WO2023248379A1 - Wireless communication system, reception device, and estimation method - Google Patents

Wireless communication system, reception device, and estimation method Download PDF

Info

Publication number
WO2023248379A1
WO2023248379A1 PCT/JP2022/024881 JP2022024881W WO2023248379A1 WO 2023248379 A1 WO2023248379 A1 WO 2023248379A1 JP 2022024881 W JP2022024881 W JP 2022024881W WO 2023248379 A1 WO2023248379 A1 WO 2023248379A1
Authority
WO
WIPO (PCT)
Prior art keywords
doppler shift
frequency offset
correction coefficient
signal
unit
Prior art date
Application number
PCT/JP2022/024881
Other languages
French (fr)
Japanese (ja)
Inventor
知哉 景山
一光 坂元
洋輔 藤野
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/024881 priority Critical patent/WO2023248379A1/en
Publication of WO2023248379A1 publication Critical patent/WO2023248379A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present invention relates to a wireless communication system, a receiving device, and an estimation method.
  • IoT Internet of Things
  • IoT terminals may be installed in places where it is difficult to install a base station, such as on a buoy at sea, on a ship, or in a mountainous area. Therefore, a system has been proposed in which data collected by IoT terminals installed in various locations is relayed to a base station installed on the ground using a relay device mounted on a low orbit satellite.
  • Non-Patent Document 1 proposes DFS (Doppler frequency shift) estimation using a preamble and a postamble.
  • the present invention aims to provide a technique that can estimate Doppler shifts and frequency offsets for a plurality of signals that have undergone different Doppler shifts without inserting a preamble or the like.
  • One aspect of the present invention is a wireless communication system including a plurality of transmitting devices, a moving wireless communication device, and a receiving device, wherein the plurality of transmitting devices include a transmitting unit that transmits a wireless signal, and the plurality of transmitting devices include a transmitting unit that transmits a wireless signal,
  • the wireless communication device includes one or more antennas that receive the wireless signals transmitted from the plurality of transmitting devices, and a waveform that transmits waveform data indicating a waveform of the received signal received by the one or more antennas to the receiving device.
  • the receiving device includes a receiving section that receives the waveform data transmitted by the wireless communication device, and a Doppler shift and frequency received by the received signal indicated by the waveform data received by the receiving section.
  • a Doppler shift estimating section that estimates an offset, the Doppler shift estimating section branching the received signal and performing M (M is an integer of 2 or more) types of frequency offset corrections on each of the branched received signals.
  • M first arithmetic units that respectively multiply by coefficient candidates; and M ⁇ N that multiply N (N is an integer of 2 or more) types of Doppler shift correction coefficient candidates to each of the output signals of the M first arithmetic units.
  • This wireless communication system includes a comparison unit that estimates the frequency offset and the Doppler shift used for compensation of the received signal.
  • One aspect of the present invention is the receiving device in a wireless communication system including a plurality of transmitting devices, a moving wireless communication device, and a receiving device, the receiving device transmitting wireless signals transmitted from the plurality of transmitting devices to the wireless communication system.
  • a receiving unit that receives data via a wireless communication device; and a Doppler shift estimating unit that estimates a Doppler shift and a frequency offset received by the received signal received by the receiving unit, and the Doppler shift estimating unit M first calculation units that branch each branched received signal and multiply each of the branched received signals by M (M is an integer of 2 or more) types of frequency offset correction coefficient candidates; and the M first calculation units.
  • a receiving device comprising:
  • One aspect of the present invention is an estimation method in a wireless communication system having a plurality of transmitting devices, a moving wireless communication device, and a receiving device, the plurality of transmitting devices transmitting wireless signals, and the wireless a communication device transmits waveform data indicating a waveform of a received signal received by one or more antennas that receive the wireless signals transmitted from the plurality of transmitting devices to the receiving device;
  • the receiving device receives the waveform data transmitted by the device, branches the received signal indicated by the received waveform data, and receives M (M is an integer of 2 or more) types of signals for each branched received signal.
  • N N is an integer of 2 or more types of Doppler shift correction coefficients are applied to each received signal multiplied by the M (M is an integer of 2 or more) types of frequency offset correction coefficient candidates.
  • This estimation method estimates a correction coefficient candidate as an estimated value of a frequency offset and an estimated value of a Doppler shift used for compensation of a received signal.
  • the present invention it is possible to estimate Doppler shifts and frequency offsets for a plurality of signals that have undergone different Doppler shifts without inserting a preamble or the like.
  • FIG. 1 is a configuration diagram of a wireless communication system according to an embodiment. It is a figure showing a concrete example of composition of a Doppler shift estimating part in an embodiment. It is a figure showing the example of composition of the compensation part in an embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of a replica generation unit in an embodiment. It is a figure showing an example of composition of a blanking processing part in an embodiment.
  • FIG. 3 is a diagram for explaining processing performed by a blanking processing section in the embodiment. It is a flowchart which shows the flow of demodulation processing performed by a base station in an embodiment.
  • FIG. 1 is a configuration diagram of a wireless communication system 1 according to an embodiment.
  • the wireless communication system 1 includes a plurality of terminal stations 20, a mobile relay station 30, and a base station 40.
  • the number of terminal stations 20, mobile relay stations 30, and base stations 40 that the wireless communication system 1 has is arbitrary. It is assumed that the number of terminal stations 20 is large.
  • the terminal station 20 collects data such as environmental data detected by sensors and transmits it to the mobile relay station 30 wirelessly. For example, if a transmission timing is instructed by the mobile relay station 30, the terminal station 20 wirelessly transmits the collected data to the mobile relay station 30 at the instructed transmission timing.
  • the terminal station 20 is, for example, an IoT (Internet of Things) terminal.
  • the terminal station 20 is one aspect of a transmitting device.
  • the mobile relay station 30 is an example of a wireless communication device that is mounted on a mobile body and whose communicable area changes over time.
  • the mobile relay station 30 of this embodiment is provided on a LEO (Low Earth Orbit) satellite.
  • the altitude of a LEO satellite is 2000 km or less, and for example, when the altitude is about 350 km, it orbits above the earth in about 1.5 hours.
  • the terminal station 20 and the base station 40 are installed on the earth, such as on the ground or on the sea.
  • the radio signal transmitted from the terminal station 20 to the mobile relay station 30 will be referred to as a terminal uplink signal
  • the signal transmitted from the mobile relay station 30 to the base station 40 will be referred to as a base station downlink signal.
  • the time during which each terminal station 20 or base station 40 can communicate with the mobile relay station 30 is limited. Specifically, when viewed from the ground, the mobile relay station 30 passes over the sky in about a few minutes. Therefore, the terminal station 20 collects data such as environmental data detected by the sensor, and stores the collected data. The terminal station 20 transmits a terminal uplink signal in which the collected data is set at a timing when it can communicate with the mobile relay station 30. The mobile relay station 30 receives terminal uplink signals transmitted from each of the plurality of terminal stations 20 while moving above the earth.
  • the mobile relay station 30 accumulates data received from each terminal station 20 using a terminal uplink signal, and sends the accumulated data to the base station using a base station downlink signal at a timing when communication with the base station 40 is possible. 40 by radio.
  • the base station 40 acquires the data collected by the terminal station 20 from the received base station downlink signal.
  • the mobile relay station 30 has an antenna used for wireless communication with the terminal station 20 and an antenna used for wireless communication with the base station 40. Therefore, the mobile relay station 30 can perform wireless communication with the terminal station 20 and wireless communication with the base station 40 in parallel.
  • a mobile relay station As a mobile relay station, it is possible to use a relay station mounted on a geostationary satellite, a drone, or an unmanned aircraft such as a HAPS (High Altitude Platform Station).
  • a relay station mounted on a geostationary satellite although its coverage area (footprint) on the ground is wide, the link budget for IoT terminals installed on the ground is extremely small due to its high altitude.
  • relay stations mounted on drones and HAPS have a high link budget but have a small coverage area.
  • a mobile relay station 30 is mounted on a LEO satellite. Therefore, in addition to keeping the link budget within limits, LEO satellites have no air resistance and consume less fuel because they orbit outside the atmosphere. Additionally, the footprint is larger compared to installing a relay station on a drone or HAPS.
  • the base station 40 acquires from the mobile relay station 30 a plurality of received signals that have undergone different Doppler shifts due to transmission from each terminal station 20 to the mobile relay station 30, and performs correlation detection etc. on the acquired plurality of received signals.
  • the Doppler shifts and frequency offsets of multiple received signals are estimated without having to Hereinafter, the Doppler shift and frequency offset estimated by the base station 40 will be referred to as an estimated Doppler shift value and an estimated frequency offset value.
  • base station 40 detects a plurality of received frames using the Doppler shift estimate and the frequency offset estimate.
  • Base station 40 is one aspect of a receiving device.
  • the terminal station 20 and base station 40 are installed at specific locations on the earth, such as on the ground or on the sea.
  • the terminal station 20 includes a data storage section 21, a transmission section 22, and one or more antennas 23.
  • FIG. 1 shows a case where the terminal station 20 includes one antenna 23.
  • the data storage unit 21 stores environmental data detected by the sensor.
  • the transmitter 22 communicates with the mobile relay station 30.
  • the transmitting unit 22 reads the environmental data from the data storage unit 21 as terminal transmission data, and wirelessly transmits from the antenna 23 a terminal uplink signal in which the read terminal transmission data is set.
  • the transmitter 22 transmits a signal using, for example, LPWA (Low Power Wide Area).
  • LPWA includes LoRaWAN (registered trademark), Sigfox (registered trademark), LTE-M (Long Term Evolution for Machines), NB (Narrow Band)-IoT, etc., but any wireless communication method can be used.
  • the transmitter 22 may perform transmission with other terminal stations 20 by time division multiplexing, OFDM (Orthogonal Frequency Division Multiplexing), or the like.
  • the transmitter 22 may beam-form the signals transmitted from the plurality of antennas 23 using a method predetermined in the wireless communication system to be used.
  • the mobile relay station 30 includes one or more antennas 31, a terminal communication section 32, a data storage section 33, a base station communication section 34, and one or more antennas 35.
  • FIG. 1 shows a case where the mobile relay station 30 includes one antenna 31 and one antenna 35.
  • the terminal communication unit 32 wirelessly communicates with the terminal station 20.
  • the terminal communication section 32 includes a receiving section 321 and a received waveform recording section 322.
  • the receiving unit 321 receives the terminal uplink signal through the antenna 31.
  • the received waveform recording unit 322 samples the received waveform of the terminal uplink signal received by the receiving unit 321, and generates waveform data indicating the value obtained by sampling.
  • the received waveform recording unit 322 writes received waveform information in which the reception time of the terminal uplink signal at the antenna 31 and the generated waveform data are set in the data storage unit 33.
  • the data storage unit 33 stores received waveform information written by the received waveform recording unit 322.
  • the base station communication unit 34 transmits the received waveform information to the base station 40 using a base station downlink signal of any wireless communication method.
  • the base station 40 includes an antenna 41, a receiving section 42, a base station signal reception processing section 43, a signal storage section 44, and a terminal signal reception processing section 45.
  • the receiving unit 42 converts the base station downlink signal received by the antenna 41 into an electrical signal.
  • the base station signal reception processing section 43 demodulates and decodes the received signal converted into an electrical signal by the receiving section 42, and obtains received waveform information.
  • the base station signal reception processing section 43 causes the signal storage section 44 to store the received waveform information.
  • the signal storage section 44 stores received waveform information obtained by the base station signal reception processing section 43.
  • the terminal signal reception processing section 45 includes a signal subtraction section 46, a Doppler shift estimation section 47, a signal detection section 48, a demodulation section 49, a check section 50, and an interference cancellation section 51.
  • the received signal that has been successfully demodulated in the interference removal unit 51 and the received waveform information stored in the signal storage unit 44 are input to the signal subtraction unit 46 .
  • the signal subtraction unit 46 subtracts the received signal that has been successfully demodulated from the input received waveform information. Thereby, the signal subtraction unit 46 removes the components of the received signal that have been successfully demodulated from the received waveform information.
  • the Doppler shift estimating unit 47 estimates the Doppler shift and frequency offset based on the received waveform information (hereinafter referred to as "compensation target received signal") from which the components of the received signal successfully demodulated by the signal subtracting unit 46 have been removed.
  • the Doppler shift estimator 47 compensates the compensation target received signal using the Doppler shift estimate and the frequency offset estimate. Specifically, the Doppler shift estimation unit 47 multiplies the compensation target received signal by the Doppler shift estimated value and the frequency offset estimated value to obtain the compensated received signal.
  • the signal detection unit 48 detects the compensated received signal on the frequency axis using a band-limiting filter.
  • the demodulation unit 49 performs demodulation processing on the compensated received signal detected by the signal detection unit 48.
  • the inspection unit 50 performs error detection processing on the compensated received signal that has undergone demodulation processing. For example, the inspection unit 50 performs error detection using CRC (Cyclic Redundancy Check). In this case, the inspection unit 50 extracts information corresponding to the CRC bits of the compensated received signal that has undergone demodulation processing. The inspection unit 50 performs error detection based on the extracted information corresponding to the CRC bits of the received signal after compensation, and determines whether the demodulation result is correct. Note that error detection methods other than CRC may be used for error detection performed by the inspection unit 50.
  • CRC Cyclic Redundancy Check
  • the interference cancellation unit 51 receives the error detection determination result by the inspection unit 50 and the compensated received signal that has undergone demodulation processing.
  • the interference removal section 51 includes a replica generation section 511 and a blanking processing section 512. If the determination result by the inspection unit 50 indicates that the demodulation result is correct, the replica generation unit 511 generates a replica signal of the compensated received signal that has undergone demodulation processing. The replica generating section 511 outputs the generated replica signal to the signal subtracting section 46 as a received signal that has been successfully demodulated. If the determination result by the inspection unit 50 indicates that the demodulation result is incorrect, the blanking processing unit 512 applies blanking to the signal band of the compensated received signal that has been subjected to the demodulation process to correct the signal. Remove.
  • FIG. 2 is a diagram showing a specific configuration example of the Doppler shift estimating section 47 in the embodiment.
  • the Doppler shift estimation section 47 includes M first calculation sections 471-1 to 471-M, M processing sections 472-1 to 472-M, a comparison section 473, and a compensation section 474.
  • M is an integer of 2 or more.
  • the compensation target received signal is input to the first calculation units 471-1 to 471-M.
  • the output signals of the first calculation units 471-1 to 471-M are input to the processing units 472-1 to 472-M.
  • the output signals of the first calculation units 471-1 to 471-M are compensation target received signals multiplied by different frequency offset correction coefficient candidates.
  • the compensation target received signal multiplied by the frequency offset correction coefficient candidate f m is input to the processing unit 472-m as the output signal of the first calculation unit 471-m.
  • the processing unit 472-M includes N second calculation units 476-M-1 to 476-MN, N power calculation units 477-M-1 to 477-MN, and a comparison unit 478-M. Equipped with M. Since each processing unit 472 has a similar configuration, the Doppler shift estimation unit 47 includes M ⁇ N second calculation units 476, M ⁇ N power calculation units 477, and M comparison units 478. You will be prepared. N is an integer of 2 or more.
  • the output signal of the first calculation unit 471-M is input to the second calculation units 476-M-1 to 476-MN.
  • the second calculation unit 476-Mn (1 ⁇ n ⁇ N) multiplies the output signal of the first calculation unit 471-M by the Doppler shift correction coefficient candidate d n .
  • the output signals of the second calculation units 476-M-1 to 476-MN are input to the power calculation units 477-M-1 to 477-MN.
  • the output signals of the second calculation units 476-M-1 to 476-MN are compensation target received signals multiplied by the Doppler shift correction coefficient candidates.
  • the power calculation unit 477-Mn receives the compensation target received signal multiplied by the Doppler shift correction coefficient candidate by the second calculation unit 476-Mn.
  • the power calculation section 477-Mn calculates the power of the output signal of the second calculation section 476-Mn within the desired band.
  • the output value (power value) of each power calculation unit 477-M-1 to 477-MN is input to the comparison unit 478-M.
  • the comparison unit 478-M compares the input output values of the respective power calculation units 477-M-1 to 477-MN. As a result of the comparison, the comparison unit 478-M outputs to the comparison unit 473 the combination of correction coefficient candidates (frequency offset correction coefficient candidate and Doppler shift correction coefficient candidate) with the highest power and the power in that combination.
  • each processing unit 472 outputs the combination of correction coefficient candidates with the highest power and the power in that combination to the comparison unit 473.
  • the processing unit 472-1 outputs to the comparison unit 473 the combination with the highest signal power among the combinations of the frequency offset correction coefficient candidate f 1 and mutually different Doppler shift correction coefficient candidates.
  • the processing unit 472-M outputs to the comparison unit 473 the combination with the highest signal power among the combinations of the frequency offset correction coefficient candidate f M and mutually different Doppler shift correction coefficient candidates.
  • Comparison unit 473 compares the power output from each processing unit 472.
  • the comparison unit 473 selects a combination of correction coefficient candidates (frequency offset correction coefficient candidates and Doppler shift correction coefficient candidates) with the highest power as an estimated frequency offset value and an estimated Doppler shift value to be used for compensation of the received signal. It is calculated as follows.
  • the comparator 473 outputs the estimated value of the frequency offset and the estimated value of the Doppler shift to the compensator 474.
  • the compensation unit 474 compensates the compensation target received signal by multiplying the compensation target received signal by the frequency offset estimate and Doppler shift estimate output from the comparison unit 473.
  • FIG. 3 is a diagram showing a configuration example of the compensation unit 474 in the embodiment.
  • the compensation section 474 includes a multiplication section 4741 and a multiplication section 4742.
  • the multiplier 4741 multiplies the compensation target received signal by the estimated value of the frequency offset output from the comparator 473. Thereby, the multiplier 4741 compensates for the frequency offset of the compensation target received signal.
  • the multiplier 4741 outputs the compensated received signal after frequency offset compensation to the multiplier 4742.
  • the multiplier 4742 multiplies the received signal to be compensated after frequency offset compensation by the Doppler shift correction coefficient candidate output from the comparator 473. Thereby, the multiplier 4742 compensates for the Doppler shift received by the compensation target received signal.
  • the maximum or minimum value of the frequency offset correction coefficient candidate f a , the Doppler shift correction coefficient candidate d b , the number of first calculation units 471 , and the number of second calculation units 476 is determined in advance depending on the altitude and moving speed of the mobile relay station 30 . It can be specified, but generally it can be set arbitrarily.
  • the input waveform of the Doppler shift estimation unit 47 is assumed to be x(t).
  • the input waveform x(t) is a signal that has undergone a Doppler shift and a frequency offset due to the high speed movement of the mobile relay station 30.
  • the Doppler shift d b and frequency offset f a received by the input waveform x(t) are given as shown in equation (1) below.
  • x' ab (f) be the Fourier transform of x ' ab (t).
  • fw is the bandwidth of the transmission signal, and is a value uniquely determined depending on the communication method, so it is set in advance according to the target communication method.
  • the comparison units 473 and 478 compare the power P ab for all a and b based on the following equation (3), and calculate a combination a' and b' of a and b that maximizes the power.
  • the comparison unit 478 calculates the calculated frequency offset correction coefficient f sa' (a is a subscript of s) and Doppler shift correction coefficient d sb' (b is a subscript of s) using the following equations (4) and (5). Calculate based on.
  • the frequency offset correction coefficient f sa' and the Doppler shift correction coefficient d sb' calculated by the comparator 478 are the estimated value of the frequency offset and the estimated value of the Doppler shift.
  • the compensation unit 474 uses the estimated value of the frequency offset and the estimated value of the Doppler shift calculated by the comparing unit 478 to perform compensation for the Doppler shift and frequency offset based on the following equation (6).
  • the compensator 474 outputs the signal after Doppler shift and frequency offset compensation to the signal detector 48 .
  • f B represents the frequency band to be extracted.
  • the demodulation unit 49 restores the bit string by performing demodulation processing on the signal extracted by the signal detection unit 48.
  • the demodulation section 49 outputs the restored bit string to the inspection section 50.
  • the checking unit 50 determines whether the demodulation result is correct.
  • the inspection unit 50 outputs the determination result to the interference removal unit 51.
  • the interference removal unit 51 performs one of the following processes based on the determination result input from the inspection unit 50.
  • FIG. 4 is a diagram illustrating a configuration example of the replica generation unit 511 in the embodiment.
  • the replica generation unit 511 modulates the bit string output from the demodulation unit 49, and generates the reciprocals (e- j2 ⁇ fa' , e- j2 ⁇ db't ) of the estimated value of the Doppler shift and the estimated value of the frequency offset.
  • Channel estimation is performed from the part corresponding to the preamble included in the received frame by multiplying by .
  • the replica generation unit 511 generates a received signal replica by multiplying the received signal by a channel.
  • Replica generation section 511 outputs the generated received signal replica to signal subtraction section 46 .
  • FIG. 5 is a diagram showing a configuration example of the blanking processing section 512 in the embodiment.
  • the blanking processing unit 512 performs blanking processing on the received signal, and then calculates the reciprocals (e- j2 ⁇ fa' , e- j2 ⁇ db' ) of the estimated value of the Doppler shift and the estimated value of the frequency offset. t ).
  • the processing performed by the blanking processing section 512 will be described using FIG. 6.
  • FIG. 6 is a diagram for explaining the processing performed by the blanking processing unit 512 in the embodiment.
  • three diagrams are shown in order from the top: an upper stage, a middle stage, and a lower stage.
  • the diagram shown in the upper part of FIG. 6 represents the signal after Doppler shift compensation.
  • the diagram shown in the middle part of FIG. 6 represents a signal on which blanking has been performed.
  • the diagram shown in the lower part of FIG. 6 shows a signal after the blanked signal is multiplied by the estimated value of Doppler shift and the reciprocal of the estimated value of frequency offset.
  • the blanking processing unit 512 performs blanking by setting the frequency component corresponding to the transmission signal bandwidth within the observation band to 0.
  • the blanking processing unit 512 multiplies the blanked signal by the reciprocal of the estimated Doppler shift value and the estimated frequency offset value for demodulation of the next received signal. It is output to the Doppler shift estimator 47.
  • FIG. 7 is a flowchart showing the flow of demodulation processing performed by the base station 40 in the embodiment. It is assumed that the number of detected terminals T det representing the number of terminal stations 20 to be detected is determined at the start of the process in FIG. 7 .
  • the Doppler shift estimation unit 47 receives the compensation target received signal as input, and estimates the frequency offset and Doppler shift for the input compensation target received signal (step S103). Thereafter, the Doppler shift estimator 47 compensates the compensation target received signal using the estimated value of the frequency offset and the estimated value of the Doppler shift.
  • the signal detection unit 48 uses a band-limiting filter to detect the compensation target received signal compensated by the Doppler shift estimation unit 47 (step S104).
  • the signal detection section 48 outputs the detected compensation target reception signal to the demodulation section 49 .
  • the demodulator 49 performs demodulation processing on the compensation target received signal output from the signal detector 48 (step S105).
  • the demodulation unit 49 restores the bit string through demodulation processing.
  • the demodulation unit 49 outputs information on the restored bit string to the inspection unit 50.
  • the inspection unit 50 inspects the CRC bits based on the information on the bit string output from the demodulation unit 49, and determines whether the demodulation result is correct (step S106). If the demodulation result is correct (step S106-YES), the replica generation unit 511 performs channel estimation from a portion of the bit string that corresponds to the preamble of the demodulated signal (step S107). The replica generation unit 511 generates a received signal replica using the estimated channel (step S108). Replica generation section 511 outputs the generated received signal replica to signal subtraction section 46 .
  • the signal subtraction unit 46 subtracts the received signal replica output from the replica generation unit 511 from the received signal received via the antenna 41 (step S109).
  • the signal subtraction unit 46 outputs the subtracted received signal to the Doppler shift estimation unit 47.
  • the Doppler shift estimation unit 47 adds 1 to i and detects the next received signal (step S110).
  • step S106 if the demodulation result is incorrect (step S106-NO), the blanking processing unit 512 performs blanking of the detected signal band (step S109).
  • the blanking processing unit 512 outputs the signal after the blanking process to the Doppler shift estimation unit 47.
  • the Doppler shift estimation unit 47 adds 1 to j and detects the next received signal (step S112).
  • step S113-NO the base station 40 executes the processes from step S102 onwards. According to the above procedure, the base station 40 performs interference cancellation preferentially from signals that can be demodulated.
  • the base station 40 estimates the Doppler shift and frequency offset received by the receiving section 42 that receives the waveform data transmitted by the mobile relay station 30, and the received signal indicated by the waveform data received by the receiving section 42.
  • a Doppler shift estimation unit 47 is provided.
  • the Doppler shift estimating unit 47 includes M first calculation units 471 that branch the received signal and multiply each of the branched received signals by M types of frequency offset correction coefficient candidates, and M first calculation units Among the M ⁇ N second calculation units 476 that multiply each of the output signals of the unit 471 by N types of Doppler shift correction coefficient candidates, and the output signals output from each of the M ⁇ N second calculation units 476, a comparison unit 473 that calculates a frequency offset correction coefficient candidate and a Doppler shift correction coefficient candidate multiplied by one of the output signals with an estimated frequency offset value and an estimated Doppler shift value used for compensation of the received signal; Be prepared. This makes it possible to estimate Doppler shift and frequency offset without using a preamble or the like. As a result, the signal frame can be demodulated.
  • the comparator 473 calculates the frequency offset correction coefficient f sa' and the Doppler shift correction coefficient d sb' based on equations (4) and (5).
  • the comparison unit 473 calculates the frequency offset correction coefficient f sa' and the Doppler shift correction coefficient d sb' by either of the following methods (second calculation method) or (third calculation method). good. This will be explained in detail below.
  • the comparison unit 473 performs error detection after performing demodulation processing on each output signal output from each of the M ⁇ N second calculation units 476, and as a result of the error detection, it is determined that the demodulation result is correct.
  • the frequency offset correction coefficient candidate and the Doppler shift correction coefficient candidate multiplied by the output signal are estimated as the frequency offset estimated value and the Doppler shift estimated value.
  • the comparator 473 performs error detection using CRC bits after demodulating all x′ ab (t).
  • the comparison unit 473 calculates a combination a'', a frequency offset correction coefficient candidate and a Doppler shift correction coefficient candidate (for example, a, b) multiplied by the output signal whose demodulation result is determined to be correct as a result of error detection.
  • b'' is calculated as an estimated value of frequency offset and an estimated value of Doppler shift.
  • the comparison unit 473 performs error detection after performing demodulation processing on the output signal having power exceeding a predetermined threshold among the powers calculated by each of the N power calculation units 477, and detects an error as a result of the error detection.
  • the frequency offset correction coefficient candidate and the Doppler shift correction coefficient candidate multiplied by the output signal for which the demodulation result is determined to be correct are estimated as the estimated value of the frequency offset and the estimated value of the Doppler shift.
  • the comparator 473 performs demodulation processing on x′ ab (t) having power exceeding a predetermined threshold value among the powers P ab related to all a and b, and then performs an error detection process using the CRC bits. Perform detection.
  • the comparison unit 473 calculates a combination a'', a frequency offset correction coefficient candidate and a Doppler shift correction coefficient candidate (for example, a, b) multiplied by the output signal whose demodulation result is determined to be correct as a result of error detection.
  • b'' is calculated as an estimated value of frequency offset and an estimated value of Doppler shift.
  • the Doppler shift estimating section 47 has been described as having a configuration in which comparison sections are provided in multiple stages. Specifically, the Doppler shift estimating section 47 has been described using as an example a configuration in which M comparison sections 478 and one comparison section 473 are provided in multiple stages.
  • the Doppler shift estimation unit 47 may be configured to include one comparison unit 473 instead of the M comparison units 478.
  • one comparison unit 473 receives the power value output from the power calculation unit 477 of each processing unit 472 as input, and calculates the value output from the power calculation unit 477 of each processing unit 472 that has been input. Compare the power values.
  • One comparison unit 473 estimates a combination of correction coefficient candidates (frequency offset correction coefficient candidate and Doppler shift correction coefficient candidate) with the highest power as the frequency offset and Doppler shift used for compensation of the received signal.
  • a part or all of the processing performed by the base station 40 in the embodiment described above may be implemented by a computer.
  • a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read into a computer system and executed.
  • the "computer system” herein includes hardware such as an OS (Operating System) and peripheral devices.
  • “computer-readable recording media” refers to portable media such as flexible disks, magneto-optical disks, ROM (Read Only Memory), and CD-ROMs (Compact Disc-ROM), hard disks built into computer systems, etc. storage device.
  • a "computer-readable recording medium” refers to a storage medium that dynamically stores a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include a device that retains a program for a certain period of time, such as a volatile memory inside a computer system that is a server or client in that case. Further, the above-mentioned program may be one for realizing a part of the above-mentioned functions, or may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized using a programmable logic device such as an FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array
  • the present invention can be applied to technology for communicating with a mobile body equipped with a mobile relay station.
  • First calculation section 472, 472-1 to 472- M...processing section, 473, 478, 478-M...comparison section, 474...compensation section, 476, 476-M-1 to 476-MN...second calculation section, 477, 477-M-1 to 477- MN...Power calculation unit, 511...Replica generation unit, 512...Blanking processing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This reception device comprises a Doppler shift estimation unit that receives waveform data transmitted by a wireless communication device and estimates a Doppler shift and a frequency offset affecting a reception signal indicated by the waveform data, the Doppler shift estimation unit being provided with: M first computation units (where M is an integer equal to or greater than 2) that divides the reception signal and multiplies each of M types of frequency offset correction coefficient candidates by the divided reception signals; M×N second computation units (where N is an integer equal to or greater than 2) that multiply N types of Doppler shift correction coefficient candidates by each output signal from the M first computation units; and a comparison unit that estimates, as a frequency offset estimation value and a Doppler shift estimation value used in compensation of the reception signal, the frequency offset correction coefficient candidate and Doppler shift correction coefficient candidate that are multiplied by any output signal from among output signals outputted from each of the M×N second computation units. 

Description

無線通信システム、受信装置及び推定方法Wireless communication system, receiving device and estimation method
 本発明は、無線通信システム、受信装置及び推定方法に関する。 The present invention relates to a wireless communication system, a receiving device, and an estimation method.
 IoT(Internet of Things)技術の発展により、各種センサを備えたIoT端末を様々な場所に設置することが検討されている。IoT端末は、例えば海上のブイや船舶、山岳地帯など、基地局の設置が困難な場所に設置される場合もある。そこで、様々な場所に設置されたIoT端末が収集したデータを、低軌道衛星に搭載された中継装置により地上に設置された基地局に中継するシステムが提案されている。 With the development of IoT (Internet of Things) technology, the installation of IoT terminals equipped with various sensors in various locations is being considered. IoT terminals may be installed in places where it is difficult to install a base station, such as on a buoy at sea, on a ship, or in a mountainous area. Therefore, a system has been proposed in which data collected by IoT terminals installed in various locations is relayed to a base station installed on the ground using a relay device mounted on a low orbit satellite.
 衛星センシングのプラットフォームでは、IoT端末の位置に応じて、各IoT端末から送信された信号に異なるドップラーシフトが発生する。そのため、フレーム内で異なるドップラーシフトを受けた信号が、ランダムな時間で低軌道衛星の受信アンテナに到来する。プリアンブルも同様にIoT端末毎に異なるドップラーシフトを受けており、既知信号との相関による時間同期処理が困難となる。非特許文献1において、プリアンブル及びポストアンブルを利用したDFS(Doppler frequency shift)推定が提案されている。 In the satellite sensing platform, different Doppler shifts occur in the signals transmitted from each IoT terminal depending on the location of the IoT terminal. Therefore, signals that have undergone different Doppler shifts within a frame arrive at the receiving antenna of the low orbit satellite at random times. Preambles are similarly subjected to different Doppler shifts for each IoT terminal, making time synchronization processing based on correlation with known signals difficult. Non-Patent Document 1 proposes DFS (Doppler frequency shift) estimation using a preamble and a postamble.
 しかしながら、データレートの低い通信方式においては、プリアンブル挿入によるオーバーヘッドが問題となる。そのため、プリアンブル不要なドップラーシフト及び周波数推定が望ましい。従来では、衛星通信のように非常に高速な、また端末ごとに異なるドップラーシフトを受けた複数の信号に対して、プリアンブル等の挿入を行うことなくドップラーシフト及び周波数オフセットを推定することができないという問題があった。 However, in communication systems with low data rates, overhead due to preamble insertion becomes a problem. Therefore, Doppler shift and frequency estimation that do not require a preamble are desirable. Conventionally, it has been impossible to estimate the Doppler shift and frequency offset without inserting a preamble etc. for multiple signals that are extremely high-speed, such as satellite communications, and that have different Doppler shifts for each terminal. There was a problem.
 上記事情に鑑み、本発明は、異なるドップラーシフトを受けた複数の信号に対して、プリアンブル等の挿入を行うことなくドップラーシフト及び周波数オフセットを推定することができる技術の提供を目的としている。 In view of the above circumstances, the present invention aims to provide a technique that can estimate Doppler shifts and frequency offsets for a plurality of signals that have undergone different Doppler shifts without inserting a preamble or the like.
 本発明の一態様は、複数の送信装置と、移動する無線通信装置と、受信装置とを有する無線通信システムであって、前記複数の送信装置は、無線信号を送信する送信部を備え、前記無線通信装置は、前記複数の送信装置から送信された前記無線信号を受信する1以上のアンテナと、前記1以上のアンテナにより受信した受信信号の波形を示す波形データを前記受信装置に送信する波形送信部と、を備え、前記受信装置は、前記無線通信装置が送信した前記波形データを受信する受信部と、前記受信部が受信した前記波形データが示す前記受信信号が受けたドップラーシフト及び周波数オフセットを推定するドップラーシフト推定部と、を備え、前記ドップラーシフト推定部は、前記受信信号を分岐し、分岐した各受信信号に対して、M(Mは2以上の整数)種類の周波数オフセット補正係数候補をそれぞれ乗算するM個の第1演算部と、前記M個の第1演算部の出力信号それぞれにN(Nは2以上の整数)種類のドップラーシフト補正係数候補を乗算するM×N個の第2演算部と、前記M×N個の第2演算部それぞれから出力される各出力信号のうちいずれかの出力信号に対して乗算された周波数オフセット補正係数候補及びドップラーシフト補正係数候補を、受信信号の補償に用いる周波数オフセットの推定値及びドップラーシフトの推定値と推定する比較部と、を備える無線通信システムである。 One aspect of the present invention is a wireless communication system including a plurality of transmitting devices, a moving wireless communication device, and a receiving device, wherein the plurality of transmitting devices include a transmitting unit that transmits a wireless signal, and the plurality of transmitting devices include a transmitting unit that transmits a wireless signal, The wireless communication device includes one or more antennas that receive the wireless signals transmitted from the plurality of transmitting devices, and a waveform that transmits waveform data indicating a waveform of the received signal received by the one or more antennas to the receiving device. a transmitting section, the receiving device includes a receiving section that receives the waveform data transmitted by the wireless communication device, and a Doppler shift and frequency received by the received signal indicated by the waveform data received by the receiving section. a Doppler shift estimating section that estimates an offset, the Doppler shift estimating section branching the received signal and performing M (M is an integer of 2 or more) types of frequency offset corrections on each of the branched received signals. M first arithmetic units that respectively multiply by coefficient candidates; and M×N that multiply N (N is an integer of 2 or more) types of Doppler shift correction coefficient candidates to each of the output signals of the M first arithmetic units. A frequency offset correction coefficient candidate and a Doppler shift correction coefficient candidate multiplied by one of the output signals outputted from each of the M×N second calculation units and the M×N second calculation units. This wireless communication system includes a comparison unit that estimates the frequency offset and the Doppler shift used for compensation of the received signal.
 本発明の一態様は、複数の送信装置と、移動する無線通信装置と、受信装置とを有する無線通信システムにおける前記受信装置であって、前記複数の送信装置から送信された無線信号を、前記無線通信装置を介して受信する受信部と、前記受信部が受信した受信信号が受けたドップラーシフト及び周波数オフセットを推定するドップラーシフト推定部と、を備え、前記ドップラーシフト推定部は、前記受信信号を分岐し、分岐した各受信信号に対して、M(Mは2以上の整数)種類の周波数オフセット補正係数候補をそれぞれ乗算するM個の第1演算部と、前記M個の第1演算部の出力信号それぞれにN(Nは2以上の整数)種類のドップラーシフト補正係数候補を乗算するM×N個の第2演算部と、前記M×N個の第2演算部それぞれから出力される各出力信号のうちいずれかの出力信号に対して乗算された周波数オフセット補正係数候補及びドップラーシフト補正係数候補を、受信信号の補償に用いる周波数オフセットの推定値及びドップラーシフトの推定値と推定する比較部と、を備える受信装置である。 One aspect of the present invention is the receiving device in a wireless communication system including a plurality of transmitting devices, a moving wireless communication device, and a receiving device, the receiving device transmitting wireless signals transmitted from the plurality of transmitting devices to the wireless communication system. A receiving unit that receives data via a wireless communication device; and a Doppler shift estimating unit that estimates a Doppler shift and a frequency offset received by the received signal received by the receiving unit, and the Doppler shift estimating unit M first calculation units that branch each branched received signal and multiply each of the branched received signals by M (M is an integer of 2 or more) types of frequency offset correction coefficient candidates; and the M first calculation units. M×N second calculation units that multiply each of the output signals by N (N is an integer of 2 or more) types of Doppler shift correction coefficient candidates, and output from each of the M×N second calculation units. Comparison of estimating the frequency offset correction coefficient candidate and Doppler shift correction coefficient candidate multiplied by one of the output signals with the estimated value of frequency offset and estimated value of Doppler shift used for compensation of the received signal A receiving device comprising:
 本発明の一態様は、複数の送信装置と、移動する無線通信装置と、受信装置とを有する無線通信システムにおける推定方法であって、前記複数の送信装置が、無線信号を送信し、前記無線通信装置が、前記複数の送信装置から送信された前記無線信号を受信する1以上のアンテナにより受信した受信信号の波形を示す波形データを前記受信装置に送信し、前記受信装置が、前記無線通信装置が送信した前記波形データを受信し、前記受信装置が、受信した前記波形データが示す前記受信信号を分岐し、分岐した各受信信号に対して、M(Mは2以上の整数)種類の周波数オフセット補正係数候補をそれぞれ乗算し、前記M(Mは2以上の整数)種類の周波数オフセット補正係数候補が乗算された各受信信号にN(Nは2以上の整数)種類のドップラーシフト補正係数候補を乗算し、前記N(Nは2以上の整数)種類のドップラーシフト補正係数候補が乗算された各受信信号のうちいずれかの出力信号に対して乗算された周波数オフセット補正係数候補及びドップラーシフト補正係数候補を、受信信号の補償に用いる周波数オフセットの推定値及びドップラーシフトの推定値と推定する推定方法である。 One aspect of the present invention is an estimation method in a wireless communication system having a plurality of transmitting devices, a moving wireless communication device, and a receiving device, the plurality of transmitting devices transmitting wireless signals, and the wireless a communication device transmits waveform data indicating a waveform of a received signal received by one or more antennas that receive the wireless signals transmitted from the plurality of transmitting devices to the receiving device; The receiving device receives the waveform data transmitted by the device, branches the received signal indicated by the received waveform data, and receives M (M is an integer of 2 or more) types of signals for each branched received signal. N (N is an integer of 2 or more) types of Doppler shift correction coefficients are applied to each received signal multiplied by the M (M is an integer of 2 or more) types of frequency offset correction coefficient candidates. Frequency offset correction coefficient candidate and Doppler shift multiplied by one of the output signals among the received signals multiplied by the N (N is an integer of 2 or more) types of Doppler shift correction coefficient candidates. This estimation method estimates a correction coefficient candidate as an estimated value of a frequency offset and an estimated value of a Doppler shift used for compensation of a received signal.
 本発明により、異なるドップラーシフトを受けた複数の信号に対して、プリアンブル等の挿入を行うことなくドップラーシフト及び周波数オフセットを推定することが可能となる。 According to the present invention, it is possible to estimate Doppler shifts and frequency offsets for a plurality of signals that have undergone different Doppler shifts without inserting a preamble or the like.
実施形態による無線通信システムの構成図である。1 is a configuration diagram of a wireless communication system according to an embodiment. 実施形態におけるドップラーシフト推定部の具体的な構成例を示す図である。It is a figure showing a concrete example of composition of a Doppler shift estimating part in an embodiment. 実施形態における補償部の構成例を示す図である。It is a figure showing the example of composition of the compensation part in an embodiment. 実施形態におけるレプリカ生成部の構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a replica generation unit in an embodiment. 実施形態におけるブランキング処理部の構成例を示す図である。It is a figure showing an example of composition of a blanking processing part in an embodiment. 実施形態におけるブランキング処理部が行う処理を説明するための図である。FIG. 3 is a diagram for explaining processing performed by a blanking processing section in the embodiment. 実施形態における基地局が行う復調処理の流れを示すフローチャートである。It is a flowchart which shows the flow of demodulation processing performed by a base station in an embodiment.
 以下、本発明の一実施形態を、図面を参照しながら説明する。
 図1は、実施形態による無線通信システム1の構成図である。無線通信システム1は、複数の端末局20と、移動中継局30と、基地局40とを有する。無線通信システム1が有する端末局20、移動中継局30及び基地局40それぞれの数は任意である。端末局20の数は、多数であることが想定される。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a wireless communication system 1 according to an embodiment. The wireless communication system 1 includes a plurality of terminal stations 20, a mobile relay station 30, and a base station 40. The number of terminal stations 20, mobile relay stations 30, and base stations 40 that the wireless communication system 1 has is arbitrary. It is assumed that the number of terminal stations 20 is large.
 端末局20は、センサが検出した環境データ等のデータを収集し、移動中継局30へ無線により送信する。例えば、端末局20は、移動中継局30から送信タイミングが指示されている場合には、指示された送信タイミングで、収集したデータを移動中継局30へ無線により送信する。端末局20は、例えば、IoT(Internet of Things)端末である。端末局20は、送信装置の一態様である。 The terminal station 20 collects data such as environmental data detected by sensors and transmits it to the mobile relay station 30 wirelessly. For example, if a transmission timing is instructed by the mobile relay station 30, the terminal station 20 wirelessly transmits the collected data to the mobile relay station 30 at the instructed transmission timing. The terminal station 20 is, for example, an IoT (Internet of Things) terminal. The terminal station 20 is one aspect of a transmitting device.
 移動中継局30は、移動体に搭載され、通信可能なエリアが時間の経過により移動する無線通信装置の一例である。本実施形態の移動中継局30は、LEO(Low Earth Orbit)衛星に備えられる。LEO衛星の高度は2000km以下であり、例えば、高度約350kmの場合には、地球の上空を1周約1.5時間程度で周回する。端末局20及び基地局40は、地上や海上など地球上に設置される。以下、端末局20から移動中継局30へ送信される無線信号を端末アップリンク信号と記載し、移動中継局30から基地局40に送信される信号を基地局ダウンリンク信号と記載する。 The mobile relay station 30 is an example of a wireless communication device that is mounted on a mobile body and whose communicable area changes over time. The mobile relay station 30 of this embodiment is provided on a LEO (Low Earth Orbit) satellite. The altitude of a LEO satellite is 2000 km or less, and for example, when the altitude is about 350 km, it orbits above the earth in about 1.5 hours. The terminal station 20 and the base station 40 are installed on the earth, such as on the ground or on the sea. Hereinafter, the radio signal transmitted from the terminal station 20 to the mobile relay station 30 will be referred to as a terminal uplink signal, and the signal transmitted from the mobile relay station 30 to the base station 40 will be referred to as a base station downlink signal.
 LEO衛星に搭載された移動中継局30は、高速で移動しながら通信を行うため、個々の端末局20や基地局40が移動中継局30と通信可能な時間が限られている。具体的には、地上で見ると、移動中継局30は、数分程度で上空を通り過ぎる。そこで、端末局20は、センサが検出した環境データ等のデータを収集し、収集したデータを記憶しておく。端末局20は、収集したデータが設定された端末アップリンク信号を、移動中継局30と通信可能なタイミングにおいて送信する。移動中継局30は、地球の上空を移動しながら、複数の端末局20それぞれから送信された端末アップリンク信号を受信する。移動中継局30は、各端末局20から端末アップリンク信号により受信したデータを蓄積し、蓄積しておいたデータを、基地局40との通信が可能なタイミングで基地局ダウンリンク信号により基地局40へ無線送信する。基地局40は、受信した基地局ダウンリンク信号から、端末局20が収集したデータを取得する。 Since the mobile relay station 30 mounted on the LEO satellite communicates while moving at high speed, the time during which each terminal station 20 or base station 40 can communicate with the mobile relay station 30 is limited. Specifically, when viewed from the ground, the mobile relay station 30 passes over the sky in about a few minutes. Therefore, the terminal station 20 collects data such as environmental data detected by the sensor, and stores the collected data. The terminal station 20 transmits a terminal uplink signal in which the collected data is set at a timing when it can communicate with the mobile relay station 30. The mobile relay station 30 receives terminal uplink signals transmitted from each of the plurality of terminal stations 20 while moving above the earth. The mobile relay station 30 accumulates data received from each terminal station 20 using a terminal uplink signal, and sends the accumulated data to the base station using a base station downlink signal at a timing when communication with the base station 40 is possible. 40 by radio. The base station 40 acquires the data collected by the terminal station 20 from the received base station downlink signal.
 移動中継局30は、端末局20との無線通信に使用するアンテナと、基地局40との無線通信に使用するアンテナとを有している。そのため、移動中継局30は、端末局20との無線通信、及び、基地局40との無線通信を並行して行うことも可能である。 The mobile relay station 30 has an antenna used for wireless communication with the terminal station 20 and an antenna used for wireless communication with the base station 40. Therefore, the mobile relay station 30 can perform wireless communication with the terminal station 20 and wireless communication with the base station 40 in parallel.
 移動中継局として、静止衛星や、ドローン、HAPS(High Altitude Platform Station)などの無人航空機に搭載された中継局を用いることが考えられる。しかし、静止衛星に搭載された中継局の場合、地上のカバーエリア(フットプリント)は広いものの、高度が高いために、地上に設置されたIoT端末に対するリンクバジェットは非常に小さい。一方、ドローンやHAPSに搭載された中継局の場合、リンクバジェットは高いものの、カバーエリアが狭い。 As a mobile relay station, it is possible to use a relay station mounted on a geostationary satellite, a drone, or an unmanned aircraft such as a HAPS (High Altitude Platform Station). However, in the case of a relay station mounted on a geostationary satellite, although its coverage area (footprint) on the ground is wide, the link budget for IoT terminals installed on the ground is extremely small due to its high altitude. On the other hand, relay stations mounted on drones and HAPS have a high link budget but have a small coverage area.
 さらには、ドローンにはバッテリーが、HAPSには太陽光パネルが必要である。本実施形態では、LEO衛星に移動中継局30を搭載する。よって、リンクバジェットは限界内に収まることに加え、LEO衛星は、大気圏外を周回するために空気抵抗がなく、燃料消費も少ない。また、ドローンやHAPSに中継局を搭載する場合と比較して、フットプリントも大きい。 Additionally, drones require batteries, and HAPS require solar panels. In this embodiment, a mobile relay station 30 is mounted on a LEO satellite. Therefore, in addition to keeping the link budget within limits, LEO satellites have no air resistance and consume less fuel because they orbit outside the atmosphere. Additionally, the footprint is larger compared to installing a relay station on a drone or HAPS.
 基地局40は、各端末局20から移動中継局30への送信により異なるドップラーシフトを受けた複数の受信信号を移動中継局30から取得し、取得した複数の受信信号に対して相関検出等を行うことなく、複数の受信信号のドップラーシフト及び周波数オフセットの推定を行う。以下、基地局40により推定されたドップラーシフト及び周波数オフセットを、ドップラーシフトの推定値及び周波数オフセットの推定値という。さらに、基地局40は、ドップラーシフトの推定値及び周波数オフセットの推定値を用いて、複数の受信フレームを検出する。基地局40は、受信装置の一態様である。 The base station 40 acquires from the mobile relay station 30 a plurality of received signals that have undergone different Doppler shifts due to transmission from each terminal station 20 to the mobile relay station 30, and performs correlation detection etc. on the acquired plurality of received signals. The Doppler shifts and frequency offsets of multiple received signals are estimated without having to Hereinafter, the Doppler shift and frequency offset estimated by the base station 40 will be referred to as an estimated Doppler shift value and an estimated frequency offset value. Furthermore, base station 40 detects a plurality of received frames using the Doppler shift estimate and the frequency offset estimate. Base station 40 is one aspect of a receiving device.
 端末局20及び基地局40は、地上や海上等の地球上の特定の位置に設置される。 The terminal station 20 and base station 40 are installed at specific locations on the earth, such as on the ground or on the sea.
 各装置の構成を説明する。
 端末局20は、データ記憶部21と、送信部22と、1本または複数本のアンテナ23とを備える。図1では、端末局20が、1本のアンテナ23を備える場合を示している。データ記憶部21には、センサが検出した環境データが記憶される。送信部22は、移動中継局30との間で通信を行う。送信部22は、データ記憶部21から環境データを端末送信データとして読み出し、読み出した端末送信データを設定した端末アップリンク信号をアンテナ23から無線により送信する。
The configuration of each device will be explained.
The terminal station 20 includes a data storage section 21, a transmission section 22, and one or more antennas 23. FIG. 1 shows a case where the terminal station 20 includes one antenna 23. The data storage unit 21 stores environmental data detected by the sensor. The transmitter 22 communicates with the mobile relay station 30. The transmitting unit 22 reads the environmental data from the data storage unit 21 as terminal transmission data, and wirelessly transmits from the antenna 23 a terminal uplink signal in which the read terminal transmission data is set.
 送信部22は、例えば、LPWA(Low Power Wide Area)により信号を送信する。LPWAには、LoRaWAN(登録商標)、Sigfox(登録商標)、LTE-M(Long Term Evolution for Machines)、NB(Narrow Band)-IoT等があるが、任意の無線通信方式を用いることができる。送信部22は、他の端末局20と時分割多重、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)などにより送信を行ってもよい。送信部22は、使用する無線通信方式において予め決められた方法により、複数本のアンテナ23から送信する信号のビーム形成を行ってもよい。 The transmitter 22 transmits a signal using, for example, LPWA (Low Power Wide Area). LPWA includes LoRaWAN (registered trademark), Sigfox (registered trademark), LTE-M (Long Term Evolution for Machines), NB (Narrow Band)-IoT, etc., but any wireless communication method can be used. The transmitter 22 may perform transmission with other terminal stations 20 by time division multiplexing, OFDM (Orthogonal Frequency Division Multiplexing), or the like. The transmitter 22 may beam-form the signals transmitted from the plurality of antennas 23 using a method predetermined in the wireless communication system to be used.
 移動中継局30は、1本又は複数本のアンテナ31と、端末通信部32と、データ記憶部33と、基地局通信部34と、1本又は複数本のアンテナ35とを備える。図1では、移動中継局30が、1本のアンテナ31及び35を備える場合を示している。 The mobile relay station 30 includes one or more antennas 31, a terminal communication section 32, a data storage section 33, a base station communication section 34, and one or more antennas 35. FIG. 1 shows a case where the mobile relay station 30 includes one antenna 31 and one antenna 35.
 端末通信部32は、端末局20と無線通信する。端末通信部32は、受信部321と、受信波形記録部322とを有する。受信部321は、アンテナ31により端末アップリンク信号を受信する。受信波形記録部322は、受信部321が受信した端末アップリンク信号の受信波形をサンプリングし、サンプリングにより得られた値を示す波形データを生成する。受信波形記録部322は、アンテナ31における端末アップリンク信号の受信時刻と、生成した波形データとを設定した受信波形情報をデータ記憶部33に書き込む。データ記憶部33には、受信波形記録部322により書き込まれた受信波形情報が記憶される。 The terminal communication unit 32 wirelessly communicates with the terminal station 20. The terminal communication section 32 includes a receiving section 321 and a received waveform recording section 322. The receiving unit 321 receives the terminal uplink signal through the antenna 31. The received waveform recording unit 322 samples the received waveform of the terminal uplink signal received by the receiving unit 321, and generates waveform data indicating the value obtained by sampling. The received waveform recording unit 322 writes received waveform information in which the reception time of the terminal uplink signal at the antenna 31 and the generated waveform data are set in the data storage unit 33. The data storage unit 33 stores received waveform information written by the received waveform recording unit 322.
 基地局通信部34は、任意の無線通信方式の基地局ダウンリンク信号により受信波形情報を基地局40へ送信する。 The base station communication unit 34 transmits the received waveform information to the base station 40 using a base station downlink signal of any wireless communication method.
 基地局40は、アンテナ41と、受信部42と、基地局信号受信処理部43と、信号記憶部44と、端末信号受信処理部45とを備える。受信部42は、アンテナ41により受信した基地局ダウンリンク信号を、電気信号に変換する。基地局信号受信処理部43は、受信部42が電気信号に変換した受信信号の復調及び復号を行い、受信波形情報を得る。基地局信号受信処理部43は、受信波形情報を信号記憶部44に記憶させる。信号記憶部44には、基地局信号受信処理部43により得られた受信波形情報が記憶される。 The base station 40 includes an antenna 41, a receiving section 42, a base station signal reception processing section 43, a signal storage section 44, and a terminal signal reception processing section 45. The receiving unit 42 converts the base station downlink signal received by the antenna 41 into an electrical signal. The base station signal reception processing section 43 demodulates and decodes the received signal converted into an electrical signal by the receiving section 42, and obtains received waveform information. The base station signal reception processing section 43 causes the signal storage section 44 to store the received waveform information. The signal storage section 44 stores received waveform information obtained by the base station signal reception processing section 43.
 端末信号受信処理部45は、信号減算部46と、ドップラーシフト推定部47と、信号検出部48と、復調部49と、検査部50と、干渉除去部51とを備える。 The terminal signal reception processing section 45 includes a signal subtraction section 46, a Doppler shift estimation section 47, a signal detection section 48, a demodulation section 49, a check section 50, and an interference cancellation section 51.
 信号減算部46には、干渉除去部51において復調に成功した受信信号と、信号記憶部44に記憶されている受信波形情報とが入力される。信号減算部46は、入力された受信波形情報から、復調に成功した受信信号を減算する。これにより、信号減算部46は、受信波形情報から、復調に成功した受信信号の成分を除去する。 The received signal that has been successfully demodulated in the interference removal unit 51 and the received waveform information stored in the signal storage unit 44 are input to the signal subtraction unit 46 . The signal subtraction unit 46 subtracts the received signal that has been successfully demodulated from the input received waveform information. Thereby, the signal subtraction unit 46 removes the components of the received signal that have been successfully demodulated from the received waveform information.
 ドップラーシフト推定部47は、信号減算部46により復調に成功した受信信号の成分が除去された受信波形情報(以下「補償対象受信信号」という)に基づいて、ドップラーシフトと周波数オフセットを推定する。ドップラーシフト推定部47は、ドップラーシフトの推定値と周波数オフセットの推定値を用いて、補償対象受信信号を補償する。具体的には、ドップラーシフト推定部47は、補償対象受信信号に対してドップラーシフトの推定値と周波数オフセットの推定値を乗算することで、補償後の受信信号を取得する。 The Doppler shift estimating unit 47 estimates the Doppler shift and frequency offset based on the received waveform information (hereinafter referred to as "compensation target received signal") from which the components of the received signal successfully demodulated by the signal subtracting unit 46 have been removed. The Doppler shift estimator 47 compensates the compensation target received signal using the Doppler shift estimate and the frequency offset estimate. Specifically, the Doppler shift estimation unit 47 multiplies the compensation target received signal by the Doppler shift estimated value and the frequency offset estimated value to obtain the compensated received signal.
 信号検出部48は、帯域制限フィルタを用いて周波数軸上で補償後の受信信号を検出する。 The signal detection unit 48 detects the compensated received signal on the frequency axis using a band-limiting filter.
 復調部49は、信号検出部48により検出された補償後の受信信号に対して復調処理を行う。 The demodulation unit 49 performs demodulation processing on the compensated received signal detected by the signal detection unit 48.
 検査部50は、復調処理がなされた補償後の受信信号の誤り検出処理を行う。例えば、検査部50は、CRC(Cyclic Redundancy Check)による誤り検出を行う。この場合、検査部50は、復調処理がなされた補償後の受信信号のCRCビットに相当する情報を抽出する。検査部50は、抽出した補償後の受信信号のCRCビットに相当する情報に基づいて誤り検出を行い、復調結果が正しいか否か判定する。なお、検査部50が行う誤り検出には、CRC以外の誤り検出方式が用いられてもよい。 The inspection unit 50 performs error detection processing on the compensated received signal that has undergone demodulation processing. For example, the inspection unit 50 performs error detection using CRC (Cyclic Redundancy Check). In this case, the inspection unit 50 extracts information corresponding to the CRC bits of the compensated received signal that has undergone demodulation processing. The inspection unit 50 performs error detection based on the extracted information corresponding to the CRC bits of the received signal after compensation, and determines whether the demodulation result is correct. Note that error detection methods other than CRC may be used for error detection performed by the inspection unit 50.
 干渉除去部51には、検査部50による誤り検出の判定結果と、復調処理がなされた補償後の受信信号とが入力される。干渉除去部51は、レプリカ生成部511とブランキング処理部512で構成される。レプリカ生成部511は、検査部50による判定結果として復調結果が正しいことを示している場合には復調処理がなされた補償後の受信信号のレプリカ信号を生成する。レプリカ生成部511は、生成したレプリカ信号を復調に成功した受信信号として信号減算部46に出力する。ブランキング処理部512は、検査部50による判定結果として復調結果が正しくないことを示している場合には、復調処理がなされた補償後の受信信号の信号帯域にブランキングを適用して信号を除去する。 The interference cancellation unit 51 receives the error detection determination result by the inspection unit 50 and the compensated received signal that has undergone demodulation processing. The interference removal section 51 includes a replica generation section 511 and a blanking processing section 512. If the determination result by the inspection unit 50 indicates that the demodulation result is correct, the replica generation unit 511 generates a replica signal of the compensated received signal that has undergone demodulation processing. The replica generating section 511 outputs the generated replica signal to the signal subtracting section 46 as a received signal that has been successfully demodulated. If the determination result by the inspection unit 50 indicates that the demodulation result is incorrect, the blanking processing unit 512 applies blanking to the signal band of the compensated received signal that has been subjected to the demodulation process to correct the signal. Remove.
 図2は、実施形態におけるドップラーシフト推定部47の具体的な構成例を示す図である。ドップラーシフト推定部47は、M個の第1演算部471-1~471-Mと、M個の処理部472-1~472-Mと、比較部473と、補償部474とを備える。Mは2以上の整数である。 FIG. 2 is a diagram showing a specific configuration example of the Doppler shift estimating section 47 in the embodiment. The Doppler shift estimation section 47 includes M first calculation sections 471-1 to 471-M, M processing sections 472-1 to 472-M, a comparison section 473, and a compensation section 474. M is an integer of 2 or more.
 第1演算部471-1~471-Mには、補償対象受信信号が入力される。第1演算部471-1~471-Mは、M種類の周波数オフセット補正係数候補f(a=1,…,M)を補償対象受信信号に乗算する。例えば、第1演算部471-m(1≦m≦M)は、周波数オフセット補正係数候補fを補償対象受信信号に乗算する。このように、第1演算部471-1~471-Mは、互いに異なる周波数オフセット補正係数候補f(a=1,…,M)を補償対象受信信号に乗算する。 The compensation target received signal is input to the first calculation units 471-1 to 471-M. The first calculation units 471-1 to 471-M multiply the compensation target received signal by M types of frequency offset correction coefficient candidates f a (a=1,...,M). For example, the first calculation unit 471-m (1≦m≦M) multiplies the compensation target received signal by the frequency offset correction coefficient candidate f m . In this way, the first calculation units 471-1 to 471-M multiply the compensation target received signal by mutually different frequency offset correction coefficient candidates f a (a=1,...,M).
 処理部472-1~472-Mには、第1演算部471-1~471-Mの出力信号が入力される。第1演算部471-1~471-Mの出力信号は、互いに異なる周波数オフセット補正係数候補が乗算された補償対象受信信号である。例えば、処理部472-mには、第1演算部471-mの出力信号として、周波数オフセット補正係数候補fが乗算された補償対象受信信号が入力される。 The output signals of the first calculation units 471-1 to 471-M are input to the processing units 472-1 to 472-M. The output signals of the first calculation units 471-1 to 471-M are compensation target received signals multiplied by different frequency offset correction coefficient candidates. For example, the compensation target received signal multiplied by the frequency offset correction coefficient candidate f m is input to the processing unit 472-m as the output signal of the first calculation unit 471-m.
 ここで、処理部472-1~472-Mの構成について説明する。なお、各処理部472は、同様の構成を備えるため、ここでは処理部472-Mを例に説明する。処理部472-Mは、N個の第2演算部476-M-1~476-M-Nと、N個の電力計算部477-M-1~477-M-Nと、比較部478-Mを備える。各処理部472が同様の構成を備えるため、ドップラーシフト推定部47は、M×N個の第2演算部476と、M×N個の電力計算部477と、M個の比較部478とを備えることになる。Nは2以上の整数である。 Here, the configurations of the processing units 472-1 to 472-M will be explained. Note that since each processing section 472 has a similar configuration, the processing section 472-M will be described as an example here. The processing unit 472-M includes N second calculation units 476-M-1 to 476-MN, N power calculation units 477-M-1 to 477-MN, and a comparison unit 478-M. Equipped with M. Since each processing unit 472 has a similar configuration, the Doppler shift estimation unit 47 includes M×N second calculation units 476, M×N power calculation units 477, and M comparison units 478. You will be prepared. N is an integer of 2 or more.
 第2演算部476-M-1~476-M-Nには、第1演算部471-Mの出力信号が入力される。第2演算部476-M-1~476-M-Nは、N種類のドップラーシフト補正係数候補d(b=1,…,N)を第1演算部471-Mの出力信号に乗算する。例えば、第2演算部476-M-n(1≦n≦N)は、ドップラーシフト補正係数候補dを第1演算部471-Mの出力信号に乗算する。このように、1つの処理部472(例えば、処理部472-M)では、互いに異なるドップラーシフト補正係数候補dが第1演算部471(例えば、第1演算部471-M)の出力信号に乗算される。 The output signal of the first calculation unit 471-M is input to the second calculation units 476-M-1 to 476-MN. The second calculation units 476-M-1 to 476-MN multiply the output signal of the first calculation unit 471-M by N types of Doppler shift correction coefficient candidates d b (b=1,...,N). . For example, the second calculation unit 476-Mn (1≦n≦N) multiplies the output signal of the first calculation unit 471-M by the Doppler shift correction coefficient candidate d n . In this way, in one processing unit 472 (for example, the processing unit 472-M), mutually different Doppler shift correction coefficient candidates d b are applied to the output signal of the first calculation unit 471 (for example, the first calculation unit 471-M). Multiplied.
 電力計算部477-M-1~477-M-Nには、第2演算部476-M-1~476-M-Nの出力信号が入力される。第2演算部476-M-1~476-M-Nの出力信号は、ドップラーシフト補正係数候補が乗算された補償対象受信信号である。例えば、電力計算部477-M-nには、第2演算部476-M-nによりドップラーシフト補正係数候補が乗算された補償対象受信信号が入力される。電力計算部477-M-nは、所望帯域内における第2演算部476-M-nの出力信号の電力を計算する。 The output signals of the second calculation units 476-M-1 to 476-MN are input to the power calculation units 477-M-1 to 477-MN. The output signals of the second calculation units 476-M-1 to 476-MN are compensation target received signals multiplied by the Doppler shift correction coefficient candidates. For example, the power calculation unit 477-Mn receives the compensation target received signal multiplied by the Doppler shift correction coefficient candidate by the second calculation unit 476-Mn. The power calculation section 477-Mn calculates the power of the output signal of the second calculation section 476-Mn within the desired band.
 比較部478-Mには、各電力計算部477-M-1~477-M-Nの出力値(電力値)が入力される。比較部478-Mは、入力された各電力計算部477-M-1~477-M-Nの出力値を比較する。比較部478-Mは、比較の結果、電力が最も高い補正係数候補(周波数オフセット補正係数候補とドップラーシフト補正係数候補)の組み合わせと、その組み合わせにおける電力とを比較部473に出力する。 The output value (power value) of each power calculation unit 477-M-1 to 477-MN is input to the comparison unit 478-M. The comparison unit 478-M compares the input output values of the respective power calculation units 477-M-1 to 477-MN. As a result of the comparison, the comparison unit 478-M outputs to the comparison unit 473 the combination of correction coefficient candidates (frequency offset correction coefficient candidate and Doppler shift correction coefficient candidate) with the highest power and the power in that combination.
 各処理部472は、上記の処理を行うことによって、電力が最も高い補正係数候補の組み合わせと、その組み合わせにおける電力とを比較部473に出力する。例えば、処理部472-1は、周波数オフセット補正係数候補fと、互いに異なるドップラーシフト補正係数候補との組み合わせのうち、最も信号の電力が高い組み合わせを比較部473に出力する。例えば、処理部472-Mは、周波数オフセット補正係数候補fと、互いに異なるドップラーシフト補正係数候補との組み合わせのうち、最も信号の電力が高い組み合わせを比較部473に出力する。比較部473は、各処理部472から出力された電力を比較する。比較部473は、比較の結果、電力が最も高い補正係数候補(周波数オフセット補正係数候補とドップラーシフト補正係数候補)の組み合わせを、受信信号の補償に用いる周波数オフセットの推定値及びドップラーシフトの推定値と算出する。比較部473は、周波数オフセットの推定値及びドップラーシフトの推定値を補償部474に出力する。 By performing the above processing, each processing unit 472 outputs the combination of correction coefficient candidates with the highest power and the power in that combination to the comparison unit 473. For example, the processing unit 472-1 outputs to the comparison unit 473 the combination with the highest signal power among the combinations of the frequency offset correction coefficient candidate f 1 and mutually different Doppler shift correction coefficient candidates. For example, the processing unit 472-M outputs to the comparison unit 473 the combination with the highest signal power among the combinations of the frequency offset correction coefficient candidate f M and mutually different Doppler shift correction coefficient candidates. Comparison unit 473 compares the power output from each processing unit 472. As a result of the comparison, the comparison unit 473 selects a combination of correction coefficient candidates (frequency offset correction coefficient candidates and Doppler shift correction coefficient candidates) with the highest power as an estimated frequency offset value and an estimated Doppler shift value to be used for compensation of the received signal. It is calculated as follows. The comparator 473 outputs the estimated value of the frequency offset and the estimated value of the Doppler shift to the compensator 474.
 補償部474は、比較部473から出力された周波数オフセットの推定値及びドップラーシフトの推定値を補償対象受信信号に乗算することによって、補償対象受信信号を補償する。 The compensation unit 474 compensates the compensation target received signal by multiplying the compensation target received signal by the frequency offset estimate and Doppler shift estimate output from the comparison unit 473.
 図3は、実施形態における補償部474の構成例を示す図である。補償部474は、乗算部4741と、乗算部4742とを備える。乗算部4741は、補償対象受信信号に対して比較部473から出力された周波数オフセットの推定値を乗算する。これにより、乗算部4741は、補償対象受信信号の周波数オフセットを補償する。乗算部4741は、周波数オフセット補償後の償対象受信信号を乗算部4742に出力する。乗算部4742は、周波数オフセット補償後の償対象受信信号に対して比較部473から出力されたドップラーシフト補正係数候補を乗算する。これにより、乗算部4742は、補償対象受信信号が受けたドップラーシフトを補償する。 FIG. 3 is a diagram showing a configuration example of the compensation unit 474 in the embodiment. The compensation section 474 includes a multiplication section 4741 and a multiplication section 4742. The multiplier 4741 multiplies the compensation target received signal by the estimated value of the frequency offset output from the comparator 473. Thereby, the multiplier 4741 compensates for the frequency offset of the compensation target received signal. The multiplier 4741 outputs the compensated received signal after frequency offset compensation to the multiplier 4742. The multiplier 4742 multiplies the received signal to be compensated after frequency offset compensation by the Doppler shift correction coefficient candidate output from the comparator 473. Thereby, the multiplier 4742 compensates for the Doppler shift received by the compensation target received signal.
 周波数オフセット補正係数候補fa,ドップラーシフト補正係数候補d,第1演算部471の数及び第2演算部476数は、移動中継局30の高度や移動速度によってその最大もしくは最小値を事前に規定できるものであるが、一般的には任意に設定できるものとする。 The maximum or minimum value of the frequency offset correction coefficient candidate f a , the Doppler shift correction coefficient candidate d b , the number of first calculation units 471 , and the number of second calculation units 476 is determined in advance depending on the altitude and moving speed of the mobile relay station 30 . It can be specified, but generally it can be set arbitrarily.
 次に、基地局40が備える端末信号受信処理部45の処理の具体的な流れについて説明する。ここで、ドップラーシフト推定部47の入力波形をx(t)とする。入力波形x(t)は、移動中継局30の高速移動に起因するドップラーシフト及び周波数オフセットを受けた信号である。入力波形x(t)が受けたドップラーシフトdおよび周波数オフセットfを以下の式(1)のように与える。 Next, a specific flow of processing by the terminal signal reception processing unit 45 included in the base station 40 will be explained. Here, the input waveform of the Doppler shift estimation unit 47 is assumed to be x(t). The input waveform x(t) is a signal that has undergone a Doppler shift and a frequency offset due to the high speed movement of the mobile relay station 30. The Doppler shift d b and frequency offset f a received by the input waveform x(t) are given as shown in equation (1) below.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 x´ab(t)のフーリエ変換をx´ab(f)とする。電力計算部477は、以下の式(2)に基づいて、f=-(f/2)~(f/2)の範囲の第2演算部476の出力信号の電力Pabを計算する。ここでfは、送信信号の帯域幅であり、通信方式によって一意に定められる値であることから、対象とする通信方式に応じて事前に設定する。 Let x' ab (f) be the Fourier transform of x ' ab (t). The power calculation unit 477 calculates the power P ab of the output signal of the second calculation unit 476 in the range of f=−(f w /2) to (f w /2) based on the following equation (2). . Here, fw is the bandwidth of the transmission signal, and is a value uniquely determined depending on the communication method, so it is set in advance according to the target communication method.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 比較部473,478は、全てのa,bに関して電力Pabを以下の式(3)に基づいて比較し、電力が最大となるa,bの組み合わせa´,b´を算出する。 The comparison units 473 and 478 compare the power P ab for all a and b based on the following equation (3), and calculate a combination a' and b' of a and b that maximizes the power.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 比較部478は、算出した周波数オフセット補正係数fsa´(aはsの下付き)及びドップラーシフト補正係数dsb´(bはsの下付き)を以下の式(4)及び式(5)に基づいて計算する。比較部478により計算された周波数オフセット補正係数fsa´及びドップラーシフト補正係数dsb´が、周波数オフセットの推定値及びドップラーシフトの推定値である。 The comparison unit 478 calculates the calculated frequency offset correction coefficient f sa' (a is a subscript of s) and Doppler shift correction coefficient d sb' (b is a subscript of s) using the following equations (4) and (5). Calculate based on. The frequency offset correction coefficient f sa' and the Doppler shift correction coefficient d sb' calculated by the comparator 478 are the estimated value of the frequency offset and the estimated value of the Doppler shift.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 次に、補償部474は、比較部478により算出された周波数オフセットの推定値及びドップラーシフトの推定値を用いて、ドップラーシフトおよび周波数オフセットの補償を以下の式(6)に基づいて行う。補償部474は、ドップラーシフトおよび周波数オフセットの補償後の信号を信号検出部48に出力する。 Next, the compensation unit 474 uses the estimated value of the frequency offset and the estimated value of the Doppler shift calculated by the comparing unit 478 to perform compensation for the Doppler shift and frequency offset based on the following equation (6). The compensator 474 outputs the signal after Doppler shift and frequency offset compensation to the signal detector 48 .
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 信号検出部48は、補償部474から出力された信号に対して、帯域通過フィルタを用いてf=-(f/2)~(f/2)の範囲の信号を取り出す。ここで、fは抽出したい周波数帯域を表す。復調部49は、信号検出部48により取り出された信号に復調処理を行うことによってビット列を復元する。復調部49は、復元したビット列を検査部50に出力する。 The signal detection section 48 extracts a signal in the range of f=-(f B /2) to (f B /2) from the signal output from the compensating section 474 using a band-pass filter. Here, f B represents the frequency band to be extracted. The demodulation unit 49 restores the bit string by performing demodulation processing on the signal extracted by the signal detection unit 48. The demodulation section 49 outputs the restored bit string to the inspection section 50.
 検査部50は、ビット列においてCRCビットの検査を行った後、復調結果が正しいか否か判定する。検査部50は、判定結果を干渉除去部51に出力する。干渉除去部51では、検査部50から入力された判定結果に基づいて、以下のいずれかの処理を行う。 After checking the CRC bits in the bit string, the checking unit 50 determines whether the demodulation result is correct. The inspection unit 50 outputs the determination result to the interference removal unit 51. The interference removal unit 51 performs one of the following processes based on the determination result input from the inspection unit 50.
(復調結果が正しい場合)
 図4は、実施形態におけるレプリカ生成部511の構成例を示す図である。図4に示すように、レプリカ生成部511は、復調部49から出力されたビット列を変調し、ドップラーシフトの推定値及び周波数オフセットの推定値の逆数(e-j2πfa´,e-j2πdb´t)を乗算することで受信フレーム内に含まれるプリアンブルに相当する部分からチャネル推定を行う。レプリカ生成部511は、受信信号にチャネルを乗算することで受信信号レプリカを生成する。レプリカ生成部511は、生成した受信信号レプリカを信号減算部46に出力する。
(If the demodulation result is correct)
FIG. 4 is a diagram illustrating a configuration example of the replica generation unit 511 in the embodiment. As shown in FIG. 4, the replica generation unit 511 modulates the bit string output from the demodulation unit 49, and generates the reciprocals (e- j2πfa' , e- j2πdb't ) of the estimated value of the Doppler shift and the estimated value of the frequency offset. Channel estimation is performed from the part corresponding to the preamble included in the received frame by multiplying by . The replica generation unit 511 generates a received signal replica by multiplying the received signal by a channel. Replica generation section 511 outputs the generated received signal replica to signal subtraction section 46 .
(復調結果が正しくない場合)
 図5は、実施形態におけるブランキング処理部512の構成例を示す図である。図5に示すように、ブランキング処理部512は、受信信号に対してブランキング処理を行った後、ドップラーシフトの推定値及び周波数オフセットの推定値の逆数(e-j2πfa´,e-j2πdb´t)を乗算する。ここで、図6を用いて、ブランキング処理部512が行う処理について説明する。
(If the demodulation result is incorrect)
FIG. 5 is a diagram showing a configuration example of the blanking processing section 512 in the embodiment. As shown in FIG. 5, the blanking processing unit 512 performs blanking processing on the received signal, and then calculates the reciprocals (e- j2πfa' , e- j2πdb' ) of the estimated value of the Doppler shift and the estimated value of the frequency offset. t ). Here, the processing performed by the blanking processing section 512 will be described using FIG. 6.
 図6は、実施形態におけるブランキング処理部512が行う処理を説明するための図である。図6には、上から順に上段、中段、下段と3つの図が示されている。図6の上段に示す図は、ドップラーシフト補償後の信号を表す。図6の中段に示す図は、ブランキングが行われた信号を表す。図6の下段に示す図は、ブランキングが行われた信号に対してドップラーシフトの推定値及び周波数オフセットの推定値の逆数が乗算された後の信号を表す。図6の中段に示すように、ブランキング処理部512は、観測帯域内の送信信号帯域幅に該当する周波数成分を0にすることでブランキングを行う。次に、図6の下段に示すように、ブランキング処理部512は、ブランキング後の信号にドップラーシフトの推定値及び周波数オフセットの推定値の逆数を乗算し、次の受信信号復調のためにドップラーシフト推定部47に出力する。 FIG. 6 is a diagram for explaining the processing performed by the blanking processing unit 512 in the embodiment. In FIG. 6, three diagrams are shown in order from the top: an upper stage, a middle stage, and a lower stage. The diagram shown in the upper part of FIG. 6 represents the signal after Doppler shift compensation. The diagram shown in the middle part of FIG. 6 represents a signal on which blanking has been performed. The diagram shown in the lower part of FIG. 6 shows a signal after the blanked signal is multiplied by the estimated value of Doppler shift and the reciprocal of the estimated value of frequency offset. As shown in the middle part of FIG. 6, the blanking processing unit 512 performs blanking by setting the frequency component corresponding to the transmission signal bandwidth within the observation band to 0. Next, as shown in the lower part of FIG. 6, the blanking processing unit 512 multiplies the blanked signal by the reciprocal of the estimated Doppler shift value and the estimated frequency offset value for demodulation of the next received signal. It is output to the Doppler shift estimator 47.
 次に、復調アルゴリズムを説明する。図7は、実施形態における基地局40が行う復調処理の流れを示すフローチャートである。なお、図7の処理開始時には、検出する端末局20の数を表す検出端末数Tdetが定められているものとする。基地局40は、正しく復調できた信号数iと、ブランキングにより除去した信号数jそれぞれをそれぞれ0、すなわちi=0,j=0とする(ステップS101、ステップS102)。ドップラーシフト推定部47は、補償対象受信信号を入力とし、入力した補償対象受信信号に対して周波数オフセット及びドップラーシフトを推定する(ステップS103)。その後、ドップラーシフト推定部47は、周波数オフセットの推定値及びドップラーシフトの推定値を用いて、補償対象受信信号を補償する。 Next, the demodulation algorithm will be explained. FIG. 7 is a flowchart showing the flow of demodulation processing performed by the base station 40 in the embodiment. It is assumed that the number of detected terminals T det representing the number of terminal stations 20 to be detected is determined at the start of the process in FIG. 7 . The base station 40 sets the number i of correctly demodulated signals and the number j of signals removed by blanking to 0, that is, i=0, j=0 (step S101, step S102). The Doppler shift estimation unit 47 receives the compensation target received signal as input, and estimates the frequency offset and Doppler shift for the input compensation target received signal (step S103). Thereafter, the Doppler shift estimator 47 compensates the compensation target received signal using the estimated value of the frequency offset and the estimated value of the Doppler shift.
 信号検出部48は、帯域制限フィルタを用いて、ドップラーシフト推定部47により補償された補償対象受信信号を検出する(ステップS104)。信号検出部48は、検出した補償対象受信信号を復調部49に出力する。復調部49は、信号検出部48から出力された補償対象受信信号に対して復調処理を行う(ステップS105)。復調部49は、復調処理によりビット列を復元する。復調部49は、復元したビット列の情報を検査部50に出力する。 The signal detection unit 48 uses a band-limiting filter to detect the compensation target received signal compensated by the Doppler shift estimation unit 47 (step S104). The signal detection section 48 outputs the detected compensation target reception signal to the demodulation section 49 . The demodulator 49 performs demodulation processing on the compensation target received signal output from the signal detector 48 (step S105). The demodulation unit 49 restores the bit string through demodulation processing. The demodulation unit 49 outputs information on the restored bit string to the inspection unit 50.
 検査部50は、復調部49から出力されたビット列の情報に基づいて、CRCビットを検査し、復調結果が正しいか否か判定する(ステップS106)。復調結果が正しい場合(ステップS106-YES)、レプリカ生成部511はビット列から、復調した信号のプリアンブルに相当する部分からチャネル推定を行う(ステップS107)。レプリカ生成部511は、推定したチャネルを用いて受信信号レプリカを生成する(ステップS108)。レプリカ生成部511は、生成した受信信号レプリカを信号減算部46に出力する。 The inspection unit 50 inspects the CRC bits based on the information on the bit string output from the demodulation unit 49, and determines whether the demodulation result is correct (step S106). If the demodulation result is correct (step S106-YES), the replica generation unit 511 performs channel estimation from a portion of the bit string that corresponds to the preamble of the demodulated signal (step S107). The replica generation unit 511 generates a received signal replica using the estimated channel (step S108). Replica generation section 511 outputs the generated received signal replica to signal subtraction section 46 .
 信号減算部46は、アンテナ41を介して受信された受信信号から、レプリカ生成部511から出力された受信信号レプリカを減算する(ステップS109)。信号減算部46は、減算後の受信信号をドップラーシフト推定部47に出力する。ドップラーシフト推定部47は、iに1を加算し、次の受信信号の検出を行う(ステップS110)。 The signal subtraction unit 46 subtracts the received signal replica output from the replica generation unit 511 from the received signal received via the antenna 41 (step S109). The signal subtraction unit 46 outputs the subtracted received signal to the Doppler shift estimation unit 47. The Doppler shift estimation unit 47 adds 1 to i and detects the next received signal (step S110).
 ステップS106の処理において、復調結果が正しくない場合(ステップS106-NO)、ブランキング処理部512は検出した信号帯域のブランキングを行う(ステップS109)。ブランキング処理部512は、ブランキング処理後の信号をドップラーシフト推定部47に出力する。ドップラーシフト推定部47は、jに1を加算し、次の受信信号の検出を行う(ステップS112)。 In the process of step S106, if the demodulation result is incorrect (step S106-NO), the blanking processing unit 512 performs blanking of the detected signal band (step S109). The blanking processing unit 512 outputs the signal after the blanking process to the Doppler shift estimation unit 47. The Doppler shift estimation unit 47 adds 1 to j and detects the next received signal (step S112).
 ドップラーシフト推定部47は、ステップS110又はステップS112の処理後、i+j=Tdetとなったか否かを判定する(ステップS113)。具体的には、ドップラーシフト推定部47は、正しく復調できた信号数と、ブランキングにより除去した信号数とを加算した数が検出端末数になったか否かを判定する。正しく復調できた信号数とブランキングにより除去した信号数との和が検出端末数に達した場合(ステップS113-YES)、基地局40は処理を終了する。 After the processing in step S110 or step S112, the Doppler shift estimation unit 47 determines whether or not i+j=T det (step S113). Specifically, the Doppler shift estimation unit 47 determines whether the sum of the number of correctly demodulated signals and the number of signals removed by blanking has reached the number of detected terminals. If the sum of the number of correctly demodulated signals and the number of signals removed by blanking reaches the number of detected terminals (step S113-YES), the base station 40 ends the process.
 一方、正しく復調できた信号数とブランキングにより除去した信号数との和が検出端末数に達していない場合(ステップS113-NO)、基地局40はステップS102以降の処理を実行する。以上の手順で、基地局40は、復調可能な信号から優先的に干渉除去を行う。 On the other hand, if the sum of the number of correctly demodulated signals and the number of signals removed by blanking does not reach the number of detected terminals (step S113-NO), the base station 40 executes the processes from step S102 onwards. According to the above procedure, the base station 40 performs interference cancellation preferentially from signals that can be demodulated.
 以上のように構成された無線通信システム1によれば、異なるドップラーシフトを受けた複数の信号に対して、プリアンブル等の挿入を行うことなくドップラーシフト及び周波数オフセットを推定することが可能になる。具体的には、基地局40は、移動中継局30が送信した波形データを受信する受信部42と、受信部42が受信した波形データが示す受信信号が受けたドップラーシフト及び周波数オフセットを推定するドップラーシフト推定部47と、を備える。ドップラーシフト推定部47は、受信信号を分岐し、分岐した各受信信号に対して、M種類の周波数オフセット補正係数候補をそれぞれ乗算するM個の第1演算部471と、M個の第1演算部471の出力信号それぞれにN種類のドップラーシフト補正係数候補を乗算するM×N個の第2演算部476と、M×N個の第2演算部476それぞれから出力される各出力信号のうちいずれかの出力信号に対して乗算された周波数オフセット補正係数候補及びドップラーシフト補正係数候補を、受信信号の補償に用いる周波数オフセットの推定値及びドップラーシフトの推定値と算出する比較部473と、を備える。これにより、プリアンブル等を用いることなく、ドップラーシフト及び周波数オフセットを推定することが可能になる。その結果、信号フレームを復調することができる。 According to the wireless communication system 1 configured as described above, it becomes possible to estimate Doppler shifts and frequency offsets for a plurality of signals that have undergone different Doppler shifts without inserting a preamble or the like. Specifically, the base station 40 estimates the Doppler shift and frequency offset received by the receiving section 42 that receives the waveform data transmitted by the mobile relay station 30, and the received signal indicated by the waveform data received by the receiving section 42. A Doppler shift estimation unit 47 is provided. The Doppler shift estimating unit 47 includes M first calculation units 471 that branch the received signal and multiply each of the branched received signals by M types of frequency offset correction coefficient candidates, and M first calculation units Among the M×N second calculation units 476 that multiply each of the output signals of the unit 471 by N types of Doppler shift correction coefficient candidates, and the output signals output from each of the M×N second calculation units 476, a comparison unit 473 that calculates a frequency offset correction coefficient candidate and a Doppler shift correction coefficient candidate multiplied by one of the output signals with an estimated frequency offset value and an estimated Doppler shift value used for compensation of the received signal; Be prepared. This makes it possible to estimate Doppler shift and frequency offset without using a preamble or the like. As a result, the signal frame can be demodulated.
(変形例1)
 上述した実施形態では、比較部473が、式(4)及び式(5)に基づいて周波数オフセット補正係数fsa´及びドップラーシフト補正係数dsb´を算出する構成を示した。比較部473は、以下に示す(第2の算出方法)又(第3の算出方法)のいずれかの方法で、周波数オフセット補正係数fsa´及びドップラーシフト補正係数dsb´を算出しても良い。以下、詳細に説明する。
(Modification 1)
In the embodiment described above, the comparator 473 calculates the frequency offset correction coefficient f sa' and the Doppler shift correction coefficient d sb' based on equations (4) and (5). The comparison unit 473 calculates the frequency offset correction coefficient f sa' and the Doppler shift correction coefficient d sb' by either of the following methods (second calculation method) or (third calculation method). good. This will be explained in detail below.
(第2の算出方法)
 比較部473は、M×N個の第2演算部476それぞれから出力される各出力信号に対して復調処理を行った後に誤り検出を行い、誤り検出の結果として復調結果が正しいと判定された出力信号に対して乗算された周波数オフセット補正係数候補及びドップラーシフト補正係数候補を、周波数オフセットの推定値及びドップラーシフトの推定値と推定する。例えば、比較部473は、すべてのx´ab(t)に対して復調処理を行った後にCRCビットを用いた誤り検出を行う。比較部473は、誤り検出の結果として復調結果が正しいと判定された出力信号に対して乗算された周波数オフセット補正係数候補及びドップラーシフト補正係数候補(例えば、a,b)の組み合わせa´´,b´´を周波数オフセットの推定値及びドップラーシフトの推定値として算出する。
(Second calculation method)
The comparison unit 473 performs error detection after performing demodulation processing on each output signal output from each of the M×N second calculation units 476, and as a result of the error detection, it is determined that the demodulation result is correct. The frequency offset correction coefficient candidate and the Doppler shift correction coefficient candidate multiplied by the output signal are estimated as the frequency offset estimated value and the Doppler shift estimated value. For example, the comparator 473 performs error detection using CRC bits after demodulating all x′ ab (t). The comparison unit 473 calculates a combination a'', a frequency offset correction coefficient candidate and a Doppler shift correction coefficient candidate (for example, a, b) multiplied by the output signal whose demodulation result is determined to be correct as a result of error detection. b'' is calculated as an estimated value of frequency offset and an estimated value of Doppler shift.
(第3の算出方法)
 比較部473は、N個の電力計算部477それぞれにより計算された各電力のうち事前に定める閾値を超える電力を有する出力信号に対し復調処理を行った後に誤り検出を行い、誤り検出の結果として復調結果が正しいと判定された出力信号に対して乗算された周波数オフセット補正係数候補及びドップラーシフト補正係数候補を、前記周波数オフセットの推定値及びドップラーシフトの推定値と推定する。例えば、比較部473は、すべてのa,bに関する電力Pabのうち、事前に定めた閾値を超える電力を持つx´ab(t)に対して復調処理を行った後にCRCビットを用いた誤り検出を行う。比較部473は、誤り検出の結果として復調結果が正しいと判定された出力信号に対して乗算された周波数オフセット補正係数候補及びドップラーシフト補正係数候補(例えば、a,b)の組み合わせa´´,b´´を周波数オフセットの推定値及びドップラーシフトの推定値として算出する。
(Third calculation method)
The comparison unit 473 performs error detection after performing demodulation processing on the output signal having power exceeding a predetermined threshold among the powers calculated by each of the N power calculation units 477, and detects an error as a result of the error detection. The frequency offset correction coefficient candidate and the Doppler shift correction coefficient candidate multiplied by the output signal for which the demodulation result is determined to be correct are estimated as the estimated value of the frequency offset and the estimated value of the Doppler shift. For example, the comparator 473 performs demodulation processing on x′ ab (t) having power exceeding a predetermined threshold value among the powers P ab related to all a and b, and then performs an error detection process using the CRC bits. Perform detection. The comparison unit 473 calculates a combination a'', a frequency offset correction coefficient candidate and a Doppler shift correction coefficient candidate (for example, a, b) multiplied by the output signal whose demodulation result is determined to be correct as a result of error detection. b'' is calculated as an estimated value of frequency offset and an estimated value of Doppler shift.
(変形例2)
 上述した実施形態では、ドップラーシフト推定部47が、比較部を多段で備える構成を例に説明した。具体的には、ドップラーシフト推定部47が、M個の比較部478と、1個の比較部473とを多段で備える構成を例に説明した。ドップラーシフト推定部47は、M個の比較部478を備えず、1個の比較部473を備えるように構成されてもよい。このように構成される場合、1個の比較部473は、各処理部472の電力計算部477から出力される電力の値を入力とし、入力した各処理部472の電力計算部477から出力される電力の値を比較する。1個の比較部473は、電力が最も高い補正係数候補(周波数オフセット補正係数候補とドップラーシフト補正係数候補)の組み合わせを、受信信号の補償に用いる周波数オフセット及びドップラーシフトと推定する。
(Modification 2)
In the embodiment described above, the Doppler shift estimating section 47 has been described as having a configuration in which comparison sections are provided in multiple stages. Specifically, the Doppler shift estimating section 47 has been described using as an example a configuration in which M comparison sections 478 and one comparison section 473 are provided in multiple stages. The Doppler shift estimation unit 47 may be configured to include one comparison unit 473 instead of the M comparison units 478. When configured in this way, one comparison unit 473 receives the power value output from the power calculation unit 477 of each processing unit 472 as input, and calculates the value output from the power calculation unit 477 of each processing unit 472 that has been input. Compare the power values. One comparison unit 473 estimates a combination of correction coefficient candidates (frequency offset correction coefficient candidate and Doppler shift correction coefficient candidate) with the highest power as the frequency offset and Doppler shift used for compensation of the received signal.
 上述した実施形態における基地局40が行う一部又は全ての処理をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OS(Operating System)や周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD-ROM(Compact Disc - ROM)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。 A part or all of the processing performed by the base station 40 in the embodiment described above may be implemented by a computer. In that case, a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read into a computer system and executed. Note that the "computer system" herein includes hardware such as an OS (Operating System) and peripheral devices. Furthermore, "computer-readable recording media" refers to portable media such as flexible disks, magneto-optical disks, ROM (Read Only Memory), and CD-ROMs (Compact Disc-ROM), hard disks built into computer systems, etc. storage device.
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。 Furthermore, a "computer-readable recording medium" refers to a storage medium that dynamically stores a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include a device that retains a program for a certain period of time, such as a volatile memory inside a computer system that is a server or client in that case. Further, the above-mentioned program may be one for realizing a part of the above-mentioned functions, or may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized using a programmable logic device such as an FPGA (Field Programmable Gate Array).
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and includes designs within the scope of the gist of the present invention.
 本発明は、移動中継局が搭載される移動体と通信を行う技術に適用できる。 The present invention can be applied to technology for communicating with a mobile body equipped with a mobile relay station.
1…無線通信システム, 20…端末局, 21…データ記憶部, 22…送信部,30…移動中継局, 40…基地局, 31…アンテナ, 32…端末通信部, 33…データ記憶部, 34…基地局通信部,35…アンテナ, 41…アンテナ, 42…受信部, 43…基地局信号受信処理部, 44…信号記憶部, 45…端末信号受信処理部, 46…信号減算部, 47…ドップラーシフト推定部, 48…信号検出部, 49…復調部, 50…検査部, 51…干渉除去部, 471、471-1~471-M…第1演算部, 472、472-1~472-M…処理部, 473、478、478-M…比較部, 474…補償部, 476、476-M-1~476-M-N…第2演算部, 477、477-M-1~477-M-N…電力計算部, 511…レプリカ生成部, 512…ブランキング処理部 DESCRIPTION OF SYMBOLS 1... Radio communication system, 20... Terminal station, 21... Data storage unit, 22... Transmission unit, 30... Mobile relay station, 40... Base station, 31... Antenna, 32... Terminal communication unit, 33... Data storage unit, 34 ...Base station communication section, 35...Antenna, 41...Antenna, 42...Receiving section, 43...Base station signal reception processing section, 44...Signal storage section, 45...Terminal signal reception processing section, 46...Signal subtraction section, 47... Doppler shift estimation section, 48... Signal detection section, 49... Demodulation section, 50... Inspection section, 51... Interference removal section, 471, 471-1 to 471-M... First calculation section, 472, 472-1 to 472- M...processing section, 473, 478, 478-M...comparison section, 474...compensation section, 476, 476-M-1 to 476-MN...second calculation section, 477, 477-M-1 to 477- MN...Power calculation unit, 511...Replica generation unit, 512...Blanking processing unit

Claims (8)

  1.  複数の送信装置と、移動する無線通信装置と、受信装置とを有する無線通信システムであって、
     前記複数の送信装置は、無線信号を送信する送信部を備え、
     前記無線通信装置は、
     前記複数の送信装置から送信された前記無線信号を受信する1以上のアンテナと、
     前記1以上のアンテナにより受信した受信信号の波形を示す波形データを前記受信装置に送信する波形送信部と、
     を備え、
     前記受信装置は、
     前記無線通信装置が送信した前記波形データを受信する受信部と、
     前記受信部が受信した前記波形データが示す前記受信信号が受けたドップラーシフト及び周波数オフセットを推定するドップラーシフト推定部と、
     を備え、
     前記ドップラーシフト推定部は、
     前記受信信号を分岐し、分岐した各受信信号に対して、M(Mは2以上の整数)種類の周波数オフセット補正係数候補をそれぞれ乗算するM個の第1演算部と、
     前記M個の第1演算部の出力信号それぞれにN(Nは2以上の整数)種類のドップラーシフト補正係数候補を乗算するM×N個の第2演算部と、
     前記M×N個の第2演算部それぞれから出力される各出力信号のうちいずれかの出力信号に対して乗算された周波数オフセット補正係数候補及びドップラーシフト補正係数候補を、受信信号の補償に用いる周波数オフセットの推定値及びドップラーシフトの推定値と推定する比較部と、
     を備える無線通信システム。
    A wireless communication system having a plurality of transmitting devices, a moving wireless communication device, and a receiving device,
    The plurality of transmitting devices include a transmitting unit that transmits a wireless signal,
    The wireless communication device includes:
    one or more antennas that receive the wireless signals transmitted from the plurality of transmitting devices;
    a waveform transmitter that transmits waveform data indicating a waveform of a received signal received by the one or more antennas to the receiving device;
    Equipped with
    The receiving device includes:
    a receiving unit that receives the waveform data transmitted by the wireless communication device;
    a Doppler shift estimation unit that estimates a Doppler shift and a frequency offset received by the received signal indicated by the waveform data received by the reception unit;
    Equipped with
    The Doppler shift estimator includes:
    M first calculation units that branch the received signal and multiply each of the branched received signals by M (M is an integer of 2 or more) types of frequency offset correction coefficient candidates;
    M×N second calculation units that multiply the output signals of the M first calculation units by N (N is an integer of 2 or more) types of Doppler shift correction coefficient candidates;
    A frequency offset correction coefficient candidate and a Doppler shift correction coefficient candidate multiplied by one of the output signals output from each of the M×N second calculation units are used for compensation of the received signal. a comparison unit that estimates an estimated value of frequency offset and an estimated value of Doppler shift;
    A wireless communication system equipped with
  2.  前記ドップラーシフト推定部は、前記M×N個の第2演算部それぞれから出力される各出力信号の電力を計算するN個の電力計算部をさらに備え、
     前記比較部は、前記N個の電力計算部それぞれにより計算された各電力を比較し、電力が最大である信号に対して乗算された周波数オフセット補正係数候補及びドップラーシフト補正係数候補を、前記周波数オフセットの推定値及びドップラーシフトの推定値と推定する、
     請求項1に記載の無線通信システム。
    The Doppler shift estimation unit further includes N power calculation units that calculate the power of each output signal output from each of the M×N second calculation units,
    The comparison unit compares each power calculated by each of the N power calculation units, and selects a frequency offset correction coefficient candidate and a Doppler shift correction coefficient candidate multiplied by the signal having the maximum power as the frequency estimate an offset estimate and a Doppler shift estimate;
    The wireless communication system according to claim 1.
  3.  前記比較部は、前記M×N個の第2演算部それぞれから出力される各出力信号に対して復調処理を行った後に誤り検出を行い、誤り検出の結果として復調結果が正しいと判定された出力信号に対して乗算された周波数オフセット補正係数候補及びドップラーシフト補正係数候補を、前記周波数オフセットの推定値及びドップラーシフトの推定値と推定する、
     請求項1に記載の無線通信システム。
    The comparison unit performs error detection after performing demodulation processing on each output signal output from each of the M×N second calculation units, and as a result of the error detection, it is determined that the demodulation result is correct. estimating a frequency offset correction coefficient candidate and a Doppler shift correction coefficient candidate multiplied by the output signal as the frequency offset estimate value and the Doppler shift estimate value;
    The wireless communication system according to claim 1.
  4.  前記ドップラーシフト推定部は、前記M×N個の第2演算部それぞれから出力される各出力信号の電力を計算するN個の電力計算部をさらに備え、
     前記比較部は、前記N個の電力計算部それぞれにより計算された各電力のうち事前に定める閾値を超える電力を有する出力信号に対し復調処理を行った後に誤り検出を行い、誤り検出の結果として復調結果が正しいと判定された出力信号に対して乗算された周波数オフセット補正係数候補及びドップラーシフト補正係数候補を、前記周波数オフセットの推定値及びドップラーシフトの推定値と推定する、
     請求項1に記載の無線通信システム。
    The Doppler shift estimation unit further includes N power calculation units that calculate the power of each output signal output from each of the M×N second calculation units,
    The comparison section performs error detection after performing demodulation processing on the output signal having power exceeding a predetermined threshold among the powers calculated by each of the N power calculation sections, and detects an error as a result of the error detection. Estimating a frequency offset correction coefficient candidate and a Doppler shift correction coefficient candidate multiplied by the output signal whose demodulation result is determined to be correct as the frequency offset estimate value and the Doppler shift estimate value;
    The wireless communication system according to claim 1.
  5.  前記ドップラーシフト推定部は、さらに、推定した前記周波数オフセットの推定値及びドップラーシフトの推定値を用いて、前記受信信号を補償する、
     請求項1から4のいずれか一項に記載の無線通信システム。
    The Doppler shift estimation unit further compensates the received signal using the estimated frequency offset estimate and Doppler shift estimate.
    The wireless communication system according to any one of claims 1 to 4.
  6.  前記受信装置は、
     前記ドップラーシフト推定部により補償された受信信号から所定の帯域の信号を検出する信号検出部と、
     前記信号検出部により検出された信号を復調することによってビット列を復元する復調部と、
     前記復調部により復調された前記ビット列に基づいて、誤り検出を行う検査部と、
     前記検査部による誤り検出結果として復調結果が正しい場合に、前記ビット列を変調した後に前記周波数オフセット及び前記ドップラーシフトの逆数を乗算してチャネル推定を行い、推定したチャネルを受信信号に乗算することで受信信号レプリカを生成するレプリカ生成部と、
     前記検査部による誤り検出結果として復調結果が正しくない場合に、受信信号に対してブランキング処理を行った後に前記周波数オフセット及び前記ドップラーシフトの逆数を乗算して前記ドップラーシフト推定部に入力するブランキング処理部と、
     をさらに備える、請求項5に記載の無線通信システム。
    The receiving device includes:
    a signal detection unit that detects a signal in a predetermined band from the received signal compensated by the Doppler shift estimation unit;
    a demodulation unit that restores a bit string by demodulating the signal detected by the signal detection unit;
    a checking section that performs error detection based on the bit string demodulated by the demodulating section;
    If the demodulation result is correct as an error detection result by the inspection unit, channel estimation is performed by multiplying the frequency offset and the reciprocal of the Doppler shift after modulating the bit string, and the received signal is multiplied by the estimated channel. a replica generation unit that generates a received signal replica;
    If the demodulation result is incorrect as an error detection result by the inspection unit, a block that performs blanking processing on the received signal and then multiplies the frequency offset and the reciprocal of the Doppler shift and inputs the result to the Doppler shift estimation unit. A ranking processing section,
    The wireless communication system according to claim 5, further comprising:
  7.  複数の送信装置と、移動する無線通信装置と、受信装置とを有する無線通信システムにおける前記受信装置であって、
     前記複数の送信装置から送信された無線信号を、前記無線通信装置を介して受信する受信部と、
     前記受信部が受信した受信信号が受けたドップラーシフト及び周波数オフセットを推定するドップラーシフト推定部と、
     を備え、
     前記ドップラーシフト推定部は、
     前記受信信号を分岐し、分岐した各受信信号に対して、M(Mは2以上の整数)種類の周波数オフセット補正係数候補をそれぞれ乗算するM個の第1演算部と、
     前記M個の第1演算部の出力信号それぞれにN(Nは2以上の整数)種類のドップラーシフト補正係数候補を乗算するM×N個の第2演算部と、
     前記M×N個の第2演算部それぞれから出力される各出力信号のうちいずれかの出力信号に対して乗算された周波数オフセット補正係数候補及びドップラーシフト補正係数候補を、受信信号の補償に用いる周波数オフセットの推定値及びドップラーシフトの推定値と推定する比較部と、
     を備える受信装置。
    The receiving device in a wireless communication system having a plurality of transmitting devices, a moving wireless communication device, and a receiving device,
    a receiving unit that receives wireless signals transmitted from the plurality of transmitting devices via the wireless communication device;
    a Doppler shift estimation unit that estimates a Doppler shift and a frequency offset received by the reception signal received by the reception unit;
    Equipped with
    The Doppler shift estimator includes:
    M first calculation units that branch the received signal and multiply each of the branched received signals by M (M is an integer of 2 or more) types of frequency offset correction coefficient candidates;
    M×N second calculation units that multiply the output signals of the M first calculation units by N (N is an integer of 2 or more) types of Doppler shift correction coefficient candidates;
    A frequency offset correction coefficient candidate and a Doppler shift correction coefficient candidate multiplied by one of the output signals output from each of the M×N second calculation units are used for compensation of the received signal. a comparison unit that estimates an estimated value of frequency offset and an estimated value of Doppler shift;
    A receiving device comprising:
  8.  複数の送信装置と、移動する無線通信装置と、受信装置とを有する無線通信システムにおける推定方法であって、
     前記複数の送信装置が、無線信号を送信し、
     前記無線通信装置が、前記複数の送信装置から送信された前記無線信号を受信する1以上のアンテナにより受信した受信信号の波形を示す波形データを前記受信装置に送信し、
     前記受信装置が、前記無線通信装置が送信した前記波形データを受信し、
     前記受信装置が、受信した前記波形データが示す前記受信信号を分岐し、分岐した各受信信号に対して、M(Mは2以上の整数)種類の周波数オフセット補正係数候補をそれぞれ乗算し、前記M(Mは2以上の整数)種類の周波数オフセット補正係数候補が乗算された各受信信号にN(Nは2以上の整数)種類のドップラーシフト補正係数候補を乗算し、前記N(Nは2以上の整数)種類のドップラーシフト補正係数候補が乗算された各受信信号のうちいずれかの出力信号に対して乗算された周波数オフセット補正係数候補及びドップラーシフト補正係数候補を、受信信号の補償に用いる周波数オフセットの推定値及びドップラーシフトの推定値と推定する推定方法。
    An estimation method in a wireless communication system having a plurality of transmitting devices, a moving wireless communication device, and a receiving device, the method comprising:
    The plurality of transmitting devices transmit wireless signals,
    The wireless communication device transmits waveform data indicating a waveform of a received signal received by one or more antennas that receive the wireless signals transmitted from the plurality of transmitting devices to the receiving device,
    the receiving device receives the waveform data transmitted by the wireless communication device,
    The receiving device branches the received signal indicated by the received waveform data, multiplies each branched received signal by M (M is an integer of 2 or more) types of frequency offset correction coefficient candidates, and Each received signal multiplied by M (M is an integer of 2 or more) types of frequency offset correction coefficient candidates is multiplied by N (N is an integer of 2 or more) types of Doppler shift correction coefficient candidates. The frequency offset correction coefficient candidate and Doppler shift correction coefficient candidate multiplied by one of the output signals among the received signals multiplied by the Doppler shift correction coefficient candidates of (integer or more) types are used for compensation of the received signal. An estimation method for estimating an estimated value of frequency offset and an estimated value of Doppler shift.
PCT/JP2022/024881 2022-06-22 2022-06-22 Wireless communication system, reception device, and estimation method WO2023248379A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024881 WO2023248379A1 (en) 2022-06-22 2022-06-22 Wireless communication system, reception device, and estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024881 WO2023248379A1 (en) 2022-06-22 2022-06-22 Wireless communication system, reception device, and estimation method

Publications (1)

Publication Number Publication Date
WO2023248379A1 true WO2023248379A1 (en) 2023-12-28

Family

ID=89379269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024881 WO2023248379A1 (en) 2022-06-22 2022-06-22 Wireless communication system, reception device, and estimation method

Country Status (1)

Country Link
WO (1) WO2023248379A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234864A1 (en) * 2020-05-20 2021-11-25 日本電信電話株式会社 Wireless communication system, relay device, and wireless communication method
WO2021240583A1 (en) * 2020-05-25 2021-12-02 日本電信電話株式会社 Wireless communication system, communication device, wireless communication method, and communication program
WO2021245908A1 (en) * 2020-06-05 2021-12-09 日本電信電話株式会社 Radio communication system, relay device, communication device, and radio communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234864A1 (en) * 2020-05-20 2021-11-25 日本電信電話株式会社 Wireless communication system, relay device, and wireless communication method
WO2021240583A1 (en) * 2020-05-25 2021-12-02 日本電信電話株式会社 Wireless communication system, communication device, wireless communication method, and communication program
WO2021245908A1 (en) * 2020-06-05 2021-12-09 日本電信電話株式会社 Radio communication system, relay device, communication device, and radio communication method

Similar Documents

Publication Publication Date Title
US8532239B2 (en) Method for error compensation in an OFDM system with diversity
US6590860B1 (en) Receiving device and signal receiving method
EP1744469A2 (en) Wireless communication apparatus and phase-variation correction method
US20230179289A1 (en) Wireless communication system, relay apparatus and wireless communication method
WO2021245908A1 (en) Radio communication system, relay device, communication device, and radio communication method
US20230170984A1 (en) Wireless communication system, relay apparatus and wireless communication method
US9712252B2 (en) Adaptive equalizer with coefficients determined using groups of symbols to compensate for nonlinear distortions in optical fiber communications
WO2023248379A1 (en) Wireless communication system, reception device, and estimation method
US10998966B1 (en) System and method for determining a target for an uplink (UL) transmission
US6539214B1 (en) Method of estimating the signal to noise ratio of a digital signal received by a radiocommunications receiver
MX2013013820A (en) Method for locating a terminal at the surface of a coverage area by means of a telecommunication network using a multi-beam satellite.
WO2023139745A1 (en) Wireless communication system and doppler shift amount estimation method
CN114285713A (en) Low-orbit broadband satellite time frequency offset estimation method and system
US10256927B2 (en) Method and device for determining power of at least one crosspolar interferer in frame
WO2024009420A1 (en) Signal processing device and signal processing method
US20230412199A1 (en) Wireless communication system, relay apparatus and wireless communication method
US20240106524A1 (en) Wireless communication system, relay apparatus, wireless communication method and program
WO2024116307A1 (en) Signal processing device, wireless communication system, signal processing method, and program
WO2024053023A1 (en) Signal processing device and signal processing method
US20240031015A1 (en) Wireless communication system, relay apparatus, wireless communication method and program
JP7495643B2 (en) Doppler shift compensation device and method
WO2022118406A1 (en) Doppler shift compensation device and doppler shift compensation method
WO2023139641A1 (en) Communication system and communication method
JP7481656B2 (en) Doppler shift compensation device and method
WO2023139679A1 (en) Wireless communication system, communication device, reception device, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947940

Country of ref document: EP

Kind code of ref document: A1