WO2023242887A1 - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
WO2023242887A1
WO2023242887A1 PCT/JP2022/023560 JP2022023560W WO2023242887A1 WO 2023242887 A1 WO2023242887 A1 WO 2023242887A1 JP 2022023560 W JP2022023560 W JP 2022023560W WO 2023242887 A1 WO2023242887 A1 WO 2023242887A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna device
gnd electrode
antenna conductor
conductor
Prior art date
Application number
PCT/JP2022/023560
Other languages
French (fr)
Japanese (ja)
Inventor
拓弥 宮坂
真悟 山浦
研悟 西本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/023560 priority Critical patent/WO2023242887A1/en
Priority to JP2024516744A priority patent/JPWO2023242887A1/ja
Priority to TW111146326A priority patent/TW202349791A/en
Publication of WO2023242887A1 publication Critical patent/WO2023242887A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element

Definitions

  • the present disclosure relates to an antenna device in which an antenna conductor capable of transmitting visible light is mounted on a liquid crystal display.
  • transparent antennas which are antenna conductors using transparent conductive materials with high transmittance to visible light
  • a transparent conductive film is formed on a base material such as glass, making it possible to mount the antenna while maintaining invisibility.
  • the conductivity of the transparent conductive material used in this transparent antenna decreases as the light transmittance increases.
  • its conductivity is about 1/100 that of copper, aluminum, or the like. That is, in transparent conductive materials, there is a trade-off relationship between light transmittance and electrical conductivity. Therefore, in this transparent antenna, when a conductive material having a high transmittance for visible light is used to improve non-visibility, there is a problem that radiation efficiency decreases.
  • a method has been proposed in which a GND electrode is provided with a gap between the metal casing and power is supplied to the gap between the transparent antenna and the GND electrode (for example, the patent (See Reference 1).
  • the GND electrode is capacitively coupled to a metal casing that is larger in size than the GND electrode, so that current also flows through the metal casing. This makes it possible to suppress the concentration of current to the transparent antenna and prevent the radiation efficiency of the transparent antenna from decreasing.
  • an indium tin oxide film (hereinafter referred to as "ITO film") is present directly under the transparent antenna.
  • ITO film indium tin oxide film
  • current flows through the transparent antenna
  • current also flows through the ITO film due to capacitive coupling between the transparent antenna and the ITO film.
  • the ITO film has a large resistance value, loss in the ITO film increases, resulting in a problem in that the radiation efficiency of the transparent antenna decreases.
  • Another problem with conventional transparent antennas is that it is not possible to change the frequency at which the radiation efficiency becomes high.
  • the present disclosure has been made to solve the above-mentioned problems, and even when an antenna conductor capable of transmitting visible light is arranged on a liquid crystal display, it is possible to prevent a decrease in radiation efficiency compared to the conventional method, Another object of the present invention is to provide an antenna device that can adjust the frequency at which the radiation efficiency becomes high.
  • An antenna device includes a liquid crystal display having a conductive thin film, a metal casing with a built-in liquid crystal display on one side, and a GND electrode placed facing the one side of the metal casing with a gap therebetween. and an antenna conductor capable of transmitting visible light, disposed on the same plane as the GND electrode with a gap therebetween, and covering the liquid crystal display, the antenna conductor being provided on the inside opposite to the GND electrode side. and a second gap portion communicating with the first gap portion and provided on the outer periphery on the opposite side to the GND electrode side, and the thin film is formed between the GND electrode and the antenna conductor. , and do not face the first gap.
  • FIG. 1 is a perspective view showing a configuration example of an antenna device according to Embodiment 1.
  • FIG. FIG. 2 is a perspective view showing a configuration example of a metal casing in Embodiment 1.
  • FIG. 3 is a diagram showing an example of the configuration of the back side of the protective glass in Embodiment 1.
  • FIG. FIG. 2 is a top view showing a configuration example of the antenna device according to Embodiment 1, with the protective glass removed.
  • 1 is an exploded perspective view showing a configuration example of a liquid crystal device in Embodiment 1.
  • FIG. FIG. 2 is a top view showing a configuration example of the antenna device according to Embodiment 1, showing only a metal housing, a first ITO film, and a first glass.
  • FIG. 2 is a top view showing a configuration example of the antenna device according to Embodiment 1, showing only a metal housing, an antenna conductor, and a first ITO film.
  • 1 is a cross-sectional view showing a configuration example of an antenna device according to Embodiment 1.
  • FIG. FIG. 2 is a top view showing a configuration example of the antenna device according to Embodiment 1, and is a diagram illustrating an image of magnetic current generated in the antenna device.
  • 1 is a cross-sectional view showing a configuration example of an antenna device according to Embodiment 1, including a magnetic current generated in the antenna device.
  • FIG. FIG. 2 is a top view showing a configuration example of the antenna device according to Embodiment 1 in which the antenna conductor is changed to a monopole antenna.
  • FIG. 12 is a graph showing an example of frequency characteristics of radiation efficiency in the antenna device according to Embodiment 1 and the antenna device shown in FIG. 11.
  • FIG. 7 is a graph showing an example of frequency characteristics of radiation efficiency when changing the length of the second gap in the antenna device according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of the antenna device according to Embodiment 1, with a first L-shaped element and a second L-shaped element removed from the antenna conductor.
  • 15 is a graph showing an example of frequency characteristics of radiation efficiency when changing the length of the large-area antenna shown in FIG. 14.
  • FIG. FIG. 7 is a top view showing a configuration example of an antenna device according to Embodiment 2, showing only a metal housing, an antenna conductor, and a first ITO film.
  • FIG. 7 is a diagram illustrating an image of magnetic current generated in the antenna device according to Embodiment 2.
  • FIG. FIG. 7 is a top view showing another configuration example of the antenna device according to Embodiment 2, showing only the metal casing, the antenna conductor, and the first ITO film.
  • FIG. 7 is a top view showing another configuration example of the antenna device according to Embodiment 2, showing only the metal casing, the antenna conductor, and the first ITO film.
  • FIG. 7 is a top view showing a configuration example of an antenna device according to Embodiment 3, showing only a metal casing, an antenna conductor, and a first ITO film.
  • FIG. 12 is a perspective view showing a configuration example of the vicinity of the power feeding section in the antenna device according to Embodiment 4, with the metal casing removed.
  • FIG. 12 is a top view showing a configuration example of the vicinity of the power feeding unit in the antenna device according to Embodiment 4, with the metal casing and the feeding rigid board removed.
  • 23A and 23B are diagrams showing a configuration example of a rigid board for power feeding in Embodiment 4, in which FIG. 23A is a diagram showing the front surface, and FIG. 23B is a diagram showing the back surface.
  • FIG. 7 is a cross-sectional view showing a configuration example of an antenna device according to a fourth embodiment.
  • FIG. 1 is a perspective view showing a configuration example of an antenna device 1 according to the first embodiment.
  • the antenna device 1 is a device in which an antenna conductor 14 that can transmit visible light is mounted on a liquid crystal device (liquid crystal display) 13. As shown in FIG. 1, this antenna device 1 includes a metal housing 11 and a protective glass 12.
  • the metal casing 11 is a metal casing in which a liquid crystal device 13 is built in on one side (the top side in FIG. 1). This metal casing 11 has an opening on one side. Note that the opening surface of the metal housing 11 is not shown in FIG. 1 because the protective glass 12 exists directly above it.
  • FIG. 2 is a perspective view showing a configuration example of the metal casing 11 in the first embodiment.
  • the metal housing 11 has a dimension in the x direction of Cx, a dimension in the y direction of Cy, and a dimension of the z direction of Cz.
  • the metal housing 11 has an open surface on one surface in the +z direction.
  • the metal housing 11 has bezels 111 to 114 having a width of Cb at the edge of the opening surface. Therefore, the area of the opening surface is ⁇ (Cx-2*Cb)*(Cy-2*Cb) ⁇ .
  • the metal casing 11 has metal walls 115 to 118 on the side surfaces and a metal plate 119 on the bottom surface.
  • the protective glass 12 is a glass for protecting the liquid crystal device 13 built into the metal casing 11 located directly below. Note that the user visually recognizes the liquid crystal device 13 from the +z direction with respect to the protective glass 12.
  • FIG. 3 is a diagram showing an example of the configuration of the back surface of the protective glass 12 in the first embodiment
  • FIG. 4 is a top view showing an example of the configuration of the antenna device 1 according to the first embodiment.
  • FIG. 4 shows a state in which the protective glass 12 has been removed.
  • an antenna conductor 14 and a GND electrode 15 are mounted on the back surface of the protective glass 12.
  • a power feeding section 16 is arranged between the gap between the antenna conductor 14 and the GND electrode 15. Then, by applying AC power to this power feeding section 16, the antenna conductor 14 is excited. That is, of the feed line (not shown) wired from the user interface (not shown) of the liquid crystal device 13, the signal line side is connected to the antenna conductor 14, and the GND side is connected to the GND electrode 15.
  • the antenna conductor 14 is a conductor that can transmit visible light, is disposed on the same (substantially the same meaning) plane as the GND electrode 15, and covers the liquid crystal device 13 with a gap therebetween.
  • the antenna conductor 14 is made of a transparent conductive material that can transmit visible light.
  • the antenna conductor 14 is a transparent conductive film and has a rectangular shape. As shown in FIG. 4, this antenna conductor 14 includes a transmission line 141, a large area antenna 142, a first L-shaped element 143, and a second L-shaped element 144.
  • the transmission line 141 is a straight line with one end facing the GND electrode 15 with a gap therebetween, and the other end connected to the large area antenna 142.
  • This transmission line 141 is a line for transmitting the power excited by the power feeding section 16 to the large area antenna 142, the first L-shaped element 143, and the second L-shaped element 144.
  • the large-area antenna 142 is a planar conductor arranged to cover a first ITO film 131 and a second ITO film 132, which will be described later, in the liquid crystal device 13. Further, this large-area antenna 142 also partially covers the bezels 112 and 114 of the metal housing 11.
  • the first L-shaped element 143 is an L-shaped conductor that is in contact with one of both sides of the large-area antenna 142.
  • This first L-shaped element 143 has a first linear line portion 1431 and a second linear line portion 1432.
  • the first linear line portion 1431 is in contact with one of both side surfaces of the large area antenna 142. In FIG. 1, the first linear line portion 1431 is in contact with the left side of the large-area antenna 142. Further, the second linear line portion 1432 is not in contact with the large-area antenna 142, and one end thereof is in contact with the end of the first linear line portion 1431.
  • the width of the first L-shaped element 143 is the same (including substantially the same meaning) as the width of the bezels 112 and 113 in the metal housing 11.
  • the first L-shaped element 143 is arranged so as to overlap the bezels 112 and 113 in the metal housing 11. In FIG. 4, the first L-shaped element 143 overlaps a portion of the bezel 112 and a portion of the bezel 113. In FIG.
  • the second L-shaped element 144 is an L-shaped conductor that is in contact with the other of both sides of the large-area antenna 142.
  • This second L-shaped element 144 has a first linear line portion 1441 and a second linear line portion 1442.
  • the first straight line portion 1441 is in contact with the other side of both sides of the large area antenna 142.
  • the first linear line portion 1441 is in contact with the right side of the large area antenna 142.
  • the second linear line portion 1442 is not in contact with the large-area antenna 142, and one end thereof is in contact with the end of the first linear line portion 1441.
  • the width of the second L-shaped element 144 is the same (including substantially the same meaning) as the width of the bezels 114 and 113 in the metal housing 11.
  • the second L-shaped element 144 is arranged so as to overlap the bezels 114 and 113 in the metal housing 11. In FIG. 4, second L-shaped element 144 overlaps a portion of bezel 114 and a portion of bezel 113. In FIG.
  • the first L-shaped element 143 and the second L-shaped element 144 are arranged line-symmetrically with respect to the x-axis.
  • the first gap portion 145 is a gap provided inside the antenna conductor 14 on the side opposite to the GND electrode 15 side.
  • the first gap 145 has a rectangular shape.
  • the second gap 146 communicates with the first gap 145 and is a gap provided on the outer periphery of the antenna conductor 14 on the side opposite to the GND electrode 15 side.
  • the width of the second gap portion 146 is configured to be shorter than the width of the first gap portion 145.
  • the first L-shaped element 143 overlaps a portion of the bezel 112 and a portion of the bezel 113.
  • the present invention is not limited thereto, and the first L-shaped element 143 may not overlap the bezel 112 and the bezel 113.
  • the second L-shaped element 144 overlaps a portion of the bezel 114 and a portion of the bezel 113.
  • the present invention is not limited thereto, and the second L-shaped element 144 may not overlap the bezel 114 and the bezel 113.
  • the GND electrode 15 is a linear electrode placed facing one surface (opening surface) of the metal casing 11 with a gap provided therebetween. That is, the GND electrode 15 is not in contact with the metal casing 11. Further, as shown in FIG. 4, most of the GND electrode 15 is disposed directly above and opposite to the bezel 111 of the metal housing 11 with a gap therebetween.
  • the GND electrode 15 has an insufficient size as a GND size.
  • this GND electrode 15 is capacitively coupled with the bezel 111 of the metal casing 11 directly below, and the metal casing 11 is also used as a GND, thereby ensuring a sufficient GND size.
  • FIGS. 3 and 4 show a case where the GND electrode 15 is configured line-symmetrically with respect to the x-axis.
  • the present invention is not limited to this, and the GND electrode 15 may not be configured line-symmetrically with respect to the x-axis.
  • FIG. 4 shows a case where the power feeding unit 16 is arranged at the center (including the meaning of approximately the center) in the y direction (side of the bezel 111).
  • the present invention is not limited to this, and the power feeding section 16 may not be arranged at the center of the side of the bezel 111.
  • FIG. 5 is an exploded perspective view showing a configuration example of the liquid crystal device 13 in the first embodiment.
  • the liquid crystal device 13 has a first ITO film 131, a second ITO film 132, a first glass 133, and a second glass 134, as shown in FIG.
  • the liquid crystal device 13 includes a first ITO film 131, a first glass 133, a second ITO film 132, and a second glass 134 stacked in this order from the +z direction.
  • the first ITO film 131 is mounted on one surface (the upper surface in FIG. 5) of the first glass 133. Further, the second ITO film 132 is mounted on the other surface (the lower surface in FIG. 5) of the first glass 133. Note that in FIG. 5, the first ITO film 131, the second ITO film 132, and the first glass 133 are shown separated for ease of viewing. Further, here, an example will be described in which the first ITO film 131 and the second ITO film 132 are configured in a rectangular shape.
  • the first ITO film 131 and the second ITO film 132 have a high sheet resistance value.
  • the sheet resistance values are, for example, 50 ⁇ / ⁇ and 31 ⁇ / ⁇ . Therefore, if the antenna conductor 14 is placed directly above the first ITO film 131 and the second ITO film 132 and a current flows on the antenna conductor 14, the antenna conductor 14 and the first ITO film 131 and the second ITO film 132 are capacitively coupled. In this case, current also flows through the first ITO film 131 and the second ITO film 132, resulting in loss, leading to a reduction in the radiation efficiency of the antenna conductor 14.
  • first ITO film 131 the second ITO film 132, the first glass 133, and the second glass 134, are shown here as the constituent elements of the liquid crystal device 13; In reality, there are many more parts included.
  • FIG. 6 is a top view showing a configuration example of the antenna device 1 according to the first embodiment, and shows only the metal housing 11, the first ITO film 131, and the first glass 133.
  • the first glass 133 has a dimension in the x direction of (Cx-2*Cb) and a dimension in the y direction of (Cy-2*Cb). That is, the first glass 133 has the same size (including substantially the same meaning) as the opening surface of the metal housing 11. Therefore, the first glass 133 exactly overlaps the opening surface of the metal housing 11.
  • the second glass 134 is not shown in FIG.
  • the first ITO film 131 is arranged at a distance of Dm from the edge of the bezels 111 to 114 of the metal housing 11. Therefore, the area of the first ITO film 131 is ⁇ (Cx-2*Cb-2*Dm)*(Cy-2*Cb-2*Dm) ⁇ .
  • the second ITO film 132 is not shown in FIG. 6 because it is not visible when viewed from directly above, it has the same size (including substantially the same meaning) as the first ITO film 131, The positional relationship seen from directly above is also the same as that of the first ITO film 131.
  • FIG. 7 is a top view showing a configuration example of the antenna device 1 according to the first embodiment.
  • the protective glass 12 is removed, and only the first ITO film 131 is shown as the liquid crystal device 13.
  • the large area antenna 142 has a dimension in the x direction of (Cx-2*Cb-2*Dm), which is the same (approximately) as the first ITO film 131 and the second ITO film 132. (with the same meaning). Therefore, the large-area antenna 142, the first ITO film 131, and the second ITO film 132 exactly overlap on the x-axis. Further, the large area antenna 142 has a dimension in the y direction of Cy, and is designed to cover the bezels 112 and 114 of the metal housing 11.
  • the first ITO film 131 and the second ITO film 132 are arranged between the GND electrode 15 and the antenna conductor 14 and in the first gap 145. Not facing each other.
  • FIG. 8 is a sectional view taken along the line aa' of the antenna device 1 shown in FIG.
  • the GND electrode 15 is capacitively coupled to the bezel 111 in the metal housing 11, and current is passed through the metal housing 11 as well, thereby ensuring GND.
  • FIG. 9 shows a radiated magnetic current source formed by a current flowing through the antenna conductor 14 in the antenna device 1 according to the first embodiment. Note that FIG. 9 shows a state in which the protective glass 12 has been removed.
  • the large-area antenna 142 operates as a patch antenna, and magnetic currents 51a and 51b are generated in the gap (Dm). These magnetic currents 51a and 51b serve as radiation sources, and the antenna device 1 radiates electromagnetic waves.
  • FIG. 10 is a sectional view taken along the line bb' shown in FIG.
  • the first ITO film 131 and the second ITO film 132 do not exist directly under the magnetic currents 51a and 51b generated in the gap (Dm). Therefore, in the antenna device 1 according to the first embodiment, the current flowing through the first ITO film 131 and the second ITO film 132 can be suppressed, and the radiation efficiency of the antenna device 1 can be prevented from decreasing, compared to the conventional method. becomes.
  • FIG. 11 is a top view showing a configuration example of the antenna device 1 according to the first embodiment in which the antenna conductor 14 is changed to a monopole antenna 21. Note that FIG. 11 shows a state in which the protective glass 12 has been removed.
  • the current 51c flowing on the monopole antenna 21 directly serves as a radiation source.
  • the first ITO film 131 and the second ITO film 132 exist directly under the current 51c. Therefore, in this case, a strong current flows also in the first ITO film 131 and the second ITO film 132, leading to a decrease in the radiation efficiency of the antenna device 1b.
  • FIG. 12 is a diagram showing an example of frequency characteristics of radiation efficiency in the antenna device 1 according to the first embodiment and the configuration shown in FIG. 11. Note that the radiation efficiency shown in FIG. 12 does not take into account mismatch loss, and shows the case where it is normalized at the reference frequency (f0).
  • a solid line indicates an example of the frequency characteristic of radiation efficiency in the case of the antenna device 1 according to the first embodiment
  • a broken line indicates an example of the frequency characteristic of radiation efficiency in the configuration shown in FIG. 11.
  • the radiation efficiency of the antenna device 1 according to the first embodiment is higher than that of the configuration shown in FIG. 11.
  • the antenna device 1 according to the first embodiment As shown in FIG. 9, in the antenna conductor 14, the tip of the first L-shaped element 143 and the tip of the second L-shaped element 144 are separated from each other. A gap 146 is provided. In the antenna device 1 according to the first embodiment, by adjusting the length Ls of the second gap 146, the length of the first L-shaped element 143 and the second L-shaped element 144 can be adjusted. The current path length changes, and the magnetic current length of the magnetic current 51a can be adjusted. As a result, in the antenna device 1 according to the first embodiment, it is possible to adjust the frequency at which the radiation efficiency becomes high.
  • the current distributions forming the magnetic currents 51a and 51b are symmetrical.
  • the two magnetic currents 51a and 51b become like a patch antenna that operates at a single frequency, and the radiation efficiency becomes high only at one frequency, approximately f0.
  • FIG. 15 is a diagram showing an example of frequency characteristics when La is changed in the configuration shown in FIG. 14. Note that the radiation efficiency shown in FIG. 15 does not take mismatch loss into consideration. As shown in Fig. 15, the frequency at which the radiation efficiency increases is changing, but compared to Fig. 13, the adjustable range is smaller and the amount of reduction in radiation efficiency (the amount of efficiency reduction) is also larger. I understand.
  • Frequency variable amount variable amount of frequency that increases radiation efficiency / lowest frequency among frequencies that increases radiation efficiency (1)
  • the amount of frequency variation is 55%, and in the configuration shown in FIG. 14, the amount of frequency variation is 20%. Therefore, it can be seen that the antenna device 1 according to the first embodiment can obtain about 2.5 times the amount of frequency variation as compared to the configuration shown in FIG. 14. Further, in the antenna device 1 according to the first embodiment, the efficiency decrease amount is 2.9 dB, and in the configuration shown in FIG. 14, the efficiency decrease amount is 4.5 dB. Therefore, it can be seen that the antenna device 1 according to the first embodiment suppresses the efficiency drop by 1.6 dB compared to the configuration shown in FIG. 14.
  • the antenna device 1 includes the liquid crystal device 13 having the first ITO film 131 and the second ITO film 132, and the metal device 13 having the liquid crystal device 13 built-in on one side.
  • a casing 11 and a GND electrode 15 which is disposed facing each other with a gap between them on one surface of the metal casing 11, and a GND electrode 15 which can transmit visible light and which is disposed on the same plane as the GND electrode 15 with a gap between them.
  • An antenna conductor 14 that covers the liquid crystal device 13 is provided, and the antenna conductor 14 communicates with a first gap 145 provided on the inside opposite to the GND electrode 15 side, and communicates with the first gap 145 and connects the GND electrode
  • the first ITO film 131 and the second ITO film 132 are provided between the GND electrode 15 and the antenna conductor 14, and a second gap 146 provided on the outer periphery on the opposite side to the , are not opposed to the first gap portion 145.
  • the antenna device 1 according to the first embodiment prevents a decrease in radiation efficiency compared to the conventional art even when the antenna conductor 14 capable of transmitting visible light is disposed on the liquid crystal device 13, and It becomes possible to adjust the frequency at which efficiency is high.
  • FIG. 16 is a top view showing a configuration example of the antenna device 1 according to the second embodiment. Note that FIG. 16 shows a state in which the protective glass 12 has been removed. In the antenna device 1 according to the second embodiment shown in FIG. 16, the configuration of the large area antenna 142 is changed from the antenna device 1 according to the first embodiment.
  • the other configuration example of the antenna device 1 according to the second embodiment shown in FIG. 16 is the same as the configuration example of the antenna device 1 according to the first embodiment, and only the different parts will be described with the same reference numerals. conduct.
  • a large area antenna 142 in the second embodiment shown in FIG. 16 has a cutout in a portion not facing the first ITO film 131 and the second ITO film 132, compared to the large area antenna 142 in the first embodiment. It has a built-in structure. That is, the first gap 145 in the second embodiment is configured to have a bent shape within the plane of the antenna conductor 14.
  • the large area antenna 142 in the first embodiment has a dimension in the x direction of (Cx-2*Cb-2*Dm), and the first ITO film 131 and the second ITO film 132 in the x direction. It is the same as the size (including the meaning of approximately the same). Therefore, this large-area antenna 142 exactly overlaps the first ITO film 131 and the second ITO film 132, and is covered by both the first ITO film 131 and the second ITO film 132 as well as the large-area antenna 142. There were parts that wasn't there.
  • the principle of a patch antenna is based on the rectangular portion of the large-area antenna 142 that exists on the first ITO film 131 and the second ITO film 132. It is considered that currents 51a and 51b are generated and radiate electromagnetic waves.
  • the antenna device 1 according to the second embodiment a cutout is made in a portion of the large-area antenna 142 that does not overlap the first ITO film 131 and the second ITO film 132.
  • the antenna device 1 according to the first embodiment is covered with both the first ITO film 131 and the second ITO film 132 and the large-area antenna 142. The missing part will be increased.
  • FIG. 17 is a diagram showing the magnetic current generated in the configuration shown in FIG. 16. Even if the portion not covered by the first ITO film 131, the second ITO film 132, or the large area antenna 142 increases, the principle of the patch antenna remains the same. Therefore, as shown in FIG. 17, the magnetic current generated in the antenna device 1 according to the second embodiment is the same as that in the antenna device 1 according to the first embodiment. Therefore, the effects obtained with the antenna device 1 according to the second embodiment are the same as the effects obtained with the antenna device 1 according to the first embodiment.
  • FIGS. 18 and 19 are top views showing another configuration example of the antenna device 1 according to the second embodiment.
  • FIGS. 18 and 19 show a state in which the protective glass 12 is removed.
  • FIG. 16 shows a case where cutouts are provided at both ends of the large area antenna 142.
  • the present invention is not limited to this.
  • the notch may be provided only at one end (the left side in FIG. 18), or, for example, as shown in FIG. 19, the notch may be provided at both ends.
  • the lengths of the parts provided may be different from each other. Even with this configuration, the same effects as above can be obtained.
  • the large area antenna 142 has a structure in which a cutout is made in a portion that does not overlap the first ITO film 131 and the second ITO film 132.
  • the same effects as those of the antenna device 1 according to the first embodiment can be obtained.
  • FIG. 20 is a top view showing a configuration example of the antenna device 1 according to the third embodiment. Note that FIG. 20 shows a state in which the protective glass 12 has been removed.
  • the configuration of the antenna conductor 14 is changed from the antenna device 1 according to the first embodiment.
  • the other configuration example of the antenna device 1 according to the third embodiment shown in FIG. 20 is the same as the configuration example of the antenna device 1 according to the first embodiment, and the same reference numerals are given and only different parts will be explained. conduct.
  • the part covering the metal housing 11 (bezels 112 to 114) is different from the part covering the liquid crystal device 13. It is constructed using a material with high conductivity. Note that, as a material having high electrical conductivity for the portion covering the liquid crystal device 13, for example, a solid silver film or a copper foil can be used. In FIG. 20, a portion of the antenna conductor 14 made of a material with high conductivity is shown in a different color from the other portions.
  • the antenna conductor 14 does not need to be transparent. Therefore, as shown in FIG. 20, by using a non-transparent but highly conductive material for the part of the antenna conductor 14 that faces the above-mentioned part, the antenna device 1 according to the first embodiment On the other hand, further improvement in radiation efficiency is expected.
  • the antenna device 1 of the third embodiment by using a highly conductive material such as a solid silver film for the portion of the antenna conductor 14 where the bezels 111 to 114 overlap, The radiation efficiency is further increased compared to the antenna device 1 according to No. 1.
  • the present invention is not limited to this, and the configuration of the antenna conductor 14 may be changed in the antenna device 1 according to the second embodiment, and the same effects as described above can be obtained.
  • FIG. 21 is a perspective view showing a configuration example of a power feeding portion of the antenna device 1 according to the fourth embodiment. Note that FIG. 21 shows a state in which the metal casing 11 is removed. In the antenna device 1 according to the fourth embodiment shown in FIG. 21, the configuration of the power feeding section 16 is changed from the antenna device 1 according to the first embodiment.
  • the other configuration example of the antenna device 1 according to the fourth embodiment shown in FIG. 21 is the same as the configuration example of the antenna device 1 according to the first embodiment, and the same reference numerals are given and only different parts will be explained. conduct.
  • a rigid power feeding board 161 is provided in the power feeding section 16 in the fourth embodiment.
  • the power feeding rigid board 161 is a board for feeding power, which is placed opposite to the GND electrode 15 and the antenna conductor 14 at a location other than the location overlapping with the opening surface of the metal housing 11.
  • the power feeding rigid board 161 is assumed to be a dielectric board made of resin such as FR-4 with copper foil mounted on both sides, but is not limited thereto.
  • FIG. 22 is a diagram showing an example of an arrangement location of the power feeding rigid board 161.
  • FIG. 23 is a diagram showing an example of the configuration of the power feeding rigid board 161.
  • FIG. 24 is a cross-sectional view showing a configuration example of the antenna device 1 according to the fourth embodiment.
  • a conductive pattern is printed on the power feeding rigid board 161. This conductor pattern is designed so that when the feeding rigid board 161 is placed on the transmission line 141 and the GND electrode 15 in the antenna conductor 14, it is traced exactly to the part facing the transmission line 141 and the GND electrode 15. It is a conductor pattern formed in Note that the location indicated by the reference numeral 221 in FIG. 22 is the location where the power feeding rigid board 161 is arranged.
  • the power feeding rigid board 161 has a conductor pattern 1611 traced on the transmission line 141 side and a conductor pattern 1612 traced on the GND electrode 15 side as conductor patterns.
  • a conductive pattern 1611 and a conductive pattern 1612 are printed on the front and back surfaces, respectively.
  • the conductor pattern 1611 formed on the front surface is electrically connected to the conductor pattern 1611 formed on the back surface through a through hole (not shown), and the conductor pattern 1612 formed on the front surface is electrically connected to the conductor pattern 1611 formed on the back surface. It is electrically connected to the conductive pattern 1612 through a through hole (not shown).
  • the rigid board for power feeding 161 is electrically connected to the transmission line 141 via the conductor pattern 1611, and the GND electrode 15 and the conductor are connected to each other. Conductivity is established through the pattern 1612.
  • a power supply signal line (not shown) is connected to a surface not in contact with the transmission line 141 and the GND electrode 15 side, and is connected to a user interface of the liquid crystal device 13, etc. Further, by providing a matching circuit on the signal line connection side of the feeding rigid board 161, it is possible to easily match the impedance of the antenna.
  • the power feeding rigid board 161 may be arranged so as to be in physical contact with the transmission line 141 and the GND electrode 15, or may be arranged with a gap therebetween. Further, the conductor pattern on the power feeding rigid board 161 may be different between the front and back surfaces, and the conductor pattern may also have an arbitrary shape.
  • the feeding rigid board 161 As described above, according to the antenna device 1 of the fourth embodiment, by using the feeding rigid board 161, power can be fed by simply arranging the board. This results in a simpler power supply structure.
  • the present invention is not limited to this, and the configuration of the power feeding section 16 may be changed in the antenna device 1 according to the second and third embodiments, and the same effects as described above can be obtained.
  • the antenna conductor 14 is a transparent conductive film
  • the present invention is not limited thereto, and the antenna conductor 14 may be any conductor as long as it can transmit visible light.
  • Embodiments 1 to 4 the case where the liquid crystal device 13 has the first ITO film 131 and the second ITO film 132 has been described as an example.
  • the present invention is not limited to this, and even if the liquid crystal device 13 has a conductive thin film other than an ITO film, the same effects as described above can be obtained by adopting the configurations shown in Embodiments 1 to 4. It will be done.
  • the case where the first ITO film 131, the second ITO film 132, and the antenna conductor 14 were configured in a rectangular shape was explained as an example.
  • the shapes of the first ITO film 131, the second ITO film 132, and the antenna conductor 14 are not limited to this, and can be changed as appropriate.
  • the antenna device can prevent a decrease in radiation efficiency and adjust the frequency at which the radiation efficiency becomes higher than before even when an antenna conductor that can transmit visible light is arranged on a liquid crystal display. Therefore, it is suitable for use in an antenna device or the like in which an antenna conductor capable of transmitting visible light is mounted on a liquid crystal display.

Landscapes

  • Details Of Aerials (AREA)

Abstract

The present invention comprises: a liquid crystal display (13) having a conductive thin film (131, 132); a metal housing (11) with the liquid crystal display (13) built into one side; a GND electrode (15) that is disposed to face the one side of the metal housing (11) with a gap therebetween; and an antenna conductor (14) that allows visible light to pass therethrough, is disposed in the same plane as the GND electrode (15) with a gap therebetween, and covers the liquid crystal display (13). The antenna conductor (14) has: a first gap portion (145) that is provided on the inside of the antenna conductor (14) on the reverse side from the GND electrode (15) side; and a second gap portion (146) that communicates with the first gap portion (145) and is provided on the outer periphery of the antenna conductor (14) on the reverse side from the GND electrode (15) side. The thin film (131, 132) does not face the gap between the GND electrode (15) and the antenna conductor (14) and does not face the first gap portion (145).

Description

アンテナ装置antenna device
 本開示は、液晶ディスプレイ上に、可視光を透過可能なアンテナ導体が搭載されたアンテナ装置に関する。 The present disclosure relates to an antenna device in which an antenna conductor capable of transmitting visible light is mounted on a liquid crystal display.
 近年、可視光に対して透過率が高い透明性を有する導電材料を用いたアンテナ導体である透明アンテナの開発が進んでいる。この透明アンテナでは、ガラス等の基材に透明な導電性のある膜が製膜されることで、非視認性を保ちながらアンテナを実装することが可能となる。 In recent years, the development of transparent antennas, which are antenna conductors using transparent conductive materials with high transmittance to visible light, has progressed. In this transparent antenna, a transparent conductive film is formed on a base material such as glass, making it possible to mount the antenna while maintaining invisibility.
 この透明アンテナで用いられる透明性を有する導電材料は、光の透過率が高くなる程に導電率が小さくなる。例えば、透過率が高い導電材料では、その導電率が銅又はアルミ等に対して約1/100程度にもなる。すなわち、透明性を有する導電材料では、光の透過率と導電率とがトレードオフの関係にある。
 そのため、この透明アンテナでは、非視認性をよくするために、可視光に対して透過率が高い導電材料を用いると、放射効率が低下するという課題がある。
The conductivity of the transparent conductive material used in this transparent antenna decreases as the light transmittance increases. For example, in the case of a conductive material with high transmittance, its conductivity is about 1/100 that of copper, aluminum, or the like. That is, in transparent conductive materials, there is a trade-off relationship between light transmittance and electrical conductivity.
Therefore, in this transparent antenna, when a conductive material having a high transmittance for visible light is used to improve non-visibility, there is a problem that radiation efficiency decreases.
 そこで、この課題を解決するために、金属筐体に対して間隙を設けて配置されたGND電極を設け、透明アンテナとGND電極との間のギャップに給電する方法が提案されている(例えば特許文献1参照)。ここで、GND電極は、GND電極よりも大きいサイズの金属筐体と容量結合をすることで、その金属筐体にも電流が流れる。これにより、透明アンテナへの電流の集中を抑え、透明アンテナの放射効率の低下を防ぐことが可能になる。 Therefore, in order to solve this problem, a method has been proposed in which a GND electrode is provided with a gap between the metal casing and power is supplied to the gap between the transparent antenna and the GND electrode (for example, the patent (See Reference 1). Here, the GND electrode is capacitively coupled to a metal casing that is larger in size than the GND electrode, so that current also flows through the metal casing. This makes it possible to suppress the concentration of current to the transparent antenna and prevent the radiation efficiency of the transparent antenna from decreasing.
国際公開第2018/235260号International Publication No. 2018/235260
 一方、液晶ディスプレイ上に透明アンテナが搭載される場合には、透明アンテナの直下に酸化インジウムスズ膜(以下、「ITO膜」という)が存在することになる。
 この場合、透明アンテナに電流が流れることで、透明アンテナとITO膜との間の容量結合に起因して、ITO膜にも電流が流れる。そして、ITO膜は抵抗値が大きいため、このITO膜での損失が増加し、その結果、透明アンテナの放射効率が低下するという課題があった。
 また、従来の透明アンテナでは、放射効率が高くなる周波数を変化させることができないという課題があった。
On the other hand, when a transparent antenna is mounted on a liquid crystal display, an indium tin oxide film (hereinafter referred to as "ITO film") is present directly under the transparent antenna.
In this case, when current flows through the transparent antenna, current also flows through the ITO film due to capacitive coupling between the transparent antenna and the ITO film. Furthermore, since the ITO film has a large resistance value, loss in the ITO film increases, resulting in a problem in that the radiation efficiency of the transparent antenna decreases.
Another problem with conventional transparent antennas is that it is not possible to change the frequency at which the radiation efficiency becomes high.
 本開示は、上記のような課題を解決するためになされたもので、液晶ディスプレイ上に、可視光を透過可能なアンテナ導体が配置される場合でも、従来に対し、放射効率の低下を防ぎ、且つ、放射効率が高くなる周波数を調整可能となるアンテナ装置を提供することを目的としている。 The present disclosure has been made to solve the above-mentioned problems, and even when an antenna conductor capable of transmitting visible light is arranged on a liquid crystal display, it is possible to prevent a decrease in radiation efficiency compared to the conventional method, Another object of the present invention is to provide an antenna device that can adjust the frequency at which the radiation efficiency becomes high.
 本開示に係るアンテナ装置は、導電性の薄膜を有する液晶ディスプレイと、一面側に液晶ディスプレイが内蔵された金属筐体と、金属筐体の一面に対して間隙を設けて対向配置されたGND電極と、可視光を透過可能であり、GND電極と同一平面上に間隙を設けて配置されて液晶ディスプレイを覆うアンテナ導体とを備え、アンテナ導体は、GND電極側とは反対側の内側に設けられた第1の間隙部と、第1の間隙部と通じ、GND電極側とは反対側の外周に設けられた第2の間隙部とを有し、薄膜は、GND電極とアンテナ導体との間、及び、第1の間隙部には、対向していない。 An antenna device according to the present disclosure includes a liquid crystal display having a conductive thin film, a metal casing with a built-in liquid crystal display on one side, and a GND electrode placed facing the one side of the metal casing with a gap therebetween. and an antenna conductor capable of transmitting visible light, disposed on the same plane as the GND electrode with a gap therebetween, and covering the liquid crystal display, the antenna conductor being provided on the inside opposite to the GND electrode side. and a second gap portion communicating with the first gap portion and provided on the outer periphery on the opposite side to the GND electrode side, and the thin film is formed between the GND electrode and the antenna conductor. , and do not face the first gap.
 本開示によれば、上記のように構成したので、液晶ディスプレイ上に、可視光を透過可能なアンテナ導体が配置される場合でも、従来に対し、放射効率の低下を防ぎ、且つ、放射効率が高くなる周波数を調整可能となる。 According to the present disclosure, with the above configuration, even when an antenna conductor capable of transmitting visible light is arranged on a liquid crystal display, a decrease in radiation efficiency can be prevented and the radiation efficiency can be improved compared to the conventional art. It becomes possible to adjust the increasing frequency.
実施の形態1に係るアンテナ装置の構成例を示す斜視図である。1 is a perspective view showing a configuration example of an antenna device according to Embodiment 1. FIG. 実施の形態1における金属筐体の構成例を示す斜視図である。FIG. 2 is a perspective view showing a configuration example of a metal casing in Embodiment 1. FIG. 実施の形態1における保護ガラスの裏側の構成例を示す図である。3 is a diagram showing an example of the configuration of the back side of the protective glass in Embodiment 1. FIG. 実施の形態1に係るアンテナ装置の構成例を示す上面図であって、保護ガラスが取り除かれた状態を示す図である。FIG. 2 is a top view showing a configuration example of the antenna device according to Embodiment 1, with the protective glass removed. 実施の形態1における液晶装置の構成例を示す分解斜視図である。1 is an exploded perspective view showing a configuration example of a liquid crystal device in Embodiment 1. FIG. 実施の形態1に係るアンテナ装置の構成例を示す上面図であって、金属筐体、第1のITO膜及び第1のガラスのみを示す図である。FIG. 2 is a top view showing a configuration example of the antenna device according to Embodiment 1, showing only a metal housing, a first ITO film, and a first glass. 実施の形態1に係るアンテナ装置の構成例を示す上面図であって、金属筐体、アンテナ導体及び第1のITO膜のみを示す図である。FIG. 2 is a top view showing a configuration example of the antenna device according to Embodiment 1, showing only a metal housing, an antenna conductor, and a first ITO film. 実施の形態1に係るアンテナ装置の構成例を示す断面図である。1 is a cross-sectional view showing a configuration example of an antenna device according to Embodiment 1. FIG. 実施の形態1に係るアンテナ装置の構成例を示す上面図であって、アンテナ装置で発生する磁流のイメージを表す図である。FIG. 2 is a top view showing a configuration example of the antenna device according to Embodiment 1, and is a diagram illustrating an image of magnetic current generated in the antenna device. 実施の形態1に係るアンテナ装置の構成例を示す断面図であって、アンテナ装置で発生する磁流を含めて示した図である。1 is a cross-sectional view showing a configuration example of an antenna device according to Embodiment 1, including a magnetic current generated in the antenna device. FIG. 実施の形態1に係るアンテナ装置に対し、アンテナ導体をモノポールアンテナに変更した場合での構成例を示す上面図である。FIG. 2 is a top view showing a configuration example of the antenna device according to Embodiment 1 in which the antenna conductor is changed to a monopole antenna. 実施の形態1に係るアンテナ装置と図11に示すアンテナ装置とでの放射効率の周波数特性の一例を示すグラフである。12 is a graph showing an example of frequency characteristics of radiation efficiency in the antenna device according to Embodiment 1 and the antenna device shown in FIG. 11. FIG. 実施の形態1に係るアンテナ装置において、第2の間隙部の長さを変化させた場合での放射効率の周波数特性の一例を示すグラフである。7 is a graph showing an example of frequency characteristics of radiation efficiency when changing the length of the second gap in the antenna device according to the first embodiment. 実施の形態1に係るアンテナ装置の構成例を示す図であって、アンテナ導体における第1のL字型素子及び第2のL字型素子が取り除かれた状態を示す図である。FIG. 3 is a diagram illustrating a configuration example of the antenna device according to Embodiment 1, with a first L-shaped element and a second L-shaped element removed from the antenna conductor. 図14に示す大面積アンテナの長さを変化させた場合での放射効率の周波数特性の一例を示すグラフである。15 is a graph showing an example of frequency characteristics of radiation efficiency when changing the length of the large-area antenna shown in FIG. 14. FIG. 実施の形態2に係るアンテナ装置の構成例を示す上面図であって、金属筐体、アンテナ導体及び第1のITO膜のみを示す図である。FIG. 7 is a top view showing a configuration example of an antenna device according to Embodiment 2, showing only a metal housing, an antenna conductor, and a first ITO film. 実施の形態2に係るアンテナ装置で発生する磁流のイメージを表す図である。FIG. 7 is a diagram illustrating an image of magnetic current generated in the antenna device according to Embodiment 2. FIG. 実施の形態2に係るアンテナ装置の別の構成例を示す上面図であって、金属筐体、アンテナ導体及び第1のITO膜のみを示す図である。FIG. 7 is a top view showing another configuration example of the antenna device according to Embodiment 2, showing only the metal casing, the antenna conductor, and the first ITO film. 実施の形態2に係るアンテナ装置の別の構成例を示す上面図であって、金属筐体、アンテナ導体及び第1のITO膜のみを示す図である。FIG. 7 is a top view showing another configuration example of the antenna device according to Embodiment 2, showing only the metal casing, the antenna conductor, and the first ITO film. 実施の形態3に係るアンテナ装置の構成例を示す上面図であって、金属筐体、アンテナ導体及び第1のITO膜のみを示す図である。FIG. 7 is a top view showing a configuration example of an antenna device according to Embodiment 3, showing only a metal casing, an antenna conductor, and a first ITO film. 実施の形態4に係るアンテナ装置における給電部付近の構成例を示す斜視図であって、金属筐体が取り除かれた状態を示す図である。FIG. 12 is a perspective view showing a configuration example of the vicinity of the power feeding section in the antenna device according to Embodiment 4, with the metal casing removed. 実施の形態4に係るアンテナ装置における給電部付近の構成例を示す上面図であって、金属筐体及び給電用リジット基板が取り除かれた状態を示す図である。FIG. 12 is a top view showing a configuration example of the vicinity of the power feeding unit in the antenna device according to Embodiment 4, with the metal casing and the feeding rigid board removed. 図23A、図23Bは、実施の形態4における給電用リジット基板の構成例を示す図であって、図23Aは表面を示す図であり、図23Bは裏面を示す図である。23A and 23B are diagrams showing a configuration example of a rigid board for power feeding in Embodiment 4, in which FIG. 23A is a diagram showing the front surface, and FIG. 23B is a diagram showing the back surface. 実施の形態4に係るアンテナ装置の構成例を示す断面図である。FIG. 7 is a cross-sectional view showing a configuration example of an antenna device according to a fourth embodiment.
 以下、実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1は実施の形態1に係るアンテナ装置1の構成例を示す斜視図である。
 アンテナ装置1は、液晶装置(液晶ディスプレイ)13上に、可視光を透過可能なアンテナ導体14が搭載された装置である。このアンテナ装置1は、図1に示すように、金属筐体11、及び、保護ガラス12を備えている。
Hereinafter, embodiments will be described in detail with reference to the drawings.
Embodiment 1.
FIG. 1 is a perspective view showing a configuration example of an antenna device 1 according to the first embodiment.
The antenna device 1 is a device in which an antenna conductor 14 that can transmit visible light is mounted on a liquid crystal device (liquid crystal display) 13. As shown in FIG. 1, this antenna device 1 includes a metal housing 11 and a protective glass 12.
 金属筐体11は、一面(図1では上面)側に液晶装置13が内蔵された金属製の筐体である。この金属筐体11は、一面が開口されている。なお、金属筐体11における開口面は、その直上に保護ガラス12が存在するため、図1では図示されていない。 The metal casing 11 is a metal casing in which a liquid crystal device 13 is built in on one side (the top side in FIG. 1). This metal casing 11 has an opening on one side. Note that the opening surface of the metal housing 11 is not shown in FIG. 1 because the protective glass 12 exists directly above it.
 図2は実施の形態1における金属筐体11の構成例を示す斜視図である。
 この図2に示すように、金属筐体11は、x方向の寸法がCxであり、y方向の寸法がCyであり、z方向の寸法がCzである。また、金属筐体11は、+z方向の1面に、開口面を有している。また、金属筐体11は、開口面の縁に、幅がCbであるベゼル111~114を有している。そのため、開口面の面積は、{(Cx-2*Cb)*(Cy-2*Cb)}となる。また、金属筐体11は、側面に金属壁115~118を有し、底面に金属板119を有している。
FIG. 2 is a perspective view showing a configuration example of the metal casing 11 in the first embodiment.
As shown in FIG. 2, the metal housing 11 has a dimension in the x direction of Cx, a dimension in the y direction of Cy, and a dimension of the z direction of Cz. Further, the metal housing 11 has an open surface on one surface in the +z direction. Further, the metal housing 11 has bezels 111 to 114 having a width of Cb at the edge of the opening surface. Therefore, the area of the opening surface is {(Cx-2*Cb)*(Cy-2*Cb)}. Further, the metal casing 11 has metal walls 115 to 118 on the side surfaces and a metal plate 119 on the bottom surface.
 保護ガラス12は、直下に存在する金属筐体11に内蔵された液晶装置13を保護するためのガラスである。
 なお、ユーザは、保護ガラス12に対して、+z方向から液晶装置13を視認する。
The protective glass 12 is a glass for protecting the liquid crystal device 13 built into the metal casing 11 located directly below.
Note that the user visually recognizes the liquid crystal device 13 from the +z direction with respect to the protective glass 12.
 図3は実施の形態1における保護ガラス12の裏面の構成例を示す図であり、図4は実施の形態1に係るアンテナ装置1の構成例を示す上面図である。なお、図4では、保護ガラス12が取り除かれた状態を示している。
 この図3及び図4に示すように、保護ガラス12の裏面には、アンテナ導体14、及び、GND電極15が実装されている。また、アンテナ導体14とGND電極15とのギャップ間に、給電部16が配置されている。そして、この給電部16に交流電力が印加されることで、アンテナ導体14が励振する。すなわち、液晶装置13のユーザインタフェース(不図示)から配線された給電線路(不図示)のうち、信号線側がアンテナ導体14に接続され、GND側がGND電極15に接続されるイメージとなる。
FIG. 3 is a diagram showing an example of the configuration of the back surface of the protective glass 12 in the first embodiment, and FIG. 4 is a top view showing an example of the configuration of the antenna device 1 according to the first embodiment. Note that FIG. 4 shows a state in which the protective glass 12 has been removed.
As shown in FIGS. 3 and 4, an antenna conductor 14 and a GND electrode 15 are mounted on the back surface of the protective glass 12. Further, a power feeding section 16 is arranged between the gap between the antenna conductor 14 and the GND electrode 15. Then, by applying AC power to this power feeding section 16, the antenna conductor 14 is excited. That is, of the feed line (not shown) wired from the user interface (not shown) of the liquid crystal device 13, the signal line side is connected to the antenna conductor 14, and the GND side is connected to the GND electrode 15.
 アンテナ導体14は、可視光を透過可能であり、GND電極15と同一(略同一の意味を含む)平面上に間隙を設けて配置されて液晶装置13を覆う導体である。このアンテナ導体14は、可視光を透過可能な透明性を有する導電材料を用いて構成されている。ここでは、アンテナ導体14が透明導電膜であり且つ方形状に構成された場合を例に説明を行う。
 このアンテナ導体14は、図4に示すように、伝送線路141、大面積アンテナ142、第1のL字型素子143、及び、第2のL字型素子144を有する。
The antenna conductor 14 is a conductor that can transmit visible light, is disposed on the same (substantially the same meaning) plane as the GND electrode 15, and covers the liquid crystal device 13 with a gap therebetween. The antenna conductor 14 is made of a transparent conductive material that can transmit visible light. Here, an example will be described in which the antenna conductor 14 is a transparent conductive film and has a rectangular shape.
As shown in FIG. 4, this antenna conductor 14 includes a transmission line 141, a large area antenna 142, a first L-shaped element 143, and a second L-shaped element 144.
 伝送線路141は、一端がGND電極15に間隙を有して対向し、他端が大面積アンテナ142に接続された直線状の線路である。この伝送線路141は、給電部16により励振された電力を、大面積アンテナ142、第1のL字型素子143、及び、第2のL字型素子144へ伝送させるための線路である。 The transmission line 141 is a straight line with one end facing the GND electrode 15 with a gap therebetween, and the other end connected to the large area antenna 142. This transmission line 141 is a line for transmitting the power excited by the power feeding section 16 to the large area antenna 142, the first L-shaped element 143, and the second L-shaped element 144.
 大面積アンテナ142は、液晶装置13における後述する第1のITO膜131及び第2のITO膜132を覆うように配置された面状の導体である。また、この大面積アンテナ142は、金属筐体11におけるベゼル112,114も一部覆っている。 The large-area antenna 142 is a planar conductor arranged to cover a first ITO film 131 and a second ITO film 132, which will be described later, in the liquid crystal device 13. Further, this large-area antenna 142 also partially covers the bezels 112 and 114 of the metal housing 11.
 第1のL字型素子143は、大面積アンテナ142における両側面のうちの一方側に接したL字状の導体である。この第1のL字型素子143は、第1の直線状線路部1431、及び、第2の直線状線路部1432を有している。第1の直線状線路部1431は、大面積アンテナ142における両側面のうちの一方側に接している。図1では、第1の直線状線路部1431は、大面積アンテナ142における左側面側に接している。また、第2の直線状線路部1432は、大面積アンテナ142とは接しておらず、一端が、第1の直線状線路部1431の端部に接している。 The first L-shaped element 143 is an L-shaped conductor that is in contact with one of both sides of the large-area antenna 142. This first L-shaped element 143 has a first linear line portion 1431 and a second linear line portion 1432. The first linear line portion 1431 is in contact with one of both side surfaces of the large area antenna 142. In FIG. 1, the first linear line portion 1431 is in contact with the left side of the large-area antenna 142. Further, the second linear line portion 1432 is not in contact with the large-area antenna 142, and one end thereof is in contact with the end of the first linear line portion 1431.
 なお、第1のL字型素子143の幅は、金属筐体11におけるベゼル112,113の幅と同一(略同一の意味を含む)である。そして、第1のL字型素子143は、金属筐体11におけるベゼル112,113と重なるように配置される。
 図4では、第1のL字型素子143は、ベゼル112の一部分及びベゼル113の一部分に重なっている。
Note that the width of the first L-shaped element 143 is the same (including substantially the same meaning) as the width of the bezels 112 and 113 in the metal housing 11. The first L-shaped element 143 is arranged so as to overlap the bezels 112 and 113 in the metal housing 11.
In FIG. 4, the first L-shaped element 143 overlaps a portion of the bezel 112 and a portion of the bezel 113. In FIG.
 第2のL字型素子144は、大面積アンテナ142における両側面のうちの他方側に接したL字状の導体である。この第2のL字型素子144は、第1の直線状線路部1441、及び、第2の直線状線路部1442を有している。第1の直線状線路部1441は、大面積アンテナ142における両側面のうちの他方側に接している。図1では、第1の直線状線路部1441は、大面積アンテナ142における右側面側に接している。また、第2の直線状線路部1442は、大面積アンテナ142とは接しておらず、一端が、第1の直線状線路部1441の端部に接している。 The second L-shaped element 144 is an L-shaped conductor that is in contact with the other of both sides of the large-area antenna 142. This second L-shaped element 144 has a first linear line portion 1441 and a second linear line portion 1442. The first straight line portion 1441 is in contact with the other side of both sides of the large area antenna 142. In FIG. 1, the first linear line portion 1441 is in contact with the right side of the large area antenna 142. Further, the second linear line portion 1442 is not in contact with the large-area antenna 142, and one end thereof is in contact with the end of the first linear line portion 1441.
 なお、第2のL字型素子144の幅は、金属筐体11におけるベゼル114,113の幅と同一(略同一の意味を含む)である。そして、第2のL字型素子144は、金属筐体11におけるベゼル114,113と重なるように配置される。
 図4では、第2のL字型素子144は、ベゼル114の一部分及びベゼル113の一部分に重なっている。
Note that the width of the second L-shaped element 144 is the same (including substantially the same meaning) as the width of the bezels 114 and 113 in the metal housing 11. The second L-shaped element 144 is arranged so as to overlap the bezels 114 and 113 in the metal housing 11.
In FIG. 4, second L-shaped element 144 overlaps a portion of bezel 114 and a portion of bezel 113. In FIG.
 この第1のL字型素子143及び第2のL字型素子144は、x軸に対して線対称に配置されている。 The first L-shaped element 143 and the second L-shaped element 144 are arranged line-symmetrically with respect to the x-axis.
 なお、図3に示すように、大面積アンテナ142、第1のL字型素子143、及び、第2のL字型素子144は、アンテナ導体14に対して、第1の間隙部145及び第2の間隙部146が設けられることで、構成される。
 第1の間隙部145は、アンテナ導体14のうちのGND電極15側とは反対側の内側に設けられた間隙である。図3では、第1の間隙部145は矩形状に構成されている。
 第2の間隙部146は、第1の間隙部145と通じ、アンテナ導体14のうちのGND電極15側とは反対側の外周に設けられた間隙である。第2の間隙部146の幅は、第1の間隙部145の幅に対して短く構成されている。
Note that, as shown in FIG. It is configured by providing two gap portions 146.
The first gap portion 145 is a gap provided inside the antenna conductor 14 on the side opposite to the GND electrode 15 side. In FIG. 3, the first gap 145 has a rectangular shape.
The second gap 146 communicates with the first gap 145 and is a gap provided on the outer periphery of the antenna conductor 14 on the side opposite to the GND electrode 15 side. The width of the second gap portion 146 is configured to be shorter than the width of the first gap portion 145.
 なお、アンテナ導体14と金属筐体11とが対向している部分には、わずかな間隙が空けられている。すなわち、アンテナ導体14は金属筐体11とは接していない。 Note that a slight gap is left in the portion where the antenna conductor 14 and the metal casing 11 face each other. That is, the antenna conductor 14 is not in contact with the metal housing 11.
 また、上記では、第1のL字型素子143が、ベゼル112の一部分及びベゼル113の一部分に重なっている場合を示した。しかしながら、これに限らず、第1のL字型素子143は、ベゼル112及びベゼル113と重なっていなくてもよい。
 また、上記では、第2のL字型素子144が、ベゼル114の一部分及びベゼル113の一部分に重なっている場合を示した。しかしながら、これに限らず、第2のL字型素子144は、ベゼル114及びベゼル113と重なっていなくてもよい。
Further, in the above description, the first L-shaped element 143 overlaps a portion of the bezel 112 and a portion of the bezel 113. However, the present invention is not limited thereto, and the first L-shaped element 143 may not overlap the bezel 112 and the bezel 113.
Furthermore, in the above description, the second L-shaped element 144 overlaps a portion of the bezel 114 and a portion of the bezel 113. However, the present invention is not limited thereto, and the second L-shaped element 144 may not overlap the bezel 114 and the bezel 113.
 GND電極15は、金属筐体11の一面(開口面)に対して間隙を設けて対向配置された直線状の電極である。すなわち、GND電極15は、金属筐体11とは接していない。また、図4に示すように、GND電極15は、その大部分が、金属筐体11のベゼル111の真上に間隙を設けて対向配置されている。 The GND electrode 15 is a linear electrode placed facing one surface (opening surface) of the metal casing 11 with a gap provided therebetween. That is, the GND electrode 15 is not in contact with the metal casing 11. Further, as shown in FIG. 4, most of the GND electrode 15 is disposed directly above and opposite to the bezel 111 of the metal housing 11 with a gap therebetween.
 なお、GND電極15は、GNDサイズとしては不十分なサイズである。しかしながら、このGND電極15は、直下にある金属筐体11のベゼル111と容量結合し、金属筐体11もGNDとして利用することで十分なGNDサイズを確保する。 Note that the GND electrode 15 has an insufficient size as a GND size. However, this GND electrode 15 is capacitively coupled with the bezel 111 of the metal casing 11 directly below, and the metal casing 11 is also used as a GND, thereby ensuring a sufficient GND size.
 また、GND電極15を用いずに、給電部16を金属筐体11と直接導通させることも可能である。しかしながら、この場合、構造が複雑となって給電が困難となるため、GND電極15を用いた容量結合の方が簡易に給電できる。 Furthermore, it is also possible to directly connect the power supply section 16 to the metal casing 11 without using the GND electrode 15. However, in this case, the structure becomes complicated and power supply becomes difficult, so capacitive coupling using the GND electrode 15 can more easily supply power.
 なお、図3及び図4では、GND電極15が、x軸に対して線対称に構成された場合を示している。しかしながら、これに限らず、GND電極15は、x軸に対して線対称に構成されていなくてもよい。 Note that FIGS. 3 and 4 show a case where the GND electrode 15 is configured line-symmetrically with respect to the x-axis. However, the present invention is not limited to this, and the GND electrode 15 may not be configured line-symmetrically with respect to the x-axis.
 また、図4では、給電部16は、y方向(ベゼル111の辺)における中心(略中心の意味を含む)に配置された場合を示している。しかしながら、これに限らず、給電部16は、ベゼル111の辺の中心に配置されなくてもよい。 Further, FIG. 4 shows a case where the power feeding unit 16 is arranged at the center (including the meaning of approximately the center) in the y direction (side of the bezel 111). However, the present invention is not limited to this, and the power feeding section 16 may not be arranged at the center of the side of the bezel 111.
 図5は実施の形態1における液晶装置13の構成例を示す分解斜視図である。
 液晶装置13は、図5に示すように、第1のITO膜131、第2のITO膜132、第1のガラス133、及び、第2のガラス134を有している。そして、液晶装置13は、図5に示すように、+z方向から、第1のITO膜131、第1のガラス133、第2のITO膜132、第2のガラス134の順に積層されている。
FIG. 5 is an exploded perspective view showing a configuration example of the liquid crystal device 13 in the first embodiment.
The liquid crystal device 13 has a first ITO film 131, a second ITO film 132, a first glass 133, and a second glass 134, as shown in FIG. As shown in FIG. 5, the liquid crystal device 13 includes a first ITO film 131, a first glass 133, a second ITO film 132, and a second glass 134 stacked in this order from the +z direction.
 第1のITO膜131は、第1のガラス133の一方の面(図5では上面)に実装されている。また、第2のITO膜132は、第1のガラス133の他方の面(図5では下面)に実装されている。なお、図5では、図を見やすくするため、第1のITO膜131及び第2のITO膜132と第1のガラス133とを離して示している。
 また、ここでは、第1のITO膜131及び第2のITO膜132が方形状に構成された場合を例に説明を行う。
The first ITO film 131 is mounted on one surface (the upper surface in FIG. 5) of the first glass 133. Further, the second ITO film 132 is mounted on the other surface (the lower surface in FIG. 5) of the first glass 133. Note that in FIG. 5, the first ITO film 131, the second ITO film 132, and the first glass 133 are shown separated for ease of viewing.
Further, here, an example will be described in which the first ITO film 131 and the second ITO film 132 are configured in a rectangular shape.
 この第1のITO膜131及び第2のITO膜132は、シート抵抗値が高い。例えば、このシート抵抗値は、例えば50Ω/□、31Ω/□である。そのため、仮に、この第1のITO膜131及び第2のITO膜132の真上にアンテナ導体14が配置され、そのアンテナ導体14上に電流が流れると、アンテナ導体14と第1のITO膜131及び第2のITO膜132とが容量結合してしまう。この場合、第1のITO膜131及び第2のITO膜132にも電流が流れて損失となり、アンテナ導体14の放射効率の低下につながる。 The first ITO film 131 and the second ITO film 132 have a high sheet resistance value. For example, the sheet resistance values are, for example, 50Ω/□ and 31Ω/□. Therefore, if the antenna conductor 14 is placed directly above the first ITO film 131 and the second ITO film 132 and a current flows on the antenna conductor 14, the antenna conductor 14 and the first ITO film 131 and the second ITO film 132 are capacitively coupled. In this case, current also flows through the first ITO film 131 and the second ITO film 132, resulting in loss, leading to a reduction in the radiation efficiency of the antenna conductor 14.
 なお、ここでは、液晶装置13の構成要素として、第1のITO膜131、第2のITO膜132、第1のガラス133、及び、第2のガラス134の4つの部材のみを示したが、実際には更に多くの部品が搭載されている。 Note that only four members, the first ITO film 131, the second ITO film 132, the first glass 133, and the second glass 134, are shown here as the constituent elements of the liquid crystal device 13; In reality, there are many more parts included.
 図6は実施の形態1に係るアンテナ装置1の構成例を示す上面図であって、金属筐体11、第1のITO膜131及び第1のガラス133のみを示す図である。
 この図6に示すように、第1のガラス133は、x方向の寸法が(Cx-2*Cb)であり、y方向の寸法が(Cy-2*Cb)である。すなわち、第1のガラス133は、金属筐体11の開口面と同一(略同一の意味を含む)のサイズである。そのため、第1のガラス133は、ちょうど金属筐体11の開口面と重なる。
 また、第2のガラス134は、真上から見た場合に視認できないため図6では図示していないが、第1のガラス133と同一(略同一の意味を含む)のサイズであり、真上からみた位置関係も第1のガラス133と同じとなっている。
FIG. 6 is a top view showing a configuration example of the antenna device 1 according to the first embodiment, and shows only the metal housing 11, the first ITO film 131, and the first glass 133.
As shown in FIG. 6, the first glass 133 has a dimension in the x direction of (Cx-2*Cb) and a dimension in the y direction of (Cy-2*Cb). That is, the first glass 133 has the same size (including substantially the same meaning) as the opening surface of the metal housing 11. Therefore, the first glass 133 exactly overlaps the opening surface of the metal housing 11.
Although the second glass 134 is not shown in FIG. 6 because it cannot be seen when viewed from directly above, it is the same size (including approximately the same meaning) as the first glass 133, and is directly above the second glass 134. The positional relationship when viewed from above is also the same as that of the first glass 133.
 また、第1のITO膜131は、金属筐体11のベゼル111~114の端辺からDmの間隔を設けて配置されている。そのため、第1のITO膜131の面積は、{(Cx-2*Cb-2*Dm)*(Cy-2*Cb-2*Dm)}となる。
 また、第2のITO膜132は、真上から見た場合に視認できないため図6では図示していないが、第1のITO膜131と同一(略同一の意味を含む)のサイズであり、真上からみた位置関係も第1のITO膜131と同じとなっている。
Further, the first ITO film 131 is arranged at a distance of Dm from the edge of the bezels 111 to 114 of the metal housing 11. Therefore, the area of the first ITO film 131 is {(Cx-2*Cb-2*Dm)*(Cy-2*Cb-2*Dm)}.
Although the second ITO film 132 is not shown in FIG. 6 because it is not visible when viewed from directly above, it has the same size (including substantially the same meaning) as the first ITO film 131, The positional relationship seen from directly above is also the same as that of the first ITO film 131.
 図7は実施の形態1に係るアンテナ装置1の構成例を示す上面図である。なお、図7では、保護ガラス12が取り除かれ、また、液晶装置13としては第1のITO膜131のみを示している。
 この図7に示すように、大面積アンテナ142は、x方向の寸法が(Cx-2*Cb-2*Dm)であり、第1のITO膜131及び第2のITO膜132と同一(略同一の意味を含む)の寸法である。そのため、大面積アンテナ142と第1のITO膜131及び第2のITO膜132とは、x軸上ではちょうど重なる。
 また、大面積アンテナ142は、y方向の寸法がCyであり、金属筐体11のベゼル112,114の部分まで覆うようになっている。
FIG. 7 is a top view showing a configuration example of the antenna device 1 according to the first embodiment. Note that in FIG. 7, the protective glass 12 is removed, and only the first ITO film 131 is shown as the liquid crystal device 13.
As shown in FIG. 7, the large area antenna 142 has a dimension in the x direction of (Cx-2*Cb-2*Dm), which is the same (approximately) as the first ITO film 131 and the second ITO film 132. (with the same meaning). Therefore, the large-area antenna 142, the first ITO film 131, and the second ITO film 132 exactly overlap on the x-axis.
Further, the large area antenna 142 has a dimension in the y direction of Cy, and is designed to cover the bezels 112 and 114 of the metal housing 11.
 すなわち、実施の形態1に係るアンテナ装置1では、第1のITO膜131及び第2のITO膜132は、GND電極15とアンテナ導体14との間、及び、第1の間隙部145には、対向していない。 That is, in the antenna device 1 according to the first embodiment, the first ITO film 131 and the second ITO film 132 are arranged between the GND electrode 15 and the antenna conductor 14 and in the first gap 145. Not facing each other.
 図8は図1に示すアンテナ装置1のa-a’線断面図である。
 この図8に示すように、GND電極15は、金属筐体11におけるベゼル111と容量結合し、金属筐体11にも電流を流すことでGNDを確保している。この際、保護ガラス12と金属筐体11との間隔であるDCが小さい程、GND電極15と金属筐体11におけるベゼル111との距離が近づくため、結合量が増加する。
FIG. 8 is a sectional view taken along the line aa' of the antenna device 1 shown in FIG.
As shown in FIG. 8, the GND electrode 15 is capacitively coupled to the bezel 111 in the metal housing 11, and current is passed through the metal housing 11 as well, thereby ensuring GND. At this time, the smaller the distance DC between the protective glass 12 and the metal housing 11, the closer the distance between the GND electrode 15 and the bezel 111 in the metal housing 11 becomes, and thus the amount of coupling increases.
 次に、上記のように構成された実施の形態1に係るアンテナ装置1による効果について説明する。
 まず、アンテナ装置1の放射効率の低下を防ぐ波源の配置について説明する。
 図9は実施の形態1に係るアンテナ装置1において、アンテナ導体14に電流が流れることにより形成される放射磁流源を示している。なお、図9では、保護ガラス12が取り除かれた状態を示している。
 この図9に示すように、給電部16によりアンテナ導体14へ電力が励振されると、アンテナ導体14上に電流が流れる。この際、大面積アンテナ142はパッチアンテナとして動作し、間隙(Dm)の部分に磁流51a,51bが発生する。この磁流51a,51bが放射源となり、アンテナ装置1は電磁波を放射する。
Next, the effects of the antenna device 1 according to the first embodiment configured as described above will be explained.
First, the arrangement of the wave sources that prevents the radiation efficiency of the antenna device 1 from decreasing will be explained.
FIG. 9 shows a radiated magnetic current source formed by a current flowing through the antenna conductor 14 in the antenna device 1 according to the first embodiment. Note that FIG. 9 shows a state in which the protective glass 12 has been removed.
As shown in FIG. 9, when power is excited to the antenna conductor 14 by the power feeding section 16, a current flows on the antenna conductor 14. At this time, the large-area antenna 142 operates as a patch antenna, and magnetic currents 51a and 51b are generated in the gap (Dm). These magnetic currents 51a and 51b serve as radiation sources, and the antenna device 1 radiates electromagnetic waves.
 図10は図9に示すb-b’線断面図である。
 この図10に示すように、間隙(Dm)に発生した磁流51a,51bの直下には、第1のITO膜131及び第2のITO膜132は存在しない。そのため、実施の形態1に係るアンテナ装置1では、従来に対し、第1のITO膜131及び第2のITO膜132に流れる電流を抑圧でき、アンテナ装置1の放射効率の低下を防ぐことが可能となる。
FIG. 10 is a sectional view taken along the line bb' shown in FIG.
As shown in FIG. 10, the first ITO film 131 and the second ITO film 132 do not exist directly under the magnetic currents 51a and 51b generated in the gap (Dm). Therefore, in the antenna device 1 according to the first embodiment, the current flowing through the first ITO film 131 and the second ITO film 132 can be suppressed, and the radiation efficiency of the antenna device 1 can be prevented from decreasing, compared to the conventional method. becomes.
 図11は実施の形態1に係るアンテナ装置1に対してアンテナ導体14をモノポールアンテナ21に変更した場合での構成例を示す上面図である。なお、図11では、保護ガラス12が取り除かれた状態を示している。
 この図11に示すように、モノポールアンテナ21は、モノポールアンテナ21上を流れる電流51cがそのまま放射源となる。そして、この場合、電流51cの直下には、第1のITO膜131及び第2のITO膜132が存在する。そのため、この場合には、第1のITO膜131及び第2のITO膜132にも強く電流が流れ、アンテナ装置1bの放射効率の低下を招く。
FIG. 11 is a top view showing a configuration example of the antenna device 1 according to the first embodiment in which the antenna conductor 14 is changed to a monopole antenna 21. Note that FIG. 11 shows a state in which the protective glass 12 has been removed.
As shown in FIG. 11, in the monopole antenna 21, the current 51c flowing on the monopole antenna 21 directly serves as a radiation source. In this case, the first ITO film 131 and the second ITO film 132 exist directly under the current 51c. Therefore, in this case, a strong current flows also in the first ITO film 131 and the second ITO film 132, leading to a decrease in the radiation efficiency of the antenna device 1b.
 図12は実施の形態1に係るアンテナ装置1と図11に示す構成とでの放射効率の周波数特性の一例を示す図である。なお、図12に示す放射効率では、不整合損は未考慮であり、基準周波数(f0)にて規格化した場合を示している。図12において、実線が実施の形態1に係るアンテナ装置1の場合での放射効率の周波数特性の一例を示し、破線が図11に示す構成での放射効率の周波数特性の一例を示している。
 この図12に示すように、実施の形態1に係るアンテナ装置1では、図11に示す構成に対し、放射効率が上回っていることが確認できる。
FIG. 12 is a diagram showing an example of frequency characteristics of radiation efficiency in the antenna device 1 according to the first embodiment and the configuration shown in FIG. 11. Note that the radiation efficiency shown in FIG. 12 does not take into account mismatch loss, and shows the case where it is normalized at the reference frequency (f0). In FIG. 12, a solid line indicates an example of the frequency characteristic of radiation efficiency in the case of the antenna device 1 according to the first embodiment, and a broken line indicates an example of the frequency characteristic of radiation efficiency in the configuration shown in FIG. 11.
As shown in FIG. 12, it can be confirmed that the radiation efficiency of the antenna device 1 according to the first embodiment is higher than that of the configuration shown in FIG. 11.
 次に、実施の形態1に係るアンテナ装置1において、放射効率が高くなる周波数を変化させる方法について説明する。
 実施の形態1に係るアンテナ装置1では、図9に示すように、アンテナ導体14において、第1のL字型素子143の先端と第2のL字型素子144の先端とが離れた第2の間隙部146が設けられている。そして、実施の形態1に係るアンテナ装置1では、この第2の間隙部146の長さであるLsを調整することで、第1のL字型素子143及び第2のL字型素子144の電流経路長が変化し、磁流51aの磁流長を調整できる。その結果、実施の形態1に係るアンテナ装置1では、放射効率が高くなる周波数を調整可能となる。
Next, a method of changing the frequency at which the radiation efficiency becomes high in the antenna device 1 according to the first embodiment will be described.
In the antenna device 1 according to the first embodiment, as shown in FIG. 9, in the antenna conductor 14, the tip of the first L-shaped element 143 and the tip of the second L-shaped element 144 are separated from each other. A gap 146 is provided. In the antenna device 1 according to the first embodiment, by adjusting the length Ls of the second gap 146, the length of the first L-shaped element 143 and the second L-shaped element 144 can be adjusted. The current path length changes, and the magnetic current length of the magnetic current 51a can be adjusted. As a result, in the antenna device 1 according to the first embodiment, it is possible to adjust the frequency at which the radiation efficiency becomes high.
 図13は実施の形態1における第2の間隙部146の長さであるLsを変化させた場合での放射効率の周波数特性の一例を示す図である。なお、図13に示す放射効率では、不整合損は未考慮である。
 なお、図7に示すように、Lsは最大でCyの値を取る。
 そして、図13に示すように、Ls=Cyの場合を除き、放射効率が高くなる周波数が2つ現れている。このように、実施の形態1に係るアンテナ装置1では、放射効率が高くなる周波数の調整可能範囲が広い。
FIG. 13 is a diagram showing an example of the frequency characteristics of radiation efficiency when Ls, which is the length of the second gap 146, is changed in the first embodiment. Note that the radiation efficiency shown in FIG. 13 does not take mismatch loss into consideration.
Note that, as shown in FIG. 7, Ls takes a maximum value of Cy.
As shown in FIG. 13, two frequencies with high radiation efficiency appear except for the case where Ls=Cy. In this way, the antenna device 1 according to the first embodiment has a wide adjustable range of frequencies where the radiation efficiency is high.
 なお、Ls=Cyの場合には、第1のL字型素子143及び第2のL字型素子144が存在せず、大面積アンテナ142しか存在しない。そのため、磁流51a,51bをそれぞれ形成する電流分布が対称となる。その結果、2つの磁流51a,51bが単一周波数で動作するパッチアンテナのようなものになり、放射効率が高くなる周波数がおよそf0の1周波数のみとなる。 Note that when Ls=Cy, the first L-shaped element 143 and the second L-shaped element 144 are not present, and only the large-area antenna 142 is present. Therefore, the current distributions forming the magnetic currents 51a and 51b are symmetrical. As a result, the two magnetic currents 51a and 51b become like a patch antenna that operates at a single frequency, and the radiation efficiency becomes high only at one frequency, approximately f0.
 図14は実施の形態1に係るアンテナ装置1から第1のL字型素子143及び第2のL字型素子144を取り除いた場合での構成例を示す図である。なお、図14では、保護ガラス12が取り除かれた状態を示している。
 この図14に示すように、周波数を調整可能な方式として、アンテナ導体14から第1のL字型素子143及び第2のL字型素子144を取り除き、大面積アンテナ142のx方向の長さであるLaを変化させる方法が考えられる。Laの最大値は、図6から、Cx-2*Cb-2*Dmである。ここでは、便宜上、Lax=Cx-2*Cb-2*Dmとする。
FIG. 14 is a diagram showing a configuration example in the case where the first L-shaped element 143 and the second L-shaped element 144 are removed from the antenna device 1 according to the first embodiment. Note that FIG. 14 shows a state in which the protective glass 12 has been removed.
As shown in FIG. 14, as a system in which the frequency can be adjusted, the first L-shaped element 143 and the second L-shaped element 144 are removed from the antenna conductor 14, and the length of the large-area antenna 142 in the x direction is One possible method is to change La. From FIG. 6, the maximum value of La is Cx-2*Cb-2*Dm. Here, for convenience, it is assumed that Lax=Cx-2*Cb-2*Dm.
 図15は、図14に示す構成において、Laを変化させた場合での周波数特性の一例を示す図である。なお、図15に示す放射効率では、不整合損は未考慮である。
 この図15に示すように、放射効率が高くなる周波数は変化しているが、図13と比較して、調整可能範囲が小さく、また、放射効率の低下量(効率低下量)も大きいことが分かる。
FIG. 15 is a diagram showing an example of frequency characteristics when La is changed in the configuration shown in FIG. 14. Note that the radiation efficiency shown in FIG. 15 does not take mismatch loss into consideration.
As shown in Fig. 15, the frequency at which the radiation efficiency increases is changing, but compared to Fig. 13, the adjustable range is smaller and the amount of reduction in radiation efficiency (the amount of efficiency reduction) is also larger. I understand.
 ここで、周波数をどの程度調整可能かを示す指標として、下式(1)で定義する周波数可変量を用いるとする。
周波数可変量=放射効率が高くなる周波数の可変量/放射効率が高くなる周波数のうちの最も低い周波数 (1)
Here, it is assumed that a frequency variable amount defined by the following formula (1) is used as an index indicating how much the frequency can be adjusted.
Frequency variable amount = variable amount of frequency that increases radiation efficiency / lowest frequency among frequencies that increases radiation efficiency (1)
 この場合、実施の形態1に係るアンテナ装置1では周波数可変量は55%であり、図14に示す構成では周波数可変量は20%である。よって、実施の形態1に係るアンテナ装置1の方が、図14に示す構成に対して、約2.5倍の周波数可変量を得られていることがわかる。
 また、実施の形態1に係るアンテナ装置1では効率低下量は2.9dBであり、図14に示す構成では効率低下量は4.5dBである。よって、実施の形態1に係るアンテナ装置1の方が、図14に示す構成に対して、1.6dB効率低下を抑えられていることがわかる。
In this case, in the antenna device 1 according to Embodiment 1, the amount of frequency variation is 55%, and in the configuration shown in FIG. 14, the amount of frequency variation is 20%. Therefore, it can be seen that the antenna device 1 according to the first embodiment can obtain about 2.5 times the amount of frequency variation as compared to the configuration shown in FIG. 14.
Further, in the antenna device 1 according to the first embodiment, the efficiency decrease amount is 2.9 dB, and in the configuration shown in FIG. 14, the efficiency decrease amount is 4.5 dB. Therefore, it can be seen that the antenna device 1 according to the first embodiment suppresses the efficiency drop by 1.6 dB compared to the configuration shown in FIG. 14.
 以上のように、この実施の形態1によれば、アンテナ装置1は、第1のITO膜131及び第2のITO膜132を有する液晶装置13と、一面側に液晶装置13が内蔵された金属筐体11と、金属筐体11の一面に対して間隙を設けて対向配置されたGND電極15と、可視光を透過可能であり、GND電極15と同一平面上に間隙を設けて配置されて液晶装置13を覆うアンテナ導体14とを備え、アンテナ導体14は、GND電極15側とは反対側の内側に設けられた第1の間隙部145と、第1の間隙部145と通じ、GND電極15側とは反対側の外周に設けられた第2の間隙部146とを有し、第1のITO膜131及び第2のITO膜132は、GND電極15とアンテナ導体14との間、及び、第1の間隙部145には、対向していない。これにより、実施の形態1に係るアンテナ装置1は、液晶装置13上に、可視光を透過可能なアンテナ導体14が配置される場合でも、従来に対し、放射効率の低下を防ぎ、且つ、放射効率が高くなる周波数を調整可能となる。 As described above, according to the first embodiment, the antenna device 1 includes the liquid crystal device 13 having the first ITO film 131 and the second ITO film 132, and the metal device 13 having the liquid crystal device 13 built-in on one side. A casing 11 and a GND electrode 15 which is disposed facing each other with a gap between them on one surface of the metal casing 11, and a GND electrode 15 which can transmit visible light and which is disposed on the same plane as the GND electrode 15 with a gap between them. An antenna conductor 14 that covers the liquid crystal device 13 is provided, and the antenna conductor 14 communicates with a first gap 145 provided on the inside opposite to the GND electrode 15 side, and communicates with the first gap 145 and connects the GND electrode The first ITO film 131 and the second ITO film 132 are provided between the GND electrode 15 and the antenna conductor 14, and a second gap 146 provided on the outer periphery on the opposite side to the , are not opposed to the first gap portion 145. As a result, the antenna device 1 according to the first embodiment prevents a decrease in radiation efficiency compared to the conventional art even when the antenna conductor 14 capable of transmitting visible light is disposed on the liquid crystal device 13, and It becomes possible to adjust the frequency at which efficiency is high.
実施の形態2.
 図16は実施の形態2に係るアンテナ装置1の構成例を示す上面図である。なお、図16では、保護ガラス12が取り除かれた状態を示している。
 この図16に示す実施の形態2に係るアンテナ装置1では、実施の形態1に係るアンテナ装置1に対し、大面積アンテナ142の構成が変更されている。図16に示す実施の形態2に係るアンテナ装置1におけるその他の構成例は、実施の形態1に係るアンテナ装置1の構成例と同様であり、同一の符号を付して異なる部分についてのみ説明を行う。
Embodiment 2.
FIG. 16 is a top view showing a configuration example of the antenna device 1 according to the second embodiment. Note that FIG. 16 shows a state in which the protective glass 12 has been removed.
In the antenna device 1 according to the second embodiment shown in FIG. 16, the configuration of the large area antenna 142 is changed from the antenna device 1 according to the first embodiment. The other configuration example of the antenna device 1 according to the second embodiment shown in FIG. 16 is the same as the configuration example of the antenna device 1 according to the first embodiment, and only the different parts will be described with the same reference numerals. conduct.
 図16に示す実施の形態2における大面積アンテナ142は、実施の形態1における大面積アンテナ142に対し、第1のITO膜131及び第2のITO膜132に対向していない部分に切り欠きが入れられた構造となっている。すなわち、実施の形態2における第1の間隙部145が、アンテナ導体14の面内において、折れ曲がりを有する形状に構成されている。 A large area antenna 142 in the second embodiment shown in FIG. 16 has a cutout in a portion not facing the first ITO film 131 and the second ITO film 132, compared to the large area antenna 142 in the first embodiment. It has a built-in structure. That is, the first gap 145 in the second embodiment is configured to have a bent shape within the plane of the antenna conductor 14.
 ここで、実施の形態1における大面積アンテナ142は、x方向の寸法が(Cx-2*Cb-2*Dm)であり、第1のITO膜131及び第2のITO膜132のx方向の寸法と同一(略同一の意味を含む)である。そのため、この大面積アンテナ142は、第1のITO膜131及び第2のITO膜132とちょうど重なり、第1のITO膜131及び第2のITO膜132にも大面積アンテナ142にも覆われてない部分が存在していた。そして、実施の形態1に係るアンテナ装置1では、大面積アンテナ142のうちの第1のITO膜131及び第2のITO膜132の上に存在する部分の矩形箇所によるパッチアンテナの原理で、磁流51a,51bが発生し、電磁波を放射していると考えられる。 Here, the large area antenna 142 in the first embodiment has a dimension in the x direction of (Cx-2*Cb-2*Dm), and the first ITO film 131 and the second ITO film 132 in the x direction. It is the same as the size (including the meaning of approximately the same). Therefore, this large-area antenna 142 exactly overlaps the first ITO film 131 and the second ITO film 132, and is covered by both the first ITO film 131 and the second ITO film 132 as well as the large-area antenna 142. There were parts that weren't there. In the antenna device 1 according to the first embodiment, the principle of a patch antenna is based on the rectangular portion of the large-area antenna 142 that exists on the first ITO film 131 and the second ITO film 132. It is considered that currents 51a and 51b are generated and radiate electromagnetic waves.
 これに対し、実施の形態2では、大面積アンテナ142のうち、第1のITO膜131及び第2のITO膜132に重なっていない部分に、切り欠きが入れられている。これにより、実施の形態2に係るアンテナ装置1では、実施の形態1に係るアンテナ装置1に対し、第1のITO膜131及び第2のITO膜132にも大面積アンテナ142にも覆われてない部分が増加される。 On the other hand, in the second embodiment, a cutout is made in a portion of the large-area antenna 142 that does not overlap the first ITO film 131 and the second ITO film 132. As a result, in the antenna device 1 according to the second embodiment, the antenna device 1 according to the first embodiment is covered with both the first ITO film 131 and the second ITO film 132 and the large-area antenna 142. The missing part will be increased.
 図17は図16に示す構成で発生する磁流を示す図である。
 第1のITO膜131及び第2のITO膜132にも大面積アンテナ142にも覆われてない部分が増加してもパッチアンテナとしての原理は変わらない。そのため、図17に示すように、実施の形態2に係るアンテナ装置1で発生する磁流は、実施の形態1に係るアンテナ装置1の場合と同じである。よって、実施の形態2に係るアンテナ装置1で得られる効果は、実施の形態1に係るアンテナ装置1で得られる効果と変わりはない。
FIG. 17 is a diagram showing the magnetic current generated in the configuration shown in FIG. 16.
Even if the portion not covered by the first ITO film 131, the second ITO film 132, or the large area antenna 142 increases, the principle of the patch antenna remains the same. Therefore, as shown in FIG. 17, the magnetic current generated in the antenna device 1 according to the second embodiment is the same as that in the antenna device 1 according to the first embodiment. Therefore, the effects obtained with the antenna device 1 according to the second embodiment are the same as the effects obtained with the antenna device 1 according to the first embodiment.
 また、図18及び図19は実施の形態2に係るアンテナ装置1の別の構成例を示す上面図である。なお、図18及び図19では、保護ガラス12が取り除かれた状態を示している。
 図16では、切り欠きが、大面積アンテナ142の両端側に設けられた場合を示した。しかしながら、これに限らず、例えば図18に示すように、切り欠きが一端(図18では左側)にのみ設けられていてもよいし、また、例えば図19に示すように、切り欠きが両端側に設けられるもののその長さが異なるように構成されていてもよい。このように構成された場合であっても、上記と同様の効果が得られる。
Further, FIGS. 18 and 19 are top views showing another configuration example of the antenna device 1 according to the second embodiment. Note that FIGS. 18 and 19 show a state in which the protective glass 12 is removed.
FIG. 16 shows a case where cutouts are provided at both ends of the large area antenna 142. In FIG. However, the present invention is not limited to this. For example, as shown in FIG. 18, the notch may be provided only at one end (the left side in FIG. 18), or, for example, as shown in FIG. 19, the notch may be provided at both ends. The lengths of the parts provided may be different from each other. Even with this configuration, the same effects as above can be obtained.
 したがって、実施の形態2のアンテナ装置1によれば、大面積アンテナ142のうち、第1のITO膜131及び第2のITO膜132に重なっていない部分に切り欠きが入れられた構造とされていても、実施の形態1に係るアンテナ装置1と同様の効果が得られる。 Therefore, according to the antenna device 1 of the second embodiment, the large area antenna 142 has a structure in which a cutout is made in a portion that does not overlap the first ITO film 131 and the second ITO film 132. However, the same effects as those of the antenna device 1 according to the first embodiment can be obtained.
実施の形態3.
 図20を実施の形態3に係るアンテナ装置1の構成例を示す上面図である。なお、図20では、保護ガラス12が取り除かれた状態を示している。
 この図20に示す実施の形態3に係るアンテナ装置1では、実施の形態1に係るアンテナ装置1に対し、アンテナ導体14の構成が変更されている。図20に示す実施の形態3に係るアンテナ装置1におけるその他の構成例は、実施の形態1に係るアンテナ装置1の構成例と同様であり、同一の符号を付して異なる部分についてのみ説明を行う。
Embodiment 3.
FIG. 20 is a top view showing a configuration example of the antenna device 1 according to the third embodiment. Note that FIG. 20 shows a state in which the protective glass 12 has been removed.
In the antenna device 1 according to the third embodiment shown in FIG. 20, the configuration of the antenna conductor 14 is changed from the antenna device 1 according to the first embodiment. The other configuration example of the antenna device 1 according to the third embodiment shown in FIG. 20 is the same as the configuration example of the antenna device 1 according to the first embodiment, and the same reference numerals are given and only different parts will be explained. conduct.
 図20に示すように、実施の形態3におけるアンテナ導体14では、実施の形態1におけるアンテナ導体14に対し、金属筐体11(ベゼル112~114)を覆う部分については、液晶装置13を覆う部分に対して導電率の高い材料を用いて構成されている。なお、液晶装置13を覆う部分に対して導電率の高い材料としては、例えば、銀のベタ膜又は銅箔が挙げられる。図20では、アンテナ導体14のうち、導電率の高い材料を用いて構成された部分については、その他の部分とは異なる色で示している。 As shown in FIG. 20, in contrast to the antenna conductor 14 in Embodiment 1, in the antenna conductor 14 in the third embodiment, the part covering the metal housing 11 (bezels 112 to 114) is different from the part covering the liquid crystal device 13. It is constructed using a material with high conductivity. Note that, as a material having high electrical conductivity for the portion covering the liquid crystal device 13, for example, a solid silver film or a copper foil can be used. In FIG. 20, a portion of the antenna conductor 14 made of a material with high conductivity is shown in a different color from the other portions.
 ここで、金属筐体11におけるベゼル111~114の部分は、液晶装置13の表示部分では無いため、アンテナ導体14が透明である必要はない。
 そのため、図20に示すように、アンテナ導体14のうちの上記の部分に対向する部分については、透明では無いが導電性の高い材料等を用いることで、実施の形態1に係るアンテナ装置1に対し、更なる放射効率の向上が期待される。
Here, since the bezels 111 to 114 portions of the metal housing 11 are not display portions of the liquid crystal device 13, the antenna conductor 14 does not need to be transparent.
Therefore, as shown in FIG. 20, by using a non-transparent but highly conductive material for the part of the antenna conductor 14 that faces the above-mentioned part, the antenna device 1 according to the first embodiment On the other hand, further improvement in radiation efficiency is expected.
 このように、実施の形態3のアンテナ装置1によれば、アンテナ導体14のうちのベゼル111~114の重なる部分について、銀のベタ膜等の導電性の高い材料を用いることで、実施の形態1に係るアンテナ装置1に対し、放射効率が更に増加する。 As described above, according to the antenna device 1 of the third embodiment, by using a highly conductive material such as a solid silver film for the portion of the antenna conductor 14 where the bezels 111 to 114 overlap, The radiation efficiency is further increased compared to the antenna device 1 according to No. 1.
 なお、上記では、実施の形態1に係るアンテナ装置1に対し、アンテナ導体14の構成を変更した場合を示した。しかしながら、これに限らず、実施の形態2に係るアンテナ装置1に対し、アンテナ導体14の構成を変更してもよく、上記と同様の効果が得られる。 Note that in the above, a case has been shown in which the configuration of the antenna conductor 14 is changed in the antenna device 1 according to the first embodiment. However, the present invention is not limited to this, and the configuration of the antenna conductor 14 may be changed in the antenna device 1 according to the second embodiment, and the same effects as described above can be obtained.
実施の形態4.
 図21は実施の形態4に係るアンテナ装置1のうちの給電部分の構成例を示す斜視図である。なお、図21では、金属筐体11が取り除かれた状態を示している。
 この図21に示す実施の形態4に係るアンテナ装置1では、実施の形態1に係るアンテナ装置1に対し、給電部16の構成が変更されている。図21に示す実施の形態4に係るアンテナ装置1におけるその他の構成例は、実施の形態1に係るアンテナ装置1の構成例と同様であり、同一の符号を付して異なる部分についてのみ説明を行う。
Embodiment 4.
FIG. 21 is a perspective view showing a configuration example of a power feeding portion of the antenna device 1 according to the fourth embodiment. Note that FIG. 21 shows a state in which the metal casing 11 is removed.
In the antenna device 1 according to the fourth embodiment shown in FIG. 21, the configuration of the power feeding section 16 is changed from the antenna device 1 according to the first embodiment. The other configuration example of the antenna device 1 according to the fourth embodiment shown in FIG. 21 is the same as the configuration example of the antenna device 1 according to the first embodiment, and the same reference numerals are given and only different parts will be explained. conduct.
 実施の形態4における給電部16では、給電用リジット基板161が設けられている。
 給電用リジット基板161は、GND電極15及びアンテナ導体14に対向し、金属筐体11における開口面と重なる箇所以外の箇所に配置され、給電を行うための基板である。この給電用リジット基板161としては、FR-4等の樹脂製の誘電体基板の両面に銅箔が実装されているものが想定されるが、これに限らない。
In the power feeding section 16 in the fourth embodiment, a rigid power feeding board 161 is provided.
The power feeding rigid board 161 is a board for feeding power, which is placed opposite to the GND electrode 15 and the antenna conductor 14 at a location other than the location overlapping with the opening surface of the metal housing 11. The power feeding rigid board 161 is assumed to be a dielectric board made of resin such as FR-4 with copper foil mounted on both sides, but is not limited thereto.
 図22は給電用リジット基板161の配置箇所の一例を示す図である。また、図23は給電用リジット基板161の構成例を示す図である。また、図24は実施の形態4に係るアンテナ装置1の構成例を示す断面図である。
 図22~図24に示すように、給電用リジット基板161には、導体パターンがプリントされている。この導体パターンは、給電用リジット基板161が、アンテナ導体14における伝送線路141及びGND電極15の上に配置された際に、当該伝送線路141及びGND電極15に対向する部分にちょうどトレースされるように形成された導体パターンである。なお、図22において符号221で示す箇所が、給電用リジット基板161が配置される箇所である。
FIG. 22 is a diagram showing an example of an arrangement location of the power feeding rigid board 161. Moreover, FIG. 23 is a diagram showing an example of the configuration of the power feeding rigid board 161. Further, FIG. 24 is a cross-sectional view showing a configuration example of the antenna device 1 according to the fourth embodiment.
As shown in FIGS. 22 to 24, a conductive pattern is printed on the power feeding rigid board 161. This conductor pattern is designed so that when the feeding rigid board 161 is placed on the transmission line 141 and the GND electrode 15 in the antenna conductor 14, it is traced exactly to the part facing the transmission line 141 and the GND electrode 15. It is a conductor pattern formed in Note that the location indicated by the reference numeral 221 in FIG. 22 is the location where the power feeding rigid board 161 is arranged.
 すなわち、給電用リジット基板161は、導体パターンとして、伝送線路141側がトレースされた導体パターン1611、及び、GND電極15側がトレースされた導体パターン1612を有する。 That is, the power feeding rigid board 161 has a conductor pattern 1611 traced on the transmission line 141 side and a conductor pattern 1612 traced on the GND electrode 15 side as conductor patterns.
 なお、給電用リジット基板161では、表面と裏面に、導体パターン1611及び導体パターン1612が、それぞれプリントされている。
 また、給電用リジット基板161において、表面に形成された導体パターン1611は裏面に形成された導体パターン1611とスルーホール(不図示)にて導通され、表面に形成された導体パターン1612は裏面に形成された導体パターン1612とスルーホール(不図示)にて導通されている。
Note that in the power feeding rigid board 161, a conductive pattern 1611 and a conductive pattern 1612 are printed on the front and back surfaces, respectively.
In addition, in the power feeding rigid board 161, the conductor pattern 1611 formed on the front surface is electrically connected to the conductor pattern 1611 formed on the back surface through a through hole (not shown), and the conductor pattern 1612 formed on the front surface is electrically connected to the conductor pattern 1611 formed on the back surface. It is electrically connected to the conductive pattern 1612 through a through hole (not shown).
 そして、この給電用リジット基板161が図22において符号221で示す箇所に配置されることで、給電用リジット基板161は、伝送線路141と導体パターン1611を介して導通するとともに、GND電極15と導体パターン1612を介して導通する。 22, the rigid board for power feeding 161 is electrically connected to the transmission line 141 via the conductor pattern 1611, and the GND electrode 15 and the conductor are connected to each other. Conductivity is established through the pattern 1612.
 また、給電用リジット基板161において、伝送線路141及びGND電極15側に接しない面には給電用の信号線(不図示)が接続され、液晶装置13のユーザインタフェース等へと接続される。
 また、給電用リジット基板161の信号線接続側に整合回路が設けられることで、アンテナのインピーダンスを容易に整合させることが可能である。
Further, in the power supply rigid board 161, a power supply signal line (not shown) is connected to a surface not in contact with the transmission line 141 and the GND electrode 15 side, and is connected to a user interface of the liquid crystal device 13, etc.
Further, by providing a matching circuit on the signal line connection side of the feeding rigid board 161, it is possible to easily match the impedance of the antenna.
 なお、給電用リジット基板161は、伝送線路141及びGND電極15に物理的に接触するように配置されてもよいし、間隙を空けて配置されてもよい。
 また、給電用リジット基板161における導体パターンは、表面と裏面とで違ってもよいし、導体パターンも任意の形状であってもよい。
Note that the power feeding rigid board 161 may be arranged so as to be in physical contact with the transmission line 141 and the GND electrode 15, or may be arranged with a gap therebetween.
Further, the conductor pattern on the power feeding rigid board 161 may be different between the front and back surfaces, and the conductor pattern may also have an arbitrary shape.
 以上より、実施の形態4のアンテナ装置1によれば、給電用リジット基板161を用いることで、基板を配置するだけで給電が可能となるため、実施の形態1に係るアンテナ装置1に対し、より簡易な給電構造となる。 As described above, according to the antenna device 1 of the fourth embodiment, by using the feeding rigid board 161, power can be fed by simply arranging the board. This results in a simpler power supply structure.
 なお、上記では、実施の形態1に係るアンテナ装置1に対し、給電部16の構成を変更した場合を示した。しかしながら、これに限らず、実施の形態2,3に係るアンテナ装置1に対し、給電部16の構成を変更してもよく、上記と同様の効果が得られる。 Note that the above describes a case where the configuration of the power feeding section 16 is changed in the antenna device 1 according to the first embodiment. However, the present invention is not limited to this, and the configuration of the power feeding section 16 may be changed in the antenna device 1 according to the second and third embodiments, and the same effects as described above can be obtained.
 なお、実施の形態1~4では、アンテナ導体14が透明導電膜である場合を例に説明を行った。しかしながら、これに限らず、アンテナ導体14は、可視光を透過可能な導体であればどのような導体であってもよい。    Note that in Embodiments 1 to 4, the case where the antenna conductor 14 is a transparent conductive film has been described as an example. However, the present invention is not limited thereto, and the antenna conductor 14 may be any conductor as long as it can transmit visible light.   
 また、実施の形態1~4では、液晶装置13が第1のITO膜131及び第2のITO膜132を有する場合を例に説明を行った。しかしながら、これに限らず、液晶装置13がITO膜以外の導電性の薄膜を有する場合であっても、実施の形態1~4に示した構成を採用することで、上記と同様の効果が得られる。 Furthermore, in Embodiments 1 to 4, the case where the liquid crystal device 13 has the first ITO film 131 and the second ITO film 132 has been described as an example. However, the present invention is not limited to this, and even if the liquid crystal device 13 has a conductive thin film other than an ITO film, the same effects as described above can be obtained by adopting the configurations shown in Embodiments 1 to 4. It will be done.
 また、実施の形態1~4では、第1のITO膜131、第2のITO膜132、及び、アンテナ導体14が方形状に構成された場合を例に説明を行った。しかしながら、第1のITO膜131、第2のITO膜132、及び、アンテナ導体14の形状はこれに限らず、適宜変更可能である。 Furthermore, in Embodiments 1 to 4, the case where the first ITO film 131, the second ITO film 132, and the antenna conductor 14 were configured in a rectangular shape was explained as an example. However, the shapes of the first ITO film 131, the second ITO film 132, and the antenna conductor 14 are not limited to this, and can be changed as appropriate.
 なお、各実施の形態の自由な組合わせ、或いは各実施の形態の任意の構成要素の変形、若しくは各実施の形態において任意の構成要素の省略が可能である。 Note that it is possible to freely combine each embodiment, to modify any component of each embodiment, or to omit any component in each embodiment.
 本開示に係るアンテナ装置は、液晶ディスプレイ上に、可視光を透過可能なアンテナ導体が配置される場合でも、従来に対し、放射効率の低下を防ぎ、且つ、放射効率が高くなる周波数を調整可能となり、液晶ディスプレイ上に、可視光を透過可能なアンテナ導体が搭載されたアンテナ装置等に用いるのに適している。 The antenna device according to the present disclosure can prevent a decrease in radiation efficiency and adjust the frequency at which the radiation efficiency becomes higher than before even when an antenna conductor that can transmit visible light is arranged on a liquid crystal display. Therefore, it is suitable for use in an antenna device or the like in which an antenna conductor capable of transmitting visible light is mounted on a liquid crystal display.
 1 アンテナ装置、11 金属筐体、12 保護ガラス、13 液晶装置(液晶ディスプレイ)、14 アンテナ導体、15 GND電極、16 給電部、21 モノポールアンテナ、51a,51b 磁流、51c 電流、111~114 ベゼル、115~118 金属壁、119 金属板、131 第1のITO膜、132 第2のITO膜、133 第1のガラス、134 第2のガラス、141 伝送線路、142 大面積アンテナ、143 第1のL字型素子、144 第2のL字型素子、145 第1の間隙部、146 第2の間隙部、161 給電用リジット基板、1431 第1の直線状線路部、1432 第2の直線状線路部、1441 第1の直線状線路部、1442 第2の直線状線路部、1611 導体パターン、1612 導体パターン。 1 antenna device, 11 metal housing, 12 protective glass, 13 liquid crystal device (liquid crystal display), 14 antenna conductor, 15 GND electrode, 16 power feeding section, 21 monopole antenna, 51a, 51b magnetic current, 51c current, 111-114 Bezel, 115-118 Metal wall, 119 Metal plate, 131 First ITO film, 132 Second ITO film, 133 First glass, 134 Second glass, 141 Transmission line, 142 Large area antenna, 143 First L-shaped element, 144 second L-shaped element, 145 first gap part, 146 second gap part, 161 power feeding rigid board, 1431 first straight line part, 1432 second straight line part Line part, 1441 First straight line part, 1442 Second straight line part, 1611 Conductor pattern, 1612 Conductor pattern.

Claims (9)

  1.  導電性の薄膜を有する液晶ディスプレイと、
     一面側に前記液晶ディスプレイが内蔵された金属筐体と、
     前記金属筐体の一面に対して間隙を設けて対向配置されたGND電極と、
     可視光を透過可能であり、前記GND電極と同一平面上に間隙を設けて配置されて前記液晶ディスプレイを覆うアンテナ導体とを備え、
     前記アンテナ導体は、
     前記GND電極側とは反対側の内側に設けられた第1の間隙部と、
     前記第1の間隙部と通じ、前記GND電極側とは反対側の外周に設けられた第2の間隙部とを有し、
     前記薄膜は、前記GND電極と前記アンテナ導体との間、及び、前記第1の間隙部には、対向していない
     ことを特徴とするアンテナ装置。
    a liquid crystal display having a conductive thin film;
    a metal casing with the liquid crystal display built-in on one side;
    a GND electrode disposed opposite to one surface of the metal casing with a gap therebetween;
    an antenna conductor capable of transmitting visible light, disposed on the same plane as the GND electrode with a gap therebetween, and covering the liquid crystal display;
    The antenna conductor is
    a first gap provided on the inside opposite to the GND electrode side;
    a second gap part communicating with the first gap part and provided on the outer periphery on the opposite side to the GND electrode side;
    The antenna device, wherein the thin film does not face between the GND electrode and the antenna conductor and does not face the first gap.
  2.  前記アンテナ導体は、可視光を透過可能な透明性を有する導電材料を用いて構成された
     ことを特徴とする請求項1記載のアンテナ装置。
    The antenna device according to claim 1, wherein the antenna conductor is made of a transparent conductive material that can transmit visible light.
  3.  前記第1の間隙部は、前記アンテナ導体の面内において、折れ曲がりを有する形状に構成された
     ことを特徴とする請求項1又は請求項2記載のアンテナ装置。
    The antenna device according to claim 1 or 2, wherein the first gap portion is configured to have a bent shape within a plane of the antenna conductor.
  4.  前記アンテナ導体は、前記金属筐体を一部覆う
     ことを特徴とする請求項1から請求項3のうちの何れか1項記載のアンテナ装置。
    The antenna device according to any one of claims 1 to 3, wherein the antenna conductor partially covers the metal casing.
  5.  前記薄膜及び前記アンテナ導体は、方形状に構成された
     ことを特徴とする請求項1から請求項4のうちの何れか1項記載のアンテナ装置。
    The antenna device according to any one of claims 1 to 4, wherein the thin film and the antenna conductor are configured in a rectangular shape.
  6.  前記アンテナ導体は、前記金属筐体を覆う部分については、前記液晶ディスプレイを覆う部分に対して導電率の高い材料を用いて構成された
     ことを特著とする請求項4記載のアンテナ装置。
    5. The antenna device according to claim 4, wherein a portion of the antenna conductor that covers the metal casing is made of a material having higher conductivity than a portion that covers the liquid crystal display.
  7.  前記GND電極及び前記アンテナ導体に対向配置され、給電を行う給電用リジット基板を備えた
     ことを特徴とする請求項1から請求項6のうちの何れか1項記載のアンテナ装置。
    The antenna device according to any one of claims 1 to 6, further comprising a power feeding rigid board that is arranged to face the GND electrode and the antenna conductor and feeds power.
  8.  前記GND電極と前記アンテナ導体との間であって、当該GND電極と当該アンテナ導体とを結ぶ方向に対して垂直な方向における中央に設けられ、給電を行う給電部を備えた
     ことを特徴とする請求項1から請求項6のうちの何れか1項記載のアンテナ装置。
    It is characterized by comprising a power feeding section that is provided between the GND electrode and the antenna conductor at the center in a direction perpendicular to the direction connecting the GND electrode and the antenna conductor, and that feeds power. An antenna device according to any one of claims 1 to 6.
  9.  前記GND電極は、当該GND電極と前記アンテナ導体とを結ぶ方向に対して線対称に構成された
     ことを特徴とする請求項1から請求項8のうちの何れか1項記載のアンテナ装置。
    The antenna device according to any one of claims 1 to 8, wherein the GND electrode is configured line symmetrically with respect to a direction connecting the GND electrode and the antenna conductor.
PCT/JP2022/023560 2022-06-13 2022-06-13 Antenna device WO2023242887A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2022/023560 WO2023242887A1 (en) 2022-06-13 2022-06-13 Antenna device
JP2024516744A JPWO2023242887A1 (en) 2022-06-13 2022-06-13
TW111146326A TW202349791A (en) 2022-06-13 2022-12-02 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023560 WO2023242887A1 (en) 2022-06-13 2022-06-13 Antenna device

Publications (1)

Publication Number Publication Date
WO2023242887A1 true WO2023242887A1 (en) 2023-12-21

Family

ID=89192471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023560 WO2023242887A1 (en) 2022-06-13 2022-06-13 Antenna device

Country Status (3)

Country Link
JP (1) JPWO2023242887A1 (en)
TW (1) TW202349791A (en)
WO (1) WO2023242887A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021073450A1 (en) * 2019-10-15 2021-04-22 Huawei Technologies Co., Ltd. Antenna integrated display screen
JP2022524121A (en) * 2019-03-08 2022-04-27 チャージポイント インコーポレイテッド Electric field touch screen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022524121A (en) * 2019-03-08 2022-04-27 チャージポイント インコーポレイテッド Electric field touch screen
WO2021073450A1 (en) * 2019-10-15 2021-04-22 Huawei Technologies Co., Ltd. Antenna integrated display screen

Also Published As

Publication number Publication date
JPWO2023242887A1 (en) 2023-12-21
TW202349791A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
TWI694640B (en) Antenna structure and wireless communication device with same
US8982003B2 (en) Slot antenna, electronic apparatus, and method for manufacturing slot antenna
CN110544815B (en) Electronic equipment broadband antenna
CN108780945B (en) Wireless module and image display device
US8889998B2 (en) Conductor structure, transparent device, and electronic device
US20220352620A1 (en) Antenna device
TWI673910B (en) Antenna structure and communication device
JP7418586B2 (en) antenna assembly and electronic equipment
TW202213298A (en) Display module
WO2022042306A1 (en) Antenna element and electronic device
JP5521580B2 (en) Portable wireless terminal
WO2022045084A1 (en) Transparent antenna and display module
CN108879070B (en) Electronic equipment
WO2023242887A1 (en) Antenna device
WO2020215515A1 (en) Mobile terminal and antenna radiation method for mobile terminal
TW201352079A (en) Circuit board having antenna structure
CN116130947A (en) Antenna device and electronic apparatus
JP2008294809A (en) Stacked helical antenna
JP6960588B2 (en) Multi-band compatible antenna and wireless communication device
JP6602513B2 (en) Antenna device
CN113140889A (en) Mobile device
WO2023155648A1 (en) Antenna structure and electronic device
WO2021161803A1 (en) Antenna device
TWI723744B (en) Mobile device and antenna structure
WO2024001837A1 (en) Electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946707

Country of ref document: EP

Kind code of ref document: A1