WO2023243033A1 - Control specification defining method, vehicle control device, and control specification defining device - Google Patents

Control specification defining method, vehicle control device, and control specification defining device Download PDF

Info

Publication number
WO2023243033A1
WO2023243033A1 PCT/JP2022/024096 JP2022024096W WO2023243033A1 WO 2023243033 A1 WO2023243033 A1 WO 2023243033A1 JP 2022024096 W JP2022024096 W JP 2022024096W WO 2023243033 A1 WO2023243033 A1 WO 2023243033A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
control
model element
control specification
specification definition
Prior art date
Application number
PCT/JP2022/024096
Other languages
French (fr)
Japanese (ja)
Inventor
大介 川上
伸男 千田
利晃 青木
堯 冨田
達治 河井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/024096 priority Critical patent/WO2023243033A1/en
Publication of WO2023243033A1 publication Critical patent/WO2023243033A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences

Definitions

  • the present disclosure relates to a vehicle control specification definition method, a vehicle control device, and a control specification definition device in an automatic driving system.
  • a wide variety of electronic devices are installed in vehicles as in-vehicle systems. As vehicles have become more multi-functional and complex in recent years, the number of control devices installed to control these electronic devices is increasing. In particular, in the area of automated driving systems, where research and development has been accelerating in recent years, systems have been proposed that realize highly automated driving by linking a vehicle's engine control, brake control, and steering control.
  • ISO International Organization for Standardization
  • STPA System Theoretic Process Analysis
  • STAMP System Theoretic Process Analysis
  • STAMP Systems-Theoretic Accident Model and Processes
  • UCA Unsafe Control Action
  • the present disclosure has been made in view of the above problems, and aims to provide a technology that can appropriately define control specifications.
  • a control specification definition method is a control specification definition method for defining control specifications used for controlling automatic driving of a first vehicle, the method comprising: a first model element representing the position and operation of the first vehicle; An operation for arranging second model elements representing the position and motion of the vehicle on a two-dimensional diagram is obtained, and control specifications are defined based on the two-dimensional diagram in which the first model elements and the second model elements are arranged.
  • the vehicle control device also includes an environment acquisition unit that acquires the environment in which the first vehicle is located, a first model element that represents the position and motion of the first vehicle, and a first model element that represents the position and motion of the second vehicle.
  • the control unit includes a control unit that controls automatic driving of the first vehicle based on control specifications defined based on a two-dimensional diagram in which two model elements are arranged and an environment acquired by an environment acquisition unit.
  • control specifications can be appropriately defined.
  • FIG. 1 is a block diagram showing the configuration of a control specification definition device according to Embodiment 1.
  • FIG. 3 is a diagram showing model elements according to the first embodiment. 3 is a flowchart showing the operation of the control specification definition device according to the first embodiment.
  • 1 is a block diagram showing the configuration of a vehicle control device according to Embodiment 1.
  • FIG. 7 is a diagram for explaining an example of the definition of control specifications according to Embodiment 2.
  • FIG. 7 is a diagram for explaining an example of the definition of control specifications according to Embodiment 2.
  • FIG. 7 is a diagram for explaining an example of the definition of control specifications according to Embodiment 2.
  • FIG. 7 is a diagram for explaining an example of the definition of control specifications according to Embodiment 2.
  • FIG. 7 is a diagram for explaining an example of the definition of control specifications according to Embodiment 2.
  • FIG. 7 is a diagram for explaining an example of the definition of control specifications according to Embodiment 2.
  • FIG. FIG. 7 is a diagram for explaining an example of the definition of control specifications according to Embodiment 3; 7 is a flowchart showing the operation of the host vehicle according to Embodiment 3.
  • FIG. FIG. 7 is a diagram for explaining an example of the definition of control specifications according to Embodiment 4; 12 is a flowchart showing the operation of the host vehicle according to Embodiment 4.
  • 7 is a diagram comprehensively showing the behavior of the own vehicle according to the fifth embodiment.
  • FIG. 7 is a diagram comprehensively showing the behavior of the own vehicle according to the fifth embodiment.
  • FIG. 7 is a diagram comprehensively showing the behavior of the own vehicle according to the fifth embodiment.
  • FIG. 7 is a diagram comprehensively showing the behavior of the own vehicle according to the fifth embodiment.
  • FIG. 7 is a diagram comprehensively showing transition patterns of the own vehicle according to Embodiment 5;
  • FIG. 7 is a diagram comprehensively showing transition patterns of other vehicles according to Embodiment 5;
  • FIG. 12 is a diagram comprehensively showing a set of transition patterns of the own vehicle and transition patterns of other vehicles according to Embodiment 5;
  • FIG. 12 is a diagram showing analysis results of one set of transition patterns according to Embodiment 5;
  • FIG. 7 is a block diagram showing the configuration of a control specification definition device according to a sixth embodiment.
  • FIG. 7 is a diagram showing a flow of safety analysis according to a sixth embodiment.
  • FIG. 7 is a diagram showing accidents, hazards, and safety constraints according to Embodiment 6;
  • FIG. 12 is a diagram showing an example of a scenario that serves as an input for safety analysis according to the sixth embodiment.
  • FIG. 7 is a diagram showing a control structure for safety analysis according to a sixth embodiment.
  • FIG. 7 is a diagram showing the results of analyzing UCA in safety analysis according to the sixth embodiment.
  • FIG. 12 is a diagram showing a scenario up to an accident using model elements for UCA of safety analysis according to the sixth embodiment.
  • FIG. 12 is a diagram illustrating a scenario that does not result in UCA of safety analysis according to Embodiment 6;
  • FIG. 3 is a block diagram showing a hardware configuration of a control specification definition device according to a modification.
  • FIG. 3 is a block diagram showing a hardware configuration of a control specification definition device according to a modification.
  • FIG. 1 is a block diagram showing the configuration of a control specification definition device 1 according to the first embodiment.
  • the control specification definition device 1 is a device that defines control specifications (also called functional specifications) used to control automatic driving of the first vehicle.
  • the first vehicle will be referred to as the "own vehicle”
  • the second vehicle other than the first vehicle will be referred to as the "other vehicle”
  • the two are not to be distinguished, they may also be referred to as the "vehicle”.
  • the own vehicle may be referred to as X
  • other vehicles other than the own vehicle X may be mainly written as Y, A, B, etc.
  • the control specification definition device 1 may be installed in the own vehicle, or may be configured to be able to communicate with the own vehicle without being installed in the own vehicle.
  • the control specification definition device 1 includes an operation acquisition section 2 and a definition section 3.
  • the operation acquisition unit 2 converts the own vehicle model element, which is a first model element representing the position and motion of the own vehicle, and the other vehicle model element, which is a second model element, which represents the position and motion of the other vehicle, into a two-dimensional Obtain the operation for placing information on a two-dimensional diagram (plan view). Since the self-vehicle model element and the other vehicle model element are substantially the same, they may be referred to as "model element" hereinafter when the two are not distinguished. For example, a two-dimensional diagram schematically showing a location where control specifications are to be defined is used as a two-dimensional diagram in which model elements are arranged.
  • Model elements indicated by dashed arrows represent confirmation of vehicle position, speed, etc., which are behaviors other than vehicle motion.
  • the model elements indicated by the dashed arrows can represent, for example, that the automatic control device of the own vehicle has confirmed an object such as another vehicle, and that the automatic control device of the other vehicle has confirmed an object such as the own vehicle. Note that confirmation here corresponds to recognition and recognition.
  • Thick line model elements represent synchronization. Thick line model elements are used to clarify the positional relationship of multiple objects at a certain point in time. By means of the thick-lined model elements, at least a portion of the motion of the host vehicle and at least a portion of the motion of the other vehicle are synchronized. Note that by writing numbers (numbers, symbols), etc. next to the thick line, the time point of synchronization can be identified. For example, if synchronization points are the same, the same or related numbers will be listed next to the bold lines for the synchronizations, and if synchronization points are different, different numbers will be listed next to the bold lines for the synchronizations. Ru.
  • step S2 the definition unit 3 defines control specifications used to control automatic driving of the own vehicle based on the two-dimensional diagram in which the own vehicle model elements and other vehicle model elements are arranged. After that, the operation of FIG. 3 ends.
  • the vehicle control device 10 includes environment acquisition units 30, 31, and 32, which are multiple environment acquisition units mounted on the own vehicle, an automatic driving ECU (Electronic Control Unit) 20, an engine ECU 40, a brake ECU 41, and a steering ECU 42. and in-vehicle networks 51 and 52.
  • the automatic driving ECU 20 is connected to the environment acquisition units 30 , 31 , and 32 via the in-vehicle network 51 , and is connected to the engine ECU 40 , the brake ECU 41 , and the steering ECU 42 via the in-vehicle network 52 .
  • control specification definition method for defining control specifications used to control automatic driving of a first vehicle, the first model element representing the position and motion of the first vehicle, and the position and motion of the second vehicle.
  • This is a control specification definition method that obtains an operation for arranging a second model element representing Specifications can be defined appropriately.
  • control specification definition device defines control specifications used for controlling automatic driving of the first vehicle, the control specification definition device including a first model element representing the position and motion of the first vehicle, and a first model element representing the position and motion of the second vehicle.
  • a control specification that includes an operation acquisition unit that acquires an operation for arranging two model elements in a two-dimensional diagram, and a definition unit that defines a control specification based on the two-dimensional diagram in which the first model element and the second model element are arranged. Since it is a definition device, control specifications can be appropriately defined.
  • Embodiment 2 In the second embodiment, an example will be described in which control specifications of the vehicle control device 10 are defined using the model elements described in the first embodiment. Note that the configurations of the control specification definition device 1 and the vehicle control device 10 according to the second embodiment are similar to the configurations of FIG. 1 and FIG. 4 described in the first embodiment.
  • FIG. 5 is a diagram showing an example of a scenario in which the own vehicle X overtakes another vehicle Y. Note that in FIG. 5, the positional relationship between own vehicle X and other vehicle Y expressed without using the model elements of FIG. 2, and the positional relationship between own vehicle The positional relationship is shown.
  • the selection condition is not specified, but the selection condition may be added to the behavior after branching, that is, the arrow.
  • the content ⁇ If there is another vehicle in front of the center lane, change lanes to the right lane'' may be added.
  • FIG. 7 is a diagram showing an example in which synchronization is provided using the model elements of FIG. 2. 7 shows the positional relationship between own vehicle X and other vehicle Y expressed without using the model elements of FIG. 2, and the positional relationship between own vehicle relationship is shown.
  • a positional relationship is shown in which the own vehicle X traveling in the center lane and another vehicle Y traveling in the left lane are running parallel to each other in the direction of travel. From time point (1), own vehicle X travels at a speed of 60 km/h, and other vehicle Y travels at a speed of 40 km/h.
  • the positional relationship in which the host vehicle X overtakes the other vehicle Y is shown as synchronization at the time point (2) after a certain period of time has elapsed from the time point (1).
  • FIG. 8 is a diagram showing an example of a scenario in which the model elements of FIG. 2 are used to perform actions other than vehicle behavior.
  • the example in Figure 8 shows that on a straight road with three lanes on each side, the own vehicle traveling in the center lane checks (recognizes) the position and movement of another vehicle traveling in the left lane. ing.
  • the operation of the first vehicle includes at least one of the position and operation of the first vehicle and recognition of an object from the first vehicle
  • the operation of the second vehicle includes the position and operation of the second vehicle and the recognition of an object from the first vehicle.
  • control specifications can be appropriately defined.
  • FIG. 9 is a diagram showing an example of a scenario in which the own vehicle and another vehicle change lanes using the model elements of FIG. 2.
  • the own vehicle changes lanes from the center lane to the left lane
  • other vehicles change lanes from the left lane to the center lane. Since your vehicle and other vehicles are located in the same position "on the lane,” there is a possibility of collision.
  • the model elements as described above, it becomes possible to express the possibility of a collision between the own vehicle and another vehicle during a lane change, which could not be expressed using a flowchart or the like. Note that in FIG. 9, the right lane is omitted.
  • control specifications can be appropriately defined by branching, synchronization, and recognition (confirmation).
  • Embodiment 3 In the third embodiment, an example will be described in which the control specifications of the vehicle control device 10 are defined by combining the model elements described in the first embodiment. Note that the configurations of the control specification definition device 1 and the vehicle control device 10 according to the third embodiment are similar to the configurations in FIG. 1 and FIG. 4 described in the first embodiment.
  • FIG. 10 is a diagram showing an example of a scenario in which the own vehicle X overtakes another vehicle Y in front of the own vehicle X. Note that in FIG. 10, the positional relationship between own vehicle X and other vehicle Y expressed without using the model elements of FIG. 2, and the positional relationship between own vehicle The positional relationship is shown.
  • the host vehicle X is running in the left lane, and another vehicle Y is running in front of the host vehicle X.
  • the host vehicle X first checks the speed of the other vehicle Y, and determines whether the speed of the other vehicle Y is below a threshold value and whether the host vehicle X can change lanes.
  • the own vehicle Make a lane change.
  • the own vehicle X at the time point (3)-2 travels in front of the other vehicle Y at the time point (3), which is synchronized with the time point (3)-2, and the overtaking is completed.
  • the own vehicle )-3 and the time point (3) when synchronizing with the other vehicle Y is increased.
  • FIG. 11 is a flowchart showing the control of the vehicle control device 10, that is, the operation of the host vehicle X using the control specifications based on the two-dimensional diagram shown in FIG.
  • the operation described in FIG. 10 is somewhat different from the operation in FIG. 11 described below, but it is possible to make it completely the same as the operation in FIG. 11.
  • step S12 the own vehicle determines whether or not to overtake, and determines whether or not it is possible to change lanes.
  • the determination as to whether or not to overtake is made, for example, based on whether the speed of the other vehicle is below a threshold value. Whether or not it is possible to change lanes is determined, for example, based on whether there is another vehicle at the destination of the lane change.
  • step S13 If it is not determined that overtaking is to be performed, or if it is not determined that lane change is possible, the operation in FIG. 11 ends. The operation at this time corresponds to the operation at time (3)-1 in FIG. On the other hand, if it is determined that overtaking is to be performed and it is determined that a lane change is possible, the process proceeds to step S13.
  • step S13 the own vehicle changes lanes
  • step S14 the own vehicle accelerates to overtake other vehicles in the left lane.
  • step S16 the own vehicle changes lanes to the lane in which the other vehicle is traveling, and the overtaking is completed.
  • the operation at this time corresponds to the operation at time (3)-2 in FIG.
  • control specifications can be appropriately defined by branching, synchronization, and recognition (confirmation).
  • control specifications can be appropriately defined by branching, synchronization, and recognition (confirmation).
  • the third embodiment by combining the model elements shown in FIG. 2, it is possible to define a plurality of scenarios that take into account the positions and operations of the own vehicle and other vehicles as control specifications.
  • the third embodiment has been described using a scenario assuming overtaking, the applicable scenarios are not limited to these and can be applied to a wide variety of other situations.
  • FIG. 12 is a diagram showing an example of a scenario in which the own vehicle X, which is traveling on a pre-merging lane such as a side road, merges into a merging destination lane such as a main road. Note that FIG. 12 shows the positional relationship between own vehicle X and other vehicle Y expressed without using the model elements of FIG. 2, and the positional relationship between own vehicle The positional relationship is shown.
  • the own vehicle X is traveling in the pre-merging lane that disappears after merging, and the other vehicle Y is traveling in the destination lane.
  • the own vehicle X checks the speed and position of the other vehicle Y, and determines whether it is possible to change lanes to the merging lane of the own vehicle X. If it is determined that it is possible for own vehicle X to change lanes to the merging lane, then own vehicle X changes lanes to the merging lane in order to move to own vehicle , accelerate after changing lanes. As a result, the own vehicle Drive in front of another vehicle Y.
  • the own vehicle X If it is not determined that it is possible for the own vehicle X to change lanes to the merging lane, the own vehicle confirm. Next, the own vehicle X checks the position and speed of another vehicle Z (not shown) following the other vehicle Y, and determines whether it is possible for the own vehicle do. If it is determined that it is possible for own vehicle X to change lanes to the merging lane, then own vehicle X changes lanes to the merging lane in order to move to own vehicle , accelerate after changing lanes. As a result, the own vehicle X at the time point (3) runs behind the other vehicle Y at the time point (3).
  • information for performing actions of own vehicle X such as "checking the position and speed of other vehicles" is aggregated by the recognition unit 21, and information for performing actions of own vehicle is determined by the vehicle control unit 22.
  • step S21 the host vehicle checks other vehicles in the merging lane.
  • step S22 the host vehicle determines whether it is possible to change lanes to the merging destination lane. For example, if it is determined that the distance to the other vehicle is greater than or equal to the threshold and the speed of the other vehicle is less than or equal to the threshold, the own vehicle determines that it is possible to change lanes to the merging lane, and If the distance to the vehicle is greater than or equal to the threshold and the speed of the other vehicle is not determined to be less than or equal to the threshold (if at least one of them is not applicable), the lane change to the merging lane is not allowed. Determine that it is not possible.
  • step S23 If it is determined that it is possible to change lanes to the merging destination lane, the process proceeds to step S23. On the other hand, if it is not determined that a lane change to the merging destination lane is possible, the process proceeds to step S26.
  • step S25 The host vehicle stops in step S25. After that, the process returns to step S21.
  • FIG. 20 is a diagram showing an analysis result of the possibility of collision in "A1B1" among the transition patterns shown in FIG. 19.
  • A1B1 there is a possibility that the host vehicle is in the left lane or the center lane.
  • B1 there is a possibility that another vehicle is present in either the left lane, the center lane, or the right lane.
  • State No. in FIG. 1 to No. Among conditions up to 6, state No. 6 where the own vehicle and the other vehicle are located in the same lane. 1 and state no. 5, there is a possibility of collision.
  • Embodiment 6 STPA, which is a safety analysis, is performed on the operation of the own vehicle and other vehicles using the model elements described in any of Embodiments 1 to 5.
  • step S33 a control structure is constructed in the same manner as in the 2nd Step of the STPA procedure. Build a control structure according to conventional STPA procedures. The behavior can also be clarified by making it consistent with the scenario defined in step S32.
  • step S36 the cause of the accident is identified as the fourth step of the STPA procedure, and countermeasures for the accident are considered. Note that although this flow is a flow assuming STPA, the safety analysis method is not limited to STPA.
  • Figure 23 shows, in accordance with step S31, assuming a use case in which an automated driving system follows a vehicle ahead on a highway, and defines system accidents, hazards, and safety constraints for an example of a function that recognizes a vehicle ahead. It is a diagram of an example. Here, it is defined as follows. Accidents include colliding with or being collided with other vehicles, the surrounding area, etc. As a hazard, it becomes impossible to recognize (confirm) the vehicle ahead. A safety constraint is the ability to recognize (confirm) the vehicle ahead.
  • Figure 24 is a drawing that represents a model example of a scenario that serves as input for safety analysis.
  • the scenario represents a scenario in which the vehicle in front changes lanes while the own vehicle is following a vehicle in front two lanes above during traffic congestion. Note that the own vehicle continues to travel in the travel lane.
  • the forward vehicle A is traveling in front of the host vehicle X
  • the forward vehicle B is traveling in front of the forward vehicle A.
  • the host vehicle X recognizes the vehicle A ahead.
  • the own vehicle X recognizes that the preceding vehicle A has changed lanes from the driving lane to the lane median line.
  • Figure 27 shows a scenario leading up to an accident by utilizing model elements for the analyzed UCA (Figure 26) of ⁇ (A) Rear-end vehicle without recognizing the vehicle in front'' of ⁇ Not Providing''.
  • This is an example expressing A scenario is expressed in which the host vehicle X accelerates and collides with the vehicle A ahead, which is changing lanes, because "recognizing the vehicle A ahead" is not provided.
  • Figure 28 shows a scenario that utilizes model elements for ⁇ (B) Correctly recognizes the vehicle in front, and there is no problem'' in ⁇ Correctly recognized'', which was not a UCA in the analyzed UCA ( Figure 26).
  • a scenario is expressed in which the provision of "recognizing vehicle A in front” prevents an accident from occurring.
  • "Recognition 1" in FIG. 28 does not pose any problem as long as the vehicle X can correctly recognize the target vehicle A ahead, since the vehicle A ahead has not started changing lanes at this stage either.
  • scenario drawings that utilize model elements in STPA, which is a safety analysis, it is possible to take into account the dynamic behavior of the own vehicle and other vehicles. The effect can be clarified.
  • the safety analysis results are created by creating a control structure using a two-dimensional diagram in which the first model element and second model element are arranged, and the scenario leading up to the accident is arranged in the first model element and the second model element. Since this is a control specification definition method that is created using a two-dimensional diagram and analyzed using STPA, it is possible to appropriately define control specifications.
  • control specification definition device defines control specifications used for controlling automatic driving of the first vehicle, the control specification definition device including a first model element representing the position and motion of the first vehicle, and a first model element representing the position and motion of the second vehicle.
  • an operation acquisition unit that acquires an operation for arranging two model elements in a two-dimensional diagram
  • a safety analysis unit that acquires a safety analysis result based on the two-dimensional diagram in which the first model element and the second model element are arranged
  • the control specification definition device defines control specifications based on a two-dimensional diagram in which first model elements and second model elements are arranged, and includes a definition section that defines control specifications based on safety analysis results, so it is possible to properly define control specifications. can be defined as
  • Modification example 1 29 and 30 are block diagrams showing the hardware configurations of the control specification definition device and the vehicle control device according to modifications of the first to sixth embodiments.
  • the operation acquisition unit 2 and definition unit 3 in FIG. 1, the operation acquisition unit 2, definition unit 3, and safety analysis unit 4 in FIG. 21 are collectively referred to as "operation acquisition unit 2, etc.”.
  • the operation acquisition unit 2 and the like are realized by a processing circuit 81 shown in FIG. That is, the processing circuit 81 includes an operation acquisition unit 2 that acquires an operation for arranging vehicle model elements on a two-dimensional diagram (plan view), a definition unit 3 that defines control specifications based on the two-dimensional diagram, and a safety analysis A safety analysis section 4 is provided.
  • Dedicated hardware may be applied to the processing circuit 81, or a processor 82 that executes a program stored in the memory 83 may be applied.
  • the processor 82 include a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, and a DSP (Digital Signal Processor).
  • the processing circuit 81 may be, for example, a single circuit, a composite circuit, a programmed processor 82, a parallel programmed processor 82, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these.
  • the functions of each unit such as the operation acquisition unit 2 may be realized by a circuit in which the processing circuit 81 is distributed, or the functions of each unit may be realized by a single processing circuit 81.
  • the processing circuit 81 When the processing circuit 81 is the processor 82, the functions of the operation acquisition unit 2 and the like are realized by a combination with software and the like. Note that software and the like correspond to, for example, software and firmware. Software and the like are written as programs and stored in the memory 83. As shown in FIG. 22, a processor 82 applied to the processing circuit 81 implements the functions of each part by reading and executing a program stored in a memory 83.
  • the control specification definition device 1 when executed by the processing circuit 81, the first model element representing the position and operation of the first vehicle, and the second model element representing the position and operation of the second vehicle, As a result, the steps of obtaining an operation to place on a two-dimensional diagram and defining a control specification based on the two-dimensional diagram in which the first model element and the second model element are arranged are executed.
  • a memory 83 is provided for storing programs. In other words, this program can be said to cause the computer to execute the procedures and methods of the operation acquisition unit 2 and the like.
  • the memory 83 is a non-volatile or Volatile semiconductor memory, HDD (Hard Disk Drive), magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), their drive device, etc., or any storage media that will be used in the future. It's okay.
  • HDD Hard Disk Drive
  • magnetic disk flexible disk
  • optical disk compact disk
  • mini disk mini disk
  • DVD Digital Versatile Disc
  • each function of the operation acquisition unit 2 and the like is realized by either hardware or software has been described above.
  • the present disclosure is not limited to these, and a configuration may be adopted in which a part of the operation acquisition unit 2 and the like is realized by dedicated hardware, and another part is realized by software or the like.
  • the functions of the operation acquisition unit 2 and the like are realized by a processing circuit 81 as dedicated hardware, an interface, a receiver, etc., and for other parts, the processing circuit 81 as a processor 82 executes the program stored in the memory 83.
  • the function can be realized by reading and executing it.
  • the processing circuit 81 can implement the above-mentioned functions using hardware, software, etc., or a combination thereof.
  • control specification definition device 1 described above can also be applied to a control specification definition system constructed as a system by appropriately combining devices and servers.
  • each function or each component of the control specification definition device 1 described above may be distributed and arranged in each device that constructs the system, or may be arranged centrally in any one of the devices. Good too.
  • Control specification definition device 1 Control specification definition device, 2 Operation acquisition unit, 3 Definition unit, 4 Safety analysis unit, 10 Vehicle control device, 20 Autonomous driving ECU, 21 Recognition unit, 22 Vehicle control unit, 30, 31, 32 Environment acquisition unit, 40 Engine ECU, 41 Brake ECU, 42 Steering ECU, 51, 52 In-vehicle network, 81 Processing circuit, 82 Processor, 83 Memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

A vehicle control device (10) comprises: environment acquisition units (30, 31, 32) that each acquire the environment of a position at which a first vehicle is located; and a vehicle control unit (22) that controls automated driving of the first vehicle on the basis of control specifications defined on the basis of a two-dimensional chart having disposed therein a first model element representing the position and action of the first vehicle and a second model element representing the position and action of a second vehicle, and the environments acquired by the environment acquisition units (30, 31, 32). Accordingly, it is possible to define control specifications appropriately. In addition, since the vehicle control device is provided with a definition unit (3) that defines control specifications on the basis of a two-dimensional chart having disposed therein the first model element and the second model element and that further defines control specifications on the basis of a safety analysis, the control specifications can be defined appropriately.

Description

制御仕様定義方法、車両制御装置、制御仕様定義装置Control specification definition method, vehicle control device, control specification definition device
 本開示は、自動運転システムにおける車両の制御仕様定義方法、車両制御装置、制御仕様定義装置に関する。 The present disclosure relates to a vehicle control specification definition method, a vehicle control device, and a control specification definition device in an automatic driving system.
 車載システムとして多種多様な電子機器が車両に搭載されている。近年の車両の多機能化、複雑化に伴い、これらの電子機器を制御する制御装置の搭載数は増加している。特に、昨今、研究開発が加速している自動運転システムにおいては、車両のエンジン制御、ブレーキ制御、ステアリング制御を連携させることによって高度な自動運転を実現するシステムが提案されている。 A wide variety of electronic devices are installed in vehicles as in-vehicle systems. As vehicles have become more multi-functional and complex in recent years, the number of control devices installed to control these electronic devices is increasing. In particular, in the area of automated driving systems, where research and development has been accelerating in recent years, systems have been proposed that realize highly automated driving by linking a vehicle's engine control, brake control, and steering control.
 自動運転システムでは、適用領域の拡大や自動運転レベルの上昇に伴い、複雑な状況での認知・判断・動作を含む機能を実現するための制御が求められる。このため、ユースケースや制御仕様の表現も複雑化している。制御仕様を定義する手法として、自然言語による記述、シーケンス図、状態遷移図、フローチャートなどを用いるUML(Unified Modeling Language)のような準形式的な記述を用いることにより、制御仕様の抜け漏れが抑制されている。例えば、特許文献1の技術では、車両の制御仕様をフローチャートで記述されている。 In autonomous driving systems, as the scope of application expands and the level of autonomous driving increases, control is required to realize functions that include recognition, judgment, and operation in complex situations. For this reason, the expressions of use cases and control specifications are also becoming more complex. By using semi-formal descriptions such as UML (Unified Modeling Language), which uses natural language descriptions, sequence diagrams, state transition diagrams, flowcharts, etc., as a method for defining control specifications, omissions in control specifications can be suppressed. has been done. For example, in the technique disclosed in Patent Document 1, vehicle control specifications are described in the form of a flowchart.
 また、車両の制御仕様を検討する上で安全性に関する観点は重要であり、機能安全規格(ISO26262)ではハザード分析とリスクアセスメントにより、想定されるリスクの抽出とリスク対策が求められる。なお、ISOは、国際標準化機構(International Organization for Standardization)のことである。 Additionally, the perspective of safety is important when considering vehicle control specifications, and the functional safety standard (ISO26262) requires the extraction of expected risks and risk countermeasures through hazard analysis and risk assessment. Note that ISO stands for International Organization for Standardization.
 安全分析の手法として、非特許文献1としてSTPA(System Theoretic Process Analysis)という手法がある。STPAはシステム理論に基づく安全解析方法論であるSTAMP(Systems-Theoretic Accident Model and Processes)を安全分析の手法として確立したものであり、システムを構成するサブシステム間の相互作用に着目した分析手法である。手順としては、1st Stepとしてシステムのアクシデント、ハザード、安全制約を識別し、2nd Stepとしてコントロールストラクチャを構築することで要素間の相互作用を明確化し、3rd Stepとして非安全な相互作用である、UCA(Unsafe Control Action)を抽出し、最後に、4th Stepとしてアクシデントの要因を特定して対策検討する。 As a safety analysis method, there is a method called STPA (System Theoretic Process Analysis) as Non-Patent Document 1. STPA is a safety analysis method based on STAMP (Systems-Theoretic Accident Model and Processes), which is a safety analysis methodology based on systems theory, and is an analysis method that focuses on the interaction between subsystems that make up a system. . As for the procedure, the 1st step is to identify system accidents, hazards, and safety constraints, the 2nd step is to clarify interactions between elements by constructing a control structure, and the 3rd step is to identify unsafe interactions, such as UCA. (Unsafe Control Action) and finally, in the 4th step, identify the cause of the accident and consider countermeasures.
特開2019-153028号公報JP 2019-153028 Publication
 第1車両と第2車両との物理的な位置関係によって、第1車両及び第2車両の一方の動作が他方に危険を招く可能性がある。このため、車両の制御仕様の定義では、第1車両及び第2車両の位置及び動作を考慮する必要がある。しかしながら、特許文献1に記載されているようなフローチャートでは、実環境における第1車両及び第2車両の位置及び動作を把握することが困難であり、抜け漏れなく制御仕様を定義することが困難であった。 Depending on the physical positional relationship between the first vehicle and the second vehicle, the operation of one of the first vehicle and the second vehicle may pose a danger to the other vehicle. Therefore, in defining the vehicle control specifications, it is necessary to consider the positions and operations of the first vehicle and the second vehicle. However, with the flowchart described in Patent Document 1, it is difficult to grasp the positions and operations of the first vehicle and the second vehicle in the actual environment, and it is difficult to define control specifications without omission. there were.
 そこで、本開示は、上記のような問題点を鑑みてなされたものであり、制御仕様を適切に定義することが可能な技術を提供することを目的とする。 Therefore, the present disclosure has been made in view of the above problems, and aims to provide a technology that can appropriately define control specifications.
 本開示に係る制御仕様定義方法は、第1車両の自動運転の制御に用いられる制御仕様を定義する制御仕様定義方法であって、第1車両の位置及び動作を表す第1モデル要素と第2車両の位置及び動作を表す第2モデル要素とを2次元図に配置する操作を取得し、第1モデル要素及び第2モデル要素が配置された2次元図に基づいて制御仕様を定義する。 A control specification definition method according to the present disclosure is a control specification definition method for defining control specifications used for controlling automatic driving of a first vehicle, the method comprising: a first model element representing the position and operation of the first vehicle; An operation for arranging second model elements representing the position and motion of the vehicle on a two-dimensional diagram is obtained, and control specifications are defined based on the two-dimensional diagram in which the first model elements and the second model elements are arranged.
 また、本開示に係る車両制御装置は、第1車両が位置する環境を取得する環境取得部と、第1車両の位置及び動作を表す第1モデル要素並びに第2車両の位置及び動作を表す第2モデル要素が配置された2次元図に基づいて定義された制御仕様と、環境取得部で取得された環境とに基づいて第1車両の自動運転を制御する制御部とを備える。 The vehicle control device according to the present disclosure also includes an environment acquisition unit that acquires the environment in which the first vehicle is located, a first model element that represents the position and motion of the first vehicle, and a first model element that represents the position and motion of the second vehicle. The control unit includes a control unit that controls automatic driving of the first vehicle based on control specifications defined based on a two-dimensional diagram in which two model elements are arranged and an environment acquired by an environment acquisition unit.
 さらに、本開示に係る制御仕様定義装置は、第1車両の自動運転の制御に用いられる制御仕様を定義する制御仕様定義装置であって、第1車両の位置及び動作を表す第1モデル要素並びに第2車両の位置及び動作を表す第2モデル要素を2次元図に配置する操作を取得する操作取得部と、第1モデル要素及び第2モデル要素が配置された2次元図に基づいて制御仕様を定義する定義部とを備える。 Furthermore, the control specification definition device according to the present disclosure is a control specification definition device that defines control specifications used for controlling automatic driving of a first vehicle, and includes first model elements representing the position and operation of the first vehicle; an operation acquisition unit that acquires an operation for arranging a second model element representing the position and motion of the second vehicle on a two-dimensional diagram; and a control specification based on the two-dimensional diagram in which the first model element and the second model element are arranged. and a definition section that defines.
 このような構成によれば、制御仕様を適切に定義することができる。 According to such a configuration, control specifications can be appropriately defined.
実施の形態1に係る制御仕様定義装置の構成を示すブロック図である。1 is a block diagram showing the configuration of a control specification definition device according to Embodiment 1. FIG. 実施の形態1に係るモデル要素を示す図である。FIG. 3 is a diagram showing model elements according to the first embodiment. 実施の形態1に係る制御仕様定義装置の動作を示すフローチャートである。3 is a flowchart showing the operation of the control specification definition device according to the first embodiment. 実施の形態1に係る車両制御装置の構成を示すブロック図である。1 is a block diagram showing the configuration of a vehicle control device according to Embodiment 1. FIG. 実施の形態2に係る制御仕様の定義の例を説明するための図である。7 is a diagram for explaining an example of the definition of control specifications according to Embodiment 2. FIG. 実施の形態2に係る制御仕様の定義の例を説明するための図である。7 is a diagram for explaining an example of the definition of control specifications according to Embodiment 2. FIG. 実施の形態2に係る制御仕様の定義の例を説明するための図である。7 is a diagram for explaining an example of the definition of control specifications according to Embodiment 2. FIG. 実施の形態2に係る制御仕様の定義の例を説明するための図である。7 is a diagram for explaining an example of the definition of control specifications according to Embodiment 2. FIG. 実施の形態2に係る制御仕様の定義の例を説明するための図である。7 is a diagram for explaining an example of the definition of control specifications according to Embodiment 2. FIG. 実施の形態3に係る制御仕様の定義の例を説明するための図である。FIG. 7 is a diagram for explaining an example of the definition of control specifications according to Embodiment 3; 実施の形態3に係る自車両の動作を示すフローチャートである。7 is a flowchart showing the operation of the host vehicle according to Embodiment 3. FIG. 実施の形態4に係る制御仕様の定義の例を説明するための図である。FIG. 7 is a diagram for explaining an example of the definition of control specifications according to Embodiment 4; 実施の形態4に係る自車両の動作を示すフローチャートである。12 is a flowchart showing the operation of the host vehicle according to Embodiment 4. 実施の形態5に係る自車両の振る舞いを網羅的に示す図である。7 is a diagram comprehensively showing the behavior of the own vehicle according to the fifth embodiment. FIG. 実施の形態5に係る自車両の振る舞いを網羅的に示す図である。7 is a diagram comprehensively showing the behavior of the own vehicle according to the fifth embodiment. FIG. 実施の形態5に係る自車両の振る舞いを網羅的に示す図である。7 is a diagram comprehensively showing the behavior of the own vehicle according to the fifth embodiment. FIG. 実施の形態5に係る自車両の遷移パターンを網羅的に示す図である。FIG. 7 is a diagram comprehensively showing transition patterns of the own vehicle according to Embodiment 5; 実施の形態5に係る他車両の遷移パターンを網羅的に示す図である。FIG. 7 is a diagram comprehensively showing transition patterns of other vehicles according to Embodiment 5; 実施の形態5に係る自車両の遷移パターンと他車両の遷移パターンとの組を網羅的に示す図である。FIG. 12 is a diagram comprehensively showing a set of transition patterns of the own vehicle and transition patterns of other vehicles according to Embodiment 5; 実施の形態5に係る遷移パターンのうちの一組の分析結果を示す図である。FIG. 12 is a diagram showing analysis results of one set of transition patterns according to Embodiment 5; 実施の形態6に係る制御仕様定義装置の構成を示すブロック図である。FIG. 7 is a block diagram showing the configuration of a control specification definition device according to a sixth embodiment. 実施の形態6に係る安全分析のフローを示した図である。FIG. 7 is a diagram showing a flow of safety analysis according to a sixth embodiment. 実施の形態6に係るアクシデント、ハザード、安全制約を示した図である。FIG. 7 is a diagram showing accidents, hazards, and safety constraints according to Embodiment 6; 実施の形態6に係る安全分析のインプットとなるシナリオの事例を示す図である。FIG. 12 is a diagram showing an example of a scenario that serves as an input for safety analysis according to the sixth embodiment. 実施の形態6に係る安全分析のコントロールストラクチャを示す図である。FIG. 7 is a diagram showing a control structure for safety analysis according to a sixth embodiment. 実施の形態6に係る安全分析のUCAを分析した結果を示す図である。FIG. 7 is a diagram showing the results of analyzing UCA in safety analysis according to the sixth embodiment. 実施の形態6に係る安全分析のUCAに対してモデル要素を活用しアクシデントに至るまでのシナリオを示す図である。FIG. 12 is a diagram showing a scenario up to an accident using model elements for UCA of safety analysis according to the sixth embodiment. 実施の形態6に係る安全分析のUCAとはならなかったシナリオについて示す図である。FIG. 12 is a diagram illustrating a scenario that does not result in UCA of safety analysis according to Embodiment 6; 変形例に係る制御仕様定義装置のハードウェア構成を示すブロック図である。FIG. 3 is a block diagram showing a hardware configuration of a control specification definition device according to a modification. 変形例に係る制御仕様定義装置のハードウェア構成を示すブロック図である。FIG. 3 is a block diagram showing a hardware configuration of a control specification definition device according to a modification.
実施の形態1.
 図1は、本実施の形態1に係る制御仕様定義装置1の構成を示すブロック図である。制御仕様定義装置1は、第1車両の自動運転の制御に用いられる制御仕様(機能仕様とも呼ばれる。)を定義する装置である。以下、第1車両を「自車両」と記し、第1車両以外の第2車両を「他車両」と記し、両者を区別しない場合には「車両」と記して説明することもある。また、自車両をXとし、自車両X以外の他車両を主にY、A,B等と表記することもある。なお、制御仕様定義装置1は自車両に搭載されてもよいし、自車両に搭載されずに自車両と通信可能に構成されてもよい。
Embodiment 1.
FIG. 1 is a block diagram showing the configuration of a control specification definition device 1 according to the first embodiment. The control specification definition device 1 is a device that defines control specifications (also called functional specifications) used to control automatic driving of the first vehicle. Hereinafter, the first vehicle will be referred to as the "own vehicle", the second vehicle other than the first vehicle will be referred to as the "other vehicle", and if the two are not to be distinguished, they may also be referred to as the "vehicle". Further, the own vehicle may be referred to as X, and other vehicles other than the own vehicle X may be mainly written as Y, A, B, etc. Note that the control specification definition device 1 may be installed in the own vehicle, or may be configured to be able to communicate with the own vehicle without being installed in the own vehicle.
 制御仕様定義装置1は、操作取得部2と定義部3とを備える。操作取得部2は、自車両の位置及び動作を表す第1モデル要素である自車両モデル要素と、他車両の位置及び動作を表す第2モデル要素である他車両モデル要素とを、2次元の情報となる2次元図(平面図)に配置する操作を取得する。自車両モデル要素と他車両モデル要素とは、実質的に同じであるため、以下、両者を区別しない場合には「モデル要素」と記して説明することもある。モデル要素が配置される2次元図には、例えば、制御仕様が定義されるべき場所を模式的に示す2次元図が用いられる。 The control specification definition device 1 includes an operation acquisition section 2 and a definition section 3. The operation acquisition unit 2 converts the own vehicle model element, which is a first model element representing the position and motion of the own vehicle, and the other vehicle model element, which is a second model element, which represents the position and motion of the other vehicle, into a two-dimensional Obtain the operation for placing information on a two-dimensional diagram (plan view). Since the self-vehicle model element and the other vehicle model element are substantially the same, they may be referred to as "model element" hereinafter when the two are not distinguished. For example, a two-dimensional diagram schematically showing a location where control specifications are to be defined is used as a two-dimensional diagram in which model elements are arranged.
 図2は、モデル要素を示す図である。なお、以下で説明するモデル要素は一例であり、様々なシチュエーションを表現するために他のモデル要素を追加してもよければ、これら以外の表現方法をモデル要素としても用いてよい。 FIG. 2 is a diagram showing model elements. Note that the model elements described below are merely examples, and if other model elements may be added to express various situations, expression methods other than these may be used as model elements.
 四角形のモデル要素は、自車両、他車両、その他のオブジェクトを表すオブジェクトノードである。オブジェクトノードの中には、オブジェクトの名称及びその状態が表される。同じオブジェクトであっても振る舞いの前後で複数配置してもよい。このため、同一のオブジェクトに関して、ある時点でのオブジェクトノードと、別の時点でのオブジェクトノードとが同じ2次元図に配置されてもよい。 The rectangular model elements are object nodes representing the own vehicle, other vehicles, and other objects. The name of the object and its status are represented in the object node. Even if it is the same object, multiple objects may be placed before and after the behavior. Therefore, regarding the same object, an object node at a certain point in time and an object node at another point in time may be arranged in the same two-dimensional diagram.
 実線矢印のモデル要素は、車両の振る舞いを表す。車両の振る舞いは、車両の動作のうち車両の走行に関する動作である。複数の同一のオブジェクトノードが実線矢印のモデル要素で結ばれることによって、一つのオブジェクトについて異なる時点での振る舞いが表わされる。 Model elements with solid arrows represent vehicle behavior. Vehicle behavior is an operation related to vehicle travel among vehicle operations. A plurality of identical object nodes are connected by solid arrow model elements to represent the behavior of one object at different times.
 ひし形のモデル要素は分岐を表す。分岐を表すひし形のモデル要素が、振る舞いなどの動作を表すモデル要素と組合せられることによって、自車両の動作及び他車両の動作のいずれかまたは両方に分岐を設けることができ、その結果として、様々な動作パターンを含むシナリオを定義することができる。 A diamond-shaped model element represents a branch. By combining a diamond-shaped model element representing a branch with a model element representing an action such as behavior, it is possible to provide a branch in either or both of the own vehicle's action and the other vehicle's action, and as a result, various It is possible to define scenarios that include various behavior patterns.
 破線矢印のモデル要素は、車両の動作以外の振る舞いである車両の位置、速度などの確認を表す。破線矢印のモデル要素により、例えば、自車両の自動制御装置が他車両などの物体を確認したこと、及び、他車両の自動制御装置が自車両などの物体を確認したことを表すことができる。なお、ここでいう確認は認知及び認識に相当する。 Model elements indicated by dashed arrows represent confirmation of vehicle position, speed, etc., which are behaviors other than vehicle motion. The model elements indicated by the dashed arrows can represent, for example, that the automatic control device of the own vehicle has confirmed an object such as another vehicle, and that the automatic control device of the other vehicle has confirmed an object such as the own vehicle. Note that confirmation here corresponds to recognition and recognition.
 太線のモデル要素は、同期を表す。太線のモデル要素は、ある時点での複数のオブジェクトの位置関係を明確化する場合に用いられる。この太線のモデル要素によって、自車両の動作の少なくとも一部と、他車両の動作の少なくとも一部とが同期される。なお、太い線の横に数字(番号、記号)等が記載されることによって、同期の時点が識別可能になる。例えば、同期の時点が同じである場合には、その同期の太線の横に同じまたは関連する数字が記載され、同期の時点が異なる場合には、その同期の太線の横に異なる数字が記載される。 Thick line model elements represent synchronization. Thick line model elements are used to clarify the positional relationship of multiple objects at a certain point in time. By means of the thick-lined model elements, at least a portion of the motion of the host vehicle and at least a portion of the motion of the other vehicle are synchronized. Note that by writing numbers (numbers, symbols), etc. next to the thick line, the time point of synchronization can be identified. For example, if synchronization points are the same, the same or related numbers will be listed next to the bold lines for the synchronizations, and if synchronization points are different, different numbers will be listed next to the bold lines for the synchronizations. Ru.
 図1の操作取得部2は、これらのモデル要素を組み合わせて2次元図(平面図)に配置する操作を取得することにより、自車両モデル要素と他車両モデル要素とを2次元図に配置する操作を取得する。モデル要素の詳細については実施の形態2以降で説明する。なお、操作取得部2は、手書きなどで用紙に描かれた2次元図から上記操作を読み取るように構成されてもよいし、描画を支援する設計支援ツールの入力装置で構成されてもよい。 The operation acquisition unit 2 in FIG. 1 arranges own vehicle model elements and other vehicle model elements in a two-dimensional diagram by acquiring an operation for combining these model elements and arranging them in a two-dimensional diagram (plan view). Get operations. Details of the model elements will be explained in Embodiment 2 and thereafter. Note that the operation acquisition unit 2 may be configured to read the above-mentioned operations from a two-dimensional diagram drawn by hand or the like on paper, or may be configured as an input device of a design support tool that supports drawing.
 図1の定義部3は、上記操作後の2次元図(平面図)、つまり自車両モデル要素及び他車両モデル要素が配置された2次元図に基づいて、自車両の自動運転の制御に用いられる制御仕様を定義する。 The definition unit 3 in FIG. 1 uses the two-dimensional diagram (plan view) after the above operation, that is, the two-dimensional diagram in which the own vehicle model elements and other vehicle model elements are arranged, to control the automatic driving of the own vehicle. Define the control specifications that will be used.
 図3は、本実施の形態1に係る制御仕様定義装置1の動作を示すフローチャートである。 FIG. 3 is a flowchart showing the operation of the control specification definition device 1 according to the first embodiment.
 ステップS1にて、操作取得部2は、自車両の位置及び動作を表す自車両モデル要素と、他車両の位置及び動作を表す他車両モデル要素とを、2次元図に配置する操作を取得する。 In step S1, the operation acquisition unit 2 acquires an operation for arranging own vehicle model elements representing the position and motion of the own vehicle and other vehicle model elements representing the positions and motions of other vehicles in a two-dimensional diagram. .
 ステップS2にて、定義部3は、自車両モデル要素及び他車両モデル要素が配置された2次元図に基づいて、自車両の自動運転の制御に用いられる制御仕様を定義する。その後、図3の動作が終了する。 In step S2, the definition unit 3 defines control specifications used to control automatic driving of the own vehicle based on the two-dimensional diagram in which the own vehicle model elements and other vehicle model elements are arranged. After that, the operation of FIG. 3 ends.
 図4は、本実施の形態1の自車両に搭載された車両制御装置10の構成を示すブロック図である。詳細は後述するが、車両制御装置10は、制御仕様定義装置1で定義された制御仕様を用いるように構成されている。 FIG. 4 is a block diagram showing the configuration of the vehicle control device 10 installed in the host vehicle of the first embodiment. Although details will be described later, the vehicle control device 10 is configured to use control specifications defined by the control specification definition device 1.
 車両制御装置10は、自車両に搭載された複数の環境取得部である環境取得部30,31,32と、自動運転ECU(Electronic Control Unit)20と、エンジンECU40と、ブレーキECU41と、ステアリングECU42と、車載ネットワーク51,52とを備える。自動運転ECU20は、車載ネットワーク51を介して環境取得部30,31,32と接続され、車載ネットワーク52を介してエンジンECU40、ブレーキECU41、及び、ステアリングECU42と接続されている。 The vehicle control device 10 includes environment acquisition units 30, 31, and 32, which are multiple environment acquisition units mounted on the own vehicle, an automatic driving ECU (Electronic Control Unit) 20, an engine ECU 40, a brake ECU 41, and a steering ECU 42. and in- vehicle networks 51 and 52. The automatic driving ECU 20 is connected to the environment acquisition units 30 , 31 , and 32 via the in-vehicle network 51 , and is connected to the engine ECU 40 , the brake ECU 41 , and the steering ECU 42 via the in-vehicle network 52 .
 環境取得部30~32は、自車両の周辺環境の情報などの、自車両が位置する環境の情報である環境情報を取得する。環境取得部30,31,32のそれぞれには、例えば、カメラ、ミリ波レーダー、ソナーなどの各種センサ、及び、車車間通信モジュール、路車間通信モジュールなどが用いられる。なお、環境取得部の数は、図4の3つに限ったものではない。 The environment acquisition units 30 to 32 acquire environmental information that is information about the environment in which the own vehicle is located, such as information about the surrounding environment of the own vehicle. Each of the environment acquisition units 30, 31, and 32 uses, for example, various sensors such as a camera, a millimeter wave radar, and a sonar, a vehicle-to-vehicle communication module, a road-to-vehicle communication module, and the like. Note that the number of environment acquisition units is not limited to three as shown in FIG.
 自動運転ECU20は、認知部21と、制御部である車両制御部22とを含む。なお、自動運転ECU20には、上記で説明した制御仕様、つまり自車両モデル要素と他車両モデル要素とが配置された2次元図に基づいて制御仕様定義装置1で定義された制御仕様が記憶されている。 The automatic driving ECU 20 includes a recognition unit 21 and a vehicle control unit 22 that is a control unit. Note that the automatic driving ECU 20 stores the control specifications described above, that is, the control specifications defined by the control specification definition device 1 based on the two-dimensional diagram in which the own vehicle model elements and other vehicle model elements are arranged. ing.
 認知部21は、環境取得部30~32で取得された環境情報を集約する。車両制御部22は、上記制御仕様と、認知部21で集約された環境情報とに基づいて、自車両の自動運転を制御する。例えば、車両制御部22は、自車両の位置及び目的地に基づいて、自車両が自動運転で走行すべき走行経路を生成し、走行経路に対して制御仕様が定義されている場合に、制御仕様と、認知部21で集約された環境情報とに基づいて制御量を演算する。ここでいう制御量は、例えば、目標ハンドル角、目標エンジン駆動量、及び、目標ブレーキ駆動量などを含む。車両制御部22は、車載ネットワーク52を介して、エンジンECU40、ブレーキECU41、及び、ステアリングECU42に、制御量などの演算結果を出力する。 The recognition unit 21 aggregates the environmental information acquired by the environment acquisition units 30 to 32. The vehicle control unit 22 controls automatic driving of the vehicle based on the control specifications and the environmental information collected by the recognition unit 21. For example, the vehicle control unit 22 generates a driving route for the own vehicle to travel automatically based on the position and destination of the own vehicle, and when control specifications are defined for the driving route, the vehicle control unit 22 The control amount is calculated based on the specifications and the environmental information aggregated by the recognition unit 21. The controlled amount here includes, for example, a target steering wheel angle, a target engine drive amount, a target brake drive amount, and the like. The vehicle control unit 22 outputs calculation results such as control amounts to the engine ECU 40, brake ECU 41, and steering ECU 42 via the in-vehicle network 52.
 エンジンECU40、ブレーキECU41、及び、ステアリングECU42のそれぞれは、演算結果に基づいてアクチュエータ制御を行う。以上のように構成された車両制御装置10によって、自車両の自動運転が実現される。なお、自動運転は、AD(Autonomous Driving)制御の自動運転であってもよいし、ADAS(Advanced Driver Assistance System)制御の自動運転であってもよい。 Each of the engine ECU 40, brake ECU 41, and steering ECU 42 performs actuator control based on the calculation results. Automated driving of the own vehicle is realized by the vehicle control device 10 configured as described above. Note that the automatic driving may be automatic driving under AD (Autonomous Driving) control or automatic driving under ADAS (Advanced Driver Assistance System) control.
 以上のように、第1車両の自動運転の制御に用いられる制御仕様を定義する制御仕様定義方法であって、第1車両の位置及び動作を表す第1モデル要素と第2車両の位置及び動作を表す第2モデル要素とを2次元図に配置する操作を取得し、第1モデル要素及び第2モデル要素が配置された2次元図に基づいて制御仕様を定義する制御仕様定義方法なので、制御仕様を適切に定義することができる。 As described above, there is provided a control specification definition method for defining control specifications used to control automatic driving of a first vehicle, the first model element representing the position and motion of the first vehicle, and the position and motion of the second vehicle. This is a control specification definition method that obtains an operation for arranging a second model element representing Specifications can be defined appropriately.
 また、第1車両が位置する環境を取得する環境取得部と、第1車両の位置及び動作を表す第1モデル要素並びに第2車両の位置及び動作を表す第2モデル要素が配置された2次元図に基づいて定義された制御仕様と、環境取得部で取得された環境とに基づいて第1車両の自動運転を制御する制御部とを備える車両制御装置なので、制御仕様を適切に定義することができる。 Further, the two-dimensional environment acquisition unit that acquires the environment in which the first vehicle is located, the first model element that represents the position and motion of the first vehicle, and the second model element that represents the position and motion of the second vehicle are arranged. Since the vehicle control device includes a control unit that controls automatic driving of the first vehicle based on control specifications defined based on the diagram and the environment acquired by the environment acquisition unit, the control specifications must be appropriately defined. Can be done.
 さらに、第1車両の自動運転の制御に用いられる制御仕様を定義する制御仕様定義装置であって、第1車両の位置及び動作を表す第1モデル要素並びに第2車両の位置及び動作を表す第2モデル要素を2次元図に配置する操作を取得する操作取得部と、第1モデル要素及び第2モデル要素が配置された2次元図に基づいて制御仕様を定義する定義部とを備える制御仕様定義装置なので、制御仕様を適切に定義することができる。 Furthermore, the control specification definition device defines control specifications used for controlling automatic driving of the first vehicle, the control specification definition device including a first model element representing the position and motion of the first vehicle, and a first model element representing the position and motion of the second vehicle. A control specification that includes an operation acquisition unit that acquires an operation for arranging two model elements in a two-dimensional diagram, and a definition unit that defines a control specification based on the two-dimensional diagram in which the first model element and the second model element are arranged. Since it is a definition device, control specifications can be appropriately defined.
実施の形態2.
 本実施の形態2では、実施の形態1で説明したモデル要素を用いて車両制御装置10の制御仕様を定義する例について説明する。なお、実施の形態2に係る制御仕様定義装置1及び車両制御装置10の構成は、実施の形態1で説明した図1の構成及び図4の構成と同様である。
Embodiment 2.
In the second embodiment, an example will be described in which control specifications of the vehicle control device 10 are defined using the model elements described in the first embodiment. Note that the configurations of the control specification definition device 1 and the vehicle control device 10 according to the second embodiment are similar to the configurations of FIG. 1 and FIG. 4 described in the first embodiment.
 図5は、自車両Xが他車両Yを追い抜くシナリオの例を示す図である。なお図5では、図2のモデル要素を用いずに表される自車両Xと他車両Yとの位置関係と、図2のモデル要素を用いて表される自車両Xと他車両Yとの位置関係とが示されている。 FIG. 5 is a diagram showing an example of a scenario in which the own vehicle X overtakes another vehicle Y. Note that in FIG. 5, the positional relationship between own vehicle X and other vehicle Y expressed without using the model elements of FIG. 2, and the positional relationship between own vehicle The positional relationship is shown.
 図5の例では、片側3車線の直線道路が想定されている。そして、開始時点では、中央車線を走行している自車両Xは、左車線を走行している他車両Yの右後方に位置し、自車両Xが加速することで、その時点から一定時間経過後の時点で自車両Xが左車線の他車両Yを追い抜くというシナリオが想定されている。 In the example of FIG. 5, a straight road with three lanes on each side is assumed. At the start point, the own vehicle A scenario is assumed in which vehicle X overtakes another vehicle Y in the left lane at a later point in time.
 図2のモデル要素を用いない場合には、このシナリオの自車両Xと他車両Yとの位置関係は、図5の左側の上下2つの図で表される。一方、図2のモデル要素を用いた場合には、このシナリオの自車両Xと他車両Yとの位置関係は、図5の右側の1つの図で表される。図5の右側の図では、開始時点と、開始時点から一定時間経過後の時点との両方について、自車両X及び他車両Yのオブジェクトノードが配置され、同じ車両のオブジェクトノード同士が矢印で結ばれている。図5の例では、左車線の他車両Yは一定速度で走行し、中央車線の自車両Xは加速して走行している。これによって、自車両Xは、一定速度で走行している他車両Yを追い抜くために加速していることが、振る舞いを表す矢印を比較的長くすることによって表されている。このようにモデル要素を用いることによって、自車両X及び他車両Yのそれぞれの位置及び振る舞いを、1つ図で表現することが可能となる。 If the model elements in FIG. 2 are not used, the positional relationship between the own vehicle X and the other vehicle Y in this scenario is represented by the upper and lower two diagrams on the left side of FIG. 5. On the other hand, when the model elements of FIG. 2 are used, the positional relationship between the own vehicle X and the other vehicle Y in this scenario is represented by one diagram on the right side of FIG. 5. In the diagram on the right side of FIG. 5, the object nodes of own vehicle It is. In the example of FIG. 5, the other vehicle Y in the left lane is traveling at a constant speed, and the own vehicle X in the center lane is traveling at an accelerated speed. This indicates that the host vehicle X is accelerating in order to overtake the other vehicle Y, which is traveling at a constant speed, by making the arrow representing the behavior relatively long. By using model elements in this way, it becomes possible to express the respective positions and behaviors of the own vehicle X and the other vehicle Y in one diagram.
 図6は、図2のモデル要素を用いて自車両の振る舞いに分岐を設けた例を示す図である。図6の例でも、片側3車線の直線道路が想定されている。自車両が中央車線を走行している状態において、「左車線に車線変更を行う」、「中央車線を走行継続する」、「右車線に車線変更を行う」から一つが選択して実行された場合の自車両位置の関係が網羅的に表されている。図6の例では、2次元図(平面図)に「車線上」という枠を設けることで、車線変更中の状態が中間状態として表現可能となっている。 FIG. 6 is a diagram showing an example in which branches are provided in the behavior of the own vehicle using the model elements of FIG. 2. In the example of FIG. 6 as well, a straight road with three lanes on each side is assumed. While the vehicle is driving in the center lane, one option is selected and executed from "Change lane to left lane," "Continue driving in center lane," or "Change lane to right lane." The relationship between the vehicle's position in each case is comprehensively expressed. In the example of FIG. 6, the state in which the vehicle is changing lanes can be expressed as an intermediate state by providing a frame "on the lane" in the two-dimensional diagram (plan view).
 図6の例では、選択条件は明記されていないが、分岐後の振る舞い、つまり矢印に選択条件が付記されてもよい。例えば、選択条件として「中央車線前方に他車両がいた場合、右車線に車線変更する」という内容が付記されてもよい。図6のような分岐を用いることによって複数の動作パターンを含むシナリオを、1つの図面で表現することが可能となる。第1モデル要素の第1車両の動作及び第2モデル要素の第2車両の動作の少なくともいずれか一方に分岐が設けられているので、制御仕様を適切に定義することができる。 In the example of FIG. 6, the selection condition is not specified, but the selection condition may be added to the behavior after branching, that is, the arrow. For example, as a selection condition, the content ``If there is another vehicle in front of the center lane, change lanes to the right lane'' may be added. By using branching as shown in FIG. 6, it is possible to express a scenario including a plurality of motion patterns in one drawing. Since a branch is provided in at least one of the operation of the first vehicle of the first model element and the operation of the second vehicle of the second model element, control specifications can be appropriately defined.
 図7は、図2のモデル要素を用いて同期を設けた例を示す図である。図7では、図2のモデル要素を用いずに表される自車両Xと他車両Yとの位置関係と、図2のモデル要素を用いて表される自車両Xと他車両Yとの位置関係とが示されている。 FIG. 7 is a diagram showing an example in which synchronization is provided using the model elements of FIG. 2. 7 shows the positional relationship between own vehicle X and other vehicle Y expressed without using the model elements of FIG. 2, and the positional relationship between own vehicle relationship is shown.
 時点(1)の同期として、中央車線を走行している自車両Xと、左車線を走行している他車両Yとが進行方向に対して並走している位置関係が表されている。時点(1)から自車両Xは時速60km/hで走行し、他車両Yは40km/hで走行する。時点(1)から一定時間経過後の時点(2)の同期として、自車両Xが他車両Yを追い抜く位置関係が表されている。このような位置関係は、図5のようにオブジェクトノード及び矢印だけでもある程度表現できるが、図7のような同期を用いることによって、同じ時点での位置関係を明確化できる。このため、例えば図6の分岐後の自車両と他車両との位置関係を明確に表現することなどが可能となる。第1モデル要素の第1車両の動作の少なくとも一部と第2モデル要素の第2車両の動作の少なくとも一部とが同期されているので、制御仕様を適切に定義することができる。 As a synchronization with time point (1), a positional relationship is shown in which the own vehicle X traveling in the center lane and another vehicle Y traveling in the left lane are running parallel to each other in the direction of travel. From time point (1), own vehicle X travels at a speed of 60 km/h, and other vehicle Y travels at a speed of 40 km/h. The positional relationship in which the host vehicle X overtakes the other vehicle Y is shown as synchronization at the time point (2) after a certain period of time has elapsed from the time point (1). Although such a positional relationship can be expressed to some extent using only object nodes and arrows as shown in FIG. 5, by using synchronization as shown in FIG. 7, the positional relationship at the same point in time can be clarified. Therefore, for example, it is possible to clearly express the positional relationship between the own vehicle and other vehicles after the branch in FIG. 6. Since at least a portion of the operation of the first vehicle of the first model element and at least a portion of the operation of the second vehicle of the second model element are synchronized, control specifications can be appropriately defined.
 図8は、図2のモデル要素を用いて車両の振る舞い以外の動作を行うシナリオの例を示す図である。図8の例では、片側3車線の直線道路にて、中央車線を走行している自車両が、左車線を走行している他車両の位置及び動作などを確認(認知)することが表されている。 FIG. 8 is a diagram showing an example of a scenario in which the model elements of FIG. 2 are used to perform actions other than vehicle behavior. The example in Figure 8 shows that on a straight road with three lanes on each side, the own vehicle traveling in the center lane checks (recognizes) the position and movement of another vehicle traveling in the left lane. ing.
 第1車両の動作は、第1車両の位置及び動作並びに第1車両からの物体の認知の少なくともいずれか一つを含み、第2車両の動作は、第2車両の位置及び動作並びに第2車両からの物体の認知の少なくともいずれか一つを含むので、制御仕様を適切に定義することができる。 The operation of the first vehicle includes at least one of the position and operation of the first vehicle and recognition of an object from the first vehicle, and the operation of the second vehicle includes the position and operation of the second vehicle and the recognition of an object from the first vehicle. control specifications can be appropriately defined.
 図9は、図2のモデル要素を用いて自車両及び他車両が車線変更するシナリオの例を示す図である。図9の例では、自車両は中央車線から左車線に車線変更し、他車両は左車線から中央車線に車線変更することが表されている。「車線上」では自車両と他車両とが同じ位置に配置されているため、衝突可能性がある。以上のようにモデル要素を用いることによって、フローチャートなどでは表現できなかった車線変更中の自車両と他車両との衝突可能性を表現することが可能となる。なお、図9では、右車線を省略している。 FIG. 9 is a diagram showing an example of a scenario in which the own vehicle and another vehicle change lanes using the model elements of FIG. 2. In the example of FIG. 9, the own vehicle changes lanes from the center lane to the left lane, and other vehicles change lanes from the left lane to the center lane. Since your vehicle and other vehicles are located in the same position "on the lane," there is a possibility of collision. By using the model elements as described above, it becomes possible to express the possibility of a collision between the own vehicle and another vehicle during a lane change, which could not be expressed using a flowchart or the like. Note that in FIG. 9, the right lane is omitted.
 以上のように、実施の形態1の内容に加えて、分岐、同期、認知(確認)によって、制御仕様を適切に定義することができる。 As described above, in addition to the contents of Embodiment 1, control specifications can be appropriately defined by branching, synchronization, and recognition (confirmation).
実施の形態3.
 本実施の形態3では、実施の形態1で説明したモデル要素を組合せて車両制御装置10の制御仕様を定義する例について説明する。なお、実施の形態3に係る制御仕様定義装置1及び車両制御装置10の構成は、実施の形態1で説明した図1の構成及び図4の構成と同様である。
Embodiment 3.
In the third embodiment, an example will be described in which the control specifications of the vehicle control device 10 are defined by combining the model elements described in the first embodiment. Note that the configurations of the control specification definition device 1 and the vehicle control device 10 according to the third embodiment are similar to the configurations in FIG. 1 and FIG. 4 described in the first embodiment.
 図10は、自車両Xが、自車両Xの前方の他車両Yを追い越すシナリオの例を示す図である。なお図10では、図2のモデル要素を用いずに表される自車両Xと他車両Yとの位置関係と、図2のモデル要素を用いて表される自車両Xと他車両Yとの位置関係とが示されている。 FIG. 10 is a diagram showing an example of a scenario in which the own vehicle X overtakes another vehicle Y in front of the own vehicle X. Note that in FIG. 10, the positional relationship between own vehicle X and other vehicle Y expressed without using the model elements of FIG. 2, and the positional relationship between own vehicle The positional relationship is shown.
 開始時点である時点(1)では、自車両Xは左車線を走行しており、自車両Xの前方には他車両Yが走行している。自車両Xはまず、他車両Yの速度を確認し、他車両Yの速度が閾値以下であり、かつ、自車両Xの車線変更が可能であるかを判定する。 At a certain starting point (1), the host vehicle X is running in the left lane, and another vehicle Y is running in front of the host vehicle X. The host vehicle X first checks the speed of the other vehicle Y, and determines whether the speed of the other vehicle Y is below a threshold value and whether the host vehicle X can change lanes.
 他車両Yの速度が閾値以下であり、かつ、自車両Xの車線変更が可能であると判定されなかった場合(少なくともいずれか一方が否定された場合)には、時点(3)-1の自車両Xは、左車線の走行を継続し、時点(3)-1と同期する時点(3)の他車両Yを追従する。 If the speed of the other vehicle Y is below the threshold and it is not determined that it is possible for the own vehicle X to change lanes (if at least one of the conditions is denied), then The host vehicle X continues to travel in the left lane and follows the other vehicle Y at time (3), which is synchronized with time (3)-1.
 他車両Xの速度が閾値以下であり、かつ、自車両Yの車線変更が可能であると判定された場合には、時点(2)の自車両Xに移行するために、自車両Xは中央車線へ車線変更を行い、車線変更後に加速を行う。そして、時点(2)の自車両Xは、時点(2)の他車両Yの位置を確認し、他車両Yが自車両Xから一定距離以上離れて後方に位置しているか否かを判定する。 If it is determined that the speed of other vehicle Change lanes and accelerate after changing lanes. The own vehicle X at time (2) then checks the position of the other vehicle Y at time (2) and determines whether the other vehicle Y is located behind the own vehicle .
 他車両Yが自車両Xから一定距離以上離れて後方に位置していると判定された場合には、時点(3)-2の自車両Xに移行するために、自車両Xは左車線へ車線変更を行う。これにより、時点(3)-2の自車両Xは、時点(3)-2と同期する時点(3)の他車両Yの前方を走行することになり、追い越しが完了する。 If it is determined that the other vehicle Y is located behind the own vehicle X by a certain distance or more, the own vehicle Make a lane change. As a result, the own vehicle X at the time point (3)-2 travels in front of the other vehicle Y at the time point (3), which is synchronized with the time point (3)-2, and the overtaking is completed.
 他車両Yが自車両Xから一定距離以上離れて後方に位置していないと判定された場合には、時点(3)-3の自車両Xは、中央車線の走行を継続し、時点(3)-3と同期する時点(3)の他車両Yとの間の距離を広げる。 If it is determined that the other vehicle Y is not located behind the own vehicle X by more than a certain distance, the own vehicle )-3 and the time point (3) when synchronizing with the other vehicle Y is increased.
 なお、以上のようなシナリオにおいて、「他車両Yの速度を確認」や「他車両Yの位置を確認」といった自車両Xの動作を行うための情報は認知部21にて集約され、車両制御装置10の制御、つまり自車両Xの動作は車両制御部22にて決定される。 In addition, in the above scenario, information for performing actions of own vehicle X such as "checking the speed of other vehicle Y" and "checking the position of other vehicle Y" is aggregated by the recognition unit 21, The control of the device 10, that is, the operation of the host vehicle X, is determined by the vehicle control unit 22.
 図11は、図10に示す2次元図に基づく制御仕様を用いた、車両制御装置10の制御、つまり自車両Xの動作を示すフローチャートである。なお説明の便宜上、図10で説明した動作は、以下で説明する図11の動作と多少異なるが、図11の動作と完全同一にすることは可能である。 FIG. 11 is a flowchart showing the control of the vehicle control device 10, that is, the operation of the host vehicle X using the control specifications based on the two-dimensional diagram shown in FIG. For convenience of explanation, the operation described in FIG. 10 is somewhat different from the operation in FIG. 11 described below, but it is possible to make it completely the same as the operation in FIG. 11.
 まず、ステップS11にて、自車両は、自車両の前方を走行する他車両の速度を検出して確認する。この動作は、図10の時点(1)の動作に対応する。 First, in step S11, the own vehicle detects and confirms the speed of another vehicle traveling in front of the own vehicle. This operation corresponds to the operation at time (1) in FIG.
 次に、ステップS12にて、自車両は、追い越しを行うか否かの判定と、車線変更可能か否かの判定とを行う。追い越しを行うか否かの判定は、例えば、他車両の速度が閾値以下であるか否かによって判定される。車線変更可能か否かの判定は、例えば、車線変更先に別の他車両が存在するか否かによって判定される。 Next, in step S12, the own vehicle determines whether or not to overtake, and determines whether or not it is possible to change lanes. The determination as to whether or not to overtake is made, for example, based on whether the speed of the other vehicle is below a threshold value. Whether or not it is possible to change lanes is determined, for example, based on whether there is another vehicle at the destination of the lane change.
 追い越しを行うと判定されなかった場合、または、車線変更可能であると判定されなかった場合には、図11の動作が終了する。このときの動作は、図10の時点(3)-1の動作に対応する。一方、追い越しを行うと判定され、かつ、車線変更可能であると判定された場合には、処理がステップS13に進む。 If it is not determined that overtaking is to be performed, or if it is not determined that lane change is possible, the operation in FIG. 11 ends. The operation at this time corresponds to the operation at time (3)-1 in FIG. On the other hand, if it is determined that overtaking is to be performed and it is determined that a lane change is possible, the process proceeds to step S13.
 ステップS13にて、自車両は車線変更を行い、ステップS14にて、自車両は加速を行って左車線の他車両を追い抜く。 In step S13, the own vehicle changes lanes, and in step S14, the own vehicle accelerates to overtake other vehicles in the left lane.
 次に、ステップS15にて、自車両は、他車両が自車両から一定距離以上離れて後方に位置するか否かを判定する。他車両が自車両から一定距離以上離れて後方に位置すると判定された場合には処理がステップS16に進む。一方、他車両が自車両から一定距離以上離れて後方に位置していないと判定された場合には、図11の動作が終了する。このときの動作は、図10の時点(3)-3の動作に対応する。 Next, in step S15, the own vehicle determines whether or not another vehicle is located behind the own vehicle at a distance of more than a certain distance. If it is determined that the other vehicle is located behind the host vehicle at a distance of more than a certain distance, the process proceeds to step S16. On the other hand, if it is determined that the other vehicle is not located behind the host vehicle by a certain distance or more, the operation in FIG. 11 ends. The operation at this time corresponds to the operation at time (3)-3 in FIG.
 ステップS16にて、自車両は、他車両が走行している車線に車線変更を行い、追い越しが完了する。このときの動作は、図10の時点(3)-2の動作に対応する。 In step S16, the own vehicle changes lanes to the lane in which the other vehicle is traveling, and the overtaking is completed. The operation at this time corresponds to the operation at time (3)-2 in FIG.
 以上のように、実施の形態1の内容に加えて、分岐、同期、認知(確認)によって、制御仕様を適切に定義することができる。また、実施の形態3によれば、図2のモデル要素を組合せることにより、自車両及び他車両の位置及び動作を考慮した複数のシナリオを、制御仕様として定義することができる。なお、実施の形態3では追い越しを想定したシナリオにて説明を行ったが、適用可能なシナリオはこれらに限らず、多岐への応用が可能である。 As described above, in addition to the contents of Embodiment 1, control specifications can be appropriately defined by branching, synchronization, and recognition (confirmation). Further, according to the third embodiment, by combining the model elements shown in FIG. 2, it is possible to define a plurality of scenarios that take into account the positions and operations of the own vehicle and other vehicles as control specifications. Although the third embodiment has been described using a scenario assuming overtaking, the applicable scenarios are not limited to these and can be applied to a wide variety of other situations.
実施の形態4.
 本実施の形態4では、実施の形態1で説明したモデル要素を組合せて車両制御装置10の制御仕様を定義する他の例について説明する。なお、実施の形態4に係る制御仕様定義装置1及び車両制御装置10の構成は、実施の形態1で説明した図1の構成及び図4の構成と同様である。
Embodiment 4.
In the fourth embodiment, another example will be described in which the control specifications of the vehicle control device 10 are defined by combining the model elements described in the first embodiment. Note that the configurations of the control specification definition device 1 and the vehicle control device 10 according to the fourth embodiment are similar to the configurations of FIG. 1 and FIG. 4 described in the first embodiment.
 図12は、側道などの合流前車線を走行している自車両Xが、本線などの合流先車線に合流するシナリオの例を示す図である。なお図12では、図2のモデル要素を用いずに表される自車両Xと他車両Yとの位置関係と、図2のモデル要素を用いて表される自車両Xと他車両Yとの位置関係とが示されている。 FIG. 12 is a diagram showing an example of a scenario in which the own vehicle X, which is traveling on a pre-merging lane such as a side road, merges into a merging destination lane such as a main road. Note that FIG. 12 shows the positional relationship between own vehicle X and other vehicle Y expressed without using the model elements of FIG. 2, and the positional relationship between own vehicle The positional relationship is shown.
 開始時点である時点(1)では、自車両Xは、合流後に消失する合流前車線を走行しており、他車両Yは合流先車線を走行している。自車両Xは、他車両Yの速度及び位置を確認し、自車両Xの合流先車線への車線変更が可能であるかを判定する。自車両Xの合流先車線への車線変更が可能であると判定された場合には、時点(2)の自車両Xに移行するために、自車両Xは合流先車線への車線変更を行い、車線変更後に加速を行う。これにより、時点(2)の自車両Xは、時点(2)と同期する時点(2)-1の他車両Yの後方を走行するか、時点(2)と同期する時点(2)-2の他車両Yの前方を走行する。 At time point (1), which is the starting point, the own vehicle X is traveling in the pre-merging lane that disappears after merging, and the other vehicle Y is traveling in the destination lane. The own vehicle X checks the speed and position of the other vehicle Y, and determines whether it is possible to change lanes to the merging lane of the own vehicle X. If it is determined that it is possible for own vehicle X to change lanes to the merging lane, then own vehicle X changes lanes to the merging lane in order to move to own vehicle , accelerate after changing lanes. As a result, the own vehicle Drive in front of another vehicle Y.
 自車両Xの合流先車線への車線変更が可能であると判定されなかった場合には、自車両Xは、減速しながら合流前車線を走行し、他車両Yが自車両Xを追い抜くことを確認する。次に、自車両Xは、他車両Yに続く別の他車両Z(図示せず。)の位置及び速度を確認し、自車両Xの合流先車線への車線変更が可能であるかを判定する。自車両Xの合流先車線への車線変更が可能であると判定された場合には、時点(3)の自車両Xに移行するために、自車両Xは合流先車線への車線変更を行い、車線変更後に加速を行う。これにより、時点(3)の自車両Xは、時点(3)の他車両Yの後方を走行する。 If it is not determined that it is possible for the own vehicle X to change lanes to the merging lane, the own vehicle confirm. Next, the own vehicle X checks the position and speed of another vehicle Z (not shown) following the other vehicle Y, and determines whether it is possible for the own vehicle do. If it is determined that it is possible for own vehicle X to change lanes to the merging lane, then own vehicle X changes lanes to the merging lane in order to move to own vehicle , accelerate after changing lanes. As a result, the own vehicle X at the time point (3) runs behind the other vehicle Y at the time point (3).
 自車両Xの合流先車線への車線変更が可能であると判定されず、かつ、自車両Xが合流前車線の消失地点の手前まで到達したと判定された場合には、自車両Xは走行を停止し、他車両Yを含めて他車両が自車両Xを追い抜くことを確認する。停止後の自車両Xは、上記と同様に自車両Xの合流先車線への車線変更が可能であるかを判定し、自車両Xの合流先車線への車線変更が可能であると判定された場合には、時点(4)の自車両Xに移行するために、自車両Xは合流先車線への車線変更及び加速を行う。これにより、時点(4)の自車両はX、時点(4)の自車両Xの前方に位置する時点(4)の他車両Z(図示せず。)の後方を走行する。 If it is not determined that it is possible for vehicle X to change lanes to the merging lane, and it is determined that vehicle Stop the vehicle and check that other vehicles including vehicle Y will overtake vehicle X. After stopping, own vehicle X determines whether it is possible to change lanes to the merging lane of own vehicle In this case, in order to move to the own vehicle X at time (4), the own vehicle X changes lanes to the merging destination lane and accelerates. As a result, the own vehicle at time (4) travels behind another vehicle Z (not shown) at time (4), which is located in front of own vehicle X at time (4).
 以上のようなシナリオにおいて、「他車両の位置、速度を確認」といった自車両Xの動作を行うための情報は認知部21にて集約され、車両制御装置10の制御、つまり自車両Xの動作は車両制御部22にて決定される。 In the scenario described above, information for performing actions of own vehicle X such as "checking the position and speed of other vehicles" is aggregated by the recognition unit 21, and information for performing actions of own vehicle is determined by the vehicle control unit 22.
 図13は、図12に示す2次元図に基づく制御仕様を用いた、車両制御装置10の制御、つまり自車両Xの動作を示すフローチャートである。説明の便宜上、図12で説明した動作は、以下で説明する図13の動作と多少異なるが、図13の動作と完全同一にすることは可能である。 FIG. 13 is a flowchart showing the control of the vehicle control device 10, that is, the operation of the host vehicle X using the control specifications based on the two-dimensional diagram shown in FIG. For convenience of explanation, the operation described in FIG. 12 is somewhat different from the operation in FIG. 13 described below, but it is possible to make it completely the same as the operation in FIG. 13.
 まず、ステップS21にて、自車両は、合流先車線の他車両を確認する。次に、ステップS22にて、自車両は、合流先車線への車線変更が可能であるか否かを判定する。例えば、自車両は、他車両との距離が閾値以上であり、かつ、他車両の速度が閾値以下であると判定された場合には、合流先車線への車線変更が可能と判定し、他車両との距離が閾値以上であり、かつ、他車両の速度が閾値以下であると判定されなかった場合(少なくといずれか一方が非該当な場合)には、合流先車線への車線変更が可能でないと判定する。 First, in step S21, the host vehicle checks other vehicles in the merging lane. Next, in step S22, the host vehicle determines whether it is possible to change lanes to the merging destination lane. For example, if it is determined that the distance to the other vehicle is greater than or equal to the threshold and the speed of the other vehicle is less than or equal to the threshold, the own vehicle determines that it is possible to change lanes to the merging lane, and If the distance to the vehicle is greater than or equal to the threshold and the speed of the other vehicle is not determined to be less than or equal to the threshold (if at least one of them is not applicable), the lane change to the merging lane is not allowed. Determine that it is not possible.
 合流先車線への車線変更が可能であると判定された場合には、処理がステップS23に進む。一方、合流先車線への車線変更が可能であると判定されなかった場合には、処理がステップS26に進む。 If it is determined that it is possible to change lanes to the merging destination lane, the process proceeds to step S23. On the other hand, if it is not determined that a lane change to the merging destination lane is possible, the process proceeds to step S26.
 ステップS23にて自車両は減速を行い、ステップS24にて自車両は合流前車線の消失地点の手前まで到達したか否かを判定する。自車両が合流前車線の消失地点の手前まで到達したと判定された場合には、処理がステップS25に進み、自車両が当該地点の手前まで到達していないと判定された場合には、処理がステップS21に戻る。 In step S23, the own vehicle decelerates, and in step S24, it is determined whether the own vehicle has reached the vanishing point of the pre-merging lane. If it is determined that the own vehicle has arrived before the vanishing point in the pre-merging lane, the process proceeds to step S25, and if it is determined that the own vehicle has not arrived before the point, the process proceeds to step S25. returns to step S21.
 ステップS25にて自車両は停止する。その後、処理がステップS21に戻る。 The host vehicle stops in step S25. After that, the process returns to step S21.
 ステップS26にて、自車両は合流先車線に車線変更し、ステップS27にて、自車両は加速を行う。その後、図13の動作が終了する。 In step S26, the own vehicle changes lanes to the merging destination lane, and in step S27, the own vehicle accelerates. After that, the operation of FIG. 13 ends.
 以上のように、実施の形態1の内容に加えて、分岐、同期、認知(確認)によって、制御仕様を適切に定義することができる。また、実施の形態4によれば、図2のモデル要素を組合せることにより、自車両及び他車両の位置及び動作を考慮した複数のシナリオを、制御仕様として定義することができる。なお、実施の形態4では合流を想定したシナリオにて説明を行ったが、適用可能なシナリオはこれらに限らず、多岐への応用が可能である。 As described above, in addition to the contents of Embodiment 1, control specifications can be appropriately defined by branching, synchronization, and recognition (confirmation). Furthermore, according to the fourth embodiment, by combining the model elements shown in FIG. 2, it is possible to define a plurality of scenarios that take into account the positions and operations of the own vehicle and other vehicles as control specifications. Note that although the fourth embodiment has been described using a scenario assuming merging, the applicable scenarios are not limited to these and can be applied to a wide variety of other situations.
実施の形態5.
 実施の形態5では、実施の形態1で説明したモデル要素を用いて自車両及び他車両の動作について網羅的に表現した例について説明する。なお、実施の形態5に係る制御仕様定義装置1及び車両制御装置10の構成は、実施の形態1で説明した図1の構成及び図4の構成と同様である。
Embodiment 5.
In Embodiment 5, an example will be described in which the motions of the own vehicle and other vehicles are comprehensively expressed using the model elements described in Embodiment 1. Note that the configurations of the control specification definition device 1 and the vehicle control device 10 according to the fifth embodiment are similar to the configurations of FIG. 1 and FIG. 4 described in the first embodiment.
 図14から図16までは、図2のモデル要素を用いて片側3車線の直線道路を走行する自車両の振る舞いを網羅的に示す図である。図14では、自車両の現在地から速度の変更可能性と車線の変更可能性とが、自車両の網羅的な振る舞いとして図示されている。同様に、図15には、自車両の初期位置が中央車線である場合の自車両の網羅的な振る舞いが図示され、図16には、自車両の初期位置が右車線である場合の自車両の網羅的な振る舞いが図示されている。 14 to 16 are diagrams comprehensively showing the behavior of the own vehicle traveling on a straight road with three lanes on each side using the model elements of FIG. 2. In FIG. 14, the possibility of changing the speed and the possibility of changing the lane from the current location of the own vehicle are illustrated as comprehensive behavior of the own vehicle. Similarly, FIG. 15 shows the comprehensive behavior of the own vehicle when the initial position of the own vehicle is in the center lane, and FIG. 16 shows the comprehensive behavior of the own vehicle when the initial position of the own vehicle is in the right lane. The exhaustive behavior of is illustrated.
 図14に示すように、自車両の初期位置が左車線である場合、まず自車両は、加速、速度維持、減速という3つの振る舞いの中からいずれかを選択する可能性がある。また、次の選択の分岐として、自車両は、車線維持、車線変更という2つの振る舞いの中からいずれかを選択する可能性がある。図15及び図16においても、自車両は、図14と同様の振る舞いの中からいずれかを選択する可能性がある。なお、図14から図16までに記載されている数値は、取りうる振る舞いの数を表現している。 As shown in FIG. 14, when the initial position of the vehicle is in the left lane, the vehicle may first select one of three behaviors: acceleration, speed maintenance, and deceleration. Furthermore, as the next choice, the host vehicle may select one of two behaviors: lane maintenance and lane change. In FIGS. 15 and 16 as well, the host vehicle may select one of the behaviors similar to those in FIG. 14. Note that the numerical values shown in FIGS. 14 to 16 represent the number of possible behaviors.
 図17は、自車両の遷移パターンを網羅的に示す図であり、図18は、他車両の遷移パターンを網羅的に示す図である。また、図19は、自車両の遷移パターンと他車両の遷移パターンとの組み合わせを網羅的に示す図である。 FIG. 17 is a diagram comprehensively showing the transition pattern of the own vehicle, and FIG. 18 is a diagram comprehensively showing the transition pattern of other vehicles. Further, FIG. 19 is a diagram comprehensively showing combinations of transition patterns of the own vehicle and transition patterns of other vehicles.
 初期状態として自車両が左車線(図17のA0)、他車両が中央車線(図18のB0)に位置した場合には、自車両は図17に示すようにA0→A1→A2→A3と遷移していき、他車両は図18に示すようにB0→B1→B2→B3と遷移していく。自車両及び他車両のそれぞれは、遷移途中に加速や減速を行う可能性があるため、並走しなくなる可能性もあるが、図19に示される自車両及び他車両の遷移パターンによれば、その並走の可能性を把握することができる。具体的には、「A1B1」、「A2B2」、「A3B3」では、自車両と他車両とが並走しているため、自車両と他車両とが同じ車線にいれば衝突する可能性が考えられる。 In the initial state, when the own vehicle is located in the left lane (A0 in Figure 17) and the other vehicle is located in the center lane (B0 in Figure 18), the own vehicle changes from A0 → A1 → A2 → A3 as shown in Figure 17. As shown in FIG. 18, other vehicles make a transition from B0 to B1 to B2 to B3. Since the own vehicle and the other vehicle may each accelerate or decelerate during the transition, there is a possibility that they will not run parallel to each other, but according to the transition pattern of the own vehicle and the other vehicle shown in FIG. You can grasp the possibility of parallel running. Specifically, in "A1B1," "A2B2," and "A3B3," the own vehicle and another vehicle are running parallel to each other, so if the own vehicle and the other vehicle are in the same lane, there is a possibility of a collision. It will be done.
 図20は、図19で示した遷移パターンのうち、「A1B1」での衝突可能性の分析結果を示す図である。図17に示すように、A1では自車両は左車線または中央車線に存在する可能性がある。一方、図18に示すように、B1では他車両は左車線、中央車線、右車線のいずれかに存在する可能性がある。図20の状態No.1からNo.6までのうち、自車両及び他車両が同じ車線に位置する状態No.1及び状態No.5では衝突可能性がある。また、「A1B1」の最終状態としては自車両及び他車両の位置は異なるが、「A0B0」から「A1B1」への遷移を考慮すると、遷移時に交差する可能性がある状態No.4でも衝突可能性がある。一方、状態No.2、3,6ではいずれも衝突の可能性が無い。 FIG. 20 is a diagram showing an analysis result of the possibility of collision in "A1B1" among the transition patterns shown in FIG. 19. As shown in FIG. 17, in A1, there is a possibility that the host vehicle is in the left lane or the center lane. On the other hand, as shown in FIG. 18, in B1, there is a possibility that another vehicle is present in either the left lane, the center lane, or the right lane. State No. in FIG. 1 to No. Among conditions up to 6, state No. 6 where the own vehicle and the other vehicle are located in the same lane. 1 and state no. 5, there is a possibility of collision. In addition, although the positions of the own vehicle and the other vehicle are different in the final state of "A1B1", considering the transition from "A0B0" to "A1B1", the state Nos. that may intersect at the time of transition. There is a possibility of collision even with 4. On the other hand, condition No. In cases 2, 3, and 6, there is no possibility of collision.
 以上のように、図2の要素を用いて自車両と他車両との位置関係を網羅的に表現した本実施の形態5によれば、フローチャートなどでは確認できなかった衝突可能性を確認することが可能となる。なお、制御仕様定義装置1は、定義部3で定義された制御仕様に基づいて、図20のような自車両と他車両との衝突可能性の分析結果を生成してもよい。 As described above, according to the fifth embodiment, which comprehensively expresses the positional relationship between the host vehicle and other vehicles using the elements shown in FIG. becomes possible. Note that the control specification definition device 1 may generate an analysis result of the possibility of collision between the host vehicle and another vehicle as shown in FIG. 20 based on the control specifications defined by the definition unit 3.
実施の形態6.
 実施の形態6では、実施の形態1から実施の形態5のいずれかで説明したモデル要素を用いて自車両及び他車両の動作について安全分析であるSTPAを実施したものである。
Embodiment 6.
In Embodiment 6, STPA, which is a safety analysis, is performed on the operation of the own vehicle and other vehicles using the model elements described in any of Embodiments 1 to 5.
 図21は、本実施の形態6に係る制御仕様定義装置1の構成を示すブロック図である。図1の制御仕様定義装置1との違いは、安全分析部4を備えていることである。安全分析部4は、操作取得部2で定義された自車両のモデル要素及び他車両のモデル要素が配置された2次元図(平面図)に基づいて安全分析を行い、分析結果を用いて定義部3にて自車両の自動運転の制御に用いられる制御仕様が定義される。 FIG. 21 is a block diagram showing the configuration of the control specification definition device 1 according to the sixth embodiment. The difference from the control specification definition device 1 in FIG. 1 is that it includes a safety analysis section 4. The safety analysis unit 4 performs safety analysis based on the two-dimensional diagram (plan view) in which the model elements of the own vehicle and the model elements of the other vehicle defined by the operation acquisition unit 2 are arranged, and uses the analysis results to define the In part 3, control specifications used to control automatic driving of the host vehicle are defined.
 図22は、安全分析部4にて実施される安全分析のフローを示す。まず、ステップS31では、システムのアクシデント、ハザード、安全制約を識別する。これらはSTPAの手順1st Stepと同様である。 FIG. 22 shows the flow of safety analysis performed by the safety analysis section 4. First, in step S31, accidents, hazards, and safety constraints of the system are identified. These steps are the same as the 1st Step of STPA.
 次に、ステップS32では、分析対象となる自動運転システムの振る舞いを表現したシナリオを操作取得部2から取得する。従来の単なるSTPAでは、次のステップS33でコントロールストラクチャを構築するために、システムの登場人物とこれらの相互作用を洗い出すことになる。ところが、本開示では、ステップS32の段階で、登場人物だけでなく、これらの振る舞いがモデル要素を活用されて整理されたシナリオとしてインプットすることで、コントロールストラクチャ内の要素や相互作用の抜け漏れを防ぐことができるようになる。 Next, in step S32, a scenario expressing the behavior of the automatic driving system to be analyzed is acquired from the operation acquisition unit 2. In conventional simple STPA, the characters of the system and their interactions are identified in order to construct a control structure in the next step S33. However, in the present disclosure, in step S32, not only the characters but also their behavior is input as an organized scenario using model elements, thereby eliminating omissions in elements and interactions in the control structure. be able to prevent it.
 次に、ステップS33では、STPAの手順2nd Stepと同様にコントロールストラクチャを構築する。従来のSTPAの手順に従い、コントロールストラクチャを構築する。ステップS32で定義したシナリオと整合性を合わせることによって、振る舞いも明確にすることができる。 Next, in step S33, a control structure is constructed in the same manner as in the 2nd Step of the STPA procedure. Build a control structure according to conventional STPA procedures. The behavior can also be clarified by making it consistent with the scenario defined in step S32.
 次に、ステップS34では、STPAの手順3rd Stepと同様にコントロールストラクチャにしえされているコントロールアクションに対し、ガイドワードを適用し、非安全な相互作用(UCA:Unsafe Control Action)を抽出する。 Next, in step S34, similar to the 3rd step of the STPA procedure, guide words are applied to the control actions set in the control structure to extract unsafe interactions (UCA: Unsafe Control Actions).
 次に、ステップS35では、ステップS34で抽出されたUCAシナリオについてモデル要素を活用したシナリオで表現する。モデル要素を活用した図面でUCAを示すことにより、アクシデントまでの一連のシナリオを明確にすることができる。また、UCAとして抽出されなかったところについては、UCAが無いことを明示することができる。 Next, in step S35, the UCA scenario extracted in step S34 is expressed as a scenario that utilizes the model elements. By showing the UCA in a drawing that utilizes model elements, it is possible to clarify the series of scenarios leading up to the accident. Furthermore, for locations that are not extracted as UCA, it can be clearly indicated that there is no UCA.
 次に、ステップS36では、STPAの手順4th Stepとしてアクシデントの要因を特定し、アクシデントの対策を検討する。なお、本フローはSTPAを想定したフローであるが、安全分析の手法をSTPAに限定されるものではない。 Next, in step S36, the cause of the accident is identified as the fourth step of the STPA procedure, and countermeasures for the accident are considered. Note that although this flow is a flow assuming STPA, the safety analysis method is not limited to STPA.
 図23は、ステップS31に従い、自動運転システムにおける高速道での前方車に追従するユースケースを想定し、前方車を認識する機能の事例に対して、システムのアクシデント、ハザード、安全制約を定義した事例の図である。ここでは、以下のように定義している。アクシデントとしては、他車両、周辺等に衝突する又は衝突される。ハザードとしては、前方車両が認識(確認)できなくなる。安全制約としては、前方車両を認識(確認)できることである。 Figure 23 shows, in accordance with step S31, assuming a use case in which an automated driving system follows a vehicle ahead on a highway, and defines system accidents, hazards, and safety constraints for an example of a function that recognizes a vehicle ahead. It is a diagram of an example. Here, it is defined as follows. Accidents include colliding with or being collided with other vehicles, the surrounding area, etc. As a hazard, it becomes impossible to recognize (confirm) the vehicle ahead. A safety constraint is the ability to recognize (confirm) the vehicle ahead.
 図24は、安全分析のインプットとなるシナリオの事例をモデル表現した図面である。シナリオとして渋滞時に2車線上の走行車線で自車両が前方車両車を追従している際に、前方車両が車線変更したときのシナリオを表現している。なお、自車両は走行車線を継続して走行している。同期(1)の時点で走行車線を自車両Xが走行中に、自車両Xの前方に前方車両Aが走行中であり、前方車両Aの前方に前方車両Bが走行中である。まず、同期(1)の時点で自車両Xは前方車両Aを認識する。次に、同期(2)の時点で自車両Xは、前方車両Aが走行車線から車線中間線に車線変更したことを認識する。同時に、同期(2)の時点で自車両Xは、走行車線を走行中の前方車両Bを認識する。次に、同期(3)の時点で、前方車両Aは追い越し車線へ車線変更を完了し、自車両Xは加速して走行しながら前方車両Bを認識している。 Figure 24 is a drawing that represents a model example of a scenario that serves as input for safety analysis. The scenario represents a scenario in which the vehicle in front changes lanes while the own vehicle is following a vehicle in front two lanes above during traffic congestion. Note that the own vehicle continues to travel in the travel lane. At the time of synchronization (1), while the host vehicle X is traveling in the driving lane, the forward vehicle A is traveling in front of the host vehicle X, and the forward vehicle B is traveling in front of the forward vehicle A. First, at the time of synchronization (1), the host vehicle X recognizes the vehicle A ahead. Next, at the time of synchronization (2), the own vehicle X recognizes that the preceding vehicle A has changed lanes from the driving lane to the lane median line. At the same time, at the time of synchronization (2), the own vehicle X recognizes the preceding vehicle B that is traveling in the travel lane. Next, at the time of synchronization (3), the vehicle A ahead has completed the lane change to the overtaking lane, and the own vehicle X recognizes the vehicle B ahead while accelerating and traveling.
 図25は、ステップS33にて、コントロールストラクチャを構築した事例の図である。図において実線はコントロールアクションを示し、点線はフィードバックデータを示している。コントロールストラクチャは、分析対象となるシステムとそれらを取り巻く周辺の登場人物(自車両、前方車両、他車両、運転手、交通環境等)を整理し、それぞれの相互作用を考慮して、「動作状況」、「交通環境情報」等が作成される。図24を参考とすることで、図24に示されている「走行する」、「認識する」といった振る舞いもコントロールアクションとして図25に示すことができ、コントロールストラクチャを充実化させることができる。 FIG. 25 is a diagram of an example in which a control structure is constructed in step S33. In the figure, solid lines indicate control actions, and dotted lines indicate feedback data. A control structure organizes the systems to be analyzed and the characters surrounding them (self-vehicle, vehicle in front, other vehicles, drivers, traffic environment, etc.), takes into account their interactions, and then ”, “traffic environment information”, etc. are created. By referring to FIG. 24, the behaviors such as "running" and "recognizing" shown in FIG. 24 can also be shown as control actions in FIG. 25, and the control structure can be enriched.
 図26は、図24及び図25に記載の「前方車両を認識する」というコントロールアクションについてUCAを分析した結果を示した図面である。CAは対象とする認識内容、提供条件はCAによる他車両の条件(状況)である。従来のUCA抽出では対象のコントロールアクションに対して4つのガイドワードである「Not Providing」、「Providing causes hazard」、「Too early / Too late」、「Stop too soon / Applying too long」を適用して分析を行う。特に、図26では認識を対象に分析しているため、「Providing causes hazard」を細分化し、「正しく認識」と「誤認識」に分けて分析している。また、「誤認識」についてはさらに「認識対象そのものを間違える誤認識」と「認識対象のラベルを間違える誤認識」とで細分化している。 FIG. 26 is a drawing showing the results of analyzing the UCA for the control action "recognize the vehicle ahead" shown in FIGS. 24 and 25. The CA is the target recognition content, and the provision condition is the condition (situation) of other vehicles by the CA. In conventional UCA extraction, four guide words are applied to the target control action: "Not Providing," "Providing causes hazard," "Too early / Too late," and "Stop too soon / Applying too long." Perform analysis. In particular, since the analysis in FIG. 26 targets recognition, "Providing causes hazard" is subdivided into "correct recognition" and "misrecognition" for analysis. In addition, "misrecognition" is further subdivided into "misrecognition where the recognition target itself is mistaken" and "misrecognition where the label of the recognition target is mistaken".
 オリジナルのUCAをより細分化することで、コントロールアクションが認識の場合、正しく認識した場合と誤認識している場合、さらに誤認識の場合には認識対象そのものを間違える場合と認識対象のラベルを間違える場合とで、その後の車両動作への影響が異なる可能性があるので、細分化した分析を実施することで異なる影響を網羅的に考慮することができる。 By further subdividing the original UCA, when the control action is recognition, when it is recognized correctly and when it is misrecognized, and when it is misrecognized, it is possible to misidentify the recognition target itself and mislabel the recognition target. Since the influence on the subsequent vehicle operation may differ depending on the situation, by performing a detailed analysis, it is possible to comprehensively consider the different influences.
 図24のシナリオでは4つのタイミングで「前方車両を認識する」シーンがあるため、それぞれのシーンでの分析を行う。図24の「2及び3の認識」はタイミングが同じであることから、相互に関連するUCAとなる。例としては「2の認識」が提供されない「Not providing」の場合、「3の認識」が提供されることでUCAとなることやその逆のパターン(2の認識が提供され、3の認識が提供されない)が当てはまる。 In the scenario in Figure 24, there are four scenes in which the vehicle in front is recognized, so we will analyze each scene. Since “ recognitions 2 and 3” in FIG. 24 have the same timing, they are UCAs that are related to each other. For example, in the case of ``Not providing'' where ``recognition of 2'' is not provided, ``recognition of 3'' may be provided, resulting in UCA, or the reverse pattern (recognition of 2 is provided and recognition of 3 is not provided). ) is applicable.
 図27は、分析したUCA(図26)の「Not Providing」の「(A)前方車を認識せず、追突する」のUCAに対して、モデル要素を活用することでアクシデントに至るまでのシナリオを表現した例である。「前方車両Aを認識する」が提供されないことで、自車両Xが加速し、車線変更中の前方車両Aと衝突するというシナリオが表現されている。 Figure 27 shows a scenario leading up to an accident by utilizing model elements for the analyzed UCA (Figure 26) of ``(A) Rear-end vehicle without recognizing the vehicle in front'' of ``Not Providing''. This is an example expressing A scenario is expressed in which the host vehicle X accelerates and collides with the vehicle A ahead, which is changing lanes, because "recognizing the vehicle A ahead" is not provided.
 図28は、分析したUCA(図26)のUCAとはならなかった「正しく認識」の「(B)前方車を正しく認識し、問題なし」に対して、モデル要素を活用することでシナリオを表現した例である。「前方車両Aを認識する」が提供されることでアクシデントには至らないというシナリオが表現されている。図28の「1の認識」は、この段階では前方車両Aも車線変更を始めていないため、自車両Xとしては対象の前方車両Aを正しく認識できていれば問題ない。 Figure 28 shows a scenario that utilizes model elements for ``(B) Correctly recognizes the vehicle in front, and there is no problem'' in ``Correctly recognized'', which was not a UCA in the analyzed UCA (Figure 26). This is an example of expression. A scenario is expressed in which the provision of "recognizing vehicle A in front" prevents an accident from occurring. "Recognition 1" in FIG. 28 does not pose any problem as long as the vehicle X can correctly recognize the target vehicle A ahead, since the vehicle A ahead has not started changing lanes at this stage either.
 安全分析であるSTPAにモデル要素を活用したシナリオ図面を活用することで、自車両及び他車両の動的な振る舞いを考慮することができるので、コントロールストラクチャ作成時に自車両及び自車両周辺との相互作用を明確化できる。 By using scenario drawings that utilize model elements in STPA, which is a safety analysis, it is possible to take into account the dynamic behavior of the own vehicle and other vehicles. The effect can be clarified.
 また、分析対象のシナリオを限定できる。従来のSTPAでの分析では、「自動運転システムレベル3での高速道における渋滞時の前方車追従」というユースケースのみを想定していたのに対して、道路位置関係図を用いた分析によって「前方車両のレーンチェンジ」というシナリオに限定して分析を行うことができる。 Additionally, the scenarios to be analyzed can be limited. In the conventional STPA analysis, only the use case of "Following the vehicle in front during traffic jams on an expressway in an automated driving system level 3" was assumed, but the analysis using the road positional relationship diagram Analysis can be limited to scenarios where the vehicle in front changes lanes.
 さらに、一つのコントロールアクションについて詳細なUCAの分析ができている。従来のSTPAの手法では、「前方車を認識する」という一つのコントロールアクションに対して、特にシーンを限定せずに分析を行うことになるので、各ガイドワードから想起されるUCAを一つ記載して終了してしまい、図26の分析結果よりも浅い分析となってしまう可能性が高い。 Furthermore, a detailed UCA analysis has been completed for one control action. In the conventional STPA method, analysis is performed for one control action of "recognizing the vehicle ahead" without particularly limiting the scene, so one UCA recalled from each guide word is listed. Therefore, there is a high possibility that the analysis will be shallower than the analysis result of FIG. 26.
 また、UCA抽出後にUCAのシナリオをモデル要素として活用して表現することによってシナリオが明確化できるので、UCAには無い部分のシナリオについてもUCAが無いことを明確にできる。 Furthermore, since the scenario can be clarified by expressing the UCA scenario as a model element after extracting the UCA, it can be made clear that there is no UCA for scenarios that are not included in the UCA.
 以上のように、第1車両の自動運転の制御に用いられる制御仕様を定義する制御仕様定義方法であって、第1車両の位置及び動作を表す第1モデル要素と第2車両の位置及び動作を表す第2モデル要素とを2次元図に配置する操作を取得し、第1モデル要素及び第2モデル要素が配置された平面図に基づいて安全分析結果を取得し、第1モデル要素及び第2モデル要素が配置された2次元図並びに安全分析結果に基づいて制御仕様を定義する制御仕様定義方法なので、制御仕様を適切に定義することができる。 As described above, there is provided a control specification definition method for defining control specifications used to control automatic driving of a first vehicle, the first model element representing the position and motion of the first vehicle, and the position and motion of the second vehicle. obtains an operation for arranging a second model element representing the Since this is a control specification definition method that defines control specifications based on a two-dimensional diagram in which two model elements are arranged and safety analysis results, the control specifications can be appropriately defined.
 また、安全分析結果は、第1モデル要素及び第2モデル要素が配置された2次元図を用いてコントロールストラクチャを作成し、アクシデントに至るまでのシナリオを第1モデル要素及び第2モデル要素が配置された2次元図を用いて作成してSTPAによる分析結果である制御仕様定義方法なので、制御仕様を適切に定義することができる。 In addition, the safety analysis results are created by creating a control structure using a two-dimensional diagram in which the first model element and second model element are arranged, and the scenario leading up to the accident is arranged in the first model element and the second model element. Since this is a control specification definition method that is created using a two-dimensional diagram and analyzed using STPA, it is possible to appropriately define control specifications.
 さらに、第1車両の自動運転の制御に用いられる制御仕様を定義する制御仕様定義装置であって、第1車両の位置及び動作を表す第1モデル要素並びに第2車両の位置及び動作を表す第2モデル要素を2次元図に配置する操作を取得する操作取得部と、第1モデル要素及び第2モデル要素が配置された2次元図に基づいて安全分析結果を取得する安全分析部と、第1モデル要素及び第2モデル要素が配置された2次元図に基づいて制御仕様を定義し、安全分析結果に基づいて制御仕様を定義する定義部とを備える制御仕様定義装置なので、制御仕様を適切に定義することができる。 Furthermore, the control specification definition device defines control specifications used for controlling automatic driving of the first vehicle, the control specification definition device including a first model element representing the position and motion of the first vehicle, and a first model element representing the position and motion of the second vehicle. an operation acquisition unit that acquires an operation for arranging two model elements in a two-dimensional diagram; a safety analysis unit that acquires a safety analysis result based on the two-dimensional diagram in which the first model element and the second model element are arranged; The control specification definition device defines control specifications based on a two-dimensional diagram in which first model elements and second model elements are arranged, and includes a definition section that defines control specifications based on safety analysis results, so it is possible to properly define control specifications. can be defined as
変形例1.
 図29及び図30は、実施の形態1から実施の形態6までの変形例に係る制御仕様定義装置及び車両制御装置のハードウェア構成を示すブロック図である。図1の操作取得部2及び定義部3、図21の操作取得部2、定義部3、安全分析部4を総称して「操作取得部2等」と記す。操作取得部2等は、図29に示す処理回路81により実現される。すなわち、処理回路81は、車両のモデル要素を2次元図(平面図)に配置する操作を取得する操作取得部2と、2次元図に基づいて制御仕様を定義する定義部3と、安全分析を行う安全分析部4とを備える。処理回路81には、専用のハードウェアが適用されてもよいし、メモリ83に格納されるプログラムを実行するプロセッサ82が適用されてもよい。プロセッサ82には、例えば、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)などが該当する。
Modification example 1.
29 and 30 are block diagrams showing the hardware configurations of the control specification definition device and the vehicle control device according to modifications of the first to sixth embodiments. The operation acquisition unit 2 and definition unit 3 in FIG. 1, the operation acquisition unit 2, definition unit 3, and safety analysis unit 4 in FIG. 21 are collectively referred to as "operation acquisition unit 2, etc.". The operation acquisition unit 2 and the like are realized by a processing circuit 81 shown in FIG. That is, the processing circuit 81 includes an operation acquisition unit 2 that acquires an operation for arranging vehicle model elements on a two-dimensional diagram (plan view), a definition unit 3 that defines control specifications based on the two-dimensional diagram, and a safety analysis A safety analysis section 4 is provided. Dedicated hardware may be applied to the processing circuit 81, or a processor 82 that executes a program stored in the memory 83 may be applied. Examples of the processor 82 include a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, and a DSP (Digital Signal Processor).
 処理回路81が専用のハードウェアである場合、処理回路81は、例えば、単一回路、複合回路、プログラム化したプロセッサ82、並列プログラム化したプロセッサ82、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。操作取得部2等の各部の機能それぞれは、処理回路81を分散させた回路で実現されてもよいし、各部の機能をまとめて一つの処理回路81で実現されてもよい。 When the processing circuit 81 is dedicated hardware, the processing circuit 81 may be, for example, a single circuit, a composite circuit, a programmed processor 82, a parallel programmed processor 82, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these. The functions of each unit such as the operation acquisition unit 2 may be realized by a circuit in which the processing circuit 81 is distributed, or the functions of each unit may be realized by a single processing circuit 81.
 処理回路81がプロセッサ82である場合には、操作取得部2等の機能は、ソフトウェア等との組み合わせにより実現される。なお、ソフトウェア等には、例えば、ソフトウェア、ファームウェアが該当する。ソフトウェア等はプログラムとして記述され、メモリ83に格納される。図22に示すように、処理回路81に適用されるプロセッサ82は、メモリ83に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、制御仕様定義装置1は、処理回路81により実行されるときに、第1車両の位置及び動作を表す第1モデル要素と、第2車両の位置及び動作を表す第2モデル要素とを、2次元図に配置する操作を取得するステップと、第1モデル要素及び第2モデル要素が配置された2次元図に基づいて制御仕様を定義するステップと、が結果的に実行されることになるプログラムを格納するためのメモリ83を備える。換言すれば、このプログラムは、操作取得部2等の手順や方法をコンピュータに実行させるものであるともいえる。ここで、メモリ83は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)などの、不揮発性または揮発性の半導体メモリ、HDD(Hard Disk Drive)、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)、そのドライブ装置等、または、今後使用されるあらゆる記憶媒体であってもよい。 When the processing circuit 81 is the processor 82, the functions of the operation acquisition unit 2 and the like are realized by a combination with software and the like. Note that software and the like correspond to, for example, software and firmware. Software and the like are written as programs and stored in the memory 83. As shown in FIG. 22, a processor 82 applied to the processing circuit 81 implements the functions of each part by reading and executing a program stored in a memory 83. That is, when the control specification definition device 1 is executed by the processing circuit 81, the first model element representing the position and operation of the first vehicle, and the second model element representing the position and operation of the second vehicle, As a result, the steps of obtaining an operation to place on a two-dimensional diagram and defining a control specification based on the two-dimensional diagram in which the first model element and the second model element are arranged are executed. A memory 83 is provided for storing programs. In other words, this program can be said to cause the computer to execute the procedures and methods of the operation acquisition unit 2 and the like. Here, the memory 83 is a non-volatile or Volatile semiconductor memory, HDD (Hard Disk Drive), magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), their drive device, etc., or any storage media that will be used in the future. It's okay.
 以上、操作取得部2等の各機能が、ハードウェア及びソフトウェア等のいずれか一方で実現される構成について説明した。本開示は、これらに限ったものではなく、操作取得部2等の一部を専用のハードウェアで実現し、別の一部をソフトウェア等で実現する構成であってもよい。例えば、操作取得部2等については専用のハードウェアとしての処理回路81、インターフェース及びレシーバなどでその機能を実現し、それ以外についてはプロセッサ82としての処理回路81がメモリ83に格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。 The configuration in which each function of the operation acquisition unit 2 and the like is realized by either hardware or software has been described above. The present disclosure is not limited to these, and a configuration may be adopted in which a part of the operation acquisition unit 2 and the like is realized by dedicated hardware, and another part is realized by software or the like. For example, the functions of the operation acquisition unit 2 and the like are realized by a processing circuit 81 as dedicated hardware, an interface, a receiver, etc., and for other parts, the processing circuit 81 as a processor 82 executes the program stored in the memory 83. The function can be realized by reading and executing it.
 以上のように、処理回路81は、ハードウェア、ソフトウェア等、またはこれらの組み合わせによって、上述の各機能を実現することができる。 As described above, the processing circuit 81 can implement the above-mentioned functions using hardware, software, etc., or a combination thereof.
 また、以上で説明した制御仕様定義装置1は、装置とサーバとを適宜に組み合わせてシステムとして構築される制御仕様定義システムにも適用することができる。この場合、以上で説明した制御仕様定義装置1の各機能あるいは各構成要素は、前記システムを構築する各機器に分散して配置されてもよいし、いずれかの機器に集中して配置されてもよい。 Furthermore, the control specification definition device 1 described above can also be applied to a control specification definition system constructed as a system by appropriately combining devices and servers. In this case, each function or each component of the control specification definition device 1 described above may be distributed and arranged in each device that constructs the system, or may be arranged centrally in any one of the devices. Good too.
 なお、各実施の形態及び各変形例を自由に組み合わせたり、各実施の形態及び各変形例を適宜、変形、省略したりすることが可能である。また、図において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文、図面の全図において共通することである。さらに、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。 Note that it is possible to freely combine each embodiment and each modification, or to modify or omit each embodiment and each modification as appropriate. Further, in the figures, the same reference numerals are the same or correspond to the same, and this is common to the entire text of the specification and all figures in the drawings. Further, the forms of the constituent elements appearing in the entire specification are merely examples, and the present invention is not limited to these descriptions.
 1 制御仕様定義装置、2 操作取得部、3 定義部、4 安全分析部、10 車両制御装置、20 自動運転ECU、21 認知部、22 車両制御部、30,31,32 環境取得部、40 エンジンECU、41ブレーキECU、42 ステアリングECU、51,52 車載ネットワーク、81 処理回路、82 プロセッサ、83 メモリ。 1 Control specification definition device, 2 Operation acquisition unit, 3 Definition unit, 4 Safety analysis unit, 10 Vehicle control device, 20 Autonomous driving ECU, 21 Recognition unit, 22 Vehicle control unit, 30, 31, 32 Environment acquisition unit, 40 Engine ECU, 41 Brake ECU, 42 Steering ECU, 51, 52 In-vehicle network, 81 Processing circuit, 82 Processor, 83 Memory.

Claims (9)

  1.  第1車両の自動運転の制御に用いられる制御仕様を定義する制御仕様定義方法であって、
     前記第1車両の位置及び動作を表す第1モデル要素と第2車両の位置及び動作を表す第2モデル要素とを2次元図に配置する操作を取得し、
     前記第1モデル要素及び前記第2モデル要素が配置された前記2次元図に基づいて前記制御仕様を定義する制御仕様定義方法。
    A control specification definition method for defining control specifications used to control automatic driving of a first vehicle, the method comprising:
    obtaining an operation for arranging a first model element representing the position and motion of the first vehicle and a second model element representing the position and motion of the second vehicle in a two-dimensional diagram;
    A control specification definition method that defines the control specification based on the two-dimensional diagram in which the first model element and the second model element are arranged.
  2.  第1車両の自動運転の制御に用いられる制御仕様を定義する制御仕様定義方法であって、
     前記第1車両の位置及び動作を表す第1モデル要素と第2車両の位置及び動作を表す第2モデル要素とを2次元図に配置する操作を取得し、
     前記第1モデル要素及び前記第2モデル要素が配置された前記平面図に基づいて安全分析結果を取得し、
     前記第1モデル要素及び前記第2モデル要素が配置された前記2次元図並びに前記安全分析結果に基づいて前記制御仕様を定義する制御仕様定義方法。
    A control specification definition method for defining control specifications used to control automatic driving of a first vehicle, the method comprising:
    obtaining an operation for arranging a first model element representing the position and motion of the first vehicle and a second model element representing the position and motion of the second vehicle in a two-dimensional diagram;
    obtaining a safety analysis result based on the plan view in which the first model element and the second model element are arranged;
    A control specification definition method that defines the control specification based on the two-dimensional diagram in which the first model element and the second model element are arranged and the safety analysis result.
  3.  請求項2に記載の制御仕様定義方法であって、
     前記安全分析結果は、前記第1モデル要素及び前記第2モデル要素が配置された前記2次元図を用いてコントロールストラクチャを作成し、アクシデントに至るまでのシナリオを前記第1モデル要素及び前記第2モデル要素が配置された前記2次元図を用いて作成してSTPAによる分析結果である制御仕様定義方法。
    The control specification definition method according to claim 2,
    The safety analysis results are obtained by creating a control structure using the two-dimensional diagram in which the first model element and the second model element are arranged, and by calculating the scenario leading up to the accident by using the first model element and the second model element. A control specification definition method that is created using the two-dimensional diagram in which model elements are arranged and is an analysis result by STPA.
  4.  請求項1から3のいずれか1項に記載の制御仕様定義方法であって、
     前記第1モデル要素の前記第1車両の前記動作及び前記第2モデル要素の前記第2車両の前記動作の少なくともいずれか一方に分岐が設けられている制御仕様定義方法。
    The control specification definition method according to any one of claims 1 to 3,
    A control specification definition method, wherein a branch is provided in at least one of the operation of the first vehicle of the first model element and the operation of the second vehicle of the second model element.
  5.  請求項1から4のいずれか1項に記載の制御仕様定義方法であって、
     前記第1モデル要素の前記第1車両の前記動作の少なくとも一部と前記第2モデル要素の前記第2車両の前記動作の少なくとも一部とが同期されている制御仕様定義方法。
    The control specification definition method according to any one of claims 1 to 4,
    A method for defining control specifications, wherein at least a portion of the operation of the first vehicle of the first model element and at least a portion of the operation of the second vehicle of the second model element are synchronized.
  6.  請求項1から5のいずれか1項に記載の制御仕様定義方法であって、
     前記第1車両の前記動作は、前記第1車両の位置及び動作並びに前記第1車両からの物体の認知の少なくともいずれか一つを含み、
     前記第2車両の前記動作は、前記第2車両の位置及び動作並びに前記第2車両からの物体の認知の少なくともいずれか一つを含む制御仕様定義方法。
    The control specification definition method according to any one of claims 1 to 5,
    The operation of the first vehicle includes at least one of the position and operation of the first vehicle and recognition of an object from the first vehicle,
    The operation of the second vehicle includes at least one of the position and operation of the second vehicle, and recognition of an object from the second vehicle.
  7.  第1車両が位置する環境を取得する環境取得部と、
     前記第1車両の位置及び動作を表す第1モデル要素並びに第2車両の位置及び動作を表す第2モデル要素が配置された2次元図に基づいて定義された制御仕様と、前記環境取得部で取得された前記環境とに基づいて前記第1車両の自動運転を制御する制御部とを備える車両制御装置。
    an environment acquisition unit that acquires the environment in which the first vehicle is located;
    A control specification defined based on a two-dimensional diagram in which a first model element representing the position and motion of the first vehicle and a second model element representing the position and motion of the second vehicle are arranged; and a control unit that controls automatic driving of the first vehicle based on the acquired environment.
  8.  第1車両の自動運転の制御に用いられる制御仕様を定義する制御仕様定義装置であって、
     前記第1車両の位置及び動作を表す第1モデル要素並びに第2車両の位置及び動作を表す第2モデル要素を2次元図に配置する操作を取得する操作取得部と、
     前記第1モデル要素及び前記第2モデル要素が配置された前記2次元図に基づいて前記制御仕様を定義する定義部とを備える制御仕様定義装置。
    A control specification definition device that defines control specifications used to control automatic driving of a first vehicle,
    an operation acquisition unit that acquires an operation for arranging a first model element representing the position and motion of the first vehicle and a second model element representing the position and motion of the second vehicle in a two-dimensional diagram;
    A control specification definition device comprising: a definition unit that defines the control specification based on the two-dimensional diagram in which the first model element and the second model element are arranged.
  9.  請求項8に記載の制御仕様定義装置であって、
     前記第1モデル要素及び前記第2モデル要素が配置された前記2次元図に基づいて安全分析結果を取得する安全分析部と、
     前記定義部は、前記安全分析結果に基づいて前記制御仕様を定義する制御仕様定義装置。
    The control specification definition device according to claim 8,
    a safety analysis unit that obtains a safety analysis result based on the two-dimensional diagram in which the first model element and the second model element are arranged;
    The definition unit is a control specification definition device that defines the control specification based on the safety analysis result.
PCT/JP2022/024096 2022-06-16 2022-06-16 Control specification defining method, vehicle control device, and control specification defining device WO2023243033A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024096 WO2023243033A1 (en) 2022-06-16 2022-06-16 Control specification defining method, vehicle control device, and control specification defining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024096 WO2023243033A1 (en) 2022-06-16 2022-06-16 Control specification defining method, vehicle control device, and control specification defining device

Publications (1)

Publication Number Publication Date
WO2023243033A1 true WO2023243033A1 (en) 2023-12-21

Family

ID=89192477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024096 WO2023243033A1 (en) 2022-06-16 2022-06-16 Control specification defining method, vehicle control device, and control specification defining device

Country Status (1)

Country Link
WO (1) WO2023243033A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045447A (en) * 2011-08-22 2013-03-04 Honda Research Inst Europe Gmbh Method and device for predicting movement of traffic object
JP2021135193A (en) * 2020-02-27 2021-09-13 株式会社デンソー Object detection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045447A (en) * 2011-08-22 2013-03-04 Honda Research Inst Europe Gmbh Method and device for predicting movement of traffic object
JP2021135193A (en) * 2020-02-27 2021-09-13 株式会社デンソー Object detection device

Similar Documents

Publication Publication Date Title
CN107180220B (en) Dangerous prediction method
US20220048536A1 (en) Method and device for testing a driver assistance system
JP6925796B2 (en) Methods and systems, vehicles, and computer programs that assist the driver of the vehicle in driving the vehicle.
JP2020187754A (en) Navigation system in accordance with held responsibility restriction
JP2022105125A (en) System and method for navigating vehicle
US9561795B2 (en) Vehicle collision avoidance apparatus and method
KR102388148B1 (en) Methof and system for providing driving guidance
CN111527013A (en) Vehicle lane change prediction
So et al. Generating traffic safety test scenarios for automated vehicles using a big data technique
CN105684039B (en) Condition analysis for driver assistance systems
US20230343153A1 (en) Method and system for testing a driver assistance system
CN112849160B (en) Vehicle control method and device based on automatic driving
CN111413973A (en) Lane change decision method and device for vehicle, electronic equipment and storage medium
CN114056325A (en) Device and method for reducing collision risk
US20220314940A1 (en) Vehicle rear warning system and control method thereof
Kibalama et al. AV/ADAS Safety-Critical Testing Scenario Generation from Vehicle Crash Data
Isermann Fahrerassistenzsysteme 2017: Von der Assistenz zum automatisierten Fahren-3. Internationale ATZ-Fachtagung Automatisiertes Fahren
WO2023243033A1 (en) Control specification defining method, vehicle control device, and control specification defining device
KR20200082672A (en) Simulation method for autonomous vehicle linked game severs
WO2022130718A1 (en) Information generation device
KR102602271B1 (en) Method and apparatus for determining the possibility of collision of a driving vehicle using an artificial neural network
KR20210005393A (en) Apparatus for controlling u-turn of autonomous vehicle and method thereof
CN114764392A (en) Computer-implemented method and test unit for determining traffic scene similarity values
Souflas et al. Virtual Verification of Decision Making and Motion Planning Functionalities for Automated Vehicles in Urban Edge Case Scenarios
JP6978313B2 (en) Driver assistance systems and how they are implemented in such systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946850

Country of ref document: EP

Kind code of ref document: A1