WO2024013876A1 - Multi-core optical fiber, and design method - Google Patents

Multi-core optical fiber, and design method Download PDF

Info

Publication number
WO2024013876A1
WO2024013876A1 PCT/JP2022/027553 JP2022027553W WO2024013876A1 WO 2024013876 A1 WO2024013876 A1 WO 2024013876A1 JP 2022027553 W JP2022027553 W JP 2022027553W WO 2024013876 A1 WO2024013876 A1 WO 2024013876A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
optical fiber
core optical
cladding
loss
Prior art date
Application number
PCT/JP2022/027553
Other languages
French (fr)
Japanese (ja)
Inventor
諒太 今田
泰志 坂本
崇嘉 森
裕介 山田
和秀 中島
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/027553 priority Critical patent/WO2024013876A1/en
Publication of WO2024013876A1 publication Critical patent/WO2024013876A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Definitions

  • the present disclosure relates to a coupled multi-core optical fiber and a method for designing the same.
  • SDM single mode fibers
  • coupled MCF compensates for inter-core crosstalk (XT) through MIMO (Multiple-Input/Multiple-Output) signal processing, which reduces the core spacing compared to non-coupled MCF and FMF. can be reduced, and space utilization efficiency can be significantly improved (see, for example, Non-Patent Document 2).
  • group delay spread GDS is proportional to the square root of the distance due to random mode coupling occurring during fiber propagation. Since GDS is directly connected to the load of MIMO signal processing, C-MCF, which can achieve lower GDS characteristics than FMF, is promising as an SDM fiber for long-distance transmission.
  • Patent Document 1 and Non-Patent Document 3 disclose C-MCF design methods to obtain sufficient mode coupling.
  • conventional C-MCF design methods do not mention the basic optical properties of leakage loss, bending loss, and cutoff wavelength. Therefore, there is a problem in that it is difficult to design a C-MCF that ensures these optical properties as a communication fiber.
  • the present invention aims to provide a coupled multi-core optical fiber and a design method that take leakage loss, bending loss, and cutoff wavelength into consideration.
  • the multi-core optical fiber design method determines target values for bending loss, leakage loss, and cutoff wavelength, creates a core structure that allows single mode propagation, a core pitch that provides sufficient coupling,
  • the core arrangement was determined based on the relationship between the bending loss, leakage loss, and cutoff wavelength of a single-core optical fiber having a core with the core structure.
  • the present invention provides a method for designing a multi-core optical fiber comprising a plurality of cores each having a core structure with a core radius a and a relative refractive index difference ⁇ , Setting a target leakage loss ⁇ L (MC) , a target bending loss ⁇ L (MC) , and a target cutoff wavelength ⁇ c (MC) of the multi-core optical fiber; finding a range of the core structure in which the v value is less than 2.405; Finding a range of core spacing in which the coupling coefficient ⁇ n of adjacent cores is 5.6 ⁇ 10 ⁇ 5 or more, and satisfying the range of the core structure and the range of the core spacing, and having one core of the core structure.
  • This design method uses the relationship between the optical properties of a single-core optical fiber and the optical properties of a multi-core optical fiber to specify the cross-sectional structure including the core arrangement. Therefore, it is possible to design a coupled multi-core optical fiber that ensures optical properties as a communication fiber. Therefore, the present invention can provide a method for designing a coupled multi-core optical fiber in consideration of leakage loss, bending loss, and cutoff wavelength.
  • the following work may be performed.
  • the cladding diameter D is fixed, calculating the shortest distance d from the center of the core to the outer circumference of the cladding from the core arrangement and the diameter D of the cladding; finding the leakage loss ⁇ L (SC) of a single-core optical fiber that satisfies the relationship of the number C2; and finding the single-core optical fiber that satisfies the leakage loss ⁇ L (SC) from within the range of the core structure.
  • the core structure is specified by the core radius a of the fiber and the relative refractive index difference ⁇ with respect to the cladding.
  • bending loss perform the following work.
  • calculating the shortest distance d from the center of the core to the outer circumference of the cladding from the core arrangement and the diameter D of the cladding finding the bending loss ⁇ b (SC) of a single-core optical fiber that satisfies the relationship of the number C3; and finding the single-core optical fiber that satisfies the bending loss ⁇ b (SC) from within the range of the core structure;
  • the core structure is specified by the core radius a of the fiber and the relative refractive index difference ⁇ with respect to the cladding.
  • ⁇ c (SC) For the cutoff wavelength, do the following: finding a cut-off wavelength ⁇ c (SC) of a single-core optical fiber that satisfies the relationship of the number C4;
  • the core structure is specified by the core radius a of the fiber and the relative refractive index difference ⁇ with respect to the cladding.
  • the coupled multicore optical fiber designed by the above design method includes a plurality of cores each having a core radius a and a relative refractive index difference ⁇ , and has a cross-sectional structure that satisfies the following conditions.
  • the v value is less than 2.405
  • the coupling coefficient ⁇ n of adjacent cores is 5.6 ⁇ 10 ⁇ 5 or more
  • the leakage loss ⁇ L (MC) , bending loss ⁇ L (MC) , and cutoff of the multi-core optical fiber are
  • Each of the wavelengths ⁇ c (MC) is a number C1, which is the relationship between the bending loss ⁇ b (SC) and the leakage loss ⁇ L (SC) of a single-core optical fiber having only one core of the core structure. and the number C4, which is the relationship with the cutoff wavelength ⁇ c (SC) .
  • the coupled multi-core optical fiber may include a plurality of cores having a core structure with a core radius a and a relative refractive index difference ⁇ , and the cross-sectional structure may satisfy the following conditions.
  • (1) The v value is less than 2.405
  • (2) The coupling coefficient ⁇ n of adjacent cores is 5.6 ⁇ 10 ⁇ 5 or more
  • (3) The leakage loss ⁇ L (MC) , bending loss ⁇ L (MC) , and cutoff of the multi-core optical fiber are Each of the wavelengths ⁇ c (MC) is a number C2, which is the relationship between the bending loss ⁇ b (SC) and the leakage loss ⁇ L (SC) of a single-core optical fiber comprising only one core of the core structure. and the number C4, which is the relationship with the cutoff wavelength ⁇ c (SC) .
  • the present invention can provide a coupled multi-core optical fiber and a design method that take leakage loss, bending loss, and cutoff wavelength into consideration.
  • FIG. 2 is a diagram illustrating a cross-sectional structure of a multi-core optical fiber.
  • FIG. 2 is a diagram illustrating the relationship between the number of cores and bending loss of a multi-core optical fiber.
  • FIG. 2 is a diagram illustrating a method for designing a multi-core optical fiber according to the present invention. It is a figure explaining the design method (step S02) of the multi-core optical fiber based on this invention.
  • FIG. 2 is a diagram illustrating the core structure of a multi-core optical fiber. It is a figure explaining the design method (step S03) of the multi-core optical fiber based on this invention. It is a figure explaining the design method (step S04) of the multi-core optical fiber based on this invention.
  • FIG. 2 is a diagram illustrating the relationship between the number of cores of a multi-core optical fiber and the shortest distance d from the center of the core to the outer periphery of the cladding. It is a figure explaining the design method (step S04) of the multi-core optical fiber based on this invention. It is a figure explaining the design method (step S04) of the multi-core optical fiber based on this invention.
  • FIG. 1 is a diagram illustrating an example of a multi-core optical fiber according to the present invention.
  • FIG. 1 is a diagram illustrating a cross-sectional structure of a multi-core optical fiber (a core 12 disposed within a cladding 11).
  • A shows a typical core arrangement with 2 cores,
  • B with 4 cores,
  • C with 8 cores, and
  • D with 12 cores.
  • FIG. 2 is a diagram illustrating the dependence of bending loss on the number of cores. It can be seen from FIG. 2 that the bending loss tends to increase as the number of cores increases. From FIG. 2, even if the core structure is optimally designed for one core (SMF), if the number of cores changes, the bending loss characteristics may not meet the requirements. Therefore, it is necessary to perform optimal core design according to the number of cores.
  • SMF optimally designed for one core
  • the cutoff wavelength depends on the bending loss
  • the cutoff wavelength also changes depending on the number of cores.
  • leakage losses vary as well depending on the number of cores. Therefore, an optical fiber design method is required that takes into consideration the three characteristics of bending loss, leakage loss, and cutoff wavelength depending on the number of cores.
  • FIG. 3 is a flowchart illustrating the design method of this embodiment.
  • This design method is a design method for a multi-core optical fiber comprising a plurality of cores having a core structure with a core radius a and a relative refractive index difference ⁇ , Setting a target leakage loss ⁇ L (MC) , a target bending loss ⁇ L (MC) , and a target cutoff wavelength ⁇ c (MC) of the multi-core optical fiber (step S01); finding a range of the core structure in which the v value is less than 2.405 (step S02); finding a core spacing range in which the coupling coefficient ⁇ n of adjacent cores is 5.6 ⁇ 10 ⁇ 5 or more (step S03); and satisfying the core structure range and the core spacing range, and A cross section of the multi-core optical fiber that satisfies the relationship between the leakage loss ⁇ L (SC) , the bending loss ⁇ b (SC) , and the cutoff wavelength ⁇ c (SC) of
  • FIG. 4 is a diagram explaining step S02.
  • FIG. 5 is a diagram illustrating the core structure.
  • the core radius a 4.2 ⁇ m
  • FIG. 6 is a diagram illustrating step S03. Specifically, FIG. 6 is a diagram illustrating the relationship between the distance between the centers of two adjacent cores (core spacing) and the coupling coefficient ⁇ n between the cores.
  • core spacing the distance between the centers of two adjacent cores
  • ⁇ n the coupling coefficient between the cores.
  • the core structure in this figure is a step index type having parameters as shown in the table in the figure, and the number of cores is two. As the core spacing becomes smaller, the value of the coupling coefficient ⁇ n increases.
  • the lower limit of the coupling coefficient for obtaining sufficient coupling is approximately 5.6 ⁇ 10 ⁇ 5 .
  • step S02 since the range of the core structure of the core radius a and the relative refractive index difference ⁇ is obtained in step S02, the range of the core spacing can be found from there using FIG.
  • FIG. 7 is a diagram illustrating the design for leakage loss in step S04.
  • FIG. 8 is a diagram illustrating the "shortest distance d from the center of the core to the outer periphery of the clad" discussed in step S04, that is, the distance d from the center of the outermost core to the outer periphery of the clad.
  • FIG. 9 is a diagram illustrating the relationship between the number of cores and the distance d. The distance d decreases as the number of cores increases.
  • FIG. 7 is an example of calculating the dependence of leakage loss on distance d.
  • the leakage loss increases exponentially as the number of cores increases, that is, as the distance d decreases, compared to the case of a single-core structure.
  • an increase in leakage loss is expressed as "deterioration.”
  • step S04 In other words, in order to achieve a leakage loss equal to or less than the target leakage loss ⁇ L (MC) at the used wavelength, in step S04, The shortest distance d that satisfies the relationship of the number C1 is found, and the diameter D of the cladding 11 is calculated from the shortest distance d and the arrangement of the cores 12.
  • the distance d is set so that the deterioration rate ⁇ L is less than or equal to the value of the following formula. , that is, the cladding diameter D is set.
  • step S04 calculating the shortest distance d from the center of the core to the outer circumference of the cladding from the core arrangement and the diameter D of the cladding; finding the leakage loss ⁇ L (SC) of a single-core optical fiber that satisfies the relationship of the number C2; and finding the single-core optical fiber that satisfies the leakage loss ⁇ L (SC) from within the range of the core structure.
  • the core structure is specified by the core radius a of the fiber and the relative refractive index difference ⁇ with respect to the cladding.
  • the range of the core structure found in step S02 is calculated as the leakage loss ⁇ L in the single-core structure. It is limited to a core structure in which (SC) is less than or equal to the value of the following formula.
  • the leakage loss decreases toward the upper right region in the graph of core radius and refractive index difference shown in FIG.
  • the wavelength in order to operate in single mode, the wavelength must be below the solid line representing the cutoff wavelength.
  • FIG. 10 is a diagram illustrating the design regarding bending loss in step S04. Specifically, FIG. 10 is an example of calculation of the dependence of bending loss on distance d. Since the distance d changes depending on the number of cores as shown in FIG. 9, FIG. 10 can also be said to be an example of calculation of the dependence of bending loss on the number of cores n.
  • the bending loss is the loss when uniform bending is applied with a bending radius of 30 mm and 100 windings.
  • the horizontal axis is the distance d [ ⁇ m]
  • (bending loss to SC ratio ⁇ b ) Although the bending loss to SC ratio ⁇ b varies depending on the number of cores n, the bending loss in the multi-core structure is several tens of times larger than that in the case of the single-core structure.
  • step S04 calculating the shortest distance d from the center of the core to the outer circumference of the cladding from the core arrangement and the diameter D of the cladding; finding the bending loss ⁇ b (SC) of a single-core optical fiber that satisfies the relationship of the number C3; and finding the single-core optical fiber that satisfies the bending loss ⁇ b (SC) from within the range of the core structure;
  • the core structure is specified by the core radius a of the fiber and the relative refractive index difference ⁇ with respect to the cladding.
  • the range of the core structure found in step S02 is calculated based on the bending loss ⁇ in the single-core structure. b Limited to core structures in which (SC) is less than or equal to the value of the following formula.
  • the bending loss decreases toward the upper right region in the graph of core radius and refractive index difference shown in FIG.
  • the wavelength in order to operate in single mode, the wavelength must be below the solid line representing the cutoff wavelength.
  • the maximum deterioration amount ⁇ b has a relatively small slope with respect to the distance d, if an attempt is made to increase the distance d to achieve the desired ⁇ b , the diameter D of the cladding will become extremely large and the bending rupture strength will deteriorate. Undesirable.
  • FIG. 11 is a diagram illustrating the design of the cutoff wavelength in step S04. Specifically, FIG. 11 shows an example of calculation of the dependence of the cutoff wavelength on the distance d. Since the distance d changes depending on the number of cores as shown in FIG. 9, FIG. 11 can also be said to be an example of calculating the dependence of the cutoff wavelength on the number of cores n.
  • SC single-core
  • the dependence of the cutoff wavelength on the number of cores n is very small.
  • the cutoff wavelength increment ⁇ c varies depending on the number of cores, the cutoff wavelength of the multi-core structure is approximately 30 to 40 nm longer than the cutoff wavelength of the single-core structure.
  • step S04 finding a cut-off wavelength ⁇ c (SC) of a single-core optical fiber that satisfies the relationship of the number C4;
  • the core structure is specified by the core radius a of the fiber and the relative refractive index difference ⁇ with respect to the cladding.
  • the range of the core structure found in step S02 is set to a cut-off wavelength ⁇ c with the target cut-off wavelength ⁇ c (MC) set to a short wavelength of 40 nm. (SC) is limited to the core structure of a single-core optical fiber.
  • the cutoff wavelength becomes shorter toward the lower left region in the graph of core radius and refractive index difference shown in FIG. Since the dependence of the cutoff wavelength increment ⁇ c on the distance d is almost zero, attempting to achieve the desired ⁇ c by increasing the distance d is not preferable because the diameter D of the cladding becomes extremely large and the bending rupture strength deteriorates.
  • step S04 the above-mentioned operations 1, 3, and 4 or operations 2, 3, and 4 are performed to find a cross-sectional structure (core structure and distance d) that satisfies each requirement.
  • step S01 the structure of the multi-core optical fiber (12 cores) shown in FIG. 1(D) was calculated using the design method described above.
  • the goal of step S01 was set as follows. ⁇ Target leakage loss ⁇ L (MC) ⁇ 10 -1 [dB/km] ⁇ Target bending loss ⁇ L (MC) ⁇ 2 [dB], (bending radius 30 mm, 100 turns) ⁇ Target cutoff wavelength ⁇ c (MC) ⁇ 1530 [nm]
  • Figure 12 shows the calculation results. Based on the optical characteristics of a single-core optical fiber, we were able to calculate the structure of a multi-core optical fiber (12 cores) that satisfies the above goals. Note that the relative refractive index difference ⁇ between the core and the cladding is 0.35%.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

The objective of the present invention is to provide a coupled multi-core optical fiber and a design method that take into consideration leakage loss, bending loss, and a cutoff wavelength. A multi-core optical fiber design method according to the present invention is characterized by: finding a core structure range with which a v-value is less than 2.405; finding a core separation range with which a coefficient of coupling κn with an adjacent core is at least equal to 5.6×10-5; and calculating a cross-sectional structure of the multi-core optical fiber with which the core structure range and the core separation range are satisfied, and a relationship between a leakage loss, a bending loss and a cutoff wavelength of a single-core optical fiber provided with only one core of the core structure is satisfied.

Description

マルチコア光ファイバ及び設計方法Multi-core optical fiber and design method
 本開示は、結合型マルチコア光ファイバ及びその設計方法に関する。 The present disclosure relates to a coupled multi-core optical fiber and a method for designing the same.
 シングルモードファイバ(Single Mode Fibers:SMF)の伝送容量の限界を打破するため、マルチコアファイバ(Multi-Core Fibers)や数モードファイバ(Few-Mode Fibers)を用いた空間分割多重(Space Division Multiplexing:SDM)技術が注目されている(例えば、非特許文献1を参照。)。 In order to overcome the transmission capacity limitations of single mode fibers (SMF), space division multiplexing (Space Division Multiplexing) using multi-core fibers (Multi-Core Fibers) and few-mode fibers (Few-Mode Fibers) iplexing:SDM ) technology is attracting attention (for example, see Non-Patent Document 1).
 特に結合型MCF(Coupled MCF:C-MCF)はMIMO(Multiple-Input Multiple-Output)信号処理によってコア間クロストーク(XT)を補償することで、非結合型MCFやFMFと比較してコア間隔を低減し、空間利用効率を大幅に向上することができる(例えば、非特許文献2を参照。)。また、C-MCFはファイバ伝搬中にランダムなモード結合が生じることにより群遅延広がり(Group Delay Spread:GDS)が距離の平方根に比例する。GDSはMIMO信号処理の負荷に直結するため、FMFに比べ低GDS特性を実現可能なC-MCFは長距離伝送用SDMファイバとして有望である。 In particular, coupled MCF (C-MCF) compensates for inter-core crosstalk (XT) through MIMO (Multiple-Input/Multiple-Output) signal processing, which reduces the core spacing compared to non-coupled MCF and FMF. can be reduced, and space utilization efficiency can be significantly improved (see, for example, Non-Patent Document 2). Further, in the C-MCF, group delay spread (GDS) is proportional to the square root of the distance due to random mode coupling occurring during fiber propagation. Since GDS is directly connected to the load of MIMO signal processing, C-MCF, which can achieve lower GDS characteristics than FMF, is promising as an SDM fiber for long-distance transmission.
特開2017-167196号公報Japanese Patent Application Publication No. 2017-167196
 例えば、特許文献1や非特許文献3は、十分なモード結合を得るためのC-MCF設計方法を開示している。しかし、従前のC-MCF設計方法は、漏洩損失、曲げ損失、及び遮断波長の基本的な光学特性について言及していない。このため、通信用ファイバとしてこれらの光学特性を担保したC-MCFを設計することが困難という課題がある。 For example, Patent Document 1 and Non-Patent Document 3 disclose C-MCF design methods to obtain sufficient mode coupling. However, conventional C-MCF design methods do not mention the basic optical properties of leakage loss, bending loss, and cutoff wavelength. Therefore, there is a problem in that it is difficult to design a C-MCF that ensures these optical properties as a communication fiber.
 そこで、本発明は、前記課題を解決するために、漏洩損失、曲げ損失、及び遮断波長を考慮した結合型マルチコア光ファイバ及び設計方法を提供することを目的とする。 Therefore, in order to solve the above problems, the present invention aims to provide a coupled multi-core optical fiber and a design method that take leakage loss, bending loss, and cutoff wavelength into consideration.
 上記目的を達成するために、本発明に係るマルチコア光ファイバの設計方法は、曲げ損失、漏洩損失、及び遮断波長の目標値を定め、シングルモード伝搬するコア構造、十分な結合を得られるコアピッチ、および、当該コア構造のコアを持つ単一コア光ファイバの曲げ損失、漏洩損失、及び遮断波長との関係性からコアの配置を決めることとした。 In order to achieve the above object, the multi-core optical fiber design method according to the present invention determines target values for bending loss, leakage loss, and cutoff wavelength, creates a core structure that allows single mode propagation, a core pitch that provides sufficient coupling, The core arrangement was determined based on the relationship between the bending loss, leakage loss, and cutoff wavelength of a single-core optical fiber having a core with the core structure.
 具体的には、本発明は、コア半径a及び比屈折率差Δのコア構造であるコアを複数備えるマルチコア光ファイバの設計方法であって、
 前記マルチコア光ファイバの目標漏洩損失α (MC)、目標曲げ損失α (MC)、及び目標遮断波長λ (MC)を設定すること、
 v値が2.405未満となる前記コア構造の範囲を見出すこと、
 隣接コアの結合係数κが5.6×10-5以上となるコア間隔の範囲を見出すこと、及び
 前記コア構造の範囲と前記コア間隔の範囲を満たし、且つ前記コア構造のコアを1つだけ備える単一コア光ファイバの漏洩損失α (SC)、曲げ損失α (SC)、及び遮断波長λ (SC)との関係性を満たすような前記マルチコア光ファイバの断面構造を計算すること
を特徴とする。
Specifically, the present invention provides a method for designing a multi-core optical fiber comprising a plurality of cores each having a core structure with a core radius a and a relative refractive index difference Δ,
Setting a target leakage loss α L (MC) , a target bending loss α L (MC) , and a target cutoff wavelength λ c (MC) of the multi-core optical fiber;
finding a range of the core structure in which the v value is less than 2.405;
Finding a range of core spacing in which the coupling coefficient κ n of adjacent cores is 5.6×10 −5 or more, and satisfying the range of the core structure and the range of the core spacing, and having one core of the core structure. Calculate the cross-sectional structure of the multi-core optical fiber that satisfies the relationship between the leakage loss α L (SC) , the bending loss α b (SC) , and the cutoff wavelength λ c (SC) of the single-core optical fiber having only It is characterized by
 本設計方法は、単一コア光ファイバの光学特性とマルチコア光ファイバの光学特性との関係性を利用してコア配置を含む断面構造を特定する。このため、通信用ファイバとしての光学特性を担保した結合型マルチコア光ファイバを設計することができる。従って、本発明は、漏洩損失、曲げ損失、及び遮断波長を考慮した結合型マルチコア光ファイバの設計方法を提供することができる。 This design method uses the relationship between the optical properties of a single-core optical fiber and the optical properties of a multi-core optical fiber to specify the cross-sectional structure including the core arrangement. Therefore, it is possible to design a coupled multi-core optical fiber that ensures optical properties as a communication fiber. Therefore, the present invention can provide a method for designing a coupled multi-core optical fiber in consideration of leakage loss, bending loss, and cutoff wavelength.
 ここで、漏洩損失については、次の作業を行う。
 前記コアの中心からクラッドの外周までの最短距離をdとしたときに、数C1の前記関係性を満たす最短距離dを見出すこと、及び
 前記最短距離dと前記コアの配列とから前記クラッドの直径Dを算出すること
を行う。
Figure JPOXMLDOC01-appb-M000011
Here, regarding leakage loss, perform the following work.
When the shortest distance from the center of the core to the outer circumference of the cladding is d, find the shortest distance d that satisfies the relationship of the number C1, and calculate the diameter of the cladding from the shortest distance d and the arrangement of the cores. Calculate D.
Figure JPOXMLDOC01-appb-M000011
 漏洩損失については、次の作業であってもよい。
  クラッドの直径Dが決まっている場合に、
 コアの配列と前記クラッドの直径Dとから前記コアの中心から前記クラッドの外周までの最短距離dを計算すること、
 数C2の前記関係性を満たす単一コア光ファイバの漏洩損失α (SC)を見出すこと、及び
 前記コア構造の範囲の中から、前記漏洩損失α (SC)を満たす前記単一コア光ファイバのコア半径aと前記クラッドに対する比屈折率差Δで前記コア構造を特定すること
を行う。
Figure JPOXMLDOC01-appb-M000012
Regarding leakage loss, the following work may be performed.
When the cladding diameter D is fixed,
calculating the shortest distance d from the center of the core to the outer circumference of the cladding from the core arrangement and the diameter D of the cladding;
finding the leakage loss α L (SC) of a single-core optical fiber that satisfies the relationship of the number C2; and finding the single-core optical fiber that satisfies the leakage loss α L (SC) from within the range of the core structure. The core structure is specified by the core radius a of the fiber and the relative refractive index difference Δ with respect to the cladding.
Figure JPOXMLDOC01-appb-M000012
 また、曲げ損失については、次の作業を行う。
 クラッドの直径Dが決まっている場合に、
 コアの配列と前記クラッドの直径Dとから前記コアの中心から前記クラッドの外周までの最短距離dを計算すること、
 数C3の前記関係性を満たす単一コア光ファイバの曲げ損失α (SC)を見出すこと、及び
 前記コア構造の範囲の中から、前記曲げ損失α (SC)を満たす前記単一コア光ファイバのコア半径aと前記クラッドに対する比屈折率差Δで前記コア構造を特定すること
を行う。
Figure JPOXMLDOC01-appb-M000013
In addition, regarding bending loss, perform the following work.
When the cladding diameter D is fixed,
calculating the shortest distance d from the center of the core to the outer circumference of the cladding from the core arrangement and the diameter D of the cladding;
finding the bending loss α b (SC) of a single-core optical fiber that satisfies the relationship of the number C3; and finding the single-core optical fiber that satisfies the bending loss α b (SC) from within the range of the core structure; The core structure is specified by the core radius a of the fiber and the relative refractive index difference Δ with respect to the cladding.
Figure JPOXMLDOC01-appb-M000013
 遮断波長については、次の作業を行う。
 数C4の前記関係性を満たす単一コア光ファイバの遮断波長λ (SC)を見出すこと、及び
 前記コア構造の範囲の中から、前記遮断波長λ (SC)を満たす前記単一コア光ファイバのコア半径aとクラッドに対する比屈折率差Δで前記コア構造を特定すること
を行う。
Figure JPOXMLDOC01-appb-M000014
For the cutoff wavelength, do the following:
finding a cut-off wavelength λ c (SC) of a single-core optical fiber that satisfies the relationship of the number C4; The core structure is specified by the core radius a of the fiber and the relative refractive index difference Δ with respect to the cladding.
Figure JPOXMLDOC01-appb-M000014
 上述の設計方法で設計された結合型マルチコア光ファイバは、コア半径a及び比屈折率差Δのコア構造であるコアを複数備え、断面構造が次の条件を満たす。
(1)v値が2.405未満であること、
(2)隣接コアの結合係数κが5.6×10-5以上であること、且つ
(3)前記マルチコア光ファイバの漏洩損失α (MC)、曲げ損失α (MC)、及び遮断波長λ (MC)のそれぞれが、前記コア構造のコアを1つだけ備える単一コア光ファイバの漏洩損失α (SC)との関係性である数C1、曲げ損失α (SC)との関係性である数C3、及び遮断波長λ (SC)との関係性である数C4を満たすこと。
The coupled multicore optical fiber designed by the above design method includes a plurality of cores each having a core radius a and a relative refractive index difference Δ, and has a cross-sectional structure that satisfies the following conditions.
(1) The v value is less than 2.405,
(2) The coupling coefficient κ n of adjacent cores is 5.6×10 −5 or more, and (3) The leakage loss α L (MC) , bending loss α L (MC) , and cutoff of the multi-core optical fiber are Each of the wavelengths λ c (MC) is a number C1, which is the relationship between the bending loss α b (SC) and the leakage loss α L (SC) of a single-core optical fiber having only one core of the core structure. and the number C4, which is the relationship with the cutoff wavelength λ c (SC) .
 また、当該結合型マルチコア光ファイバは、コア半径a及び比屈折率差Δのコア構造であるコアを複数備え、断面構造が次の条件を満たすことでもよい。
(1)v値が2.405未満であること、
(2)隣接コアの結合係数κが5.6×10-5以上であること、且つ
(3)前記マルチコア光ファイバの漏洩損失α (MC)、曲げ損失α (MC)、及び遮断波長λ (MC)のそれぞれが、前記コア構造のコアを1つだけ備える単一コア光ファイバの漏洩損失α (SC)との関係性である数C2、曲げ損失α (SC)との関係性である数C3、及び遮断波長λ (SC)との関係性である数C4を満たすこと。
Further, the coupled multi-core optical fiber may include a plurality of cores having a core structure with a core radius a and a relative refractive index difference Δ, and the cross-sectional structure may satisfy the following conditions.
(1) The v value is less than 2.405,
(2) The coupling coefficient κ n of adjacent cores is 5.6×10 −5 or more, and (3) The leakage loss α L (MC) , bending loss α L (MC) , and cutoff of the multi-core optical fiber are Each of the wavelengths λ c (MC) is a number C2, which is the relationship between the bending loss α b (SC) and the leakage loss α L (SC) of a single-core optical fiber comprising only one core of the core structure. and the number C4, which is the relationship with the cutoff wavelength λ c (SC) .
 なお、上記各発明は、可能な限り組み合わせることができる。 Note that the above inventions can be combined as much as possible.
 本発明は、漏洩損失、曲げ損失、及び遮断波長を考慮した結合型マルチコア光ファイバ及び設計方法を提供することができる。 The present invention can provide a coupled multi-core optical fiber and a design method that take leakage loss, bending loss, and cutoff wavelength into consideration.
マルチコア光ファイバの断面構造を説明する図である。FIG. 2 is a diagram illustrating a cross-sectional structure of a multi-core optical fiber. マルチコア光ファイバのコア数と曲げ損失との関係を説明する図である。FIG. 2 is a diagram illustrating the relationship between the number of cores and bending loss of a multi-core optical fiber. 本発明に係るマルチコア光ファイバの設計方法を説明する図である。FIG. 2 is a diagram illustrating a method for designing a multi-core optical fiber according to the present invention. 本発明に係るマルチコア光ファイバの設計方法(ステップS02)を説明する図である。It is a figure explaining the design method (step S02) of the multi-core optical fiber based on this invention. マルチコア光ファイバのコア構造を説明する図である。FIG. 2 is a diagram illustrating the core structure of a multi-core optical fiber. 本発明に係るマルチコア光ファイバの設計方法(ステップS03)を説明する図である。It is a figure explaining the design method (step S03) of the multi-core optical fiber based on this invention. 本発明に係るマルチコア光ファイバの設計方法(ステップS04)を説明する図である。It is a figure explaining the design method (step S04) of the multi-core optical fiber based on this invention. コアの中心からクラッドの外周までの最短距離dを説明する図である。It is a figure explaining the shortest distance d from the center of a core to the outer periphery of a cladding. マルチコア光ファイバのコア数とコアの中心からクラッドの外周までの最短距離dとの関係を説明する図である。FIG. 2 is a diagram illustrating the relationship between the number of cores of a multi-core optical fiber and the shortest distance d from the center of the core to the outer periphery of the cladding. 本発明に係るマルチコア光ファイバの設計方法(ステップS04)を説明する図である。It is a figure explaining the design method (step S04) of the multi-core optical fiber based on this invention. 本発明に係るマルチコア光ファイバの設計方法(ステップS04)を説明する図である。It is a figure explaining the design method (step S04) of the multi-core optical fiber based on this invention. 本発明に係るマルチコア光ファイバの実施例を説明する図である。FIG. 1 is a diagram illustrating an example of a multi-core optical fiber according to the present invention.
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. Note that components with the same reference numerals in this specification and the drawings indicate the same components.
[発明のポイント]
 図1は、マルチコア光ファイバの断面構造(クラッド11内に配置されるコア12)を説明する図である。(A)は2コア、(B)は4コア、(C)は8コア、(D)は12コアの代表的なコア配置を示している。図2は、曲げ損失のコア数依存性を説明する図である。図2よりコア数の増加に伴い曲げ損失が増加する傾向にあることが分かる。図2より、1コア(SMF)においてコア構造を最適設計した場合でも、コア数が変わると曲げ損失特性が要求を満たせない場合が考えられる。そのためコア数に応じたコアの最適設計を行う必要がある。
[Key points of the invention]
FIG. 1 is a diagram illustrating a cross-sectional structure of a multi-core optical fiber (a core 12 disposed within a cladding 11). (A) shows a typical core arrangement with 2 cores, (B) with 4 cores, (C) with 8 cores, and (D) with 12 cores. FIG. 2 is a diagram illustrating the dependence of bending loss on the number of cores. It can be seen from FIG. 2 that the bending loss tends to increase as the number of cores increases. From FIG. 2, even if the core structure is optimally designed for one core (SMF), if the number of cores changes, the bending loss characteristics may not meet the requirements. Therefore, it is necessary to perform optimal core design according to the number of cores.
 また、遮断波長は曲げ損失に依存するため、遮断波長もコア数に依存して変化することになる。さらに、漏洩損失もコア数に依存して同様に変化する。そのためコア数に応じて曲げ損失、漏洩損失、及び遮断波長の3特性を考慮した光ファイバの設計方法が必要になる。 Furthermore, since the cutoff wavelength depends on the bending loss, the cutoff wavelength also changes depending on the number of cores. Furthermore, leakage losses vary as well depending on the number of cores. Therefore, an optical fiber design method is required that takes into consideration the three characteristics of bending loss, leakage loss, and cutoff wavelength depending on the number of cores.
 そこで、本実施形態では、コア数に応じて変化する曲げ損失、漏洩損失、及び遮断波長を考慮し、任意のコア数において損失の十分小さい結合型マルチコア光ファイバを設計する方法を説明する。 Therefore, in this embodiment, a method of designing a coupled multi-core optical fiber with sufficiently small loss for an arbitrary number of cores will be described, taking into account bending loss, leakage loss, and cutoff wavelength that change depending on the number of cores.
 図3は、本実施形態の設計方法を説明するフローチャートである。本設計方法は、コア半径a及び比屈折率差Δのコア構造であるコアを複数備えるマルチコア光ファイバの設計方法であって、
 前記マルチコア光ファイバの目標漏洩損失α (MC)、目標曲げ損失α (MC)、及び目標遮断波長λ (MC)を設定すること(ステップS01)、
 v値が2.405未満となる前記コア構造の範囲を見出すこと(ステップS02)、
 隣接コアの結合係数κが5.6×10-5以上となるコア間隔の範囲を見出すこと(ステップS03)、及び
 前記コア構造の範囲と前記コア間隔の範囲を満たし、且つ前記コア構造のコアを1つだけ備える単一コア光ファイバの漏洩損失α (SC)、曲げ損失α (SC)、及び遮断波長λ (SC)との関係性を満たすような前記マルチコア光ファイバの断面構造を計算すること(ステップS04)
を特徴とする。
FIG. 3 is a flowchart illustrating the design method of this embodiment. This design method is a design method for a multi-core optical fiber comprising a plurality of cores having a core structure with a core radius a and a relative refractive index difference Δ,
Setting a target leakage loss α L (MC) , a target bending loss α L (MC) , and a target cutoff wavelength λ c (MC) of the multi-core optical fiber (step S01);
finding a range of the core structure in which the v value is less than 2.405 (step S02);
finding a core spacing range in which the coupling coefficient κ n of adjacent cores is 5.6×10 −5 or more (step S03); and satisfying the core structure range and the core spacing range, and A cross section of the multi-core optical fiber that satisfies the relationship between the leakage loss α L (SC) , the bending loss α b (SC) , and the cutoff wavelength λ c (SC) of a single-core optical fiber having only one core. Calculating the structure (step S04)
It is characterized by
 図4は、ステップS02を説明する図である。図5は、コア構造を説明する図である。本実施形態では、ステップインデックス型のコア構造を考える。図4はステップインデックス型光ファイバのv値がv=2.405を満たすためのコア半径aと比屈折率差Δの関係を説明する図である。また導波するモードの電界分布を併せて示している。実線より下側の領域では、LP01モードのみが伝搬する。一方実線より上側の領域では高次モードが伝搬する。そのためシングルモード動作をするためには、コア構造をv値が2.405である実線より下側の領域(コア構造の範囲)とする必要がある。 FIG. 4 is a diagram explaining step S02. FIG. 5 is a diagram illustrating the core structure. In this embodiment, a step index type core structure will be considered. FIG. 4 is a diagram illustrating the relationship between the core radius a and the relative refractive index difference Δ so that the v value of the step index optical fiber satisfies v=2.405. It also shows the electric field distribution of the guided mode. In the region below the solid line, only the LP01 mode propagates. On the other hand, higher-order modes propagate in the region above the solid line. Therefore, in order to perform single mode operation, it is necessary to set the core structure to a region (range of the core structure) below the solid line where the v value is 2.405.
 以上から、マルチコア光ファイバの各コアがシングルモード動作するためにはv値が2.405未満となるコア構造の範囲とする必要がある。 From the above, in order for each core of a multi-core optical fiber to operate in a single mode, it is necessary to have a core structure in which the v value is less than 2.405.
 以下の説明では、標記のない限りコア半径a=4.2μm、クラッドに対するコアの比屈折率差Δ=0.35%とした(但し、図4のプロットはa=4.5μmである。)。 In the following explanation, unless otherwise specified, the core radius a = 4.2 μm, and the relative refractive index difference Δ of the core to the cladding is 0.35% (however, the plot in FIG. 4 is a = 4.5 μm). .
 図6は、ステップS03を説明する図である。具体的には、図6は、2つの隣接するコア中心間距離(コア間隔)とコア間の結合係数κの関係を説明する図である。なお本図におけるコア構造は図内の表に示すようなパラメータを有するステップインデックス型であり、コア数は2である。コア間隔を小さくするほど結合係数κの値が増加する。特許文献2などによると、十分な結合を得るための結合係数の下限はおおむね5.6×10-5である。 FIG. 6 is a diagram illustrating step S03. Specifically, FIG. 6 is a diagram illustrating the relationship between the distance between the centers of two adjacent cores (core spacing) and the coupling coefficient κ n between the cores. Note that the core structure in this figure is a step index type having parameters as shown in the table in the figure, and the number of cores is two. As the core spacing becomes smaller, the value of the coupling coefficient κ n increases. According to Patent Document 2 and the like, the lower limit of the coupling coefficient for obtaining sufficient coupling is approximately 5.6×10 −5 .
 つまり、ステップS02でコア半径aと比屈折率差Δのコア構造の範囲が得られるので、ここから図6を用いてコア間隔の範囲を見出すことができる。 In other words, since the range of the core structure of the core radius a and the relative refractive index difference Δ is obtained in step S02, the range of the core spacing can be found from there using FIG.
(ステップS04の作業1)
 図7は、ステップS04のうち漏洩損失についての設計を説明する図である。図8は、ステップS04で議論する「コアの中心からクラッドの外周までの最短距離d」、すなわち、最外コア中心からクラッド外周までの距離dを説明する図である。また、図9は、コア数と距離dとの関係を説明する図である。コア数の増大とともに距離dが減少している。
(Work 1 of step S04)
FIG. 7 is a diagram illustrating the design for leakage loss in step S04. FIG. 8 is a diagram illustrating the "shortest distance d from the center of the core to the outer periphery of the clad" discussed in step S04, that is, the distance d from the center of the outermost core to the outer periphery of the clad. Further, FIG. 9 is a diagram illustrating the relationship between the number of cores and the distance d. The distance d decreases as the number of cores increases.
 具体的には、図7は、漏洩損失の距離dに対する依存性の計算例である。なお、縦軸は各コア数nにおける漏洩損失[dB]の値を、シングルコア(SC)(n=1)のSMFの損失値[dB](n=1のプロット)で割って規格化した値(漏洩損失対SC比)である。図7に示すように、漏洩損失は単一コア構造の場合に比べ、コア数の増大、すなわち距離dの減少とともに指数関数的に大きくなる。ここで、漏洩損失が大きくなることを「劣化する」と表現する。その劣化割合αは数0で近似できる。
[数0]
 α=1027×10-0.43d
Specifically, FIG. 7 is an example of calculating the dependence of leakage loss on distance d. The vertical axis is normalized by dividing the value of leakage loss [dB] for each core number n by the loss value [dB] of SMF of single core (SC) (n = 1) (plot of n = 1). value (leakage loss to SC ratio). As shown in FIG. 7, the leakage loss increases exponentially as the number of cores increases, that is, as the distance d decreases, compared to the case of a single-core structure. Here, an increase in leakage loss is expressed as "deterioration." The deterioration rate αL can be approximated by the number 0.
[Number 0]
α L =10 27 ×10 -0.43d
 つまり、使用波長における目標漏洩損失α (MC)以下の漏洩損失を実現するためには、ステップS04にて、
 数C1の前記関係性を満たす最短距離dを見出すこと、及び
 前記最短距離dとコア12の配列とからクラッド11の直径Dを算出すること
を行う。
Figure JPOXMLDOC01-appb-M000015
In other words, in order to achieve a leakage loss equal to or less than the target leakage loss α L (MC) at the used wavelength, in step S04,
The shortest distance d that satisfies the relationship of the number C1 is found, and the diameter D of the cladding 11 is calculated from the shortest distance d and the arrangement of the cores 12.
Figure JPOXMLDOC01-appb-M000015
 具体的には、単一コア光ファイバの漏洩損失α (SC)および所望のコア数における劣化割合αを考慮し、劣化割合αが次式の値以下となるように距離dを設定、すなわちクラッド直径Dを設定する。
Figure JPOXMLDOC01-appb-M000016
Specifically, considering the leakage loss α L (SC) of a single-core optical fiber and the deterioration rate α L for a desired number of cores, the distance d is set so that the deterioration rate α L is less than or equal to the value of the following formula. , that is, the cladding diameter D is set.
Figure JPOXMLDOC01-appb-M000016
(ステップS04の作業2)
 なお、既にクラッドの直径Dが決まっている場合は、使用波長における目標漏洩損失α (MC)以下の漏洩損失を実現するためには、ステップS04にて、
 コアの配列と前記クラッドの直径Dとから前記コアの中心から前記クラッドの外周までの最短距離dを計算すること、
 数C2の前記関係性を満たす単一コア光ファイバの漏洩損失α (SC)を見出すこと、及び
 前記コア構造の範囲の中から、前記漏洩損失α (SC)を満たす前記単一コア光ファイバのコア半径aと前記クラッドに対する比屈折率差Δで前記コア構造を特定すること
を行う。
Figure JPOXMLDOC01-appb-M000017
(Work 2 of step S04)
Note that if the diameter D of the cladding has already been determined, in order to achieve a leakage loss equal to or less than the target leakage loss α L (MC) at the wavelength used, in step S04,
calculating the shortest distance d from the center of the core to the outer circumference of the cladding from the core arrangement and the diameter D of the cladding;
finding the leakage loss α L (SC) of a single-core optical fiber that satisfies the relationship of the number C2; and finding the single-core optical fiber that satisfies the leakage loss α L (SC) from within the range of the core structure. The core structure is specified by the core radius a of the fiber and the relative refractive index difference Δ with respect to the cladding.
Figure JPOXMLDOC01-appb-M000017
 具体的には、マルチコア光ファイバの目標漏洩損失α (MC)およびそのコア数における劣化割合αを考慮し、ステップS02で見出したコア構造の範囲を、単一コア構造における漏洩損失α (SC)が次式の値以下となるコア構造に限定する。
Figure JPOXMLDOC01-appb-M000018
Specifically, considering the target leakage loss α L (MC) of the multi-core optical fiber and the deterioration rate α L depending on the number of cores, the range of the core structure found in step S02 is calculated as the leakage loss α L in the single-core structure. It is limited to a core structure in which (SC) is less than or equal to the value of the following formula.
Figure JPOXMLDOC01-appb-M000018
 なお、漏洩損失は、図4に示したコア半径と屈折率差のグラフで右上の領域に行くほど小さくなる。ただしシングルモード動作するためにはカットオフ波長を表わす実線よりも下側である必要がある。 Note that the leakage loss decreases toward the upper right region in the graph of core radius and refractive index difference shown in FIG. However, in order to operate in single mode, the wavelength must be below the solid line representing the cutoff wavelength.
(ステップS04の作業3)
 図10は、ステップS04のうち曲げ損失についての設計を説明する図である。具体的には、図10は、曲げ損失の距離dに対する依存性の計算例である。図9のようにコア数により距離dが変化するので、図10は曲げ損失のコア数nに対する依存性の計算例ともいえる。
(Work 3 of step S04)
FIG. 10 is a diagram illustrating the design regarding bending loss in step S04. Specifically, FIG. 10 is an example of calculation of the dependence of bending loss on distance d. Since the distance d changes depending on the number of cores as shown in FIG. 9, FIG. 10 can also be said to be an example of calculation of the dependence of bending loss on the number of cores n.
 曲げ損失は、曲げ半径30mm、巻きつけ回数100回として一様に曲げを付与した場合の損失である。図10の横軸は距離d[μm]、縦軸は各コア数nにおける曲げ損失[dB]の値をシングルコア(SC)(n=1)のSMFの曲げ損失[dB]の値で割って規格化した値(曲げ損失対SC比α)である。曲げ損失対SC比αは、コア数nに対するバラツキがあるものの、マルチコア構造は単一コア構造の場合に比べ、曲げ損失が数10倍大きくなっている。ここで、曲げ損失が大きくなることを「劣化する」と表現する。曲げ損失対SC比αの最大劣化量は概ね破線で近似できる。このとき当該破線は数3Aで近似できる。
[数3A]
 α=450×10-0.025d
The bending loss is the loss when uniform bending is applied with a bending radius of 30 mm and 100 windings. In Fig. 10, the horizontal axis is the distance d [μm], and the vertical axis is the value of bending loss [dB] for each core number n divided by the value of bending loss [dB] of SMF of single core (SC) (n = 1). (bending loss to SC ratio α b ). Although the bending loss to SC ratio α b varies depending on the number of cores n, the bending loss in the multi-core structure is several tens of times larger than that in the case of the single-core structure. Here, an increase in bending loss is expressed as "deterioration." The maximum amount of deterioration of the bending loss versus SC ratio α b can be approximately approximated by a broken line. At this time, the broken line can be approximated by equation 3A.
[Number 3A]
α b =450×10 -0.025d
 つまり、既にクラッドの直径Dが決まっている場合において、使用波長における目標曲げ損失α (MC)以下の曲げ損失を実現するためには、ステップS04にて、
 コアの配列と前記クラッドの直径Dとから前記コアの中心から前記クラッドの外周までの最短距離dを計算すること、
 数C3の前記関係性を満たす単一コア光ファイバの曲げ損失α (SC)を見出すこと、及び
 前記コア構造の範囲の中から、前記曲げ損失α (SC)を満たす前記単一コア光ファイバのコア半径aと前記クラッドに対する比屈折率差Δで前記コア構造を特定すること
を行う。
Figure JPOXMLDOC01-appb-M000019
That is, in the case where the diameter D of the cladding has already been determined, in order to achieve a bending loss equal to or less than the target bending loss α b (MC) at the wavelength used, in step S04,
calculating the shortest distance d from the center of the core to the outer circumference of the cladding from the core arrangement and the diameter D of the cladding;
finding the bending loss α b (SC) of a single-core optical fiber that satisfies the relationship of the number C3; and finding the single-core optical fiber that satisfies the bending loss α b (SC) from within the range of the core structure; The core structure is specified by the core radius a of the fiber and the relative refractive index difference Δ with respect to the cladding.
Figure JPOXMLDOC01-appb-M000019
 具体的には、マルチコア光ファイバの目標曲げ損失α (MC)およびそのコア数における最大劣化割合αを考慮し、ステップS02で見出したコア構造の範囲を、単一コア構造における曲げ損失α (SC)が次式の値以下となるコア構造に限定する。
Figure JPOXMLDOC01-appb-M000020
Specifically, considering the target bending loss α b (MC) of the multi-core optical fiber and the maximum deterioration rate α b for the number of cores, the range of the core structure found in step S02 is calculated based on the bending loss α in the single-core structure. b Limited to core structures in which (SC) is less than or equal to the value of the following formula.
Figure JPOXMLDOC01-appb-M000020
 なお、曲げ損失は、図4に示したコア半径と屈折率差のグラフで右上の領域に行くほど小さくなる。ただしシングルモード動作するためにはカットオフ波長を表わす実線よりも下側である必要がある。
 また、最大劣化量αは距離dに対する傾きが比較的小さいため、距離dを拡大して所望のαを実現しようとするとクラッドの直径Dが極端に大きくなり、曲げ破断強度が劣化するため好ましくない。
Note that the bending loss decreases toward the upper right region in the graph of core radius and refractive index difference shown in FIG. However, in order to operate in single mode, the wavelength must be below the solid line representing the cutoff wavelength.
In addition, since the maximum deterioration amount α b has a relatively small slope with respect to the distance d, if an attempt is made to increase the distance d to achieve the desired α b , the diameter D of the cladding will become extremely large and the bending rupture strength will deteriorate. Undesirable.
(ステップS04の作業4)
 図11は、ステップS04のうち遮断波長についての設計を説明する図である。具体的には、図11は、遮断波長の距離dに対する依存性の計算例を示す。図9のようにコア数により距離dが変化するので、図11は遮断波長のコア数nに対する依存性の計算例ともいえる。
(Work 4 of step S04)
FIG. 11 is a diagram illustrating the design of the cutoff wavelength in step S04. Specifically, FIG. 11 shows an example of calculation of the dependence of the cutoff wavelength on the distance d. Since the distance d changes depending on the number of cores as shown in FIG. 9, FIG. 11 can also be said to be an example of calculating the dependence of the cutoff wavelength on the number of cores n.
 図11の横軸は距離d[μm]、縦軸は各コア数nにおける遮断波長についてシングルコア(SC)(n=1)のSMFの遮断波長からの増分λc[nm]である。図11に示されるように遮断波長のコア数nに対する依存性は非常に小さい。遮断波長増分λcは、コア数に対するバラツキはあるものの、マルチコア構造の遮断波長は単一コア構造の遮断波長に対し、概ね30から40nm長波長化する。 The horizontal axis in FIG. 11 is the distance d [μm], and the vertical axis is the increment λc [nm] from the cutoff wavelength of the single-core (SC) (n=1) SMF for the cutoff wavelength for each core number n. As shown in FIG. 11, the dependence of the cutoff wavelength on the number of cores n is very small. Although the cutoff wavelength increment λc varies depending on the number of cores, the cutoff wavelength of the multi-core structure is approximately 30 to 40 nm longer than the cutoff wavelength of the single-core structure.
 つまり、目標遮断波長λc(MC)を実現するためには、ステップS04にて、
 数C4の前記関係性を満たす単一コア光ファイバの遮断波長λ (SC)を見出すこと、及び
 前記コア構造の範囲の中から、前記遮断波長λ (SC)を満たす前記単一コア光ファイバのコア半径aとクラッドに対する比屈折率差Δで前記コア構造を特定すること
を行う。
Figure JPOXMLDOC01-appb-M000021
That is, in order to realize the target cutoff wavelength λc (MC) , in step S04,
finding a cut-off wavelength λ c (SC) of a single-core optical fiber that satisfies the relationship of the number C4; The core structure is specified by the core radius a of the fiber and the relative refractive index difference Δ with respect to the cladding.
Figure JPOXMLDOC01-appb-M000021
 具体的には、マルチコア化に伴う最大シフト量が40nmであることを考慮し、ステップS02で見出したコア構造の範囲を、目標遮断波長λ (MC)を40nm短波長とした遮断波長λ (SC)である単一コア光ファイバのコア構造に限定する。 Specifically, considering that the maximum shift amount due to multi-core is 40 nm, the range of the core structure found in step S02 is set to a cut-off wavelength λ c with the target cut-off wavelength λ c (MC) set to a short wavelength of 40 nm. (SC) is limited to the core structure of a single-core optical fiber.
 なお、遮断波長は、図4に示したコア半径と屈折率差のグラフで左下の領域に行くほど短波長になる。遮断波長増分λcの距離dに対する依存性はほぼゼロのため、距離dを拡大して所望のλcを実現しようとするとクラッドの直径Dが極端に大きくなり、曲げ破断強度が劣化するため好ましくない。 Note that the cutoff wavelength becomes shorter toward the lower left region in the graph of core radius and refractive index difference shown in FIG. Since the dependence of the cutoff wavelength increment λc on the distance d is almost zero, attempting to achieve the desired λc by increasing the distance d is not preferable because the diameter D of the cladding becomes extremely large and the bending rupture strength deteriorates.
 ステップS04では、上述の作業1、3、及び4、又は作業2、3、及び4を行い、それぞれの要件を満たす断面構造(コア構造及び距離d)を見出す。 In step S04, the above-mentioned operations 1, 3, and 4 or operations 2, 3, and 4 are performed to find a cross-sectional structure (core structure and distance d) that satisfies each requirement.
(実施例)
 本実施例では、上述した設計方法で図1(D)のマルチコア光ファイバ(12コア)の構造を計算した。
 ステップS01の目標は次のように設定した。
・目標漏洩損失α (MC)≦10-1[dB/km]
・目標曲げ損失α (MC)≦2[dB]、(曲げ半径30mm、100回巻き)
・目標遮断波長λ (MC)<1530[nm]
(Example)
In this example, the structure of the multi-core optical fiber (12 cores) shown in FIG. 1(D) was calculated using the design method described above.
The goal of step S01 was set as follows.
・Target leakage loss α L (MC) ≦10 -1 [dB/km]
・Target bending loss α L (MC) ≦2 [dB], (bending radius 30 mm, 100 turns)
・Target cutoff wavelength λ c (MC) <1530 [nm]
 図12は、計算結果である。単一コア光ファイバの光学特性を基に、上記目標を満たすマルチコア光ファイバ(12コア)の構造を計算することができた。なお、クラッドに対するコアの比屈折率差Δ=0.35%である。 Figure 12 shows the calculation results. Based on the optical characteristics of a single-core optical fiber, we were able to calculate the structure of a multi-core optical fiber (12 cores) that satisfies the above goals. Note that the relative refractive index difference Δ between the core and the cladding is 0.35%.
11:コア
12:クラッド
11: Core 12: Clad

Claims (7)

  1.  コア半径a及び比屈折率差Δのコア構造であるコアを複数備えるマルチコア光ファイバの設計方法であって、
     前記マルチコア光ファイバの目標漏洩損失α (MC)、目標曲げ損失α (MC)、及び目標遮断波長λ (MC)を設定すること、
     v値が2.405未満となる前記コア構造の範囲を見出すこと、
     隣接コアの結合係数κが5.6×10-5以上となるコア間隔の範囲を見出すこと、及び
     前記コア構造の範囲と前記コア間隔の範囲を満たし、且つ前記コア構造のコアを1つだけ備える単一コア光ファイバの漏洩損失α (SC)、曲げ損失α (SC)、及び遮断波長λ (SC)との関係性を満たすような前記マルチコア光ファイバの断面構造を計算すること
    を特徴とするマルチコア光ファイバの設計方法。
    A method for designing a multi-core optical fiber comprising a plurality of cores having a core structure with a core radius a and a relative refractive index difference Δ,
    Setting a target leakage loss α L (MC) , a target bending loss α L (MC) , and a target cutoff wavelength λ c (MC) of the multi-core optical fiber;
    finding a range of the core structure in which the v value is less than 2.405;
    Finding a range of core spacing in which the coupling coefficient κ n of adjacent cores is 5.6×10 −5 or more, and satisfying the range of the core structure and the range of the core spacing, and having one core of the core structure. Calculate the cross-sectional structure of the multi-core optical fiber that satisfies the relationship between the leakage loss α L (SC) , the bending loss α b (SC) , and the cutoff wavelength λ c (SC) of the single-core optical fiber having only A method for designing a multi-core optical fiber characterized by:
  2.  請求項1に記載のマルチコア光ファイバの設計方法であって、
     前記コアの中心からクラッドの外周までの最短距離をdとしたときに、数C1の前記関係性を満たす最短距離dを見出すこと、及び
     前記最短距離dと前記コアの配列とから前記クラッドの直径Dを算出すること
    を特徴とするマルチコア光ファイバの設計方法。
    Figure JPOXMLDOC01-appb-M000001
    A method for designing a multi-core optical fiber according to claim 1, comprising:
    When the shortest distance from the center of the core to the outer circumference of the cladding is d, find the shortest distance d that satisfies the relationship of the number C1, and calculate the diameter of the cladding from the shortest distance d and the arrangement of the cores. A method for designing a multi-core optical fiber, the method comprising calculating D.
    Figure JPOXMLDOC01-appb-M000001
  3.  請求項1に記載のマルチコア光ファイバの設計方法であって、
     クラッドの直径Dが決まっている場合に、
     コアの配列と前記クラッドの直径Dとから前記コアの中心から前記クラッドの外周までの最短距離dを計算すること、
     数C2の前記関係性を満たす単一コア光ファイバの漏洩損失α (SC)を見出すこと、及び
     前記コア構造の範囲の中から、前記漏洩損失α (SC)を満たす前記単一コア光ファイバのコア半径aと前記クラッドに対する比屈折率差Δで前記コア構造を特定すること
    を特徴とするマルチコア光ファイバの設計方法。
    Figure JPOXMLDOC01-appb-M000002
    A method for designing a multi-core optical fiber according to claim 1, comprising:
    When the cladding diameter D is fixed,
    calculating the shortest distance d from the center of the core to the outer circumference of the cladding from the core arrangement and the diameter D of the cladding;
    finding the leakage loss α L (SC) of a single-core optical fiber that satisfies the relationship of the number C2; and finding the single-core optical fiber that satisfies the leakage loss α L (SC) from within the range of the core structure. A method for designing a multi-core optical fiber, characterized in that the core structure is specified by a core radius a of the fiber and a relative refractive index difference Δ with respect to the cladding.
    Figure JPOXMLDOC01-appb-M000002
  4.  請求項1に記載のマルチコア光ファイバの設計方法であって、
     クラッドの直径Dが決まっている場合に、
     コアの配列と前記クラッドの直径Dとから前記コアの中心から前記クラッドの外周までの最短距離dを計算すること、
     数C3の前記関係性を満たす単一コア光ファイバの曲げ損失α (SC)を見出すこと、及び
     前記コア構造の範囲の中から、前記曲げ損失α (SC)を満たす前記単一コア光ファイバのコア半径aと前記クラッドに対する比屈折率差Δで前記コア構造を特定すること
    を特徴とするマルチコア光ファイバの設計方法。
    Figure JPOXMLDOC01-appb-M000003
    A method for designing a multi-core optical fiber according to claim 1, comprising:
    When the cladding diameter D is fixed,
    calculating the shortest distance d from the center of the core to the outer circumference of the cladding from the core arrangement and the diameter D of the cladding;
    finding the bending loss α b (SC) of a single-core optical fiber that satisfies the relationship of the number C3; and finding the single-core optical fiber that satisfies the bending loss α b (SC) from within the range of the core structure; A method for designing a multi-core optical fiber, characterized in that the core structure is specified by a core radius a of the fiber and a relative refractive index difference Δ with respect to the cladding.
    Figure JPOXMLDOC01-appb-M000003
  5.  請求項1に記載のマルチコア光ファイバの設計方法であって、
     数C4の前記関係性を満たす単一コア光ファイバの遮断波長λ (SC)を見出すこと、及び
     前記コア構造の範囲の中から、前記遮断波長λ (SC)を満たす前記単一コア光ファイバのコア半径aとクラッドに対する比屈折率差Δで前記コア構造を特定すること
    を特徴とするマルチコア光ファイバの設計方法。
    Figure JPOXMLDOC01-appb-M000004
    A method for designing a multi-core optical fiber according to claim 1, comprising:
    finding a cut-off wavelength λ c (SC) of a single-core optical fiber that satisfies the relationship of the number C4; A method for designing a multi-core optical fiber, characterized in that the core structure is specified by a core radius a of the fiber and a relative refractive index difference Δ with respect to a cladding.
    Figure JPOXMLDOC01-appb-M000004
  6.  コア半径a及び比屈折率差Δのコア構造であるコアを複数備え、断面構造が次の条件を満たすマルチコア光ファイバ。
    (1)v値が2.405未満であること、
    (2)隣接コアの結合係数κが5.6×10-5以上であること、且つ
    (3)前記マルチコア光ファイバの漏洩損失α (MC)、曲げ損失α (MC)、及び遮断波長λ (MC)のそれぞれが、前記コア構造のコアを1つだけ備える単一コア光ファイバの漏洩損失α (SC)との関係性である数C1、曲げ損失α (SC)との関係性である数C3、及び遮断波長λ (SC)との関係性である数C4を満たすこと。
    Figure JPOXMLDOC01-appb-M000005
    ただし、dは前記コアの中心からクラッドの外周までの最短距離である。
    Figure JPOXMLDOC01-appb-M000006
    Figure JPOXMLDOC01-appb-M000007
    A multi-core optical fiber comprising a plurality of cores each having a core radius a and a relative refractive index difference Δ, and whose cross-sectional structure satisfies the following conditions.
    (1) The v value is less than 2.405,
    (2) The coupling coefficient κ n of adjacent cores is 5.6×10 −5 or more, and (3) The multi-core optical fiber has leakage loss α L (MC) , bending loss α L (MC) , and cutoff. Each of the wavelengths λ c (MC) is a number C1, which is the relationship between the bending loss α b (SC) and the leakage loss α L (SC) of a single-core optical fiber having only one core of the core structure. and the number C4, which is the relationship with the cutoff wavelength λ c (SC) .
    Figure JPOXMLDOC01-appb-M000005
    However, d is the shortest distance from the center of the core to the outer periphery of the cladding.
    Figure JPOXMLDOC01-appb-M000006
    Figure JPOXMLDOC01-appb-M000007
  7.  コア半径a及び比屈折率差Δのコア構造であるコアを複数備え、断面構造が次の条件を満たすマルチコア光ファイバ。
    (1)v値が2.405未満であること、
    (2)隣接コアの結合係数κが5.6×10-5以上であること、且つ
    (3)前記マルチコア光ファイバの漏洩損失α (MC)、曲げ損失α (MC)、及び遮断波長λ (MC)のそれぞれが、前記コア構造のコアを1つだけ備える単一コア光ファイバの漏洩損失α (SC)との関係性である数C2、曲げ損失α (SC)との関係性である数C3、及び遮断波長λ (SC)との関係性である数C4を満たすこと。
    Figure JPOXMLDOC01-appb-M000008
    dは前記コアの中心からクラッドの外周までの最短距離である。
    Figure JPOXMLDOC01-appb-M000009
    Figure JPOXMLDOC01-appb-M000010
    A multi-core optical fiber comprising a plurality of cores each having a core radius a and a relative refractive index difference Δ, and whose cross-sectional structure satisfies the following conditions.
    (1) The v value is less than 2.405,
    (2) The coupling coefficient κ n of adjacent cores is 5.6×10 −5 or more, and (3) The leakage loss α L (MC) , bending loss α L (MC) , and cutoff of the multi-core optical fiber are Each of the wavelengths λ c (MC) is a number C2, which is the relationship between the bending loss α b (SC) and the leakage loss α L (SC) of a single-core optical fiber comprising only one core of the core structure. and the number C4, which is the relationship with the cutoff wavelength λ c (SC) .
    Figure JPOXMLDOC01-appb-M000008
    d is the shortest distance from the center of the core to the outer periphery of the cladding.
    Figure JPOXMLDOC01-appb-M000009
    Figure JPOXMLDOC01-appb-M000010
PCT/JP2022/027553 2022-07-13 2022-07-13 Multi-core optical fiber, and design method WO2024013876A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027553 WO2024013876A1 (en) 2022-07-13 2022-07-13 Multi-core optical fiber, and design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027553 WO2024013876A1 (en) 2022-07-13 2022-07-13 Multi-core optical fiber, and design method

Publications (1)

Publication Number Publication Date
WO2024013876A1 true WO2024013876A1 (en) 2024-01-18

Family

ID=89536136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027553 WO2024013876A1 (en) 2022-07-13 2022-07-13 Multi-core optical fiber, and design method

Country Status (1)

Country Link
WO (1) WO2024013876A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217939A1 (en) * 2019-04-25 2020-10-29 日本電信電話株式会社 Multicore optical fiber and design method
JP2021012226A (en) * 2019-07-03 2021-02-04 住友電気工業株式会社 Multiple core optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217939A1 (en) * 2019-04-25 2020-10-29 日本電信電話株式会社 Multicore optical fiber and design method
JP2021012226A (en) * 2019-07-03 2021-02-04 住友電気工業株式会社 Multiple core optical fiber

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATSUI TAKASHI; SAGAE YUTO; SAKAMOTO TAIJI; NAKAJIMA KAZUHIDE: "Design and Applicability of Multi-Core Fibers With Standard Cladding Diameter", JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE, USA, vol. 38, no. 21, 25 June 2020 (2020-06-25), USA, pages 6065 - 6070, XP011813701, ISSN: 0733-8724, DOI: 10.1109/JLT.2020.3004824 *
SAKAMOTO TAIJI, MORI TAKAYOSHI, WADA MASAKI, YAMAMOTO TAKASHI, NAKAJIMA KAZUHIDE: "Coupled Singlemode Multicore Fiber Design for Longhaul MIMO Transmission System", 2017 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 1 March 2017 (2017-03-01) - 23 March 2017 (2017-03-23), XP093129462 *

Similar Documents

Publication Publication Date Title
CN108474903B (en) Multi-core optical fiber
JP6177994B2 (en) Multi-core fiber
JP2007011399A (en) Optical fiber and optical transmission system including the same
WO2012063775A1 (en) Multicore fiber
US9817183B2 (en) Multicore fiber
JPH1152161A (en) Optical fiber
JP7172634B2 (en) Multi-core optical fiber and design method
JP4268115B2 (en) Single mode optical fiber
WO2010122790A1 (en) Holey single-mode optical fiber and optical transmission system using same
US10451797B2 (en) Few-mode optical fiber
JP5660627B2 (en) Multi-core single-mode optical fiber and optical cable
JP5142409B2 (en) Single mode optical fiber
US9541704B2 (en) Multi-core optical fiber and multi-core optical fiber cable
JP4130424B2 (en) Hole assisted optical fiber
EP1507154B1 (en) Dispersion shift optical fiber
WO2021015186A1 (en) Multicore optical fiber and design method
WO2024013876A1 (en) Multi-core optical fiber, and design method
JP6096268B2 (en) Multi-core fiber
WO2022034662A1 (en) Multicore optical fiber and design method
Saitoh Few-mode multi-core fibres: Weakly-coupling and randomly-coupling
EP2530502A1 (en) Optical fiber
JP6048890B2 (en) Optical fiber
JP2014098832A (en) Hybrid multiple core fiber
CN113359228A (en) Multi-core few-mode optical fiber assisted by special-shaped air hole
Matsui et al. Single-mode photonic crystal fiber with low bending loss and Aeff of> 200 μm2 for ultra high-speed WDM transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951090

Country of ref document: EP

Kind code of ref document: A1