができる。なお、位置決め長孔103は、位置決め穴102と位置決め長孔103を結ぶ直線方向に長く形成されているため、レンズユニット10の位置決めピン13同士の距離に多少のバラツキがあっても両方の位置決めピン13を位置決め穴102と位置決め長孔103に挿入することができる。 With this structure, when the three reference surfaces 12 are in contact with the opposing contact surfaces 101 and the two positioning pins 13 are inserted into the opposing positioning holes 102 and positioning elongated holes 103, the left camera The module 1L can be fixed to the housing 100. Note that since the positioning elongated hole 103 is formed long in the linear direction connecting the positioning hole 102 and the positioning elongated hole 103, even if there is some variation in the distance between the positioning pins 13 of the lens unit 10, both positioning pins 13 can be inserted into the positioning hole 102 and the positioning elongated hole 103.
 なお、本実施例では、レンズユニット10のピンを筐体100の穴に挿入して両者を位置決めしたが、筐体100のピンをレンズユニット10の穴に挿入して両者を位置決めできるようにしても良い。また、筐体100にレンズユニット10を嵌め込む凹みを設けて、両者を位置決めできるようにしても良い。 Note that in this embodiment, the pin of the lens unit 10 is inserted into the hole of the housing 100 to position both of them, but it is also possible to insert the pin of the housing 100 into the hole of the lens unit 10 to position both of them. Also good. Furthermore, a recess into which the lens unit 10 is fitted may be provided in the housing 100 so that both can be positioned.
 <カメラ装置の光軸の平行度、基線長L、ロール角θの誤差を抑制する機序>
 上記の構造によって、本実施例のカメラ装置の左右光軸の平行度と、基線長Lと、左右のロール角θL、θR(図8参照)の誤差が抑制される機序を説明する。
<Mechanism to suppress errors in parallelism of optical axis of camera device, base line length L, and roll angle θ>
The mechanism by which the above structure suppresses errors in the parallelism of the left and right optical axes, the base line length L, and the left and right roll angles θL and θR (see FIG. 8) of the camera device of this embodiment will be described.
 上記したように、レンズユニット10の複数の基準面12は、レンズユニット10の鏡筒部11の光軸(すなわち、カメラモジュール1の光軸)に垂直な同一平面上に形成されている。また、筐体100の複数の当接面101は、同一平面上に形成された複数の基準面12の各々に対向する平面として形成されているため、当接面101同士も同一平面上に形成されることになる。 As described above, the plurality of reference surfaces 12 of the lens unit 10 are formed on the same plane perpendicular to the optical axis of the lens barrel portion 11 of the lens unit 10 (that is, the optical axis of the camera module 1). Further, since the plurality of contact surfaces 101 of the housing 100 are formed as planes facing each of the plurality of reference surfaces 12 formed on the same plane, the contact surfaces 101 are also formed on the same plane. will be done.
 従って、左右のカメラモジュール1L,1Rを筐体100に取り付ける際に、左右のレンズユニット10の光軸が法線となる基準面12を、筐体100の対向する当接面101に押し当てると、左右のカメラモジュール1L,1Rの基準面12を同一平面に押し当てていると等しい状態となり、当該同一平面に垂直な左右のカメラモジュール1L,1Rの光軸同士は平行になる。 Therefore, when attaching the left and right camera modules 1L and 1R to the housing 100, if the reference plane 12, which is normal to the optical axis of the left and right lens units 10, is pressed against the opposing contact surface 101 of the housing 100. When the reference planes 12 of the left and right camera modules 1L, 1R are pressed against the same plane, the same state is achieved, and the optical axes of the left and right camera modules 1L, 1R perpendicular to the same plane become parallel.
 カメラ装置で正確な視差情報を算出するには、左右の光軸同士を平行状態にしたうえで、左右のカメラモジュール1L,1Rの光軸間隔(基線長L)を規定値に収め、かつ、左右のロール角θL、θRを規定値に収める必要がある。 In order to calculate accurate parallax information with a camera device, the left and right optical axes should be parallel to each other, the distance between the optical axes (baseline length L) of the left and right camera modules 1L and 1R should be within a specified value, and, It is necessary to keep the left and right roll angles θL and θR within specified values.
 本実施例のカメラモジュール1では、レンズユニット10に設けた一対の位置決めピン13を、筐体100の位置決め穴102と位置決め長孔103に嵌合させているため、各々の位置決めピン13が、筐体100に対する位置決めの基準、かつ、筐体100に対するロール回転の基準となり、カメラモジュール1の位置とロール角θの誤差を同時に抑制することが可能となる。 In the camera module 1 of this embodiment, the pair of positioning pins 13 provided on the lens unit 10 are fitted into the positioning hole 102 and the positioning elongated hole 103 of the housing 100, so that each positioning pin 13 is attached to the housing. This serves as a reference for positioning with respect to the body 100 and a reference for roll rotation with respect to the housing 100, making it possible to simultaneously suppress errors in the position of the camera module 1 and the roll angle θ.
 図8で示したように、ロール角θとは、光軸を回転軸としたカメラモジュール1の回転角であるが、このロール角θが存在すると、撮像素子21で撮像した画像の回転を惹起する。したがって、レンズユニット10の位置決めピン13でロール角θを固定した場合であっても、撮像素子21自体が光軸に対してロール角θを有していれば、撮像画像の回転が惹起されることになる。 As shown in FIG. 8, the roll angle θ is the rotation angle of the camera module 1 with the optical axis as the rotation axis. When this roll angle θ exists, it causes rotation of the image captured by the image sensor 21. do. Therefore, even if the roll angle θ is fixed by the positioning pin 13 of the lens unit 10, if the image sensor 21 itself has the roll angle θ with respect to the optical axis, rotation of the captured image will occur. It turns out.
 そこで、本実施例では、下記の製造手順でレンズユニット10と撮像素子21の相対関係を光軸周りの回転の無い理想位置で固定した左右のカメラモジュール1L,1Rを利用することで、左右の光軸同士の平行度、光軸間隔(基線長L)、左右のロール角θL、θRの誤差を容易に抑制できるようにした。 Therefore, in this embodiment, by using the left and right camera modules 1L and 1R in which the relative relationship between the lens unit 10 and the image sensor 21 is fixed at an ideal position without rotation around the optical axis using the following manufacturing procedure, Errors in the parallelism between optical axes, the distance between optical axes (baseline length L), and left and right roll angles θL and θR can be easily suppressed.
 <調整治具200へのレンズユニット10の固定手順>
 まず、図5Aから図5Cの斜視図を用いて、カメラモジュール調整用の調整治具200にレンズユニット10を固定する作業の手順を説明する。
<Procedure for fixing lens unit 10 to adjustment jig 200>
First, the procedure for fixing the lens unit 10 to the adjustment jig 200 for adjusting the camera module will be described using the perspective views of FIGS. 5A to 5C.
 図5Aは、調整治具200と固定前のレンズユニット10を上方から見た斜視図であり、図中の矢印はレンズユニット10の移動方向を示している。ここに示すように、調整治具200は、一対の突出部を有する略コ字状の構造を有しており、レンズユニット10の基準面12と対向予定の位置に貫通孔201を設けている。なお、図中の直交座標系は、X軸がレンズユニット10の長辺方向、Y軸がレンズユニット10の短辺方向、Z軸がレンズユニット10の光軸を向くように設定した座標系である。 FIG. 5A is a perspective view of the adjustment jig 200 and the lens unit 10 before being fixed, viewed from above, and the arrow in the figure indicates the moving direction of the lens unit 10. As shown here, the adjustment jig 200 has a substantially U-shaped structure with a pair of protrusions, and is provided with a through hole 201 at a position scheduled to face the reference surface 12 of the lens unit 10. . The orthogonal coordinate system in the figure is a coordinate system set such that the X axis points in the long side direction of the lens unit 10, the Y axis points in the short side direction of the lens unit 10, and the Z axis points in the optical axis of the lens unit 10. be.
 図5Bは、図5Aのレンズユニット10と調整治具200を下方から見た斜視図である。ここに示すように、調整治具200の底面には、当接面202と、位置決め用V溝203と、位置決め用平面204が形成されている。当接面202は、貫通孔201の下端を囲むように形成された、図4の当接面101の機能を調整治具200上で模擬した平面であり、レンズユニット10の基準面12と対向予定の位置に形成されている。位置決め用V溝203は、図4の位置決め穴102の機能を調整治具200上で模擬した溝であり、レンズユニット10の一方の位置決めピン13と接触予定の位置に形成されている。位置決め用平面204は、図4の位置決め長孔103の機能を調整治具200上で模擬した平面であり、レンズユニット10の他方の位置決めピン13と接触予定の位置に形成されている。 FIG. 5B is a perspective view of the lens unit 10 and adjustment jig 200 of FIG. 5A viewed from below. As shown here, a contact surface 202, a positioning V-groove 203, and a positioning plane 204 are formed on the bottom surface of the adjustment jig 200. The contact surface 202 is a plane formed to surround the lower end of the through hole 201 and simulates the function of the contact surface 101 in FIG. It is formed in the planned position. The positioning V-groove 203 is a groove on the adjustment jig 200 that simulates the function of the positioning hole 102 in FIG. The positioning plane 204 is a plane that simulates the function of the positioning elongated hole 103 in FIG.
 図5Cは、調整治具200にレンズユニット10を固定した状態を示す斜視図である。図示するように、レンズユニット10の一方の位置決めピン13を調整治具200の位置決め用V溝203の二面に正接させ、他方の位置決めピン13を位置決め用平面204に正接させることで、筐体100の位置決め穴102と位置決め長孔103にレンズユニット10の位置決めピン13を固定した状態が模擬され、レンズユニット10のX軸、Y軸方向の移動が規制される。さらに、調整治具200の貫通孔201に負圧を与えてレンズユニット10を吸着することで、レンズユニット10のZ軸方向の移動が規制される。このようにして、調整治具200にレンズユニット10が固定される。なお、調整治具200にレンズユニット10を固定する方法としては、レンズユニット10を機械的に固定する方法を採用しても良く、その場合は、貫通孔201を省略しても良い。 FIG. 5C is a perspective view showing the lens unit 10 fixed to the adjustment jig 200. As shown in the figure, one positioning pin 13 of the lens unit 10 is made tangential to the two surfaces of the positioning V-groove 203 of the adjustment jig 200, and the other positioning pin 13 is made tangential to the positioning plane 204, so that the housing can be fixed. A state in which the positioning pin 13 of the lens unit 10 is fixed to the positioning hole 102 and the positioning elongated hole 103 of 100 is simulated, and movement of the lens unit 10 in the X-axis and Y-axis directions is regulated. Further, by applying negative pressure to the through hole 201 of the adjustment jig 200 and attracting the lens unit 10, movement of the lens unit 10 in the Z-axis direction is restricted. In this way, the lens unit 10 is fixed to the adjustment jig 200. Note that as a method of fixing the lens unit 10 to the adjustment jig 200, a method of mechanically fixing the lens unit 10 may be adopted, and in that case, the through hole 201 may be omitted.
 なお、図5A、図5Bに示すように、Y方向からレンズユニット10を調整治具200に取り付ける場合、レンズユニット10の位置決めピン13が調整治具200の当接面202に干渉すると、レンズユニット10を調整治具200に取り付けることができない。そこで、本実施例では、位置決めピン13の先端が、基準面12が当接面202に当接した状態で光軸方向において当接面202より遠い位置に位置するように、換言すれば、位置決めピン13の先端が基準面12より低くなるように、レンズユニット10を設計することで(図5A参照)、上記の干渉が発生しないようにしている。 As shown in FIGS. 5A and 5B, when attaching the lens unit 10 to the adjustment jig 200 from the Y direction, if the positioning pin 13 of the lens unit 10 interferes with the contact surface 202 of the adjustment jig 200, the lens unit 10 cannot be attached to the adjustment jig 200. Therefore, in this embodiment, the tip of the positioning pin 13 is positioned at a position farther from the contact surface 202 in the optical axis direction with the reference surface 12 in contact with the contact surface 202. By designing the lens unit 10 so that the tip of the pin 13 is lower than the reference plane 12 (see FIG. 5A), the above interference is prevented from occurring.
 <レンズユニット10と撮像素子21の相対関係の調整方式>
 次に、図6と図7を用いて、レンズユニット10と撮像素子21の相対関係を光軸周りの回転の無い理想位置に調整する、Active Alignmentと呼ばれる調整方式を説明する。この調整方式は、レンズユニット10に対する撮像素子21の縦方向位置(ピント調整方向)、横方向位置(中心光軸位置)、レンズユニット10が持つ像面倒れ、ロール角を同時に調整する調整方式である。
<Method for adjusting the relative relationship between the lens unit 10 and the image sensor 21>
Next, an adjustment method called Active Alignment, which adjusts the relative relationship between the lens unit 10 and the image sensor 21 to an ideal position without rotation around the optical axis, will be explained using FIGS. 6 and 7. This adjustment method is an adjustment method that simultaneously adjusts the vertical position (focus adjustment direction) and horizontal position (center optical axis position) of the image sensor 21 with respect to the lens unit 10, as well as the image tilt and roll angle of the lens unit 10. be.
 図6は、Active Alignmentを実施するために、レンズユニット10の撮像方向に設置した、中心コリメータC0と周辺コリメータC1、および、レンズユニット10の背面側に配置された撮像素子基板20と配線30を示す。なお、図6では、レンズユニット10は調整治具200(図示せず)に固定された状態であり、レンズユニット10と撮像素子基板20の相対関係は調整可能な状態にある。 FIG. 6 shows the center collimator C0 and peripheral collimator C1 installed in the imaging direction of the lens unit 10, and the image sensor board 20 and wiring 30 placed on the back side of the lens unit 10 in order to implement Active Alignment. show. In FIG. 6, the lens unit 10 is fixed to an adjustment jig 200 (not shown), and the relative relationship between the lens unit 10 and the image sensor substrate 20 can be adjusted.
 ここで、中心コリメータC0は、レンズユニット10の光軸と同軸になるように物体側に配置したコリメータである。また、周辺コリメータC1は、レンズユニット10の光軸を中心軸とする仮想的な長方形柱の四辺に沿うように中心コリメータC0と平行に配置した4つのコリメータである。従って、周辺コリメータC1は、図6に示すレンズユニット10のXY座標系の第一象限から第四象限に一つずつ配置され、それぞれはX軸に対して対称、Y軸に対して対称の位置となっている。ここで、各コリメータは、例えば十字細線レチクルを持ち、この十字細線レチクルを無限遠に観測できるものとする。 Here, the central collimator C0 is a collimator placed on the object side so as to be coaxial with the optical axis of the lens unit 10. Further, the peripheral collimators C1 are four collimators arranged parallel to the central collimator C0 along the four sides of a virtual rectangular column whose central axis is the optical axis of the lens unit 10. Therefore, the peripheral collimators C1 are arranged one by one in the first to fourth quadrants of the XY coordinate system of the lens unit 10 shown in FIG. It becomes. Here, each collimator has, for example, a crosshair reticle, and this crosshair reticle can be observed at an infinite distance.
 図7は、レンズユニット10に対する撮像素子21の位置と姿勢を調整する手順を示した図であり、図中のR0,R1は夫々、レンズユニット10を介して撮像素子21上に結像した、中心コリメータC0と周辺コリメータC1のレチクル十字像である。なお、図6にて、レンズユニット10のXY座標系の第一象限から第四象限に周辺コリメータC1を一つずつ配置したことから自明なように、調整前であってもレンズユニット10のXY座標系と大凡一致する撮像素子21のXY座標系においては、周辺コリメータC1のレチクル十字像R1は第一象限から第四象限に一つずつ結像されることになる。 FIG. 7 is a diagram showing a procedure for adjusting the position and attitude of the image sensor 21 with respect to the lens unit 10, and R0 and R1 in the figure represent images formed on the image sensor 21 via the lens unit 10, respectively. This is a reticle cross image of the central collimator C0 and the peripheral collimator C1. In addition, as is obvious from the fact that the peripheral collimators C1 are arranged one by one from the first quadrant to the fourth quadrant of the XY coordinate system of the lens unit 10 in FIG. 6, even before adjustment, the XY coordinate system of the lens unit 10 In the XY coordinate system of the image sensor 21 that roughly matches the coordinate system, the reticle cross images R1 of the peripheral collimator C1 are formed one by one from the first quadrant to the fourth quadrant.
 図7(a)に示すように、レンズユニット10のピント調整が終了した段階では、レンズユニット10を通して撮像したレチクル十字像R0が、撮像素子21の所望の座標(例えば、光軸が撮像素子21の中心に配置されるように設計されたカメラモジュール1であれば、撮像素子21の中心座標)からズレているものとする。 As shown in FIG. 7A, when the focus adjustment of the lens unit 10 is completed, the reticle cross image R0 captured through the lens unit 10 is set to the desired coordinates of the image sensor 21 (for example, the optical axis is If the camera module 1 is designed to be placed at the center of the image sensor 21, it is assumed that the camera module 1 is shifted from the center coordinates of the image sensor 21.
 そこで、図7(b)に示すように、レチクル十字像R0が撮像素子21の所望の座標に合致するように、レンズユニット10に対する撮像素子21の位置(すなわち、撮像素子21を配置した撮像素子基板20の位置)を調整する。 Therefore, as shown in FIG. 7B, the position of the image sensor 21 with respect to the lens unit 10 (i.e., the position of the image sensor 21 on which the image sensor 21 is arranged) (position of the substrate 20).
 次に、図7(c)に示すように、レンズユニット10と撮像素子21の相対関係を光軸周りの回転の無い理想位置に調整する。具体的には、撮像素子21のXY座標系に投影された4つのレチクル十字像R1の座標から、周辺コリメータC1により定義されるレンズユニット10のXY座標系に対する、撮像素子21のXY座標系の回転角度を計算し、双方のXY座標系のロール角θが0になるように撮像素子21の回転調整(すなわち、撮像素子基板20の回転調整)をおこなう。 Next, as shown in FIG. 7(c), the relative relationship between the lens unit 10 and the image sensor 21 is adjusted to an ideal position without rotation around the optical axis. Specifically, from the coordinates of the four reticle cross images R1 projected on the XY coordinate system of the image sensor 21, the XY coordinate system of the image sensor 21 is calculated relative to the XY coordinate system of the lens unit 10 defined by the peripheral collimator C1. The rotation angle is calculated, and the rotation adjustment of the image sensor 21 (that is, the rotation adjustment of the image sensor substrate 20) is performed so that the roll angle θ of both XY coordinate systems becomes 0.
 図7(a)から(c)の手順で、撮像素子21の位置と角度を調整した後、レンズユニット10と撮像素子基板20を接着剤で固定することで、レンズユニット10と撮像素子21の相対関係を光軸周りの回転の無い理想位置に固定することができる。 After adjusting the position and angle of the image sensor 21 in the steps shown in FIGS. The relative relationship can be fixed at an ideal position without rotation around the optical axis.
 <まとめ>
 以上で説明したように、本実施例のカメラ装置によれば、左右のカメラモジュールの光軸同士の平行度、基線長、左右のロール角の誤差を容易に抑制することができる。
<Summary>
As described above, according to the camera device of this embodiment, errors in the parallelism between the optical axes of the left and right camera modules, the base line length, and the left and right roll angles can be easily suppressed.
1…カメラモジュール、10…レンズユニット、11…鏡筒部、12…基準面、13…位置決めピン、20…撮像素子基板、21…撮像素子、30…配線、100…筐体、101…当接面、102…位置決め穴、103…位置決め長孔、200…調整治具、201…貫通孔、202…当接面、203…位置決め用V溝、204…位置決め用平面、C0…中心コリメータ、R0…中心コリメータのレチクル十字像、C1…周辺コリメータ、R1…周辺コリメータのレチクル十字像 DESCRIPTION OF SYMBOLS 1... Camera module, 10... Lens unit, 11... Lens barrel part, 12... Reference surface, 13... Positioning pin, 20... Image sensor board, 21... Image sensor, 30... Wiring, 100... Housing, 101... Contact Surface, 102...Positioning hole, 103...Positioning slot, 200...Adjustment jig, 201...Through hole, 202...Abutment surface, 203...V groove for positioning, 204...Plane for positioning, C0...Center collimator, R0... Reticle cross image of central collimator, C1... peripheral collimator, R1... reticle cross image of peripheral collimator

Claims (8)

  1.  複数のレンズが格納された鏡筒部と、
     前記レンズの光軸に垂直な面であって外部の当接面に当接される基準面と、
     前記基準面が前記当接面に当接された状態で、前記レンズの中心位置を固定するまたは回転方向の移動を規制する位置決め構造と、
     を有することを特徴とするレンズユニットを有するカメラ装置。
    A lens barrel section in which multiple lenses are stored;
    a reference surface that is perpendicular to the optical axis of the lens and that comes into contact with an external contact surface;
    a positioning structure that fixes the center position of the lens or restricts movement in the rotational direction while the reference surface is in contact with the contact surface;
    A camera device having a lens unit.
  2.  請求項1のカメラ装置において
     前記位置決め構造は複数設けられ、当該複数の位置決め構造のうち少なくとも2つは前記レンズの中心軸が法線となる平面内に設けられることを特徴とするレンズユニットを有するカメラ装置。
    The camera device according to claim 1, further comprising a lens unit, wherein a plurality of the positioning structures are provided, and at least two of the plurality of positioning structures are provided in a plane normal to the central axis of the lens. camera equipment.
  3.  請求項1のカメラ装置において
     前記鏡筒部の光軸と、前記位置決め構造として設けられた2つ以上のピンの軸は同一平面上にあることを特徴とするレンズユニットを有するカメラ装置。
    The camera device according to claim 1, wherein the optical axis of the lens barrel portion and the axes of the two or more pins provided as the positioning structure are on the same plane.
  4.  請求項3のカメラ装置において
     前記鏡筒部の光軸が、前記位置決め構造として設けられた2つ以上のピンに囲まれていることを特徴とするレンズユニットを有するカメラ装置。
    4. The camera device according to claim 3, wherein the optical axis of the lens barrel portion is surrounded by two or more pins provided as the positioning structure.
  5.  請求項1のカメラ装置において
     前記位置決め構造として設けられたピンの先端は、前記基準面が前記当接面に当接した状態で、前記レンズの光軸方向において前記当接面より遠い位置に位置することを特徴とするレンズユニット。
    The camera device according to claim 1, wherein the tip of the pin provided as the positioning structure is located at a position farther from the contact surface in the optical axis direction of the lens with the reference surface in contact with the contact surface. A lens unit that is characterized by:
  6.  請求項1のカメラ装置において
     前記位置決め構造は2つのピンであって、一方のピンは凹形状の第一の位置決め部に接触するよう配置され、
     他方のピンは平面形状の第二の位置決め部に接触するよう配置されることを特徴とするレンズユニットを有するカメラ装置。
    The camera device according to claim 1, wherein the positioning structure includes two pins, one of which is arranged to contact a concave first positioning part,
    A camera device having a lens unit, wherein the other pin is arranged so as to contact a second positioning portion having a planar shape.
  7.  請求項1のカメラ装置において
     前記当接面は、前記レンズユニットを固定する調整治具に設けたものであって、
     前記基準面が前記当接面に当接された状態で、前記レンズユニットは撮像基板との位置合わせが行われることを特徴とするレンズユニットを有するカメラ装置。
    The camera device according to claim 1, wherein the contact surface is provided on an adjustment jig for fixing the lens unit,
    A camera device having a lens unit, wherein the lens unit is aligned with an image pickup board while the reference surface is in contact with the contact surface.
  8.  請求項1のカメラ装置において
     前記当接面は、前記レンズユニットが組み付けられるカメラ筐体に設けたものであって、
     前記基準面が前記当接面に当接された状態で、前記レンズユニットは前記カメラ筐体に固定されることを特徴とするレンズユニットを有するカメラ装置。
    The camera device according to claim 1, wherein the contact surface is provided on a camera housing to which the lens unit is assembled,
    A camera device having a lens unit, wherein the lens unit is fixed to the camera housing with the reference surface in contact with the contact surface.
PCT/JP2022/027808 2022-07-15 2022-07-15 Camera device including lens unit WO2024013969A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027808 WO2024013969A1 (en) 2022-07-15 2022-07-15 Camera device including lens unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027808 WO2024013969A1 (en) 2022-07-15 2022-07-15 Camera device including lens unit

Publications (1)

Publication Number Publication Date
WO2024013969A1 true WO2024013969A1 (en) 2024-01-18

Family

ID=89536270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027808 WO2024013969A1 (en) 2022-07-15 2022-07-15 Camera device including lens unit

Country Status (1)

Country Link
WO (1) WO2024013969A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130061A (en) * 2009-12-16 2011-06-30 Fujifilm Corp Method and device for adjusting positional relation between photographic lens and imaging device, and method and device for manufacturing camera module
JP2019012225A (en) * 2017-06-30 2019-01-24 株式会社デンソー Camera device and method for manufacturing camera device
JP2019078879A (en) * 2017-10-24 2019-05-23 日立オートモティブシステムズ株式会社 Imaging apparatus and multi-lens imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130061A (en) * 2009-12-16 2011-06-30 Fujifilm Corp Method and device for adjusting positional relation between photographic lens and imaging device, and method and device for manufacturing camera module
JP2019012225A (en) * 2017-06-30 2019-01-24 株式会社デンソー Camera device and method for manufacturing camera device
JP2019078879A (en) * 2017-10-24 2019-05-23 日立オートモティブシステムズ株式会社 Imaging apparatus and multi-lens imaging apparatus

Similar Documents

Publication Publication Date Title
EP3062504A1 (en) Image capturing device and image capturing module thereof
US6671108B2 (en) Optical apparatus including lens
KR100758811B1 (en) Method and device for installing light emitting element
US9927594B2 (en) Image pickup module manufacturing method and image pickup module manufacturing device
CN111538165B (en) Optical unit with shake correction function and method for manufacturing optical unit with shake correction function
CN111752067B (en) Optical unit with shake correction function
JP2008506181A (en) Mounting the imaging device in the optical system
CN113946080B (en) Optical unit with jitter correction function
EP3248369B1 (en) Camera focus for adas
JP6733895B1 (en) Camera module manufacturing apparatus and camera module manufacturing method
US20050068418A1 (en) Calibration jig for a stereoscopic camera and calibrating method for the camera
TWI756058B (en) Camera module manufacturing device
WO2024013969A1 (en) Camera device including lens unit
CN102135699B (en) Jittering correcting device
US9979868B2 (en) Image pickup module manufacturing method, and image pickup module manufacturing device
JP2011151551A (en) Method of manufacturing camera module and device
US20160323486A1 (en) Imaging module, manufacturing method of imaging module, and electronic device
JP2020027305A (en) Positioning system for components of optical systems
JP6721366B2 (en) Imaging module, endoscope, and method for manufacturing imaging module
US10015401B2 (en) Imaging module, manufacturing method of imaging module, and electronic device
US10020342B2 (en) Image pickup module manufacturing method, and image pickup module manufacturing device
US10793085B2 (en) Imaging device
US8165464B2 (en) Image pickup apparatus with AF sensor unit
CN219999486U (en) Optical device
US20230062338A1 (en) Optical unit and method for manufacturing optical unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951178

Country of ref document: EP

Kind code of ref document: A1