WO2023234387A1 - Drive control device for quantum bit elements - Google Patents

Drive control device for quantum bit elements Download PDF

Info

Publication number
WO2023234387A1
WO2023234387A1 PCT/JP2023/020431 JP2023020431W WO2023234387A1 WO 2023234387 A1 WO2023234387 A1 WO 2023234387A1 JP 2023020431 W JP2023020431 W JP 2023020431W WO 2023234387 A1 WO2023234387 A1 WO 2023234387A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixer
quantum bit
drive control
control device
local oscillator
Prior art date
Application number
PCT/JP2023/020431
Other languages
French (fr)
Japanese (ja)
Inventor
健治 伊東
尚貴 坂井
誠 根耒
英久 塩見
真一 森榮
Original Assignee
学校法人金沢工業大学
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人金沢工業大学, 国立大学法人大阪大学 filed Critical 学校法人金沢工業大学
Publication of WO2023234387A1 publication Critical patent/WO2023234387A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits

Definitions

  • the present invention relates to a drive control device used to output arithmetic signals to quantum bit elements constituting a quantum computer.
  • a quantum computer is a computer that uses a large number of quantum bit devices to perform quantum operations using quantum algorithms.
  • Conventional computers use bits that take the value 0 or 1 as the unit of information, but since quantum bits can have a quantum mechanical superposition state of 0 and 1 in addition to the value 0 or 1, they are Since the number of parameters describing the system increases exponentially with respect to the number of components of the system, development is progressing at many research institutions.
  • Qubit devices which are currently being developed at many research institutions, are superconducting devices that must be installed inside a refrigerator, but in order to perform quantum operations, drive control is applied to each of the large number of qubit devices.
  • a device is required (Non-Patent Document 1).
  • the resonant frequency of the superconducting element differs for each quantum bit element, it is also necessary to prepare a carrier wave frequency used for inputting a calculation signal for each quantum bit element. Therefore, in order to put quantum computers into practical use in the future, it will be necessary to miniaturize the drive control device for each qubit element to enable high-density packaging in order to accommodate the increase in the number of bits. It is necessary to prevent interference due to so-called crosstalk within mutual boards or through space, which may cause calculation errors.
  • An object of the present invention is to provide a drive control device that can achieve high-density packaging and integration of quantum bit elements used for execution of arithmetic operations in a quantum computer.
  • a quantum bit drive control device includes a local oscillator and a quadrature mixer that orthogonally modulates an output signal of the local oscillator and an I/Q signal, and the quadrature mixer is an even harmonic quadrature mixer.
  • the drive control device for the quantum bit element is configured to transmit a calculation signal obtained by modulating an I signal (In-Phase) and a Q signal (Quadrature-Phase) into microwaves to a quantum bit device installed inside a refrigerator. It is transmitted to a bit element, and the result executed by this quantum bit element is taken into an external computer etc. by microwave demodulation processing. Therefore, in order to perform arithmetic processing using a quantum computer, it is necessary to drive and control many quantum bit elements. At this time, it is important to prevent interference (crosstalk) between microwave devices for driving quantum bit devices.
  • the present invention is characterized in that an even harmonic mixer circuit is used to generate a microwave modulated wave.
  • the even harmonic mixer can produce a transmission frequency that is a mixture of a frequency twice the local oscillation frequency and an intermediate frequency due to a doubling effect.
  • this local oscillation frequency is equal to the frequency of the carrier wave output from the even harmonic mixer. It becomes half the frequency.
  • the crosstalk between the quantum bit element QBIT1 and the quantum bit element QBIT2 will be explained based on FIG. 1 as follows. If the frequencies of the wave sources generated by PLL1 and PLL2 are fp1 and fp2 corresponding to each of the above-mentioned quantum bit elements, an even harmonic quadrature mixer is used to convert the I/Q signal through a DAC (Digital Analog Converter).
  • DAC Digital Analog Converter
  • the modulated calculation signals become 2fp1 ⁇ fbb and 2fp2 ⁇ fbb.
  • a predetermined bandpass filter (BPF) is used to output a calculated signal, and in the passband of the BPF of QBIT1, a mixture of 2fp2 and fp1+fp2 is assumed for 2fp1 ⁇ fbb.
  • the sum of all orders is an even number and is strongly suppressed by using an even harmonic mixer.
  • an anti-parallel diode is used as an even harmonic mixer, the amount of suppression is usually about 70 dB by matching the characteristics of the two diodes.
  • the present invention includes a local oscillator and a quadrature mixer that orthogonally modulates an output signal of the local oscillator and an I/Q signal, and as a means for frequency converting the quadrature modulated signal obtained by the quadrature mixer, even harmonics are used.
  • a heterodyne configuration with a mixer may also be used.
  • an even high frequency mixer can be used when performing I/Q quadrature modulation at a low frequency and converting it to a high frequency.
  • the present invention includes a local oscillator and an SSB mixer for SSB (Single Side-Band) modulation of an output signal of the local oscillator and an intermediate frequency signal, and the SSB mixer uses an even harmonic mixer.
  • SSB Single Side-Band
  • an even harmonic mixer is used as a modulation signal, and Hilbert transform or the like is performed on the output signal from the local oscillator.
  • the SSB mixer is constructed based on the even harmonic mixer.
  • a configuration may be used in which an even harmonic quadrature mixer is used after Hilbert transformation using a Hilbert filter.
  • the present invention is effective in suppressing mutual crosstalk by being composed of a plurality of quantum bit devices and providing the drive control device for each quantum bit device.
  • the present invention utilizes an even harmonic quadrature mixer to generate a modulation waveform between an output signal from a local oscillator and an I/Q signal as a drive control device for a qubit device in multi-bit qubit devices.
  • an even harmonic mixer is incorporated in frequency conversion or SSB modulation, mutual crosstalk can be prevented, making high-density packaging and integration easier.
  • FIG. 1 shows an example of a drive control device for a quantum bit element with a heterodyne configuration according to the present invention.
  • An example of the configuration of a conventional quantum bit device driving device is shown.
  • An example of a drive control device for a quantum bit element with a conventional heterodyne configuration is shown.
  • An example of an SSB mixer based on an even harmonic mixer is shown. An example will be shown in which an even harmonic mixer is used after SSB modulation using a Hilbert filter.
  • FIG. 1 shows a configuration example of a quantum bit element drive control device according to the present invention
  • FIG. 5 shows a conventional configuration example for comparison.
  • the I/Q signal was converted into a DAC (Digital Analog Connerter) and orthogonally modulated using a local oscillation carrier wave stabilized by a PLL circuit and a quadrature mixer.
  • a frequency fp1 ⁇ fbb is output to the quantum bit element QBIT2, and a frequency fp2 ⁇ fbb is output to the quantum bit element QBIT2.
  • the present invention is characterized in that an even harmonic quadrature mixer is used instead of the quadrature mixer shown in FIG.
  • a number of qubit devices are provided for performing operations with the qubit devices.
  • an I/Q signal is DAC-converted, and an output signal from a reference oscillator is orthogonally modulated with an output frequency from a local oscillator obtained using a PLL circuit using an even harmonic quadrature mixer.
  • the even harmonic mixer may be an anti-parallel diode shown in FIG. 2, or may be configured with a ring diode or a pair of FETs.
  • an anti-parallel diode pair When an anti-parallel diode pair is used, the diodes are turned on and off every half cycle, so there is a doubling effect, and half of the waves are canceled inside the diode pair. Therefore, the output frequency fout is suppressed when
  • FIG. 3 shows an explanatory diagram of the operation of the even harmonic quadrature mixer. Thereby, X1(t) and X2(t) can be modulated to arbitrary amplitudes and phases.
  • FIG. 4 shows an example of a drive control device for a quantum bit device according to the present invention having a heterodyne configuration.
  • a drive control device for a quantum bit device having a heterodyne configuration.
  • FIG. 6 shows an example of a conventional configuration.
  • QBIT1 even if the frequency fpa1 ⁇ fbb, etc., which is orthogonally modulated by the orthogonal mixer, is converted to a high frequency by the fundamental mixer to fpb1 ⁇ fpa1 ⁇ fbb, the frequencies of fbb2, fpb1, etc.
  • FIG. 7 shows an example in which an even harmonic mixer is incorporated as a structure when performing SSB modulation
  • FIG. 8 shows an example in which a Hilbert filter is used as a structure in SSB modulation.
  • the drive control device for quantum bit elements enables high-density packaging and integration, and is expected to be applied to quantum computers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

[Problem] To provide a drive control device capable of achieving high-density mount and integration of quantum bit elements used to execute an arithmetic operation by a quantum computer. [Solution] The present invention comprises a local oscillator and a quadrature mixer that applies the quadrature modulation to an output signal of the local oscillator and I/Q signals and is characterized in that the quadrature mixer is an even harmonic quadrature mixer.

Description

量子ビット素子の駆動制御装置Qubit device drive control device
 本発明は、量子コンピュータを構成する量子ビット素子に演算信号を出力するのに用いられる駆動制御装置に関する。 The present invention relates to a drive control device used to output arithmetic signals to quantum bit elements constituting a quantum computer.
 量子コンピュータは多数の量子ビット素子を用いて、量子アルゴリズムにより量子演算が実行されるコンピュータである。
 従来のコンピュータは0または1の値をとるビットを情報の単位としているが、量子ビットは0または1の値の他に0と1の量子力学的な重ね合せ状態も可能であることから、情報を記述するパラメータの数が系の構成要素の数に対して指数関数値に増大することから多くの研究機関にて開発が進められている。
A quantum computer is a computer that uses a large number of quantum bit devices to perform quantum operations using quantum algorithms.
Conventional computers use bits that take the value 0 or 1 as the unit of information, but since quantum bits can have a quantum mechanical superposition state of 0 and 1 in addition to the value 0 or 1, they are Since the number of parameters describing the system increases exponentially with respect to the number of components of the system, development is progressing at many research institutions.
 現在多数の研究機関で開発が進められている量子ビット素子は超伝導素子であり、冷凍機内に設ける必要がある一方で、量子演算を実行するためには多数の量子ビット素子のそれぞれに駆動制御装置が必要となる(非特許文献1)。
 ここで超伝導素子の共振周波数は量子ビット素子ごとに相違することから演算信号の入力に用いる搬送波周波数も量子ビット素子ごとに用意する必要がある。
 したがって、今後の量子コンピュータの実用化には多ビット化に対応して、それぞれの量子ビット素子の駆動制御装置の高密度実装が可能な小型化が要求されるとともに、これらの量子ビット素子間での演算誤差要因となる相互の基板内あるいは空間を通じた、いわゆるクロストークによる干渉が生じるのを防ぐ必要がある。
Qubit devices, which are currently being developed at many research institutions, are superconducting devices that must be installed inside a refrigerator, but in order to perform quantum operations, drive control is applied to each of the large number of qubit devices. A device is required (Non-Patent Document 1).
Here, since the resonant frequency of the superconducting element differs for each quantum bit element, it is also necessary to prepare a carrier wave frequency used for inputting a calculation signal for each quantum bit element.
Therefore, in order to put quantum computers into practical use in the future, it will be necessary to miniaturize the drive control device for each qubit element to enable high-density packaging in order to accommodate the increase in the number of bits. It is necessary to prevent interference due to so-called crosstalk within mutual boards or through space, which may cause calculation errors.
 本発明は、量子コンピュータの演算実行に用いられる量子ビット素子の高密度実装,集積化を図ることができる駆動制御装置の提供を目的とする。 An object of the present invention is to provide a drive control device that can achieve high-density packaging and integration of quantum bit elements used for execution of arithmetic operations in a quantum computer.
 本発明に係る量子ビットの駆動制御装置は、局部発振器と、前記局部発振器の出力信号とI/Q信号とを直交変調する直交ミクサを備え、前記直交ミクサは偶高調波直交ミクサであることを特徴とする。 A quantum bit drive control device according to the present invention includes a local oscillator and a quadrature mixer that orthogonally modulates an output signal of the local oscillator and an I/Q signal, and the quadrature mixer is an even harmonic quadrature mixer. Features.
 ここで量子ビット素子の駆動制御装置は、量子コンピュータにおいて、I信号(In-Phase)とQ信号(Quadrature-Phase)とをマイクロ波に変調した演算信号を、冷凍機の内部に設けられた量子ビット素子に送信し、この量子ビット素子にて実行された結果をマイクロ波復調処理により外部のコンピュータ等に取り込まれる。
 したがって、量子コンピュータにより演算処理を実行するには多くの量子ビット素子を駆動制御する必要がある。
 この際に、量子ビット素子を駆動させるためのマイクロ波装置間の干渉(クロストーク)を防ぐことが重要となる。
Here, in the quantum computer, the drive control device for the quantum bit element is configured to transmit a calculation signal obtained by modulating an I signal (In-Phase) and a Q signal (Quadrature-Phase) into microwaves to a quantum bit device installed inside a refrigerator. It is transmitted to a bit element, and the result executed by this quantum bit element is taken into an external computer etc. by microwave demodulation processing.
Therefore, in order to perform arithmetic processing using a quantum computer, it is necessary to drive and control many quantum bit elements.
At this time, it is important to prevent interference (crosstalk) between microwave devices for driving quantum bit devices.
 そこで本発明は、マイクロ波変調波を生成させるのに偶高調波ミクサ回路を用いた点に特徴がある。
 偶高調波ミクサは、2逓倍効果により局部発振周波数の2倍の周波数と中間周波数とを混合した送信周波数とすることができる。
Therefore, the present invention is characterized in that an even harmonic mixer circuit is used to generate a microwave modulated wave.
The even harmonic mixer can produce a transmission frequency that is a mixture of a frequency twice the local oscillation frequency and an intermediate frequency due to a doubling effect.
 したがって、本発明においては、基準発振器から出力された周波数をPLL回路(Phase Locked Loop)等にて局部発振周波数とした場合に、この局部発振周波数は偶高調波ミクサから出力される搬送波の周波数の半分の周波数となる。
 その結果として例えば、量子ビット素子QBIT1と量子ビット素子QBIT2との間のクロストークを例にして、図1に基づいて説明すると次のようになる。
 上記のそれぞれの量子ビット素子に対応して、PLL1,PLL2で生成した波源の周波数fp1,fp2とすると、偶高調波直交ミクサを用い、DAC(Digital Analog Converter)を介して、I/Q信号にて変調された演算信号は2fp1±fbb,2fp2±fbbとなる。
 この際に所定のバンドパスフィルタ(BPF)を用いて、演算信号を出力することになるが、このQBIT1のBPFの通過域では2fp1±fbbに対して2fp2とfp1+fp2の混合が想定されるが、いずれの次数の和も偶数であり、偶高調波ミクサを用いることにより強く抑制される。
 抑制量は、偶高調波ミクサに例えばアンチパラレルダイオードを用いた場合に、2つのダイオード特性のマッチングにより通常は70dB程度得られる。
Therefore, in the present invention, when the frequency output from the reference oscillator is made into a local oscillation frequency using a PLL circuit (Phase Locked Loop), etc., this local oscillation frequency is equal to the frequency of the carrier wave output from the even harmonic mixer. It becomes half the frequency.
As a result, for example, the crosstalk between the quantum bit element QBIT1 and the quantum bit element QBIT2 will be explained based on FIG. 1 as follows.
If the frequencies of the wave sources generated by PLL1 and PLL2 are fp1 and fp2 corresponding to each of the above-mentioned quantum bit elements, an even harmonic quadrature mixer is used to convert the I/Q signal through a DAC (Digital Analog Converter). The modulated calculation signals become 2fp1±fbb and 2fp2±fbb.
At this time, a predetermined bandpass filter (BPF) is used to output a calculated signal, and in the passband of the BPF of QBIT1, a mixture of 2fp2 and fp1+fp2 is assumed for 2fp1±fbb. The sum of all orders is an even number and is strongly suppressed by using an even harmonic mixer.
When an anti-parallel diode is used as an even harmonic mixer, the amount of suppression is usually about 70 dB by matching the characteristics of the two diodes.
 本発明は、局部発振器と、前記局部発振器の出力信号とI/Q信号とを直交変調する直交ミクサを備え、前記直交ミクサにて得られた直交変調信号を周波数変換する手段として、偶高調波ミクサを有しているヘテロダイン構成であってもよい。
 例えば低周波数にて、I/Q直交変調を行い、高周波数に変換する際に偶高周波ミクサを用いることもできる。
The present invention includes a local oscillator and a quadrature mixer that orthogonally modulates an output signal of the local oscillator and an I/Q signal, and as a means for frequency converting the quadrature modulated signal obtained by the quadrature mixer, even harmonics are used. A heterodyne configuration with a mixer may also be used.
For example, an even high frequency mixer can be used when performing I/Q quadrature modulation at a low frequency and converting it to a high frequency.
 本発明において、局部発振器と、前記局部発振器の出力信号と中間周波数信号とをSSB(Single Side - Band)変調するためのSSBミクサを備え、前記SSBミクサは偶高調波ミクサを用いるものであってもよい。
 ここで、SSB通信方式は局部発振器からの出力信号に対して、中間周波数信号を変調信号とし、ヒルベルト変換等が行われている。
 この際に、偶高調波ミクサをベースにしてSSBミクサが構成されることになる。
 あるいは、ヒルベルトフィルタにてヒルベルト変換後に偶高調波直交ミクサを用いた構成でもよい。
The present invention includes a local oscillator and an SSB mixer for SSB (Single Side-Band) modulation of an output signal of the local oscillator and an intermediate frequency signal, and the SSB mixer uses an even harmonic mixer. Good too.
Here, in the SSB communication method, an intermediate frequency signal is used as a modulation signal, and Hilbert transform or the like is performed on the output signal from the local oscillator.
At this time, the SSB mixer is constructed based on the even harmonic mixer.
Alternatively, a configuration may be used in which an even harmonic quadrature mixer is used after Hilbert transformation using a Hilbert filter.
 本発明は、複数の量子ビット素子で構成され、各量子ビット素子に対して、それぞれ前記駆動制御装置を備えることで、相互のクロストークを抑えるのに有効である。 The present invention is effective in suppressing mutual crosstalk by being composed of a plurality of quantum bit devices and providing the drive control device for each quantum bit device.
 本発明は、量子ビット素子の多ビット化において、量子ビット素子の駆動制御装置として局部発振器からの出力信号とI/Q信号との変調波形を生成するのに偶高調波直交ミクサを用いることで、あるいは周波数変換やSSB変調に偶高調波ミクサを組み込むと、相互のクロストークを防止することができるので高密度実装、集積化が容易になる。 The present invention utilizes an even harmonic quadrature mixer to generate a modulation waveform between an output signal from a local oscillator and an I/Q signal as a drive control device for a qubit device in multi-bit qubit devices. Alternatively, if an even harmonic mixer is incorporated in frequency conversion or SSB modulation, mutual crosstalk can be prevented, making high-density packaging and integration easier.
(a)は本発明に係る量子ビット素子の駆動制御装置の構成例を示し、(b)はBPFの通過域の干渉波説明図を示す。(a) shows a configuration example of a drive control device for a quantum bit element according to the present invention, and (b) shows an explanatory diagram of interference waves in a passband of a BPF. アンチパラレルダイオードペアを用いた偶高調波ミクサの例を示す。An example of an even harmonic mixer using an anti-parallel diode pair is shown. 偶高調波直交ミクサの構成例を示す。An example of the configuration of an even harmonic quadrature mixer is shown. 本発明に係るヘテロダイン構成による量子ビット素子の駆動制御装置の例を示す。1 shows an example of a drive control device for a quantum bit element with a heterodyne configuration according to the present invention. 従来の量子ビット素子の駆動装置の構成例を示す。An example of the configuration of a conventional quantum bit device driving device is shown. 従来のヘテロダイン構成による量子ビット素子の駆動制御装置の例を示す。An example of a drive control device for a quantum bit element with a conventional heterodyne configuration is shown. 偶高調波ミクサをベースとしたSSBミクサの例を示す。An example of an SSB mixer based on an even harmonic mixer is shown. ヒルベルトフィルタを用いて、SSB変調した後に偶高調波ミクサを用いる例を示す。An example will be shown in which an even harmonic mixer is used after SSB modulation using a Hilbert filter.
 本発明に係る量子ビット素子の駆動装置の構成例を以下、図に基づいて説明するが本発明はこれらに限定されない。
 図1は本発明に係る量子ビット素子の駆動制御装置の構成例を示し、比較のために図5に従来の構成例を示す。
 図5に示すように従来は、I/Q信号をDAC(Digital Analog Conerter)変換し、PLL回路にて安定化させた局部発振搬送波と直交ミクサにて直交変調させていたので、量子ビット素子QBIT1に周波数fp1±fbbが出力され、量子ビット素子QBIT2にfp2±fbbがそれぞれ出力されることになる。
 この際にfp1±fbbとfp1,fp2が相互に近い周波数になる。
 図5(b)にて説明すると、QBIT1のBPFの通過域においてfp1±fbbに近いfp1と干渉しやすく、クロストークの原因となりやすかった。
 これに対して本発明は図5に示した直交ミクサの替わりに偶高調波直交ミクサを用いた点に特徴がある。
 量子ビット素子による演算を実行するために多数の量子ビット素子が設けられている。
 図1では、I/Q信号をDAC変換し、基準発振器からの出力信号をPLL回路を用いて得られた局部発振器からの出力周波数と偶高調波直交ミクサで直交変調している。
 偶高調波ミクサとしては図2に示したアンチパラレルダイオードでもよく、リングダイオードやFETペアで偶高調波ミクサを構成してもよい。
 アンチパラレルダイオードペアを用いると、半周期ごとにダイオードがON/OFFすることになるので、2逓倍効果を有し、半数の波がダイオードペア内部でキャンセルされる。
 したがって、出力周波数foutは|n±m|が偶数の次数の場合には抑圧され、|n±m|が奇数の次数の場合に出力されることになる。
 図3に偶高調波直交ミクサの動作説明図を示す。
 これにより、X1(t),X2(t)にて任意の振幅、位相に変調できる。
 これを図1にて説明すると、QBIT1に送信される2fp1±fbbに対して、図1(b)に示したQBIT1のBPF通過域では、2fp1は点線で示したように偶高調波直交ミクサ内でキャンセルされる。
 また、fp1+fp2の混合波も抑制されるので、QBIT1への干渉が抑制される。
 また、fp2は2fp1の周波数であり、混合が抑制される。
 このことは、QBIT2,・・・・QBITnにおいても同様であり、相互のクロストークが抑えられる。
A configuration example of a quantum bit device driving device according to the present invention will be described below based on the drawings, but the present invention is not limited thereto.
FIG. 1 shows a configuration example of a quantum bit element drive control device according to the present invention, and FIG. 5 shows a conventional configuration example for comparison.
As shown in FIG. 5, conventionally, the I/Q signal was converted into a DAC (Digital Analog Connerter) and orthogonally modulated using a local oscillation carrier wave stabilized by a PLL circuit and a quadrature mixer. A frequency fp1±fbb is output to the quantum bit element QBIT2, and a frequency fp2±fbb is output to the quantum bit element QBIT2.
At this time, fp1±fbb and fp1 and fp2 become frequencies close to each other.
To explain with reference to FIG. 5(b), in the passband of the BPF of QBIT1, it was easy to interfere with fp1 close to fp1±fbb, which was likely to cause crosstalk.
In contrast, the present invention is characterized in that an even harmonic quadrature mixer is used instead of the quadrature mixer shown in FIG.
A number of qubit devices are provided for performing operations with the qubit devices.
In FIG. 1, an I/Q signal is DAC-converted, and an output signal from a reference oscillator is orthogonally modulated with an output frequency from a local oscillator obtained using a PLL circuit using an even harmonic quadrature mixer.
The even harmonic mixer may be an anti-parallel diode shown in FIG. 2, or may be configured with a ring diode or a pair of FETs.
When an anti-parallel diode pair is used, the diodes are turned on and off every half cycle, so there is a doubling effect, and half of the waves are canceled inside the diode pair.
Therefore, the output frequency fout is suppressed when |n±m| is an even order, and is output when |n±m| is an odd order.
FIG. 3 shows an explanatory diagram of the operation of the even harmonic quadrature mixer.
Thereby, X1(t) and X2(t) can be modulated to arbitrary amplitudes and phases.
To explain this using Figure 1, for 2fp1±fbb transmitted to QBIT1, in the BPF passband of QBIT1 shown in Figure 1(b), 2fp1 is within the even harmonic quadrature mixer as shown by the dotted line. will be canceled.
Further, since the mixed wave of fp1+fp2 is also suppressed, interference with QBIT1 is suppressed.
Further, fp2 is the frequency of 2fp1, and mixing is suppressed.
This also applies to QBIT2, . . . QBITn, and mutual crosstalk can be suppressed.
 図4にヘテロダイン構成にした本発明に係る量子ビット素子の駆動制御装置の例を示し、例えば、低周波数を用いてI/Q信号と直交変調した後に偶高調波ミクサを用いて高周波数に変換しても、この偶高調波ミクサによる2逓倍効果により干渉波の混合が抑制される。
 参考として、図6に従来の構成例を示す。
 QBIT1にて説明すると、直交ミクサにて直交変調された周波数fpa1±fbb等を基本波ミクサにてfpb1±fpa1±fbbに高周波数変換したとしても、fbb2やfpb1等の周波数が近く、図6(b)に示すように混合される恐れがある。
 これに対して、本発明による量子ビット素子の駆動制御装置では、図4(b)に点線で示すように2fb1は、偶高調波ミクサにてキャンセルされる。
 また、半分の周波数のfpa1,fpa2,fpb1,fpb2等との混合も防止できる。
FIG. 4 shows an example of a drive control device for a quantum bit device according to the present invention having a heterodyne configuration. For example, after performing quadrature modulation with an I/Q signal using a low frequency, it is converted to a high frequency using an even harmonic mixer. However, the mixing of interference waves is suppressed due to the doubling effect of this even harmonic mixer.
For reference, FIG. 6 shows an example of a conventional configuration.
To explain in terms of QBIT1, even if the frequency fpa1±fbb, etc., which is orthogonally modulated by the orthogonal mixer, is converted to a high frequency by the fundamental mixer to fpb1±fpa1±fbb, the frequencies of fbb2, fpb1, etc. are close, and as shown in FIG. There is a risk of mixing as shown in b).
On the other hand, in the quantum bit element drive control device according to the present invention, 2fb1 is canceled by the even harmonic mixer, as shown by the dotted line in FIG. 4(b).
Further, mixing with fpa1, fpa2, fpb1, fpb2, etc. having half the frequency can also be prevented.
 図7にはSSB変調する際に偶高調波ミクサを構成として組み込んだ例を示し、図8にはSSB変調にヒルベルトフィルタを構成として用いた例を示す。 FIG. 7 shows an example in which an even harmonic mixer is incorporated as a structure when performing SSB modulation, and FIG. 8 shows an example in which a Hilbert filter is used as a structure in SSB modulation.
 本発明に係る量子ビット素子の駆動制御装置は、高密度実装,集積化が可能になり、量子コンピュータへの適用が期待される。 The drive control device for quantum bit elements according to the present invention enables high-density packaging and integration, and is expected to be applied to quantum computers.

Claims (4)

  1.  局部発振器と、前記局部発振器の出力信号とI/Q信号とを直交変調する直交ミクサを備え、
    前記直交ミクサは偶高調波直交ミクサであることを特徴とする量子ビット素子の駆動制御装置。
    comprising a local oscillator and a quadrature mixer that orthogonally modulates the output signal of the local oscillator and the I/Q signal,
    A drive control device for a quantum bit device, wherein the orthogonal mixer is an even harmonic orthogonal mixer.
  2.  局部発振器と、前記局部発振器の出力信号とI/Q信号とを直交変調する直交ミクサを備え、
    前記直交ミクサにて得られた直交変調信号を周波数変換する手段として、偶高調波ミクサを有していることを特徴とする量子ビット素子の駆動制御装置。
    comprising a local oscillator and a quadrature mixer that orthogonally modulates the output signal of the local oscillator and the I/Q signal,
    A drive control device for a quantum bit element, comprising an even harmonic mixer as a means for frequency converting the orthogonal modulated signal obtained by the orthogonal mixer.
  3.  局部発振器と、前記局部発振器の出力信号と中間周波数信号とをSSB(Single Side - Band)変調するためのSSBミクサを備え、
    前記SSBミクサは偶高調波ミクサを用いるものであることを特徴とする量子ビット素子の駆動制御装置。
    comprising a local oscillator and an SSB mixer for SSB (Single Side-Band) modulation of an output signal of the local oscillator and an intermediate frequency signal,
    A drive control device for a quantum bit device, wherein the SSB mixer uses an even harmonic mixer.
  4.  複数の量子ビット素子で構成され、
    各量子ビット素子に対して、それぞれ前記駆動制御装置を備えることで、相互のクロストークを抑えたことを特徴とする請求項1~3のいずれかに記載の量子ビット素子の駆動制御装置。
    Consists of multiple qubit elements,
    4. The drive control device for a quantum bit device according to claim 1, wherein mutual crosstalk is suppressed by providing the drive control device for each quantum bit device.
PCT/JP2023/020431 2022-06-03 2023-06-01 Drive control device for quantum bit elements WO2023234387A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-090548 2022-06-03
JP2022090548 2022-06-03

Publications (1)

Publication Number Publication Date
WO2023234387A1 true WO2023234387A1 (en) 2023-12-07

Family

ID=89024976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020431 WO2023234387A1 (en) 2022-06-03 2023-06-01 Drive control device for quantum bit elements

Country Status (1)

Country Link
WO (1) WO2023234387A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416449A (en) * 1994-05-23 1995-05-16 Synergy Microwave Corporation Modulator with harmonic mixers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416449A (en) * 1994-05-23 1995-05-16 Synergy Microwave Corporation Modulator with harmonic mixers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK JONGSEOK; SUBRAMANIAN SUSHIL; LAMPERT LESTER; MLADENOV TODOR; KLOTCHKOV ILYA; KURIAN DILEEP J.; JUAREZ-HERNANDEZ ESDRAS; ESPA: "A Fully Integrated Cryo-CMOS SoC for State Manipulation, Readout, and High-Speed Gate Pulsing of Spin Qubits", IEEE JOURNAL OF SOLID-STATE CIRCUITS, IEEE, USA, vol. 56, no. 11, 1 November 2021 (2021-11-01), USA, pages 3289 - 3306, XP011885423, ISSN: 0018-9200, DOI: 10.1109/JSSC.2021.3115988 *

Similar Documents

Publication Publication Date Title
US6850749B2 (en) Local oscillator architecture to reduce transmitter pulling effect and minimize unwanted sideband
US6127899A (en) High frequency anharmonic oscillator for the generation of broadband deterministic noise
US6560297B1 (en) Image rejection downconverter for a translation loop modulator
CA2617006C (en) Broadband low noise complex regenerative frequency dividers
US7804911B2 (en) Dual demodulation mode AM radio
WO2023234387A1 (en) Drive control device for quantum bit elements
GB2247368A (en) Phase modulation signal generator
JPH1117749A (en) Demodulation circuit
CN115856738A (en) Magnetic resonance system and radio frequency transmitter thereof
KR100473131B1 (en) Communication device
US4475216A (en) FSK Data transceiver
US6043926A (en) Electro-optical broadband microwave frequency shifter
EP4278441A1 (en) Transmitter with multiple signal paths
CN209930271U (en) Generation system of target frequency band quantum bit logic signal
US20040014446A1 (en) Methods and systems for odd-order LO compensation for even-harmonic mixers
US6072374A (en) FM modulation system using quadrature modulator
US11774478B2 (en) Low power wideband multitone generator
JPH0360502A (en) Digital fm modulator
US20090002065A1 (en) Buffer circuit for reducing differential-mode phase noise and quadrature phase error
KR100186600B1 (en) Noise cancel apparatus and method of modulator
JP2011244393A (en) Frequency modulator
GB2163626A (en) FSK generator
JP3230787B2 (en) Digitized quadrature phase modulation circuit
Patel 9 Frequency Synthesizers
JP3447646B2 (en) Digital signal transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23816144

Country of ref document: EP

Kind code of ref document: A1