WO2024013810A1 - Wireless communication system, wireless communication method, and wireless communication device - Google Patents

Wireless communication system, wireless communication method, and wireless communication device Download PDF

Info

Publication number
WO2024013810A1
WO2024013810A1 PCT/JP2022/027281 JP2022027281W WO2024013810A1 WO 2024013810 A1 WO2024013810 A1 WO 2024013810A1 JP 2022027281 W JP2022027281 W JP 2022027281W WO 2024013810 A1 WO2024013810 A1 WO 2024013810A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
wireless communication
link
mac
dummy packet
Prior art date
Application number
PCT/JP2022/027281
Other languages
French (fr)
Japanese (ja)
Inventor
花絵 大谷
裕介 淺井
ヒランタ アベセカラ
朗 岸田
純一 岩谷
信也 大槻
陸 大宮
泰司 鷹取
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/027281 priority Critical patent/WO2024013810A1/en
Publication of WO2024013810A1 publication Critical patent/WO2024013810A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to a wireless communication system, a wireless communication method, and a wireless communication device.
  • Wireless LAN base stations and terminals use CSMA/CA to access channels and transmit data.
  • IEEE 802.11be a wireless LAN communication standard
  • a multi-link function that allows multiple frequency bands to be used together.
  • multiple links using multiple frequency bands can be simultaneously formed between a base station and a terminal. This improves throughput and delay characteristics by simultaneously transmitting different data in multiple frequency bands.
  • packets generated in the upper layer are first passed to the Upper MAC (Media Access Controller).
  • the Upper MAC passes packets to the Lower MAC that exists for each link.
  • the Lower MAC acquires the right to transmit a frame, the packet that comes to the forefront in the order of held packets is passed to the physical layer (PHY), and then transmitted.
  • PHY physical layer
  • the Lower MACs of all links used in the multilink function may already have multiple transmission packets.
  • a high-priority packet is generated, which is a transmission packet of an application that requires low delay.
  • This high-priority packet cannot be immediately passed to the PHY and transmitted using any link. That is, there was a problem in that queuing delays occurred.
  • the first object of the present disclosure is to provide a wireless communication system that can shorten the queuing delay of high-priority packets.
  • a second objective of the present disclosure is to provide a wireless communication method that can shorten the queuing delay of high-priority packets.
  • a third objective of the present disclosure is to provide a wireless communication device that can shorten the queuing delay of high-priority packets.
  • a first aspect of the present disclosure is a wireless communication system that includes a base station with a multilink function and a terminal with the multilink function, and is configured such that the base station and the terminal communicate via multiple links.
  • the base station includes an Upper MAC that receives packets generated in the upper layer and a Lower MAC that exists for each link, and performs a dummy packet transmission process that transmits a dummy packet from the Upper MAC to the Lower MAC.
  • a wireless communication system configured to execute the following steps: replacing a high-priority packet with a dummy packet; and transmitting a packet owned by a Lower MAC to a terminal via a link. preferable.
  • a second aspect of the present disclosure provides a wireless communication system that includes a base station with a multilink function and a terminal with a multilink function, and is configured such that the base station and the terminal communicate via a plurality of links.
  • a wireless communication method in which a base station includes an Upper MAC that receives packets generated in an upper layer and a Lower MAC that exists for each link, and transmits a dummy packet from the Upper MAC to the Lower MAC.
  • the wireless communication method comprises the steps of: replacing a high-priority packet with a dummy packet; and transmitting a packet possessed by the Lower MAC to a terminal via a link.
  • a third aspect of the present disclosure includes an Upper MAC that receives packets generated in an upper layer and a Lower MAC that exists for each link, and a function of transmitting a dummy packet from the Upper MAC to the Lower MAC; It is preferable that the wireless communication device has a function of replacing a high-priority packet with a dummy packet and a function of transmitting a packet possessed by a Lower MAC via a link.
  • the queuing delay of high-priority packets can be reduced.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system without a multilink function.
  • 1 is a diagram illustrating a configuration example of a wireless communication system when there is a multilink function.
  • 3 is a flowchart showing a multi-link setup procedure.
  • FIG. 3 is a diagram illustrating packet categorization processing.
  • 1 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 1 of the present disclosure.
  • 3 is a flowchart illustrating a packet processing method according to Embodiment 1 of the present disclosure.
  • 3 is a flowchart illustrating a dummy packet management method according to Embodiment 1 of the present disclosure.
  • FIG. 1 is a block diagram showing the device configuration of a base station according to Embodiment 1 of the present disclosure.
  • FIG. 1 is a block diagram showing the device configuration of a terminal according to Embodiment 1 of the present disclosure.
  • FIG. 3 is a table showing an example of data held by a dummy packet management unit according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 2 of the present disclosure.
  • FIG. 3 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 3 of the present disclosure.
  • FIG. 1 is a diagram showing an example of the configuration of a wireless communication system without a multilink function. That is, the wireless communication system 500 transmits multiple types of packets using one link.
  • the wireless communication system 500 includes a base station 2.
  • the base station 2 transmits the high priority packet 4 generated in the upper layer to the MAC unit 12.
  • the MAC unit 12 includes a queue 8 .
  • the queue 8 holds received packets in an ordered manner so that they can be transmitted in the order in which they are received.
  • the frame transmission right is acquired, the order of the packets held in the queue 8 is checked, and the packets are transmitted in order starting from the front row.
  • the applied wireless communication system is Wi-Fi (registered trademark)
  • the base station corresponds to an access point.
  • the base station 2 has only one queue 8 because it does not have a multilink function. Therefore, even if a high-priority packet 4 occurs, if the queue 8 already has multiple packets 6, the high-priority packet 4 is ordered so that it becomes the last packet held in the queue 8. I do.
  • the MAC unit 12 transmits the packet to the PHY 10. More specifically, among the packets, the one that comes to the forefront in the order of the packets held by the queue 8 is transmitted to the PHY 10. That is, the high priority packet 4 transmitted to the PHY 10 is transmitted to the terminal 16 after all the packets 6 held in the queue 8 up to that point have been transmitted. Note that since the base station 2 does not have a multilink function, it also includes only one PHY 10.
  • FIG. 2 is a diagram showing a configuration example of a wireless communication system when there is a multilink function.
  • a wireless communication system 600 that forms three links by using a multilink function will be described.
  • the wireless communication system 600 includes a base station 2.
  • the base station 2 transmits the high priority packet 4 generated in the upper layer to the MAC unit 12.
  • the MAC unit 12 includes an Upper MAC 18 and Lower MACs 20a, 20b, and 20c that exist for each link.
  • the MAC unit 12 first receives the high priority packet 4 at the Upper MAC 18.
  • the Upper MAC 18 distributes the high priority packet 4 to any one of the Lower MACs 20a, 20b, and 20c. More specifically, the high-priority packet 4 is ordered so that it becomes the last packet held in the queue provided by the assigned Lower MAC. This distribution is performed based on predetermined processing. Here, it is assumed that among the queues 8a, 8b, and 8c provided in each of the Lower MACs 20a, 20b, and 20c, processing is performed to allocate to the queue with the shortest waiting time. Note that the waiting time in this case changes depending on the number or size of packets 6 that each queue has.
  • the MAC unit 12 transmits the packet to the PHY unit 14.
  • This PHY unit 14 includes PHYs 10a, 10b, and 10c. More specifically, among the packets, the one that comes to the forefront in the order of the packets held by each of the queues 8a, 8b, and 8c is transmitted to each of the PHYs 10a, 10b, and 10c. That is, the high-priority packet 4 is transmitted to the terminal 16 after all the packets 6 held in the sorted queue have been transmitted.
  • the high priority packet 4 is distributed to the queue with the shortest waiting time. Therefore, compared to the wireless communication system 500 that uses only one link, it is possible to increase the possibility that transmission to the PHY will be performed with a shorter waiting time.
  • FIG. 3 is a flowchart showing the multilink setup procedure.
  • the dummy packet management units 64 and 74 which will be described later, perform the processing shown in FIG. 3 to perform settings so that wireless communication can be performed via specific links. This allows the wireless communication system to establish multi-link communication.
  • FIG. 4 is a diagram showing packet categorization processing. Wireless communication systems transmit multiple types of packets. Here, a process is shown in which the plurality of types of packets are identified for each traffic in the STA unit, which will be described later.
  • a packet to which a MAC header is added in the upper layer is input to one of the queues 22, 24, 26, and 28.
  • the input destination queue is determined by the TID (Traffic Indicator) included in the MAC header.
  • TID Traffic Indicator
  • queue 22 is a VO category related to audio
  • queue 24 is a VI category related to video
  • queue 26 is a BE category related to best effort
  • queue 28 is a BK category related to background. can be identified.
  • Each CSMA/CA unit uses unique access parameters to access the channel and perform CSMA/CA.
  • the unique access parameters are, for example, Cwmax, Cwmin, AIFS, and TXOPlimit.
  • CSMA/CA units 32, 34, 36, and 38 process those that have arrived at the front of the queues 22, 24, 26, and 28.
  • the CSMA/CA unit 40 processes low delay data.
  • the internal conflict resolution unit 42 selects and outputs the one with the highest priority.
  • FIG. 5 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 1 of the present disclosure.
  • the wireless communication system according to the first embodiment differs from the conventional example in that a dummy packet is periodically transmitted to any of the links used in the multilink function.
  • a wireless communication system 100 that forms three links by using a multilink function will be described.
  • the wireless communication system 100 transmits packets using the same procedure as the wireless communication system 600. However, the wireless communication system 100 periodically transmits dummy packets 44 in addition to the packets generated in the upper layer. Dummy packet 44, like packet 6 and high priority packet 4, forms a queue. When the head of the queue is reached, the countdown of the CW (Contention Window) value is started.
  • CW Contention Window
  • a process is performed to replace the high priority packet 4 with a dummy packet 44. This process may be performed immediately after the high priority packet 4 is generated, or when the CW value reaches a specific value.
  • the next packet after the dummy packet 44 is moved to the head of the queue. Then, the CW value of the packet is not counted down, and the frame transmission processing is directly performed. That is, the packet at the head of the queue in which the dummy packet 44 existed performs frame transmission processing instead of the dummy packet 44.
  • the packet whose CW value was counted down at the beginning of a different link is moved to the link where the dummy packet 44 existed, and the frame transmission process is executed. It's okay.
  • the process of canceling the transmission process of the dummy packet 44 may be performed. That is, after canceling the transmission process of the dummy packet 44, the next packet after the dummy packet 44 is moved to the head of the queue as usual. Then, the countdown of the CW value of the packet may be started, and then the normal frame transmission processing may be performed.
  • FIG. 6 is a flowchart illustrating a packet processing method according to Embodiment 1 of the present disclosure.
  • the Upper MAC 18 receives a packet from an upper layer.
  • step 102 it is checked whether the received packet has a high priority.
  • the determination of priority is performed by the MLD unit 59 of the base station, which will be described later.
  • TID may be used for this determination. For example, a method may be considered in which a packet to which a prespecified TID or a TID indicating a higher priority than the TID is assigned is determined to be a "high priority packet.” If the priority is high, proceed to step 104. If the priority is not high, proceed to step 108.
  • step 104 it is checked whether dummy packets exist for all links used in the wireless communication system. In the case of the wireless communication system 100, it is checked whether dummy packets exist in all links including each of the Lower MACs 20a, 20b, and 20c. If a dummy packet exists, proceed to step 106. If there is no dummy packet, the process proceeds to step 108.
  • step 106 the dummy packet and the high priority packet are exchanged. For example, a process is performed in which the tags indicating the order of packets held in the queue of the Lower MAC 20a are replaced with the dummy packet 44 and the high priority packet 4. Alternatively, the bit information of the high priority packet 4 is transferred onto the bit information of the dummy packet 44. This process may be performed immediately after the high priority packet 4 is generated, or when the CW value reaches a specific value.
  • step 108 normal queuing is performed. That is, the packets held by each Lower MAC are transmitted in order, regardless of their types.
  • a dummy packet is periodically transmitted to any of the links used in the multilink function. If a high-priority packet occurs at a later timing, the high-priority packet and the dummy packet are replaced. This makes it possible to shorten the queuing delay no matter when a high-priority packet occurs.
  • the size of the dummy packet may be specified in advance as a default size. For example, the maximum size that can be set may be specified. Alternatively, the size may be determined by referring to the size of a high-priority packet received by the Upper MAC immediately before. If the sizes of the dummy packet and the high-priority packet do not match, processing such as padding may be performed during replacement or aggregation processing.
  • FIG. 7 is a flowchart illustrating a dummy packet management method according to Embodiment 1 of the present disclosure.
  • the base station 2 that forms links using the multilink function transmits dummy packets 44 to three links in order. It is assumed that numbers 1, 2, and 3 are assigned in advance to the three links including the Lower MACs 20a, 20b, and 20c.
  • step 110 the Upper MAC 18 generates a dummy packet 44 and transmits it to the link 1.
  • the dummy packet 44 reaches the head of the link 1 queue, a countdown of the CW value is started. After a certain period of time has elapsed, the CW value of link 1 becomes 0, as in step 112.
  • the Upper MAC 18 generates a dummy packet 44 and transmits it to the link 2.
  • the CW value starts counting down. After a certain period of time has elapsed, the CW value of link 2 becomes 0, as in step 116.
  • step 118 the Upper MAC 18 generates a dummy packet 44 and transmits it to the link 3.
  • the dummy packet 44 reaches the head of the queue of the link 3, a countdown of the CW value is started. After a certain period of time has elapsed, the CW value of link 3 becomes 0, as in step 120. After this, the process returns to step 110 and the same process is repeated.
  • timing at which the dummy packet 44 shown in steps 112, 116, and 120 is generated may be when the CW value becomes a specific value other than 0.
  • the link through which the dummy packet 44 is sent may be selected based on statistics measured in advance. More specifically, a method of selecting based on a PER (Packet Error Rate) value or an average CW value calculated from statistics measured in advance may be considered. For example, by transmitting the dummy packet 44 to the link with the lowest PER value, the high priority packet 4 is more likely to be transmitted to the link with the lowest PER value. That is, it becomes easier to shorten the queuing delay of the high-priority packet 4.
  • PER Packet Error Rate
  • the size of the occupied queue by dummy packets can be distributed by appropriately changing the link for transmitting dummy packets. Furthermore, since the delay time of each link changes over time, by determining the destination based on this information, it is possible to improve the probability that a high-priority packet can be distributed to a link with a small delay time.
  • FIG. 8 is a block diagram showing the device configuration of a base station according to Embodiment 1 of the present disclosure. First, data transmission from the base station 2 to another terminal will be explained.
  • the base station 2 includes an LLC section 58.
  • the LLC unit 58 is a sublayer that performs logical link control. LLC section 58 outputs the input packet to MLD section 59.
  • the MLD section 59 is a link management section and includes a data processing section 60.
  • the data processing unit 60 processes data and outputs the results to the base station measurement unit 62 and dummy packet management unit 64.
  • the base station measurement unit 62 records the link number through which the dummy packet is sent and measures the PER of each link.
  • the dummy packet management unit 64 selects a link to transmit the dummy packet. This link selection is performed based on information about each link obtained by the base station measuring section 62. Then, the dummy packet management unit 64 transmits the dummy packet to the STA unit corresponding to the selected link.
  • the dummy packet management unit 64 replaces high priority packets and dummy packets. Further, the dummy packet management unit 64 performs the multilink setup described in FIG. 3.
  • the STA units 66a, 66b, and 66c are transmitting/receiving units, and receive packets input from the dummy packet management unit 64. Then, the MAC frame included in the packet is transmitted to another terminal as a wireless frame. Note that data transmission and reception with other terminals is performed via an antenna.
  • the STA sections 66a, 66b, and 66c output wireless frames received from other terminals to the dummy packet management section 64.
  • the dummy packet management unit 64 processes the header and the like from the MAC frame included in the input wireless frame, and outputs the obtained data to the data processing unit 60.
  • the data processing section 60 outputs this data to the LLC section 58.
  • FIG. 9 is a block diagram showing the device configuration of a terminal according to Embodiment 1 of the present disclosure. First, data transmission from the terminal 16 to another terminal will be explained.
  • the terminal 16 includes an LLC section 68. LLC section 68 outputs the input packet to MLD section 69 .
  • the MLD section 69 includes a data processing section 70.
  • the data processing unit 70 processes packets and outputs the results to the terminal measurement unit 72 and the dummy packet management unit 74.
  • the terminal measurement unit 72 measures the PER etc. of each link as necessary. This measurement result is notified to the base station measurement unit 62 included in the base station within the wireless communication system. Note that the terminal measuring section 72 may have the same functions as the base station measuring section 62.
  • the dummy packet management section 74 has the same functions as the dummy packet management section 64.
  • the STA units 76a, 76b, and 76c receive packets input from the dummy packet management unit 74. Then, the MAC frame included in the packet is transmitted to another terminal as a wireless frame. Note that data transmission and reception with other terminals is performed via an antenna.
  • the STA units 76a, 76b, and 76c output wireless frames received from other terminals to the dummy packet management unit 74.
  • the dummy packet management unit 74 processes the header and the like from the MAC frame included in the input wireless frame, and outputs the obtained data to the data processing unit 70.
  • the data processing section 70 outputs this data to the LLC section 68.
  • the terminal 16 may be configured without the dummy packet management section 74. In this case, the terminal 16 does not generate a dummy packet. The terminal 16 notifies the base station only of information such as PER measured on the terminal side.
  • FIG. 10 is a table showing an example of data held by the dummy packet management unit according to Embodiment 1 of the present disclosure.
  • the dummy packet management unit holds various data for each link in order to manage dummy packets.
  • a data group in a base station including three STA sections is shown.
  • STAs 1, 2, and 3 all support the multilink function. However, only STAs 1 and 2 are used for multilink transmission. Only STA1 is used as the destination of the dummy packet. STA1 currently has a dummy packet, and its CW value is 6. Based on these data, packets are sorted.
  • PER The value of PER is also held here. It can be seen that the PERs shown by the three STAs are different values. It is also possible to set a destination link for the dummy packet based on this PER value.
  • FIG. 11 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 2 of the present disclosure.
  • the wireless communication system according to the second embodiment differs from the first embodiment in that a plurality of terminals are targets of wireless communication with one base station.
  • the wireless communication system 200 includes a base station 2.
  • Base station 2 performs wireless communication with terminals 16a, 16b, and 16c. With this configuration, it is possible to shorten the queuing delay when a high-priority packet occurs even in wireless communication that targets a wide range and targets multiple terminals.
  • the determination of the link for transmitting dummy packets and the transmission rate of dummy packets may be determined by referring to the PER of all terminals 16 or the PER of a specific terminal 16.
  • An example of a method for selecting a particular terminal 16 of interest is a method of selecting a terminal with the highest high-priority frame transmission rate.
  • the selection of the link for transmitting the dummy packet may be set independently by the base station 2 and the terminal 16.
  • the base station 2 and a specific terminal 16 may be set to be synchronized or not synchronized.
  • FIG. 12 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 3 of the present disclosure.
  • the wireless communication system according to the third embodiment differs from the first embodiment in that a controller that bundles a plurality of base stations is installed.
  • the wireless communication system 300 includes a controller 46. Controller 46 is connected to base stations 2a and 2b.
  • the base station 2a performs wireless communication with the terminal 16a.
  • the base station 2b performs wireless communication with the terminal 16b.
  • the method for selecting the link through which the dummy packet is sent may be independently specified within each base station and terminal.
  • the controller 46 may specify a link for transmitting a dummy packet for the connected base stations 2a and 2b.
  • the controller 46 may specify the link to which the dummy packet is to be transmitted based on the degree of congestion or PER of the channel used by the terminal 16. For example, links may be specified so that dummy packet ratios do not vary between channels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure relates to a wireless communication system, a wireless communication method, and a wireless communication device. The wireless communication system according to the present disclosure comprises a base station having multilink function, and a terminal having multilink function, and is configured to perform communication between the base station and the terminal through a plurality of links. The base station comprises an upper MAC for receiving a packet generated in an upper layer and lower MACs each of which is present in a corresponding one of the plurality of links, and is configured to execute: a dummy packet transmission process for transmitting a dummy packet from the upper MAC to the respective lower MACs; a process for replacing a high-priority packet having a high priority level with the dummy packet; and a process for transmitting the packet held in each of the lower MACs to the terminal through the links.

Description

無線通信システム、無線通信方法及び無線通信装置Wireless communication system, wireless communication method, and wireless communication device
 本開示は無線通信システム、無線通信方法及び無線通信装置に関する。 The present disclosure relates to a wireless communication system, a wireless communication method, and a wireless communication device.
 無線LANの基地局及び端末は、CSMA/CAを用いてチャネルにアクセスし、データを送信している。 Wireless LAN base stations and terminals use CSMA/CA to access channels and transmit data.
 無線LAN通信規格であるIEEE 802.11beには、複数の周波数帯を併用できるマルチリンク機能が搭載されている。マルチリンク機能を使用することで、基地局と端末との間で、複数の周波数帯を用いる複数のリンクを同時に形成できる。これにより、異なるデータを複数の周波数帯で同時に伝送することで、スループット及び遅延特性を改善している。 IEEE 802.11be, a wireless LAN communication standard, is equipped with a multi-link function that allows multiple frequency bands to be used together. By using the multilink function, multiple links using multiple frequency bands can be simultaneously formed between a base station and a terminal. This improves throughput and delay characteristics by simultaneously transmitting different data in multiple frequency bands.
 データ送信を行う場合、上位レイヤで発生したパケットは、まずUpper MAC(Media Access Controller)へ受け渡される。Upper MACは、リンクごとに存在するLower MACへパケットを受け渡す。Lower MACがフレーム送信権を獲得すると、保持するパケットの順番で最前列に来たものが、物理層であるPHY(Physical)へ受け渡され、その後送信される。 When transmitting data, packets generated in the upper layer are first passed to the Upper MAC (Media Access Controller). The Upper MAC passes packets to the Lower MAC that exists for each link. When the Lower MAC acquires the right to transmit a frame, the packet that comes to the forefront in the order of held packets is passed to the physical layer (PHY), and then transmitted.
 しかし、大容量通信を行うときなど、マルチリンク機能で使用している全リンクのLower MACが、既に複数の送信パケットを有する場合がある。この場合に、低遅延性が求められるアプリケーションの送信パケットである、高優先パケットが発生したとする。この高優先パケットは、どのリンクを使用しても、即座にPHYへ受け渡して送信することができない。すなわち、キューイング遅延が発生する課題があった。 However, when performing large-capacity communication, the Lower MACs of all links used in the multilink function may already have multiple transmission packets. In this case, it is assumed that a high-priority packet is generated, which is a transmission packet of an application that requires low delay. This high-priority packet cannot be immediately passed to the PHY and transmitted using any link. That is, there was a problem in that queuing delays occurred.
 本開示は、上述の問題を解決するため、高優先パケットのキューイング遅延を短縮できる無線通信システムを提供することを第一の目的とする。 In order to solve the above-mentioned problems, the first object of the present disclosure is to provide a wireless communication system that can shorten the queuing delay of high-priority packets.
 また、本開示は、高優先パケットのキューイング遅延を短縮できる無線通信方法を提供することを第二の目的とする。 A second objective of the present disclosure is to provide a wireless communication method that can shorten the queuing delay of high-priority packets.
 また、本開示は、高優先パケットのキューイング遅延を短縮できる無線通信装置を提供することを第三の目的とする。 A third objective of the present disclosure is to provide a wireless communication device that can shorten the queuing delay of high-priority packets.
 本開示の第一の態様は、マルチリンク機能を有する基地局とマルチリンク機能を有する端末とを備え、基地局と端末とが複数のリンクを介して通信するように構成された無線通信システムであって、基地局は、上位レイヤで発生したパケットを受信するUpper MACと、リンク毎に存在するLower MACと、を備え、ダミーパケットを、Upper MACから、Lower MACに送信させるダミーパケット送信処理と、優先度の高い高優先パケットを、ダミーパケットと入れ替える処理と、Lower MACが有するパケットを、リンクを介して端末に送信させる処理と、を実行するように構成された無線通信システムであることが好ましい。 A first aspect of the present disclosure is a wireless communication system that includes a base station with a multilink function and a terminal with the multilink function, and is configured such that the base station and the terminal communicate via multiple links. The base station includes an Upper MAC that receives packets generated in the upper layer and a Lower MAC that exists for each link, and performs a dummy packet transmission process that transmits a dummy packet from the Upper MAC to the Lower MAC. , a wireless communication system configured to execute the following steps: replacing a high-priority packet with a dummy packet; and transmitting a packet owned by a Lower MAC to a terminal via a link. preferable.
 本開示の第二の態様は、マルチリンク機能を有する基地局とマルチリンク機能を有する端末とを備え、基地局と端末とが複数のリンクを介して通信するように構成された無線通信システムが行う無線通信方法であって、基地局が、上位レイヤで発生したパケットを受信するUpper MACと、リンク毎に存在するLower MACと、を備え、ダミーパケットを、Upper MACから、Lower MACに送信させる工程と、優先度の高い高優先パケットを、ダミーパケットと入れ替える工程と、Lower MACが有するパケットを、リンクを介して端末に送信させる工程と、を備える無線通信方法であることが好ましい。 A second aspect of the present disclosure provides a wireless communication system that includes a base station with a multilink function and a terminal with a multilink function, and is configured such that the base station and the terminal communicate via a plurality of links. A wireless communication method in which a base station includes an Upper MAC that receives packets generated in an upper layer and a Lower MAC that exists for each link, and transmits a dummy packet from the Upper MAC to the Lower MAC. Preferably, the wireless communication method comprises the steps of: replacing a high-priority packet with a dummy packet; and transmitting a packet possessed by the Lower MAC to a terminal via a link.
 本開示の第三の態様は、上位レイヤで発生したパケットを受信するUpper MACと、リンク毎に存在するLower MACと、を備え、ダミーパケットを、Upper MACから、Lower MACに送信させる機能と、優先度の高い高優先パケットを、ダミーパケットと入れ替える機能と、Lower MACが有するパケットを、リンクを介して送信させる機能と、を備える無線通信装置であることが好ましい。 A third aspect of the present disclosure includes an Upper MAC that receives packets generated in an upper layer and a Lower MAC that exists for each link, and a function of transmitting a dummy packet from the Upper MAC to the Lower MAC; It is preferable that the wireless communication device has a function of replacing a high-priority packet with a dummy packet and a function of transmitting a packet possessed by a Lower MAC via a link.
 本開示の第一、第二及び第三の態様によれば、高優先パケットのキューイング遅延を短縮することができる。 According to the first, second, and third aspects of the present disclosure, the queuing delay of high-priority packets can be reduced.
マルチリンク機能がない場合の無線通信システムの構成例を示す図である。1 is a diagram illustrating a configuration example of a wireless communication system without a multilink function. マルチリンク機能がある場合の無線通信システムの構成例を示す図である。1 is a diagram illustrating a configuration example of a wireless communication system when there is a multilink function. マルチリンクのセットアップ手順を示すフローチャートである。3 is a flowchart showing a multi-link setup procedure. パケットのカテゴライズ処理を示す図である。FIG. 3 is a diagram illustrating packet categorization processing. 本開示の実施の形態1に係る無線通信システムの構成例を示す図である。1 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 1 of the present disclosure. 本開示の実施の形態1に係る、パケットの処理方法を示すフローチャートである。3 is a flowchart illustrating a packet processing method according to Embodiment 1 of the present disclosure. 本開示の実施の形態1に係る、ダミーパケットの管理方法を示すフローチャートである。3 is a flowchart illustrating a dummy packet management method according to Embodiment 1 of the present disclosure. 本開示の実施の形態1に係る基地局の装置構成を示すブロック図である。1 is a block diagram showing the device configuration of a base station according to Embodiment 1 of the present disclosure. FIG. 本開示の実施の形態1に係る端末の装置構成を示すブロック図である。1 is a block diagram showing the device configuration of a terminal according to Embodiment 1 of the present disclosure. FIG. 本開示の実施の形態1に係る、ダミーパケット管理部が保有するデータ例を示す表である。3 is a table showing an example of data held by a dummy packet management unit according to Embodiment 1 of the present disclosure. 本開示の実施の形態2に係る無線通信システムの構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 2 of the present disclosure. 本開示の実施の形態3に係る無線通信システムの構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 3 of the present disclosure.
実施の形態1
[従来の無線通信システム]
 実施の形態1の説明に先立ち、従来用いられていたマルチリンクについて述べる。図1は、マルチリンク機能がない場合の無線通信システムの構成例を示す図である。すなわち、無線通信システム500は、複数の種類のパケットを、1本のリンクを用いて送信する。
Embodiment 1
[Conventional wireless communication system]
Prior to describing the first embodiment, a conventionally used multilink will be described. FIG. 1 is a diagram showing an example of the configuration of a wireless communication system without a multilink function. That is, the wireless communication system 500 transmits multiple types of packets using one link.
 無線通信システム500は、基地局2を備える。基地局2は、上位レイヤで発生した高優先パケット4を、MAC部12に送信する。MAC部12は、キュー8を備える。キュー8は、受信したパケットを、受信した順に送信できるよう、順番付けをして保持している。そして、フレーム送信権を獲得した際、キュー8が保持するパケットの順番を確認し、最前列のパケットから順に送信する。なお、適用する無線通信システムがWi-Fi(登録商標)である場合、基地局はアクセスポイントに対応する。 The wireless communication system 500 includes a base station 2. The base station 2 transmits the high priority packet 4 generated in the upper layer to the MAC unit 12. The MAC unit 12 includes a queue 8 . The queue 8 holds received packets in an ordered manner so that they can be transmitted in the order in which they are received. When the frame transmission right is acquired, the order of the packets held in the queue 8 is checked, and the packets are transmitted in order starting from the front row. Note that when the applied wireless communication system is Wi-Fi (registered trademark), the base station corresponds to an access point.
 基地局2は、マルチリンク機能を有していないため、キュー8を一つしか備えていない。そのため、高優先パケット4が発生した場合でも、キュー8が既に複数のパケット6を有していれば、そのキュー8が保持するパケットの順番の最後尾となるよう、高優先パケット4に順番付けを行う。 The base station 2 has only one queue 8 because it does not have a multilink function. Therefore, even if a high-priority packet 4 occurs, if the queue 8 already has multiple packets 6, the high-priority packet 4 is ordered so that it becomes the last packet held in the queue 8. I do.
 MAC部12は、パケットを、PHY10へ送信する。より具体的には、パケットのうち、キュー8が保持するパケットの順番で最前列に来たものを、PHY10へ送信する。すなわち、PHY10に送信された高優先パケット4は、それまでにキュー8に保持されていたパケット6が全て送信された後に、端末16へ送信される。なお、基地局2は、マルチリンク機能を有していないため、PHY10も一つしか備えていない。 The MAC unit 12 transmits the packet to the PHY 10. More specifically, among the packets, the one that comes to the forefront in the order of the packets held by the queue 8 is transmitted to the PHY 10. That is, the high priority packet 4 transmitted to the PHY 10 is transmitted to the terminal 16 after all the packets 6 held in the queue 8 up to that point have been transmitted. Note that since the base station 2 does not have a multilink function, it also includes only one PHY 10.
 上述の通り、1本のリンクのみを用いる無線通信システム500では、高優先パケット4が発生した場合も、それを優先する処理は行っていない。 As described above, in the wireless communication system 500 that uses only one link, even when the high priority packet 4 occurs, no process is performed to give priority to it.
 図2は、マルチリンク機能がある場合の無線通信システムの構成例を示す図である。ここでは、マルチリンク機能を利用することで、3本のリンクを形成する無線通信システム600について述べる。 FIG. 2 is a diagram showing a configuration example of a wireless communication system when there is a multilink function. Here, a wireless communication system 600 that forms three links by using a multilink function will be described.
 無線通信システム600は、基地局2を備える。基地局2は、上位レイヤで発生した高優先パケット4を、MAC部12に送信する。MAC部12は、Upper MAC18と、リンクごとに存在するLower MAC20a、20b及び20cを備える。 The wireless communication system 600 includes a base station 2. The base station 2 transmits the high priority packet 4 generated in the upper layer to the MAC unit 12. The MAC unit 12 includes an Upper MAC 18 and Lower MACs 20a, 20b, and 20c that exist for each link.
 MAC部12は、高優先パケット4を、まずUpper MAC18で受信する。Upper MAC18は、高優先パケット4を、Lower MAC20a、20b及び20cの何れか一つに振り分ける。より具体的には、高優先パケット4が、振り分けたLower MACが備えるキューの、保持するパケットの順番の最後尾になるよう、順番付けを行う。この振り分けは、所定の処理に基づいて行われる。ここでは、Lower MAC20a、20b及び20cのそれぞれが備えるキュー8a、8b及び8cのうち、最も待ち時間が少なくなるキューに振り分ける処理を行うとする。なお、この場合の待ち時間は、各キューが有するパケット6の数またはサイズにより変化する。 The MAC unit 12 first receives the high priority packet 4 at the Upper MAC 18. The Upper MAC 18 distributes the high priority packet 4 to any one of the Lower MACs 20a, 20b, and 20c. More specifically, the high-priority packet 4 is ordered so that it becomes the last packet held in the queue provided by the assigned Lower MAC. This distribution is performed based on predetermined processing. Here, it is assumed that among the queues 8a, 8b, and 8c provided in each of the Lower MACs 20a, 20b, and 20c, processing is performed to allocate to the queue with the shortest waiting time. Note that the waiting time in this case changes depending on the number or size of packets 6 that each queue has.
 MAC部12は、パケットを、PHY部14へ送信する。このPHY部14は、PHY10a、10b及び10cを備える。より具体的には、パケットのうち、キュー8a、8b及び8cのそれぞれが保持するパケットの順番で最前列に来たものを、PHY10a、10b及び10cのそれぞれへ送信する。すなわち、高優先パケット4は、振り分けられたキューに保持されていたパケット6が全て送信された後に、端末16へ送信される。 The MAC unit 12 transmits the packet to the PHY unit 14. This PHY unit 14 includes PHYs 10a, 10b, and 10c. More specifically, among the packets, the one that comes to the forefront in the order of the packets held by each of the queues 8a, 8b, and 8c is transmitted to each of the PHYs 10a, 10b, and 10c. That is, the high-priority packet 4 is transmitted to the terminal 16 after all the packets 6 held in the sorted queue have been transmitted.
 前述の通り、高優先パケット4は、最も待ち時間が少なくなるキューへ振り分けられている。そのため、1本のリンクのみを用いる無線通信システム500と比較すれば、より短い待ち時間でPHYへの送信が行われる可能性を高くすることができる。 As mentioned above, the high priority packet 4 is distributed to the queue with the shortest waiting time. Therefore, compared to the wireless communication system 500 that uses only one link, it is possible to increase the possibility that transmission to the PHY will be performed with a shorter waiting time.
 このように、マルチリンク機能を用いて、異なるデータを複数の周波数帯で同時に伝送することで、スループット及び遅延特性を改善できる。しかし、マルチリンク機能で使用している全リンクのLower MACが、既に複数の送信パケットを有する場合がある。この場合発生した高優先パケットは、どのリンクを使用しても、即座にPHYへ受け渡して送信することができない。すなわち、キューイング遅延が発生する課題が生じる。本開示は、この課題を解決する。 In this way, throughput and delay characteristics can be improved by transmitting different data simultaneously in multiple frequency bands using the multilink function. However, the Lower MACs of all links used in the multilink function may already have multiple transmission packets. The high-priority packet generated in this case cannot be immediately delivered to the PHY and transmitted no matter which link is used. That is, a problem arises in which a queuing delay occurs. The present disclosure solves this problem.
 図3は、マルチリンクのセットアップ手順を示すフローチャートである。後述するダミーパケット管理部64及び74は、図3の処理を行うことで、特定のリンク同士を介して無線通信ができるよう設定する。これにより、無線通信システムが、マルチリンクの通信を確立することができる。 FIG. 3 is a flowchart showing the multilink setup procedure. The dummy packet management units 64 and 74, which will be described later, perform the processing shown in FIG. 3 to perform settings so that wireless communication can be performed via specific links. This allows the wireless communication system to establish multi-link communication.
 図4は、パケットのカテゴライズ処理を示す図である。無線通信システムは、複数の種類のパケットを送信している。ここでは、その複数の種類のパケットを、後述するSTA部において、トラヒックごとに識別する処理を示す。 FIG. 4 is a diagram showing packet categorization processing. Wireless communication systems transmit multiple types of packets. Here, a process is shown in which the plurality of types of packets are identified for each traffic in the STA unit, which will be described later.
 上位レイヤでMACヘッダを付加されたパケットは、キュー22、24、26及び28のいずれか一つに入力される。入力先のキューは、MACヘッダに含まれるTID(Traffic Indicator)により判定される。例えば、WME(Wireless Multimedia Extensions)が優先順位をつける場合、キュー22は音声に関するVOカテゴリ、キュー24はビデオに関するVIカテゴリ、キュー26はベストエフォートに関わるBEカテゴリ、キュー28はバックグラウンドにかかわるBKカテゴリに識別できる。 A packet to which a MAC header is added in the upper layer is input to one of the queues 22, 24, 26, and 28. The input destination queue is determined by the TID (Traffic Indicator) included in the MAC header. For example, when WME (Wireless Multimedia Extensions) prioritizes, queue 22 is a VO category related to audio, queue 24 is a VI category related to video, queue 26 is a BE category related to best effort, and queue 28 is a BK category related to background. can be identified.
 各キューに入力されたパケットは、CSMA/CA部32、34、36、38及び40に入力される。各CSMA/CA部は、固有のアクセスパラメータを用いてチャネルにアクセスし、CSMA/CAを行う。固有のアクセスパラメータとは、例えば、Cwmax、Cwmin、AIFS、TXOPlimitである。そして各CSMA/CA部は、送信権を得た場合は、各キューからMACフレームを取得し、内部衝突解決部42へ出力する。 The packets input to each queue are input to the CSMA/ CA sections 32, 34, 36, 38, and 40. Each CSMA/CA unit uses unique access parameters to access the channel and perform CSMA/CA. The unique access parameters are, for example, Cwmax, Cwmin, AIFS, and TXOPlimit. When each CSMA/CA unit obtains the transmission right, it acquires a MAC frame from each queue and outputs it to the internal conflict resolution unit 42.
 なお、CSMA/CA部32、34、36及び38は、キュー22、24、26、28の最前列に来たものを処理する。CSMA/CA部40は、低遅延データを処理する。 Note that the CSMA/ CA units 32, 34, 36, and 38 process those that have arrived at the front of the queues 22, 24, 26, and 28. The CSMA/CA unit 40 processes low delay data.
 内部衝突解決部42は、複数のCSMA/CA部が同時に送信権を獲得した場合に、優先度の高いものを選択し、出力する。 When multiple CSMA/CA units acquire transmission rights at the same time, the internal conflict resolution unit 42 selects and outputs the one with the highest priority.
[本開示の無線通信システム]
 図5は、本開示の実施の形態1に係る無線通信システムの構成例を示す図である。実施の形態1に係る無線通信システムは、マルチリンク機能で使用するリンクのいずれかに、定期的にダミーパケットを送信する点が、従来例と異なる。ここでは、マルチリンク機能を利用することで、3本のリンクを形成する無線通信システム100について述べる。
[Wireless communication system of the present disclosure]
FIG. 5 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 1 of the present disclosure. The wireless communication system according to the first embodiment differs from the conventional example in that a dummy packet is periodically transmitted to any of the links used in the multilink function. Here, a wireless communication system 100 that forms three links by using a multilink function will be described.
 無線通信システム100は、無線通信システム600と同様の手順でパケットを送信する。しかし、無線通信システム100は、上位レイヤで発生したパケットの他に、ダミーパケット44を定期的に送信する。ダミーパケット44は、パケット6及び高優先パケット4と同様に、キューを形成する。そして、キューの先頭に到達すると、CW(Contention Window)値のカウントダウンを開始する。 The wireless communication system 100 transmits packets using the same procedure as the wireless communication system 600. However, the wireless communication system 100 periodically transmits dummy packets 44 in addition to the packets generated in the upper layer. Dummy packet 44, like packet 6 and high priority packet 4, forms a queue. When the head of the queue is reached, the countdown of the CW (Contention Window) value is started.
 CW値のカウントダウン中に高優先パケット4が発生した場合、その高優先パケット4をダミーパケット44と入れ替える処理を行う。この処理を行うタイミングは、高優先パケット4が発生した直後でも良いし、CW値が特定の値となったときでも良い。 If a high priority packet 4 is generated during the countdown of the CW value, a process is performed to replace the high priority packet 4 with a dummy packet 44. This process may be performed immediately after the high priority packet 4 is generated, or when the CW value reaches a specific value.
 CW値のカウントダウン中に高優先パケットが発生しなかった場合、ダミーパケット44の送信処理を完了したものとして扱う。まず、CW値が0になったタイミング、あるいはCW値が特定の値になったタイミングで、ダミーパケット44の送信処理を取りやめる。 If no high-priority packet is generated during the countdown of the CW value, it is treated as having completed the transmission process of the dummy packet 44. First, the transmission process of the dummy packet 44 is canceled at the timing when the CW value becomes 0 or at the timing when the CW value becomes a specific value.
 ダミーパケット44の送信処理を取りやめた後、ダミーパケット44の次のパケットをキューの先頭に移動させる。そして、そのパケットのCW値のカウントダウンは行わず、そのままフレーム送信処理に移行する。すなわち、ダミーパケット44が存在していたキューの先頭となったパケットが、ダミーパケット44の代わりにフレーム送信処理を実施する。 After canceling the transmission process of the dummy packet 44, the next packet after the dummy packet 44 is moved to the head of the queue. Then, the CW value of the packet is not counted down, and the frame transmission processing is directly performed. That is, the packet at the head of the queue in which the dummy packet 44 existed performs frame transmission processing instead of the dummy packet 44.
 ダミーパケット44の送信処理を取りやめた後の処理としては、異なるリンクの先頭でCW値カウントダウンを実施していたパケットを、ダミーパケット44が存在していたリンクに移動させ、フレーム送信処理を実施しても良い。 After canceling the transmission process of the dummy packet 44, the packet whose CW value was counted down at the beginning of a different link is moved to the link where the dummy packet 44 existed, and the frame transmission process is executed. It's okay.
 あるいは、ダミーパケット44の送信処理を取りやめる処理のみを行っても良い。すなわち、ダミーパケット44の送信処理を取りやめた後、通常通り、ダミーパケット44の次のパケットをキューの先頭に移動させる。そして、そのパケットのCW値のカウントダウンを始め、続けて通常通りのフレーム送信処理を実施しても良い。 Alternatively, only the process of canceling the transmission process of the dummy packet 44 may be performed. That is, after canceling the transmission process of the dummy packet 44, the next packet after the dummy packet 44 is moved to the head of the queue as usual. Then, the countdown of the CW value of the packet may be started, and then the normal frame transmission processing may be performed.
[本開示のパケットの処理方法]
 パケットの処理方法について示す。図6は、本開示の実施の形態1に係る、パケットの処理方法を示すフローチャートである。まずステップ100で、Upper MAC18が上位レイヤからパケットを受け取る。
[Packet processing method of the present disclosure]
This section describes how to process packets. FIG. 6 is a flowchart illustrating a packet processing method according to Embodiment 1 of the present disclosure. First, in step 100, the Upper MAC 18 receives a packet from an upper layer.
 次にステップ102で、受け取ったパケットの優先度が高いかを確認する。優先度の判定は、後述する基地局のMLD部59で行われる。この判定には、TIDを用いても良い。例えば、予め指定しておいたTID、あるいはそのTID以上に高い優先度を示すTIDが付与されたパケットについて、「優先度が高いパケット」と判定する方法が考えられる。優先度が高い場合、ステップ104に進む。優先度が高くない場合、ステップ108に進む。 Next, in step 102, it is checked whether the received packet has a high priority. The determination of priority is performed by the MLD unit 59 of the base station, which will be described later. TID may be used for this determination. For example, a method may be considered in which a packet to which a prespecified TID or a TID indicating a higher priority than the TID is assigned is determined to be a "high priority packet." If the priority is high, proceed to step 104. If the priority is not high, proceed to step 108.
 ステップ104では、無線通信システムで使用する全リンクを対象に、ダミーパケットが存在するかの確認を行う。無線通信システム100の場合、Lower MAC20a、20b及び20cのそれぞれを含む全てのリンクの中に、ダミーパケットが存在するかを確認する。ダミーパケットが存在する場合、ステップ106に進む。ダミーパケットが存在しない場合、ステップ108に進む。 In step 104, it is checked whether dummy packets exist for all links used in the wireless communication system. In the case of the wireless communication system 100, it is checked whether dummy packets exist in all links including each of the Lower MACs 20a, 20b, and 20c. If a dummy packet exists, proceed to step 106. If there is no dummy packet, the process proceeds to step 108.
 ステップ106では、ダミーパケットと高優先パケットを入れ替える。例えば、Lower MAC20aのキューが保持するパケットの順番を示すタグを、ダミーパケット44と高優先パケット4で入れ替える処理を行う。あるいは、高優先パケット4のビット情報を、ダミーパケット44のビット情報の上に転記する処理を行う。この処理を行うタイミングは、高優先パケット4が発生した直後でも良いし、CW値が特定の値となったときでも良い。 In step 106, the dummy packet and the high priority packet are exchanged. For example, a process is performed in which the tags indicating the order of packets held in the queue of the Lower MAC 20a are replaced with the dummy packet 44 and the high priority packet 4. Alternatively, the bit information of the high priority packet 4 is transferred onto the bit information of the dummy packet 44. This process may be performed immediately after the high priority packet 4 is generated, or when the CW value reaches a specific value.
 ステップ108では、通常のキューイングを行う。すなわち、各Lower MACが保持するパケットを、その種類に関わらず、順番通りに送信する。 In step 108, normal queuing is performed. That is, the packets held by each Lower MAC are transmitted in order, regardless of their types.
 上述の通り、実施の形態1では、マルチリンク機能で使用しているリンクのいずれかに、定期的にダミーパケットを送信する。そして、後のタイミングで高優先パケットが発生した場合、その高優先パケットとダミーパケットを入れ替える。これにより、高優先パケットがいつ発生したとしても、そのキューイング遅延を短縮できる。 As described above, in the first embodiment, a dummy packet is periodically transmitted to any of the links used in the multilink function. If a high-priority packet occurs at a later timing, the high-priority packet and the dummy packet are replaced. This makes it possible to shorten the queuing delay no matter when a high-priority packet occurs.
 なお、ダミーパケットのサイズは、予め既定のサイズを指定しても良い。例えば、設定可能な最大サイズを指定しても良い。または、直前にUpper MACが受け取った高優先パケットのサイズを参照して決定しても良い。ダミーパケットと高優先パケットのサイズが一致しなかった場合は、入れ替え時またはアグリゲーション処理時に、パディングなどの処理をしても良い。 Note that the size of the dummy packet may be specified in advance as a default size. For example, the maximum size that can be set may be specified. Alternatively, the size may be determined by referring to the size of a high-priority packet received by the Upper MAC immediately before. If the sizes of the dummy packet and the high-priority packet do not match, processing such as padding may be performed during replacement or aggregation processing.
[本開示のダミーパケットの管理方法]
 ダミーパケットの管理方法の例について示す。図7は、本開示の実施の形態1に係る、ダミーパケットの管理方法を示すフローチャートである。ここでは、マルチリンク機能を用いてリンクを形成する基地局2が、3本のリンクに順番にダミーパケット44を送信する例を示す。なお、Lower MAC20a、20b及び20cを含む3本のリンクには、予め1、2及び3の番号を割り振ったものとする。
[How to manage dummy packets according to the present disclosure]
An example of how to manage dummy packets will be shown. FIG. 7 is a flowchart illustrating a dummy packet management method according to Embodiment 1 of the present disclosure. Here, an example will be shown in which the base station 2 that forms links using the multilink function transmits dummy packets 44 to three links in order. It is assumed that numbers 1, 2, and 3 are assigned in advance to the three links including the Lower MACs 20a, 20b, and 20c.
 まずステップ110で、Upper MAC18がダミーパケット44を発生させ、リンク1に送信する。ダミーパケット44がリンク1のキューの先頭に到達すると、CW値のカウントダウンが開始される。一定時間が経過すると、ステップ112のように、リンク1のCW値が0となる。 First, in step 110, the Upper MAC 18 generates a dummy packet 44 and transmits it to the link 1. When the dummy packet 44 reaches the head of the link 1 queue, a countdown of the CW value is started. After a certain period of time has elapsed, the CW value of link 1 becomes 0, as in step 112.
 つづけて、ステップ114で、Upper MAC18がダミーパケット44を発生させ、リンク2に送信する。ダミーパケット44がリンク2のキューの先頭に到達すると、CW値のカウントダウンが開始される。一定時間が経過すると、ステップ116のように、リンク2のCW値が0となる。 Continuing, in step 114, the Upper MAC 18 generates a dummy packet 44 and transmits it to the link 2. When the dummy packet 44 reaches the head of the link 2 queue, the CW value starts counting down. After a certain period of time has elapsed, the CW value of link 2 becomes 0, as in step 116.
 つづけて、ステップ118で、Upper MAC18がダミーパケット44を発生させ、リンク3に送信する。ダミーパケット44がリンク3のキューの先頭に到達すると、CW値のカウントダウンが開始される。一定時間が経過すると、ステップ120のように、リンク3のCW値が0となる。これ以後は、ステップ110に戻り、同じ処理を繰り返す。 Continuing, in step 118, the Upper MAC 18 generates a dummy packet 44 and transmits it to the link 3. When the dummy packet 44 reaches the head of the queue of the link 3, a countdown of the CW value is started. After a certain period of time has elapsed, the CW value of link 3 becomes 0, as in step 120. After this, the process returns to step 110 and the same process is repeated.
 なお、ステップ112,116及び120で示したダミーパケット44を発生させるタイミングは、CW値が0以外の特定の値となったときでも良い。 Note that the timing at which the dummy packet 44 shown in steps 112, 116, and 120 is generated may be when the CW value becomes a specific value other than 0.
 また、ダミーパケット44を流すリンクは、予め測定した統計量に基づいて選択しても良い。より具体的には、予め測定した統計量から算出された、PER(Packet Error Rate)値または平均CW値に基づいて選択する方法が考えられる。例えば、最もPER値が低いリンクにダミーパケット44を送信することで、高優先パケット4がPER値の低いリンクに送信されやすくなる。すなわち、高優先パケット4のキューイング遅延を短縮しやすくなる。 Furthermore, the link through which the dummy packet 44 is sent may be selected based on statistics measured in advance. More specifically, a method of selecting based on a PER (Packet Error Rate) value or an average CW value calculated from statistics measured in advance may be considered. For example, by transmitting the dummy packet 44 to the link with the lowest PER value, the high priority packet 4 is more likely to be transmitted to the link with the lowest PER value. That is, it becomes easier to shorten the queuing delay of the high-priority packet 4.
 上述の手順により、ダミーパケットを送信するリンクを適宜変更することで、ダミーパケットによる占有キューサイズを分散できる。また、各リンクの遅延時間は経時的に変化するため、その情報に基づいて送信先を決定することで、遅延時間の小さいリンクに高優先パケットを振り分けられる確率を向上させられる。 According to the above procedure, the size of the occupied queue by dummy packets can be distributed by appropriately changing the link for transmitting dummy packets. Furthermore, since the delay time of each link changes over time, by determining the destination based on this information, it is possible to improve the probability that a high-priority packet can be distributed to a link with a small delay time.
[本開示の無線通信システムが備える装置の構成]
 図8は、本開示の実施の形態1に係る基地局の装置構成を示すブロック図である。まず、基地局2から他の端末へのデータ伝送について説明する。
[Configuration of device included in wireless communication system of the present disclosure]
FIG. 8 is a block diagram showing the device configuration of a base station according to Embodiment 1 of the present disclosure. First, data transmission from the base station 2 to another terminal will be explained.
 基地局2は、LLC部58を備える。LLC部58は、論理リンク制御(Logical Link Control)を行う副層である。LLC部58は、入力されたパケットを、MLD部59に出力する。 The base station 2 includes an LLC section 58. The LLC unit 58 is a sublayer that performs logical link control. LLC section 58 outputs the input packet to MLD section 59.
 MLD部59は、リンクマネジメント部であり、データ処理部60を備える。データ処理部60は、データの処理を行い、基地局測定部62及びダミーパケット管理部64にその結果を出力する。基地局測定部62は、ダミーパケットを流したリンク番号の記録及び各リンクのPER等の測定を実施する。 The MLD section 59 is a link management section and includes a data processing section 60. The data processing unit 60 processes data and outputs the results to the base station measurement unit 62 and dummy packet management unit 64. The base station measurement unit 62 records the link number through which the dummy packet is sent and measures the PER of each link.
 ダミーパケット管理部64は、ダミーパケットを送信するリンクの選択を行う。このリンクの選択は、基地局測定部62で得られた各リンクの情報に基づいて行われる。そして、ダミーパケット管理部64は、選択されたリンクに対応するSTA部に、ダミーパケットを送信する。 The dummy packet management unit 64 selects a link to transmit the dummy packet. This link selection is performed based on information about each link obtained by the base station measuring section 62. Then, the dummy packet management unit 64 transmits the dummy packet to the STA unit corresponding to the selected link.
 またダミーパケット管理部64は、高優先パケットとダミーパケットの入れ替えを行う。さらに、ダミーパケット管理部64は、図3で述べたマルチリンクセットアップを行う。 Additionally, the dummy packet management unit 64 replaces high priority packets and dummy packets. Further, the dummy packet management unit 64 performs the multilink setup described in FIG. 3.
 STA部66a、66b及び66cは、送受信部であり、ダミーパケット管理部64から入力されたパケットを受信する。そして、パケットに含まれるMACフレームを、無線フレームとして他の端末に送信する。なお、他の端末とのデータ送受信は、アンテナを介して行う。 The STA units 66a, 66b, and 66c are transmitting/receiving units, and receive packets input from the dummy packet management unit 64. Then, the MAC frame included in the packet is transmitted to another terminal as a wireless frame. Note that data transmission and reception with other terminals is performed via an antenna.
 次に、他の端末から基地局2へのデータ伝送について説明する。STA部66a、66b及び66cは、他の端末から受信した無線フレームを、ダミーパケット管理部64に出力する。 Next, data transmission from another terminal to the base station 2 will be explained. The STA sections 66a, 66b, and 66c output wireless frames received from other terminals to the dummy packet management section 64.
 ダミーパケット管理部64は、入力された無線フレームが含むMACフレームからヘッダ等の処理を行い、得られたデータをデータ処理部60へ出力する。データ処理部60は、このデータをLLC部58へ出力する。 The dummy packet management unit 64 processes the header and the like from the MAC frame included in the input wireless frame, and outputs the obtained data to the data processing unit 60. The data processing section 60 outputs this data to the LLC section 58.
 図9は、本開示の実施の形態1に係る端末の装置構成を示すブロック図である。まず、端末16から他の端末へのデータ伝送について説明する。 FIG. 9 is a block diagram showing the device configuration of a terminal according to Embodiment 1 of the present disclosure. First, data transmission from the terminal 16 to another terminal will be explained.
 端末16は、LLC部68を備える。LLC部68は、入力されたパケットを、MLD部69に出力する。 The terminal 16 includes an LLC section 68. LLC section 68 outputs the input packet to MLD section 69 .
 MLD部69は、データ処理部70を備える。データ処理部70は、パケットの処理を行い、端末測定部72及びダミーパケット管理部74にその結果を出力する。端末測定部72は、必要に応じて各リンクのPER等を測定する。この測定結果は、無線通信システム内の基地局が有する基地局測定部62に通知される。なお、端末測定部72は、基地局測定部62と同様の機能を備えていても良い。ダミーパケット管理部74は、ダミーパケット管理部64と同様の機能を備える。 The MLD section 69 includes a data processing section 70. The data processing unit 70 processes packets and outputs the results to the terminal measurement unit 72 and the dummy packet management unit 74. The terminal measurement unit 72 measures the PER etc. of each link as necessary. This measurement result is notified to the base station measurement unit 62 included in the base station within the wireless communication system. Note that the terminal measuring section 72 may have the same functions as the base station measuring section 62. The dummy packet management section 74 has the same functions as the dummy packet management section 64.
 STA部76a、76b及び76cは、ダミーパケット管理部74から入力されたパケットを受信する。そして、パケットに含まれるMACフレームを、無線フレームとして他の端末に送信する。なお、他の端末とのデータ送受信は、アンテナを介して行う。 The STA units 76a, 76b, and 76c receive packets input from the dummy packet management unit 74. Then, the MAC frame included in the packet is transmitted to another terminal as a wireless frame. Note that data transmission and reception with other terminals is performed via an antenna.
 次に、他の端末から端末16へのデータ伝送について説明する。STA部76a、76b及び76cは、他の端末から受信した無線フレームを、ダミーパケット管理部74に出力する。 Next, data transmission from another terminal to the terminal 16 will be explained. The STA units 76a, 76b, and 76c output wireless frames received from other terminals to the dummy packet management unit 74.
 ダミーパケット管理部74は、入力された無線フレームが含むMACフレームからヘッダ等の処理を行い、得られたデータをデータ処理部70へ出力する。データ処理部70は、このデータをLLC部68へ出力する。 The dummy packet management unit 74 processes the header and the like from the MAC frame included in the input wireless frame, and outputs the obtained data to the data processing unit 70. The data processing section 70 outputs this data to the LLC section 68.
 なお、端末16は、ダミーパケット管理部74を備えない構成でも良い。この場合、端末16ではダミーパケットを発生させない。端末16は、端末側で測定したPER等の情報のみを基地局に通知する。 Note that the terminal 16 may be configured without the dummy packet management section 74. In this case, the terminal 16 does not generate a dummy packet. The terminal 16 notifies the base station only of information such as PER measured on the terminal side.
 図10は、本開示の実施の形態1に係る、ダミーパケット管理部が保有するデータ例を示す表である。ダミーパケット管理部は、ダミーパケットを管理するため、リンク毎に様々なデータを保有している。ここでは一例として、STA部を3つ備える基地局におけるデータ群を示す。 FIG. 10 is a table showing an example of data held by the dummy packet management unit according to Embodiment 1 of the present disclosure. The dummy packet management unit holds various data for each link in order to manage dummy packets. Here, as an example, a data group in a base station including three STA sections is shown.
 この例では、STA1、2及び3の全てマルチリンク機能に対応している。しかし、STA1及び2のみが、マルチリンク伝送に使用されている。そして、STA1のみが、ダミーパケットの送信先として使用されている。STA1は現在ダミーパケットを有しており、そのCW値は6である。これらのデータに基づき、パケットの振り分けが行われる。 In this example, STAs 1, 2, and 3 all support the multilink function. However, only STAs 1 and 2 are used for multilink transmission. Only STA1 is used as the destination of the dummy packet. STA1 currently has a dummy packet, and its CW value is 6. Based on these data, packets are sorted.
 また、ここではPERの値も保持されている。3つのSTAが示すPERは、異なる値であることが分かる。このPERの値に基づいて、ダミーパケットの送信先リンクを設定することも可能である。 The value of PER is also held here. It can be seen that the PERs shown by the three STAs are different values. It is also possible to set a destination link for the dummy packet based on this PER value.
実施の形態2
 図11は、本開示の実施の形態2に係る無線通信システムの構成例を示す図である。実施の形態2に係る無線通信システムは、一つの基地局に対して複数の端末が無線通信の対象となっている点が、実施の形態1と異なる。
Embodiment 2
FIG. 11 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 2 of the present disclosure. The wireless communication system according to the second embodiment differs from the first embodiment in that a plurality of terminals are targets of wireless communication with one base station.
 無線通信システム200は、基地局2を備える。基地局2は、端末16a、16b及び16cと無線通信を行う。この構成により、複数の端末が対象となるような、広範囲を対象とした無線通信においても、高優先パケットが発生した場合のキューイング遅延を短縮できる。 The wireless communication system 200 includes a base station 2. Base station 2 performs wireless communication with terminals 16a, 16b, and 16c. With this configuration, it is possible to shorten the queuing delay when a high-priority packet occurs even in wireless communication that targets a wide range and targets multiple terminals.
 ダミーパケットを送信するリンクの決定及びダミーパケットの送信割合は、全ての端末16のPERなどを参照しても良いし、特定の端末16のPERなどを参照しても良い。注目する特定の端末16の選択方法としては、最も高優先フレーム送信割合が高い端末を選ぶ方法が例示できる。 The determination of the link for transmitting dummy packets and the transmission rate of dummy packets may be determined by referring to the PER of all terminals 16 or the PER of a specific terminal 16. An example of a method for selecting a particular terminal 16 of interest is a method of selecting a terminal with the highest high-priority frame transmission rate.
 また、ダミーパケットを送信するリンクの選択は、基地局2及び端末16がそれぞれ独立に設定しても良い。あるいは、基地局2と特定の端末16の間で同期するように、または同期しないように設定しても良い。 Furthermore, the selection of the link for transmitting the dummy packet may be set independently by the base station 2 and the terminal 16. Alternatively, the base station 2 and a specific terminal 16 may be set to be synchronized or not synchronized.
 なお、マルチリンク機能で使用している全てのリンクを、ダミーパケットを送信する対象としなくても良い。例えば,レガシー基地局が多く存在するリンクがある場合、そのリンクにダミーパケットを流さないようにしても良い。 Note that it is not necessary to send dummy packets to all links used in the multilink function. For example, if there is a link where many legacy base stations exist, dummy packets may not be sent to that link.
実施の形態3
 図12は、本開示の実施の形態3に係る無線通信システムの構成例を示す図である。実施の形態3に係る無線通信システムは、複数の基地局を束ねるコントローラを設置している点が、実施の形態1と異なる。
Embodiment 3
FIG. 12 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 3 of the present disclosure. The wireless communication system according to the third embodiment differs from the first embodiment in that a controller that bundles a plurality of base stations is installed.
 無線通信システム300は、コントローラ46を備える。コントローラ46は、基地局2a及び2bに接続されている。基地局2aは、端末16aと無線通信を行う。基地局2bは、端末16bと無線通信を行う。この構成により、複数の基地局が対象となるような、広範囲を対象とした無線通信においても、高優先パケットが発生した場合のキューイング遅延を短縮できる。 The wireless communication system 300 includes a controller 46. Controller 46 is connected to base stations 2a and 2b. The base station 2a performs wireless communication with the terminal 16a. The base station 2b performs wireless communication with the terminal 16b. With this configuration, it is possible to shorten the queuing delay when a high-priority packet occurs even in wireless communication that targets a wide area and includes multiple base stations.
 なお、ダミーパケットを流すリンクの選択方法は、各基地局及び端末内で独自に指定しても良い。あるいは、コントローラ46が、接続されている基地局2a及び2bについて、ダミーパケットを送信するリンクを指定しても良い。 Note that the method for selecting the link through which the dummy packet is sent may be independently specified within each base station and terminal. Alternatively, the controller 46 may specify a link for transmitting a dummy packet for the connected base stations 2a and 2b.
 上述の場合、コントローラ46は、端末16が使用しているチャネルの混雑度合いまたはPERなどに基づいて、ダミーパケットを送信するリンクを指定しても良い。例えば、チャネル間でダミーパケット割合に偏りが生じないよう、リンクを指定しても良い。 In the above case, the controller 46 may specify the link to which the dummy packet is to be transmitted based on the degree of congestion or PER of the channel used by the terminal 16. For example, links may be specified so that dummy packet ratios do not vary between channels.
 2、2a、2b 基地局
 4 高優先パケット
 6 パケット
 16、16a、16b 端末
 44 ダミーパケット
 46 コントローラ
 100、200、300、500、600 無線通信システム
2, 2a, 2b base station 4 high priority packet 6 packet 16, 16a, 16b terminal 44 dummy packet 46 controller 100, 200, 300, 500, 600 wireless communication system

Claims (8)

  1.  マルチリンク機能を有する基地局とマルチリンク機能を有する端末とを備え、前記基地局と前記端末とが複数のリンクを介して通信するように構成された無線通信システムであって、
     前記基地局は、
     上位レイヤで発生したパケットを受信するUpper MACと、
     前記リンク毎に存在するLower MACと、を備え、
     ダミーパケットを、前記Upper MACから、前記Lower MACに送信させるダミーパケット送信処理と、
     優先度の高い高優先パケットを、前記ダミーパケットと入れ替える処理と、
     前記Lower MACが有するパケットを、前記リンクを介して前記端末に送信させる処理と
     を実行するように構成された無線通信システム。
    A wireless communication system comprising a base station having a multi-link function and a terminal having a multi-link function, the base station and the terminal communicating through a plurality of links,
    The base station is
    an Upper MAC that receives packets generated in the upper layer;
    Lower MAC that exists for each link,
    dummy packet transmission processing for transmitting a dummy packet from the Upper MAC to the Lower MAC;
    a process of replacing a high-priority packet with the dummy packet;
    A wireless communication system configured to perform the following steps: transmitting a packet possessed by the Lower MAC to the terminal via the link.
  2.  前記ダミーパケット送信処理が、
     前記ダミーパケットのサイズを、直前にUpper MACが受け取った前記高優先パケットのサイズを参照して決定する処理を更に実行するように構成された
     請求項1に記載の無線通信システム。
    The dummy packet transmission process includes:
    The wireless communication system according to claim 1, further configured to perform a process of determining the size of the dummy packet by referring to the size of the high priority packet received by Upper MAC immediately before.
  3.  前記ダミーパケット送信処理が、
     前記ダミーパケットを、一定時間ごとに異なるリンクに送信する処理と、
     前記ダミーパケットを、予め測定した統計量に基づいて選択されたリンクに送信する処理と
     の少なくとも一つを含む請求項1に記載の無線通信システム。
    The dummy packet transmission process includes:
    a process of transmitting the dummy packet to different links at regular intervals;
    The wireless communication system according to claim 1, further comprising at least one of: transmitting the dummy packet to a link selected based on statistics measured in advance.
  4.  前記端末が、複数の端末を含み、
     前記基地局が、前記複数の端末と無線通信を行う
     請求項1に記載の無線通信システム。
    the terminal includes a plurality of terminals,
    The wireless communication system according to claim 1, wherein the base station performs wireless communication with the plurality of terminals.
  5.  前記基地局が、複数の基地局を含み、
     前記複数の基地局を制御するコントローラを備え、
     前記コントローラが、前記ダミーパケットの送信先を指定する
     請求項1に記載の無線通信システム。
    the base station includes a plurality of base stations,
    comprising a controller that controls the plurality of base stations,
    The wireless communication system according to claim 1, wherein the controller specifies a destination of the dummy packet.
  6.  前記端末は、
     上位レイヤで発生したパケットを受信するUpper MACと、
     前記リンク毎に存在するLower MACと、を備え、
     ダミーパケットを、前記Upper MACから、前記Lower MACに送信させる処理と、
     優先度の高い高優先パケットを、前記ダミーパケットと入れ替える処理と、
     前記Lower MACが有するパケットを、前記リンクを介して前記端末に送信させる処理と、を実行するように構成された
     請求項1に記載の無線通信システム。
    The terminal is
    an Upper MAC that receives packets generated in the upper layer;
    Lower MAC that exists for each link,
    a process of transmitting a dummy packet from the Upper MAC to the Lower MAC;
    a process of replacing a high-priority packet with the dummy packet;
    The wireless communication system according to claim 1, wherein the wireless communication system is configured to perform a process of transmitting a packet included in the Lower MAC to the terminal via the link.
  7.  マルチリンク機能を有する基地局とマルチリンク機能を有する端末とを備え、前記基地局と前記端末とが複数のリンクを介して通信するように構成された無線通信システムが行う無線通信方法であって、
     前記基地局が、
     上位レイヤで発生したパケットを受信するUpper MACと、
     前記リンク毎に存在するLower MACと、を備え、
     ダミーパケットを、前記Upper MACから、前記Lower MACに送信させる工程と、
     優先度の高い高優先パケットを、前記ダミーパケットと入れ替える工程と、
     前記Lower MACが有するパケットを、前記リンクを介して前記端末に送信させる工程と
     を備える無線通信方法。
    A wireless communication method carried out by a wireless communication system comprising a base station having a multi-link function and a terminal having a multi-link function, the base station and the terminal communicating through a plurality of links, ,
    The base station,
    an Upper MAC that receives packets generated in the upper layer;
    Lower MAC that exists for each link,
    transmitting a dummy packet from the Upper MAC to the Lower MAC;
    replacing a high-priority packet with the dummy packet;
    A wireless communication method comprising: transmitting a packet possessed by the Lower MAC to the terminal via the link.
  8.  上位レイヤで発生したパケットを受信するUpper MACと、
     リンク毎に存在するLower MACと、を備え、
     ダミーパケットを、前記Upper MACから、前記Lower MACに送信させる機能と、
     優先度の高い高優先パケットを、前記ダミーパケットと入れ替える機能と、
     前記Lower MACが有するパケットを、前記リンクを介して送信させる機能と
     を備える無線通信装置。
    an Upper MAC that receives packets generated in the upper layer;
    Equipped with a Lower MAC that exists for each link,
    a function of transmitting a dummy packet from the Upper MAC to the Lower MAC;
    a function of replacing a high-priority packet with the dummy packet;
    A wireless communication device comprising: a function of transmitting a packet possessed by the Lower MAC via the link.
PCT/JP2022/027281 2022-07-11 2022-07-11 Wireless communication system, wireless communication method, and wireless communication device WO2024013810A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027281 WO2024013810A1 (en) 2022-07-11 2022-07-11 Wireless communication system, wireless communication method, and wireless communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027281 WO2024013810A1 (en) 2022-07-11 2022-07-11 Wireless communication system, wireless communication method, and wireless communication device

Publications (1)

Publication Number Publication Date
WO2024013810A1 true WO2024013810A1 (en) 2024-01-18

Family

ID=89536298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027281 WO2024013810A1 (en) 2022-07-11 2022-07-11 Wireless communication system, wireless communication method, and wireless communication device

Country Status (1)

Country Link
WO (1) WO2024013810A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521138A (en) * 1999-07-09 2003-07-08 マリブ ネットワークス インク. TCP / IP packet-centric wireless transmission system architecture
US20170311204A1 (en) * 2016-04-26 2017-10-26 Laurent Cariou Access point (ap), station (sta) and method for link aggregation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521138A (en) * 1999-07-09 2003-07-08 マリブ ネットワークス インク. TCP / IP packet-centric wireless transmission system architecture
US20170311204A1 (en) * 2016-04-26 2017-10-26 Laurent Cariou Access point (ap), station (sta) and method for link aggregation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KISHIDA, AKIRA: "The impact of the next-generation wireless LAN "IEEE802.11be" that has evolved beyond 30 Gbit/s", NIKKEI NETWORK, no. 263, 1 March 2022 (2022-03-01), JP , pages 36 - 42, XP009552629, ISSN: 1345-482X *

Similar Documents

Publication Publication Date Title
EP1117211B1 (en) Method and system for using weighted polling lists in wireless local area networks
US20120314694A1 (en) Method of Back-off Procedure Setup in a Wireless Communication System
CN101394626B (en) Distributed service differentiating method and device based on WLAN
EP1968261B1 (en) Wireless communication terminal and wireless communication method
CN100581290C (en) Voice packet scheduling method for wireless local area network
US8369350B2 (en) Method for transmitting and receiving frame in wireless LAN
EP1956742A2 (en) Wireless LAN system and transmission method of data thereof
US20050025131A1 (en) Medium access control in wireless local area network
KR20080063749A (en) Media access control architecture
US20080069040A1 (en) Station and access point for edca communication, system thereof and communication method thereof
US20050141480A1 (en) Apparatus and method for transmitting data between wireless and wired networks
JP2000253017A (en) Radio packet control station
WO2020179533A1 (en) Wireless communication system and wireless communication method
JP4335219B2 (en) Wireless LAN traffic priority control method and apparatus
CN112566269B (en) Uplink transmission method and site equipment in Wireless Local Area Network (WLAN)
KR100367088B1 (en) The Transmission Interface Device Of Wireless High Speed Physical Layer For Wiress LAN System
US7508802B2 (en) Method of controlling wireless local network medium access using pseudo-time division multiplexing
WO2006050664A1 (en) System and method for controlling access to a wireless medium
WO2024013810A1 (en) Wireless communication system, wireless communication method, and wireless communication device
WO2024013801A1 (en) Wireless communication system, wireless communication method, and wireless communication device
WO2024013804A1 (en) Wireless communication system, wireless communication method, and wireless communication device
US8509197B2 (en) Media access control method of determining data transmission order in wireless network
KR100684167B1 (en) Periodic media reservation time method for periodic qos data in wlan
US20070133431A1 (en) Media access control method in wireless local area network
WO2024038550A1 (en) Wireless communication system, wireless communication method, and wireless communication control device