WO2023286361A1 - Ship sailing assistance system, and ship sailing assistance method - Google Patents

Ship sailing assistance system, and ship sailing assistance method Download PDF

Info

Publication number
WO2023286361A1
WO2023286361A1 PCT/JP2022/011827 JP2022011827W WO2023286361A1 WO 2023286361 A1 WO2023286361 A1 WO 2023286361A1 JP 2022011827 W JP2022011827 W JP 2022011827W WO 2023286361 A1 WO2023286361 A1 WO 2023286361A1
Authority
WO
WIPO (PCT)
Prior art keywords
target position
ship
navigation support
distance measurement
support system
Prior art date
Application number
PCT/JP2022/011827
Other languages
French (fr)
Japanese (ja)
Inventor
一喜 辻本
達也 園部
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to JP2023535121A priority Critical patent/JPWO2023286361A1/ja
Publication of WO2023286361A1 publication Critical patent/WO2023286361A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/10Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft

Definitions

  • the present invention relates to navigation support technology used when a ship is anchored.
  • a docking support device that measures the distance between the own ship and an object such as a wharf using a distance sensor.
  • the object of the present invention is to accurately measure the distance between the navigation target position and the own ship.
  • the navigation support system of this invention includes a reflecting member, a distance measuring section, and a target position setting section.
  • the reflecting member includes a target position on the target berthing line of the vessel, and is installed in a shape that bends with the target berthing line as a boundary.
  • the distance measurement unit is installed on a ship and transmits and receives laser light to perform three-dimensional distance measurement.
  • the target position setting unit sets the target position using the distance measurement result of the laser beam reflected by the reflecting member.
  • the laser light reflection state differs between the area including the target position with the reflecting member and the other areas, so the target position can be accurately set from the distance measurement result.
  • the target berthing line is a line where the horizontal plane and the vertical plane of the berthed object at which the ship is berthed are perpendicular to each other.
  • the reflecting member includes a first flat plate portion installed in a horizontal plane and a second flat plate portion installed in a vertical plane.
  • the distance measurement unit scans the laser beam and sets a plurality of distance measurement spots in the scanning direction and the distance direction.
  • the distance measurement unit performs distance measurement for each of the plurality of distance measurement spots.
  • the target position setting unit sets the target position using the brightness and altitude of the plurality of ranging spots in the positioning result.
  • the target position setting unit sets the target position using the altitude difference between a plurality of distance measurement spots adjacent in the direction perpendicular to the berthing target line.
  • the target position setting unit sets the target position using high-brightness ranging spots among the plurality of ranging spots.
  • the target position setting unit uses the target position set using the laser beam distance measurement result as the provisional target position.
  • the target position setting unit sets the determination target position using means different from the distance measurement result by the laser beam.
  • the target position setting unit sets the provisional target position as the target position if the error between the provisional target position and the determination target position is within a predetermined range.
  • the navigation support system of the present invention uses a measurement unit that measures the position coordinates of a ship, and the target position and the position coordinates of the ship to generate navigation support information for docking the ship at the target position. and a generator.
  • the support information generation unit sets a docking reference point on the ship and generates navigation support information based on the positional relationship between the docking reference point and the target position.
  • the measurement unit measures the attitude of the ship.
  • the support information generator generates navigation support information using the target position, the position coordinates of the ship, and the attitude of the ship.
  • the distance between the target position of navigation and the own ship can be measured with high accuracy.
  • FIG. 1 is a functional block diagram showing the configuration of a navigation support system according to an embodiment of the invention.
  • FIG. 2 is a plan view showing the positional relationship among the ship, the distance measuring section, and the wharf.
  • FIG. 3 is a perspective view showing an example of an installation mode of a reflecting member.
  • FIG. 4 is a perspective view showing an example of a plurality of ranging spots SP near the reflecting member.
  • FIG. 5 is a flow chart showing the main flow of the navigation support method according to this embodiment.
  • FIG. 6 is a flowchart showing a first example of target position setting processing.
  • FIG. 7 is a flowchart showing a second example of target position setting processing.
  • FIG. 8 is a functional block diagram showing another example of the configuration of the navigation support system according to the embodiment of the invention.
  • FIG. 9 is a flowchart showing a third example of target position setting processing of the navigation support method according to the present embodiment.
  • FIG. 1 is a functional block diagram showing the configuration of a navigation support system according to an embodiment of the invention.
  • FIG. 2 is a plan view showing the positional relationship among the ship, the distance measuring section, and the wharf.
  • FIG. 3 is a perspective view showing an example of an installation mode of a reflecting member.
  • the navigation assistance technology according to the embodiment of the present invention is effectively used in the situation shown in FIG. 2, for example.
  • the specific processing for setting the target position PS90 executed by the navigation support device 20 will be described later, and the setting processing for the target position PS90 will be briefly described here.
  • the ship 80 is sailing (maneuvering) to dock at the quay 90 .
  • the quay wall 90 has a shape in which a horizontal plane 901 and a vertical plane 902 are substantially perpendicular to each other, and the vertical plane 902 is in contact with the sea and the water surface (sea surface) WS.
  • a line perpendicular to the horizontal plane 901 and the vertical plane 902 is the quay line 900 (target berthing line).
  • a docking reference point is set on the quay 90, for example, like the N flag, and this point is set as the navigation target position PS90.
  • a target position PS90 is set on the quay line 900 .
  • the ship 80 sets, for example, the port end of the deck 800 as the docking reference point on the ship side.
  • the ship 80 is under navigation (steering) control so that the docking reference point on the ship side is aligned with the target position PS90.
  • a distance measuring unit 21 is installed on the ship 80 .
  • the distance measurement unit 21 performs distance measurement using laser light such as LiDAR.
  • the distance measurement unit 21 sets a detection area Ar21 on the wharf 90 side and performs distance measurement.
  • a reflecting member 30 is installed at the target position PS90 of the wharf 90 .
  • the reflecting member 30 is made of a material that reflects the laser beam transmitted from the distance measuring section 21 with high reflectance.
  • the distance measurement information generated by the distance measuring unit 21 includes the position coordinates and brightness of the reflecting member 30.
  • the target position setting unit 23 of the navigation support device 20 of the ship 80 uses the reflected signal from the reflecting member 30 to set the target position PS90.
  • the target position setting unit 23 can set the target position PS90 more reliably and accurately. Then, the navigation support device 20 can accurately measure the distance between the ship's docking reference point and the target position PS90.
  • the navigation assistance system 10 includes a navigation assistance device 20 and a reflecting member 30 .
  • a ship 80 is equipped with the navigation support device 20 .
  • the navigation support device 20 includes, for example, a navigation support program that implements a navigation support method, a storage device that stores the navigation support program, and a CPU that executes the navigation support program, except for an optical system portion and a radio wave system portion. It can be realized by an arithmetic processing unit such as. Also, the storage device and the arithmetic processing unit can be realized by an IC or the like in which the navigation support program is installed.
  • the control unit 200 is configured by such an arithmetic processing unit or an embedded IC.
  • the control unit 200 includes a distance measurement unit 21, an attitude measurement unit 22, a target position setting unit 23, and a support information generation unit 24.
  • the distance measurement unit 21 is a distance measurement device such as LiDAR.
  • the distance measuring unit 21 is installed on the ship 80 so that the scanning direction is the vertical direction, that is, the optical axis of the laser beam is scanned in the vertical direction.
  • the distance measurement unit 21 transmits laser light within the three-dimensional detection area Ar21, and uses the received signal to perform distance measurement. More specifically, the distance measuring unit 21 transmits laser light while moving (rotating) the optical axis of the laser light along the scanning direction. The distance measurement unit 21 receives the reflected signal of the laser beam.
  • the distance measurement unit 21 sets a plurality of distance measurement spots SP.
  • the multiple ranging spots SP are defined by positions in the scanning direction and positions in the distance direction. More specifically, the distance measurement unit 21 determines the position of the distance measurement spot SP in the scanning direction based on the angle (rotational angle) at which the laser beam is irradiated. Further, the distance measurement unit 21 determines the position of the distance measurement spot SP in the distance direction based on the time from the transmission of the laser beam to the reception of the reflected signal.
  • the distance measurement unit 21 calculates the position coordinates of each distance measurement spot SP using the position of the distance measurement unit 21 as a reference position, and the brightness (intensity) of the received signal for each distance measurement spot SP. As a result, it is output to the target position setting section 23 .
  • the orientation measurement unit 22 is an orientation sensor.
  • the attitude sensor uses, for example, the positioning technology of GNSS signals.
  • the attitude sensor may also be a combination of GNSS signal positioning technology and an inertial sensor.
  • the attitude measurement unit 22 is installed at approximately the same position as the distance measurement unit 21 with respect to the ship 80 .
  • the attitude measurement unit 22 is preferably installed so that the coordinate system of the attitude angle to be measured matches the distance measurement coordinate system. However, if the angle difference between the coordinate system of the posture measurement unit 22 and the distance measurement coordinate system is obtained in advance and corrected using this angle difference, the same effect can be obtained.
  • the attitude measurement unit 22 measures the attitude angle of the ship 80 . Also, the attitude measurement unit 22 measures the absolute position coordinates of the ship 80 . The position coordinates of the ship 80 can also be measured by using the GNSS signal positioning technology for the attitude measurement unit 22 . In addition, by using the positioning technology of GNSS signals, it is possible to measure the attitude angle and the position coordinates with high accuracy in an open sky situation such as on the sea.
  • the posture measurement unit 22 outputs the posture angle and position coordinates to the support information generation unit 24.
  • the target position setting unit 23 sets the target position PS90 using the ranging results of the multiple ranging spots SP. A more specific method of setting the target position PS90 by the target position setting unit 23 will be described later.
  • the target position setting section 23 outputs the target position PS90 (the position coordinates of the target position PS90) to the support information generating section 24 .
  • the support information generation unit 24 uses the attitude angle and position coordinates of the ship 80 and the position coordinates of the target position PS90 to generate navigation support information for docking the ship 80 at the target position PS90.
  • the navigation support information is based on the positional relationship between the ship-side docking reference point of the ship 80 and the target position PS90.
  • the docking reference point can be set at a desired position on the ship 80 by input from the helmsman or the like. This setting is implemented by the support information generation unit 24 .
  • the attitude of the ship 80 with respect to the quay line 900 may be included in the navigation support information based on the quay line 900 and the attitude angle of the ship 80. can.
  • the ship operator or the autopilot program steers the ship based on this navigation support information.
  • the target position PS90 By setting the target position PS90 more reliably and accurately, highly accurate ship maneuvering becomes possible.
  • the reflecting member 30 includes a first flat plate portion 31 and a second flat plate portion 32. As shown in FIGS. The first flat plate portion 31 and the second flat plate portion 32 are connected so as to be perpendicular to each other.
  • the first flat plate portion 31 is arranged on the horizontal surface 901 of the quay 90
  • the second flat plate portion 32 is arranged on the vertical surface 902 of the quay 90
  • a corner portion where the first flat plate portion 31 and the second flat plate portion 32 are connected is arranged on the quay line 900 .
  • the reflecting member 30 is arranged so as to overlap the target position PS90.
  • the exposed surface of the first flat plate portion 31 and the exposed surface of the second flat plate portion 32 are made of a material that reflects laser light with high reflectance.
  • the reflecting member 30 is installed on the wharf 90 so as to have two orthogonal reflecting surfaces.
  • FIG. 4 is a perspective view showing an example of a plurality of ranging spots SP near the reflecting member.
  • circles indicate a plurality of ranging spots SP including ranging spots SPt1 and SPt2.
  • a non-hatched circle indicates a high-brightness ranging spot, and a hatched circle is a low-brightness ranging spot.
  • high luminance and low luminance here have relative meanings rather than absolute meanings.
  • the ranging spots SPt1 and SPt2 are part of a plurality of ranging spots SP, and are ranging spots for setting a target position PS90 extracted by a method described later.
  • the distance measurement unit 21 uses the vertical direction as the scanning direction, the plurality of distance measurement spots SP aligned in the scanning direction are aligned in the direction orthogonal to the wharf line 900 . Further, the plurality of ranging spots SP arranged in a direction orthogonal to the scanning direction and the distance direction (height direction in the measurement system of the distance measurement unit 21) are arranged in a direction parallel to the wharf line 900.
  • the reflecting member 30 reflects laser light with a higher reflectance than the quay wall 90 . Thereby, the brightness of the plurality of ranging spots SP overlapping the reflecting member 30 is higher than the brightness of the plurality of ranging spots SP not overlapping the reflecting member 30 (the plurality of ranging spots SP overlapping only the quay wall 90).
  • the altitude difference (difference in position coordinates in the height direction) of the plurality of ranging spots SP can be calculated from the difference in the scanning direction position coordinates and the difference in the distance direction position coordinates of the plurality of ranging spots SP.
  • the position coordinates in the height direction of the plurality of ranging spots SP on the horizontal plane 901 are the same within the range of error.
  • the positional coordinates in the height direction of the plurality of ranging spots SP on the vertical plane 902 are different from each other, and also differ from the positional coordinates in the height direction of the plurality of ranging spots SP on the horizontal plane 901 . That is, the plurality of ranging spots SP on the horizontal plane 901 and the plurality of ranging spots SP on the vertical plane 902 also have altitude differences as ranging information.
  • the position coordinates of the reflecting member 30 and the wharf line 900 can be detected by using the distance measurement information including the luminance and the position coordinates in the height direction. Then, the target position PS90 can be set by detecting the position coordinates of the reflecting member 30 and the quay line 900 .
  • FIG. 5 is a flow chart showing the main flow of the navigation support method according to this embodiment.
  • FIG. 6 is a flowchart showing a first example of target position setting processing.
  • the reflecting member 30 is installed in advance on the wharf 90 so as to overlap the target position PS90.
  • the distance measurement unit 21 performs three-dimensional distance measurement with respect to the detection area Ar21 including the wharf 90 as described above (S11). Thereby, the distance measurement unit 21 generates distance measurement information including luminance and altitude (position coordinates in the height direction) for the plurality of distance measurement spots SP.
  • the target position setting unit 23 sets the target position PS90 using the brightness and altitude of the plurality of ranging spots SP (S12).
  • the target position setting unit 23 calculates the altitude difference between the plurality of ranging spots SP arranged on the scanning line (S21).
  • the target position setting unit 23 When the target position setting unit 23 detects a combination of a plurality of ranging spots SP whose altitude difference is equal to or greater than the altitude difference threshold value (S22: YES), the target position setting unit 23 sets these two adjacent ranging spots SP for estimation ranging. Set to spot (S23). The target position setting unit 23 repeats this process while moving in the scanning direction until a combination of a plurality of ranging spots SP whose altitude difference is equal to or greater than the altitude difference threshold is detected (S22: NO).
  • the target position setting unit 23 calculates the average brightness of the two ranging spots SP set as the estimation ranging spots (S24).
  • the target position setting unit 23 sets the target position PS90 if the average brightness of the estimation ranging spot is equal to or higher than the brightness threshold for setting the target position PS90 (S25: YES) (S26). Specifically, the target position setting unit 23 uses the position coordinates of the two ranging spots SP (ranging spots SPt1 and SPt2 in FIG. 4) set as the estimation ranging spots to determine the position of the target position PS90. Set coordinates. For example, the target position setting unit 23 sets the average value of the position coordinates of the two ranging spots SP (ranging spots SPt1 and SPt2 in FIG. 4) as the position coordinates of the target position PS90.
  • the target position setting unit 23 changes the target scanning line for setting the target position PS90 (S27), Execute the process described above.
  • the navigation support device 20 can more reliably and accurately set the target position PS90.
  • the navigation support system 10 can more reliably and accurately set the target position PS90 by a simple operation of arranging the reflecting member 30 at the target position PS90 and a simple configuration.
  • the length of the reflection member 30 in the direction orthogonal to the quay line 900 more specifically, the quay line 900 of the first flat plate portion 31 of the reflection member 30
  • the length L31 in the orthogonal direction and the length L32 in the direction orthogonal to the quay line 900 of the second flat plate portion 32 of the reflecting member 30 are longer than the distance between the distance measurement spots SP adjacent to each other in the scanning direction.
  • a plurality of distance measuring spots SP can be set on the first flat plate portion 31 and a plurality of distance measuring spots SP can be set on the second flat plate portion 32 on the scanning line.
  • the reflecting member 30 can be easily distinguished from the quay wall 90, and the target position PS90 can be set more reliably and accurately.
  • the length W30 of the reflecting member 30 in the direction parallel to the wharf line 900 is approximately the same as the distance of the distance measurement spots SP adjacent in the height direction in the measurement system of the distance measurement unit 21 .
  • the target position PS90 can be set more reliably and accurately.
  • the navigation support device 20 can accurately measure the distance between the ship-side reference point of the ship 80 and the target position PS90. Then, the navigation support device 20 can provide effective information for navigation to the operator.
  • the manner in which the target position PS90 is set using the luminance after the altitude difference has been shown.
  • the position of the target position PS90 in the direction parallel to the quay line 900 is estimated.
  • FIG. 7 is a flowchart showing a second example of target position setting processing.
  • the target position setting unit 23 calculates the brightness of a plurality of ranging spots SP arranged on the scanning line (S31).
  • the target position setting unit 23 An altitude difference between adjacent ranging spots SP is calculated (S33).
  • the target position setting unit 23 changes the target scanning line for setting the target position PS90 ( S37), the above-described processing is executed.
  • the target position setting unit 23 sets these adjacent two ranging spots SP as estimation ranging spots. Set (S35).
  • the target position setting unit 23 repeats this process while moving in the scanning direction until a combination of a plurality of ranging spots SP whose altitude difference is equal to or greater than the threshold is detected (S34: NO).
  • the target position setting unit 23 sets the target position PS90 using the estimation ranging spot (S36). Specifically, the target position setting unit 23 uses the position coordinates of the two ranging spots SP (ranging spots SPt1 and SPt2 in FIG. 4) set as the estimation ranging spots to determine the position of the target position PS90. Set coordinates. For example, the target position setting unit 23 sets the average value of the position coordinates of the two ranging spots SP (ranging spots SPt1 and SPt2 in FIG. 4) as the position coordinates of the target position PS90.
  • the target position setting unit 23 can also set the target position PS90 using the position coordinates of the target position PS90 that are set in advance as absolute coordinates.
  • FIG. 8 is a functional block diagram showing another example of the configuration of the navigation support system according to the embodiment of the present invention.
  • the navigation support system 10A includes a navigation support device 20A.
  • 20 A of navigation support apparatuses are provided with 200 A of control parts.
  • the control unit 200A differs in that the target position setting unit 23 of the control unit 200 is replaced with a target position setting unit 23A.
  • Other configurations of the control unit 200A are the same as those of the control unit 200.
  • the attitude measurement unit 22 outputs the attitude angle and position coordinates of the ship 80 to the target position setting unit 23A.
  • FIG. 9 is a flowchart showing a third example of target position setting processing of the navigation support method according to the present embodiment.
  • the distance measurement unit 21 performs three-dimensional distance measurement and generates distance measurement information for a plurality of distance measurement spots SP (S11).
  • the target position setting unit 23A sets the provisional target position using the brightness and altitude of the multiple ranging spots SP (S120). More specifically, the target position setting unit 23 sets the target position set by the method shown in FIGS. 6 and 7 as the provisional target position.
  • the target position setting unit 23A refers to the map information, AIS, etc., and stores in advance the target position, that is, the position coordinates of the N flag as the target position for determination.
  • the target position setting unit 23A stores the position coordinates of the determination target position in, for example, an absolute coordinate system.
  • the target position setting unit 23A compares the provisional target position and the determination target position (S14). At this time, the target position setting unit 23 uses the attitude angle and the position coordinates of the ship 80 to convert the provisional target position into the absolute coordinate system. As a result, the target position setting unit 23A can compare the position coordinates of the provisional target position and the position coordinates of the determination target position in a state in which they are standardized to the absolute coordinate system.
  • the target position setting unit 23A sets the provisional target position to the target position PS90 (S16). Note that if the position error between the provisional target position and the target position for determination is not within the predetermined error range (S15: NO), the navigation support device 20A discards the result of this time and, for example, repeat the setting process.
  • the navigation support device 20A can set the target position PS90 with high reliability.
  • the distance measurement unit 21 has shown a mode in which the scanning direction is the vertical direction.
  • the distance measurement unit 21 may be arranged so that the horizontal direction is the scanning direction.
  • the reflecting member 30 is plain, that is, has a uniform reflecting surface as a whole.
  • the reflective member 30 can also have a predetermined pattern such as a bar code, that is, a surface on which the pattern can be recognized by a difference in brightness.
  • the distance measuring section 21 or the target position setting section 23 may include an information demodulating section that demodulates information associated with the pattern.
  • the case where the port side of the ship 80 is docked at the quay wall 90 is shown.
  • the starboard side of the ship 80 is docked at the quay wall 90, the above configuration and processing can be applied.
  • the distance measuring unit 21 is installed on the starboard side of the ship 80 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Ocean & Marine Engineering (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

[Problem] To precisely measure the distance between a target location of ship sailing and an own ship. [Solution] This sailing assistance system 10 comprises a reflection member 30, a distance measurement unit 21, and a target location setting unit 23. The reflection member 30 includes a target location PS90 on an anchor target line of a ship 80, and is installed in a curved shape by bordering the anchor target line. The distance measurement unit 21 is installed in the ship 80, transmits and receives laser light, and performs three-dimensional distance measurement. The target location setting unit 23 sets the target location by using the distance measurement result obtained by means of the laser light reflected by the reflection member 30.

Description

船舶航行支援システム、および、船舶航行支援方法Ship navigation support system and ship navigation support method
 本発明は、船舶の停泊時等に利用する航行支援技術に関する。 The present invention relates to navigation support technology used when a ship is anchored.
 距離センサを用いて自船舶と岸壁等の対象物との距離を測定する着岸支援装置が知られ
ている。
A docking support device is known that measures the distance between the own ship and an object such as a wharf using a distance sensor.
特許第5000244号明細書Patent No. 5000244
 しかしながら、従来の着岸支援装置では、例えば岸壁原点のような操船の目的位置と自船との距離を精度良く測定できないことがある。 However, conventional docking support devices may not be able to accurately measure the distance between the target position for maneuvering, such as the quay origin, and the own ship.
 したがって、本発明の目的は、航行の目的位置と自船との距離を精度良く測定することにある。 Therefore, the object of the present invention is to accurately measure the distance between the navigation target position and the own ship.
 この発明の航行支援システムは、反射部材、距離計測部、および、目標位置設定部を備える。反射部材は、船舶の停泊目標ライン上の目標位置を含み、停泊目標ラインを境にして屈曲する形状で設置される。距離計測部は、船舶に設置され、レーザ光を送受信して三次元測距を行う。目標位置設定部は、反射部材で反射したレーザ光による測距結果を用いて目標位置を設定する。 The navigation support system of this invention includes a reflecting member, a distance measuring section, and a target position setting section. The reflecting member includes a target position on the target berthing line of the vessel, and is installed in a shape that bends with the target berthing line as a boundary. The distance measurement unit is installed on a ship and transmits and receives laser light to perform three-dimensional distance measurement. The target position setting unit sets the target position using the distance measurement result of the laser beam reflected by the reflecting member.
 この構成では、反射部材のある目標位置を含む領域とその他の領域でレーザ光の反射状態が異なるので、目標位置が測距結果から精度良く設定される。 With this configuration, the laser light reflection state differs between the area including the target position with the reflecting member and the other areas, so the target position can be accurately set from the distance measurement result.
 この発明の航行支援システムでは、停泊目標ラインは、船舶が停泊する停泊対象物の水平面と垂直面が直交する線である。反射部材は、水平面に設置される第1平板部と垂直面に設置される第2平板部とを備える。 In the navigation support system of this invention, the target berthing line is a line where the horizontal plane and the vertical plane of the berthed object at which the ship is berthed are perpendicular to each other. The reflecting member includes a first flat plate portion installed in a horizontal plane and a second flat plate portion installed in a vertical plane.
 この発明の航行支援システムでは、距離計測部は、レーザ光を走査して、走査方向および距離方向に複数の測距スポットを設定する。距離計測部は、複数の測距スポット毎に測距を行う。目標位置設定部は、測位結果における複数の測距スポットの輝度および高度を用いて目標位置を設定する。 In the navigation support system of this invention, the distance measurement unit scans the laser beam and sets a plurality of distance measurement spots in the scanning direction and the distance direction. The distance measurement unit performs distance measurement for each of the plurality of distance measurement spots. The target position setting unit sets the target position using the brightness and altitude of the plurality of ranging spots in the positioning result.
 この発明の航行支援システムでは、目標位置設定部は、停泊目標ラインに直交する方向において隣接する複数の測距スポットの高度差を用いて目標位置を設定する。 In the navigation support system of the present invention, the target position setting unit sets the target position using the altitude difference between a plurality of distance measurement spots adjacent in the direction perpendicular to the berthing target line.
 この発明の航行支援システムでは、目標位置設定部は、複数の測距スポットにおける高輝度の測距スポットを用いて目標位置を設定する。 In the navigation support system of the present invention, the target position setting unit sets the target position using high-brightness ranging spots among the plurality of ranging spots.
 この発明の航行支援システムでは、目標位置設定部は、レーザ光による測距結果を用いて設定した目標位置を暫定目標位置とする。目標位置設定部は、レーザ光による測距結果とは異なる手段を用いて判定用目標位置を設定する。目標位置設定部は、暫定目標位置と判定用目標位置との誤差が所定範囲内であれば、暫定目標位置を目標位置に設定する。 In the navigation support system of the present invention, the target position setting unit uses the target position set using the laser beam distance measurement result as the provisional target position. The target position setting unit sets the determination target position using means different from the distance measurement result by the laser beam. The target position setting unit sets the provisional target position as the target position if the error between the provisional target position and the determination target position is within a predetermined range.
 この発明の航行支援システムは、船舶の位置座標を計測する計測部と、目標位置と船舶の位置座標とを用いて、目標位置に対して船舶を着岸させるための航行支援情報を生成する支援情報生成部と、を備える。 The navigation support system of the present invention uses a measurement unit that measures the position coordinates of a ship, and the target position and the position coordinates of the ship to generate navigation support information for docking the ship at the target position. and a generator.
 この発明の航行支援システムでは、支援情報生成部は、船舶に着岸基準点を設定し、着岸基準点と目標位置との位置関係に基づいて、航行支援情報を生成する。 In the navigation support system of the present invention, the support information generation unit sets a docking reference point on the ship and generates navigation support information based on the positional relationship between the docking reference point and the target position.
 この発明の航行支援システムでは、計測部は、船舶の姿勢を計測する。支援情報生成部は、目標位置と船舶の位置座標と船舶の姿勢とを用いて航行支援情報を生成する。 In the navigation support system of this invention, the measurement unit measures the attitude of the ship. The support information generator generates navigation support information using the target position, the position coordinates of the ship, and the attitude of the ship.
 この発明によれば、航行の目的位置と自船との距離を精度良く測定できる。 According to this invention, the distance between the target position of navigation and the own ship can be measured with high accuracy.
図1は、本発明の実施形態に係る航行支援システムの構成を示す機能ブロック図である。FIG. 1 is a functional block diagram showing the configuration of a navigation support system according to an embodiment of the invention. 図2は、船舶、距離計測部、岸壁の位置関係を示す平面図である。FIG. 2 is a plan view showing the positional relationship among the ship, the distance measuring section, and the wharf. 図3は、反射部材の設置態様の一例を示す斜視図である。FIG. 3 is a perspective view showing an example of an installation mode of a reflecting member. 図4は、反射部材の近傍の複数の測距スポットSPの一例を示す斜視図である。FIG. 4 is a perspective view showing an example of a plurality of ranging spots SP near the reflecting member. 図5は、本実施形態に係る航行支援方法の主要フローを示すフローチャートである。FIG. 5 is a flow chart showing the main flow of the navigation support method according to this embodiment. 図6は、目標位置の設定処理の第1例を示すフローチャートである。FIG. 6 is a flowchart showing a first example of target position setting processing. 図7は、目標位置の設定処理の第2例を示すフローチャートである。FIG. 7 is a flowchart showing a second example of target position setting processing. 図8は、本発明の実施形態に係る航行支援システムの構成の別の一例を示す機能ブロック図である。FIG. 8 is a functional block diagram showing another example of the configuration of the navigation support system according to the embodiment of the invention. 図9は、本実施形態に係る航行支援方法の目標位置の設定処理の第3例を示すフローチャートである。FIG. 9 is a flowchart showing a third example of target position setting processing of the navigation support method according to the present embodiment.
 本発明の実施形態に係る航行支援技術について、図を参照して説明する。図1は、本発明の実施形態に係る航行支援システムの構成を示す機能ブロック図である。図2は、船舶、距離計測部、岸壁の位置関係を示す平面図である。図3は、反射部材の設置態様の一例を示す斜視図である。 A navigation support technology according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a functional block diagram showing the configuration of a navigation support system according to an embodiment of the invention. FIG. 2 is a plan view showing the positional relationship among the ship, the distance measuring section, and the wharf. FIG. 3 is a perspective view showing an example of an installation mode of a reflecting member.
 (航行支援技術の適用態様の一例)
 本発明の実施形態に係る航行支援技術は、例えば、図2に示すような状況で用いられ、有効である。なお、航行支援装置20で実行する目標位置PS90の具体的な設定処理は、後述し、ここでは、目標位置PS90の設定処理については、概略的に説明する。
(Example of Application of Navigation Support Technology)
The navigation assistance technology according to the embodiment of the present invention is effectively used in the situation shown in FIG. 2, for example. The specific processing for setting the target position PS90 executed by the navigation support device 20 will be described later, and the setting processing for the target position PS90 will be briefly described here.
 図2に示すように、船舶80は、岸壁90に着岸するように航行(操船)中である。 As shown in FIG. 2 , the ship 80 is sailing (maneuvering) to dock at the quay 90 .
 岸壁90は、水平面901と垂直面902とが略直交する形状であり、垂直面902が海および水面(海面)WSに接している。水平面901と垂直面902とが直交する線が岸壁線900(停泊目標ライン)である。 The quay wall 90 has a shape in which a horizontal plane 901 and a vertical plane 902 are substantially perpendicular to each other, and the vertical plane 902 is in contact with the sea and the water surface (sea surface) WS. A line perpendicular to the horizontal plane 901 and the vertical plane 902 is the quay line 900 (target berthing line).
 岸壁90には、例えば、N旗のように着岸の基準点が設定されており、この点が、航行の目標位置PS90に設定される。目標位置PS90は、岸壁線900上に設定される。 A docking reference point is set on the quay 90, for example, like the N flag, and this point is set as the navigation target position PS90. A target position PS90 is set on the quay line 900 .
 船舶80は、例えば、デッキ800の左舷端を船舶側の着岸基準点に設定する。船舶80は、船舶側の着岸基準点を目標位置PS90に合わせるように、航行(操船)制御される。 The ship 80 sets, for example, the port end of the deck 800 as the docking reference point on the ship side. The ship 80 is under navigation (steering) control so that the docking reference point on the ship side is aligned with the target position PS90.
 船舶80には、距離計測部21が設置されている。距離計測部21は、例えば、LiDAR等、レーザ光を用いた測距を行う。距離計測部21は、岸壁90側に探知領域Ar21を設定し、測距を行う。 A distance measuring unit 21 is installed on the ship 80 . The distance measurement unit 21 performs distance measurement using laser light such as LiDAR. The distance measurement unit 21 sets a detection area Ar21 on the wharf 90 side and performs distance measurement.
 岸壁90の目標位置PS90には、反射部材30が設置されている。反射部材30は、距離計測部21から送信されるレーザ光を高反射率で反射する材料からなる。 A reflecting member 30 is installed at the target position PS90 of the wharf 90 . The reflecting member 30 is made of a material that reflects the laser beam transmitted from the distance measuring section 21 with high reflectance.
 距離計測部21の探知領域Ar21に反射部材30が入っていれば、距離計測部21が生成する測距情報は、反射部材30の位置座標および輝度を含む。船舶80の航行支援装置20の目標位置設定部23は、この反射部材30での反射信号を用いて、目標位置PS90を設定する。 If the reflecting member 30 is in the detection area Ar21 of the distance measuring unit 21, the distance measurement information generated by the distance measuring unit 21 includes the position coordinates and brightness of the reflecting member 30. The target position setting unit 23 of the navigation support device 20 of the ship 80 uses the reflected signal from the reflecting member 30 to set the target position PS90.
 目標位置PS90に反射部材30を設置することによって、目標位置PS90に関する測距情報は、岸壁90の他の位置の測距情報と異なる特徴を有する。したがって、目標位置設定部23は、目標位置PS90を、より確実且つ精度良く設定できる。そして、航行支援装置20は、船舶側の着岸基準点と目標位置PS90との距離を、精度良く測定できる。 By installing the reflecting member 30 at the target position PS90, the distance measurement information regarding the target position PS90 has characteristics different from the distance measurement information for other positions on the wharf 90. Therefore, the target position setting unit 23 can set the target position PS90 more reliably and accurately. Then, the navigation support device 20 can accurately measure the distance between the ship's docking reference point and the target position PS90.
 (航行支援システム10)
 図1に示すように、航行支援システム10は、航行支援装置20、および、反射部材30を備える。航行支援装置20は、船舶80に装備されている。
(Navigation support system 10)
As shown in FIG. 1 , the navigation assistance system 10 includes a navigation assistance device 20 and a reflecting member 30 . A ship 80 is equipped with the navigation support device 20 .
 航行支援装置20は、例えば、光学系の部分、電波系の部分を除き、航行支援方法を実現する航行支援プログラム、当該航行支援プログラムが記憶される記憶デバイス、および、航行支援プログラムを実行するCPU等の演算処理装置によって実現可能である。また、記憶デバイスと演算処理装置との部分は、航行支援プログラムが組み込まれたIC等によって実現することも可能である。制御部200は、このような演算処理装置や組み込み型のICによって構成される。 The navigation support device 20 includes, for example, a navigation support program that implements a navigation support method, a storage device that stores the navigation support program, and a CPU that executes the navigation support program, except for an optical system portion and a radio wave system portion. It can be realized by an arithmetic processing unit such as. Also, the storage device and the arithmetic processing unit can be realized by an IC or the like in which the navigation support program is installed. The control unit 200 is configured by such an arithmetic processing unit or an embedded IC.
 制御部200は、距離計測部21、姿勢計測部22、目標位置設定部23、および、支援情報生成部24を備える。 The control unit 200 includes a distance measurement unit 21, an attitude measurement unit 22, a target position setting unit 23, and a support information generation unit 24.
 距離計測部21は、LiDAR等の測距装置である。距離計測部21は、垂直方向を走査方向として、すなわち、レーザ光の光軸が垂直方向に走査されるように、船舶80に設置される。 The distance measurement unit 21 is a distance measurement device such as LiDAR. The distance measuring unit 21 is installed on the ship 80 so that the scanning direction is the vertical direction, that is, the optical axis of the laser beam is scanned in the vertical direction.
 距離計測部21は、三次元の探知領域Ar21内にレーザ光を送信し、その受信信号を用いて測距を行う。より具体的には、距離計測部21は、レーザ光の光軸を走査方向に沿って移動(回転)させながら、レーザ光を送信する。距離計測部21は、レーザ光の反射信号を受信する。 The distance measurement unit 21 transmits laser light within the three-dimensional detection area Ar21, and uses the received signal to perform distance measurement. More specifically, the distance measuring unit 21 transmits laser light while moving (rotating) the optical axis of the laser light along the scanning direction. The distance measurement unit 21 receives the reflected signal of the laser beam.
 距離計測部21は、複数の測距スポットSPを設定する。例えば後述の図4に示すように、複数の測距スポットSPは、走査方向の位置と距離方向の位置とによって定義される。より具体的には、距離計測部21は、レーザ光が照射される角度(回転角)によって、測距スポットSPの走査方向の位置を決定する。また、距離計測部21は、レーザ光の送信から反射信号の受信までの時間によって、測距スポットSPの距離方向の位置を決定する。 The distance measurement unit 21 sets a plurality of distance measurement spots SP. For example, as shown in FIG. 4, which will be described later, the multiple ranging spots SP are defined by positions in the scanning direction and positions in the distance direction. More specifically, the distance measurement unit 21 determines the position of the distance measurement spot SP in the scanning direction based on the angle (rotational angle) at which the laser beam is irradiated. Further, the distance measurement unit 21 determines the position of the distance measurement spot SP in the distance direction based on the time from the transmission of the laser beam to the reception of the reflected signal.
 距離計測部21は、距離計測部21の位置を基準位置する各測距スポットSPの位置座標と、各測距スポットSPに対する受信信号の輝度(強度)とを、各測距スポットSPの測距結果として、目標位置設定部23に出力する。 The distance measurement unit 21 calculates the position coordinates of each distance measurement spot SP using the position of the distance measurement unit 21 as a reference position, and the brightness (intensity) of the received signal for each distance measurement spot SP. As a result, it is output to the target position setting section 23 .
 姿勢計測部22は、姿勢センサである。姿勢センサは、例えば、GNSS信号の測位技術を用いたものである。また、姿勢センサは、GNSS信号の測位技術と慣性センサとを組み合わせたものでもよい。 The orientation measurement unit 22 is an orientation sensor. The attitude sensor uses, for example, the positioning technology of GNSS signals. The attitude sensor may also be a combination of GNSS signal positioning technology and an inertial sensor.
 姿勢計測部22は、船舶80に対して距離計測部21とほぼ同じ位置に設置される。姿勢計測部22は、計測する姿勢角の座標系が測距座標系に一致するように設置されることが好ましい。しかしながら、姿勢計測部22の座標系と測距座標系との角度差を予め取得し、この角度差を用いて補正すれば、同様の効果が得られる。 The attitude measurement unit 22 is installed at approximately the same position as the distance measurement unit 21 with respect to the ship 80 . The attitude measurement unit 22 is preferably installed so that the coordinate system of the attitude angle to be measured matches the distance measurement coordinate system. However, if the angle difference between the coordinate system of the posture measurement unit 22 and the distance measurement coordinate system is obtained in advance and corrected using this angle difference, the same effect can be obtained.
 姿勢計測部22は、船舶80の姿勢角を計測する。また、姿勢計測部22は、船舶80の絶対位置座標を計測する。姿勢計測部22にGNSS信号の測位技術を用いることで、船舶80の位置座標も計測できる。また、GNSS信号の測位技術を用いれば、海上のようにオープンスカイの状況において、高精度に姿勢角および位置座標を計測できる。 The attitude measurement unit 22 measures the attitude angle of the ship 80 . Also, the attitude measurement unit 22 measures the absolute position coordinates of the ship 80 . The position coordinates of the ship 80 can also be measured by using the GNSS signal positioning technology for the attitude measurement unit 22 . In addition, by using the positioning technology of GNSS signals, it is possible to measure the attitude angle and the position coordinates with high accuracy in an open sky situation such as on the sea.
 姿勢計測部22は、姿勢角および位置座標を支援情報生成部24に出力する。 The posture measurement unit 22 outputs the posture angle and position coordinates to the support information generation unit 24.
 目標位置設定部23は、複数の測距スポットSPの測距結果を用いて目標位置PS90を設定する。なお、目標位置設定部23のより具体的な目標位置PS90の設定方法は、後述する。目標位置設定部23は、目標位置PS90(目標位置PS90の位置座標)を、支援情報生成部24に出力する。 The target position setting unit 23 sets the target position PS90 using the ranging results of the multiple ranging spots SP. A more specific method of setting the target position PS90 by the target position setting unit 23 will be described later. The target position setting section 23 outputs the target position PS90 (the position coordinates of the target position PS90) to the support information generating section 24 .
 支援情報生成部24は、船舶80の姿勢角および位置座標と目標位置PS90の位置座標とを用いて、目標位置PS90に船舶80を着岸させるための航行支援情報を生成する。航行支援情報は、船舶80の船舶側の着岸基準点と目標位置PS90との位置関係に基づいており、例えば、船舶80の船舶側の着岸基準点と目標位置PS90との水平距離、船舶側の着岸基準点と岸壁線900との距離DISq、船舶側の基準点と目標位置PS90との岸壁線900に平行な距離DISp等である。 The support information generation unit 24 uses the attitude angle and position coordinates of the ship 80 and the position coordinates of the target position PS90 to generate navigation support information for docking the ship 80 at the target position PS90. The navigation support information is based on the positional relationship between the ship-side docking reference point of the ship 80 and the target position PS90. The distance DISq between the docking reference point and the quay line 900, the distance DISp between the ship side reference point and the target position PS90 parallel to the quay line 900, and the like.
 なお、着岸基準点は、操舵者等の入力によって、船舶80の所望位置に設定できる。この設定は、支援情報生成部24によって実現される。 Note that the docking reference point can be set at a desired position on the ship 80 by input from the helmsman or the like. This setting is implemented by the support information generation unit 24 .
 また、詳細は省略するが、岸壁線900の設定も可能であり、この場合、岸壁線900と船舶80の姿勢角とによって、航行支援情報に、岸壁線900に対する船舶80の姿勢を含むこともできる。 Although details are omitted, it is also possible to set the quay line 900. In this case, the attitude of the ship 80 with respect to the quay line 900 may be included in the navigation support information based on the quay line 900 and the attitude angle of the ship 80. can.
 操船者または自動操船プログラムは、これらの航行支援情報に基づいて、操船を行う。そして、目標位置PS90がより確実且つ精度良く設定されることで、高精度の操船が可能になる。 The ship operator or the autopilot program steers the ship based on this navigation support information. By setting the target position PS90 more reliably and accurately, highly accurate ship maneuvering becomes possible.
 (反射部材30)
 図1、図2、図3に示すように、反射部材30は、第1平板部31と第2平板部32とを備える。第1平板部31と第2平板部32とは、互いに直交するように接続される。
(Reflection member 30)
As shown in FIGS. 1, 2, and 3, the reflecting member 30 includes a first flat plate portion 31 and a second flat plate portion 32. As shown in FIGS. The first flat plate portion 31 and the second flat plate portion 32 are connected so as to be perpendicular to each other.
 第1平板部31は、岸壁90の水平面901上に配置され、第2平板部32は、岸壁90の垂直面902上に配置される。また、第1平板部31と第2平板部32とが接続する角部は、岸壁線900に配置される。 The first flat plate portion 31 is arranged on the horizontal surface 901 of the quay 90 , and the second flat plate portion 32 is arranged on the vertical surface 902 of the quay 90 . A corner portion where the first flat plate portion 31 and the second flat plate portion 32 are connected is arranged on the quay line 900 .
 反射部材30は、目標位置PS90に重なるように配置される。 The reflecting member 30 is arranged so as to overlap the target position PS90.
 第1平板部31の露出面および第2平板部32の露出面は、レーザ光を高反射率で反射する材料からなる。 The exposed surface of the first flat plate portion 31 and the exposed surface of the second flat plate portion 32 are made of a material that reflects laser light with high reflectance.
 このような構成によって、反射部材30は、直交する二つの反射面を有するように、岸壁90に設置される。 With this configuration, the reflecting member 30 is installed on the wharf 90 so as to have two orthogonal reflecting surfaces.
 (目標位置PS90の具体的な設定方法)
 図4は、反射部材の近傍の複数の測距スポットSPの一例を示す斜視図である。図4において、円形が測距スポットSPt1、SPt2を含む複数の測距スポットSPを示す。ハッチングのされていない円が、高輝度の測距スポットを示し、ハッチングされている円が低輝度の測距スポットである。なお、ここでの高輝度、低輝度は、絶対的な意味ではなく、相対的な意味である。測距スポットSPt1、SPt2は、複数の測距スポットSPの一部であり、後述する方法によって抽出された目標位置PS90の設定用の測距スポットである。
(Specific method for setting target position PS90)
FIG. 4 is a perspective view showing an example of a plurality of ranging spots SP near the reflecting member. In FIG. 4, circles indicate a plurality of ranging spots SP including ranging spots SPt1 and SPt2. A non-hatched circle indicates a high-brightness ranging spot, and a hatched circle is a low-brightness ranging spot. It should be noted that high luminance and low luminance here have relative meanings rather than absolute meanings. The ranging spots SPt1 and SPt2 are part of a plurality of ranging spots SP, and are ranging spots for setting a target position PS90 extracted by a method described later.
 距離計測部21は、垂直方向を走査方向とするので、走査方向の並ぶ複数の測距スポットSPは、岸壁線900に直交する方向に並ぶ。また、走査方向および距離方向の直交する方向(距離計測部21の計測系における高さ方向)に並ぶ複数の測距スポットSPは、岸壁線900に平行な方向に並ぶ。 Since the distance measurement unit 21 uses the vertical direction as the scanning direction, the plurality of distance measurement spots SP aligned in the scanning direction are aligned in the direction orthogonal to the wharf line 900 . Further, the plurality of ranging spots SP arranged in a direction orthogonal to the scanning direction and the distance direction (height direction in the measurement system of the distance measurement unit 21) are arranged in a direction parallel to the wharf line 900. FIG.
 反射部材30は、岸壁90よりもレーザ光を高反射率で反射する。これにより、反射部材30に重なる複数の測距スポットSPの輝度は、反射部材30に重ならない複数の測距スポットSP(岸壁90のみに重なる複数の測距スポットSP)の輝度よりも高い。 The reflecting member 30 reflects laser light with a higher reflectance than the quay wall 90 . Thereby, the brightness of the plurality of ranging spots SP overlapping the reflecting member 30 is higher than the brightness of the plurality of ranging spots SP not overlapping the reflecting member 30 (the plurality of ranging spots SP overlapping only the quay wall 90).
 また、複数の測距スポットSPの高度差(高さ方向の位置座標の差)は、複数の測距スポットSPの走査方向の位置座標の差と距離方向の位置座標の差から算出できる。 Also, the altitude difference (difference in position coordinates in the height direction) of the plurality of ranging spots SP can be calculated from the difference in the scanning direction position coordinates and the difference in the distance direction position coordinates of the plurality of ranging spots SP.
 水平面901上の複数の測距スポットSPの高さ方向の位置座標は、誤差の範囲内で同じである。垂直面902上の複数の測距スポットSPの高さ方向の位置座標は、それぞれに異なるとともに、水平面901上の複数の測距スポットSPの高さ方向の位置座標とも異なる。すなわち、水平面901上の複数の測距スポットSPと垂直面902上の複数の測距スポットSPとは、測距情報としても高度差を有する。 The position coordinates in the height direction of the plurality of ranging spots SP on the horizontal plane 901 are the same within the range of error. The positional coordinates in the height direction of the plurality of ranging spots SP on the vertical plane 902 are different from each other, and also differ from the positional coordinates in the height direction of the plurality of ranging spots SP on the horizontal plane 901 . That is, the plurality of ranging spots SP on the horizontal plane 901 and the plurality of ranging spots SP on the vertical plane 902 also have altitude differences as ranging information.
 したがって、輝度、および、高さ方向の位置座標を含む測距情報を用いることで、反射部材30の位置座標、および、岸壁線900が検出できる。そして、反射部材30の位置座標、および、岸壁線900が検出されることによって、目標位置PS90は、設定できる。 Therefore, the position coordinates of the reflecting member 30 and the wharf line 900 can be detected by using the distance measurement information including the luminance and the position coordinates in the height direction. Then, the target position PS90 can be set by detecting the position coordinates of the reflecting member 30 and the quay line 900 .
 図5は、本実施形態に係る航行支援方法の主要フローを示すフローチャートである。図6は、目標位置の設定処理の第1例を示すフローチャートである。 FIG. 5 is a flow chart showing the main flow of the navigation support method according to this embodiment. FIG. 6 is a flowchart showing a first example of target position setting processing.
 反射部材30は、目標位置PS90に重なるように、岸壁90に予め設置される。 The reflecting member 30 is installed in advance on the wharf 90 so as to overlap the target position PS90.
 図5に示すように、距離計測部21は、上述のように、岸壁90を含む探知領域Ar21に対して、三次元測距を行う(S11)。これにより、距離計測部21は、複数の測距スポットSPに対して、輝度および高度(高さ方向の位置座標)を含む測距情報を生成する。 As shown in FIG. 5, the distance measurement unit 21 performs three-dimensional distance measurement with respect to the detection area Ar21 including the wharf 90 as described above (S11). Thereby, the distance measurement unit 21 generates distance measurement information including luminance and altitude (position coordinates in the height direction) for the plurality of distance measurement spots SP.
 目標位置設定部23は、複数の測距スポットSPの輝度および高度を用いて、目標位置PS90を設定する(S12)。 The target position setting unit 23 sets the target position PS90 using the brightness and altitude of the plurality of ranging spots SP (S12).
 より具体的には、図6に示すように、目標位置設定部23は、走査ライン上に並ぶ複数の測距スポットSPの高度差を算出する(S21)。 More specifically, as shown in FIG. 6, the target position setting unit 23 calculates the altitude difference between the plurality of ranging spots SP arranged on the scanning line (S21).
 目標位置設定部23は、高度差が高度差閾値以上の複数の測距スポットSPの組合せが検出されれば(S22:YES)、これらの隣接する2個の測距スポットSPを推定用測距スポットに設定する(S23)。目標位置設定部23は、高度差が高度差閾値以上の複数の測距スポットSPの組合せが検出されるまでは(S22:NO)、この処理を走査方向に移動させながら繰り返す。 When the target position setting unit 23 detects a combination of a plurality of ranging spots SP whose altitude difference is equal to or greater than the altitude difference threshold value (S22: YES), the target position setting unit 23 sets these two adjacent ranging spots SP for estimation ranging. Set to spot (S23). The target position setting unit 23 repeats this process while moving in the scanning direction until a combination of a plurality of ranging spots SP whose altitude difference is equal to or greater than the altitude difference threshold is detected (S22: NO).
 目標位置設定部23は、推定用測距スポットに設定した2個の測距スポットSPの平均輝度を算出する(S24)。 The target position setting unit 23 calculates the average brightness of the two ranging spots SP set as the estimation ranging spots (S24).
 目標位置設定部23は、推定用測距スポットの平均輝度が目標位置PS90の設定用の輝度閾値以上であれば(S25:YES)、目標位置PS90を設定する(S26)。具体的には、目標位置設定部23は、推定用測距スポットに設定した2個の測距スポットSP(図4の測距スポットSPt1、SPt2)の位置座標を用いて、目標位置PS90の位置座標を設定する。例えば、目標位置設定部23は、2個の測距スポットSP(図4の測距スポットSPt1、SPt2)の位置座標の平均値を、目標位置PS90の位置座標を設定する。 The target position setting unit 23 sets the target position PS90 if the average brightness of the estimation ranging spot is equal to or higher than the brightness threshold for setting the target position PS90 (S25: YES) (S26). Specifically, the target position setting unit 23 uses the position coordinates of the two ranging spots SP (ranging spots SPt1 and SPt2 in FIG. 4) set as the estimation ranging spots to determine the position of the target position PS90. Set coordinates. For example, the target position setting unit 23 sets the average value of the position coordinates of the two ranging spots SP (ranging spots SPt1 and SPt2 in FIG. 4) as the position coordinates of the target position PS90.
 なお、目標位置設定部23は、推定用測距スポットの平均輝度が輝度閾値未満であれば(S25:NO)、目標位置PS90の設定を行うための対象の走査ラインを変更し(S27)、上述の処理を実行する。 If the average brightness of the estimation ranging spot is less than the brightness threshold (S25: NO), the target position setting unit 23 changes the target scanning line for setting the target position PS90 (S27), Execute the process described above.
 このように、航行支援システム10の構成を用いることによって、航行支援装置20は、目標位置PS90をより確実且つ精度良く設定できる。また、航行支援システム10は、反射部材30を目標位置PS90に配置するという単純な作業且つ簡単な構成によって、目標位置PS90をより確実且つ精度良く設定できる。 By using the configuration of the navigation support system 10 in this way, the navigation support device 20 can more reliably and accurately set the target position PS90. In addition, the navigation support system 10 can more reliably and accurately set the target position PS90 by a simple operation of arranging the reflecting member 30 at the target position PS90 and a simple configuration.
 なお、上述の説明では、具体的に示していないが、反射部材30の岸壁線900に直交する方向の長さ、より具体的には、反射部材30の第1平板部31の岸壁線900に直交する方向の長さL31および反射部材30の第2平板部32の岸壁線900に直交する方向の長さL32は、走査方向に隣接する測距スポットSPの距離よりも長い。 In the above description, although not specifically shown, the length of the reflection member 30 in the direction orthogonal to the quay line 900, more specifically, the quay line 900 of the first flat plate portion 31 of the reflection member 30 The length L31 in the orthogonal direction and the length L32 in the direction orthogonal to the quay line 900 of the second flat plate portion 32 of the reflecting member 30 are longer than the distance between the distance measurement spots SP adjacent to each other in the scanning direction.
 したがって、走査ライン上において、第1平板部31上に複数の測距スポットSPを設定でき、同様に、第2平板部32上に複数の測距スポットSPを設定できる。これにより、反射部材30を岸壁90に対して判別し易く、目標位置PS90の設定は、より確実且つ精度良く設定できる。 Therefore, a plurality of distance measuring spots SP can be set on the first flat plate portion 31 and a plurality of distance measuring spots SP can be set on the second flat plate portion 32 on the scanning line. As a result, the reflecting member 30 can be easily distinguished from the quay wall 90, and the target position PS90 can be set more reliably and accurately.
 さらに、反射部材30の岸壁線900に平行な方向の長さW30は、距離計測部21の計測系における高さ方向に隣接する測距スポットSPの距離と同程度であることが好ましい。 Furthermore, it is preferable that the length W30 of the reflecting member 30 in the direction parallel to the wharf line 900 is approximately the same as the distance of the distance measurement spots SP adjacent in the height direction in the measurement system of the distance measurement unit 21 .
 これにより、反射部材30上により確実に複数の測距スポットSPを設定でき、且つ、反射部材30上において岸壁線900に平行な方向に複数の測距スポットSPが設定され難い。したがって、目標位置PS90の設定は、より確実且つ精度良く設定できる。 Thereby, it is possible to more reliably set a plurality of ranging spots SP on the reflecting member 30, and it is difficult to set a plurality of ranging spots SP on the reflecting member 30 in a direction parallel to the wharf line 900. Therefore, the target position PS90 can be set more reliably and accurately.
 この結果、航行支援装置20は、船舶80の船舶側の基準点と目標位置PS90との距離を精度良く測定できる。そして、航行支援装置20は、操船者に対して航行のための有効な情報を提供できる。 As a result, the navigation support device 20 can accurately measure the distance between the ship-side reference point of the ship 80 and the target position PS90. Then, the navigation support device 20 can provide effective information for navigation to the operator.
 また、上述の処理では、高度差の後に輝度を用いて目標位置PS90を設定する態様を示した。言い換えれば、岸壁線900を推定した後に、岸壁線900に平行な方向での目標位置PS90の位置を推定する態様を示した。 Also, in the above-described processing, the manner in which the target position PS90 is set using the luminance after the altitude difference has been shown. In other words, after estimating the quay line 900, the position of the target position PS90 in the direction parallel to the quay line 900 is estimated.
 しかしながら、輝度の後に高度さを用いて目標位置PS90を設定することも可能である。図7は、目標位置の設定処理の第2例を示すフローチャートである。 However, it is also possible to set the target position PS90 using the altitude after the luminance. FIG. 7 is a flowchart showing a second example of target position setting processing.
 図7に示すように、目標位置設定部23は、走査ライン上に並ぶ複数の測距スポットSPの輝度を算出する(S31)。 As shown in FIG. 7, the target position setting unit 23 calculates the brightness of a plurality of ranging spots SP arranged on the scanning line (S31).
 目標位置設定部23は、測距スポットの輝度が目標位置PS90の設定用の輝度閾値以上であれば(S32:YES)、これら輝度の高い複数の測距スポットSP(高輝度測距スポット)における隣接する測距スポットSP間の高度差を算出する(S33)。 If the brightness of the ranging spot is equal to or higher than the brightness threshold for setting the target position PS90 (S32: YES), the target position setting unit 23 An altitude difference between adjacent ranging spots SP is calculated (S33).
 なお、目標位置設定部23は、走査ライン上の複数の測距スポットの輝度が輝度閾値未満であれば(S32:NO)、目標位置PS90の設定を行うための対象の走査ラインを変更し(S37)、上述の処理を実行する。 Note that if the brightness of the plurality of ranging spots on the scanning line is less than the brightness threshold (S32: NO), the target position setting unit 23 changes the target scanning line for setting the target position PS90 ( S37), the above-described processing is executed.
 目標位置設定部23は、高度差が閾値以上の複数の測距スポットSPの組合せが検出されれば(S34:YES)、これらの隣接する2個の測距スポットSPを推定用測距スポットに設定する(S35)。 If a combination of a plurality of ranging spots SP with an altitude difference equal to or greater than the threshold is detected (S34: YES), the target position setting unit 23 sets these adjacent two ranging spots SP as estimation ranging spots. Set (S35).
 なお、目標位置設定部23は、高度差が閾値以上の複数の測距スポットSPの組合せが検出されるまでは(S34:NO)、この処理を走査方向に移動させながら繰り返す。 It should be noted that the target position setting unit 23 repeats this process while moving in the scanning direction until a combination of a plurality of ranging spots SP whose altitude difference is equal to or greater than the threshold is detected (S34: NO).
 目標位置設定部23は、推定用測距スポットを用いて目標位置PS90を設定する(S36)。具体的には、目標位置設定部23は、推定用測距スポットに設定した2個の測距スポットSP(図4の測距スポットSPt1、SPt2)の位置座標を用いて、目標位置PS90の位置座標を設定する。例えば、目標位置設定部23は、2個の測距スポットSP(図4の測距スポットSPt1、SPt2)の位置座標の平均値を、目標位置PS90の位置座標を設定する。 The target position setting unit 23 sets the target position PS90 using the estimation ranging spot (S36). Specifically, the target position setting unit 23 uses the position coordinates of the two ranging spots SP (ranging spots SPt1 and SPt2 in FIG. 4) set as the estimation ranging spots to determine the position of the target position PS90. Set coordinates. For example, the target position setting unit 23 sets the average value of the position coordinates of the two ranging spots SP (ranging spots SPt1 and SPt2 in FIG. 4) as the position coordinates of the target position PS90.
 また、目標位置設定部23は、予め絶対座標で設定した目標位置PS90の位置座標も用いて、目標位置PS90を設定することもできる。 The target position setting unit 23 can also set the target position PS90 using the position coordinates of the target position PS90 that are set in advance as absolute coordinates.
 図8は、本発明の実施形態に係る航行支援システムの構成の別の一例を示す機能ブロック図である。 FIG. 8 is a functional block diagram showing another example of the configuration of the navigation support system according to the embodiment of the present invention.
 図8に示すように、航行支援システム10Aは、航行支援装置20Aを備える。航行支援装置20Aは、制御部200Aを備える。制御部200Aは、制御部200の目標位置設定部23を目標位置設定部23Aに置き換えた点で異なる。制御部200Aの他の構成は、制御部200と同様である。 As shown in FIG. 8, the navigation support system 10A includes a navigation support device 20A. 20 A of navigation support apparatuses are provided with 200 A of control parts. The control unit 200A differs in that the target position setting unit 23 of the control unit 200 is replaced with a target position setting unit 23A. Other configurations of the control unit 200A are the same as those of the control unit 200. FIG.
 姿勢計測部22は、船舶80の姿勢角および位置座標を目標位置設定部23Aに出力する。 The attitude measurement unit 22 outputs the attitude angle and position coordinates of the ship 80 to the target position setting unit 23A.
 目標位置設定部23Aを含む航行支援装置20Aは、図9に示す処理を行うことによって、目標位置PS90を設定する。図9は、本実施形態に係る航行支援方法の目標位置の設定処理の第3例を示すフローチャートである。 The navigation support device 20A including the target position setting unit 23A sets the target position PS90 by performing the processing shown in FIG. FIG. 9 is a flowchart showing a third example of target position setting processing of the navigation support method according to the present embodiment.
 図9に示すように、距離計測部21は、三次元測距を行い、複数の測距スポットSPに対する測距情報を生成する(S11)。 As shown in FIG. 9, the distance measurement unit 21 performs three-dimensional distance measurement and generates distance measurement information for a plurality of distance measurement spots SP (S11).
 目標位置設定部23Aは、複数の測距スポットSPの輝度および高度を用いて、暫定目標位置を設定する(S120)。より具体的には、目標位置設定部23、図6、図7に示した方法によって設定した目標位置を、暫定目標位置に設定する。 The target position setting unit 23A sets the provisional target position using the brightness and altitude of the multiple ranging spots SP (S120). More specifically, the target position setting unit 23 sets the target position set by the method shown in FIGS. 6 and 7 as the provisional target position.
 目標位置設定部23Aは、地図情報、AIS等を参照して、目標位置すなわちN旗の位置座標を、判定用目標位置として予め記憶している。目標位置設定部23Aは、例えば、絶対座標系で判定用目標位置の位置座標を記憶する。 The target position setting unit 23A refers to the map information, AIS, etc., and stores in advance the target position, that is, the position coordinates of the N flag as the target position for determination. The target position setting unit 23A stores the position coordinates of the determination target position in, for example, an absolute coordinate system.
 目標位置設定部23Aは、暫定目標位置と判定用目標位置を比較する(S14)。この際、目標位置設定部23は、船舶80の姿勢角および位置座標を用いることで、暫定目標位置を絶対座標系に変換する。これにより、目標位置設定部23Aは、絶対座標系に統一した状態で、暫定目標位置の位置座標と判定用目標位置の位置座標とを比較できる。 The target position setting unit 23A compares the provisional target position and the determination target position (S14). At this time, the target position setting unit 23 uses the attitude angle and the position coordinates of the ship 80 to convert the provisional target position into the absolute coordinate system. As a result, the target position setting unit 23A can compare the position coordinates of the provisional target position and the position coordinates of the determination target position in a state in which they are standardized to the absolute coordinate system.
 目標位置設定部23Aは、暫定目標位置と判定用目標位置との位置誤差が所定の誤差範囲内であれば(S15:YES)、暫定目標位置を目標位置PS90に設定する(S16)。なお、暫定目標位置と判定用目標位置との位置誤差が所定の誤差範囲内でなければ(S15:NO)、航行支援装置20Aは、今回の結果を破棄し、例えば上述の各種の目標位置PS90の設定処理を繰り返す。 If the positional error between the provisional target position and the determination target position is within a predetermined error range (S15: YES), the target position setting unit 23A sets the provisional target position to the target position PS90 (S16). Note that if the position error between the provisional target position and the target position for determination is not within the predetermined error range (S15: NO), the navigation support device 20A discards the result of this time and, for example, repeat the setting process.
 このような構成および処理によって、航行支援装置20Aは、目標位置PS90を、高い信頼性で設定できる。 With such a configuration and processing, the navigation support device 20A can set the target position PS90 with high reliability.
 なお、上述の実施形態では、距離計測部21は、垂直方向を走査方向とする態様を示した。しかしながら、距離計測部21は、水平方向を走査方向とする態様であってもよい。 In addition, in the above-described embodiment, the distance measurement unit 21 has shown a mode in which the scanning direction is the vertical direction. However, the distance measurement unit 21 may be arranged so that the horizontal direction is the scanning direction.
 また、上述の実施形態では、反射部材30は無地、すなわち、全体に均一な反射面を有する態様を示した。しかしながら、反射部材30は、バーコード等の所定の模様、すなわち、輝度差によって模様が認識可能な面にすることも可能である。この場合、距離計測部21または目標位置設定部23は、模様に関連づけられた情報を復調する情報復調部を備えればよい。 Also, in the above-described embodiment, the reflecting member 30 is plain, that is, has a uniform reflecting surface as a whole. However, the reflective member 30 can also have a predetermined pattern such as a bar code, that is, a surface on which the pattern can be recognized by a difference in brightness. In this case, the distance measuring section 21 or the target position setting section 23 may include an information demodulating section that demodulates information associated with the pattern.
 また、上述の実施形態では、船舶80の左舷を岸壁90に着岸する場合を示した。しかしながら、船舶80の右舷を岸壁90に着岸する場合にも、上述の構成および処理を適用することができる。この場合、距離計測部21は、船舶80の右舷に設置する。 Also, in the above-described embodiment, the case where the port side of the ship 80 is docked at the quay wall 90 is shown. However, even when the starboard side of the ship 80 is docked at the quay wall 90, the above configuration and processing can be applied. In this case, the distance measuring unit 21 is installed on the starboard side of the ship 80 .
 また、上述の説明では、岸壁を対象とする例を示した。しかしながら、桟橋、他船等、船舶が停泊する対象であれば、上述の構成および処理を適用できる。 Also, in the above explanation, an example targeting quay walls was shown. However, the above-described configuration and processing can be applied to objects where vessels are anchored, such as piers and other vessels.
10、10A:航行支援システム
20、20A:航行支援装置
21:距離計測部
22:姿勢計測部
23、23A:目標位置設定部
24:支援情報生成部
30:反射部材
31:第1平板部
32:第2平板部
80:船舶
90:岸壁
200、200A:制御部
800:デッキ
900:岸壁線
901:水平面
902:垂直面
PS90:目標位置
10, 10A: Navigation support system 20, 20A: Navigation support device 21: Distance measurement unit 22: Attitude measurement unit 23, 23A: Target position setting unit 24: Support information generation unit 30: Reflective member 31: First flat plate unit 32: Second flat plate portion 80: ship 90: quay 200, 200A: control unit 800: deck 900: quay line 901: horizontal plane 902: vertical plane PS90: target position

Claims (10)

  1.  船舶の停泊目標ライン上の目標位置を含み、前記停泊目標ラインを境にして屈曲する形状で設置された反射部材と、
     前記船舶に設置され、レーザ光を送受信して三次元測距を行う距離計測部と、
     前記反射部材で反射した前記レーザ光による測距結果を用いて前記目標位置を設定する目標位置設定部と、
     を備える、
     航行支援システム。
    A reflective member including a target position on the target berthing line of the ship and installed in a shape that bends with the target berthing line as a boundary;
    a distance measurement unit installed on the ship and performing three-dimensional distance measurement by transmitting and receiving laser light;
    a target position setting unit that sets the target position using a distance measurement result of the laser beam reflected by the reflecting member;
    comprising a
    Navigation support system.
  2.  請求項1に記載の航行支援システムであって、
     前記停泊目標ラインは、前記船舶が停泊する停泊対象物の水平面と垂直面が直交する線であり、
     前記反射部材は、前記水平面に設置される第1平板部と前記垂直面に設置される第2平板部とを備える、
     航行支援システム。
    The navigation support system according to claim 1,
    The berthing target line is a line perpendicular to the horizontal plane and the vertical plane of the berthing object at which the vessel is berthed,
    The reflecting member includes a first flat plate portion installed on the horizontal plane and a second flat plate portion installed on the vertical plane,
    Navigation support system.
  3.  請求項1または請求項2に記載の航行支援システムであって、
     前記距離計測部は、
      前記レーザ光を走査して、走査方向および距離方向に複数の測距スポットを設定し、
      前記複数の測距スポット毎に測距を行い、
     前記目標位置設定部は、
      前記測距結果における前記複数の測距スポットの輝度および高度を用いて前記目標位置を設定する、
     航行支援システム。
    The navigation support system according to claim 1 or claim 2,
    The distance measurement unit
    scanning the laser beam to set a plurality of ranging spots in the scanning direction and the distance direction;
    performing distance measurement for each of the plurality of distance measurement spots;
    The target position setting unit
    setting the target position using the brightness and altitude of the plurality of ranging spots in the ranging result;
    Navigation support system.
  4.  請求項3に記載の航行支援システムであって、
     前記目標位置設定部は、
     前記停泊目標ラインに直交する方向において隣接する前記複数の測距スポットの高度差を用いて前記目標位置を設定する、
     航行支援システム。
    The navigation support system according to claim 3,
    The target position setting unit
    setting the target position using an altitude difference between the plurality of distance measurement spots adjacent in a direction perpendicular to the berthing target line;
    Navigation support system.
  5.  請求項3または請求項4に記載の航行支援システムであって、
     前記目標位置設定部は、
     前記複数の測距スポットにおける高輝度の測距スポットを用いて前記目標位置を設定する、
     航行支援システム。
    The navigation support system according to claim 3 or claim 4,
    The target position setting unit
    setting the target position using a high-brightness ranging spot among the plurality of ranging spots;
    Navigation support system.
  6.  請求項1乃至請求項5のいずれかに記載の航行支援システムであって、
     前記目標位置設定部は、
      前記レーザ光による測距結果を用いて設定した前記目標位置を暫定目標位置とし、
      前記レーザ光による測距結果とは異なる手段を用いて判定用目標位置を設定し、
      前記暫定目標位置と前記判定用目標位置との誤差が所定範囲内であれば、前記暫定目標位置を前記目標位置に設定する、
     航行支援システム。
    The navigation support system according to any one of claims 1 to 5,
    The target position setting unit
    setting the target position set using the result of distance measurement by the laser beam as a provisional target position;
    setting a target position for judgment using a means different from the distance measurement result by the laser beam;
    setting the provisional target position to the target position if the error between the provisional target position and the determination target position is within a predetermined range;
    Navigation support system.
  7.  請求項1乃至請求項6のいずれかに記載の航行支援システムであって、
     前記船舶の位置座標を計測する計測部と、
     前記目標位置と前記船舶の位置座標とを用いて、前記目標位置に対して前記船舶を着岸させるための航行支援情報を生成する支援情報生成部と、
     を備える、航行支援システム。
    The navigation support system according to any one of claims 1 to 6,
    a measuring unit that measures the position coordinates of the ship;
    a support information generating unit that uses the target position and the position coordinates of the ship to generate navigation support information for docking the ship at the target position;
    A navigation support system.
  8.  請求項7に記載の航行支援システムであって、
     前記支援情報生成部は、
      前記船舶に着岸基準点を設定し、
      前記着岸基準点と前記目標位置との位置関係に基づいて、前記航行支援情報を生成する、
     航行支援システム。
    The navigation support system according to claim 7,
    The support information generation unit
    setting a docking reference point on the vessel;
    generating the navigation support information based on the positional relationship between the docking reference point and the target position;
    Navigation support system.
  9.  請求項7または請求項8に記載の航行支援システムであって、
     前記計測部は、前記船舶の姿勢を計測し、
     前記支援情報生成部は、前記目標位置と前記船舶の位置座標と前記船舶の姿勢とを用いて前記航行支援情報を生成する、
     航行支援システム。
    The navigation support system according to claim 7 or claim 8,
    The measurement unit measures the attitude of the ship,
    The support information generation unit generates the navigation support information using the target position, the position coordinates of the ship, and the attitude of the ship.
    Navigation support system.
  10.  船舶の停泊目標ライン上の目標位置を含み、前記停泊目標ラインを境にして屈曲する形状で反射部材を設置し、
     前記船舶からレーザ光を送受信して三次元測距を行い、
     前記反射部材で反射した前記レーザ光による測距結果を用いて前記目標位置を設定する、
     航行支援方法。
    including a target position on the berthing target line of the ship, installing a reflecting member in a shape that bends with the berthing target line as a boundary;
    Performing three-dimensional ranging by transmitting and receiving laser light from the ship,
    setting the target position using a distance measurement result of the laser beam reflected by the reflecting member;
    Navigation assistance method.
PCT/JP2022/011827 2021-07-13 2022-03-16 Ship sailing assistance system, and ship sailing assistance method WO2023286361A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023535121A JPWO2023286361A1 (en) 2021-07-13 2022-03-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021115571 2021-07-13
JP2021-115571 2021-07-13

Publications (1)

Publication Number Publication Date
WO2023286361A1 true WO2023286361A1 (en) 2023-01-19

Family

ID=84919951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011827 WO2023286361A1 (en) 2021-07-13 2022-03-16 Ship sailing assistance system, and ship sailing assistance method

Country Status (2)

Country Link
JP (1) JPWO2023286361A1 (en)
WO (1) WO2023286361A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194966A1 (en) * 2014-06-19 2015-12-23 Kongsberg Seatex As Method and system for quality control and correction of position data from navigation satellites in areas with obstructing objects
CN112389595A (en) * 2020-11-24 2021-02-23 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) Method for centering push-push combined barge and push wheel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194966A1 (en) * 2014-06-19 2015-12-23 Kongsberg Seatex As Method and system for quality control and correction of position data from navigation satellites in areas with obstructing objects
CN112389595A (en) * 2020-11-24 2021-02-23 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) Method for centering push-push combined barge and push wheel

Also Published As

Publication number Publication date
JPWO2023286361A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
JP5175095B2 (en) Contour scanner and mooring robot and method including the same
JP6661708B2 (en) Ship berthing support equipment
US20120129410A1 (en) Automatic docking system
JP2003276677A (en) Departing/landing bridge support device for ship
WO2017204075A1 (en) Signal processing device and radar device
FI126828B (en) Procedure for scanning an object underwater and targets for scanning an object underwater
JP2017133902A (en) Wave measurement device and target detection device
WO2014192532A1 (en) Environment information detection device for ships, route setting device, environment information detection method for ships, and program
JP5074718B2 (en) Marine radar
KR102140650B1 (en) Evaluation methods of underwater navigation performance of unmanned underwater vehicles
US7417923B2 (en) Method and apparatus for performing an ultrasonic survey
WO2023286361A1 (en) Ship sailing assistance system, and ship sailing assistance method
US11194042B2 (en) Tug approach control
JP4919047B2 (en) Data correction apparatus and method for three-dimensional sensor
WO2022249630A1 (en) Vessel navigation assistance device, vessel navigation assistance method, and vessel navigation assistance program
JP2001074834A (en) Method for measuring underwater structure
JP2920862B2 (en) Ship position detection device
JP5730565B2 (en) Radar signal processing device and radar image processing device
RU2032144C1 (en) Method of determination of deformation of extended objects
JPH0534451A (en) Echo ranging device
JP2547303B2 (en) Underwater position measurement method
JP2000035335A (en) Works detector, works detection method, work measuring device and works measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841711

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023535121

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE