WO2023272738A1 - Coreless power transformer and isolating power source - Google Patents

Coreless power transformer and isolating power source Download PDF

Info

Publication number
WO2023272738A1
WO2023272738A1 PCT/CN2021/104364 CN2021104364W WO2023272738A1 WO 2023272738 A1 WO2023272738 A1 WO 2023272738A1 CN 2021104364 W CN2021104364 W CN 2021104364W WO 2023272738 A1 WO2023272738 A1 WO 2023272738A1
Authority
WO
WIPO (PCT)
Prior art keywords
coreless
coupled
pcb layer
power transformer
power
Prior art date
Application number
PCT/CN2021/104364
Other languages
French (fr)
Inventor
Huan SHI
Wei Liu
Yongfei QU
Original Assignee
Abb Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Schweiz Ag filed Critical Abb Schweiz Ag
Priority to PCT/CN2021/104364 priority Critical patent/WO2023272738A1/en
Priority to CN202180096039.6A priority patent/CN117063252A/en
Publication of WO2023272738A1 publication Critical patent/WO2023272738A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/08Fixed transformers not covered by group H01F19/00 characterised by the structure without magnetic core
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers

Definitions

  • Embodiments of the present disclosure generally relate to the field of power transformers, and more particularly, to a coreless power transformer and an isolating power source.
  • a planar transformer is typically used in small-scale equipment with a low-power isolation power supply to deliver power.
  • the low-power isolation power supply includes a small isolated power supply, a DCS equipment power supply, and the like.
  • a conventional planar transformer usually comprises a magnetic core to increase an energy delivering efficiency.
  • the magnetic core increases a cost of the planar transformer.
  • the magnetic core needs to be mounted at a place where the planar transformer is mounted, for example, on a PCB, which increases the cost of manufacturing the PCB.
  • various example embodiments of the present disclosure provide a coreless power transformer and an isolating power source to reduce the cost of the power transformer while satisfying the power level of the low-power isolation power supply.
  • example embodiments of the present disclosure provide a coreless power transformer for delivering power.
  • the coreless power transformer comprises a primary winding comprising a first coreless planar coil arranged on a PCB layer 1 and a second coreless planar coil arranged on a PCB layer 2, and configured to receive power from a power supply; and a secondary winding comprising a third coreless planar coil arranged on a PCB layer 3 and a fourth coreless planar coil arranged on a PCB layer 4, and configured to receive the power from the primary winding and provide the power to a load, wherein the PCB layer 1, the PCB layer 2, the PCB layer 3 and the PCB layer 4 are substantially parallel to each other.
  • the PCB layer 1 and the PCB layer 2 are sandwiched between the PCB layer 3 and the PCB layer 4. With these embodiments, a coupling coefficient between the primary winding and the secondary winding of the coreless power transformer can be improved.
  • the PCB layer 1, the PCB layer 2, the PCB layer 3 and the PCB layer 4 are arranged at equal intervals. With these embodiments, an energy delivering efficiency of the coreless power transformer can be improved.
  • a distance between adjacent ones of the PCB layer 1, the PCB layer 2, the PCB layer 3 and the PCB layer 4 is 0.3mm.
  • a turn ratio between the primary winding and the secondary winding is 1.
  • each of the first coreless planar coil, the second coreless planar coil, the third coreless planar coil and the fourth coreless planar coil comprises: a coil body arranged on the respective PCB and configured to produce an alternating magnetic field for delivering the power; and a metal ring arranged around the coil body and configured to produce a magnetic field having a direction opposite to the alternating magnetic field produced by the coil body.
  • a wire width of the coil body can be 12 mil, and a wire spacing of the coil body can be 5 mil. With these embodiments, a proximity effect and a skin effect of the coil body can be reduced.
  • each of the primary winding and the secondary winding comprises at least one additional coreless planar coil arranged on at least one additional PCB, and the least one additional PCB is substantially parallel to the PCB layer 1, the PCB layer 2, the PCB layer 3 and the PCB layer 4.
  • the power level of the coreless power transformer can be further improved.
  • example embodiments of the present disclosure provide an isolating power source.
  • the isolating power source comprises a primary circuit coupled to a power supply and configured to adjust a voltage of the power supply; a coreless power transformer according to the first aspect of the present disclosure, wherein the primary winding of the coreless power transformer is coupled to the primary circuit to receive the adjusted voltage; and a secondary circuit coupled to the secondary winding of the coreless power transformer and configured to output one or more voltages. Since the isolating power source comprises the coreless power transformer according to the first aspect of the present disclosure, the isolating power source may provide the same advantages.
  • the isolating power source further comprises a feedback circuit coupled to the primary winding of the coreless power transformer and the primary circuit, and configured to provide a feedback voltage to the primary circuit based on the adjusted voltage.
  • the feedback voltage may be set to a low value, such that an exciting current of the primary winding can be reduced, thereby reducing the power loss of the isolating power source.
  • the feedback circuit comprises a first capacitor.
  • the isolating power source further comprises a compensation circuit coupled between the secondary winding of the coreless power transformer and the secondary circuit, and configured to compensate a voltage drop in the primary circuit and the coreless power transformer. With these embodiments, a voltage drop on the internal resistance of the windings and primary circuit can be compensated.
  • the compensation circuit comprises a second capacitor and a first diode; a first terminal of the second capacitor is coupled to a first terminal of the secondary winding of the coreless power transformer, and a second terminal of the second capacitor is coupled to the secondary circuit; and a cathode of the first diode is coupled to the second terminal of the second capacitor, and an anode of the first diode is coupled to a second terminal of the secondary winding of the coreless power transformer.
  • the primary circuit comprises a first MOSFET, a second MOSFET and a PWM controller; a drain of the first MOSFET is coupled to the power supply, a source of the first MOSFET is coupled to a first terminal of the primary winding of the coreless power transformer, and a gate of the first MOSFET is coupled to the PWM controller; a drain of the second MOSFET is coupled to the source of the first MOSFET, a source of the second MOSFET is coupled to ground, and a gate of the second MOSFET is coupled to the PWM controller; and the PWM controller is configured to control duty cycles of the first MOSFET and the second MOSFET to output the adjusted voltage at different predetermined levels.
  • the secondary circuit comprises a third capacitor, a fourth capacitor, a second diode and a third diode; an anode of the second diode is coupled to a first terminal of the secondary winding of the coreless power transformer, a cathode of the second diode is coupled to a first terminal of the third capacitor to output a first output voltage, and a second terminal of the third capacitor is coupled to a second terminal of the secondary winding; and a cathode of the third diode is coupled to the first terminal of the secondary winding, an anode of the third diode is coupled to a first terminal of the fourth capacitor, a second terminal of the fourth capacitor is coupled to the second terminal of the secondary winding to output a second output voltage.
  • the two output voltages can be achieved by using only one secondary winding, thereby reducing the cost of the coreless power transformer.
  • FIG. 1 is a schematic view illustrating a coreless power transformer in accordance with an embodiment of the present disclosure
  • FIG. 2 is a cross-section view of a coreless power transformer including four layers of PCBs in accordance with an embodiment of the present disclosure
  • FIG. 3 is a schematic view illustrating a coreless planar coil in accordance with an embodiment of the present disclosure.
  • FIG. 4 is a schematic circuit diagram of an isolating power source in accordance with an embodiment of the present disclosure.
  • the term “comprises” or “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ”
  • the term “or” is to be read as “and/or” unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “being operable to” is to mean a function, an action, a motion or a state that can be achieved by an operation induced by a user or an external mechanism.
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • the terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise.
  • the cost of the power transformer is reduced by using coreless planar coils, while the output energy level of the power transformer satisfies the power level of the low-power isolation power supply by making full use of available resources, for example, the PCB area.
  • the above idea may be implemented in various manners, as will be described in detail in the following paragraphs.
  • FIG. 1 is a schematic view illustrating a coreless power transformer in accordance with an embodiment of the present disclosure.
  • the coreless power transformer 100 comprises four layers of PCBs 101, 102, 103, 104.
  • the PCB layer 101, the PCB layer 102, the PCB layer 103 and the PCB layer 104 are substantially parallel to each other.
  • a first planar coil 201 is arranged on the PCB layer 101
  • a second planar coil 202 is arranged on the PCB layer 102
  • a third planar coil 203 is arranged on the PCB layer 103
  • a fourth planar coil 204 is arranged on the PCB layer 104.
  • a primary winding of the coreless power transformer 100 comprises two of the first planar coil 201, the second planar coil 202, the third planar coil 203 and the fourth planar coil 204, and a secondary winding of the coreless power transformer 100 comprises the other two of the first planar coil 201, the second planar coil 202, the third planar coil 203 and the fourth planar coil 204.
  • the cost of the power transformer is reduced. Meanwhile, by making full use of the four layers of PCBs, the output energy level of the power transformer can meet the need of the low-power isolation power supply, for example, a DCS equipment power supply.
  • each of the primary winding and the secondary winding comprises at least one additional coreless planar coil arranged on at least one additional PCB, and the least one additional PCB is substantially parallel to the PCB layer 101, the PCB layer 102, the PCB layer 103 and the PCB layer 104.
  • the primary winding comprises the first planar coil 201 and the second planar coil 202
  • the secondary winding comprises the third planar coil 203 and the fourth planar coil 204.
  • the first planar coil 101 and the second planar coil 102 are sandwiched between the third planar coil 103 and the fourth planar coil 104.
  • the primary winding and the secondary winding can be arranged in other arrangements.
  • the primary winding can comprise the third planar coil 203 and the first planar coil 201
  • the secondary winding can comprise the second planar coil 202 and the fourth planar coil 204.
  • the scope of the present disclosure is not intended to be limited in this respect.
  • FIG. 2 is a cross-section view of a coreless power transformer including four layers of PCBs in accordance with an embodiment of the present disclosure.
  • substrates 105 are provided between the PCBs to support the PCBs.
  • the magnetic lines of force can travel through the substrates 105.
  • the thickness of the substrates 105 decides distances d1, d2 and d3 between adjacent ones of the PCB layer 101, the PCB layer 102, the PCB layer 103 and the PCB layer 104.
  • the distances d1, d2 and d3 will influence the power loss and energy delivering efficiency of the coreless power transformer. If the distances d1, d2 and d3 are too small, the power loss of the coreless power transformer will be large due to the proximity effect. On the other hand, if the distances d1, d2 and d3 are too large, the coupling coefficient between the planar coils will be small, resulting in a reduced energy delivering efficiency.
  • an inductance of the coreless planar coil is relatively small. Besides, because of a restriction of the area of the PCB, the coreless planar coil cannot occupy too many areas of the PCB. Thereby, an inductance of the primary winding of the coreless power transformer is smaller than that of a power transformer using planar coils with the magnetic core. As a result, an exciting current of the primary winding of the coreless power transformer must be larger than that of the power transformer using planar coils with the magnetic core to achieve the same output energy level, thereby resulting in a larger power loss. To reduce the power loss, the inductance of the primary winding should be as large as possible within the restriction of the area of the PCB.
  • a turn ratio between the primary winding and the secondary winding is 1.
  • FIG. 3 is a schematic view illustrating a coreless planar coil in accordance with an embodiment of the present disclosure.
  • the coreless planar coil 201 comprises a coil body 205.
  • the coil body 205 is arranged in a PCB and is used to receive power from a power source, and generate an alternating magnetic field to deliver the power.
  • the turn number of the coil body 205 is 48. In other embodiments, the turn number of the coil body 205 can be other numbers, for example, 44, 46, 50, 52, and so on. The scope of the present disclosure is not intended to be limited in this respect.
  • the working frequency of the coreless planar coil 201 is limited, and a wire width W of the coil body 205 and a wire spacing S of the coil body 205 are also limited to reduce the power loss.
  • the wire width W is 12 mil, and the wire spacing S is 5 mil. In other embodiments, the wire width W and the wire spacing S can be other values. The scope of the present disclosure is not intended to be limited in this respect.
  • the coreless planar coil 201 further comprises a metal ring 206.
  • the metal ring 206 is arranged around the coil body 205, and is used to produce a magnetic field having a direction opposite to the alternating magnetic field produced by the coil body 205.
  • the magnetic field generated by the coil body 205 is concentrated inside the metal ring 206, and the amplitude of the magnetic field is decreased.
  • the influence of the alternating magnetic field on nearby electronic systems is reduced, and the influence of the alternating magnetic field on the electronic systems parallel to the coreless planar coil 201 is also reduced, and thus the reliability of the systems is improved.
  • FIG. 4 is a schematic circuit diagram of an isolating power source in accordance with an embodiment of the present disclosure.
  • the isolating power source 300 generally includes a primary circuit 301, a coreless power transformer 100 according to embodiments of the present disclosure, and a secondary circuit 304.
  • the primary circuit 301 is coupled to a power supply and configured to adjust a voltage Vin of the power supply.
  • the primary circuit 301 comprises a first MOSFET S1, a second MOSFET S2 and a PWM controller T.
  • a drain of the first MOSFET S1 is coupled to the power supply, a source of the first MOSFET S1 is coupled to a first terminal of the primary winding of the coreless power transformer 100, and a gate of the first MOSFET S1 is coupled to the PWM controller T.
  • a drain of the second MOSFET S2 is coupled to the source of the first MOSFET S1, a source of the second MOSFET S2 is coupled to ground, and a gate of the second MOSFET S2 is coupled to the PWM controller T.
  • the PWM controller T is configured to control duty cycles of the first MOSFET S1 and the second MOSFET S2 to output the adjusted voltage at different predetermined levels.
  • the coreless power transformer 100 is coupled between the primary circuit 301 and the secondary circuit 304, and used to isolate the primary circuit 301 and the secondary circuit 304.
  • the secondary circuit 304 is coupled to the secondary winding of the coreless power transformer 100 and configured to output one or more voltages. As shown in FIG. 4, the secondary circuit 304 comprises a third capacitor C3, a fourth capacitor C4, a second diode D2 and a third diode D3. An anode of the second diode D2 is coupled to a first terminal of the secondary winding of the coreless power transformer 100, a cathode of the second diode D2 is coupled to a first terminal of the third capacitor C3 to output a first output voltage Vo1, for example, 24V, and a second terminal of the third capacitor C3 is coupled to a second terminal of the secondary winding.
  • a cathode of the third diode D3 is coupled to the first terminal of the secondary winding, an anode of the third diode D3 is coupled to a first terminal of the fourth capacitor C4, a second terminal of the fourth capacitor C4 is coupled to the second terminal of the secondary winding to output a second output voltage Vo2, for example, 3.7V.
  • the secondary circuit 304 can output the voltage of other values. The scope of the present disclosure is not intended to be limited in this respect.
  • the isolating power source 300 further comprises a feedback circuit 302 coupled to the primary winding of the coreless power transformer 100 and the primary circuit 301.
  • the feedback circuit 302 is configured to provide a feedback voltage to the primary circuit 301 based on the adjusted voltage.
  • the feedback circuit 302 comprises a first capacitor C1.
  • the feedback circuit 302 can comprises other components. The scope of the present disclosure is not intended to be limited in this respect.
  • the isolating power source 300 further comprises a compensation circuit 305 coupled between the secondary winding of the coreless power transformer 100 and the secondary circuit 304.
  • the compensation circuit 305 is configured to compensate a voltage drop in the primary circuit 301 and the coreless power transformer 100.
  • the compensation circuit 305 comprises a second capacitor C2 and a first diode D1.
  • a first terminal of the second capacitor C2 is coupled to a first terminal of the secondary winding of the coreless power transformer 100, and a second terminal of the second capacitor C2 is coupled to the secondary circuit 304.
  • a cathode of the first diode D1 is coupled to the second terminal of the second capacitor C2, and an anode of the first diode D1 is coupled to a second terminal of the secondary winding of the coreless power transformer 100.
  • the compensation circuit 305 can comprises other components. The scope of the present disclosure is not intended to be limited in this respect.
  • the first MOSFET S1 when the first MOSFET S1 is turned on and the second MOSFET S2 is turned off, the voltage Vin is applied to the primary winding, the voltage at point 1 is higher than the voltage at point 2 at this time.
  • the voltage at point 3 is higher than the voltage at point 4, and the secondary winding outputs a first output voltage that is equal to the voltage Vin, because the turn ratio of the primary winding and the secondary winding is 1.
  • the first output voltage Vo1 equals to the voltage Vin.
  • the voltage at point 2 is higher than the voltage at point 1.
  • the voltage at point 4 is higher than the voltage at point 3, and the secondary winding outputs a second output voltage V FB that is equal to a voltage at point FB.
  • the second output voltage Vo2 equals to the V FB .
  • the capacitor C2 is charged through the diode D1. The voltage across the capacitor C2 can compensate a voltage drop in the primary circuit 301 and the coreless power transformer 100 when outputting the first output voltage Vo1.
  • the exciting current of the primary winding can be reduced, thereby the power loss can be reduced.
  • inventive embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed.
  • inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A coreless power transformer (100) comprises: a primary winding comprising a first planar coil (201) arranged on a PCB layer (101) and a second planar coil (202) arranged on a PCB layer (102), and configured to receive power from a power supply; and a secondary winding comprising a third planar coil (203) arranged on a PCB layer (103) and a fourth planar coil (204) arranged on a PCB layer (104), and configured to receive the power from the primary winding and provide the power to a load, wherein the PCB layer (101), the PCB layer (102), the PCB layer (103) and the PCB layer (104) are substantially parallel to each other.

Description

CORELESS POWER TRANSFORMER AND ISOLATING POWER SOURCE FIELD
Embodiments of the present disclosure generally relate to the field of power transformers, and more particularly, to a coreless power transformer and an isolating power source.
BACKGROUND
A planar transformer is typically used in small-scale equipment with a low-power isolation power supply to deliver power. The low-power isolation power supply includes a small isolated power supply, a DCS equipment power supply, and the like. A conventional planar transformer usually comprises a magnetic core to increase an energy delivering efficiency. However, the magnetic core increases a cost of the planar transformer. Moreover, the magnetic core needs to be mounted at a place where the planar transformer is mounted, for example, on a PCB, which increases the cost of manufacturing the PCB. Thus, there is a need to reduce the cost of the planar transformer while satisfying a power level of the low-power isolation power supply.
SUMMARY
In view of the foregoing problems, various example embodiments of the present disclosure provide a coreless power transformer and an isolating power source to reduce the cost of the power transformer while satisfying the power level of the low-power isolation power supply.
In a first aspect of the present disclosure, example embodiments of the present disclosure provide a coreless power transformer for delivering power. The coreless power transformer comprises a primary winding comprising a first coreless planar coil arranged on a PCB layer 1 and a second coreless planar coil arranged on a PCB layer 2, and configured to receive power from a power supply; and a secondary winding  comprising a third coreless planar coil arranged on a PCB layer 3 and a fourth coreless planar coil arranged on a PCB layer 4, and configured to receive the power from the primary winding and provide the power to a load, wherein the PCB layer 1, the PCB layer 2, the PCB layer 3 and the PCB layer 4 are substantially parallel to each other. With these embodiments, only four layers of PCBs and corresponding planar coils are used in the coreless power transformer to satisfy the power level of the low-power isolation power supply, which reduces the cost of the coreless power transformer.
In some embodiments, the PCB layer 1 and the PCB layer 2 are sandwiched between the PCB layer 3 and the PCB layer 4. With these embodiments, a coupling coefficient between the primary winding and the secondary winding of the coreless power transformer can be improved.
In some embodiments, the PCB layer 1, the PCB layer 2, the PCB layer 3 and the PCB layer 4 are arranged at equal intervals. With these embodiments, an energy delivering efficiency of the coreless power transformer can be improved.
In some embodiments, a distance between adjacent ones of the PCB layer 1, the PCB layer 2, the PCB layer 3 and the PCB layer 4 is 0.3mm. With these embodiments, the energy delivering efficiency of the coreless power transformer can be maximized when an output voltage of the coreless power transformer is 24V and an output current of the coreless power transformer is 25mA.
In some embodiments, a turn ratio between the primary winding and the secondary winding is 1. With these embodiments, the output voltage of the coreless power transformer can achieve a desired value while setting an inductance of the primary winding at a relatively high value.
In some embodiments, each of the first coreless planar coil, the second coreless planar coil, the third coreless planar coil and the fourth coreless planar coil comprises: a coil body arranged on the respective PCB and configured to produce an alternating magnetic field for delivering the power; and a metal ring arranged around the coil body and configured to produce a magnetic field having a direction opposite to the alternating magnetic field produced by the coil body. With these embodiments, the magnetic flux  outside the coreless planar coil will be largely reduced and the magnetic flux inside the coreless planar coil will be maintained, thereby reducing the crosstalk and improving the efficiency of the coreless planar coil.
In some embodiments, a wire width of the coil body can be 12 mil, and a wire spacing of the coil body can be 5 mil. With these embodiments, a proximity effect and a skin effect of the coil body can be reduced.
In some embodiments, each of the primary winding and the secondary winding comprises at least one additional coreless planar coil arranged on at least one additional PCB, and the least one additional PCB is substantially parallel to the PCB layer 1, the PCB layer 2, the PCB layer 3 and the PCB layer 4. With these embodiments, the power level of the coreless power transformer can be further improved.
In a second aspect of the present disclosure, example embodiments of the present disclosure provide an isolating power source. The isolating power source comprises a primary circuit coupled to a power supply and configured to adjust a voltage of the power supply; a coreless power transformer according to the first aspect of the present disclosure, wherein the primary winding of the coreless power transformer is coupled to the primary circuit to receive the adjusted voltage; and a secondary circuit coupled to the secondary winding of the coreless power transformer and configured to output one or more voltages. Since the isolating power source comprises the coreless power transformer according to the first aspect of the present disclosure, the isolating power source may provide the same advantages.
In some embodiments, the isolating power source further comprises a feedback circuit coupled to the primary winding of the coreless power transformer and the primary circuit, and configured to provide a feedback voltage to the primary circuit based on the adjusted voltage. With these embodiments, the feedback voltage may be set to a low value, such that an exciting current of the primary winding can be reduced, thereby reducing the power loss of the isolating power source.
In some embodiments, the feedback circuit comprises a first capacitor.
In some embodiments, the isolating power source further comprises a  compensation circuit coupled between the secondary winding of the coreless power transformer and the secondary circuit, and configured to compensate a voltage drop in the primary circuit and the coreless power transformer. With these embodiments, a voltage drop on the internal resistance of the windings and primary circuit can be compensated.
In some embodiments, the compensation circuit comprises a second capacitor and a first diode; a first terminal of the second capacitor is coupled to a first terminal of the secondary winding of the coreless power transformer, and a second terminal of the second capacitor is coupled to the secondary circuit; and a cathode of the first diode is coupled to the second terminal of the second capacitor, and an anode of the first diode is coupled to a second terminal of the secondary winding of the coreless power transformer.
In some embodiments, the primary circuit comprises a first MOSFET, a second MOSFET and a PWM controller; a drain of the first MOSFET is coupled to the power supply, a source of the first MOSFET is coupled to a first terminal of the primary winding of the coreless power transformer, and a gate of the first MOSFET is coupled to the PWM controller; a drain of the second MOSFET is coupled to the source of the first MOSFET, a source of the second MOSFET is coupled to ground, and a gate of the second MOSFET is coupled to the PWM controller; and the PWM controller is configured to control duty cycles of the first MOSFET and the second MOSFET to output the adjusted voltage at different predetermined levels.
In some embodiments, the secondary circuit comprises a third capacitor, a fourth capacitor, a second diode and a third diode; an anode of the second diode is coupled to a first terminal of the secondary winding of the coreless power transformer, a cathode of the second diode is coupled to a first terminal of the third capacitor to output a first output voltage, and a second terminal of the third capacitor is coupled to a second terminal of the secondary winding; and a cathode of the third diode is coupled to the first terminal of the secondary winding, an anode of the third diode is coupled to a first terminal of the fourth capacitor, a second terminal of the fourth capacitor is coupled to the second terminal of the secondary winding to output a second output voltage. With these embodiments, the two output voltages can be achieved by using only one secondary winding, thereby reducing the cost of the coreless power transformer.
It is to be understood that the Summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
DESCRIPTION OF DRAWINGS
Through the following detailed descriptions with reference to the accompanying drawings, the above and other objectives, features and advantages of the example embodiments disclosed herein will become more comprehensible. In the drawings, several example embodiments disclosed herein will be illustrated in examples and in a non-limiting manner, wherein:
FIG. 1 is a schematic view illustrating a coreless power transformer in accordance with an embodiment of the present disclosure;
FIG. 2 is a cross-section view of a coreless power transformer including four layers of PCBs in accordance with an embodiment of the present disclosure;
FIG. 3 is a schematic view illustrating a coreless planar coil in accordance with an embodiment of the present disclosure; and
FIG. 4 is a schematic circuit diagram of an isolating power source in accordance with an embodiment of the present disclosure.
Throughout the drawings, the same or similar reference symbols are used to indicate the same or similar elements.
DETAILED DESCRIPTION OF EMBODIMETNS
Principles of the present disclosure will now be described with reference to several example embodiments shown in the drawings. Though example embodiments of the present disclosure are illustrated in the drawings, it is to be understood that the embodiments are described only to facilitate those skilled in the art to better understand  and thereby implement the present disclosure, rather than to limit the scope of the disclosure in any manner.
The term “comprises” or “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ” The term “or” is to be read as “and/or” unless the context clearly indicates otherwise. The term “based on” is to be read as “based at least in part on. ” The term “being operable to” is to mean a function, an action, a motion or a state that can be achieved by an operation induced by a user or an external mechanism. The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” The terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise.
According to embodiments of the present disclosure, the cost of the power transformer is reduced by using coreless planar coils, while the output energy level of the power transformer satisfies the power level of the low-power isolation power supply by making full use of available resources, for example, the PCB area. The above idea may be implemented in various manners, as will be described in detail in the following paragraphs.
Hereinafter, the principles of the coreless power transformer in accordance with embodiments of the present disclosure will be described in detail with reference to FIGS. 1-3. Referring to FIG. 1 first. FIG. 1 is a schematic view illustrating a coreless power transformer in accordance with an embodiment of the present disclosure.
As shown in FIG. 1, the coreless power transformer 100 comprises four layers of  PCBs  101, 102, 103, 104. The PCB layer 101, the PCB layer 102, the PCB layer 103 and the PCB layer 104 are substantially parallel to each other. A first planar coil 201 is arranged on the PCB layer 101, a second planar coil 202 is arranged on the PCB layer 102, a third planar coil 203 is arranged on the PCB layer 103, and a fourth planar coil 204 is arranged on the PCB layer 104. A primary winding of the coreless power transformer  100 comprises two of the first planar coil 201, the second planar coil 202, the third planar coil 203 and the fourth planar coil 204, and a secondary winding of the coreless power transformer 100 comprises the other two of the first planar coil 201, the second planar coil 202, the third planar coil 203 and the fourth planar coil 204.
By using coreless planar coils, the cost of the power transformer is reduced. Meanwhile, by making full use of the four layers of PCBs, the output energy level of the power transformer can meet the need of the low-power isolation power supply, for example, a DCS equipment power supply.
In some embodiments, each of the primary winding and the secondary winding comprises at least one additional coreless planar coil arranged on at least one additional PCB, and the least one additional PCB is substantially parallel to the PCB layer 101, the PCB layer 102, the PCB layer 103 and the PCB layer 104.
In some embodiments, as shown in FIG. 1, the primary winding comprises the first planar coil 201 and the second planar coil 202, and the secondary winding comprises the third planar coil 203 and the fourth planar coil 204. The first planar coil 101 and the second planar coil 102 are sandwiched between the third planar coil 103 and the fourth planar coil 104. With such an arrangement, magnetic lines of force generated by the primary winding can largely travel through the secondary winding, thereby the coupling coefficient between the primary winding and the secondary winding can be maximized.
In other embodiments, the primary winding and the secondary winding can be arranged in other arrangements. For example, the primary winding can comprise the third planar coil 203 and the first planar coil 201, and the secondary winding can comprise the second planar coil 202 and the fourth planar coil 204. The scope of the present disclosure is not intended to be limited in this respect.
Now referring to FIG. 2. FIG. 2 is a cross-section view of a coreless power transformer including four layers of PCBs in accordance with an embodiment of the present disclosure. As shown in FIG. 2, substrates 105 are provided between the PCBs to support the PCBs. The magnetic lines of force can travel through the substrates 105. The thickness of the substrates 105 decides distances d1, d2 and d3 between adjacent ones of  the PCB layer 101, the PCB layer 102, the PCB layer 103 and the PCB layer 104.
The distances d1, d2 and d3 will influence the power loss and energy delivering efficiency of the coreless power transformer. If the distances d1, d2 and d3 are too small, the power loss of the coreless power transformer will be large due to the proximity effect. On the other hand, if the distances d1, d2 and d3 are too large, the coupling coefficient between the planar coils will be small, resulting in a reduced energy delivering efficiency.
In some embodiments, as shown in FIG. 2, the PCB layer 101, the PCB layer 102, the PCB layer 103 and the PCB layer 104 are arranged at equal intervals. That is, d1=d2=d3. With such an arrangement, the energy delivering efficiency of the coreless power transformer 100 can be improved and the power loss of the coreless power transformer will be small. In an embodiment where an output voltage of the coreless power transformer is 24V and an output current of the coreless power transformer is 25mA, when d1=d2=d3=0.3mm, the energy delivering efficiency of the coreless power transformer can be maximized. In other embodiments, the distances d1, d2, d3 can be different from each other. The scope of the present disclosure is not intended to be limited in this respect.
Compared with a planar coil with a magnetic core, an inductance of the coreless planar coil is relatively small. Besides, because of a restriction of the area of the PCB, the coreless planar coil cannot occupy too many areas of the PCB. Thereby, an inductance of the primary winding of the coreless power transformer is smaller than that of a power transformer using planar coils with the magnetic core. As a result, an exciting current of the primary winding of the coreless power transformer must be larger than that of the power transformer using planar coils with the magnetic core to achieve the same output energy level, thereby resulting in a larger power loss. To reduce the power loss, the inductance of the primary winding should be as large as possible within the restriction of the area of the PCB.
In some embodiments, a turn ratio between the primary winding and the secondary winding is 1. With such an arrangement, the inductance of the primary  winding can be set at a relatively high value, while the output voltage of the coreless power transformer can satisfy the need of the output.
Now referring to FIG. 3. FIG. 3 is a schematic view illustrating a coreless planar coil in accordance with an embodiment of the present disclosure. As shown in FIG. 3, the coreless planar coil 201 comprises a coil body 205. The coil body 205 is arranged in a PCB and is used to receive power from a power source, and generate an alternating magnetic field to deliver the power.
In some embodiments, the turn number of the coil body 205 is 48. In other embodiments, the turn number of the coil body 205 can be other numbers, for example, 44, 46, 50, 52, and so on. The scope of the present disclosure is not intended to be limited in this respect.
Due to the proximity effect and skin effect, the working frequency of the coreless planar coil 201 is limited, and a wire width W of the coil body 205 and a wire spacing S of the coil body 205 are also limited to reduce the power loss. In some embodiments, the wire width W is 12 mil, and the wire spacing S is 5 mil. In other embodiments, the wire width W and the wire spacing S can be other values. The scope of the present disclosure is not intended to be limited in this respect.
In some embodiments, as shown in FIG. 3, the coreless planar coil 201 further comprises a metal ring 206. The metal ring 206 is arranged around the coil body 205, and is used to produce a magnetic field having a direction opposite to the alternating magnetic field produced by the coil body 205. By reducing the distribution of magnetic field outside the metal ring 206, the magnetic field generated by the coil body 205 is concentrated inside the metal ring 206, and the amplitude of the magnetic field is decreased. As a result, the influence of the alternating magnetic field on nearby electronic systems is reduced, and the influence of the alternating magnetic field on the electronic systems parallel to the coreless planar coil 201 is also reduced, and thus the reliability of the systems is improved.
Hereinafter, the principles of an isolating power source will be described in detail with reference to FIG. 4. FIG. 4 is a schematic circuit diagram of an isolating  power source in accordance with an embodiment of the present disclosure. As shown in FIG. 4, the isolating power source 300 generally includes a primary circuit 301, a coreless power transformer 100 according to embodiments of the present disclosure, and a secondary circuit 304.
The primary circuit 301 is coupled to a power supply and configured to adjust a voltage Vin of the power supply. As shown in FIG. 4, the primary circuit 301 comprises a first MOSFET S1, a second MOSFET S2 and a PWM controller T. A drain of the first MOSFET S1 is coupled to the power supply, a source of the first MOSFET S1 is coupled to a first terminal of the primary winding of the coreless power transformer 100, and a gate of the first MOSFET S1 is coupled to the PWM controller T. A drain of the second MOSFET S2 is coupled to the source of the first MOSFET S1, a source of the second MOSFET S2 is coupled to ground, and a gate of the second MOSFET S2 is coupled to the PWM controller T. The PWM controller T is configured to control duty cycles of the first MOSFET S1 and the second MOSFET S2 to output the adjusted voltage at different predetermined levels.
The coreless power transformer 100 is coupled between the primary circuit 301 and the secondary circuit 304, and used to isolate the primary circuit 301 and the secondary circuit 304.
The secondary circuit 304 is coupled to the secondary winding of the coreless power transformer 100 and configured to output one or more voltages. As shown in FIG. 4, the secondary circuit 304 comprises a third capacitor C3, a fourth capacitor C4, a second diode D2 and a third diode D3. An anode of the second diode D2 is coupled to a first terminal of the secondary winding of the coreless power transformer 100, a cathode of the second diode D2 is coupled to a first terminal of the third capacitor C3 to output a first output voltage Vo1, for example, 24V, and a second terminal of the third capacitor C3 is coupled to a second terminal of the secondary winding. A cathode of the third diode D3 is coupled to the first terminal of the secondary winding, an anode of the third diode D3 is coupled to a first terminal of the fourth capacitor C4, a second terminal of the fourth capacitor C4 is coupled to the second terminal of the secondary winding to output a second output voltage Vo2, for example, 3.7V. In other embodiments, the secondary  circuit 304 can output the voltage of other values. The scope of the present disclosure is not intended to be limited in this respect.
In some embodiments, as shown in FIG. 4, the isolating power source 300 further comprises a feedback circuit 302 coupled to the primary winding of the coreless power transformer 100 and the primary circuit 301. The feedback circuit 302 is configured to provide a feedback voltage to the primary circuit 301 based on the adjusted voltage. In some embodiments, the feedback circuit 302 comprises a first capacitor C1. In other embodiments, the feedback circuit 302 can comprises other components. The scope of the present disclosure is not intended to be limited in this respect.
In some embodiments, as shown in FIG. 4, the isolating power source 300 further comprises a compensation circuit 305 coupled between the secondary winding of the coreless power transformer 100 and the secondary circuit 304. The compensation circuit 305 is configured to compensate a voltage drop in the primary circuit 301 and the coreless power transformer 100.
In some embodiments, as shown in FIG. 4, the compensation circuit 305 comprises a second capacitor C2 and a first diode D1. A first terminal of the second capacitor C2 is coupled to a first terminal of the secondary winding of the coreless power transformer 100, and a second terminal of the second capacitor C2 is coupled to the secondary circuit 304. A cathode of the first diode D1 is coupled to the second terminal of the second capacitor C2, and an anode of the first diode D1 is coupled to a second terminal of the secondary winding of the coreless power transformer 100. In other embodiments, the compensation circuit 305 can comprises other components. The scope of the present disclosure is not intended to be limited in this respect.
Hereinafter, a working process of the isolating power source 300 will be described. First, when the first MOSFET S1 is turned on and the second MOSFET S2 is turned off, the voltage Vin is applied to the primary winding, the voltage at point 1 is higher than the voltage at point 2 at this time. Correspondingly, the voltage at point 3 is higher than the voltage at point 4, and the secondary winding outputs a first output voltage that is equal to the voltage Vin, because the turn ratio of the primary winding and  the secondary winding is 1. As a result, the first output voltage Vo1 equals to the voltage Vin.
Next, when the first MOSFET S1 is turned off and the second MOSFET S2 is turned on, the voltage at point 2 is higher than the voltage at point 1. Correspondingly, the voltage at point 4 is higher than the voltage at point 3, and the secondary winding outputs a second output voltage V FB that is equal to a voltage at point FB. As a result, the second output voltage Vo2 equals to the V FB. Meanwhile, the capacitor C2 is charged through the diode D1. The voltage across the capacitor C2 can compensate a voltage drop in the primary circuit 301 and the coreless power transformer 100 when outputting the first output voltage Vo1.
Meanwhile, by setting the feedback voltage V FB at a low value, the exciting current of the primary winding can be reduced, thereby the power loss can be reduced.
While several inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or  methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.

Claims (15)

  1. A coreless power transformer (100) for delivering power, comprising:
    a primary winding comprising a first coreless planar coil (201) arranged on a PCB layer 1 (101) and a second coreless planar coil (202) arranged on a PCB layer 2 (102) , and configured to receive power from a power supply; and
    a secondary winding comprising a third coreless planar coil (203) arranged on a PCB layer 3 (103) and a fourth coreless planar coil (204) arranged on a PCB layer 4 (104) , and configured to receive the power from the primary winding and provide the power to a load,
    wherein the PCB layer 1 (101) , the PCB layer 2 (102) , the PCB layer 3 (103) and the PCB layer 4 (104) are substantially parallel to each other.
  2. The coreless power transformer (100) according to claim 1, wherein the PCB layer 1 (101) and the PCB layer 2 (102) are sandwiched between the PCB layer 3 (103) and the PCB layer 4 (104) .
  3. The coreless power transformer (100) according to claim 1, wherein the PCB layer 1 (101) , the PCB layer 2 (102) , the PCB layer 3 (103) and the PCB layer 4 (104) are arranged at equal intervals.
  4. The coreless power transformer (100) according to claim 3, wherein a distance between adjacent ones of the PCB layer 1 (101) , the PCB layer 2 (102) , the PCB layer 3 (103) and the PCB layer 4 (104) is 0.3mm.
  5. The coreless power transformer (100) according to claim 1, wherein a turn ratio between the primary winding and the secondary winding is 1.
  6. The coreless power transformer (100) according to claim 1, wherein each of the first coreless planar coil (201) , the second coreless planar coil (202) , the third coreless planar coil (203) and the fourth coreless planar coil (204) comprises:
    a coil body (205) arranged on the respective PCB and configured to produce an alternating magnetic field for delivering the power; and
    a metal ring (206) arranged around the coil body (205) and configured to produce a magnetic field having a direction opposite to the alternating magnetic field produced by  the coil body (205) .
  7. The coreless power transformer (100) according to claim 6, wherein a wire width (W) of the coil body (205) is 12 mil, and a wire spacing (S) of the coil body (205) is 5 mil.
  8. The coreless power transformer (100) according to claim 1, wherein each of the primary winding and the secondary winding comprises at least one additional coreless planar coil arranged on at least one additional PCB, and the least one additional PCB is substantially parallel to the PCB layer 1 (101) , the PCB layer 2 (102) , the PCB layer 3 (103) and the PCB layer 4 (104) .
  9. An isolating power source (300) , comprising:
    a primary circuit (301) coupled to a power supply and configured to adjust a voltage of the power supply;
    a coreless power transformer (100) according to any of claims 1-8, wherein the primary winding of the coreless power transformer (100) is coupled to the primary circuit (301) to receive the adjusted voltage; and
    a secondary circuit (304) coupled to the secondary winding of the coreless power transformer (100) and configured to output one or more voltages.
  10. The isolating power source (300) according to claim 9, further comprising:
    a feedback circuit (302) coupled to the primary winding of the coreless power transformer (100) and the primary circuit (301) , and configured to provide a feedback voltage to the primary circuit (301) based on the adjusted voltage.
  11. The isolating power source (300) according to claim 10, wherein the feedback circuit (302) comprises a first capacitor (C1) .
  12. The isolating power source (300) according to claim 9, further comprising:
    a compensation circuit (305) coupled between the secondary winding of the coreless power transformer (100) and the secondary circuit (304) , and configured to compensate a voltage drop in the primary circuit (301) and the coreless power transformer (100) .
  13. The isolating power source (300) according to claim 12, wherein the compensation circuit (305) comprises a second capacitor (C2) and a first diode (D1) ;
    a first terminal of the second capacitor (C2) is coupled to a first terminal of the  secondary winding of the coreless power transformer (100) , and a second terminal of the second capacitor (C2) is coupled to the secondary circuit (304) ; and
    a cathode of the first diode (D1) is coupled to the second terminal of the second capacitor (C2) , and an anode of the first diode (D1) is coupled to a second terminal of the secondary winding of the coreless power transformer (100) .
  14. The isolating power source (300) according to claim 9, wherein the primary circuit (301) comprises a first MOSFET (S1) , a second MOSFET (S2) and a PWM controller (T) ;
    a drain of the first MOSFET (S1) is coupled to the power supply, a source of the first MOSFET (S1) is coupled to a first terminal of the primary winding of the coreless power transformer (100) , and a gate of the first MOSFET (S1) is coupled to the PWM controller (T) ;
    a drain of the second MOSFET (S2) is coupled to the source of the first MOSFET (S1) , a source of the second MOSFET (S2) is coupled to ground, and a gate of the second MOSFET (S2) is coupled to the PWM controller (T) ; and
    the PWM controller (T) is configured to control duty cycles of the first MOSFET (S1) and the second MOSFET (S2) to output the adjusted voltage at different predetermined levels.
  15. The isolating power source (300) according to claim 9, wherein the secondary circuit (304) comprises a third capacitor (C3) , a fourth capacitor (C4) , a second diode (D2) and a third diode (D3) ;
    an anode of the second diode (D2) is coupled to a first terminal of the secondary winding of the coreless power transformer (100) , a cathode of the second diode (D2) is coupled to a first terminal of the third capacitor (C3) to output a first output voltage (Vo1) , and a second terminal of the third capacitor (C3) is coupled to a second terminal of the secondary winding; and
    a cathode of the third diode (D3) is coupled to the first terminal of the secondary winding, an anode of the third diode (D3) is coupled to a first terminal of the fourth capacitor (C4) , a second terminal of the fourth capacitor (C4) is coupled to the second terminal of the secondary winding to output a second output voltage (Vo2) .
PCT/CN2021/104364 2021-07-02 2021-07-02 Coreless power transformer and isolating power source WO2023272738A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/104364 WO2023272738A1 (en) 2021-07-02 2021-07-02 Coreless power transformer and isolating power source
CN202180096039.6A CN117063252A (en) 2021-07-02 2021-07-02 Coreless power transformer and isolated power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/104364 WO2023272738A1 (en) 2021-07-02 2021-07-02 Coreless power transformer and isolating power source

Publications (1)

Publication Number Publication Date
WO2023272738A1 true WO2023272738A1 (en) 2023-01-05

Family

ID=84692226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104364 WO2023272738A1 (en) 2021-07-02 2021-07-02 Coreless power transformer and isolating power source

Country Status (2)

Country Link
CN (1) CN117063252A (en)
WO (1) WO2023272738A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040042240A1 (en) * 2002-08-29 2004-03-04 Yoshihiro Takeshima Switching power supply device
US20050156699A1 (en) * 1998-02-05 2005-07-21 City University Of Hong Kong Coreless printed-circuit-board (PCB) transformers and operating techniques therefor
US20100078761A1 (en) * 2006-09-21 2010-04-01 Shu-Yuen Ron Hui Semiconductor transformers
US20120099346A1 (en) * 2010-10-22 2012-04-26 Seps Technologies Ab Converter and an Electronic Equipment Provided with such a Converter
CN105186885A (en) * 2015-09-10 2015-12-23 中国科学院自动化研究所 PCB coreless transformer based multi-path output isolated power supply

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050156699A1 (en) * 1998-02-05 2005-07-21 City University Of Hong Kong Coreless printed-circuit-board (PCB) transformers and operating techniques therefor
US20040042240A1 (en) * 2002-08-29 2004-03-04 Yoshihiro Takeshima Switching power supply device
US20100078761A1 (en) * 2006-09-21 2010-04-01 Shu-Yuen Ron Hui Semiconductor transformers
US20120099346A1 (en) * 2010-10-22 2012-04-26 Seps Technologies Ab Converter and an Electronic Equipment Provided with such a Converter
CN105186885A (en) * 2015-09-10 2015-12-23 中国科学院自动化研究所 PCB coreless transformer based multi-path output isolated power supply

Also Published As

Publication number Publication date
CN117063252A (en) 2023-11-14

Similar Documents

Publication Publication Date Title
US6281779B1 (en) Coil device and switching power supply apparatus using the same
US10325714B2 (en) Integrated magnetic component and switched mode power converter
US7304867B2 (en) DC-DC converter of multi-output type
USRE40907E1 (en) Ripple cancellation circuit for ultra-low-noise power supplies
US7796003B2 (en) Multi-parallel magnetic-field cancellation type transformer
US9390848B2 (en) Integrated magnetics transformer assembly
US8933649B2 (en) Power converter having a switch coupled between windings
US9177714B2 (en) Transverse shield wire for energy transfer element
WO2015016146A1 (en) Gate-power-supply device and semiconductor circuit breaker using same
US7915989B2 (en) Magnetic element and magnetic core assembly having reduced winding loss
US10825598B2 (en) Planar magnetic element
JP2006101651A (en) Switching power circuit
JP2012186984A (en) High voltage inverter device
US7148779B2 (en) Pulse type transformer with increased coupling coefficient through configuration of plural primary windings
WO2023272738A1 (en) Coreless power transformer and isolating power source
US20230017789A1 (en) Electrical power converter with segmented windings
JP2002075750A (en) Transformer and power unit
WO2019181082A1 (en) Dc voltage conversion circuit and power supply device
US20050237143A1 (en) Transformer for switching power supply
WO2024103396A1 (en) Power converter and method for manufacturing the same
JP7024868B2 (en) Insulated SEPIC converter circuit
JP2000173837A (en) Sheet transformer for switching power supply
JP6331480B2 (en) Inverter device and plasma generator
US20040233031A1 (en) Electromagnetic interference suppressor
WO2023272745A1 (en) Coreless planar coil and power transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947683

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180096039.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE