WO2024005183A1 - Running form assessment system, program, and method - Google Patents

Running form assessment system, program, and method Download PDF

Info

Publication number
WO2024005183A1
WO2024005183A1 PCT/JP2023/024351 JP2023024351W WO2024005183A1 WO 2024005183 A1 WO2024005183 A1 WO 2024005183A1 JP 2023024351 W JP2023024351 W JP 2023024351W WO 2024005183 A1 WO2024005183 A1 WO 2024005183A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
index
wearer
landing
separation state
Prior art date
Application number
PCT/JP2023/024351
Other languages
French (fr)
Japanese (ja)
Inventor
邦彦 加地
Original Assignee
リオモ インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リオモ インク filed Critical リオモ インク
Publication of WO2024005183A1 publication Critical patent/WO2024005183A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports

Definitions

  • the present invention relates to a system, program, and method for evaluating running form using analysis of hip joint extension.
  • a motion analysis device has an inertial measurement unit (IMU) built into the subject's torso (for example, the right hip, left hip, or the center of the waist).
  • IMU inertial measurement unit
  • Wearing the test subject it captures the subject's movement while running (including walking), calculates speed, position, attitude angle (roll angle, pitch angle), etc., and also analyzes the subject's movement and calculates the subject's running state ( After calculating various types of driving information), changing points in driving conditions are detected, and motion analysis information, which is driving information including changing points in driving conditions, is generated.
  • characteristic points such as landing, stepping, and take-off in the subject's running motion can be detected.
  • landing is detected at the timing when the vertical acceleration (detected value of the z-axis of the acceleration sensor) changes from a positive value to a negative value, and after landing, the vertical acceleration peaks in the negative direction. Thereafter, it is possible to detect the depression at the time when the forward direction acceleration reaches a peak, and to detect the takeoff (kick off) at the time when the vertical direction acceleration changes from a negative value to a positive value.
  • the hip joint is one of the joints in which large human muscles are concentrated and is considered to be a very important joint in running motions.
  • an element of correct running form is to run fast by quickly and greatly extending the hip joints immediately after landing, and for this purpose, the movement before hitting the ground is extremely important, raising the thighs high and We believe that by swinging back and bringing the lower part of the knee back close to the body, the kinetic energy of the entire leg extended forward can be increased, and by hitting the ground, a large reaction force can be obtained, which can be converted into propulsive force. It will be done.
  • the present invention aims to solve the above-mentioned problems, and provides a running form evaluation system, program, and method that can detect the degree and timing of hip joint extension and analyze running form more highly and precisely.
  • the purpose is to provide.
  • the first invention is as follows: It is a system that detects the wearer's body movements and evaluates running form based on changes in body movements.It is attached to each of the wearer's legs and thighs, and measures the three-dimensional displacement or rotation of each part. Based on the detection results from multiple detectable body movement sensors and a pair of body movement sensors, the wearer's leg separation is detected, and each detection result related to the detected separation is extracted as contact/separation state data.
  • a contact/separation state detection unit a contact/separation state detection unit; and an index calculation unit that calculates an index for evaluating the running form based on the behavior of the leg related to the takeoff after taking off from the ground, from the contact/separation state data extracted by the contact/separation state detection unit; , and an output device that displays or outputs the index calculated by the index calculation unit.
  • the present invention also provides a method for detecting body movements of a wearer and evaluating running form based on changes in body movements, comprising: (1) A plurality of body movement sensors capable of detecting three-dimensional displacement or rotation of each part are attached to each of the wearer's legs and thighs, and the contact/separation state detection section is based on a pair of body movement sensors.
  • a contact/separation state detection step of detecting the grounding of the wearer's leg based on the detection results, and extracting each detection result related to the detected grounding/separation as contact/separation state data;
  • Index calculation in which the index calculation unit calculates an index for evaluating running form from the contact/separation state data extracted in the contact/separation state detection step, based on the behavior of the leg related to the takeoff after takeoff. step and (3) An output step in which the output device displays or outputs the index calculated by the index calculation unit.
  • the index calculation unit uses the contact/separation state data to calculate the timing at which the angular acceleration of the leg related to takeoff is reversed and the residence time of the leg before and after that timing as hip joint extension information, and It is preferable to calculate the index based on the behavior of the leg after takeoff, which includes information.
  • the second invention is as follows: It is a system that detects the wearer's body movements and evaluates running form based on changes in body movements.It is attached to each of the wearer's legs and thighs, and measures the three-dimensional displacement or rotation of each part. The landing state of the wearer's legs is detected based on the detection results from multiple detectable body motion sensors and a pair of body motion sensors, and each detection result related to the detected landing state is extracted as contact/separation state data.
  • a landing state detection unit that calculates an index for evaluating running form based on the behavior of the leg related to the landing before landing from the contact state data extracted by the contact state detection unit; and an output device that displays or outputs the index calculated by the unit.
  • the present invention also provides a method for detecting body movements of a wearer and evaluating running form based on changes in body movements, comprising: (1) A plurality of body movement sensors capable of detecting three-dimensional displacement or rotation of each part are attached to each of the wearer's legs and thighs, and the contact/separation state detection section is based on a pair of body movement sensors.
  • a contact/separation state detection step of detecting landing of the wearer's leg based on the detection results and extracting each detection result related to the detected landing as contact/separation state data; (2) an index calculation step in which the index calculation unit calculates an index for evaluating the running form from the contact/separation state data extracted in the contact/separation state detection step, based on the behavior of the leg related to the landing before landing; , (3) An output step in which the output device displays or outputs the index calculated by the index calculation unit.
  • the index calculation unit calculates, as hip joint extension information, the change in angular velocity of the leg related to landing immediately before landing, using the contact/separation state data, and Preferably, the index is calculated based on the behavior.
  • the system and method according to the present invention described above can be realized by executing the program of the present invention written in a predetermined language on a computer.
  • a program of the present invention is installed on an IC chip or memory device of a general-purpose computer such as a mobile terminal device, a smartphone, a wearable terminal, a tablet PC or other information processing terminal, a personal computer or a server computer, and executed on the CPU.
  • a general-purpose computer such as a mobile terminal device, a smartphone, a wearable terminal, a tablet PC or other information processing terminal, a personal computer or a server computer, and executed on the CPU.
  • body movement sensors attached to the thighs of both legs of the wearer detect the take-off of the wearer's legs, and the behavior of the legs after the take-off is detected. Calculate an index to evaluate running form based on.
  • a body motion sensor detects when a wearer's leg leaves the ground, and analyzes the extension of the hip joint based on the behavior of the leg after the leg takes off the ground.
  • the inventor discovered that the kicking leg moves backward in the air and stabilizes the pelvis, causing the hip joint to extend, which stretches the muscles and tendons inside the hip joint, causing a reflex called an extensile contraction. I thought that the legs would be swung forward very efficiently.
  • a body motion sensor attached to the thigh it is possible to measure the degree of extension of the hip joint, quantify the evaluation target of so-called "leg movement”, and analyze it more highly and precisely.
  • the residence time before and after the leg kicks backward is measured.
  • Gyr a fetal movement sensor attached to the thigh, we analyze the movement of the thigh before and after the moment when the leg kicks backwards and switches to swinging out.
  • Amateur runners tend to move very smoothly into a swinging motion without stopping.
  • movements such as Gyr stopping near zero or moving backwards again after stopping are detected. This is thought to be due to the rotation of the lower part of the knee, and in either case, it is thought to be the result of trying to extend the hip joint more forcefully or as a result of the hip joint being extended more strongly.
  • the degree of extension of the hip joint is evaluated by measuring the dwell time near the zero cross of the thigh using Gyr, a body motion sensor attached to the thigh, and comparing the measured dwell time with a threshold value.
  • the dwell time threshold setting can be selected and changed according to user operations, and evaluation indicators such as comparisons between amateur and elite runners are output.
  • the landing of the wearer's legs is detected by a body motion sensor attached to each of the wearer's thighs, and the running form is evaluated based on the behavior of the legs before landing. Calculate the index for
  • the hip joint is one of the joints in which large human muscles are concentrated and is considered to be a very important joint in running motions, and by quickly and greatly extending the hip joint immediately after landing, it is possible to run faster. is considered an element of proper running form.
  • the movement before touching the ground is very important.
  • the kinetic energy of the whole leg that was brought forward is increased and It is believed that this collision generates a large reaction force that can be converted into propulsive force, and many short-distance athletes conduct various types of training for this purpose.
  • the timing of landing is measured by a body motion sensor attached to the thigh, and the change in angular velocity immediately before landing is calculated as hip joint extension information.
  • the timing of deceleration of the thighs is greatly affected by the swinging of the lower part of the knee, and the lowering of the thigh and the lower part of the knee move as a double pendulum in opposite directions, causing a deceleration movement of the thigh.
  • athletes with low skill will stop or significantly slow down the movement of their thighs at this point before landing. In other words, he stopped his thighs and fell and landed.
  • skilled athletes minimize deceleration, accelerate again, and land while swinging their thighs at high speed.
  • a body motion sensor measures the angular velocity from the swing down of the leg to the landing, evaluates the waveform, and evaluates the grouping based on the waveform and the velocity immediately before landing.
  • FIG. 2 is an explanatory diagram showing how the running form evaluation system according to the embodiment is used.
  • FIG. 2 is an explanatory diagram showing an overview of parameters detected by a sensor used in the embodiment.
  • FIG. 2 is a block diagram showing the internal configuration of each device according to the embodiment.
  • FIG. 2 is a sequence diagram showing a running form evaluation method according to an embodiment.
  • FIG. 3 is a flow diagram showing motion analysis processing according to the embodiment. It is an explanatory view showing a part of body motion reproduction data (R_Thing-AccZ and L_Thing-AccZ) acquired in the embodiment. It is an explanatory view showing a part of body movement reproduction data acquired in an embodiment. It is an explanatory view showing a part of body movement reproduction data acquired in an embodiment. It is an explanatory view showing a part of body movement reproduction data acquired in an embodiment. It is an explanatory view showing a part of body movement reproduction data acquired in an embodiment. It is an explanatory view showing a part of body movement reproduction data acquired in an embodiment
  • the present invention is applied to motion analysis of a running competition using the information terminal device 100, and a running form evaluation system that enables coaching regarding training for a running competition is provided.
  • the embodiments described below are intended to exemplify a device for embodying the technical idea of the present invention, and the technical idea of the present invention is based on the material, shape, structure, etc. of each component. The placement etc. are not specified as below.
  • the technical idea of this invention can be modified in various ways within the scope of the claims.
  • FIG. 1 shows how a running form evaluation system using an information terminal device 100 according to the present embodiment is used
  • FIG. 2 shows an overview of parameters detected by the sensor according to the present embodiment
  • FIG. 3 is a block diagram showing the internal configuration of each device.
  • the running form evaluation system according to the present embodiment includes an information terminal device 100 used by a wearer 1, and an information terminal device 100 worn on both thighs of the wearer 1. body movement sensors 40 (40a and 40b) that are wirelessly connected to each other.
  • these body movement sensors 40 are used to perform motion analysis in running competitions, detect the degree and timing of hip joint extension, analyze running form more highly and precisely, and provide indicators for evaluation.
  • This index is obtained by referring to the accumulated index data.
  • an index to be evaluated is determined by referring to index data based on a value related to hip joint extension acquired from body movement data.
  • the body movement sensors 40a and 40b are a pair of sensors that are attached to both the left and right thighs of the wearer 1 and detect three-dimensional displacement or rotation in each thigh.
  • the body motion sensors 40a and 40b are attached to the front surfaces of the left and right thighs of the wearer.
  • These body motion sensors 40a and 40b are equipped with a 3-axis accelerometer that measures the acceleration of an object, a 3-axis gyroscope that detects the angular velocity of the object, and a 3-axis magnetic sensor that measures the magnitude and direction of the magnetic field. Movement of the axis can be detected.
  • these body motion sensors 40 each body motion sensor 40a and 40b each have a wireless communication section.
  • This wireless communication unit has an internal antenna, and has a function to execute a data communication protocol for short-range wireless communication using BTLE (Bluetooth (registered trademark) Low Energy, Bluetooth (registered trademark) 4.0), etc. 100 and communication processing is possible.
  • BTLE Bluetooth (registered trademark) Low Energy, Bluetooth (registered trademark) 4.0
  • the wireless communication unit of each body motion sensor 40 employs BTLE as a protocol for low power consumption communication, but it is also possible to employ, for example, ANT, ANT+, etc. Ordinary Bluetooth (registered trademark) may also be used.
  • the system can basically be constructed within the range of short-range wireless communication between the information terminal device 100 and the body movement sensor 40, and the server etc. on the communication network can be constructed.
  • the system is not connected during actual measurements, and can be operated offline as a standalone system.
  • FIG. 3 shows the internal configuration of the information terminal device according to this embodiment.
  • the information terminal device 100 according to the present embodiment is a small terminal device such as a smartphone, and may be a general rectangular terminal device, such as a wearable terminal such as a wristwatch, a stationary type, a bicycle handle, etc. Various forms can be adopted, such as a mount type. Note that this information terminal device may be stored in a storage device such as a bag when only recording body movement data while driving.
  • the information terminal device 100 includes a wireless interface 113, a control unit 117, a memory 114, an output interface 111, and an input interface 112, as shown in FIG.
  • the information terminal device 100 has a function of collecting detection results detected by each body movement sensor 40, and performs communication processing with each body movement sensor 40 through the wireless interface 113. Detection results from each body movement sensor 40 can be obtained.
  • the memory 114 of the information terminal device 100 functions as a body movement recording unit that records detection results by the body movement sensor 40 as body movement data.
  • body movement data is primary data detected by various sensors
  • body movement reproduction data is secondary data that records and analyzes this body movement data, extracts necessary information, and corrects it. be.
  • sensor identification information for identifying each body movement sensor 40 is added to the detection results transmitted from each body movement sensor 40, and the identification information is accumulated in the memory 114 of the information terminal device 100.
  • the control unit 117 obtains the detection result from the wireless interface 113, it is possible to determine from which body movement sensor 40 the detection result is obtained.
  • this identification information includes attachment site information that specifies the attachment site of each sensor, and based on this attachment site information, it is possible to calculate body movement reproduction data.
  • the body movement data also includes time information when the detection results were acquired from each body movement sensor 40.
  • the wireless interface 113 is a module that controls the transmission and reception of various information via a communication network and short-range wireless communication such as WiFi and Bluetooth (registered trademark), and communicates with each body motion sensor 40 using various protocols. Also, data is sent and received with the server device, etc., using 3G communication.
  • the information terminal device 100 includes an output interface 111 and an input interface 112.
  • the input interface 112 is a device for inputting user operations, such as a mouse, keyboard, operation button, or touch panel.
  • the output interface 111 includes devices that output video and audio, such as a display and a speaker. In particular, this output interface 111 includes a display section such as a liquid crystal display, and this display section is superimposed on a touch panel that is an input interface.
  • the display unit connected to the output interface 111 is an output device that displays or outputs the analysis results for the body movement reproduction data, and displays the display information generated by the display information generation unit 117e through the output interface 111.
  • the palm on this display unit is displayed on a display built into the information terminal device 100 or an external display connected to the outside.
  • the input interface 112 may be provided with a video acquisition section.
  • This video acquisition unit is a device that captures and records video data of the wearer's body movements, and is realized by a general camera built into a smartphone, for example, and allows the wearer to take pictures of himself or herself. In addition to checking form, etc., it is also used to synchronize body movement data acquired by sensors and videos captured by cameras, as described later.
  • the video data acquired here includes video data in which the video is recorded, audio data recorded with the video, and metadata such as time stamps such as shooting time, end time, and elapsed time.
  • a built-in camera 115 built into the information terminal device 100 and an external external camera can be connected to the input interface 112, and video data shot by these shooting means is acquired and stored in the memory 114. Or, it is subjected to processing in the control unit 117.
  • the video data acquired from external cameras also includes video data that is acquired by downloading video data in file format that has been recorded and stored with external cameras after shooting. included.
  • the information terminal device 100 has a function of analyzing the body movement of the wearer and generating body movement reproduction data based on the body movement data acquired from each sensor.
  • the information terminal device 100 includes a control unit 117, as shown in FIG. be.
  • each function of the information terminal device 100 is virtually constructed on the control unit 117 by executing the running form evaluation program of the present invention in the control unit 117.
  • the control unit 117 virtually controls the body movement data acquisition unit 117a, the body movement calculation unit 117b, the analysis unit 117f, and the display information generation unit 117e by executing the running form evaluation application. Constructed.
  • the body movement data acquisition unit 117a is a module that acquires and records body movement data from each body movement sensor 40 via the wireless interface 113, and in this embodiment, wirelessly communicates with each body movement sensor 40a and 40b. and obtain body movement data that is the result of these detections.
  • the body movement data acquisition unit 117a functions as a body movement data recording unit, and temporarily stores body movement data in the memory 114, and stores each detection result by the body movement sensor 40 in the body movement calculation unit 117b. or send it to.
  • the body movement calculation unit 117b calculates body movement data, which is the detection result of the body movement sensors 40a and 40b, stored in the memory 114, which is a body movement recording unit, such as the displacement and rotation of each body movement sensor 40a and 40b, and the like.
  • This module calculates the wearer's body movements as body movement reproduction data based on acceleration, angular velocity, angular acceleration, etc.
  • the body motion data that is each detection result by the body motion sensor 40 is a value measured by a so-called 9-axis sensor, and in this embodiment, the body motion data is a value measured by a so-called 9-axis sensor.
  • the body movements calculated here include the rotation of both left and right thighs around the hip joints during running, vertical, horizontal, and front-back movement and acceleration, the angular velocity of rotation, and temporal changes in this angular velocity. This includes the smoothness of the change.
  • the body motion sensors 40a and 40b are attached to the left and right thighs, and as shown in FIG. This is an exercise for the thighs.
  • the body movement calculation unit 117b calculates the body movement of the wearer based on the body movement data that is each detection result by the body movement sensor 40 and the relative displacement and rotation between the body movement sensors. Calculate as reproduction data. Specifically, the body motion calculation unit 117b calculates the relative displacement, velocity, acceleration, and rotation (angular momentum) between each body motion sensor 40 based on the three-dimensional coordinates, velocity, and acceleration of each body motion sensor 40. Based on this, body movement reproduction data is calculated based on the locus of displacement (body movement) of each body part.
  • the body movement calculation unit 117b first performs a process of detecting feature points of the wearer's running using body movement data that is the detection result of the body movement sensors 40a and 40b.
  • the characteristic points of the wearer's running are the parts of the data corresponding to the detected values, changes thereof, and times (times) that indicate characteristic behavior detected by the body motion sensor, such as landing, stepping, takeoff, etc. Examples include changes in acceleration based on the characteristic body movements of the wearer.
  • the body movement calculation unit 117b performs processing to calculate each value of the ground contact time and the impact time based on the timing of the detected feature point. Specifically, the ground contact time and impact time are calculated from calculated data including feature points, based on the length of time the value lasts and the rate of change within a certain unit time, based on the timing at which the feature point was detected. Calculate each value.
  • the body movement calculation unit 117b includes a reference value setting unit 117d that sets a stable reference value for evaluating the reproducibility of body movement based on body movement reproduction data, a pair of body movement sensors 40a, and The contact/separation state detection section 117c detects the contact/separation state of the wearer's legs based on the detection result by the wearer 40b.
  • the reference value setting unit 117d sets the index calculation unit 117g to a value selected from the average value, maximum value, minimum value, or any representative value within a predetermined period based on the setting operation by the wearer 1 as the reference value. Set. In setting this reference value, for example, the same action is repeated several times at predetermined time intervals, and in addition to the average value, minimum value, and maximum value, the value at the time when wearer 1 considers it to be the best is set as the ideal value. It can be a value.
  • this embodiment is equipped with a database in which reference values of others (many other users, advanced users, professionals, etc.) are linked and accumulated with body movement reproduction data, and ideal values for advanced users and professionals are stored. You can also call up any numerical value from the database and set it.You can also search for body movement reproduction data similar to the input body movement reproduction data and call up the reference value linked to that body movement reproduction data. It can be set in the reference value setting section 117d.
  • the contact/separation state detection unit 117c detects the contact/separation state of the landing and separation of the wearer's legs based on the detected feature points, and converts each detection result related to the detected contact/separation state into contact/separation state data. This is the module to extract as.
  • the approach/separation state detection unit 117c in this embodiment detects detection values and changes thereof that indicate characteristic behavior based on detection values (body movement data) of an acceleration sensor and an angular velocity sensor that constitute a body movement sensor, for example.
  • the range is specified, and a flag is set for data for a length of time included in the range specified as the contact/separation state.
  • the data with this flag set is extracted as contact/separation state data, and the analysis unit 117f generates body movement reproduction data including this contact/separation state data.
  • the body movement data acquired by the body movement calculation unit 117b described above is input to the analysis unit 117f, and based on relative displacement, velocity, acceleration, angular velocity, etc., the momentary movement data of the left and right thighs of the wearer 1 is calculated.
  • Body motion reproduction data is generated from the relative displacement (distance and rotation) of the body and the relative rotational movement of the back and main parts.
  • the analysis unit 117f uses these primary data such as body movement data and contact/separation state data, and secondary data such as body movement reproduction data to evaluate running form based on body movement timing, posture collapse, etc. do.
  • the analysis unit 117f is a module that analyzes each element of the body movement of the wearer 1 item by item based on body movement data, contact/separation state data, and body movement reproduction data.
  • the analysis unit 117f acquires the threshold value from the reference value setting unit 117d and analyzes the reproducibility of the body movement, and also calculates the mutual angular velocity change of each thigh extracted by the body movement calculation unit 117b.
  • It functions as a characteristic analysis section that analyzes the amplitude and fluctuation characteristics of vibration, and the characteristics analyzed here are expressed as a waveform on a timeline defined by amplitude - time, and the After performing processing such as synchronizing with recorded video data, the information is displayed or output on an output device via the display information generation unit 117e.
  • analysis methods by the analysis unit 117f may include generating three-dimensional data that displays the wearer 1 three-dimensionally, or generating two-dimensional data projected on the XY plane. It may also be something that generates data. For example, by extracting model body movement data from the memory 114 in which model body movement data is stored and comparing it with the wearer's body movement reproduction data, deviations from normal body movements can be detected. The improvement data shown may be generated. Furthermore, by registering user information such as gender, height, weight, age, etc. in advance, analysis may be performed based on each user information. Then, the analysis unit 117f transmits the analysis results such as the stereoscopic image data and the improvement data to the information terminal device 100.
  • the analysis unit 117f includes an index calculation unit 117g as a module related to running form evaluation processing, and this index calculation unit 117g includes a residence time calculation unit 117h and a hip extension information generation unit 117i.
  • the index calculation unit 117g is a module that calculates an index for evaluating running form based on the contact/separation state data extracted by the contact/separation state detection unit 117c, and calculates an index for evaluating the running form based on the contact/separation state data.
  • the running form is evaluated based on the behavior after take-off or the behavior of the legs before landing.
  • the residence time calculation unit 117h uses the approach/separation state data to calculate the timing at which the leg related to takeoff is switched, that is, the timing at which the angular acceleration of the leg is reversed, and the residence time of the leg before and after that timing. It is a module.
  • the residence time calculated here is passed to the hip joint extension information generating section 117i and generated as hip joint extension information.
  • the hip extension information generation unit 117i generates the retention time of the leg before and after the switchback timing calculated by the retention time calculation unit 117h as hip joint extension information, and generates the leg retention time after the take-off including this hip joint extension information.
  • An index for evaluating running form is calculated based on the behavior in .
  • the hip joint extension information generation unit 117i uses the contact/separation state data to calculate the change in angular velocity of the leg related to landing immediately before landing as hip joint extension information, and calculates the change in angular velocity of the leg related to landing immediately before landing, including the hip joint extension information, before landing of the leg related to landing. It also has the ability to calculate indicators based on behavior.
  • the index calculation unit 117g evaluates the running performance of the run on the date selected by the wearer, and generates information on the evaluation results, and indicators related to coaching such as how to improve running style, how to shorten time, and training guidance. .
  • the index calculation unit 117g uses various exercise information stored in the memory 114 to compare and analyze the wearer's past running results, or compares and analyzes the wearer's past running results with other wearers. It is possible to compare and analyze the running results of other people and include comparative analysis information, which is information on the analysis results, in the index.
  • the index calculation unit 117g generates comparative analysis information similar to the detailed analysis information for each of the trips on a plurality of dates selected by the wearer, or generates comparative analysis information similar to the detailed analysis information for each trip on the date selected by the wearer. Detailed analysis information and similar comparative analysis information are generated for each of the wearers' past driving.
  • the display information generation unit 117e is a module that generates display information displayed on the output interface 111, and generates display information that displays or outputs the body movement reproduction data analyzed by the analysis unit 117f in correspondence with a moving image.
  • this display information allows a video captured by the built-in camera 115, an external camera, etc. to be displayed on the screen, and can be compared with the body movement reproduction data analyzed by the analysis unit 117f and the timeline. Display in sync. Note that this display information includes display data as well as audio signals and other output control signals.
  • the display screen includes a GUI (Graphical User Interface) for touch operations, and operations on the touch panel on which this GUI is displayed are input to the input interface 112 and can switch the display by the display information generation unit 117e.
  • GUI Graphic User Interface
  • videos of wearer 1 taken with the built-in camera 115 or an external camera can be displayed on the screen, each exercise parameter included in the body movement reproduction data can be individually displayed on the timeline, and the display mode can be switched. By doing so, it is possible to display a video taken from the front of the wearer 1 with a built-in camera of the information terminal device 100, or to display each exercise parameter included in the body movement reproduction data superimposed on the timeline.
  • various other methods can be used to switch the display mode, such as displaying the video in full screen by superimposing the timeline on the video.
  • the memory 114 is a storage device that records various data, including identification information for identifying each information terminal device 100, information on the location where each body motion sensor 40 is attached, and relative positions of the body motion sensors 40 attached to each location. Relationships, the above-mentioned user information, model body movement data, etc. are accumulated.
  • the memory 114 functions as a storage unit that stores index data, and the index data is a correlation between the stability period calculated by the analysis unit 117f, the amount of deviation after the stability period, and the index for evaluating the stabilization ability. This is table data to be held.
  • FIG. 4 shows the recording operation of the running form evaluation system
  • FIG. 5 shows the processing during motion analysis. Note that the processing procedure described below is only an example, and each process may be changed as much as possible. Further, regarding the processing procedure described below, steps can be omitted, replaced, or added as appropriate depending on the embodiment.
  • the wearer 1 wears a pair of body motion sensors 40a and 40b on both left and right thighs. Then, a running form evaluation application, which is a program of the present invention, is started on the information terminal device 100 side, and a measurement start operation is input to the application in order to obtain detection results from each body movement sensor 40. At this time, an operation to start photographing with the external camera is performed as necessary (S201). In response to this measurement start operation, the control unit 117 of the information terminal device 100 performs connection processing with each body movement sensor 40 (S101). After the connection process, each body movement sensor 40 starts detecting the movement of the wearer 1 (S102). Specifically, a body movement sensor 40 attached to the wearer's thigh detects three-dimensional displacement, rotation, or acceleration of each part.
  • each acquired detection result is transmitted to the wireless interface 113 of the information terminal device 100 by weak radio waves via the wireless communication unit of each body movement sensor 40 (S103).
  • the wireless interface 113 of the information terminal device 100 starts acquiring each detection result (S202), it starts recording the detection results by the body movement sensors 40a and 40b as body movement data in the memory 114, which is a body movement recording unit.
  • detection signals transmitted from each body movement sensor 40 are sequentially recorded (S203).
  • the wearer may perform a calibration operation before starting the competition, if necessary.
  • the wearer 1 may perform actions against the body motion sensor 40 within a short period of time, such as jumping, hitting or shaking the body of the wearer 1 or the body motion sensor 40 itself a predetermined number of times, in front of the camera. Perform an action that adds vibration a predetermined number of times.
  • running is started, and during the run, the detection values of the body movement sensor 40 are continuously acquired, and the recording process is continuously executed, and the memory 114 etc. recorded as body movement data.
  • video data captured by a built-in camera built into the information terminal device 100 or an external camera connected to the outside may be acquired, and the video data may be stored in the memory 114 or processed by the control unit 117. served.
  • the data detected by the body movement sensor 40 is analyzed in real time to extract contact/separation state data (S204) and display it on the display unit of the information terminal device 100. As one of these analyses, running form evaluation processing is performed based on the recorded body movement data (S205).
  • step S205 body movement data is collected by the body movement data acquisition unit 117a, and video data is also collected as needed (S301).
  • the body movement data which is the detection value acquired from each sensor, is input as primary data to the display information generation unit 117e and can be directly outputted (S309), and is also input to the body movement calculation unit 117b.
  • Necessary information is extracted, analyzed and corrected by the analysis unit 117f, and input as secondary data, which is body movement reproduction data, to the display information generation unit 117e for output processing.
  • the contact/separation state of the wearer's legs is detected in the contact/separation state detection unit 117c, and each detection result related to the detected contact/separation state is determined as the state on the ground contact side.
  • the approach/separation state detection unit 117c in this embodiment detects, for example, detection values indicating characteristic behavior based on detection values (body movement data) of an acceleration sensor and an angular velocity sensor constituting a body movement sensor, changes thereof, and time ( Based on the timing), feature points are detected, and based on that timing, the time of landing, takeoff, staying, or not touching the ground is determined according to the contact time, impact time, rate of change, and periodicity.
  • the range is specified, and a flag is set for data for a length of time included in the range specified as the contact/separation state. Data with this flag set is extracted as contact/separation state data indicating the state of the ground contact side.
  • the body motion calculation unit 117b and the analysis unit 117f perform evaluation and analysis based on the primary data of each detection result and contact/separation state data by the body motion sensor 40 stored in the memory 114, and also perform evaluation and analysis based on the primary data of the contact/separation state data. Analysis is performed based on body movement reproduction data, which is secondary data calculated based on the relative positional relationship of the body movement sensor 40. First, a running motion analysis step is performed based on the body motion data recorded in the memory 114 (S303). To be more specific, the body movement calculation unit 117b first performs a process of detecting feature points of the wearer's running using body movement data that is the detection result of the body movement sensors 40a and 40b.
  • the characteristic points of the wearer's running are the parts of the data corresponding to the detected values, changes thereof, and times (times) that indicate characteristic behavior detected by the body motion sensor, such as landing, stepping, takeoff, etc. Examples include changes in acceleration based on the characteristic body movements of the wearer.
  • the body movement calculation unit 117b performs processing to calculate each value of the ground contact time and the impact time based on the timing of the detected feature point. Specifically, the ground contact time and impact time are calculated from calculated data including feature points, based on the length of time the value lasts and the rate of change within a certain unit time, based on the timing at which the feature point was detected. Calculate each value.
  • the reference value set by the user's operation can be used as the stability reference value, and the reproducibility may be evaluated by comparing the amount of deviation from the stability reference value.
  • the average value of the parameters related to the repeated motion over a predetermined period (or a predetermined number of times) may be calculated as the stability reference value.
  • the reference value setting unit 117d sets a stable reference value for evaluating the reproducibility of the body movement based on the body movement reproduction data stored in the memory 114 in response to the operation of the wearer 1.
  • a value selected from the average value, maximum value, minimum value, or any representative value within a predetermined period is set as the reference value.
  • the same action is repeated several times at predetermined time intervals, and in addition to the average value, minimum value, and maximum value, the value of the time that wearer 1 thinks is the best
  • the hip joint extension information generation unit 117i calculates the change in angular velocity of the leg immediately before landing (S303), and The timing at which the angular acceleration of the legs is reversed, that is, the timing at which the angular acceleration of the legs is reversed is detected (S304).
  • the residence time calculation unit 117h calculates the residence time of the leg before and after the reversal timing as the residence time after takeoff (S305). Then, the changes in angular velocity and residence time calculated in steps S303, S305, etc. are passed to the hip joint extension information generating section 117i, and generated as hip joint extension information (S306).
  • an index calculation step is executed in which the index calculation unit 117g calculates an evaluation index regarding the running form by referring to the index data based on the results of the running motion analysis (S307).
  • this index as shown in Figures 6 to 10, predetermined extracted contact/separation state data are analyzed, and the number of peaks, the height h of each peak, the length of the tail of the peak (time) B, and the shape of the peak (the sharpness of the peak, the order of elevation, the integral value (area, etc.) per unit time, etc.).
  • the amount of deviation from the stable reference value is constantly monitored to see if it is within a predetermined threshold, and the stable period during which these body movement parameters maintain a stable state is calculated. Good too.
  • the average values from the start of the competition are calculated one after another, and the average value while the average values are within a predetermined amount of change is set as the stability reference value.
  • the stable reference value is updated at any time, and the amount by which the current value deviates from this stable reference value is monitored at any time as a deviation amount.
  • evaluation processing and predetermined diagnostic processing are performed based on the calculated index (S308), and the results of the diagnostic processing and the index are sent to the information terminal device along with synchronized video and body movement reproduction data that can be compared with these.
  • the information is displayed or outputted using the 100 displays, sounds from speakers, etc. (S309).
  • the running form evaluation system and running form evaluation method according to the present embodiment described above executes the running form evaluation program of the present invention written in a predetermined language on a computer.
  • the program of the present invention can be installed on an IC chip or memory device of a general-purpose computer such as a mobile terminal device, a smartphone, a wearable terminal, a mobile PC or other information processing terminal, a personal computer or a server computer, and executed on the CPU. Accordingly, it is possible to construct a system having each of the above-mentioned functions and implement the running form evaluation method.
  • the body movement sensors attached to the thighs of both legs of the wearer detect when the wearer's legs take off from the ground, and the behavior of the legs after the takeoff is detected.
  • An index for evaluating running form is calculated based on the running form. According to this embodiment, by using a body movement sensor attached to the thigh, it is possible to measure the degree of extension of the hip joint, quantify the evaluation target of so-called "leg movement", and perform more advanced and detailed analysis. .
  • the residence time before and after the leg kicks backward is measured, as shown in FIGS. 6 and 7.
  • Gyr a fetal movement sensor attached to the thigh, we analyze the movement of the thigh before and after the moment when the leg kicks backwards and switches to swinging out.
  • the degree of extension of the hip joint is evaluated by measuring the dwell time near the zero cross of the thigh using Gyr, a body motion sensor attached to the thigh, and comparing the measured dwell time with a threshold value.
  • the dwell time threshold setting can be selected and changed according to user operations, and evaluation indicators such as comparisons between amateur and elite runners are output.
  • the landing of the wearer's legs is detected by body motion sensors attached to the thighs of both legs of the wearer, and the running form is evaluated based on the behavior of the legs before landing. Calculate indicators.
  • the timing of landing is measured by a body motion sensor attached to the thigh, and the change in angular velocity immediately before landing is calculated as hip joint extension information.
  • the timing of deceleration of the thighs is greatly affected by the swinging of the lower part of the knee, and the lowering of the thigh and the lower part of the knee move as a double pendulum in opposite directions, causing a deceleration movement of the thigh.
  • athletes with low skill will stop or significantly slow down the movement of their thighs at this point before landing.
  • skilled athletes minimize deceleration, accelerate again, and land while swinging their thighs at high speed.
  • the body movement sensor measures the angular velocity from the time the leg swings down to the landing, as shown in FIGS. Evaluate from the waveform, grouping from the waveform, and evaluate the speed just before landing.
  • the running form evaluation program according to the present embodiment can be distributed through a communication line, and can also be packaged as a package that runs on a stand-alone computer by recording it on a computer-readable recording medium. Can be transferred as an application. Specifically, the information can be recorded on various recording media such as a magnetic recording medium such as a flexible disk or a cassette tape, an optical disc such as a CD-ROM or a DVD-ROM, or a RAM card. According to the computer-readable recording medium on which this program is recorded, it becomes possible to easily implement the above-mentioned system and method using a general-purpose computer or a special-purpose computer, and it also becomes possible to store, transport, and store the program. Installation can be done easily.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

[Problem] To detect the timing and the degree of extension of a hip joint in a running motion and to analyze a running form in detail in an advanced manner. [Solution] The present invention comprises: a plurality of body motion sensors 40a, 40b that are mounted on femoral regions of a wearer and that can detect three-dimensional displacement or rotation at respective sites; a contact-separation state detection unit 117c that detects ground separation of each of the legs of the wearer on the basis of detection results, and extracts, as contact-separation data, each detection result concerning the detected ground separation; an index calculation unit 117g that, from the contact-separation state data extracted by the contact-separation state detection unit 117c, calculates an index for assessing a running form on the basis of motion following the ground separation of each of the legs involved in said ground separation; and an output device for displaying or outputting said index.

Description

ランニングフォーム評価システム、プログラム及び方法Running form evaluation system, program and method
 本発明は、股関節の伸展の解析を応用したランニングフォームを評価するためのシステム、プログラム及び方法に関する。 The present invention relates to a system, program, and method for evaluating running form using analysis of hip joint extension.
 従来、ランニング競技における動作解析では、例えば、特許文献1に開示されたような、競技者が身体に加速度センサーを装着し、身体の動きを計測することで床反力計の計測を代替するという試みもされている。この特許文献1に開示された運動解析システムでは、被験者の胴体部分(例えば、右腰、左腰、又は腰の中央部)に、慣性計測ユニット(IMU:Inertial Measurement Unit)を内蔵した運動解析装置を装着し、被験者の走行(歩行も含む)における動きを捉えて、速度、位置、姿勢角(ロール角、ピッチ角)等を計算し、さらに、被験者の運動を解析し、被験者の走行状態(各種走行情報)を算出後、走行状態の変化点を検出し、走行状態の変化点を含む走行情報である運動解析情報を生成する。 Conventionally, in motion analysis in running competitions, for example, as disclosed in Patent Document 1, athletes wear acceleration sensors on their bodies and measure their body movements, replacing measurements using floor reaction force meters. Attempts have also been made. In the motion analysis system disclosed in Patent Document 1, a motion analysis device has an inertial measurement unit (IMU) built into the subject's torso (for example, the right hip, left hip, or the center of the waist). Wearing the test subject, it captures the subject's movement while running (including walking), calculates speed, position, attitude angle (roll angle, pitch angle), etc., and also analyzes the subject's movement and calculates the subject's running state ( After calculating various types of driving information), changing points in driving conditions are detected, and motion analysis information, which is driving information including changing points in driving conditions, is generated.
 このような特許文献1に開示されたシステムによれば、例えば、被験者の走行運動における着地、踏込、離地等の特徴点を検出することができる。具体的には、上下方向加速度(加速度センサーのz軸の検出値)が正値から負値に変化するタイミングで着地を検出し、着地の後、上下方向加速度が負の方向にピークとなった以降に進行方向加速度がピークになる時点で踏込を検出し、上下方向加速度が負値から正値に変化した時点で離地(蹴り出し)を検出することができる。 According to the system disclosed in Patent Document 1, for example, characteristic points such as landing, stepping, and take-off in the subject's running motion can be detected. Specifically, landing is detected at the timing when the vertical acceleration (detected value of the z-axis of the acceleration sensor) changes from a positive value to a negative value, and after landing, the vertical acceleration peaks in the negative direction. Thereafter, it is possible to detect the depression at the time when the forward direction acceleration reaches a peak, and to detect the takeoff (kick off) at the time when the vertical direction acceleration changes from a negative value to a positive value.
 ところで、ランニング動作においては、腿の振り出しが重要な要素の一つとして挙げられる。この腿の振り出しでは、後方に蹴り出した腿を素早く前方に振り戻すことで、次の着地に向けた準備が効率的に行える。一般的には脚を後方に蹴り出す動きは空中を蹴っても進まないという観点から、離地後の脚は速やかに前方に振り出されるべきと考えられており、離地後に後方に蹴り出す動きを陸上用語では「脚が流れる」と表現され、間違った動きと認識されている。 By the way, in running motion, the swinging of the thighs is one of the important factors. In this thigh swing, by quickly swinging the thigh back forward, you can efficiently prepare for the next landing. Generally speaking, kicking the leg backwards will not progress even if you kick it in the air, so it is thought that the leg should swing forward immediately after taking off the ground, and kicking the leg backwards after taking off the ground. In track and field terminology, this movement is described as ``the legs flowing,'' and is recognized as a wrong movement.
特開2018-143537号公報Japanese Patent Application Publication No. 2018-143537
 しかしながら、実際にはトップ選手であっても、離地後直後に脚を前に振り出す選手はおらず必ず後方に動き、その離地から振り出しまでの時間や角度を見てもアマチュア選手とは大きな差はなく、むしろアマチュア選手よりエリート選手の方が長く大きく動いている、すなわち流れている場合もあることがわかった。 However, in reality, even top athletes do not swing their legs forward immediately after take-off, but always move backwards, and when looking at the time and angle from take-off to swing, they are significantly different from amateur athletes. It was found that there was no difference; in fact, elite athletes moved longer and larger than amateur athletes, in other words, they sometimes flowed.
 本発明者は、ランニングフォームの評価に際し、脚の離地から前方振り出し開始までに重要な要素として「股関節の伸展」に注目し、この股関節の伸展度合いを検出することで、上述した「脚が流れる」という評価の対象をより高度且つ精細に解析できると考えた。また、股関節は人間の大きな筋肉が集中して関係する関節の一つでランニング動作においては非常に重要な関節として考えられている。例えば、着地直後から股関節を素早く大きく伸展させることで速く走ることが正しいランニングフォームの要素であると考えられ、このためには接地前の動きが非常に重要であり、太腿を高く上げ、大きくふり戻し、膝下も身体の近くに振り戻すことで、前に出した脚全体の運動エネルギーを高め、地面にぶつけることで大きな反力を得て、これを推進力に変えることができるものと考えられる。 When evaluating running form, the present inventor focused on "extension of the hip joint" as an important factor from the time the leg takes off the ground to the start of forward swing, and by detecting the degree of extension of the hip joint, the above-mentioned "leg extension" We believe that it is possible to analyze the evaluation target of ``flowing'' in a more advanced and detailed manner. In addition, the hip joint is one of the joints in which large human muscles are concentrated and is considered to be a very important joint in running motions. For example, it is considered that an element of correct running form is to run fast by quickly and greatly extending the hip joints immediately after landing, and for this purpose, the movement before hitting the ground is extremely important, raising the thighs high and We believe that by swinging back and bringing the lower part of the knee back close to the body, the kinetic energy of the entire leg extended forward can be increased, and by hitting the ground, a large reaction force can be obtained, which can be converted into propulsive force. It will be done.
 これに対して、上述した特許文献1のように、単に上下方向加速度(加速度センサーのz軸の検出値)が正値から負値に変化するタイミングで着地等を検出するだけでは、上述した「股関節の伸展」という評価を適正に行えず、効率的なランニングフォームの評価としては不十分であるといえる。 On the other hand, as in Patent Document 1 mentioned above, simply detecting landing etc. at the timing when the vertical acceleration (detection value of the z-axis of the acceleration sensor) changes from a positive value to a negative value does not solve the problem described above. It cannot be properly evaluated as ``extension of the hip joint,'' and it can be said that it is insufficient for evaluating efficient running form.
 そこで、本発明は、上記のような問題を解決するもので、ランニング動作について、股関節の伸展度合いやタイミングを検出し、ランニングフォームをより高度且つ精細に解析できるランニングフォーム評価システム、プログラム及び方法を提供することを目的とする。 Therefore, the present invention aims to solve the above-mentioned problems, and provides a running form evaluation system, program, and method that can detect the degree and timing of hip joint extension and analyze running form more highly and precisely. The purpose is to provide.
 上記課題を解決すべく、第1の発明は、
 装着者の体動を検出し、体動の変化に基づいたランニングフォームを評価するシステムであって、装着者の両脚大腿部のそれぞれに装着され、各部位の三次元的な変位又は回転を検出可能な複数の体動センサーと、一対の体動センサーによる検出結果に基づいて装着者の脚の離地を検出し、検出された離地に係る各検出結果を接離状態データとして抽出する接離状態検出部と、接離状態検出部が抽出した接離状態データから、当該離地に係る脚の離地後における挙動に基づいて、ランニングフォームを評価する指標を算出する指標算出部と、指標算出部が算出した指標を表示又は出力する出力デバイスとを備える。
In order to solve the above problems, the first invention is as follows:
It is a system that detects the wearer's body movements and evaluates running form based on changes in body movements.It is attached to each of the wearer's legs and thighs, and measures the three-dimensional displacement or rotation of each part. Based on the detection results from multiple detectable body movement sensors and a pair of body movement sensors, the wearer's leg separation is detected, and each detection result related to the detected separation is extracted as contact/separation state data. a contact/separation state detection unit; and an index calculation unit that calculates an index for evaluating the running form based on the behavior of the leg related to the takeoff after taking off from the ground, from the contact/separation state data extracted by the contact/separation state detection unit; , and an output device that displays or outputs the index calculated by the index calculation unit.
 また、本発明は、装着者の体動を検出し、体動の変化に基づいたランニングフォームを評価する方法であって、
(1)装着者の両脚大腿部のそれぞれに、各部位の三次元的な変位又は回転を検出可能な複数の体動センサーを装着し、接離状態検出部が、一対の体動センサーによる検出結果に基づいて装着者の脚の離地を検出し、検出された離地に係る各検出結果を接離状態データとして抽出する接離状態検出ステップと、
(2)指標算出部が、接離状態検出ステップにおいて抽出された接離状態データから、当該離地に係る脚の離地後における挙動に基づいて、ランニングフォームを評価する指標を算出する指標算出ステップと、
(3)出力デバイスが、指標算出部が算出した指標を表示又は出力する出力ステップと
を含む。
The present invention also provides a method for detecting body movements of a wearer and evaluating running form based on changes in body movements, comprising:
(1) A plurality of body movement sensors capable of detecting three-dimensional displacement or rotation of each part are attached to each of the wearer's legs and thighs, and the contact/separation state detection section is based on a pair of body movement sensors. a contact/separation state detection step of detecting the grounding of the wearer's leg based on the detection results, and extracting each detection result related to the detected grounding/separation as contact/separation state data;
(2) Index calculation in which the index calculation unit calculates an index for evaluating running form from the contact/separation state data extracted in the contact/separation state detection step, based on the behavior of the leg related to the takeoff after takeoff. step and
(3) An output step in which the output device displays or outputs the index calculated by the index calculation unit.
 上記発明において、指標算出部は、接離状態データを用いて、離地に係る脚の角加速度が反転するタイミング、及びそのタイミング前後における当該脚の滞留時間を股関節伸展情報として算出し、股関節伸展情報を含む当該離地に係る脚の離地後における挙動に基づいて、指標を算出する
ことが好ましい。
In the above invention, the index calculation unit uses the contact/separation state data to calculate the timing at which the angular acceleration of the leg related to takeoff is reversed and the residence time of the leg before and after that timing as hip joint extension information, and It is preferable to calculate the index based on the behavior of the leg after takeoff, which includes information.
 上記課題を解決すべく、第2の発明は、
 装着者の体動を検出し、体動の変化に基づいたランニングフォームを評価するシステムであって、装着者の両脚大腿部のそれぞれに装着され、各部位の三次元的な変位又は回転を検出可能な複数の体動センサーと、一対の体動センサーによる検出結果に基づいて装着者の脚の着地状態を検出し、検出された着地状態に係る各検出結果を接離状態データとして抽出する着地状態検出部と、接離状態検出部が抽出した接離状態データから、当該着地に係る脚の着地前における挙動に基づいて、ランニングフォームを評価する指標を算出する指標算出部と、指標算出部が算出した指標を表示又は出力する出力デバイスとを備える。
In order to solve the above problem, the second invention is as follows:
It is a system that detects the wearer's body movements and evaluates running form based on changes in body movements.It is attached to each of the wearer's legs and thighs, and measures the three-dimensional displacement or rotation of each part. The landing state of the wearer's legs is detected based on the detection results from multiple detectable body motion sensors and a pair of body motion sensors, and each detection result related to the detected landing state is extracted as contact/separation state data. a landing state detection unit; an index calculation unit that calculates an index for evaluating running form based on the behavior of the leg related to the landing before landing from the contact state data extracted by the contact state detection unit; and an output device that displays or outputs the index calculated by the unit.
 また、本発明は、装着者の体動を検出し、体動の変化に基づいたランニングフォームを評価する方法であって、
(1)装着者の両脚大腿部のそれぞれに、各部位の三次元的な変位又は回転を検出可能な複数の体動センサーを装着し、接離状態検出部が、一対の体動センサーによる検出結果に基づいて装着者の脚の着地を検出し、検出された着地に係る各検出結果を接離状態データとして抽出する接離状態検出ステップと、
(2)指標算出部が、接離状態検出ステップにおいて抽出された接離状態データから、当該着地に係る脚の着地前における挙動に基づいて、ランニングフォームを評価する指標を算出する指標算出ステップと、
(3)出力デバイスが、指標算出部が算出した指標を表示又は出力する出力ステップと
を含む。
The present invention also provides a method for detecting body movements of a wearer and evaluating running form based on changes in body movements, comprising:
(1) A plurality of body movement sensors capable of detecting three-dimensional displacement or rotation of each part are attached to each of the wearer's legs and thighs, and the contact/separation state detection section is based on a pair of body movement sensors. a contact/separation state detection step of detecting landing of the wearer's leg based on the detection results and extracting each detection result related to the detected landing as contact/separation state data;
(2) an index calculation step in which the index calculation unit calculates an index for evaluating the running form from the contact/separation state data extracted in the contact/separation state detection step, based on the behavior of the leg related to the landing before landing; ,
(3) An output step in which the output device displays or outputs the index calculated by the index calculation unit.
 上記発明において、指標算出部は、接離状態データを用いて、着地に係る脚の着地直前の角速度の変化を股関節伸展情報として算出し、股関節伸展情報を含む当該着地に係る脚の着地前における挙動に基づいて、指標を算出することが好ましい。 In the above invention, the index calculation unit calculates, as hip joint extension information, the change in angular velocity of the leg related to landing immediately before landing, using the contact/separation state data, and Preferably, the index is calculated based on the behavior.
 なお、上述した本発明に係るシステムや方法は、所定の言語で記述された本発明のプログラムをコンピューター上で実行することにより実現することができる。このような本発明のプログラムを、携帯端末装置やスマートフォン、ウェアラブル端末、タブレットPCその他の情報処理端末、パーソナルコンピューターやサーバーコンピューター等の汎用コンピューターのICチップ、メモリ装置にインストールし、CPU上で実行することにより、上述した各機能を有するシステムを構築して、本発明に係る方法を実施することができる。 Note that the system and method according to the present invention described above can be realized by executing the program of the present invention written in a predetermined language on a computer. Such a program of the present invention is installed on an IC chip or memory device of a general-purpose computer such as a mobile terminal device, a smartphone, a wearable terminal, a tablet PC or other information processing terminal, a personal computer or a server computer, and executed on the CPU. By doing so, it is possible to construct a system having each of the above-mentioned functions and implement the method according to the present invention.
 以上述べたように、第1の発明では、装着者の両脚大腿部のそれぞれに装着した体動センサーによって装着者の脚の離地を検出し、離地に係る脚の離地後における挙動に基づいてランニングフォームを評価する指標を算出する。 As described above, in the first invention, body movement sensors attached to the thighs of both legs of the wearer detect the take-off of the wearer's legs, and the behavior of the legs after the take-off is detected. Calculate an index to evaluate running form based on.
 ランニング動作の中で重要な要素の一つとして腿の振り出しがあり、後方に蹴り出した腿を素早く前に振り戻すことで次の着地に向けた準備が効率的に行える。本発明では、体動センサーによって装着者の脚の離地を検出し、離地に係る脚の離地後における挙動に基づいて股関節の伸展を解析する。本発明者は、蹴り出した脚が空中で後方に動き、且つ骨盤を安定させることで股関節が伸展し、これにより股関節内部の筋肉や腱が伸ばされ、伸張性収縮と呼ばれる反射を起こすなどして非常に効率的に脚が前に振り出されると考えた。本発明によれば、腿に装着した体動センサーを使うことで、この股関節の伸展度合いを計測し、所謂「脚が流れる」という評価の対象を定量化でき、より高度且つ精細に解析できる。 One of the important elements in the running motion is the swing of the thighs, and by quickly swinging the thighs that have been kicked backwards back forward, you can efficiently prepare for the next landing. In the present invention, a body motion sensor detects when a wearer's leg leaves the ground, and analyzes the extension of the hip joint based on the behavior of the leg after the leg takes off the ground. The inventor discovered that the kicking leg moves backward in the air and stabilizes the pelvis, causing the hip joint to extend, which stretches the muscles and tendons inside the hip joint, causing a reflex called an extensile contraction. I thought that the legs would be swung forward very efficiently. According to the present invention, by using a body motion sensor attached to the thigh, it is possible to measure the degree of extension of the hip joint, quantify the evaluation target of so-called "leg movement", and analyze it more highly and precisely.
 詳述すると、本実施形態では、股関節の伸展度合いを定量化するために、後方へ蹴り出した脚の切り返し前後の滞留時間を計測する。腿に装着した胎動センサーのGyrを使うことで、切り返し、すなわち後方へ蹴り出した脚が振り出しに切り替わる時点の前後における腿の動きを解析する。 To be more specific, in this embodiment, in order to quantify the degree of extension of the hip joint, the residence time before and after the leg kicks backward is measured. By using Gyr, a fetal movement sensor attached to the thigh, we analyze the movement of the thigh before and after the moment when the leg kicks backwards and switches to swinging out.
 アマチュアランナーの場合、非常に滑らかに止まることなく振り出し動作に移動する傾向がある。これに対し、エリートランナーではGyrがゼロ付近で止まる、もしくは止まったあともう一度後方に動くといった動きが検出される。これについては、膝下の回転などが影響していると考えられ、いずれの場合もより強く股関節の伸展を行おうとした結果、もしくは股関節を強く進展させた結果であると考えられる。 Amateur runners tend to move very smoothly into a swinging motion without stopping. On the other hand, in elite runners, movements such as Gyr stopping near zero or moving backwards again after stopping are detected. This is thought to be due to the rotation of the lower part of the knee, and in either case, it is thought to be the result of trying to extend the hip joint more forcefully or as a result of the hip joint being extended more strongly.
 本実施形態では、大腿に装着した体動センサーのGyrを用い、腿のゼロクロス付近滞留時間を計測し、計測された滞留時間を閾値と比較することで、股関節の伸展度合いを評価する。滞留時間の閾値の設定は、ユーザー操作に従って選択・変更が可能となっており、アマチュアとエリートランナーの比較などによる評価指標が出力される。 In this embodiment, the degree of extension of the hip joint is evaluated by measuring the dwell time near the zero cross of the thigh using Gyr, a body motion sensor attached to the thigh, and comparing the measured dwell time with a threshold value. The dwell time threshold setting can be selected and changed according to user operations, and evaluation indicators such as comparisons between amateur and elite runners are output.
 一方、第2の発明では、装着者の両脚大腿部のそれぞれに装着した体動センサーによって装着者の脚の着地を検出し、着地に係る脚の着地前における挙動に基づいてランニングフォームを評価する指標を算出する。 On the other hand, in the second invention, the landing of the wearer's legs is detected by a body motion sensor attached to each of the wearer's thighs, and the running form is evaluated based on the behavior of the legs before landing. Calculate the index for
 詳述すると、股関節は人間の大きな筋肉が集中して関係する関節の一つでランニング動作においては非常に重要な関節として考えられており、着地直後から股関節を素早く大きく伸展させることで速く走ることが正しいランニングフォームの要素であると考えられている。このためには接地前の動きが非常に重要であり、太腿を高く上げ、大きくふり戻し、膝下も身体の近くに振り戻すことで、前に出した脚全体の運動エネルギーを高めて地面にぶつけ、これによって大きな反力を得て、これを推進力に変えることができると考えられ、これを目的として多くの短距離選手が様々なトレーニングを行っている。一方で技術の低い選手の場合には、着地直前に太腿の振り戻し動作を止めてしまい、ソフトに着地するという動きをしている傾向があり、このような着地では脚全体の運動エネルギーが下がり、地面からの反力が小さくなってしまいまい、沈み込みの大きなフォームもしくは効率の悪いフォームに繋がる。 To be more specific, the hip joint is one of the joints in which large human muscles are concentrated and is considered to be a very important joint in running motions, and by quickly and greatly extending the hip joint immediately after landing, it is possible to run faster. is considered an element of proper running form. For this purpose, the movement before touching the ground is very important. By raising the thigh high, swinging back sharply, and swinging the lower part of the knee back close to the body, the kinetic energy of the whole leg that was brought forward is increased and It is believed that this collision generates a large reaction force that can be converted into propulsive force, and many short-distance athletes conduct various types of training for this purpose. On the other hand, athletes with low technique tend to stop swinging their thighs just before landing and land softly, and in such a landing, the kinetic energy of the entire leg is The reaction force from the ground will decrease, leading to a form that sinks a lot or a form that is inefficient.
 本発明では、腿に装着した体動センサーで着地のタイミングを計測するとともに、着地直前の角速度の変化を股関節伸展情報として算出する。腿の減速タイミングは膝下の振り出しが大きく関わっており、太腿の振り下ろしと膝下の振り出しが逆方向の動作をする二重振り子として動き、太腿に対して減速の動きが発生する。これについて、技術の低い選手はこのタイミングで太腿の動きを停止もしくは大きく減速させたまま着地に至る。すなわち、腿を止めて落下して着地している。これに対し、技術力のある選手は減速を最低限に抑え、再度加速して高速に腿を振り下ろしながら着地している。本発明では、体動センサーにより、脚の振り下ろしから着地までの角速度を計測し、その波形を評価し波形からのグループ分けや着地直前の速度を評価する。 In the present invention, the timing of landing is measured by a body motion sensor attached to the thigh, and the change in angular velocity immediately before landing is calculated as hip joint extension information. The timing of deceleration of the thighs is greatly affected by the swinging of the lower part of the knee, and the lowering of the thigh and the lower part of the knee move as a double pendulum in opposite directions, causing a deceleration movement of the thigh. Regarding this, athletes with low skill will stop or significantly slow down the movement of their thighs at this point before landing. In other words, he stopped his thighs and fell and landed. In contrast, skilled athletes minimize deceleration, accelerate again, and land while swinging their thighs at high speed. In the present invention, a body motion sensor measures the angular velocity from the swing down of the leg to the landing, evaluates the waveform, and evaluates the grouping based on the waveform and the velocity immediately before landing.
 以上の結果、本発明によれば、ランニング動作について、股関節の伸展度合いやタイミングを検出し、ランニングフォームをより高度且つ精細に解析できる。 As a result of the above, according to the present invention, it is possible to detect the degree and timing of extension of the hip joint in a running motion, and to analyze running form more highly and precisely.
実施形態に係るランニングフォーム評価システムの使用態様を示す説明図である。FIG. 2 is an explanatory diagram showing how the running form evaluation system according to the embodiment is used. 実施形態で用いられるセンサーで検出されるパラメーターの概要を示す説明図である。FIG. 2 is an explanatory diagram showing an overview of parameters detected by a sensor used in the embodiment. 実施形態に係る各装置の内部構成を示すブロック図である。FIG. 2 is a block diagram showing the internal configuration of each device according to the embodiment. 実施形態に係るランニングフォーム評価方法を示すシーケンス図である。FIG. 2 is a sequence diagram showing a running form evaluation method according to an embodiment. 実施形態に係る動作解析処理を示すフロー図である。FIG. 3 is a flow diagram showing motion analysis processing according to the embodiment. 実施形態で取得される体動再現データの一部(R_Thing-AccZ及びL_Thing-AccZ)を示す説明図である。It is an explanatory view showing a part of body motion reproduction data (R_Thing-AccZ and L_Thing-AccZ) acquired in the embodiment. 実施形態で取得される体動再現データの一部を示す説明図である。It is an explanatory view showing a part of body movement reproduction data acquired in an embodiment. 実施形態で取得される体動再現データの一部を示す説明図である。It is an explanatory view showing a part of body movement reproduction data acquired in an embodiment. 実施形態で取得される体動再現データの一部を示す説明図である。It is an explanatory view showing a part of body movement reproduction data acquired in an embodiment. 実施形態で取得される体動再現データの一部を示す説明図である。It is an explanatory view showing a part of body movement reproduction data acquired in an embodiment.
 以下、本発明の第1実施形態について図面を参照して説明する。本実施形態では、情報端末装置100を用いて、ランニング競技の動作解析に本発明を適用し、ランニング競技のトレーニングについてコーチングを可能とするランニングフォーム評価システムを提供する。なお、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置などを例示するものであって、この発明の技術的思想は、各構成部品の材質、形状、構造、配置などを下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。 Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. In this embodiment, the present invention is applied to motion analysis of a running competition using the information terminal device 100, and a running form evaluation system that enables coaching regarding training for a running competition is provided. The embodiments described below are intended to exemplify a device for embodying the technical idea of the present invention, and the technical idea of the present invention is based on the material, shape, structure, etc. of each component. The placement etc. are not specified as below. The technical idea of this invention can be modified in various ways within the scope of the claims.
(ランニングフォーム評価システムの構成)
 図1に本実施形態に係る情報端末装置100を用いたランニングフォーム評価システムの使用態様を示し、図2に本実施形態に係るセンサーで検出されるパラメーターの概要を示す。また、図3は各装置の内部構成を示すブロック図である。図1~図3に示すように、本実施形態に係るランニングフォーム評価システムは、装着者1が使用する情報端末装置100と、装着者1の両大腿部に装着され情報端末装置100に対して無線接続される体動センサー40(40a及び40b)とから構成されている。
(Configuration of running form evaluation system)
FIG. 1 shows how a running form evaluation system using an information terminal device 100 according to the present embodiment is used, and FIG. 2 shows an overview of parameters detected by the sensor according to the present embodiment. Further, FIG. 3 is a block diagram showing the internal configuration of each device. As shown in FIGS. 1 to 3, the running form evaluation system according to the present embodiment includes an information terminal device 100 used by a wearer 1, and an information terminal device 100 worn on both thighs of the wearer 1. body movement sensors 40 (40a and 40b) that are wirelessly connected to each other.
 そして、本システムでは、これら体動センサー40用い、ランニング競技における動作解析を実行し、股関節の伸展度合いやタイミングを検出し、ランニングフォームをより高度且つ精細に解析し、評価する指標を提供する。この指標は、蓄積された指標データを参照することにより求められる。本実施形態では、体動データから取得される、股関節伸展に関する値に基づいて指標データを参照し、評価する指標を求める。 In this system, these body movement sensors 40 are used to perform motion analysis in running competitions, detect the degree and timing of hip joint extension, analyze running form more highly and precisely, and provide indicators for evaluation. This index is obtained by referring to the accumulated index data. In this embodiment, an index to be evaluated is determined by referring to index data based on a value related to hip joint extension acquired from body movement data.
(各装置の構成)
 以下に、本システムを構成する各装置の具体的な内部構成について説明する。
(Configuration of each device)
The specific internal configuration of each device constituting this system will be described below.
(1)体動センサー
 体動センサー40a及び40bは、装着者1の左右の両大腿部に装着され、各大腿部における三次元的な変位又は回転を検出する一対のセンサーである。本実施形態において体動センサー40a及び40bは、装着者の左右大腿部の前面に取り付けられる。これら体動センサー40a及び40bは、物体の加速度を計測する3軸加速度計と、物体の角速度を検出する3軸ジャイロスコープ、磁場の大きさ・方向を計測する3軸磁気センサーが搭載され、9軸の動きを検知可能となっている。
(1) Body Movement Sensor The body movement sensors 40a and 40b are a pair of sensors that are attached to both the left and right thighs of the wearer 1 and detect three-dimensional displacement or rotation in each thigh. In this embodiment, the body motion sensors 40a and 40b are attached to the front surfaces of the left and right thighs of the wearer. These body motion sensors 40a and 40b are equipped with a 3-axis accelerometer that measures the acceleration of an object, a 3-axis gyroscope that detects the angular velocity of the object, and a 3-axis magnetic sensor that measures the magnitude and direction of the magnetic field. Movement of the axis can be detected.
 そして、これらの体動センサー40(各体動センサー40a及び40b)は、図3に示すように、それぞれ無線通信部を有している。この無線通信部は、内部にアンテナを有し、BTLE(Bluetooth(登録商標) Low Energy,Bluetooth(登録商標) 4.0)等による近距離無線通信のデータ通信用プロトコルを実行する機能によって、情報端末装置100と通信処理が可能となっている。なお、本実施形態において、各体動センサー40の無線通信部は、低消費電力通信用のプロトコルとしてBTLEを採用したが、例えば、ANT、ANT+等を採用することもできる。また、通常のBluetooth(登録商標)を採用することもできる。 As shown in FIG. 3, these body motion sensors 40 (each body motion sensor 40a and 40b) each have a wireless communication section. This wireless communication unit has an internal antenna, and has a function to execute a data communication protocol for short-range wireless communication using BTLE (Bluetooth (registered trademark) Low Energy, Bluetooth (registered trademark) 4.0), etc. 100 and communication processing is possible. Note that in this embodiment, the wireless communication unit of each body motion sensor 40 employs BTLE as a protocol for low power consumption communication, but it is also possible to employ, for example, ANT, ANT+, etc. Ordinary Bluetooth (registered trademark) may also be used.
 なお、本実施形態では、基本的に情報端末装置100と体動センサー40との間における近距離無線通信で構築される範囲でシステムが構築可能となっており、通信ネットワーク上のサーバー等とは実際の測定時には接続されず、いわゆるオフラインでのスタンドアローンとして、システムの運用が可能となっている。 In addition, in this embodiment, the system can basically be constructed within the range of short-range wireless communication between the information terminal device 100 and the body movement sensor 40, and the server etc. on the communication network can be constructed. The system is not connected during actual measurements, and can be operated offline as a standalone system.
(2)情報端末装置
 図3に本実施形態に係る情報端末装置の内部構成を示す。本実施形態に係る情報端末装置100は、例えばスマートフォンなどの小型の端末装置であり、一般的な矩形状の端末装置でもよく、腕時計型などのウェアラブル端末や、据え置きタイプ、自転車のハンドル部分等に取付けられるマウント型など、種々の形態を採用することができる。なお、この情報端末装置は、走行中に体動データの記録のみを行うときにはバッグなどの収納具にしまっておいてもよい。
(2) Information terminal device FIG. 3 shows the internal configuration of the information terminal device according to this embodiment. The information terminal device 100 according to the present embodiment is a small terminal device such as a smartphone, and may be a general rectangular terminal device, such as a wearable terminal such as a wristwatch, a stationary type, a bicycle handle, etc. Various forms can be adopted, such as a mount type. Note that this information terminal device may be stored in a storage device such as a bag when only recording body movement data while driving.
 具体的に情報端末装置100は、図3に示すように、無線インターフェース113と、制御部117と、メモリ114と、出力インターフェース111と、入力インターフェース112とを備えている。詳述すると、本実施形態に係る情報端末装置100は、各体動センサー40によって検出された検出結果を収集する機能を有し、無線インターフェース113によって各体動センサー40と相互に通信処理を行って、各体動センサー40による検出結果を取得できるようになっている。情報端末装置100のメモリ114は、体動センサー40による検出結果を体動データとして記録する体動記録部としての機能を果たしている。ここで、体動データとは、各種センサーが検出した一次データであり、この体動データを記録し解析し、必要な情報を抽出したり、補正したりした二次データが体動再現データである。 Specifically, the information terminal device 100 includes a wireless interface 113, a control unit 117, a memory 114, an output interface 111, and an input interface 112, as shown in FIG. Specifically, the information terminal device 100 according to the present embodiment has a function of collecting detection results detected by each body movement sensor 40, and performs communication processing with each body movement sensor 40 through the wireless interface 113. Detection results from each body movement sensor 40 can be obtained. The memory 114 of the information terminal device 100 functions as a body movement recording unit that records detection results by the body movement sensor 40 as body movement data. Here, body movement data is primary data detected by various sensors, and body movement reproduction data is secondary data that records and analyzes this body movement data, extracts necessary information, and corrects it. be.
 なお、各体動センサー40から送信される検出結果には、各体動センサー40を識別するセンサー識別情報が付加されており、情報端末装置100のメモリ114には、当該識別情報が蓄積され、制御部117では無線インターフェース113から取得した際、いずれの体動センサー40から取得した検出結果であるかを判別可能となっている。なお、この識別情報には、各センサーの装着部位を特定する装着部位情報が含まれており、この装着部位情報に基づいて、体動再現データの算出が可能となっている。さらに体動データ内には、各体動センサー40から検出結果を取得した際の時刻情報も含まれている。 Note that sensor identification information for identifying each body movement sensor 40 is added to the detection results transmitted from each body movement sensor 40, and the identification information is accumulated in the memory 114 of the information terminal device 100. When the control unit 117 obtains the detection result from the wireless interface 113, it is possible to determine from which body movement sensor 40 the detection result is obtained. Note that this identification information includes attachment site information that specifies the attachment site of each sensor, and based on this attachment site information, it is possible to calculate body movement reproduction data. Furthermore, the body movement data also includes time information when the detection results were acquired from each body movement sensor 40.
 無線インターフェース113は、通信ネットワークを介した各種情報の送受信や、wifiやBluetooth(登録商標)等の近距離無線通信を制御するモジュールであり、種々のプロトコルにより、各体動センサー40と通信をしたり、3G通信により上記サーバー装置等との間でデータの送受信を行う。さらに、情報端末装置100は、出力インターフェース111と入力インターフェース112とを備えている。入力インターフェース112は、マウス、キーボード、操作ボタンやタッチパネルなどユーザー操作を入力するデバイスである。また、出力インターフェース111には、ディスプレイやスピーカーなど、映像や音響を出力するデバイスが含まれる。特に、この出力インターフェース111には、液晶ディスプレイなどの表示部が含まれるとともに、この表示部は、入力インターフェースであるタッチパネルに重畳されている。 The wireless interface 113 is a module that controls the transmission and reception of various information via a communication network and short-range wireless communication such as WiFi and Bluetooth (registered trademark), and communicates with each body motion sensor 40 using various protocols. Also, data is sent and received with the server device, etc., using 3G communication. Further, the information terminal device 100 includes an output interface 111 and an input interface 112. The input interface 112 is a device for inputting user operations, such as a mouse, keyboard, operation button, or touch panel. Furthermore, the output interface 111 includes devices that output video and audio, such as a display and a speaker. In particular, this output interface 111 includes a display section such as a liquid crystal display, and this display section is superimposed on a touch panel that is an input interface.
 出力インターフェース111に接続された表示部は、体動再現データに対する解析結果を表示又は出力する出力デバイスであり、表示情報生成部117eによって生成された表示情報を、出力インターフェース111を通じて表示する。この表示部に掌は、情報端末装置100に内蔵されたディスプレイや、外部に接続された外部ディスプレイに表示される。 The display unit connected to the output interface 111 is an output device that displays or outputs the analysis results for the body movement reproduction data, and displays the display information generated by the display information generation unit 117e through the output interface 111. The palm on this display unit is displayed on a display built into the information terminal device 100 or an external display connected to the outside.
 一方、入力インターフェース112には動画取得部を設けてもよい。この動画取得部は、装着者の体動を撮影し記録した動画データを取得するデバイスであり、例えばスマートフォンなどに内蔵された一般的なカメラで実現され、装着者が自身を撮影したりすることによってフォームのチェックなどを行える他、後述するようなセンサーが取得した体動データと、カメラが撮影した動画との同期処理を行うためにも用いられる。ここで取得される動画データには、映像が記録された映像データと、その映像とともに録音された音声データ、撮影時刻、終了時刻、時間経過などのタイムスタンプ等のメタデータが含まれる。 On the other hand, the input interface 112 may be provided with a video acquisition section. This video acquisition unit is a device that captures and records video data of the wearer's body movements, and is realized by a general camera built into a smartphone, for example, and allows the wearer to take pictures of himself or herself. In addition to checking form, etc., it is also used to synchronize body movement data acquired by sensors and videos captured by cameras, as described later. The video data acquired here includes video data in which the video is recorded, audio data recorded with the video, and metadata such as time stamps such as shooting time, end time, and elapsed time.
 入力インターフェース112には、情報端末装置100に内蔵された内蔵カメラ115や、外部の外部カメラが接続可能となっており、これらの撮影手段で撮影された動画データが取得され、メモリ114に蓄積されたり、制御部117における処理に供される。なお、外部カメラから取得される動画データには、撮影時に逐次リアルタイムで取得されるストリーミングデータの他、外部カメラで撮影され蓄積されたファイル形式の動画データを撮影後にダウンロードして取得されるものも含まれる。 A built-in camera 115 built into the information terminal device 100 and an external external camera can be connected to the input interface 112, and video data shot by these shooting means is acquired and stored in the memory 114. Or, it is subjected to processing in the control unit 117. In addition to streaming data that is acquired sequentially in real time during shooting, the video data acquired from external cameras also includes video data that is acquired by downloading video data in file format that has been recorded and stored with external cameras after shooting. included.
 また、情報端末装置100は、本実施形態において、各センサーから取得した体動データに基づいて、装着者の体動を解析し、体動再現データを生成する機能を有している。具体的に情報端末装置100は、図3に示すように、制御部117を備えており、この制御部117は、各部を制御する際に必要な種々の演算を行うCPU等の演算処理装置である。なお、情報端末装置100の各機能は、この制御部117において、本発明のランニングフォーム評価プログラムを実行することにより、制御部117上に仮想的に構築される。詳述すると、制御部117は、ランニングフォーム評価アプリケーションが実行されることによって、体動データ取得部117aと、体動算出部117bと、解析部117fと、表示情報生成部117eとが仮想的に構築される。 Furthermore, in the present embodiment, the information terminal device 100 has a function of analyzing the body movement of the wearer and generating body movement reproduction data based on the body movement data acquired from each sensor. Specifically, the information terminal device 100 includes a control unit 117, as shown in FIG. be. Note that each function of the information terminal device 100 is virtually constructed on the control unit 117 by executing the running form evaluation program of the present invention in the control unit 117. To be more specific, the control unit 117 virtually controls the body movement data acquisition unit 117a, the body movement calculation unit 117b, the analysis unit 117f, and the display information generation unit 117e by executing the running form evaluation application. Constructed.
 体動データ取得部117aは、無線インターフェース113を介して、各体動センサー40から体動データを取得して記録するモジュールであり、本実施形態では、各体動センサー40a及び40bと無線通信を行って、これらの検出結果である体動データを取得する。この体動データ取得部117aは、体動データ記録部としての機能を果たし、体動データを一時的にメモリ114内に蓄積したり、体動センサー40による各検出結果を、体動算出部117bに送出したりする。 The body movement data acquisition unit 117a is a module that acquires and records body movement data from each body movement sensor 40 via the wireless interface 113, and in this embodiment, wirelessly communicates with each body movement sensor 40a and 40b. and obtain body movement data that is the result of these detections. The body movement data acquisition unit 117a functions as a body movement data recording unit, and temporarily stores body movement data in the memory 114, and stores each detection result by the body movement sensor 40 in the body movement calculation unit 117b. or send it to.
 体動算出部117bは、体動記録部であるメモリ114に蓄積された体動センサー40a及び40bによる各検出結果である体動データ、例えば各体動センサー40a及び40bの変位や回転、それらの加速度、角速度、角加速度等に基づいて、装着者の体動を体動再現データとして算出するモジュールである。ここで、体動センサー40による各検出結果である体動データは、いわゆる9軸センサーで測定される値であり、本実施形態では、物体に作用する加速度(重力加速度を含む。)の方向と大きさ、物体の角速度(大きさ、方向、中心位置)、磁場の大きさ・方向(方角)である。 The body movement calculation unit 117b calculates body movement data, which is the detection result of the body movement sensors 40a and 40b, stored in the memory 114, which is a body movement recording unit, such as the displacement and rotation of each body movement sensor 40a and 40b, and the like. This module calculates the wearer's body movements as body movement reproduction data based on acceleration, angular velocity, angular acceleration, etc. Here, the body motion data that is each detection result by the body motion sensor 40 is a value measured by a so-called 9-axis sensor, and in this embodiment, the body motion data is a value measured by a so-called 9-axis sensor. These are the size, the angular velocity of the object (size, direction, center position), and the size and direction (direction) of the magnetic field.
 ここで算出される体動としては、ランニング時における左右の両大腿部の股関節を中心とする回転、上下・左右・前後方向の移動や加速度、回転の角速度、この角速度の時間的変化、及びその変化の滑らかさが含まれる。詳述すると、本実施形態では、体動センサー40a及び40bは左右の大腿部に取り付けられ、図2に示すように、センサーによって検出される体動(単発的運動、反復運動)は両大腿部の運動となる。 The body movements calculated here include the rotation of both left and right thighs around the hip joints during running, vertical, horizontal, and front-back movement and acceleration, the angular velocity of rotation, and temporal changes in this angular velocity. This includes the smoothness of the change. To be more specific, in this embodiment, the body motion sensors 40a and 40b are attached to the left and right thighs, and as shown in FIG. This is an exercise for the thighs.
 本実施形態において体動算出部117bは、体動センサー40による各検出結果である体動データと、各体動センサー同士の相対的な変位や回転に基づいて、装着者の体動を体動再現データとして算出する。具体的に、体動算出部117bは各体動センサー40の三次元的な座標、速度及び加速度に基づいて、各体動センサー40間における相対的な変位や速度、加速度及び回転(角運動量)に基づいて、身体各部位の変位(体動)の軌跡に基づいて体動再現データを算出する。 In this embodiment, the body movement calculation unit 117b calculates the body movement of the wearer based on the body movement data that is each detection result by the body movement sensor 40 and the relative displacement and rotation between the body movement sensors. Calculate as reproduction data. Specifically, the body motion calculation unit 117b calculates the relative displacement, velocity, acceleration, and rotation (angular momentum) between each body motion sensor 40 based on the three-dimensional coordinates, velocity, and acceleration of each body motion sensor 40. Based on this, body movement reproduction data is calculated based on the locus of displacement (body movement) of each body part.
 詳述すると、体動算出部117bは、先ず体動センサー40a及び40bの検出結果である体動データを用いて、装着者のランニングにおける特徴点を検出する処理を行う。装着者のランニングにおける特徴点は、体動センサーによる検出結果が特徴的な挙動を示す検出値及びその変化、時間(時刻)に対応するデータの部分であり、例えば、着地、踏込、離地等の装着者の特徴的な体動に基づく加速度の変化などが挙げられる。また、体動算出部117bは、検出された特徴点のタイミングを基準として、接地時間及び衝撃時間の各値を算出する処理を行う。具体的には、特徴点を含む演算データから、特徴点を検出したタイミングを基準として、その値が継続した時間長や、一定の単位時間内における変化率に基づいて、接地時間及び衝撃時間の各値を算出する。 To be more specific, the body movement calculation unit 117b first performs a process of detecting feature points of the wearer's running using body movement data that is the detection result of the body movement sensors 40a and 40b. The characteristic points of the wearer's running are the parts of the data corresponding to the detected values, changes thereof, and times (times) that indicate characteristic behavior detected by the body motion sensor, such as landing, stepping, takeoff, etc. Examples include changes in acceleration based on the characteristic body movements of the wearer. Further, the body movement calculation unit 117b performs processing to calculate each value of the ground contact time and the impact time based on the timing of the detected feature point. Specifically, the ground contact time and impact time are calculated from calculated data including feature points, based on the length of time the value lasts and the rate of change within a certain unit time, based on the timing at which the feature point was detected. Calculate each value.
 そして、本実施形態において体動算出部117bは、体動再現データに基づいて体動の再現性を評価するための安定基準値を設定する基準値設定部117dと、一対の体動センサー40a及び40bによる検出結果に基づいて装着者の脚の接離状態を検出する接離状態検出部117cとを備えている。 In this embodiment, the body movement calculation unit 117b includes a reference value setting unit 117d that sets a stable reference value for evaluating the reproducibility of body movement based on body movement reproduction data, a pair of body movement sensors 40a, and The contact/separation state detection section 117c detects the contact/separation state of the wearer's legs based on the detection result by the wearer 40b.
 基準値設定部117dは、指標算出部117gに対して、装着者1による設定操作に基づいて所定期間内における平均値、最大値、最小値又は任意の代表値から選択された値を基準値として設定する。この基準値の設定操作では、例えば、所定時間間隔をおいて同一の動作を数回繰り返し、その平均値や最小値、最大値の他、装着者1がベストだと思った時点の値を理想値としたりすることができる。また、本実施形態では、他者(多数の他ユーザーや上級者、プロ等)の基準値と、体動再現データとを紐付けて蓄積したデータベースを備えており、上級者やプロの理想値など任意の数値をデータベースから呼び出して設定することもでき、また、入力された体動再現データに類似する体動再現データを検索し、その体動再現データに紐付けられた基準値を呼び出して基準値設定部117dに設定することができる。 The reference value setting unit 117d sets the index calculation unit 117g to a value selected from the average value, maximum value, minimum value, or any representative value within a predetermined period based on the setting operation by the wearer 1 as the reference value. Set. In setting this reference value, for example, the same action is repeated several times at predetermined time intervals, and in addition to the average value, minimum value, and maximum value, the value at the time when wearer 1 considers it to be the best is set as the ideal value. It can be a value. In addition, this embodiment is equipped with a database in which reference values of others (many other users, advanced users, professionals, etc.) are linked and accumulated with body movement reproduction data, and ideal values for advanced users and professionals are stored. You can also call up any numerical value from the database and set it.You can also search for body movement reproduction data similar to the input body movement reproduction data and call up the reference value linked to that body movement reproduction data. It can be set in the reference value setting section 117d.
 接離状態検出部117cは、検出された特徴点に基づいて、装着者の脚の着地及び離地を接離状態を検出し、検出された接離状態に係る各検出結果を接離状態データとして抽出するモジュールである。詳述すると本実施形態における接離状態検出部117cは、例えば体動センサーを構成する加速度センサー及び角速度センサーの検出値(体動データ)などに基づいて特徴的な挙動を示す検出値及びその変化、時間(時刻)に基づいて特徴点を検出し、そのタイミングを基準として、接地時間及び衝撃時間、それらの変化率、周期性に応じて接地している状態若しくは接地していない状態の時間的範囲を特定するとともに、接離状態として特定された範囲に含まれる時間長分のデータにフラグを設定する。このフラグが設定されたデータを接離状態データとして抽出し、解析部117fは、この接離状態データを含めて、体動再現データとして生成する。 The contact/separation state detection unit 117c detects the contact/separation state of the landing and separation of the wearer's legs based on the detected feature points, and converts each detection result related to the detected contact/separation state into contact/separation state data. This is the module to extract as. To be more specific, the approach/separation state detection unit 117c in this embodiment detects detection values and changes thereof that indicate characteristic behavior based on detection values (body movement data) of an acceleration sensor and an angular velocity sensor that constitute a body movement sensor, for example. , detect feature points based on time (time), and use that timing as a reference to calculate the temporal state of being in contact with the ground or not in contact with the ground according to the contact time and impact time, their rate of change, and periodicity. The range is specified, and a flag is set for data for a length of time included in the range specified as the contact/separation state. The data with this flag set is extracted as contact/separation state data, and the analysis unit 117f generates body movement reproduction data including this contact/separation state data.
 上述した体動算出部117bで取得された体動データは、解析部117fへ入力され、相対的な変位や速度、加速度、角速度等に基づいて、装着者1の左右の大腿部それぞれにおける瞬間的な相対的変位(距離や回転)、背部及び要部の相対的な回転運動から体動再現データが生成される。そして、解析部117fは、これらの体動データや接離状態データ等の一次データと、体動再現データなどの二次データとを用いて体動のタイミング、姿勢の崩れ等によってランニングフォームが評価する。 The body movement data acquired by the body movement calculation unit 117b described above is input to the analysis unit 117f, and based on relative displacement, velocity, acceleration, angular velocity, etc., the momentary movement data of the left and right thighs of the wearer 1 is calculated. Body motion reproduction data is generated from the relative displacement (distance and rotation) of the body and the relative rotational movement of the back and main parts. The analysis unit 117f then uses these primary data such as body movement data and contact/separation state data, and secondary data such as body movement reproduction data to evaluate running form based on body movement timing, posture collapse, etc. do.
 詳述すると、解析部117fは、体動データや接離状態データ、体動再現データに基づいて、装着者1の体動の各要素を項目毎に解析するモジュールである。本実施形態では、解析部117fは、基準値設定部117dからの閾値を取得しして体動の再現性を解析するとともに、体動算出部117bが抽出した各大腿部相互の角速度変化や揺動の振幅やゆらぎの特性を解析する特性解析部としての機能を果たし、ここで解析された特性は、例えば、振幅-時間で定義されるタイムライン上に波形として表現され、動作時に装着者を録画したビデオデータと同期すなどの処理がなされたうえで、表示情報生成部117eを介して出力デバイスで表示又は出力される。 To be more specific, the analysis unit 117f is a module that analyzes each element of the body movement of the wearer 1 item by item based on body movement data, contact/separation state data, and body movement reproduction data. In this embodiment, the analysis unit 117f acquires the threshold value from the reference value setting unit 117d and analyzes the reproducibility of the body movement, and also calculates the mutual angular velocity change of each thigh extracted by the body movement calculation unit 117b. It functions as a characteristic analysis section that analyzes the amplitude and fluctuation characteristics of vibration, and the characteristics analyzed here are expressed as a waveform on a timeline defined by amplitude - time, and the After performing processing such as synchronizing with recorded video data, the information is displayed or output on an output device via the display information generation unit 117e.
 なお、この解析部117fによる他の解析方法としては、装着者1を3次元的に表示させた立体的なデータを生成するものであってもよく、また、XY平面に投影した2次元的なデータを生成するものであってもよい。また、例えば、模範となる体動データが蓄積されたメモリ114から、模範となる体動データを抽出し、装着者の体動再現データと比較することで、正常な体動とのズレなどを示した改善データを生成してもよい。さらには、予め、性別、身長、体重、年齢などユーザー情報を登録しておくことで、各ユーザー情報に基づいた解析を行ってもよい。そして、解析部117fは、この立体画像データや改善データなどの解析結果を情報端末装置100に送信する。 Note that other analysis methods by the analysis unit 117f may include generating three-dimensional data that displays the wearer 1 three-dimensionally, or generating two-dimensional data projected on the XY plane. It may also be something that generates data. For example, by extracting model body movement data from the memory 114 in which model body movement data is stored and comparing it with the wearer's body movement reproduction data, deviations from normal body movements can be detected. The improvement data shown may be generated. Furthermore, by registering user information such as gender, height, weight, age, etc. in advance, analysis may be performed based on each user information. Then, the analysis unit 117f transmits the analysis results such as the stereoscopic image data and the improvement data to the information terminal device 100.
 解析部117fは、ランニングフォーム評価処理に係るモジュールとして、指標算出部117gを備えており、この指標算出部117gは、滞留時間算出部117hと、股関節伸展情報生成部117iとを有している。 The analysis unit 117f includes an index calculation unit 117g as a module related to running form evaluation processing, and this index calculation unit 117g includes a residence time calculation unit 117h and a hip extension information generation unit 117i.
 本実施形態において指標算出部117gは、接離状態検出部117cが抽出した接離状態データに基づいてランニングフォームを評価する指標を算出するモジュールであり、接離状態データから離地に係る脚の離地後における挙動、或いは着地に係る脚の着地前における挙動に基づいて、ランニングフォームを評価する。滞留時間算出部117hは、接離状態データを用いて、離地に係る脚が切り替えされるタイミング、すなわち、脚の角加速度が反転するタイミング、及びそのタイミング前後における当該脚の滞留時間を算出するモジュールである。ここで算出された滞留時間は、股関節伸展情報生成部117iに渡されて、股関節伸展情報として生成される。 In this embodiment, the index calculation unit 117g is a module that calculates an index for evaluating running form based on the contact/separation state data extracted by the contact/separation state detection unit 117c, and calculates an index for evaluating the running form based on the contact/separation state data. The running form is evaluated based on the behavior after take-off or the behavior of the legs before landing. The residence time calculation unit 117h uses the approach/separation state data to calculate the timing at which the leg related to takeoff is switched, that is, the timing at which the angular acceleration of the leg is reversed, and the residence time of the leg before and after that timing. It is a module. The residence time calculated here is passed to the hip joint extension information generating section 117i and generated as hip joint extension information.
 股関節伸展情報生成部117iは、滞留時間算出部117hが算出した切り返しのタイミング前後における脚の滞留時間を、股関節伸展情報として形成し、この股関節伸展情報を含む当該離地に係る脚の離地後における挙動に基づいて、ランニングフォームを評価する指標を算出する。股関節伸展情報生成部117iは、接離状態データを用いて、着地に係る脚の着地直前の角速度の変化を股関節伸展情報として算出し、前記股関節伸展情報を含む当該着地に係る脚の着地前における挙動に基づいて指標を算出する機能も有している。 The hip extension information generation unit 117i generates the retention time of the leg before and after the switchback timing calculated by the retention time calculation unit 117h as hip joint extension information, and generates the leg retention time after the take-off including this hip joint extension information. An index for evaluating running form is calculated based on the behavior in . The hip joint extension information generation unit 117i uses the contact/separation state data to calculate the change in angular velocity of the leg related to landing immediately before landing as hip joint extension information, and calculates the change in angular velocity of the leg related to landing immediately before landing, including the hip joint extension information, before landing of the leg related to landing. It also has the ability to calculate indicators based on behavior.
 なお、指標算出部117gは、装着者が選択した日付の走行における走行成績を評価し、評価結果の情報や、走り方の改善方法、タイムの短縮方法、トレーニング指導などのコーチングに関する指標を生成する。指標算出部117gは、メモリ114に記憶されている各種の運動情報を用いて、装着者の過去における複数回の走行結果を比較して分析し、或いは装着者の過去の走行結果を他の装着者の走行結果と比較して分析し、分析結果の情報である比較分析情報を指標に含めることができる。具体的には、指標算出部117gは、装着者が選択した複数の日付各々の走行について、それぞれ詳細分析情報と同様の比較分析情報を生成し、或いは、装着者が選択した日付の走行と他の装着者に関する過去の走行とについて、それぞれ詳細分析情報と同様の比較分析の情報を生成する。 Note that the index calculation unit 117g evaluates the running performance of the run on the date selected by the wearer, and generates information on the evaluation results, and indicators related to coaching such as how to improve running style, how to shorten time, and training guidance. . The index calculation unit 117g uses various exercise information stored in the memory 114 to compare and analyze the wearer's past running results, or compares and analyzes the wearer's past running results with other wearers. It is possible to compare and analyze the running results of other people and include comparative analysis information, which is information on the analysis results, in the index. Specifically, the index calculation unit 117g generates comparative analysis information similar to the detailed analysis information for each of the trips on a plurality of dates selected by the wearer, or generates comparative analysis information similar to the detailed analysis information for each trip on the date selected by the wearer. Detailed analysis information and similar comparative analysis information are generated for each of the wearers' past driving.
 上記表示情報生成部117eは、出力インターフェース111で表示される表示情報を生成するモジュールであり、解析部117fが解析した体動再現データを動画に対応させて表示又は出力する表示情報を生成する。この表示情報は、本実施形態では、内蔵カメラ115や外部カメラ等で撮影した動画を画面上に表示するとともに、これと、解析部117fが解析した体動再現データとタイムラインとを対比可能に同期させて表示する。なお、この表示情報には表示データとともに、音響信号やその他の出力制御信号が含まれる。 The display information generation unit 117e is a module that generates display information displayed on the output interface 111, and generates display information that displays or outputs the body movement reproduction data analyzed by the analysis unit 117f in correspondence with a moving image. In this embodiment, this display information allows a video captured by the built-in camera 115, an external camera, etc. to be displayed on the screen, and can be compared with the body movement reproduction data analyzed by the analysis unit 117f and the timeline. Display in sync. Note that this display information includes display data as well as audio signals and other output control signals.
 また、表示画面には、タッチ操作のためのGUI(Graphical User Interface)が含まれ、このGUIが表示されるタッチパネルに対する操作は、入力インターフェース112に入力され表示情報生成部117eによる表示を切り替えることができる。例えば、内蔵カメラ115や外部カメラで撮影した装着者1の動画を画面に表示したり、タイムラインには体動再現データに含まれる各運動パラメーターを個別的に表示したりでき、表示モードを切り替えることにより、情報端末装置100の内蔵カメラ等で撮影した装着者1を正面から撮影した動画を表示させたり、タイムラインに体動再現データに含まれる各運動パラメーターを重ね合わせて表示することもできる。なお、表示モードを切り替える他の様式としては、例えば、動画にタイムラインを重ね合わせて全画面表示するなど種々の方法を採用することができる。 Further, the display screen includes a GUI (Graphical User Interface) for touch operations, and operations on the touch panel on which this GUI is displayed are input to the input interface 112 and can switch the display by the display information generation unit 117e. can. For example, videos of wearer 1 taken with the built-in camera 115 or an external camera can be displayed on the screen, each exercise parameter included in the body movement reproduction data can be individually displayed on the timeline, and the display mode can be switched. By doing so, it is possible to display a video taken from the front of the wearer 1 with a built-in camera of the information terminal device 100, or to display each exercise parameter included in the body movement reproduction data superimposed on the timeline. . Note that various other methods can be used to switch the display mode, such as displaying the video in full screen by superimposing the timeline on the video.
 メモリ114は、各種のデータを記録する記憶装置であり、各情報端末装置100を識別する識別情報や、各体動センサー40の装着部位情報、各部位に装着された体動センサー40の相対位置関係、及び上述したユーザー情報や模範となる体動データなどが蓄積されている。メモリ114は、指標データ記憶する記憶部としての機能を果たしており、指標データは、解析部117fが算出した安定期間と、安定期間以降の乖離量と、安定化能力を評価する指標との相関を保持するテーブルデータである。 The memory 114 is a storage device that records various data, including identification information for identifying each information terminal device 100, information on the location where each body motion sensor 40 is attached, and relative positions of the body motion sensors 40 attached to each location. Relationships, the above-mentioned user information, model body movement data, etc. are accumulated. The memory 114 functions as a storage unit that stores index data, and the index data is a correlation between the stability period calculated by the analysis unit 117f, the amount of deviation after the stability period, and the index for evaluating the stabilization ability. This is table data to be held.
(ランニングフォーム評価方法)
 以上の構成を有するランニングフォーム評価システムを動作させることによって、本実施形態に係るランニングフォーム評価方法を実施することができる。図4にランニングフォーム評価システムの記録動作を示し、図5に動作解析時における処理を示す。なお、以下で説明する処理手順は一例に過ぎず、各処理は可能な限り変更されてもよい。また、以下で説明する処理手順について、実施の形態に応じて、適宜、ステップの省略、置換及び追加が可能である。
(Running form evaluation method)
By operating the running form evaluation system having the above configuration, the running form evaluation method according to the present embodiment can be implemented. FIG. 4 shows the recording operation of the running form evaluation system, and FIG. 5 shows the processing during motion analysis. Note that the processing procedure described below is only an example, and each process may be changed as much as possible. Further, regarding the processing procedure described below, steps can be omitted, replaced, or added as appropriate depending on the embodiment.
(1)記録動作
 先ず、装着者1は、左右の両大腿部に一対の体動センサー40a及び40bを装着する。そして、情報端末装置100側で本発明のプログラムであるランニングフォーム評価アプリケーションを起動し、各体動センサー40から検出結果を取得すべくアプリケーションに対して計測開始操作を入力する。このとき必要に応じて外部カメラの撮影開始操作を行う(S201)。この計測開始操作を受けて、情報端末装置100の制御部117は、各体動センサー40と接続処理を行う(S101)。接続処理された後、各体動センサー40では、装着者1の動作の検出を開始する(S102)。具体的には、装着者の大腿部に取り付けられた体動センサー40により各部位の三次元的な変位、回転又は加速度を検出する。
(1) Recording operation First, the wearer 1 wears a pair of body motion sensors 40a and 40b on both left and right thighs. Then, a running form evaluation application, which is a program of the present invention, is started on the information terminal device 100 side, and a measurement start operation is input to the application in order to obtain detection results from each body movement sensor 40. At this time, an operation to start photographing with the external camera is performed as necessary (S201). In response to this measurement start operation, the control unit 117 of the information terminal device 100 performs connection processing with each body movement sensor 40 (S101). After the connection process, each body movement sensor 40 starts detecting the movement of the wearer 1 (S102). Specifically, a body movement sensor 40 attached to the wearer's thigh detects three-dimensional displacement, rotation, or acceleration of each part.
 次いで、取得された各検出結果は、各体動センサー40の無線通信部を介して、微弱電波により情報端末装置100の無線インターフェース113へと送信される(S103)。情報端末装置100の無線インターフェース113が各検出結果の取得が開始されると(S202)、体動記録部であるメモリ114に、体動センサー40a及び40bによる検出結果を体動データとして記録を開始し、継続して各体動センサー40から送信されてくる検出信号を順次記録してゆく(S203)。この際、必要に応じて競技を開始する前に、装着者はキャリブレーション操作を行ってもよい。具体的には、例えば、カメラの前で、ジャンプしたり装着者1自身の体や体動センサー40自体を所定か数だけ叩いたり揺すったりするなど、短時間中に体動センサー40に対して所定回数振動を加えるような動作を行う。 Next, each acquired detection result is transmitted to the wireless interface 113 of the information terminal device 100 by weak radio waves via the wireless communication unit of each body movement sensor 40 (S103). When the wireless interface 113 of the information terminal device 100 starts acquiring each detection result (S202), it starts recording the detection results by the body movement sensors 40a and 40b as body movement data in the memory 114, which is a body movement recording unit. Then, detection signals transmitted from each body movement sensor 40 are sequentially recorded (S203). At this time, the wearer may perform a calibration operation before starting the competition, if necessary. Specifically, for example, the wearer 1 may perform actions against the body motion sensor 40 within a short period of time, such as jumping, hitting or shaking the body of the wearer 1 or the body motion sensor 40 itself a predetermined number of times, in front of the camera. Perform an action that adds vibration a predetermined number of times.
 次いで、ランニングを開始し、ランニング中は継続して体動センサー40の検出値の取得し、及び録画処理が継続して実行され、計測が終了しない限り(S206における「N」)、メモリ114等に体動データとして記録される。このとき情報端末装置100に内蔵された内蔵カメラや、外部に接続された外部カメラで撮影された動画データを取得してもよく、その動画データがメモリ114に蓄積されたり、制御部117における処理に供される。この間、体動センサー40による検出データを、リアルタイムで解析して、接離状態データを抽出しつつ(S204)、情報端末装置100の表示部に表示する。この解析の1つとして、記録された体動データに基づいてランニングフォームの評価処理が行われる(S205)。 Next, running is started, and during the run, the detection values of the body movement sensor 40 are continuously acquired, and the recording process is continuously executed, and the memory 114 etc. recorded as body movement data. At this time, video data captured by a built-in camera built into the information terminal device 100 or an external camera connected to the outside may be acquired, and the video data may be stored in the memory 114 or processed by the control unit 117. served. During this time, the data detected by the body movement sensor 40 is analyzed in real time to extract contact/separation state data (S204) and display it on the display unit of the information terminal device 100. As one of these analyses, running form evaluation processing is performed based on the recorded body movement data (S205).
 その後、例えば、一定時間以上の静止状態を検出したり、装着者の終了操作を検出することによって、競技の終了を検知し、計測を終了するとともに(S206における「Y」)、必要に応じて録画処理を停止する(S207)。その後、各センサーとの通信を切断する(S104)。 Thereafter, for example, by detecting a stationary state for a certain period of time or more or by detecting an end operation by the wearer, the end of the competition is detected, and the measurement is ended ("Y" in S206), and the The recording process is stopped (S207). After that, communication with each sensor is cut off (S104).
(2)ランニングフォーム評価処理
 次いで、上記ステップS205におけるランニングフォーム評価処理について詳述する。図5に示すように、体動データ取得部117aにより体動データが収集されるとともに、必要に応じて動画データが収集される(S301)。このとき、各センサーから取得された検出値である体動データは、一次データとして表示情報生成部117eに入力され直接出力処理(S309)することができるとともに、体動算出部117bに入力されて必要な情報が抽出され、解析部117fにおいて解析されたり補正されたりして体動再現データである二次データとして表示情報生成部117eに入力され出力処理されることとなる。
(2) Running Form Evaluation Process Next, the running form evaluation process in step S205 will be described in detail. As shown in FIG. 5, body movement data is collected by the body movement data acquisition unit 117a, and video data is also collected as needed (S301). At this time, the body movement data, which is the detection value acquired from each sensor, is input as primary data to the display information generation unit 117e and can be directly outputted (S309), and is also input to the body movement calculation unit 117b. Necessary information is extracted, analyzed and corrected by the analysis unit 117f, and input as secondary data, which is body movement reproduction data, to the display information generation unit 117e for output processing.
 体動算出部117bに入力された一次データについては、接離状態検出部117cにおいて装着者の脚の接離状態が検出され、検出された接離状態に係る各検出結果が、接地側の状態を示す接離状態データとして抽出される(S302)。本実施形態における接離状態検出部117cは、例えば体動センサーを構成する加速度センサー及び角速度センサーの検出値(体動データ)などに基づいて特徴的な挙動を示す検出値及びその変化、時間(時刻)に基づいて特徴点が検出され、そのタイミングを基準として、接地時間及び衝撃時間、それらの変化率、周期性に応じて着地、離地、滞留の状態若しくは接地していない状態の時間的範囲を特定するとともに、接離状態として特定された範囲に含まれる時間長分のデータにフラグを設定する。このフラグが設定されたデータを、接地側の状態を示す接離状態データとして抽出される。 Regarding the primary data input to the body movement calculation unit 117b, the contact/separation state of the wearer's legs is detected in the contact/separation state detection unit 117c, and each detection result related to the detected contact/separation state is determined as the state on the ground contact side. (S302). The approach/separation state detection unit 117c in this embodiment detects, for example, detection values indicating characteristic behavior based on detection values (body movement data) of an acceleration sensor and an angular velocity sensor constituting a body movement sensor, changes thereof, and time ( Based on the timing), feature points are detected, and based on that timing, the time of landing, takeoff, staying, or not touching the ground is determined according to the contact time, impact time, rate of change, and periodicity. The range is specified, and a flag is set for data for a length of time included in the range specified as the contact/separation state. Data with this flag set is extracted as contact/separation state data indicating the state of the ground contact side.
 そして、体動算出部117b及び解析部117fによって、メモリ114に蓄積された体動センサー40による各検出結果及び接離状態データの一次データに基づく評価・解析を行うとともに、これらの一次データと各体動センサー40の相対位置関係に基づいて算出された二次データである体動再現データとに基づく解析を行う。先ず、メモリ114に記録された体動データに基づいてランニング動作解析ステップを行う(S303)。詳述すると、体動算出部117bが、先ず体動センサー40a及び40bの検出結果である体動データを用いて、装着者のランニングにおける特徴点を検出する処理を行う。 Then, the body motion calculation unit 117b and the analysis unit 117f perform evaluation and analysis based on the primary data of each detection result and contact/separation state data by the body motion sensor 40 stored in the memory 114, and also perform evaluation and analysis based on the primary data of the contact/separation state data. Analysis is performed based on body movement reproduction data, which is secondary data calculated based on the relative positional relationship of the body movement sensor 40. First, a running motion analysis step is performed based on the body motion data recorded in the memory 114 (S303). To be more specific, the body movement calculation unit 117b first performs a process of detecting feature points of the wearer's running using body movement data that is the detection result of the body movement sensors 40a and 40b.
 装着者のランニングにおける特徴点は、体動センサーによる検出結果が特徴的な挙動を示す検出値及びその変化、時間(時刻)に対応するデータの部分であり、例えば、着地、踏込、離地等の装着者の特徴的な体動に基づく加速度の変化などが挙げられる。また、体動算出部117bは、検出された特徴点のタイミングを基準として、接地時間及び衝撃時間の各値を算出する処理を行う。具体的には、特徴点を含む演算データから、特徴点を検出したタイミングを基準として、その値が継続した時間長や、一定の単位時間内における変化率に基づいて、接地時間及び衝撃時間の各値を算出する。 The characteristic points of the wearer's running are the parts of the data corresponding to the detected values, changes thereof, and times (times) that indicate characteristic behavior detected by the body motion sensor, such as landing, stepping, takeoff, etc. Examples include changes in acceleration based on the characteristic body movements of the wearer. Further, the body movement calculation unit 117b performs processing to calculate each value of the ground contact time and the impact time based on the timing of the detected feature point. Specifically, the ground contact time and impact time are calculated from calculated data including feature points, based on the length of time the value lasts and the rate of change within a certain unit time, based on the timing at which the feature point was detected. Calculate each value.
 なお、このランニング動作解析ステップでは、ユーザーが操作によって設定した基準値を安定性基準値として用いることができ、その安定性基準値からの乖離量を比較することにより再現性を評価してもよく、複数回反復される動作であるときには、その反復運動に関するパラメーターの所定期間(若しくは所定回数)にわたる平均値を安定基準値として算出してもよい。 In addition, in this running motion analysis step, the reference value set by the user's operation can be used as the stability reference value, and the reproducibility may be evaluated by comparing the amount of deviation from the stability reference value. When the motion is repeated multiple times, the average value of the parameters related to the repeated motion over a predetermined period (or a predetermined number of times) may be calculated as the stability reference value.
 この基準値の設定については、基準値設定部117dが、装着者1の操作に応じ、メモリ114に蓄積された体動再現データに基づいて、体動の再現性を評価するための安定基準値を設定する。具体的には、装着者1による設定操作に基づいて所定期間内における平均値、最大値、最小値又は任意の代表値から選択された値を基準値として設定する。例えば、この基準値の設定操作では、例えば、所定時間間隔をおいて同一の動作を数回繰り返し、その平均値や最小値、最大値の他、装着者1がベストだと思った回の値を理想値としたり、上級者やプロの理想値など任意の数値を入力して設定することもできる。 Regarding the setting of this reference value, the reference value setting unit 117d sets a stable reference value for evaluating the reproducibility of the body movement based on the body movement reproduction data stored in the memory 114 in response to the operation of the wearer 1. Set. Specifically, based on a setting operation by the wearer 1, a value selected from the average value, maximum value, minimum value, or any representative value within a predetermined period is set as the reference value. For example, in the setting operation of this reference value, for example, the same action is repeated several times at predetermined time intervals, and in addition to the average value, minimum value, and maximum value, the value of the time that wearer 1 thinks is the best It is also possible to input and set an arbitrary value such as the ideal value or the ideal value for advanced users or professionals.
 次いで、ステップS302における接離状態検出部117cが抽出した接離状態データに基づいて、股関節伸展情報生成部117iが、着地に係る脚の着地直前の角速度の変化を算出するとともに(S303)、脚が切り返えされるタイミング、すなわち、脚の角加速度が反転するタイミングを検出する(S304)。この反転されるタイミングの前後における当該脚の滞留時間を、離地後における滞留時間として滞留時間算出部117hが算出する(S305)。そして、ステップステップS303及びS305等で算出された角速度の変化や滞留時間は、股関節伸展情報生成部117iに渡されて、股関節伸展情報として生成される(S306)。 Next, based on the contact/separation state data extracted by the contact/separation state detection unit 117c in step S302, the hip joint extension information generation unit 117i calculates the change in angular velocity of the leg immediately before landing (S303), and The timing at which the angular acceleration of the legs is reversed, that is, the timing at which the angular acceleration of the legs is reversed is detected (S304). The residence time calculation unit 117h calculates the residence time of the leg before and after the reversal timing as the residence time after takeoff (S305). Then, the changes in angular velocity and residence time calculated in steps S303, S305, etc. are passed to the hip joint extension information generating section 117i, and generated as hip joint extension information (S306).
 そして、ランニング動作解析の結果に基づいて指標データを参照し、ランニングフォームに関する評価の指標を、指標算出部117gによって算出する指標算出ステップを実行する(S307)。この指標の算出では、図6~図10に示すように、所定の抽出された接離状態データについて分析を行い、ピークの数、各ピークの高さh、ピークの裾の長さ(時間)B、及びピークの形状(ピークの鋭さ、高低の順序、単位時間当たりの積分値(面積等)など)を認識する。同図(b)に示すように、ピークが複数あるときには、それぞれのピークの高さh1及びh2、ピークの裾の長さ(時間)B1及びB2、及びピークの形状、ピーク間の距離(時間差)を認識する。 Then, an index calculation step is executed in which the index calculation unit 117g calculates an evaluation index regarding the running form by referring to the index data based on the results of the running motion analysis (S307). In calculating this index, as shown in Figures 6 to 10, predetermined extracted contact/separation state data are analyzed, and the number of peaks, the height h of each peak, the length of the tail of the peak (time) B, and the shape of the peak (the sharpness of the peak, the order of elevation, the integral value (area, etc.) per unit time, etc.). As shown in Figure (b), when there are multiple peaks, the heights h1 and h2 of each peak, the lengths of the tails of the peaks (time) B1 and B2, the shape of the peaks, the distance between the peaks (time difference) ).
 また、この指標算出ステップでは、安定基準値からの乖離量が所定の閾値内に収まっているかを随時監視し、これら体動のパラメーターが安定状態を維持していた安定期間を算出するようにしてもよい。例えば、競技開始からの平均値を順次算出し、その平均値が所定の変化量内に収まっている間の平均値を安定基準値とする。安定基準値は、随時に更新され、現在値がこの安定基準値から離れた量を乖離量として随時監視する。その後、算出された指標に基づいて評価処理及び所定の診断処理を行い(S308)、その診断処理の結果及び指標を、これらと対比可能に同期された動画及び体動再現データとともに、情報端末装置100のディスプレイやスピーカーによる音響等によって表示又は出力する(S309)。 In addition, in this index calculation step, the amount of deviation from the stable reference value is constantly monitored to see if it is within a predetermined threshold, and the stable period during which these body movement parameters maintain a stable state is calculated. Good too. For example, the average values from the start of the competition are calculated one after another, and the average value while the average values are within a predetermined amount of change is set as the stability reference value. The stable reference value is updated at any time, and the amount by which the current value deviates from this stable reference value is monitored at any time as a deviation amount. After that, evaluation processing and predetermined diagnostic processing are performed based on the calculated index (S308), and the results of the diagnostic processing and the index are sent to the information terminal device along with synchronized video and body movement reproduction data that can be compared with these. The information is displayed or outputted using the 100 displays, sounds from speakers, etc. (S309).
(ランニングフォーム評価プログラム)
 なお、上述した本実施形態に係るランニングフォーム評価システム及びランニングフォーム評価方法は、上述したランニングフォーム評価アプリケーションのように、所定の言語で記述された本発明のランニングフォーム評価プログラムをコンピューター上で実行することにより実現することができる。すなわち、本発明のプログラムを、携帯端末装置やスマートフォン、ウェアラブル端末、モバイルPCその他の情報処理端末、パーソナルコンピューターやサーバーコンピューター等の汎用コンピューターのICチップ、メモリ装置にインストールし、CPU上で実行することにより、上述した各機能を有するシステムを構築してランニングフォーム評価方法を実施することができる。
(Running form evaluation program)
Note that the running form evaluation system and running form evaluation method according to the present embodiment described above, like the running form evaluation application described above, executes the running form evaluation program of the present invention written in a predetermined language on a computer. This can be achieved by That is, the program of the present invention can be installed on an IC chip or memory device of a general-purpose computer such as a mobile terminal device, a smartphone, a wearable terminal, a mobile PC or other information processing terminal, a personal computer or a server computer, and executed on the CPU. Accordingly, it is possible to construct a system having each of the above-mentioned functions and implement the running form evaluation method.
(作用・効果)
 以上述べたように、本実施形態では、装着者の両脚大腿部のそれぞれに装着した体動センサーによって装着者の脚の離地を検出し、離地に係る脚の離地後における挙動に基づいてランニングフォームを評価する指標を算出する。本実施形態によれば、腿に装着した体動センサーを使うことで、この股関節の伸展度合いを計測し、所謂「脚が流れる」という評価の対象を定量化でき、より高度且つ精細に解析できる。
(action/effect)
As described above, in this embodiment, the body movement sensors attached to the thighs of both legs of the wearer detect when the wearer's legs take off from the ground, and the behavior of the legs after the takeoff is detected. An index for evaluating running form is calculated based on the running form. According to this embodiment, by using a body movement sensor attached to the thigh, it is possible to measure the degree of extension of the hip joint, quantify the evaluation target of so-called "leg movement", and perform more advanced and detailed analysis. .
 詳述すると、本実施形態では、股関節の伸展度合いを定量化するために、図6及び図7に示すような、後方へ蹴り出した脚の切り返し前後の滞留時間を計測する。腿に装着した胎動センサーのGyrを使うことで、切り返し、すなわち後方へ蹴り出した脚が振り出しに切り替わる時点の前後における腿の動きを解析する。 To be more specific, in this embodiment, in order to quantify the degree of extension of the hip joint, the residence time before and after the leg kicks backward is measured, as shown in FIGS. 6 and 7. By using Gyr, a fetal movement sensor attached to the thigh, we analyze the movement of the thigh before and after the moment when the leg kicks backwards and switches to swinging out.
 本実施形態では、大腿に装着した体動センサーのGyrを用い、腿のゼロクロス付近滞留時間を計測し、計測された滞留時間を閾値と比較することで、股関節の伸展度合いを評価する。滞留時間の閾値の設定は、ユーザー操作に従って選択・変更が可能となっており、アマチュアとエリートランナーの比較などによる評価指標が出力される。 In this embodiment, the degree of extension of the hip joint is evaluated by measuring the dwell time near the zero cross of the thigh using Gyr, a body motion sensor attached to the thigh, and comparing the measured dwell time with a threshold value. The dwell time threshold setting can be selected and changed according to user operations, and evaluation indicators such as comparisons between amateur and elite runners are output.
 さらに、本実施形態では、装着者の両脚大腿部のそれぞれに装着した体動センサーによって装着者の脚の着地を検出し、着地に係る脚の着地前における挙動に基づいてランニングフォームを評価する指標を算出する。本実施形態では、腿に装着した体動センサーで着地のタイミングを計測するとともに、着地直前の角速度の変化を股関節伸展情報として算出する。腿の減速タイミングは膝下の振り出しが大きく関わっており、太腿の振り下ろしと膝下の振り出しが逆方向の動作をする二重振り子として動き、太腿に対して減速の動きが発生する。これについて、技術の低い選手はこのタイミングで太腿の動きを停止もしくは大きく減速させたまま着地に至る。これに対し、技術力のある選手は減速を最低限に抑え、再度加速して高速に腿を振り下ろしながら着地している。 Furthermore, in this embodiment, the landing of the wearer's legs is detected by body motion sensors attached to the thighs of both legs of the wearer, and the running form is evaluated based on the behavior of the legs before landing. Calculate indicators. In this embodiment, the timing of landing is measured by a body motion sensor attached to the thigh, and the change in angular velocity immediately before landing is calculated as hip joint extension information. The timing of deceleration of the thighs is greatly affected by the swinging of the lower part of the knee, and the lowering of the thigh and the lower part of the knee move as a double pendulum in opposite directions, causing a deceleration movement of the thigh. Regarding this, athletes with low skill will stop or significantly slow down the movement of their thighs at this point before landing. In contrast, skilled athletes minimize deceleration, accelerate again, and land while swinging their thighs at high speed.
 本実施形態では、体動センサーにより、図8~図10に示すような、脚の振り下ろしから着地までの角速度を計測し、着地直前における角速度が、減速・加速・停止などの挙動を、その波形から評価し波形からのグループ分けや着地直前の速度を評価する。以上の結果、本実施形態によれば、ランニング動作について、股関節の伸展度合いやタイミングを検出し、ランニングフォームをより高度且つ精細に解析できる。 In this embodiment, the body movement sensor measures the angular velocity from the time the leg swings down to the landing, as shown in FIGS. Evaluate from the waveform, grouping from the waveform, and evaluate the speed just before landing. As a result of the above, according to the present embodiment, it is possible to detect the degree and timing of extension of the hip joint in a running motion, and to analyze the running form more highly and precisely.
 また、本実施形態に係るランニングフォーム評価プログラムでは、例えば、通信回線を通じて配布することが可能であり、また、コンピューターで読み取り可能な記録媒体に記録することにより、スタンドアローンの計算機上で動作するパッケージアプリケーションとして譲渡することができる。この記録媒体として、具体的には、フレキシブルディスクやカセットテープ等の磁気記録媒体、若しくはCD-ROMやDVD-ROM等の光ディスクの他、RAMカードなど、種々の記録媒体に記録することができる。そして、このプログラムを記録したコンピューター読み取り可能な記録媒体によれば、汎用のコンピューターや専用コンピューターを用いて、上述したシステム及び方法を簡便に実施することが可能となるとともに、プログラムの保存、運搬及びインストールを容易に行うことができる。 In addition, the running form evaluation program according to the present embodiment can be distributed through a communication line, and can also be packaged as a package that runs on a stand-alone computer by recording it on a computer-readable recording medium. Can be transferred as an application. Specifically, the information can be recorded on various recording media such as a magnetic recording medium such as a flexible disk or a cassette tape, an optical disc such as a CD-ROM or a DVD-ROM, or a RAM card. According to the computer-readable recording medium on which this program is recorded, it becomes possible to easily implement the above-mentioned system and method using a general-purpose computer or a special-purpose computer, and it also becomes possible to store, transport, and store the program. Installation can be done easily.
 なお、本発明は、上記した各実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施の形態に開示されている複数の構成要素の適宜な組み合せにより、種々の発明を形成できる。例えば、実施の形態に示される全構成要素から幾つかの構成要素を削除してもよい。 Note that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements at the implementation stage without departing from the spirit of the invention. Moreover, various inventions can be formed by appropriately combining the plurality of components disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiments.
 …接離状態データ
 
 1…装着者
 40…体動センサー
 40a…体動センサー
 40a,40b…体動センサー
 100…情報端末装置
 111…出力インターフェース
 112…入力インターフェース
 113…無線インターフェース
 114…メモリ
 115…内蔵カメラ
 117…制御部
 117a…体動データ取得部
 117b…体動算出部
 117c…接離状態検出部
 117d…基準値設定部
 117e…表示情報生成部
 117f…解析部
 117g…指標算出部
 117h…滞留時間算出部
 117i…股関節伸展情報生成部
…Contact status data
1... Wearer 40... Body movement sensor 40a... Body movement sensor 40a, 40b... Body movement sensor 100... Information terminal device 111... Output interface 112... Input interface 113... Wireless interface 114... Memory 115... Built-in camera 117... Control unit 117a ...Body movement data acquisition section 117b...Body movement calculation section 117c...Approach/separation state detection section 117d...Reference value setting section 117e...Display information generation section 117f...Analysis section 117g...Index calculation section 117h...Residence time calculation section 117i...Hip joint extension Information generation section

Claims (12)

  1.  装着者の体動を検出し、体動の変化に基づいたランニングフォームを評価するシステムであって、
     前記装着者の両脚大腿部のそれぞれに装着され、各部位の三次元的な変位又は回転を検出可能な複数の体動センサーと、
     前記一対の体動センサーによる検出結果に基づいて前記装着者の脚の離地を検出し、検出された離地に係る各検出結果を接離状態データとして抽出する接離状態検出部と、
     前記接離状態検出部が抽出した接離状態データから、当該離地に係る脚の離地後における挙動に基づいて、前記ランニングフォームを評価する指標を算出する指標算出部と、
     前記指標算出部が算出した指標を表示又は出力する出力デバイスと
    を備えることを特徴とするランニングフォーム評価システム。
    A system that detects body movements of a wearer and evaluates running form based on changes in body movements,
    a plurality of body motion sensors that are attached to each of the thighs of both legs of the wearer and are capable of detecting three-dimensional displacement or rotation of each part;
    a contact/separation state detection unit that detects the release of the wearer's legs based on detection results by the pair of body motion sensors, and extracts each detection result related to the detected release as contact/separation state data;
    an index calculation unit that calculates an index for evaluating the running form based on the behavior of the leg related to the takeoff after the takeoff from the contact state data extracted by the contact state detection unit;
    A running form evaluation system comprising: an output device that displays or outputs the index calculated by the index calculation section.
  2.  前記指標算出部は、前記接離状態データを用いて、前記離地に係る脚の角加速度が反転するタイミング、及びそのタイミング前後における当該脚の滞留時間を股関節伸展情報として算出し、前記股関節伸展情報を含む当該離地に係る脚の離地後における挙動に基づいて、前記指標を算出する
    ことを特徴とする請求項1に記載のランニングフォーム評価システム。
    The index calculation unit uses the approach/separation state data to calculate the timing at which the angular acceleration of the leg related to the takeoff is reversed, and the residence time of the leg before and after that timing as hip joint extension information, and calculates the hip extension information. 2. The running form evaluation system according to claim 1, wherein the index is calculated based on the behavior of the leg after the take-off, which includes information.
  3.  装着者の体動を検出し、体動の変化に基づいたランニングフォームを評価するシステムであって、
     前記装着者の両脚大腿部のそれぞれに装着され、各部位の三次元的な変位又は回転を検出可能な複数の体動センサーと、
     前記一対の体動センサーによる検出結果に基づいて前記装着者の脚の着地状態を検出し、検出された着地状態に係る各検出結果を接離状態データとして抽出する着地状態検出部と、
     前記接離状態検出部が抽出した接離状態データから、当該着地に係る脚の着地前における挙動に基づいて、前記ランニングフォームを評価する指標を算出する指標算出部と、
     前記指標算出部が算出した指標を表示又は出力する出力デバイスと
    を備えることを特徴とするランニングフォーム評価システム。
    A system that detects body movements of a wearer and evaluates running form based on changes in body movements,
    a plurality of body motion sensors that are attached to each of the thighs of both legs of the wearer and are capable of detecting three-dimensional displacement or rotation of each part;
    a landing state detection unit that detects the landing state of the wearer's legs based on the detection results by the pair of body movement sensors, and extracts each detection result related to the detected landing state as approach/separation state data;
    an index calculation unit that calculates an index for evaluating the running form based on the behavior of the leg related to the landing before landing from the contact/separation state data extracted by the contact/separation state detection unit;
    A running form evaluation system comprising: an output device that displays or outputs the index calculated by the index calculation section.
  4.  前記指標算出部は、前記接離状態データを用いて、前記着地に係る脚の着地直前の角速度の変化を股関節伸展情報として算出し、前記股関節伸展情報を含む当該着地に係る脚の着地前における挙動に基づいて、前記指標を算出する
    ことを特徴とする請求項3に記載のランニングフォーム評価システム。
    The index calculation unit uses the contact/separation state data to calculate a change in angular velocity of the leg related to the landing immediately before landing as hip joint extension information, and calculates a change in angular velocity of the leg related to the landing immediately before landing including the hip joint extension information. The running form evaluation system according to claim 3, wherein the index is calculated based on behavior.
  5.  装着者の体動を検出し、体動の変化に基づいたランニングフォームを評価する方法であって、
     前記装着者の両脚大腿部のそれぞれに、各部位の三次元的な変位又は回転を検出可能な複数の体動センサーを装着し、接離状態検出部が、前記一対の体動センサーによる検出結果に基づいて前記装着者の脚の離地を検出し、検出された離地に係る各検出結果を接離状態データとして抽出する接離状態検出ステップと、
     指標算出部が、前記接離状態検出ステップにおいて抽出された接離状態データから、当該離地に係る脚の離地後における挙動に基づいて、前記ランニングフォームを評価する指標を算出する指標算出ステップと、
     出力デバイスが、前記指標算出部が算出した指標を表示又は出力する出力ステップと
    を含むことを特徴とするランニングフォーム評価方法。
    A method for detecting body movements of a wearer and evaluating running form based on changes in body movements, the method comprising:
    A plurality of body movement sensors capable of detecting three-dimensional displacement or rotation of each part are attached to each of the thighs of both legs of the wearer, and the contact/separation state detection section detects the detection by the pair of body movement sensors. a contact/separation state detection step of detecting the takeoff of the wearer's leg based on the results and extracting each detection result related to the detected takeoff as contact/separation state data;
    an index calculation step in which the index calculation unit calculates an index for evaluating the running form from the contact/separation state data extracted in the contact/separation state detection step based on the behavior of the leg related to the takeoff after the takeoff; and,
    A running form evaluation method comprising: an output step in which an output device displays or outputs the index calculated by the index calculation unit.
  6.  前記指標算出部は、前記接離状態データを用いて、前記離地に係る脚の角加速度が反転するタイミング、及びそのタイミング前後における当該脚の滞留時間を股関節伸展情報として算出し、前記股関節伸展情報を含む当該離地に係る脚の離地後における挙動に基づいて、前記指標を算出する
    ことを特徴とする請求項5に記載のランニングフォーム評価方法。
    The index calculation unit uses the approach/separation state data to calculate the timing at which the angular acceleration of the leg related to the takeoff is reversed, and the residence time of the leg before and after that timing as hip joint extension information, and calculates the hip extension information. 6. The running form evaluation method according to claim 5, wherein the index is calculated based on the behavior of the leg after the take-off, which includes information.
  7.  装着者の体動を検出し、体動の変化に基づいたランニングフォームを評価する方法であって、
     前記装着者の両脚大腿部のそれぞれに、各部位の三次元的な変位又は回転を検出可能な複数の体動センサーを装着し、接離状態検出部が、前記一対の体動センサーによる検出結果に基づいて前記装着者の脚の着地を検出し、検出された着地に係る各検出結果を接離状態データとして抽出する接離状態検出ステップと、
     指標算出部が、前記接離状態検出ステップにおいて抽出された接離状態データから、当該着地に係る脚の着地前における挙動に基づいて、前記ランニングフォームを評価する指標を算出する指標算出ステップと、
     出力デバイスが、前記指標算出部が算出した指標を表示又は出力する出力ステップと
    を含むことを特徴とするランニングフォーム評価方法。
    A method for detecting body movements of a wearer and evaluating running form based on changes in body movements, the method comprising:
    A plurality of body movement sensors capable of detecting three-dimensional displacement or rotation of each part are attached to each of the thighs of both legs of the wearer, and the contact/separation state detection section detects the detection by the pair of body movement sensors. a contact/separation state detection step of detecting landing of the wearer's leg based on the results and extracting each detection result related to the detected landing as contact/separation state data;
    an index calculation step in which the index calculation unit calculates an index for evaluating the running form from the contact/separation state data extracted in the contact/separation state detection step, based on the behavior of the leg related to the landing before landing;
    A running form evaluation method comprising: an output step in which an output device displays or outputs the index calculated by the index calculation unit.
  8.  前記指標算出部は、前記接離状態データを用いて、前記着地に係る脚の着地直前の角速度の変化を股関節伸展情報として算出し、前記股関節伸展情報を含む当該着地に係る脚の着地前における挙動に基づいて、前記指標を算出する
    ことを特徴とする請求項7に記載のランニングフォーム評価方法。
    The index calculation unit uses the contact/separation state data to calculate a change in angular velocity of the leg related to the landing immediately before landing as hip joint extension information, and calculates a change in angular velocity of the leg related to the landing immediately before landing including the hip joint extension information. 8. The running form evaluation method according to claim 7, wherein the index is calculated based on behavior.
  9.  装着者の体動を検出し、体動の変化に基づいたランニングフォームを評価するプログラムであって、コンピューターを、
     前記装着者の両脚大腿部のそれぞれに装着され、各部位の三次元的な変位又は回転を検出可能な複数の体動センサーによる検出結果に基づいて前記装着者の脚の離地を検出し、検出された離地に係る各検出結果を接離状態データとして抽出する接離状態検出部と、
     前記接離状態検出部が抽出した接離状態データから、当該離地に係る脚の離地後における挙動に基づいて、前記ランニングフォームを評価する指標を算出する指標算出部と、
     前記指標算出部が算出した指標を表示又は出力する出力デバイス
    として機能させることを特徴とするランニングフォーム評価プログラム。
    A program that detects the wearer's body movements and evaluates running form based on changes in body movements.
    Detecting the release of the wearer's legs based on the detection results of a plurality of body movement sensors that are attached to each of the thighs of both legs of the wearer and can detect three-dimensional displacement or rotation of each part. , a contact/separation state detection unit that extracts each detection result related to the detected takeoff as contact/separation state data;
    an index calculation unit that calculates an index for evaluating the running form based on the behavior of the leg related to the takeoff after the takeoff from the contact state data extracted by the contact state detection unit;
    A running form evaluation program that functions as an output device that displays or outputs the index calculated by the index calculation unit.
  10.  前記指標算出部は、前記接離状態データを用いて、前記離地に係る脚の角加速度が反転するタイミング、及びそのタイミング前後における当該脚の滞留時間を股関節伸展情報として算出し、前記股関節伸展情報を含む当該離地に係る脚の離地後における挙動に基づいて、前記指標を算出する
    ことを特徴とする請求項9に記載のランニングフォーム評価プログラム。
    The index calculation unit uses the approach/separation state data to calculate the timing at which the angular acceleration of the leg related to the takeoff is reversed, and the residence time of the leg before and after that timing as hip joint extension information, and calculates the hip extension information. 10. The running form evaluation program according to claim 9, wherein the index is calculated based on the behavior of the leg after the take-off, which includes information.
  11.  装着者の体動を検出し、体動の変化に基づいたランニングフォームを評価するプログラムであって、コンピューターを、
     前記装着者の両脚大腿部のそれぞれに装着され、各部位の三次元的な変位又は回転を検出可能な複数の体動センサーによる検出結果に基づいて前記装着者の脚の着地状態を検出し、検出された着地状態に係る各検出結果を接離状態データとして抽出する着地状態検出部と、
     前記接離状態検出部が抽出した接離状態データから、当該着地に係る脚の着地前における挙動に基づいて、前記ランニングフォームを評価する指標を算出する指標算出部と、
     前記指標算出部が算出した指標を表示又は出力する出力デバイス
    として機能させることを特徴とするランニングフォーム評価プログラム。
    A program that detects the wearer's body movements and evaluates running form based on changes in body movements.
    Detects the landing state of the wearer's legs based on the detection results of a plurality of body movement sensors that are attached to each of the thighs of both legs of the wearer and can detect three-dimensional displacement or rotation of each part. , a landing state detection unit that extracts each detection result related to the detected landing state as contact/separation state data;
    an index calculation unit that calculates an index for evaluating the running form based on the behavior of the leg related to the landing before landing from the contact/separation state data extracted by the contact/separation state detection unit;
    A running form evaluation program that functions as an output device that displays or outputs the index calculated by the index calculation unit.
  12.  前記指標算出部は、前記接離状態データを用いて、前記着地に係る脚の着地直前の角速度の変化を股関節伸展情報として算出し、前記股関節伸展情報を含む当該着地に係る脚の着地前における挙動に基づいて、前記指標を算出する
    ことを特徴とする請求項11に記載のランニングフォーム評価プログラム。
    The index calculation unit uses the contact/separation state data to calculate a change in angular velocity of the leg related to the landing immediately before landing as hip joint extension information, and calculates a change in angular velocity of the leg related to the landing immediately before landing including the hip joint extension information. The running form evaluation program according to claim 11, wherein the index is calculated based on behavior.
PCT/JP2023/024351 2022-07-01 2023-06-30 Running form assessment system, program, and method WO2024005183A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-107104 2022-07-01
JP2022107104A JP2024006322A (en) 2022-07-01 2022-07-01 Running form assessment system, program and method

Publications (1)

Publication Number Publication Date
WO2024005183A1 true WO2024005183A1 (en) 2024-01-04

Family

ID=89380720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024351 WO2024005183A1 (en) 2022-07-01 2023-06-30 Running form assessment system, program, and method

Country Status (2)

Country Link
JP (1) JP2024006322A (en)
WO (1) WO2024005183A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130324888A1 (en) * 2006-07-21 2013-12-05 James C. Solinsky System and method for measuring balance and track motion in mammals
JP2014110832A (en) * 2012-12-05 2014-06-19 Seiko Epson Corp Motion analyzing system and motion analyzing method
JP2021166683A (en) * 2020-04-13 2021-10-21 リオモ インクLEOMO, Inc. Stability evaluation system, program and method
US11527109B1 (en) * 2020-01-07 2022-12-13 ArcSecond, Inc. Form analysis system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130324888A1 (en) * 2006-07-21 2013-12-05 James C. Solinsky System and method for measuring balance and track motion in mammals
JP2014110832A (en) * 2012-12-05 2014-06-19 Seiko Epson Corp Motion analyzing system and motion analyzing method
US11527109B1 (en) * 2020-01-07 2022-12-13 ArcSecond, Inc. Form analysis system
JP2021166683A (en) * 2020-04-13 2021-10-21 リオモ インクLEOMO, Inc. Stability evaluation system, program and method

Also Published As

Publication number Publication date
JP2024006322A (en) 2024-01-17

Similar Documents

Publication Publication Date Title
Rana et al. Wearable sensors for real-time kinematics analysis in sports: A review
US11134865B2 (en) Motion analysis system, motion analysis apparatus, motion analysis program, and motion analysis method
US10684304B2 (en) Foot exercise motion analysis device during moving exercise
JP6332830B2 (en) Exercise support system, exercise support method, and exercise support program
JP7209363B2 (en) Stability evaluation system, program and method
WO2018226692A1 (en) Techniques for object tracking
JP2017520336A (en) Method and system for delivering biomechanical feedback to human body and object motion
JP2015116288A (en) Exercise information display system, exercise information display method, and exercise information display program
US11551396B2 (en) Techniques for establishing biomechanical model through motion capture
WO2019116495A1 (en) Technique recognition program, technique recognition method, and technique recognition system
JP2018522618A (en) Frameworks, devices and methodologies configured to enable gamification through sensor-based monitoring of physically executed skills, including location-specific gamification
JP2016043260A (en) Motion analysis device, motion analysis method, and motion analysis system
JP2018522361A (en) Framework, device and methodology configured to allow automated classification and / or retrieval of media data based on user performance attributes obtained from a performance sensor unit
WO2020090899A1 (en) Motion-capture system, motion-capture program, and motion-capture method
JP6094476B2 (en) Imaging system, control method therefor, and control program therefor
WO2024005183A1 (en) Running form assessment system, program, and method
Walsh et al. Capturing the overarm throw in darts employing wireless inertial measurement
JP6337980B2 (en) Exercise state detection apparatus, control method thereof, and control program thereof
WO2023100565A1 (en) Running form evaluation system, program, and method
WO2023195461A1 (en) Running form analyzing system, program, and method
JP6381252B2 (en) Moving motion analysis apparatus and program
Müller et al. Javelin Throw Analysis and Assessment with Body-Worn Sensors
Denroche Evaluating the use of inertial measurement unit technology during an ice hockey shooting task
Rymut et al. Kinematic analysis of hurdle clearance using a mobile device
Callaway Quantification of performance analysis factors in front crawl swimming using micro electronics: a data rich system for swimming.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831622

Country of ref document: EP

Kind code of ref document: A1