WO2023234279A1 - Motion analysis method and device - Google Patents

Motion analysis method and device Download PDF

Info

Publication number
WO2023234279A1
WO2023234279A1 PCT/JP2023/020000 JP2023020000W WO2023234279A1 WO 2023234279 A1 WO2023234279 A1 WO 2023234279A1 JP 2023020000 W JP2023020000 W JP 2023020000W WO 2023234279 A1 WO2023234279 A1 WO 2023234279A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
generalized
flexible
rigid
velocity
Prior art date
Application number
PCT/JP2023/020000
Other languages
French (fr)
Japanese (ja)
Inventor
江 山本
泰暉 石垣
星喜 金
裕太 嶋根
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2023234279A1 publication Critical patent/WO2023234279A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the present invention relates to a motion analysis method and device.
  • Non-Patent Document 1 High-speed calculation algorithms for the kinematics and dynamics of articulated rigid link systems have been developed in the field of robotics. This has been applied to muscle tension analysis based on a human musculoskeletal model. In other words, by modeling the human skeletal system as a rigid link system and approximating muscles as wires that connect the skeleton, we can use motion data measured by motion capture to reconstruct three-dimensional movement of the skeletal system and the tension generated in the wires. Through the calculation, the muscle tension occurring during exercise can be estimated (Non-Patent Document 1).
  • Equipment made of flexible materials is used in many sports such as golf, fencing, and ice hockey, and it is known that the elastic deformation of the equipment is used skillfully during competition.
  • Sports prosthetics made of leaf springs are widely used not only in sports for able-bodied people but also for sports for people with disabilities.
  • a musculoskeletal calculation model that takes into account the flexibly deforming structure and the deforming forces generated therein is required.
  • Conventional motion analysis is applied to objects that can be approximated by rigid link systems, and does not take into account the deformation of tools used in sports or the deformation of braces worn by people with disabilities.
  • Non-Patent Document 2 Cosserat Rod theory
  • PCS Piecewise Constant Strain
  • this model can be incorporated into a rigid link system to create a hybrid system consisting of a rigid link system consisting of multiple rigid links and at least one flexible link. It becomes possible to perform link system kinematic analysis. Y. Nakamura, K. Yamane, Y. Fujita, and I. Suzuki. Somatosensory computation for man-machine interface from motion-capture data and musculoskeletal human model. Trans. Rob., 21(1):58-66, Feb 2005 . S. S. Antman. Nonlinear Problems of Elasticity, Vol. 107. 2005. F. Renda and et. al. Discrete cosserat approach for multisection soft manipulator dynamics.
  • the purpose of the present invention is to realize kinematic analysis of objects including flexibly deformable tools and braces.
  • the present invention relates to a motion analysis method,
  • a hybrid link system consisting of a rigid link system consisting of a plurality of rigid links including a floating base link and at least one flexible link
  • the flexible link is approximated by a model based on Cosserat theory
  • the equation of motion of the hybrid link system is Defined by Dynamic calculations are performed based on the equation of motion.
  • M is the inertia matrix
  • b bias vector
  • q ⁇ is the generalized acceleration of the mixed link
  • q 0 is the generalized coordinate of the base link
  • is the joint vector of the rigid link with n degrees of freedom
  • q S is the generalized coordinate of the flexible link approximated by a model based on Cosserat theory
  • M 0 is the inertia matrix associated with the base link
  • M R is the inertia matrix associated with the rigid link
  • M S is the inertia matrix associated with the flexible link
  • M 0R is the inertia matrix due to the connection relationship between the base link and the rigid link
  • M 0S is an inertia matrix due to the connection relationship between the base link and the flexible link
  • M RS is the inertia matrix due to the connection relationship between rigid links and flexible links
  • b 0 is the bias vector associated with the base link:
  • b R is the bias vector associated with the rigid link;
  • the rigid link system is a skeletal model. In one aspect, the rigid link system is humanoid. In one aspect, the flexible link is a prosthetic orthosis. In one aspect, the flexible link is a tool made of a flexible material used in sports.
  • the flexible link is a model based on Cosserat theory in which strain, which is the amount of deformation, is assumed to be constant regardless of position, or a model that is discretized into a plurality of segments, and in each segment, the strain is This is a model that assumes that it is constant regardless of position.
  • the dynamic calculation is an inverse dynamic calculation, Measure the movement of the target consisting of a hybrid link system and obtain movement data
  • the motion data includes first motion data that is motion data of a rigid link system and second motion data that is motion data of a flexible link, Based on the first motion data, obtain generalized coordinates, generalized velocity, generalized acceleration of the base link, generalized coordinates, generalized velocity, and generalized acceleration of the rigid link system, obtaining generalized coordinates, generalized velocity, and generalized acceleration of the flexible link based on the second motion data;
  • Generalized coordinates, generalized velocity, and generalized acceleration of the hybrid link system a measured or estimated contact force, an inertia matrix, a bias vector, and a Jacobian matrix that maps the generalized velocity to the velocity of the contact point;
  • the rigidity parameter and viscosity parameter of the flexible link the generalized force of the rigid link and the generalized force of the flexible link are calculated.
  • the velocity twist ⁇ i of the i-1th rigid link and the i-th flexible link are calculated using the following formula.
  • a transformation is performed with the velocity twist ⁇ i-1 of the segment of the flexible link.
  • Velocity twist is a vector that combines translational velocity and rotational velocity
  • G i-1,i is a matrix representing coordinate transformation between the i-1th rigid link and the i-th flexible link or segment of the flexible link.
  • the acceleration twist ⁇ ⁇ i of the i-1st rigid link and the i-th flexible link or the segment of the flexible link are calculated.
  • a conversion of acceleration twist ⁇ ⁇ i-1 is performed.
  • the acceleration twist is a vector that combines translational acceleration and rotational acceleration.
  • the following formula is used to represent the translational force and rotational moment of the link connected to the link of interest.
  • a transformation is performed between the wrench vector F i and the wrench vector F i-1 representing the translational force and rotational moment of the link of interest.
  • G i-1,i is a matrix representing coordinate transformation between wrench vector F i and wrench vector F i-1 .
  • the present invention relates to a motion analysis device that analyzes the motion of an object
  • the target is a hybrid link system consisting of a rigid link system consisting of a plurality of rigid links including a floating base link and at least one flexible link, the flexible link being approximated by a model based on Cosserat theory.
  • the device includes a processing section and a storage section,
  • the storage unit stores the equation of motion of the hybrid link system, is stored,
  • the processing unit is configured to perform dynamic calculations based on the equation of motion.
  • M is the inertia matrix
  • b bias vector
  • q ⁇ is the generalized acceleration of the mixed link
  • q 0 is the generalized coordinate of the base link
  • is the joint vector of the rigid link with n degrees of freedom
  • q S is the generalized coordinate of the flexible link approximated by a model based on Cosserat theory
  • M 0 is the inertia matrix associated with the base link
  • M R is the inertia matrix associated with the rigid link
  • M S is the inertia matrix associated with the flexible link
  • M 0R is the inertia matrix due to the connection relationship between the base link and the rigid link
  • M 0S is an inertia matrix due to the connection relationship between the base link and the flexible link
  • M RS is the inertia matrix due to the connection relationship between rigid links and flexible links
  • b 0 is the bias vector associated with the base link:
  • b R is the bias vector associated with the rigid link;
  • the rigid link system is a skeletal model. In one aspect, the rigid link system is humanoid. In one aspect, the flexible link is a prosthetic orthosis. In one aspect, the flexible link is a tool made of a flexible material used in sports. In one embodiment, the flexible link is a model based on Cosserat theory in which strain, which is the amount of deformation, is assumed to be constant regardless of position, or a model that is discretized into a plurality of segments, and in each segment, the strain is This is a model that assumes that it is constant regardless of position.
  • the processing unit includes a motion measurement means, an inverse kinematics means, and an inverse dynamics means
  • the motion measuring means measures the motion of an object made of a hybrid link system to obtain motion data
  • the motion data includes first motion data that is motion data of a rigid link system and motion data of a flexible link.
  • the inverse kinematics means are: a first inverse kinematics means for acquiring generalized coordinates, generalized velocity, generalized acceleration of the base link, generalized coordinates, generalized velocity, and generalized acceleration of the rigid link system based on the first motion data; , a second inverse kinematics means for acquiring generalized coordinates, generalized velocity, and generalized acceleration of the flexible link based on the second motion data,
  • the inverse dynamics means converts the generalized coordinates, generalized velocity, and generalized acceleration of the hybrid link system, the measured or estimated contact force, the inertia matrix, the bias vector, and the generalized velocity into the velocity of the contact point.
  • the generalized force of the rigid link and the generalized force of the flexible link are calculated using the Jacobian matrix mapped to , and the rigidity parameter and viscosity parameter of the flexible link.
  • the inverse kinematics means calculates the velocity twist ⁇ i of the i-1st rigid link and the i-th It includes twist speed conversion means for performing a conversion of the speed twist ⁇ i-1 of the flexible link or a segment of the flexible link.
  • Velocity twist is a vector that combines translational velocity and rotational velocity
  • G i-1,i is an adjoint matrix representing coordinate transformation between the i-1th rigid link and the i-th flexible link or segment of the flexible link.
  • the inverse dynamics means calculates the acceleration twist ⁇ ⁇ i of the i-1st rigid link and the i-th flexible link or the flexible link at the connection portion between the rigid link and the flexible link in the forward direction calculation. It includes twist acceleration conversion means for converting the segment acceleration twist ⁇ ⁇ i-1 .
  • the acceleration twist is a vector that combines translational acceleration and rotational acceleration.
  • the inverse dynamics means calculates the translational force and rotational moment of the link connected to the link of interest at the connection between the rigid link and the flexible link using the following formula in the inverse direction calculation. and a wrench vector F i-1 representing the translational force and rotational moment of the link of interest.
  • G i-1,i is an adjoint matrix representing coordinate transformation between wrench vector F i and wrench vector F i-1 .
  • the present invention includes:
  • the present invention relates to a computer program configured to cause a computer to function as the storage unit and the processing unit.
  • the flexible link is approximated by a model based on Cosserat theory. , it is possible to realize kinematic analysis of objects including flexibly deformable tools and braces.
  • the left figure is a schematic diagram of a hybrid link system consisting of a rigid link system and a flexible link
  • the right figure is a schematic diagram of a humanoid equipped with a flexible prosthetic leg.
  • FIG. 2 is a schematic diagram of a PCS model. It is a figure explaining the forward direction calculation and reverse direction calculation of the inverse dynamics calculation in the connection part of a rigid body link and a flexible body.
  • (a) is a perspective view of a sports prosthesis
  • (b) shows visualization of the PCS model of the sports prosthesis through simulation
  • (c) is a schematic diagram of the PCS model of the sports prosthesis.
  • FIG. 1 is a block diagram of a motion analysis device according to the present embodiment.
  • FIG. 2 is a block diagram showing a dynamics calculation unit of the motion analysis device according to the present embodiment.
  • 3 is a flowchart showing a motion analysis method according to the present embodiment.
  • FIG. 2 is a block diagram illustrating estimation of viscoelasticity of a sports prosthetic leg.
  • FIG. 2 is a block diagram showing the flow of motion analysis of a person wearing a prosthetic leg. It is a diagram showing the structure and generalized coordinates of a hybrid link system. The definition of marker coordinates and the relationship between marker coordinates and link or segment coordinates are shown.
  • the object of kinematic analysis according to this embodiment is a rigid link system consisting of a plurality of rigid links including a floating base link, at least one flexible link, This is a hybrid link system consisting of ( Figure 1).
  • the rigid link system include a skeletal model or a musculoskeletal model (right figure in FIG. 1) and a humanoid (left figure in FIG. 1).
  • every body part has a base link that is not fixed to the environment.
  • the target is, for example, an athlete with a tool made of a flexible material, or an athlete wearing a sports brace (for example, a prosthetic leg) made of a leaf spring.
  • a sports brace for example, a prosthetic leg
  • tools made of flexible materials include golf clubs, ice hockey sticks, and fencing swords.
  • the rigid link system is a humanoid
  • the object may be, for example, a leaf spring attached to the legs of the humanoid.
  • One of the features of this embodiment is high-speed flexible deformation calculation of flexible links (tools and braces) in a hybrid link system.
  • the finite element method has been widely used to analyze structures that undergo flexible deformation.
  • the finite element method calculates minute deformations and stresses that occur in structures, and when dealing with deformations such as sports prosthetics and flexible deformation tools, it is difficult to use even if a high-performance computer is used. It takes several hours to several days.
  • structures such as leaf spring prostheses and golf clubs can be approximated as beams or rods, and by applying the Cosserat rod theory studied in the field of materials mechanics, flexible deformation can be calculated quickly. can. This makes it possible to measure three-dimensional motion using kinematic calculations of the hybrid link system.
  • Sports prostheses made from golf clubs, ice hockey sticks, and leaf springs can be elastically deformed in three dimensions.
  • This embodiment discloses a method for estimating the viscoelasticity of a tool or a prosthetic leg that undergoes three-dimensional elastic deformation based on modeling of a flexible deformable body that undergoes three-dimensional elastic deformation. This makes it possible to estimate with high accuracy the elastic forces that occur in tools and prosthetic legs during exercise.
  • This embodiment further discloses simultaneous estimation of the elastic force and muscle tension of a tool by dynamic calculation of a flexible-rigid mixed link system including floating links.
  • This enables real-time motion analysis that takes into account the flexible deformation of tools and braces and musculoskeletal interaction forces. For example, by displaying the muscle tension estimation results in real time, when used for training, it is possible to realize muscle tension estimation that also takes into account the flexible deformation of prosthetic legs and tools.
  • a multi-link system such as human walking, it is common to model the base link as a floating link that is not fixed to the environment and calculate the contact with the environment. Even in link systems, calculations including floating links are now possible.
  • the results can also be applied to proposals for forms that effectively utilize the elastic deformation of tools, as well as proposals for optimal shapes and material properties for tools and sports prosthetics tailored to individuals.
  • Motion data of the object can be acquired by a motion capture system.
  • the motion of the target is defined by time-series data of the pose of the target acquired by motion capture. It is only necessary to obtain time-series data of poses of a rigid link system (skeletal model) of the target (hybrid link system) and time-series data of poses of a flexible link (for example, a prosthetic leg).
  • a large number of optical markers are attached to predetermined positions on the prosthetic leg, and the pose of the prosthetic leg at time t is determined from a set of positions (coordinates) of the multiple optical markers at time t.
  • the pose of the prosthetic leg at time t+1 can be determined from a set of positions (coordinates) of multiple optical markers at time t+1, and the pose at time t and the pose at time t+1 can be determined.
  • the difference represents the deformation of the prosthesis.
  • the posture of the target rigid link system is specified by multiple feature points (typically joints) on the target body (skeletal model), and the three-dimensional coordinate values of the multiple feature points are acquired in each frame. Then, the operation of the target rigid link system is defined from time-series data of three-dimensional coordinate values of a plurality of feature points. For the parts of the target skeletal model (rigid link system), time-series data of joint positions and joint angles are acquired by motion capture, and the velocity and acceleration of the rigid links are calculated by inverse kinematics.
  • a flexible link has a total of 6 dimensions of deformation (strain), with the amount of expansion/contraction and curvature each being 3 dimensions.
  • strain the amount of expansion/contraction and curvature
  • the amount of expansion and contraction can be considered to be very small compared to the displacement of curvature, so during motion capture, the approximation is made so that only the three degrees of freedom of curvature are handled.
  • the strain of the PCS model can be obtained from motion capture, it is possible to calculate the amount equivalent to the speed of deformation from it. From there, the viscoelastic force of the PCS model can be estimated using equation (4) in [3][E]. At this time, the stiffness matrix K and viscosity matrix D must be estimated in advance.
  • the motion analysis device includes a processing section and a storage section, and the processing section and storage section are composed of one or more computers.
  • a computer includes an input section, a processing section (processor), a storage section (memory including RAM and ROM), and an output section.
  • the motion analysis device may include a display unit. The motion analysis device analyzes the motion of the target based on the motion data of the target acquired by the motion capture system.
  • the storage unit stores hybrid link system models (skeletal model or musculoskeletal model, and PCS model that defines flexible links), and motion capture is executed corresponding to each model, and the motion capture measurement Data is stored.
  • the processing unit executes kinematic calculation based on the measurement data of the motion capture, and the calculation data of the inverse kinematic calculation based on the measurement data is stored in the storage unit.
  • the storage unit stores the equation of motion of the hybrid link system, and the processing unit executes dynamic calculations (inverse dynamic calculations and forward dynamic calculations) according to the equation of motion, and stores the calculated data. .
  • the storage unit stores stiffness parameters and viscosity parameters of the flexible link necessary for dynamic calculation based on the equation of motion in the processing unit.
  • the storage unit stores the contact force when the object moves.
  • the contact force is measurement data (ground reaction force) acquired by, for example, a force plate during the movement of the object. Alternatively, it may be data (ground reaction force) estimated by the processing unit during the movement of the object.
  • the storage unit stores computer programs for the processing unit to execute various predetermined calculations.
  • the program includes a program to perform motion capture and obtain measurement data, a program to perform inverse kinematic calculations based on measurement data, and a program to perform dynamic calculations based on processed data and stored data. (inverse dynamics calculation, forward dynamics calculation), program to estimate stiffness parameters and viscosity parameters of flexible links, and to perform contact force estimation calculation when estimating contact force. programs, etc. are stored.
  • the processing section of the motion analysis device is configured to execute predetermined processing according to a predetermined program, and the processing results are stored in the storage section.
  • the processing section typically includes an inverse kinematics calculation section, an inverse dynamics calculation section, and a forward dynamics calculation section.
  • FIG. 7 clearly shows the inverse kinematics calculation section and the inverse dynamics calculation section
  • FIG. 8 clearly shows the inverse dynamics calculation section and the forward dynamics calculation section.
  • the processing section may include a muscle tension calculation section and a muscle activity calculation section.
  • the inverse dynamics calculation unit calculates the inertia matrix based on the equation of motion (22) of the hybrid link system, according to the input of generalized coordinates q, generalized velocity q , and generalized acceleration q.
  • Generalized forces ⁇ R and ⁇ S are output using M, bias vector b, contact force, and contact Jacobian matrix.
  • the generalized force (joint torque) ⁇ R is used to estimate muscle tension in the rigid link system (musculoskeletal model) of the hybrid link system.
  • the forward dynamics calculation unit calculates the inertia matrix M, the bias vector b, and the contact force according to the input of the generalized forces ⁇ R and ⁇ S based on the equation of motion (22) of the hybrid link system. , using the contact Jacobian matrix, it is possible to output the generalized acceleration q ⁇ , and also calculate the generalized velocity q ⁇ and the generalized coordinate q.
  • the generalized acceleration q ⁇ , the generalized velocity q ⁇ , and the generalized coordinate q are used, for example, to control the walking motion of a humanoid.
  • the type of motion capture method used in this embodiment is not limited, and includes an optical motion capture method that uses optical markers to identify feature points, and an optical motion capture method that uses so-called inertial sensors such as acceleration sensors, gyroscopes, and geomagnetic sensors on the target body.
  • Examples include a method in which the sensor is attached to the camera to acquire motion data of the target, and a so-called markerless motion capture method in which no optical marker or sensor is attached.
  • the markerless motion capture method is advantageous from the viewpoint of not interfering with the natural movement of the subject.
  • Examples of the markerless motion capture method include a motion capture method using a system equipped with a camera and a depth sensor, or a video motion capture method that acquires motion data by analyzing RGB images (Non-Patent Document 11).
  • a motion capture system includes one or more cameras that acquire video data of a subject's motion, and one or more computers that acquire time-series data representing the subject's motion based on the video data. configured. This computer may also be used as a computer for motion analysis.
  • a force plate is used to obtain ground reaction force during motion measurement.
  • a force plate is used to obtain ground reaction force during motion measurement.
  • that information can be used to simultaneously estimate the ground reaction force during inverse dynamics calculation. You may.
  • FIG. 9 shows an example of a processing process for motion analysis of an object (hybrid link system) using motion capture.
  • the motion of a musculoskeletal model target of a hybrid link system
  • the motion of the target skeleton is acquired by motion capture according to this embodiment.
  • the time series data of the acquired joint angles and joint positions is acquired, and the position, angle, velocity, angular velocity, acceleration, and angular acceleration of each rigid link are acquired by inverse kinematics calculations and input into the inverse dynamics engine.
  • the motion data of the target tool or brace (flexible link) is acquired.
  • the viscoelastic force of the flexible link is obtained by inverse kinematics calculation and input into the inverse dynamics engine.
  • the inertia tensor, centrifugal force, Coriolis force, and gravity vector are also input to the inverse dynamics engine.
  • an external force for example, a floor reaction force acquired by a force plate is input to the inverse dynamics engine.
  • a rigid link system more specifically, for example, by interpolating the time-series inter-frame displacement of all degrees of freedom of the skeleton obtained by motion capture using a continuous function, the displacement of all degrees of freedom of the skeleton at each frame time is calculated. , calculate its time derivative, velocity, and its time derivative, acceleration. The position, angle, velocity, angular velocity, acceleration, and angular acceleration of each link calculated from these are sent to the inverse dynamics engine, which calculates the mechanical information associated with the movement of the skeleton assuming mass, thereby matching the movement. Calculate the joint torque.
  • Each segment of the skeleton is a rigid body, and its mass, center of gravity position, and inertia tensor can be estimated from statistical measurement information of each part of the person using physique information. Alternatively, these parameters can also be estimated by identification from motion information of the object. The physique information of the target used for estimation is acquired in advance.
  • a force plate is used to obtain ground reaction force during motion measurement.
  • a force plate is used to obtain ground reaction force during motion measurement.
  • that information can be used to simultaneously estimate the ground reaction force during inverse dynamics calculation. You may.
  • Joint torque is obtained by inverse dynamics calculation, and using the joint torque, wire tension in a musculoskeletal model including wires imitating muscles is obtained by optimization calculation (quadratic programming or linear programming). For example, the tension of a wire distributed over a whole body modeled on muscles is calculated using bias/weighted quadratic programming. Regarding the calculation of this wire tension, reference can be made to Non-Patent Document 1. By obtaining the measured values of the force distribution when antagonist muscles are used according to the classified movements, and using the bias and weights based on those values, we obtain a solution that better approximates the actual muscle tension. be able to. In acquiring muscle tension, measurement data from an electromyograph may be taken into consideration.
  • the obtained muscle tension is divided by the assumed maximum muscle tension of the muscle, and the muscle activity level is determined, and an image of the whole body musculoskeletal system is generated and visualized with the muscle color changed according to the muscle activity level.
  • Musculoskeletal images with muscle activity are output at a predetermined frame rate and displayed on a display as a moving image. Furthermore, changes in the values of each variable (for example, joint angle, velocity, muscle tension, ground reaction force, center of gravity position, etc.) are graphed and output. These outputs are presented as analysis results in the form of images and graphs, and are used as a record of muscle and body activities during exercise, or the movements of each part of the body. In this way, it is possible to automatically and efficiently perform everything from photographing the movement of the target, obtaining the three-dimensional pose of the target during movement, and estimating and visualizing the muscle activity necessary for the movement.
  • FIG. 2 shows a schematic diagram of the PCS model (Non-Patent Document 2).
  • the constituent curve G(s) of the continuous Cosserat model at a certain time is expressed by the following equation.
  • R ⁇ SO(3) is a rotation matrix
  • p ⁇ R 3 is a position vector.
  • the time differential and spatial differential of G(s) are defined as follows.
  • the deformation of the continuous Cosserat model is defined as the infinitesimal displacement and strain ⁇ (s) of the constituent curves as shown in the following equation.
  • u ⁇ R 3 and k ⁇ R 3 represent translational and rotational distortions, respectively.
  • [ ⁇ ] is a matrix representation of the vector representation of the Lie algebras se(3) and so(3).
  • E and O are an identity matrix and a zero matrix, respectively.
  • the adjoint representation of the homogeneous transformation matrix G is defined as
  • the adjoint expression of ⁇ se(3) is defined as
  • Equation (14) a relational expression between speed twist ⁇ (s) and generalized speed q .
  • ⁇ (0) 0
  • ⁇ (s) is a polynomial of the strain ⁇ j of each segment, as follows: It is expressed as follows. here, It is.
  • Equation (18) becomes as follows.
  • M ⁇ R 6N ⁇ 6N is the inertia matrix
  • b ⁇ R 6N is a bias vector including Coriolis force and gravity
  • ⁇ int (q, q ⁇ ) [ ⁇ T int,1 ... ⁇ T int,N ]
  • T ⁇ R 6N is the internal force due to the viscoelasticity of the continuum
  • ⁇ ext [ ⁇ T ext,1 ... ⁇ T ext,N ] T ⁇ R 6N represents external force
  • Equation (18) the internal force ⁇ S is It is expressed as
  • q eq is an equivalent point of the generalized coordinate vector
  • K ⁇ R 6N ⁇ 6N and D ⁇ R 6N ⁇ 6N are a stiffness matrix and a viscosity matrix, respectively.
  • the equation of motion of the PCS model in Equation (18) has a form similar to the equation of motion of a rigid link system, and the recursive algorithm used for rigid link systems can be applied to the dynamics calculation of the PCS model.
  • the recursive Newton-Euler method can be applied to inverse dynamics calculations in the PCS model (Non-Patent Documents 3 and 4).
  • the generalized force ⁇ is obtained from the generalized coordinate q, its velocity q ⁇ , and acceleration q ⁇ .
  • the recursive algorithm uses the following equation as the equation of motion in the i-segment.
  • a ⁇ R 6 ⁇ 6 is the inertia matrix of the strain acceleration ...
  • the steps of the recursive algorithm for inverse dynamics calculation are as follows.
  • (b) Inverse calculation generalized force (18”) calculates ⁇ int,i from the tip to the base segment.
  • the acceleration q ⁇ of the generalized coordinate is determined from the generalized coordinate q, its velocity q ⁇ , and the generalized force ⁇ .
  • the inertia matrix M and bias vector b are determined by the unit vector method (non-patent document 7), and (18) is solved.
  • Hybrid link system with floating links [B-1] Dynamics of hybrid link system Consider a hybrid link system as shown in Figure 1. In order to apply it to humanoid and human skeletal models, we assume a floating link system in which the base link is not fixed. In floating link systems, the base link is not fixed to the environment and is actuated indirectly by contact forces.
  • M is the inertia matrix
  • b bias vector
  • q ⁇ is the generalized acceleration of the hybrid link
  • q 0 ⁇ R 6 is the 6-dimensional generalized coordinate of the base link
  • ⁇ R n is the joint vector of the rigid link with n degrees of freedom
  • q S ⁇ R 6N is the generalized coordinate of the flexible link approximated by the PCS model
  • M 0 is the inertia matrix associated with the base link
  • M R is the inertia matrix associated with the rigid link
  • M S is the inertia matrix associated with the flexible link
  • M 0R is the inertia matrix due to the connection relationship between the base link and the rigid link
  • M 0S is an inertia matrix due to the connection relationship between the base link and the flexible link
  • M RS is the inertia matrix due to the connection relationship between rigid links and flexible links
  • b 0 is the bias vector associated with the base link:
  • b R is the bias vector associated
  • Non-Patent Document 3 discloses that the result of integrating the density of a PCS model (flexible link) is used in calculating the inertia matrix M and the bias vector b.
  • a recursive algorithm for inverse dynamics calculation is considered in a hybrid link system, and this is used in a unit vector method to calculate an inertia matrix M and a bias vector b.
  • the result of integrating the density of the PCS model is used.
  • the unit vector method there is no need to calculate the Jacobian matrix or its time derivative; if the connection relationship between links (or segments) is known, the inertia matrix M can be calculated by repeating the inverse dynamics calculation. and bias vector b can be calculated.
  • [B-2-1] Forward calculation As shown in FIG. 3, consider the connection between the i-1th rigid link and the i-th flexible link segment (ie, base).
  • the subscript i is a link ID that does not distinguish between rigid links and PCS model segments.
  • the forward calculation of the inverse dynamics calculation requires conversion from the twisting speed of rigid link i-1 to the twisting speed of base i of the PCS model.
  • the transformation between the velocity twist ⁇ i-1 of the rigid link and the base velocity twist ⁇ i of the PCS model is obtained as follows.
  • G i-1,i ⁇ SE(3) represents the coordinate transformation between the rigid link i-1 and the base (segment) i of the PCS model, as shown in FIG.
  • the conversion of acceleration twist ⁇ ⁇ i ⁇ 1 and ⁇ ⁇ i can be obtained by first-order differentiating equation (21) with respect to time.
  • a transformation matrix used for velocity twist transformation and wrench vector transformation in inverse kinematics calculations is obtained in advance.
  • a transformation matrix can be obtained based on the dimensions of a joint that fixes a leaf spring and geometric information about the attachment position of the leaf spring.
  • initializing optical motion capture measurements for example, have the subject assume a T-shaped pose and measure while standing still, and obtain a transformation matrix from the position information of the multiple optical markers obtained. You may.
  • Forward dynamics calculation of forward dynamics calculation formula (20) is, 1) Calculation of inertia matrix M and bias vector b: As with the rigid link system, inertia matrix M and bias vector b are calculated by applying the unit vector method in inverse dynamics calculation. 2) Calculation of contact Jacobian matrix J C,i : Calculate contact Jacobian matrix J C,i using the unit vector method. M and b were calculated in the previous step. The column vector of the Jacobian matrix is calculated by setting the unit vector to be the contact force f C,i , and the generalized force is calculated by inverse dynamics calculation.
  • Centroid Jacobian Matrix (COG Jacobian Matrix)
  • C-1 Centroid Jacobian Matrix of Hybrid Link System
  • the center of gravity is an important feature.
  • the center-of-gravity Jacobian matrix of the hybrid link system is used for control to maintain such balance.
  • the use of the center-of-gravity Jacobian matrix is not limited to humanoids, and can be used for human body motion analysis, for example, when optimally calculating the shape of a leaf spring that facilitates balance.
  • the centroid Jacobian matrix J G of the entire hybrid link system can be calculated as shown below.
  • the center of gravity of a rigid link is constant, and a method for calculating the center of gravity Jacobian matrix has already been established (Non-Patent Document 8).
  • the center of gravity of a PCS segment moves as the volume or shape of the segment changes. Therefore, below, we will discuss the centroid Jacobian matrix of the PCS model.
  • Equation (2) Centroid Jacobian matrix of PCS model
  • ⁇ (s) and A(s) are the density and cross-sectional area of the i-th segment of the PCS model.
  • equation (26) can be simplified as follows.
  • p ⁇ (s) the translational velocity v of the twist vector.
  • the translational velocity v can be calculated from the translational velocity part of equation (12) as follows.
  • ⁇ (L i-1 ) and ⁇ ⁇ i are as follows.
  • S S,i ⁇ R 6 ⁇ 6 is a selection matrix that selects the i-th PCS segment ⁇ i from the generalized velocity q.
  • K q and D q ⁇ R (n+6N) ⁇ (n+6N) are an elastic matrix and a viscous matrix, respectively.
  • J G ⁇ 3 ⁇ (n+6N) is a Jacobian matrix representing the relationship between COG and the generalization speed related to ⁇ .
  • the general solution for K q that satisfies equation (36) is given as follows.
  • Y is any positive definite matrix and can be regarded as the target value of the inverse matrix of the stiffness matrix.
  • J ⁇ G is a pseudo inverse matrix of J G , and the viscosity D q can be calculated in the same way.
  • [D-2] Stance balance control when supporting one leg In order to verify the dynamic calculations of the hybrid link system, we simulated the dynamics of balance control using compliance optimization control assuming a humanoid wearing a sports prosthesis. Here, we will consider the standing stabilization control during the single-leg support phase of the left leg in a model (right figure in FIG. 1) in which the legs of the hydrostatically driven humanoid Hydra (Non-Patent Document 10) are replaced with prosthetic legs (PCS model). In the simulation, the target value of joint compliance was set as follows. Here, Y k and Y d are target values of the stiffness matrix and the viscosity matrix, respectively. k d and d d are positive constants.
  • Non-Patent Documents 3 and 4 a Piece-wise Constant Strain (PCS) model
  • PCS Piece-wise Constant Strain
  • This model has high extensibility and compatibility with dynamic models of multi-joint rigid link systems, and allows calculation of flexible deformation at relatively low cost.
  • PCS model for the purpose of kinematic analysis of prosthetic runners including competitive prosthetic legs, we will consider applying the PCS model to the calculation of flexible deformation of competitive prosthetic legs.
  • the shape of the competition prosthesis is modeled by determining the strain parameters of the PCS model for each segment based on the actual prosthesis dimensions and image data.
  • the amount of deformation when a load is applied to the prosthetic leg is measured using optical motion capture, and based on the measurement data, inverse kinematics and statics are calculated, and numerical optimization is performed to improve the stiffness parameters of the prosthetic leg for competitions. Estimate the viscosity parameters. Please note that in this chapter, formula numbers are assigned independently.
  • FIG. 4(b) shows the competition prosthesis (Sprinter 1E90, Ottobock, Germany) that is the subject of this study. This flexible deformation is modeled using a PCS model (non-patent document 3) as shown in FIG. 4(b).
  • Figure 4(c) shows an outline of the PCS model.
  • the PCS model is based on the discrete Cosserat model (Non-Patent Document 2), and calculates the flexible deformation of a beam or rod by dividing it into a finite number of segments.
  • the constitutive curve of the continuous Cosserat model is expressed as follows.
  • s is the central axis coordinate of the continuum
  • R ⁇ SO(3) and p ⁇ R 3 represent a rotation matrix and a position vector, respectively.
  • the displacement of the constituent curve G(s) caused by flexible deformation is defined as a six-dimensional strain vector ⁇ (s) as shown in the following equation.
  • k and u represent strain in the rotational direction and translational direction, respectively.
  • the strain ⁇ is assumed to be constant in each segment. That is, the constant strain ⁇ i of a certain segment i is defined as follows.
  • L i indicates the value of the center coordinate s of segment i.
  • the generalized coordinates q ⁇ R 6N of the PCS model can be defined as follows. However, N is the number of segment divisions.
  • the constituent curve G(s) in each segment can be calculated from equation (2) as follows.
  • G i (s) can be calculated as follows using an exponential mapping.
  • the time change of the constituent curve G(s) is defined as a twist vector ⁇ (s) as shown in the following equation.
  • w and v represent rotational and translational speeds, respectively.
  • T i (s) is an exponential map shown below
  • Ad G is an adjoint expression of SE(3)
  • is an adjoint expression of se(3)
  • the generalized velocity q can be mapped to the twist vector ⁇ using the Jacobian matrix.
  • a central curve on a two-dimensional plane corresponding to the side surface is extracted from a CAD model of a competition prosthetic leg, the shape is divided into six segments that can be approximated by a constant curvature, and each segment is I asked for G Li .
  • Figure 4(b) shows the shape of a competition prosthetic leg drawn as a PCS model.
  • [C-2] Inverse kinematics calculation Obtain the value of the generalized coordinate q of the PCS model by inverse kinematics calculation from the measured marker position data.
  • one aspect is a simulation of a hybrid link system consisting of a musculoskeletal model and a prosthetic leg. Considering that the prosthetic leg is connected to the limb, the upper end side is modeled as a base link, and inverse kinematics calculations are performed as a floating link system as shown in the left diagram of FIG.
  • the generalized coordinate q of the PCS model by inverse kinematics calculation from the measured marker position data.
  • the subscript representing the number of the acquired experimental data is j.
  • the index of the obtained data is set as j, and the stiffness of the competition prosthetic leg is estimated by least squares from the generalized coordinate data qj of the PCS model and the ground reaction force data fj, ⁇ j.
  • the value of the inertia matrix M is used when estimating the viscosity parameter, but the value of the density of the PCS model is obtained in advance when calculating the inertia matrix M.
  • the density of the PCS model also needs to be known in inverse dynamics calculations and forward dynamics calculations.
  • the density catalog value can be referenced from the material model number information, that value can be used.
  • the volume can be calculated from 3D CAD data and the density can be calculated.
  • the PCS model itself does not have a constant density, and can handle objects with different density values for each segment.
  • the stiffness matrix is estimated by the following optimization using experimental data.
  • W is a weight matrix
  • ⁇ qj was defined as in the following equation.
  • ⁇ j can be calculated as follows using the principle of virtual work.
  • Equation 8 estimate the viscosity matrix The equation of motion derived from equation (1) is as follows.
  • the left side is calculated by inverse dynamics calculation using the inertia matrix M, and q, q ⁇ , q ⁇ are defined as follows.
  • Each value is calculated by numerical differentiation.
  • p and ⁇ in Equation 8 represent the position and orientation of the base link.
  • is a vector that summarizes three variables, for example, Euler angles.
  • the angular velocity ⁇ 0 of the base link can be calculated as follows.
  • the differential of the rotation matrix is calculated as follows.
  • the viscosity matrix D is estimated by the following optimization calculation.
  • ⁇ p is defined as follows. This inequality is transformed into the following linear matrix inequality using the Schur complement.
  • Viscoelastic force is unique to the flexible device (material, shape, etc.), and basically it is necessary to use an estimated value for each device. Viscoelastic force is calculated from stiffness parameters (stiffness matrix) and viscosity parameters (viscosity matrix). In order to estimate the viscoelastic force, the amount of deformation occurring in the flexible device, its rate of change, and the 6-axis force (3-dimensional translational force and 3-dimensional rotational moment) acting on a specific position on the flexible device are used. Is required.
  • generalized coordinates q are obtained by performing inverse kinematic calculation using the three-dimensional position p of the marker.
  • the stiffness matrix K is calculated by solving a semi-definite programming problem using the generalized coordinates q obtained by inverse kinematic calculation and the force f obtained by the force plate.
  • the generalized force ⁇ is calculated by performing inverse dynamics calculation using the generalized coordinate q (and its numerical derivative) obtained by inverse kinematics calculation and the force f obtained by the force plate. calculate.
  • the viscosity matrix D is calculated by solving a semi-definite programming problem using the estimated stiffness matrix K and the generalized force ⁇ obtained by inverse dynamics calculation.
  • the evaluation function for estimating the viscosity matrix D is as follows.
  • the above estimation means is merely an example.
  • the measurement method is not necessarily limited to motion capture; for example, in the case of a prosthetic leg, strain sensors are attached to the surface of the structure to measure deformation. The amount may also be measured. Further, in order to measure changes in the force applied to the flexible device during deformation, a six-axis force sensor may be used instead of the force plate. In the motion analysis of a hybrid link system including a flexible device, if the viscoelasticity of the flexible device is known, that value can be used.
  • the viscoelasticity obtained as a representative of one device is the common viscoelasticity (minor individual differences). can be treated as a tolerance).
  • the motion analysis may be performed by giving appropriate values to the stiffness matrix and the viscosity matrix. For example, when it is desired to perform a simulation assuming a structure that is softer than the actual device, virtual values of the elastic matrix K and the viscous matrix D may be set within the simulation. The effect of using a prosthesis that is softer/harder than the one actually used can be seen by running a simulation by setting the values of the virtual elastic matrix K and viscosity matrix D. good.
  • a hybrid link system consists of a rigid part and a soft part, and the rigid part can be treated as a rigid link system, and the soft part can be treated as a PCS model.
  • a prosthetic leg is exemplified as a soft part, and for a prosthetic runner, the prosthetic leg part is modeled as a 6-segment PCS model, the human musculoskeletal part is modeled as a rigid link system, and these are integrated to form a hybrid link system.
  • Perform motion analysis using Figure 11 shows the flow of motion analysis for a human wearing a prosthetic leg. Please note that in this chapter, formula numbers are assigned independently.
  • the model is divided into N parts, and each part is composed of a rigid link system or a PCS model.
  • the relationships among parts, links, and segments are defined as follows.
  • q j is the generalized coordinate of part j, and does not distinguish whether it is a rigid part or a soft part.
  • G j,i is the position and orientation of link i in rigid part j.
  • G j,i is the position and orientation of s (center axis) of segment i in PCS part j.
  • G j is the position and orientation of the base link or base segment in part j.
  • (h) j-1 G j (q j-1 ) is a homogeneous transformation matrix from parent part j-1 to child part j, and is a function of q j-1 .
  • any link in the hybrid link system can be or the position and orientation of the segment can be calculated.
  • the generalized coordinates of the hybrid link system including G 0 are expressed as follows.
  • the velocity twist j v j,i of the base link of part j is as follows using the Jacobian matrix J i (q j ) of part j, The following formula is obtained.
  • w J i (q j ) is a Jacobian matrix obtained by converting the Jacobian matrix J i (q j ) to the world coordinate system.
  • the velocity twist w v j is the same as the velocity twist of the end link of the parent part j-1 w v j-1,nj-1 , becomes.
  • the Jacobian matrix w J j,i can be obtained as follows.
  • k>i it becomes a zero matrix
  • k ⁇ i it is expressed by recursive calculation.
  • the type of motion capture used for motion analysis of the hybrid link system is not limited, but in one embodiment, optical motion capture using markers is used.
  • One part is a human skeletal model with a missing right lower limb, and in one embodiment, it consists of 50 rigid links and corresponding joints, but does not include the three links corresponding to the right lower limb.
  • the link that connects to the right lower limb is replaced by a cylinder that is connected to the sports prosthesis.
  • the other part is a sports prosthetic leg, which is a PCS model consisting of six segments.
  • 54 optical markers were used: 33 were attached to the human body link, and the remaining 21 were attached to the prosthetic leg.
  • Optical motion capture systems output three-dimensional position data of a large number of markers.
  • M the number of markers
  • the vector that stores all p k is It is defined as If p ⁇ is the marker position measured by motion capture, the inverse kinematics problem can be formulated as follows. When solving this optimization problem using the gradient method, a Jacobian matrix J k at each marker position is required.
  • [G-4] Motion analysis of hybrid link system As shown in Figure 11, by performing inverse kinematics calculations based on marker position information obtained from motion capture, generalized coordinates, generalized velocity, and generalized acceleration can be calculated. Calculate. By performing inverse dynamics using generalized coordinates, generalized velocity, and generalized acceleration, we can calculate the generalized force ⁇ S of the PCS model, the joint torque (generalized force of a rigid body) ⁇ R of the human skeleton model, and the contact force f Get C.
  • the dynamics of the hybrid link system can be expressed by the following equation.
  • the optimization function for inverse dynamics calculations is as follows.
  • the generalized force ⁇ s of the PCS model, the joint torque (generalized force of a rigid body) ⁇ R of the human skeleton model, and the contact force f C are estimated.
  • ref ⁇ s is calculated using the elasticity matrix K and viscosity matrix D estimated in advance.
  • the muscle tension f m can be estimated using the joint torque (generalized force of a rigid body) ⁇ R of the human skeleton model.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The present invention achieves motion analysis with respect to an object including a tool or orthosis that deforms flexibly. In a hybrid link system composed of a rigid body link system and at least one flexible link, the rigid body link system consisting of a plurality of rigid body links including a floating base link, the flexible link is approximated by a model based on a Cosserat theory to define a motion equation of the hybrid link system, and dynamics computation is performed on the basis of the motion equation.

Description

運動解析方法及び装置Motion analysis method and device
本発明は、運動解析方法及び装置に関するものである。 The present invention relates to a motion analysis method and device.
多関節の剛体リンク系の運動学・動力学の高速な計算アルゴリズムはロボット工学の分野で発展してきた。これは、ヒトの筋骨格モデルに基づく筋張力の解析に応用されている。すなわち、ヒトの骨格系を剛体リンク系としてモデル化し、筋は骨格を接続するワイヤとして近似することで、モーションキャプチャにより計測した運動データから、骨格系の運動の3次元再構成、ワイヤに生じる張力の計算を経て、運動中に生じている筋張力を推定することができる(非特許文献1)。 High-speed calculation algorithms for the kinematics and dynamics of articulated rigid link systems have been developed in the field of robotics. This has been applied to muscle tension analysis based on a human musculoskeletal model. In other words, by modeling the human skeletal system as a rigid link system and approximating muscles as wires that connect the skeleton, we can use motion data measured by motion capture to reconstruct three-dimensional movement of the skeletal system and the tension generated in the wires. Through the calculation, the muscle tension occurring during exercise can be estimated (Non-Patent Document 1).
ゴルフやフェンシング、アイスホッケー等、多くのスポーツで柔軟な素材で作られた道具が使用されており、競技中に道具の弾性変形を巧みに利用していることが知られている。健常者のスポーツだけでなく、障がい者のスポーツでも、板バネで構成されたスポーツ用の義足が広く使用されている。このようなスポーツの場面で技能を解析するためには、柔軟に変形する構造とそこで生じている変形力を考慮した筋骨格計算モデルが必要である。従来の運動解析は、剛体リンク系で近似できる対象について適用されており、スポーツで用いる道具の変形や、障がい者が装着する装具の変形は考慮されていない。 Equipment made of flexible materials is used in many sports such as golf, fencing, and ice hockey, and it is known that the elastic deformation of the equipment is used skillfully during competition. Sports prosthetics made of leaf springs are widely used not only in sports for able-bodied people but also for sports for people with disabilities. In order to analyze skills in such sports situations, a musculoskeletal calculation model that takes into account the flexibly deforming structure and the deforming forces generated therein is required. Conventional motion analysis is applied to objects that can be approximated by rigid link systems, and does not take into account the deformation of tools used in sports or the deformation of braces worn by people with disabilities.
柔軟構造の変形の計算において知られている有限要素法は、静的な条件で用いられることが多くまた、計算量が大きく、リアルタイムで変形を計算することには適さない。一方、ロッド形状を効率的に扱うCosserat Rod理論(非特許文献2)の下で、Piecewise Constant Strain (PCS)モデル(非特許文献3、4)などが提案されている。PCSモデルでは、剛体リンク系と同様の再帰的な動力学計算アルゴリズムが提案されており、剛体リンク系との適合性も良い。道具や装具の柔軟変形をより詳細にモデル化することができれば、このモデルを剛体リンク系に組み込んで、複数の剛体リンクからなる剛体リンク系と、少なくとも1つの柔軟リンクと、から構成されるハイブリッドリンク系の運動解析を実行することが可能となる。
Y. Nakamura, K. Yamane, Y. Fujita, and I. Suzuki. Somatosensory computation for man-machine interface from motion-capture data and musculoskeletal human model. Trans. Rob., 21(1):58-66, Feb 2005. S. S. Antman. Nonlinear Problems of Elasticity, Vol. 107. 2005. F. Renda and et. al. Discrete cosserat approach for multisection soft manipulator dynamics. IEEE Transactions on Robotics, Vol. 34, No. 6, pp. 1518-1533, 2018. F. Renda and et. al. A geometric and unified approach for modeling soft-rigid multi-body systems with lumped and distributed degrees of freedom. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1567-1574. IEEE, 2018. V. Sonneville and et. al. Geometrically exact beam finite element formulated on the special euclidean group se (3). Computer Methods in Applied Mechanics and Engineering, Vol. 268, pp. 451-474, 2014. A. Goswami and et. al. Humanoid robotics: A reference. Springer, 2019. M.W.Walker et al., "Efficient dynamic computer simulation of robotic mechanisms," 1982. T. Sugihara et al., "Whole-body cooperative balancing of humanoid robot using COG Jacobian," in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, pp. 2575-2580. K. Yamamoto, "Robust walking by resolved viscoelasticity control explicitly considering structure-variability of a humanoid," in 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017, pp. 3461-3468. H. Kaminaga et al., "Mechanism and control of whole-body electrohydrostatic actuator driven humanoid robot hydra," in International Symposium on Experimental Robotics. Springer, 2016, pp. 656-665. T. Ohashi, Y. Ikegami, K. Yamamoto, W. Takano and Y. Nakamura, Video Motion Capture from the Part Confidence Maps of Multi-Camera Images by Spatiotemporal Filtering Using the Human Skeletal Model, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, 2018, pp. 4226-4231.
The finite element method, which is known for calculating deformation of flexible structures, is often used under static conditions, requires a large amount of calculation, and is not suitable for calculating deformation in real time. On the other hand, under the Cosserat Rod theory (Non-Patent Document 2) that efficiently handles rod shapes, Piecewise Constant Strain (PCS) models (Non-Patent Documents 3 and 4) have been proposed. For the PCS model, a recursive dynamic calculation algorithm similar to that for rigid link systems has been proposed, and it is also well compatible with rigid link systems. If it is possible to model the flexible deformation of tools and braces in more detail, this model can be incorporated into a rigid link system to create a hybrid system consisting of a rigid link system consisting of multiple rigid links and at least one flexible link. It becomes possible to perform link system kinematic analysis.
Y. Nakamura, K. Yamane, Y. Fujita, and I. Suzuki. Somatosensory computation for man-machine interface from motion-capture data and musculoskeletal human model. Trans. Rob., 21(1):58-66, Feb 2005 . S. S. Antman. Nonlinear Problems of Elasticity, Vol. 107. 2005. F. Renda and et. al. Discrete cosserat approach for multisection soft manipulator dynamics. IEEE Transactions on Robotics, Vol. 34, No. 6, pp. 1518-1533, 2018. F. Renda and et. al. A geometric and unified approach for modeling soft-rigid multi-body systems with lumped and distributed degrees of freedom. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1567-1574. IEEE , 2018. V. Sonneville and et. al. Geometrically exact beam finite element formulation on the special euclidean group se (3). Computer Methods in Applied Mechanics and Engineering, Vol. 268, pp. 451-474, 2014. A. Goswami and et. al. Humanoid robotics: A reference. Springer, 2019. MWWalker et al., "Efficient dynamic computer simulation of robotic mechanisms," 1982. T. Sugihara et al., "Whole-body cooperative balancing of humanoid robot using COG Jacobian," in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, pp. 2575-2580. K. Yamamoto, "Robust walking by resolved viscoelasticity control explicitly considering structure-variability of a humanoid," in 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017, pp. 3461-3468. H. Kaminaga et al., "Mechanism and control of whole-body electrohydrostatic actuator driven humanoid robot hydra," in International Symposium on Experimental Robotics. Springer, 2016, pp. 656-665. T. Ohashi, Y. Ikegami, K. Yamamoto, W. Takano and Y. Nakamura, Video Motion Capture from the Part Confidence Maps of Multi-Camera Images by Spatiotemporal Filtering Using the Human Skeletal Model, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, 2018, pp. 4226-4231.
 本発明は、柔軟変形する道具や装具が含まれる対象について運動解析を実現することを目的とする。 The purpose of the present invention is to realize kinematic analysis of objects including flexibly deformable tools and braces.
 本発明は、運動解析方法に係り、
 浮遊ベースリンクを含む複数の剛体リンクからなる剛体リンク系と、少なくとも1つの柔軟リンクと、から構成されるハイブリッドリンク系において、
 前記柔軟リンクは、Cosserat理論に基づくモデルで近似されており、
 ハイブリッドリンク系の運動方程式を、
Figure JPOXMLDOC01-appb-I000007
で定義し、
 前記運動方程式に基づいて動力学計算を実行するものである。
 ここで、
 Mは慣性行列;
 bはバイアスベクトル;
 q¨は、混合リンクの一般化加速度;
 q0は、ベースリンクの一般化座標;
 θは、n自由度の剛体リンクの関節ベクトル;
 qSは、Cosserat理論に基づくモデルで近似された柔軟リンクの一般化座標;
 M0は、ベースリンクに関連する慣性行列;
 MRは、剛体リンクに関連する慣性行列;
 MSは、柔軟リンクに関連する慣性行列;
 M0Rは、ベースリンクと剛体リンクの接続関係に起因する慣性行列;
 M0Sは、ベースリンクに柔軟リンクの接続関係に起因する慣性行列;
 MRSは、剛体リンクと柔軟リンクの接続関係に起因する慣性行列;
 b0は、ベースリンクに関連するバイアスベクトル:
 bRは、剛体リンクに関連するバイアスベクトル;
 bSは、柔軟リンクに関連するバイアスベクトル;
 τRは、剛体リンクの一般化力;
 τsは、柔軟リンクの粘弾性力を含む一般化力;
 JC,iは、一般化速度を接触点の速度に写像するヤコビ行列;
 fC,iは、接触力、である。
The present invention relates to a motion analysis method,
In a hybrid link system consisting of a rigid link system consisting of a plurality of rigid links including a floating base link and at least one flexible link,
The flexible link is approximated by a model based on Cosserat theory,
The equation of motion of the hybrid link system is
Figure JPOXMLDOC01-appb-I000007
Defined by
Dynamic calculations are performed based on the equation of motion.
here,
M is the inertia matrix;
b is bias vector;
q¨ is the generalized acceleration of the mixed link;
q 0 is the generalized coordinate of the base link;
θ is the joint vector of the rigid link with n degrees of freedom;
q S is the generalized coordinate of the flexible link approximated by a model based on Cosserat theory;
M 0 is the inertia matrix associated with the base link;
M R is the inertia matrix associated with the rigid link;
M S is the inertia matrix associated with the flexible link;
M 0R is the inertia matrix due to the connection relationship between the base link and the rigid link;
M 0S is an inertia matrix due to the connection relationship between the base link and the flexible link;
M RS is the inertia matrix due to the connection relationship between rigid links and flexible links;
b 0 is the bias vector associated with the base link:
b R is the bias vector associated with the rigid link;
b S is the bias vector associated with the flexible link;
τ R is the generalized force of the rigid link;
τ s is the generalized force including the viscoelastic force of the flexible link;
J C,i is the Jacobian matrix that maps the generalized velocity to the velocity of the contact point;
f C,i is the contact force.
 1つの態様では、前記剛体リンク系は、骨格モデルである。
 1つの態様では、前記剛体リンク系は、ヒューマノイドである。
 1つの態様では、前記柔軟リンクは、義肢装具である。
 1つの態様では、前記柔軟リンクは、スポーツで用いる柔軟な素材で作られた道具である。
In one aspect, the rigid link system is a skeletal model.
In one aspect, the rigid link system is humanoid.
In one aspect, the flexible link is a prosthetic orthosis.
In one aspect, the flexible link is a tool made of a flexible material used in sports.
 1つの態様では、前記柔軟リンクは、Cosserat理論に基づくモデルにおいて変形量であるひずみが位置によらず一定であると仮定したモデル、もしくはそれを複数のセグメントに離散化し、各セグメントにおいて、ひずみが位置によらず一定であると仮定したモデルである。 In one embodiment, the flexible link is a model based on Cosserat theory in which strain, which is the amount of deformation, is assumed to be constant regardless of position, or a model that is discretized into a plurality of segments, and in each segment, the strain is This is a model that assumes that it is constant regardless of position.
 1つの態様では、前記動力学計算は逆動力学計算であり、
 ハイブリッドリンク系からなる対象の運動を計測して運動データを取得し、
 前記運動データには、剛体リンク系の運動データである第1運動データと、柔軟リンクの運動データである第2運動データが含まれ、
 前記第1運動データに基づいて、前記ベースリンクの一般化座標、一般化速度、一般化加速度、剛体リンク系の一般化座標、一般化速度、一般化加速度を取得し、
 前記第2運動データに基づいて、柔軟リンクの一般化座標、一般化速度、一般化加速度を取得し、
 前記ハイブリッドリンク系の一般化座標、一般化速度、一般化加速度と、計測ないし推定された接触力と、慣性行列と、バイアスベクトルと、一般化速度を接触点の速度に写像するヤコビ行列と、柔軟リンクの剛性パラメータ及び粘性パラメータと、を用いて、剛体リンクの一般化力、柔軟リンクの一般化力を算出する。
In one aspect, the dynamic calculation is an inverse dynamic calculation,
Measure the movement of the target consisting of a hybrid link system and obtain movement data,
The motion data includes first motion data that is motion data of a rigid link system and second motion data that is motion data of a flexible link,
Based on the first motion data, obtain generalized coordinates, generalized velocity, generalized acceleration of the base link, generalized coordinates, generalized velocity, and generalized acceleration of the rigid link system,
obtaining generalized coordinates, generalized velocity, and generalized acceleration of the flexible link based on the second motion data;
Generalized coordinates, generalized velocity, and generalized acceleration of the hybrid link system, a measured or estimated contact force, an inertia matrix, a bias vector, and a Jacobian matrix that maps the generalized velocity to the velocity of the contact point; Using the rigidity parameter and viscosity parameter of the flexible link, the generalized force of the rigid link and the generalized force of the flexible link are calculated.
 1つの態様において、逆動力学計算の順方向計算において、剛体リンクと柔軟リンクの接続部において、以下の式を用いて、i-1番目剛体リンクの速度ツイストηiと、i番目の柔軟リンクないし柔軟リンクのセグメントの速度ツイストηi-1と、の変換が実行される。
Figure JPOXMLDOC01-appb-I000008
 ここで、
 速度ツイストは、並進速度と回転速度をまとめたベクトルであり、
 Gi-1,iは、i-1番目の剛体リンクとi番目の柔軟リンクないし柔軟リンクのセグメントとの座標変換を表す行列である。
 1つの態様では、逆動力学計算の順方向計算において、剛体リンクと柔軟リンクの接続部において、i-1番目剛体リンクの加速度ツイストη iと、i番目の柔軟リンクないし柔軟リンクのセグメントの加速度ツイストη i-1と、の変換が実行される。
 ここで、加速度ツイストは並進加速度と回転加速度をまとめたベクトルである。
 
In one embodiment, in the forward calculation of the inverse dynamics calculation, at the connection between the rigid link and the flexible link, the velocity twist η i of the i-1th rigid link and the i-th flexible link are calculated using the following formula. A transformation is performed with the velocity twist η i-1 of the segment of the flexible link.
Figure JPOXMLDOC01-appb-I000008
here,
Velocity twist is a vector that combines translational velocity and rotational velocity,
G i-1,i is a matrix representing coordinate transformation between the i-1th rigid link and the i-th flexible link or segment of the flexible link.
In one aspect, in the forward calculation of the inverse dynamics calculation, at the connection part between the rigid link and the flexible link, the acceleration twist η · i of the i-1st rigid link and the i-th flexible link or the segment of the flexible link are calculated. A conversion of acceleration twist η · i-1 is performed.
Here, the acceleration twist is a vector that combines translational acceleration and rotational acceleration.
 1つの態様において、逆動力学計算の逆方向計算において、剛体リンクと柔軟リンクの接続部において、以下の式を用いて、注目しているリンクに接続されたリンクの並進力および回転モーメントを表すレンチベクトルFiと、注目しているリンクの並進力および回転モーメントを表すレンチベクトルFi-1と、の変換が実行される。
Figure JPOXMLDOC01-appb-I000009
 ここで、
 Gi-1,iは、レンチベクトルFiと、レンチベクトルFi-1と、の座標変換を表す行列である。
In one aspect, in the backward direction calculation of the inverse dynamics calculation, at the connection between the rigid link and the flexible link, the following formula is used to represent the translational force and rotational moment of the link connected to the link of interest. A transformation is performed between the wrench vector F i and the wrench vector F i-1 representing the translational force and rotational moment of the link of interest.
Figure JPOXMLDOC01-appb-I000009
here,
G i-1,i is a matrix representing coordinate transformation between wrench vector F i and wrench vector F i-1 .
 本発明は、対象の運動を解析する運動解析装置に係り、
 前記対象は、浮動ベースリンクを含む複数の剛体リンクからなる剛体リンク系と、少なくとも1つの柔軟リンクと、から構成されるハイブリッドリンク系であって、前記柔軟リンクは、Cosserat理論に基づくモデルで近似されており、
  該装置は、処理部と記憶部とを有し、
  該記憶部には、ハイブリッドリンク系の運動方程式、
Figure JPOXMLDOC01-appb-I000010
が格納されており、
  該処理部は、前記運動方程式に基づいて動力学計算を実行するように構成されている。
 ここで、
 Mは慣性行列;
 bはバイアスベクトル;
 q¨は、混合リンクの一般化加速度;
 q0は、ベースリンクの一般化座標;
 θは、n自由度の剛体リンクの関節ベクトル;
 qSは、Cosserat理論に基づくモデルで近似された柔軟リンクの一般化座標;
 M0は、ベースリンクに関連する慣性行列;
 MRは、剛体リンクに関連する慣性行列;
 MSは、柔軟リンクに関連する慣性行列;
 M0Rは、ベースリンクと剛体リンクの接続関係に起因する慣性行列;
 M0Sは、ベースリンクに柔軟リンクの接続関係に起因する慣性行列;
 MRSは、剛体リンクと柔軟リンクの接続関係に起因する慣性行列;
 b0は、ベースリンクに関連するバイアスベクトル:
 bRは、剛体リンクに関連するバイアスベクトル;
 bSは、柔軟リンクに関連するバイアスベクトル;
 τRは、剛体リンクの一般化力;
 τsは、柔軟リンクの粘弾性力を含む一般化力;
 JC,iは、一般化速度を接触点の速度に写像するヤコビ行列;
 fC,iは、接触力、である。
The present invention relates to a motion analysis device that analyzes the motion of an object,
The target is a hybrid link system consisting of a rigid link system consisting of a plurality of rigid links including a floating base link and at least one flexible link, the flexible link being approximated by a model based on Cosserat theory. has been
The device includes a processing section and a storage section,
The storage unit stores the equation of motion of the hybrid link system,
Figure JPOXMLDOC01-appb-I000010
is stored,
The processing unit is configured to perform dynamic calculations based on the equation of motion.
here,
M is the inertia matrix;
b is bias vector;
q¨ is the generalized acceleration of the mixed link;
q 0 is the generalized coordinate of the base link;
θ is the joint vector of the rigid link with n degrees of freedom;
q S is the generalized coordinate of the flexible link approximated by a model based on Cosserat theory;
M 0 is the inertia matrix associated with the base link;
M R is the inertia matrix associated with the rigid link;
M S is the inertia matrix associated with the flexible link;
M 0R is the inertia matrix due to the connection relationship between the base link and the rigid link;
M 0S is an inertia matrix due to the connection relationship between the base link and the flexible link;
M RS is the inertia matrix due to the connection relationship between rigid links and flexible links;
b 0 is the bias vector associated with the base link:
b R is the bias vector associated with the rigid link;
b S is the bias vector associated with the flexible link;
τ R is the generalized force of the rigid link;
τ s is the generalized force including the viscoelastic force of the flexible link;
J C,i is the Jacobian matrix that maps the generalized velocity to the velocity of the contact point;
f C,i is the contact force.
 1つの態様では、前記剛体リンク系は、骨格モデルである。
 1つの態様では、前記剛体リンク系は、ヒューマノイドである。
 1つの態様では、前記柔軟リンクは、義肢装具である。
 1つの態様では、前記柔軟リンクは、スポーツで用いる柔軟な素材で作られた道具である。
 1つの態様では、前記柔軟リンクは、Cosserat理論に基づくモデルにおいて変形量であるひずみが位置によらず一定であると仮定したモデル、もしくはそれを複数のセグメントに離散化し、各セグメントにおいて、ひずみが位置によらず一定であると仮定したモデルである。
In one aspect, the rigid link system is a skeletal model.
In one aspect, the rigid link system is humanoid.
In one aspect, the flexible link is a prosthetic orthosis.
In one aspect, the flexible link is a tool made of a flexible material used in sports.
In one embodiment, the flexible link is a model based on Cosserat theory in which strain, which is the amount of deformation, is assumed to be constant regardless of position, or a model that is discretized into a plurality of segments, and in each segment, the strain is This is a model that assumes that it is constant regardless of position.
 1つの態様では、前記処理部は、運動計測手段と、逆運動学手段と、逆動力学手段と、を備え、
 前記運動計測手段は、ハイブリッドリンク系からなる対象の運動を計測して運動データを取得し、前記運動データには、剛体リンク系の運動データである第1運動データと、柔軟リンクの運動データである第2運動データが含まれ、
 前記逆運動学手段は、
 前記第1運動データに基づいて、前記ベースリンクの一般化座標、一般化速度、一般化加速度、剛体リンク系の一般化座標、一般化速度、一般化加速度を取得する第1逆運動学手段と、
 前記第2運動データに基づいて、柔軟リンクの一般化座標、一般化速度、一般化加速度を取得する第2逆運動学手段と、を備え、
 前記逆動力学手段は、前記ハイブリッドリンク系の一般化座標、一般化速度、一般化加速度と、計測ないし推定された接触力と、慣性行列と、バイアスベクトルと、一般化速度を接触点の速度に写像するヤコビ行列と、柔軟リンクの剛性パラメータ及び粘性パラメータと、を用いて、剛体リンクの一般化力、柔軟リンクの一般化力を算出する。
In one aspect, the processing unit includes a motion measurement means, an inverse kinematics means, and an inverse dynamics means,
The motion measuring means measures the motion of an object made of a hybrid link system to obtain motion data, and the motion data includes first motion data that is motion data of a rigid link system and motion data of a flexible link. Some second movement data is included,
The inverse kinematics means are:
a first inverse kinematics means for acquiring generalized coordinates, generalized velocity, generalized acceleration of the base link, generalized coordinates, generalized velocity, and generalized acceleration of the rigid link system based on the first motion data; ,
a second inverse kinematics means for acquiring generalized coordinates, generalized velocity, and generalized acceleration of the flexible link based on the second motion data,
The inverse dynamics means converts the generalized coordinates, generalized velocity, and generalized acceleration of the hybrid link system, the measured or estimated contact force, the inertia matrix, the bias vector, and the generalized velocity into the velocity of the contact point. The generalized force of the rigid link and the generalized force of the flexible link are calculated using the Jacobian matrix mapped to , and the rigidity parameter and viscosity parameter of the flexible link.
 1つの態様では、前記逆運動学手段は、順方向計算において、剛体リンクと柔軟リンクの接続部において、以下の式を用いて、i-1番目剛体リンクの速度ツイストηiと、i番目の柔軟リンクないし柔軟リンクのセグメントの速度ツイストηi-1と、の変換を実行するツイスト速度変換手段を含んでいる。
Figure JPOXMLDOC01-appb-I000011
 ここで、
 速度ツイストは、並進速度と回転速度をまとめたベクトルであり、
 Gi-1,iは、i-1番目の剛体リンクとi番目の柔軟リンクないし柔軟リンクのセグメントとの座標変換を表す随伴行列である。
 1つの態様では、前記逆動力学手段は、順方向計算において、剛体リンクと柔軟リンクの接続部において、i-1番目剛体リンクの加速度ツイストη iと、i番目の柔軟リンクないし柔軟リンクのセグメントの加速度ツイストη i-1と、の変換を実行するツイスト加速度変換手段を含んでいる。
 ここで、加速度ツイストは並進加速度と回転加速度をまとめたベクトルである。
In one embodiment, the inverse kinematics means calculates the velocity twist η i of the i-1st rigid link and the i-th It includes twist speed conversion means for performing a conversion of the speed twist η i-1 of the flexible link or a segment of the flexible link.
Figure JPOXMLDOC01-appb-I000011
here,
Velocity twist is a vector that combines translational velocity and rotational velocity,
G i-1,i is an adjoint matrix representing coordinate transformation between the i-1th rigid link and the i-th flexible link or segment of the flexible link.
In one embodiment, the inverse dynamics means calculates the acceleration twist η · i of the i-1st rigid link and the i-th flexible link or the flexible link at the connection portion between the rigid link and the flexible link in the forward direction calculation. It includes twist acceleration conversion means for converting the segment acceleration twist η · i-1 .
Here, the acceleration twist is a vector that combines translational acceleration and rotational acceleration.
 1つの態様では、前記逆動力学手段は、逆方向計算において、剛体リンクと柔軟リンクの接続部において、以下の式を用いて、注目しているリンクに接続されたリンクの並進力および回転モーメントを表すレンチベクトルFiと、注目しているリンクの並進力および回転モーメントを表すレンチベクトルFi-1と、の変換を実行するレンチベクトル変換手段を含んでいる。
Figure JPOXMLDOC01-appb-I000012
 ここで、
 Gi-1,iは、レンチベクトルFiと、レンチベクトルFi-1と、の座標変換を表す随伴行列である。
In one aspect, the inverse dynamics means calculates the translational force and rotational moment of the link connected to the link of interest at the connection between the rigid link and the flexible link using the following formula in the inverse direction calculation. and a wrench vector F i-1 representing the translational force and rotational moment of the link of interest.
Figure JPOXMLDOC01-appb-I000012
here,
G i-1,i is an adjoint matrix representing coordinate transformation between wrench vector F i and wrench vector F i-1 .
 本発明は、浮動ベースリンクを含む複数の剛体リンクからなる剛体リンク系と、少なくとも1つの柔軟リンクと、から構成されるハイブリッドリンク系の対象の運動解析を実行するために、
 コンピュータを、前記記憶部及び前記処理部として機能させるように構成されたコンピュータプログラム、に係る。
In order to perform a motion analysis of a hybrid link system consisting of a rigid link system consisting of a plurality of rigid links including a floating base link and at least one flexible link, the present invention includes:
The present invention relates to a computer program configured to cause a computer to function as the storage unit and the processing unit.
 本発明では、浮遊ベースリンクを含む複数の剛体リンクからなる剛体リンク系と、少なくとも1つの柔軟リンクと、から構成されるハイブリッドリンク系において、前記柔軟リンクをCosserat理論に基づくモデルで近似することで、柔軟変形する道具や装具が含まれる対象について運動解析を実現することを可能とする。 In the present invention, in a hybrid link system consisting of a rigid link system consisting of a plurality of rigid links including a floating base link and at least one flexible link, the flexible link is approximated by a model based on Cosserat theory. , it is possible to realize kinematic analysis of objects including flexibly deformable tools and braces.
左図は、剛体リンク系と柔軟リンクとからなるハイブリッドリンク系の概略図、右図は、柔軟義足を備えたヒューマノイドの概略図である。The left figure is a schematic diagram of a hybrid link system consisting of a rigid link system and a flexible link, and the right figure is a schematic diagram of a humanoid equipped with a flexible prosthetic leg. PCSモデルの概略図である。FIG. 2 is a schematic diagram of a PCS model. 剛体リンクと柔軟体との接続部における逆動力学計算の順方向計算及び逆方向計算を説明する図である。It is a figure explaining the forward direction calculation and reverse direction calculation of the inverse dynamics calculation in the connection part of a rigid body link and a flexible body. (a)はスポーツ用義足の斜視図であり、(b)はシミュレーションによるスポーツ用義足のPCSモデルの視覚化を示し、(c)はスポーツ用義足のPCSモデルの概略図である。(a) is a perspective view of a sports prosthesis, (b) shows visualization of the PCS model of the sports prosthesis through simulation, and (c) is a schematic diagram of the PCS model of the sports prosthesis. 左図は、スポーツ用義足のPCSモデルの運動学、動力学を説明する図であり、右図は、スポーツ用義足に設けた光学式マーカの配置を示す。The left figure is a diagram explaining the kinematics and dynamics of the PCS model of a sports prosthesis, and the right figure shows the arrangement of optical markers installed on the sports prosthesis. 義足の逆運動学計算結果を示し、左図は、Group(b)荷重を2.5から30.00kgに変化させた場合、左図は、Group (e-1)荷重を2.5から30.00kgに変化させた場合を示す。The inverse kinematics calculation results for the prosthetic leg are shown. The left figure shows when the Group (b) load is changed from 2.5 to 30.00 kg, and the left figure shows when the Group (e-1) load is changed from 2.5 to 30.00 kg. Indicate the case. 本実施形態に係る運動分析装置のブロック図である。FIG. 1 is a block diagram of a motion analysis device according to the present embodiment. 本実施形態に係る運動分析装置の動力学計算部を示すブロック図である。FIG. 2 is a block diagram showing a dynamics calculation unit of the motion analysis device according to the present embodiment. 本実施形態に係る運動分析方法を示すフローチャートである。3 is a flowchart showing a motion analysis method according to the present embodiment. スポーツ用義足の粘弾性の推定を示すブロック図である。FIG. 2 is a block diagram illustrating estimation of viscoelasticity of a sports prosthetic leg. 義足を装着した人間の運動解析の流れを示すブロック図である。FIG. 2 is a block diagram showing the flow of motion analysis of a person wearing a prosthetic leg. ハイブリックリンク系の構造及び一般化座標を示す図である。It is a diagram showing the structure and generalized coordinates of a hybrid link system. マーカ座標の定義と、マーカ座標とリンクないしセグメント座標との関係を示す。The definition of marker coordinates and the relationship between marker coordinates and link or segment coordinates are shown.
[1]本実施形態に係る運動解析方法及び装置の全体構成
本実施形態に係る運動解析の対象は、浮遊ベースリンクを含む複数の剛体リンクからなる剛体リンク系と、少なくとも1つの柔軟リンクと、から構成されるハイブリッドリンク系である(図1)。剛体リンク系としては、骨格モデルないし筋骨格モデル(図1右図)、及び、ヒューマノイド(図1左図)を例示することができる。ヒトの筋骨格モデルやヒューマノイドでは、どの身体部位も環境に固定されていないベースリンクを備えている。剛体リンク系が骨格モデルの場合には、対象は、例えば、柔軟な素材で作られた道具を持つアスリート、板バネで構成されたスポーツ用の装具(例えば義足)を装着したアスリートが例示される。柔軟な素材で作られた道具としては、ゴルフクラブ、アイスホッケーのスティック、フェンシングの剣が例示される。剛体リンク系がヒューマノイドの場合には、対象は、例えば、ヒューマノイドの脚に板バネを付けたような場合を例示できる。
[1] Overall configuration of kinematic analysis method and device according to this embodiment The object of kinematic analysis according to this embodiment is a rigid link system consisting of a plurality of rigid links including a floating base link, at least one flexible link, This is a hybrid link system consisting of (Figure 1). Examples of the rigid link system include a skeletal model or a musculoskeletal model (right figure in FIG. 1) and a humanoid (left figure in FIG. 1). In human musculoskeletal models and humanoids, every body part has a base link that is not fixed to the environment. When the rigid link system is a skeletal model, the target is, for example, an athlete with a tool made of a flexible material, or an athlete wearing a sports brace (for example, a prosthetic leg) made of a leaf spring. . Examples of tools made of flexible materials include golf clubs, ice hockey sticks, and fencing swords. When the rigid link system is a humanoid, the object may be, for example, a leaf spring attached to the legs of the humanoid.
本実施形態の特徴の一つは、ハイブリッドリンク系における柔軟リンク(道具や装具)の高速な柔軟変形計算である。これまで柔軟変形する構造の解析には有限要素法が広く使用されてきた。一般的に、有限要素法は微小な変形と構造に生じる応力を計算するものであり、スポーツ義足や柔軟変形する道具のような変形量を扱う場合には、性能の高い計算機を用いたとしても数時間~数日程度の時間がかかる。一方、板バネの義足やゴルフクラブのような構造は梁やロッドとして近似することができ、材料力学分野で研究されているCosseratロッド理論を適用することで、柔軟変形を高速に計算することができる。これによって、ハイブリッドリンク系の運動学計算による3次元運動計測が可能となる。 One of the features of this embodiment is high-speed flexible deformation calculation of flexible links (tools and braces) in a hybrid link system. Until now, the finite element method has been widely used to analyze structures that undergo flexible deformation. In general, the finite element method calculates minute deformations and stresses that occur in structures, and when dealing with deformations such as sports prosthetics and flexible deformation tools, it is difficult to use even if a high-performance computer is used. It takes several hours to several days. On the other hand, structures such as leaf spring prostheses and golf clubs can be approximated as beams or rods, and by applying the Cosserat rod theory studied in the field of materials mechanics, flexible deformation can be calculated quickly. can. This makes it possible to measure three-dimensional motion using kinematic calculations of the hybrid link system.
ゴルフクラブやアイスホッケーのスティック、板バネでできたスポーツ義足は3次元的に弾性変形する。本実施形態では、3次元的な弾性変形を伴う柔軟変形体のモデル化に基づき、3次元的な弾性変形を伴う道具や義足の粘弾性を推定する手法を開示する。これにより、運動中に道具や義足に生じる弾性力を高い精度で推定することができる。 Sports prostheses made from golf clubs, ice hockey sticks, and leaf springs can be elastically deformed in three dimensions. This embodiment discloses a method for estimating the viscoelasticity of a tool or a prosthetic leg that undergoes three-dimensional elastic deformation based on modeling of a flexible deformable body that undergoes three-dimensional elastic deformation. This makes it possible to estimate with high accuracy the elastic forces that occur in tools and prosthetic legs during exercise.
本実施形態では、さらに、浮遊リンクを含む柔剛体混合リンク系の動力学計算による道具の弾性力と筋張力の同時推定について開示する。これによって、道具や装具の柔軟変形と筋骨格の相互作用力を考慮したリアルタイム運動解析が可能となる。例えば、リアルタイムに筋張力の推定結果を表示することでトレーニングに利用するような場合に、義足や道具の柔軟変形も同時に考慮した筋張力推定を実現できる。特に、ヒトの歩行などの運動では多リンク系の運動について、ベースリンクが環境に固定されない浮遊リンクとしてモデル化し、環境との接触を計算することが一般的であるが、本実施形態に係るハイブリッドリンク系でも、浮遊リンクを含む計算を可能とした。また、その結果をもとに、道具の弾性変形を効果的に利用するフォームの提案や、個人に合わせた道具やスポーツ義足の最適な形状や材料特性の提案等に応用できる。 This embodiment further discloses simultaneous estimation of the elastic force and muscle tension of a tool by dynamic calculation of a flexible-rigid mixed link system including floating links. This enables real-time motion analysis that takes into account the flexible deformation of tools and braces and musculoskeletal interaction forces. For example, by displaying the muscle tension estimation results in real time, when used for training, it is possible to realize muscle tension estimation that also takes into account the flexible deformation of prosthetic legs and tools. In particular, in the movement of a multi-link system such as human walking, it is common to model the base link as a floating link that is not fixed to the environment and calculate the contact with the environment. Even in link systems, calculations including floating links are now possible. The results can also be applied to proposals for forms that effectively utilize the elastic deformation of tools, as well as proposals for optimal shapes and material properties for tools and sports prosthetics tailored to individuals.
逆運動学や逆動力学を用いて対象の運動解析を行うためには、対象の運動データを取得する必要がある。対象の運動データは、モーションキャプチャシステムによって取得することができる。対象の動作は、モーションキャプチャによって取得された当該対象の姿勢(ポーズ)の時系列データによって規定される。対象(ハイブリッドリンク系)の剛体リンク系(骨格モデル)のポーズの時系列データ、及び、柔軟リンク(例えば、義足)のポーズの時系列データが取得できればよい。例えば、図5、テーブル1に示すように、義足の所定位置に多数の光学式マーカを装着し、時刻tにおける多数の光学式マーカの位置(座標)のセットから時刻tにおける義足のポーズを決定することができ、時刻t+1における多数の光学式マーカの位置(座標)のセットから時刻t+1における義足のポーズを決定することができ、時刻tにおけるポーズと時刻t+1におけるポーズの差分が義足の変形を表している。 In order to analyze the motion of an object using inverse kinematics or inverse dynamics, it is necessary to obtain motion data of the object. Motion data of the object can be acquired by a motion capture system. The motion of the target is defined by time-series data of the pose of the target acquired by motion capture. It is only necessary to obtain time-series data of poses of a rigid link system (skeletal model) of the target (hybrid link system) and time-series data of poses of a flexible link (for example, a prosthetic leg). For example, as shown in Figure 5 and Table 1, a large number of optical markers are attached to predetermined positions on the prosthetic leg, and the pose of the prosthetic leg at time t is determined from a set of positions (coordinates) of the multiple optical markers at time t. The pose of the prosthetic leg at time t+1 can be determined from a set of positions (coordinates) of multiple optical markers at time t+1, and the pose at time t and the pose at time t+1 can be determined. The difference represents the deformation of the prosthesis.
対象の剛体リンク系の姿勢は、対象の身体(骨格モデル)上の複数の特徴点(典型的には関節)によって特定され、各フレームにおいて、複数の特徴点の3次元座標値を取得することで、複数の特徴点の3次元座標値の時系列データから対象の剛体リンク系の動作を規定する。対象の骨格モデル(剛体リンク系)の部位については、モーションキャプチャによって、関節位置、関節角度の時系列データが取得されて、逆運動学によって、剛体リンクの速度、加速度が計算される。 The posture of the target rigid link system is specified by multiple feature points (typically joints) on the target body (skeletal model), and the three-dimensional coordinate values of the multiple feature points are acquired in each frame. Then, the operation of the target rigid link system is defined from time-series data of three-dimensional coordinate values of a plurality of feature points. For the parts of the target skeletal model (rigid link system), time-series data of joint positions and joint angles are acquired by motion capture, and the velocity and acceleration of the rigid links are calculated by inverse kinematics.
柔軟変形する道具(柔軟リンク、本実施形態ではPCSモデル)については、ビームの伸縮量と曲げの曲率の時系列データが取得される。柔軟リンクは、伸縮量と曲率がそれぞれ3次元で、合計6次元の変形量(strain)を持つ。例えば、板バネ義足を6セグメントに分割したPCSモデルでは、6x6=36の変形量を持つことになる。ただし、例えば、実際の義足では曲率の変位に比べて伸縮量は非常に小さいとみなせるため、モーションキャプチャの際には、曲率の3自由度のみを扱うように近似する。PCSモデルのstrainがモーションキャプチャから取得できると、そこから変形量の速度に相当する量を計算することができる。そこから、[3][E]の式(4)を用いてPCSモデルの粘弾性力を推定することができる。その際に剛性行列Kと粘性行列Dはあらかじめ推定しておく必要がある。 For tools that flexibly deform (flexible links, in this embodiment, the PCS model), time series data of the amount of expansion and contraction of the beam and the curvature of bending are acquired. A flexible link has a total of 6 dimensions of deformation (strain), with the amount of expansion/contraction and curvature each being 3 dimensions. For example, a PCS model in which a leaf spring prosthesis is divided into 6 segments has a deformation amount of 6x6 = 36. However, for example, in an actual prosthetic leg, the amount of expansion and contraction can be considered to be very small compared to the displacement of curvature, so during motion capture, the approximation is made so that only the three degrees of freedom of curvature are handled. If the strain of the PCS model can be obtained from motion capture, it is possible to calculate the amount equivalent to the speed of deformation from it. From there, the viscoelastic force of the PCS model can be estimated using equation (4) in [3][E]. At this time, the stiffness matrix K and viscosity matrix D must be estimated in advance.
図7に示すように、本実施形態に係る運動解析装置は、処理部と記憶部を備えており、処理部及び記憶部は、1つあるいは複数のコンピュータから構成される。コンピュータは、入力部、処理部(プロセッサ)、記憶部(RAM、ROMを含むメモリ)、出力部を備えている。運動解析装置は、表示部(ディスプレイ)を備えていてもよい。運動解析装置では、モーションキャプチャシステムで取得された対象の動作データに基づいて、対象の運動の解析を行う。 As shown in FIG. 7, the motion analysis device according to this embodiment includes a processing section and a storage section, and the processing section and storage section are composed of one or more computers. A computer includes an input section, a processing section (processor), a storage section (memory including RAM and ROM), and an output section. The motion analysis device may include a display unit. The motion analysis device analyzes the motion of the target based on the motion data of the target acquired by the motion capture system.
記憶部には、ハイブリッドリンク系のモデル(骨格モデルないし筋骨格モデル、及び、柔軟リンクを規定するPCSモデル)が格納されており、各モデルに対応してモーションキャプチャが実行され、モーションキャプチャの計測データが格納される。処理部では、モーションキャプチャの計測データに基づいて運動学計算が実行され、計測データに基づく逆運動学計算の演算データが記憶部に格納される。 The storage unit stores hybrid link system models (skeletal model or musculoskeletal model, and PCS model that defines flexible links), and motion capture is executed corresponding to each model, and the motion capture measurement Data is stored. The processing unit executes kinematic calculation based on the measurement data of the motion capture, and the calculation data of the inverse kinematic calculation based on the measurement data is stored in the storage unit.
記憶部には、ハイブリッドリンク系の運動方程式が格納されており、処理部において、運動方程式にしたがって、動力学計算(逆動力学計算や順動力学計算)が実行され、演算データが格納される。記憶部には、処理部における運動方程式に基づく動力学計算に必要な柔軟リンクの剛性パラメータ及び粘性パラメータが格納されている。 The storage unit stores the equation of motion of the hybrid link system, and the processing unit executes dynamic calculations (inverse dynamic calculations and forward dynamic calculations) according to the equation of motion, and stores the calculated data. . The storage unit stores stiffness parameters and viscosity parameters of the flexible link necessary for dynamic calculation based on the equation of motion in the processing unit.
記憶部には、対象の運動時の接触力が格納されている。接触力は、対象の運動時に例えばフォースプレートによって取得された計測データ(床反力)である。あるいは、対象の運動時に処理部によって推定されたデータ(床反力)であってもよい。記憶部には、処理部が所定の各種計算を実行するためのコンピュータプログラムが格納されている。具体的には、モーションキャプチャを実行して計測データを取得すためのプログラム、計測データに基づいて逆運動学計算を実行するためのプログラム、処理データや記憶されたデータに基づいて、動力学計算(逆動力学計算、順動力学計算)を実行するためのプログラム、柔軟リンクの剛性パラメータ、粘性パラメータを推定するためのプログラム、接触力を推定する場合に、接触力の推定計算を実行するためのプログラム、等が格納されている。 The storage unit stores the contact force when the object moves. The contact force is measurement data (ground reaction force) acquired by, for example, a force plate during the movement of the object. Alternatively, it may be data (ground reaction force) estimated by the processing unit during the movement of the object. The storage unit stores computer programs for the processing unit to execute various predetermined calculations. Specifically, the program includes a program to perform motion capture and obtain measurement data, a program to perform inverse kinematic calculations based on measurement data, and a program to perform dynamic calculations based on processed data and stored data. (inverse dynamics calculation, forward dynamics calculation), program to estimate stiffness parameters and viscosity parameters of flexible links, and to perform contact force estimation calculation when estimating contact force. programs, etc. are stored.
運動解析装置の処理部は、所定のプログラムにしたがって、所定の処理を実行するようになっており、処理結果は、記憶部に格納される。本実施形態において、典型的には、処理部は、逆運動学計算部、逆動力学計算部、順動力学計算部を構成している。図7の処理部は、逆運動学計算部、逆動力学計算部について明示しており、図8は逆動力学計算部、順動力学計算部について明示している点に留意されたい。また、処理部は、筋張力計算部や筋活動度計算部を備えていてもよい。 The processing section of the motion analysis device is configured to execute predetermined processing according to a predetermined program, and the processing results are stored in the storage section. In this embodiment, the processing section typically includes an inverse kinematics calculation section, an inverse dynamics calculation section, and a forward dynamics calculation section. It should be noted that the processing section in FIG. 7 clearly shows the inverse kinematics calculation section and the inverse dynamics calculation section, while FIG. 8 clearly shows the inverse dynamics calculation section and the forward dynamics calculation section. Further, the processing section may include a muscle tension calculation section and a muscle activity calculation section.
図8に示すように、逆動力学計算部は、ハイブリッドリンク系の運動方程式(22)に基づいて、一般化座標q、一般化速度q、一般化加速度q¨の入力にしたがって、慣性行列M、バイアスベクトルb、接触力、接触ヤコビ行列を用いて、一般化力τR、τSを出力する。一般化力(関節トルク)τRはハイブリッドリンク系の剛体リンク系(筋骨格モデル)における筋張力の推定に用いられる。 As shown in Fig. 8, the inverse dynamics calculation unit calculates the inertia matrix based on the equation of motion (22) of the hybrid link system, according to the input of generalized coordinates q, generalized velocity q , and generalized acceleration q. Generalized forces τ R and τ S are output using M, bias vector b, contact force, and contact Jacobian matrix. The generalized force (joint torque) τ R is used to estimate muscle tension in the rigid link system (musculoskeletal model) of the hybrid link system.
図8に示すように、順動力学計算部は、ハイブリッドリンク系の運動方程式(22)に基づいて、一般化力τR、τSの入力にしたがって、慣性行列M、バイアスベクトルb、接触力、接触ヤコビ行列を用いて、一般化加速度q¨を出力し、また、一般化速度q、一般化座標qの計算が可能である。一般化加速度q¨、一般化速度q、一般化座標qは、例えば、ヒューマノイドの歩行動作制御に用いられる。 As shown in FIG. 8, the forward dynamics calculation unit calculates the inertia matrix M, the bias vector b, and the contact force according to the input of the generalized forces τ R and τ S based on the equation of motion (22) of the hybrid link system. , using the contact Jacobian matrix, it is possible to output the generalized acceleration q¨, and also calculate the generalized velocity q · and the generalized coordinate q. The generalized acceleration q¨, the generalized velocity q · , and the generalized coordinate q are used, for example, to control the walking motion of a humanoid.
本実施形態に用いられるモーションキャプチャ方式の種類は限定されず、特徴点を特定する光学式マーカを用いた光学式モーションキャプチャ方式、加速度センサやジャイロスコープ、地磁気センサなどのいわゆる慣性センサを対象の身体に装着して、対象のモーションデータを取得する方式、光学式マーカやセンサを装着しない、いわゆるマーカレスモーションキャプチャ方式等を例示することができる。対象の自然な動作を妨げないという観点からは、マーカレスモーションキャプチャ方式が有利である。マーカレスモーションキャプチャ方式としては、カメラと深度センサを備えたシステムを用いたモーションキャプチャ方式、あるいは、RGB画像を解析してモーションデータを取得するビデオモーションキャプチャ方式(非特許文献11)を例示することができる。本実施形態では、1種類のモーションキャプチャ方式を用いるが、異なるモーションキャプチャ方式を組み合わせてもよい。例えば、骨格モデルについては、ビデオモーションキャプチャを採用し、柔軟リンクについては、複数の光学式マーカを用いた光学式モーションキャプチャを採用し、計測データを統合して用いてもよい。モーションキャプチャシステムは、1つの態様では、対象の動作の動画データを取得する1つあるいは複数のカメラと、動画データに基づいて対象の動作を表す時系列データを取得する1つあるいは複数のコンピュータから構成される。このコンピュータは、運動解析用のコンピュータと兼用されていてもよい。 The type of motion capture method used in this embodiment is not limited, and includes an optical motion capture method that uses optical markers to identify feature points, and an optical motion capture method that uses so-called inertial sensors such as acceleration sensors, gyroscopes, and geomagnetic sensors on the target body. Examples include a method in which the sensor is attached to the camera to acquire motion data of the target, and a so-called markerless motion capture method in which no optical marker or sensor is attached. The markerless motion capture method is advantageous from the viewpoint of not interfering with the natural movement of the subject. Examples of the markerless motion capture method include a motion capture method using a system equipped with a camera and a depth sensor, or a video motion capture method that acquires motion data by analyzing RGB images (Non-Patent Document 11). I can do it. In this embodiment, one type of motion capture method is used, but different motion capture methods may be combined. For example, video motion capture may be employed for the skeletal model, optical motion capture using a plurality of optical markers may be employed for the flexible link, and measurement data may be integrated and used. In one aspect, a motion capture system includes one or more cameras that acquire video data of a subject's motion, and one or more computers that acquire time-series data representing the subject's motion based on the video data. configured. This computer may also be used as a computer for motion analysis.
動力学計算のためには接触力が必要である。1つの態様では、運動計測時にフォースプレートを用いて床反力を取得する。あるいは、モーションキャプチャの計測結果に基づいて(例えば足部のマーカ情報から等)足部と床面の接触状態を検知することで、その情報を用いて逆動力学計算時に床反力を同時に推定してもよい。 Contact force is required for dynamic calculations. In one aspect, a force plate is used to obtain ground reaction force during motion measurement. Alternatively, by detecting the contact state between the foot and the floor based on the measurement results of motion capture (for example, from marker information on the foot), that information can be used to simultaneously estimate the ground reaction force during inverse dynamics calculation. You may.
図9にモーションキャプチャを用いた対象(ハイブリッドリンク系)の運動解析の処理工程を例示する。柔軟変形する道具ないし装具を含む筋骨格モデル(ハイブリッドリンク系の対象)の運動をモーションキャプチャで計測する。本実施形態に係るモーションキャプチャにより対象の骨格(剛体リンク系)の運動を取得する。取得した関節角及び関節位置の時系列データを取得し、逆運動学計算によって、各剛体リンクの位置・角度・速度・角速度・加速度・角加速度を取得し、逆動力学エンジンに入力する。同時に、対象の道具や装具(柔軟リンク)の運動データを取得する。運動データに基づいて、逆運動学計算によって、柔軟リンクの粘弾性力を取得して、逆動力学エンジンに入力する。慣性テンソル、遠心力・コリオリ力・重力ベクトルも逆動力学エンジンに入力される。外力(接触力)として、例えば、フォースプレートによって取得された床反力が逆動力学エンジンに入力される。 FIG. 9 shows an example of a processing process for motion analysis of an object (hybrid link system) using motion capture. The motion of a musculoskeletal model (target of a hybrid link system), including flexibly deformable tools or braces, is measured using motion capture. The motion of the target skeleton (rigid link system) is acquired by motion capture according to this embodiment. The time series data of the acquired joint angles and joint positions is acquired, and the position, angle, velocity, angular velocity, acceleration, and angular acceleration of each rigid link are acquired by inverse kinematics calculations and input into the inverse dynamics engine. At the same time, the motion data of the target tool or brace (flexible link) is acquired. Based on the motion data, the viscoelastic force of the flexible link is obtained by inverse kinematics calculation and input into the inverse dynamics engine. The inertia tensor, centrifugal force, Coriolis force, and gravity vector are also input to the inverse dynamics engine. As an external force (contact force), for example, a floor reaction force acquired by a force plate is input to the inverse dynamics engine.
剛体リンク系において、より具体的には、例えば、モーションキャプチャによって取得した骨格の全自由度の時系列のフレーム間変位を連続関数で補間することによって、各フレーム時刻における骨格の全自由度の変位、その時間微分である速度、またその時間微分である加速度を計算する。それらから算出された各リンクの位置・角度・速度・角速度・加速度・角加速度を逆動力学エンジンに送り、質量を仮定した骨格の運動に伴う、力学情報の計算を行うことで、運動に整合した関節トルクを算出する。骨格の各セグメントは剛体とし、その質量、重心位置、慣性テンソルは、体格情報を用い人の各部位の統計的な計測情報から推定したものを用いることができる。あるいは対象の運動情報からの同定によりこれらのパラメータを推定することもできる。推定に用いる対象の体格情報は事前に取得される。 In a rigid link system, more specifically, for example, by interpolating the time-series inter-frame displacement of all degrees of freedom of the skeleton obtained by motion capture using a continuous function, the displacement of all degrees of freedom of the skeleton at each frame time is calculated. , calculate its time derivative, velocity, and its time derivative, acceleration. The position, angle, velocity, angular velocity, acceleration, and angular acceleration of each link calculated from these are sent to the inverse dynamics engine, which calculates the mechanical information associated with the movement of the skeleton assuming mass, thereby matching the movement. Calculate the joint torque. Each segment of the skeleton is a rigid body, and its mass, center of gravity position, and inertia tensor can be estimated from statistical measurement information of each part of the person using physique information. Alternatively, these parameters can also be estimated by identification from motion information of the object. The physique information of the target used for estimation is acquired in advance.
柔軟リンク(PCSモデル)の粘弾性力が分かると、それが接続されている剛体リンクにPCSモデル側から働く力(例えば板バネ義足から装着部位に働く力)が分かるので、それを含んだ形で逆動力学計算を行うことができる。剛性行列Kと粘性行列Dに関しては、モーションキャプチャの実行前に得られていることを前提としているが、粘弾性力に関してはモーションキャプチャ実行時にリアルタイムで計算することができる。逆動力学計算において、入力となる「粘弾性力」の値を参考値として用いつつ、逆動力学計算の中で加速度項を考慮した「柔軟変形要素の一般化力」を改めて計算する。義足の変形時に生じる粘弾性力を推定し逆動力学計算と組み合わせることで、筋張力推定を行う。 Once you know the viscoelastic force of the flexible link (PCS model), you can know the force that acts on the rigid link to which it is connected from the PCS model side (for example, the force that acts on the attachment site from a leaf spring prosthesis), so you can create a form that includes this force. You can perform inverse dynamics calculations using Although the stiffness matrix K and the viscosity matrix D are assumed to be obtained before motion capture is executed, the viscoelastic force can be calculated in real time during motion capture. In the inverse dynamics calculation, the value of the input "viscoelastic force" is used as a reference value, and the "generalized force of the flexible deformation element" is calculated again in consideration of the acceleration term in the inverse dynamics calculation. Muscle tension is estimated by estimating the viscoelastic force that occurs when the prosthetic leg deforms and combining it with inverse dynamics calculations.
動力学計算のためには接触力が必要である。1つの態様では、運動計測時にフォースプレートを用いて床反力を取得する。あるいは、モーションキャプチャの計測結果に基づいて(例えば足部のマーカ情報から等)足部と床面の接触状態を検知することで、その情報を用いて逆動力学計算時に床反力を同時に推定してもよい。 Contact force is required for dynamic calculations. In one embodiment, a force plate is used to obtain ground reaction force during motion measurement. Alternatively, by detecting the contact state between the foot and the floor based on the measurement results of motion capture (for example, from marker information on the foot), that information can be used to simultaneously estimate the ground reaction force during inverse dynamics calculation. You may.
逆動力学計算により関節トルクを取得し、前記関節トルクを用いて、筋を模倣したワイヤを備えた筋骨格モデルにおけるワイヤ張力を最適化計算(2次計画法や線形計画法)により取得する。例えば、筋をモデル化した全身に分布させたワイヤの張力をバイアス・重み付き2次計画法を用いて計算する。このワイヤ張力の計算については、非特許文献1を参照することができる。分類された運動に応じて拮抗筋が使われる際の力分布の計測値を求めておき、それを参考にしたバイアス、重みを使うことで、実際の筋の張力をよりよく近似する解を得ることができる。筋張力の取得において、筋電計による計測データを考慮してもよい。ハイブリッドリンク系において筋張力を最適化計算する場合に、従来の剛体リンク系における最適化計算と同様の評価関数を用いることができる。ただし、評価関数の中で考慮する筋肉の種類は障がい部位によって異なり得るので、被験者の欠損部位によって評価関数の中から該当する筋肉の項を省略する必要がある。 Joint torque is obtained by inverse dynamics calculation, and using the joint torque, wire tension in a musculoskeletal model including wires imitating muscles is obtained by optimization calculation (quadratic programming or linear programming). For example, the tension of a wire distributed over a whole body modeled on muscles is calculated using bias/weighted quadratic programming. Regarding the calculation of this wire tension, reference can be made to Non-Patent Document 1. By obtaining the measured values of the force distribution when antagonist muscles are used according to the classified movements, and using the bias and weights based on those values, we obtain a solution that better approximates the actual muscle tension. be able to. In acquiring muscle tension, measurement data from an electromyograph may be taken into consideration. When optimizing muscle tension in a hybrid link system, the same evaluation function as in the optimization calculation in a conventional rigid link system can be used. However, since the types of muscles considered in the evaluation function may differ depending on the defective region, it is necessary to omit the corresponding muscle term from the evaluation function depending on the defective region of the subject.
取得された筋張力を当該筋の想定した最大筋張力で割った値を筋活動度とし、筋活動度に合わせて筋の色を変えた全身筋骨格系の画像を生成し、視覚化された筋活動度を伴う筋骨格画像を所定のフレームレートで出力して動画としてディスプレイに表示する。さらに、各変数(例えば、関節角度、速度、筋張力、床反力、重心位置など)の値の変化をグラフ化して出力する。これらの出力を解析結果として映像やグラフで提示し、運動時の筋や身体の活動、あるいは体の各部位の動作の記録とする。このように、対象の運動の撮影から、運動時の対象の3次元ポーズの取得、運動に必要な筋活動の推定と可視化までを、自動的に効率的に行うことができる。 The obtained muscle tension is divided by the assumed maximum muscle tension of the muscle, and the muscle activity level is determined, and an image of the whole body musculoskeletal system is generated and visualized with the muscle color changed according to the muscle activity level. Musculoskeletal images with muscle activity are output at a predetermined frame rate and displayed on a display as a moving image. Furthermore, changes in the values of each variable (for example, joint angle, velocity, muscle tension, ground reaction force, center of gravity position, etc.) are graphed and output. These outputs are presented as analysis results in the form of images and graphs, and are used as a record of muscle and body activities during exercise, or the movements of each part of the body. In this way, it is possible to automatically and efficiently perform everything from photographing the movement of the target, obtaining the three-dimensional pose of the target during movement, and estimating and visualizing the muscle activity necessary for the movement.
剛体リンク系の運動学計算、動力学計算は、当業者においてよく知られているため、詳細な説明は省略するが、本実施形態に係るハイブリッドリンク系の対象の運動を分析するにあたり、剛体リンク系の運動学計算、動力学計算の知識が用い得ることは当業者に理解される。また、以下の説明において、各章毎に独立して数式の番号が付されている点に留意されたい。 Kinematic calculations and dynamic calculations of rigid link systems are well known to those skilled in the art, so detailed explanations will be omitted. It will be understood by those skilled in the art that knowledge of system kinematics calculations and dynamical calculations can be used. Also, in the following explanation, please note that the formulas are numbered independently for each chapter.
[2]ハイブリッドリンク系の力学計算と制御
剛体(リジッドボディ)と柔軟体(ソフトボディ)を統合したハイブリッドリンク系の動力学モデルを提案する。ヒトやヒューマノイドへ応用するため、浮遊リンク系を考え、その順・逆動力学計算を実現する。また、ハイブリッドリンク系全体を考慮した重心ヤコビ行列を導出する。スポーツ義足を装着したヒューマノイドを想定し、バランス制御の動力学シミュレーションを通して提案するハイブリッドリンク系の力学計算を検証する。PCSモデルによって柔軟変形をより詳細にモデル化することによって、スポーツ義足を履いた障がい者の運動解析や、ゴルフのスイングなどの道具の柔軟変形を利用したスポーツの動作への応用も期待できる。これに加え、環境との接触や重心ヤコビ行列の計算が行えるようになると、柔軟な構造を持つヒューマノイドの動力学計算や制御が可能となる。
[2] Dynamic calculation and control of hybrid link system We propose a dynamic model of a hybrid link system that integrates a rigid body and a soft body. In order to apply it to humans and humanoids, we consider a floating link system and realize its forward and inverse dynamics calculations. In addition, we derive a centroid Jacobian matrix that takes into account the entire hybrid link system. Assuming a humanoid wearing a sports prosthetic leg, we will verify the dynamic calculations of the proposed hybrid link system through dynamic simulation of balance control. By modeling flexible deformation in more detail using the PCS model, we can expect application to the kinematic analysis of people with disabilities who wear sports prosthetics, as well as sports movements that utilize flexible deformation of tools, such as golf swings. In addition, if it becomes possible to make contact with the environment and calculate the center-of-gravity Jacobian matrix, it will become possible to calculate and control the dynamics of humanoids with flexible structures.
[A]PCSモデル(Piecewise Constant Strain Model)
[A-1]PCSモデルの運動学
図2に、PCSモデル(非特許文献2)の概要図を示す。PCSモデルは連続Cosseratモデル(非特許文献2)をN個のセグメントに離散化し、各セグメントにおいて、変形量である6次元のひずみξi∈R6(i =1,2,…,N)が一定であると仮定したモデルである。連続体の中心軸の座標系をs∈Rとして、i番目のセグメントを連続体のs=Li-1からs=Liの間と定義する。ある時刻における連続Cosseratモデルの構成曲線G(s)を次式で表す。
Figure JPOXMLDOC01-appb-I000013
ただし、R∈SO(3)は回転行列、p∈R3は位置ベクトルである。ここで、G(s)の時間微分と空間微分を次式のように定義する。
Figure JPOXMLDOC01-appb-I000014
[A] PCS model (Piecewise Constant Strain Model)
[A-1] Kinematics of the PCS model Figure 2 shows a schematic diagram of the PCS model (Non-Patent Document 2). The PCS model discretizes the continuous Cosserat model (Non-Patent Document 2) into N segments, and in each segment, the 6-dimensional strain ξi∈R 6 (i = 1, 2,...,N), which is the amount of deformation, is constant. This is a model that assumes that Let the coordinate system of the central axis of the continuum be s∈R, and define the i-th segment to be between s=L i-1 and s=L i of the continuum. The constituent curve G(s) of the continuous Cosserat model at a certain time is expressed by the following equation.
Figure JPOXMLDOC01-appb-I000013
However, R∈SO(3) is a rotation matrix and p∈R 3 is a position vector. Here, the time differential and spatial differential of G(s) are defined as follows.
Figure JPOXMLDOC01-appb-I000014
連続Cosseratモデルの変形を構成曲線の無限小の変位、ひずみξ(s)として次式のように定義する。
Figure JPOXMLDOC01-appb-I000015
このとき、u∈R3とk∈R3はそれぞれ、並進と回転のひずみを表す。また、[・×] はリー代数se(3)とso(3)のベクトル表現・を行列表現にしたものである。
The deformation of the continuous Cosserat model is defined as the infinitesimal displacement and strain ξ(s) of the constituent curves as shown in the following equation.
Figure JPOXMLDOC01-appb-I000015
In this case, u∈R 3 and k∈R 3 represent translational and rotational distortions, respectively. Also, [・×] is a matrix representation of the vector representation of the Lie algebras se(3) and so(3).
各セグメント内でひずみが一定あることは、以下のように表現される。
Figure JPOXMLDOC01-appb-I000016
この仮定に基づき、また、式(3)から、次式を得る。
Figure JPOXMLDOC01-appb-I000017
このとき、Gi(s)は指数写像を用いて次式のように定義する。
Figure JPOXMLDOC01-appb-I000018
ここで、Riは回転行列、piは位置ベクトルである。式(7)を用いることで、i番目のセグメント(s∈[Li-1,Li])における構成曲線フレームG(s)は、
Figure JPOXMLDOC01-appb-I000019
のように計算できる。
The fact that the strain is constant within each segment is expressed as follows.
Figure JPOXMLDOC01-appb-I000016
Based on this assumption and from equation (3), we obtain the following equation.
Figure JPOXMLDOC01-appb-I000017
At this time, Gi(s) is defined as follows using an exponential mapping.
Figure JPOXMLDOC01-appb-I000018
Here, R i is a rotation matrix and p i is a position vector. By using equation (7), the constituent curve frame G(s) in the i-th segment (s∈[L i-1 ,L i ]) is
Figure JPOXMLDOC01-appb-I000019
It can be calculated as follows.
本明細書において、EとOはそれぞれ単位行列と零行列とする。同次変換行列Gの随伴表現は、
Figure JPOXMLDOC01-appb-I000020
と定義される。ξ∈se(3)の随伴表現は、
Figure JPOXMLDOC01-appb-I000021
と定義される。
In this specification, E and O are an identity matrix and a zero matrix, respectively. The adjoint representation of the homogeneous transformation matrix G is
Figure JPOXMLDOC01-appb-I000020
is defined as The adjoint expression of ξ∈se(3) is
Figure JPOXMLDOC01-appb-I000021
is defined as
[A-2]PCSモデルの微分運動学
構成曲線の時間変化は次式の速度ツイストηで与えられる。
Figure JPOXMLDOC01-appb-I000022
ここでv∈R3とw∈R3はそれぞれ並進速度、回転速度を表す。iセグメントにおける速度ツイストη(s)は、η(Li-1)を用いて次式のように計算できる。
Figure JPOXMLDOC01-appb-I000023
ここで、AdGはSE(3)の随伴表現であり、Ti(s)は指数写像のtangent operatorとして次式のように定義する(非特許文献5)。
Figure JPOXMLDOC01-appb-I000024
また、加速度ツイストη(s)は次式のように計算できる。
Figure JPOXMLDOC01-appb-I000025
[A-2] The time change of the differential kinematics constitutive curve of the PCS model is given by the velocity twist η of the following equation.
Figure JPOXMLDOC01-appb-I000022
Here, v∈R 3 and w∈R 3 represent translational speed and rotational speed, respectively. The velocity twist η(s) in the i segment can be calculated using η( Li-1 ) as shown in the following equation.
Figure JPOXMLDOC01-appb-I000023
Here, Ad G is an adjoint expression of SE(3), and T i (s) is defined as a tangent operator of an exponential map as shown in the following equation (Non-Patent Document 5).
Figure JPOXMLDOC01-appb-I000024
Further, the acceleration twist η · (s) can be calculated as shown in the following equation.
Figure JPOXMLDOC01-appb-I000025
[A-3]PCSモデルのヤコビ行列
N個のセグメントのひずみを、PCSモデルの一般化座標q∈R6Nとして、次式のように定義する。
Figure JPOXMLDOC01-appb-I000026
式(14)を速度ツイストη(s)と一般化速度qの関係式として、書き直すと
Figure JPOXMLDOC01-appb-I000027
となる。ここで、J(s)=[J1 ・ ・ ・ JN]∈R6×6NはPCSモデル(セグメント)のヤコビ行列で、Jj∈R6×6は次式のように計算できる。
Figure JPOXMLDOC01-appb-I000028
連続体のベースが固定されていると仮定すると、η(0)=0となり、式(12)の再帰式を用いることで、η(s)は、各セグメントのひずみξjの多項式として、以下のように表される。
Figure JPOXMLDOC01-appb-I000029
ここで、
Figure JPOXMLDOC01-appb-I000030
である。
[A-3] Jacobian matrix of PCS model
The distortion of N segments is defined as the generalized coordinate q∈R 6N of the PCS model as shown in the following equation.
Figure JPOXMLDOC01-appb-I000026
If we rewrite equation (14) as a relational expression between speed twist η(s) and generalized speed q , we get
Figure JPOXMLDOC01-appb-I000027
becomes. Here, J(s)=[J 1 . . . J N ]∈R 6×6N is the Jacobian matrix of the PCS model (segment), and J j ∈R 6×6 can be calculated as follows.
Figure JPOXMLDOC01-appb-I000028
Assuming that the base of the continuum is fixed, η(0) = 0, and by using the recursion in equation (12), η(s) is a polynomial of the strain ξ j of each segment, as follows: It is expressed as follows.
Figure JPOXMLDOC01-appb-I000029
here,
Figure JPOXMLDOC01-appb-I000030
It is.
[A-4]PCSモデルの動力学
PCSモデルの運動方程式は次式のように表される(非特許文献2)。
Figure JPOXMLDOC01-appb-I000031
ここで、
 M∈R6N×6Nは、慣性行列;
 b∈R6Nは、コリオリ力と重力を含むバイアスベクトル;
 τS(q,q)=[τT S,1・・・τT S,N]∈R6Nは、連続体の粘弾性(stiffness and viscosity)による内力;を表す。
[A-4] Dynamics of PCS model
The equation of motion of the PCS model is expressed as the following equation (Non-Patent Document 2).
Figure JPOXMLDOC01-appb-I000031
here,
M∈R 6N×6N is the inertia matrix;
b∈R 6N is a bias vector including Coriolis force and gravity;
τ S (q · ,q)=[τ T S,1 ...τ T S,N ]∈R 6N represents the internal force due to the stiffness and viscosity of the continuum.
外力の影響を考慮すると、式(18)は以下の通りとなる。
Figure JPOXMLDOC01-appb-I000032
ここで、
 M∈R6N×6Nは、慣性行列;
 b∈R6Nは、コリオリ力と重力を含むバイアスベクトル;
 τint(q, q)=[τT int,1・・・τT int,N ]T∈R6Nは、連続体の粘弾性による内力;
 τext=[τT ext,1・・・τT ext,N ]T∈R6Nは、外力;を表す。
Considering the influence of external force, equation (18) becomes as follows.
Figure JPOXMLDOC01-appb-I000032
here,
M∈R 6N×6N is the inertia matrix;
b∈R 6N is a bias vector including Coriolis force and gravity;
τ int (q, q)=[τ T int,1 ...τ T int,N ] T ∈R 6N is the internal force due to the viscoelasticity of the continuum;
τ ext = [τ T ext,1 ...τ T ext,N ] T ∈R 6N represents external force;
式(18)において、内力τSは、
Figure JPOXMLDOC01-appb-I000033
で表される。ここで、qeqは、一般化座標ベクトルの均等点であり、K∈R6N×6N,D∈R6N×6Nは、それぞれ、剛性行列、粘性行列である。
In equation (18), the internal force τ S is
Figure JPOXMLDOC01-appb-I000033
It is expressed as Here, q eq is an equivalent point of the generalized coordinate vector, and K∈R 6N×6N and D∈R 6N×6N are a stiffness matrix and a viscosity matrix, respectively.
式(18)のPCSモデルの運動方程式は、剛体リンク系の運動方程式に似た形をしており、剛体リンク系で用いられる再帰的なアルゴリズムをPCSモデルの力学計算に適用することができ、PCSモデルにおける逆動力学計算に再帰的なニュートン・オイラー法を適用することができる(非特許文献3、4)。逆動力学計算において、一般化座標qとその速度q、加速度q¨から一般化力τを求める。再帰的なアルゴリズムではiセグメントにおける運動方程式として次式を用いる。
Figure JPOXMLDOC01-appb-I000034
ここで、A∈R6×6は、ひずみの加速度・・ξiの慣性行列、B∈R6×6は加速度ツイストη(Li-1)の慣性行列、c∈R6はコリオリ力と外力を含むベクトル、τint,iはiセグメントの内力、Fi+1はs=Liの断面で受けるi+1セグメントからの伝達力である。
The equation of motion of the PCS model in Equation (18) has a form similar to the equation of motion of a rigid link system, and the recursive algorithm used for rigid link systems can be applied to the dynamics calculation of the PCS model. The recursive Newton-Euler method can be applied to inverse dynamics calculations in the PCS model (Non-Patent Documents 3 and 4). In the inverse dynamics calculation, the generalized force τ is obtained from the generalized coordinate q, its velocity q · , and acceleration q¨. The recursive algorithm uses the following equation as the equation of motion in the i-segment.
Figure JPOXMLDOC01-appb-I000034
Here, A∈R 6×6 is the inertia matrix of the strain acceleration ... ξ i , B∈R 6×6 is the inertia matrix of the acceleration twist η(L i-1 ), and c∈R 6 is the Coriolis force. and the external force, τ int,i is the internal force of the i segment, and F i+1 is the transmitted force from the i+1 segment received at the cross section of s=L i .
逆動力学計算の再帰的なアルゴリズムの手順は、以下の通りである。
(a)順方向計算
ベース(s=0)から先端(s=LN)までの各セグメントの境界において、(8)より構成フレームG(s)、(12)より速度ツイストη、(12’)より加速度ツイストηを計算する。
(b)逆方向計算
一般化力(18”)ではτint,iを先端からベースのセグメントまで計算する。
順動力学計算では、一般化座標qとその速度q、一般化力τから一般化座標の加速度q¨を求める。剛体リンク系と同様に、単位ベクトル法(非特許文献7)により慣性行列Mとバイアスベクトルbを求めて、(18)を解く。
The steps of the recursive algorithm for inverse dynamics calculation are as follows.
(a) At the boundary of each segment from the forward calculation base (s=0) to the tip (s=L N ), the constituent frame G(s) from (8), the velocity twist η, (12') from (12) ), calculate the acceleration twist η.
(b) Inverse calculation generalized force (18”) calculates τ int,i from the tip to the base segment.
In the forward dynamics calculation, the acceleration q¨ of the generalized coordinate is determined from the generalized coordinate q, its velocity q · , and the generalized force τ. Similar to the rigid link system, the inertia matrix M and bias vector b are determined by the unit vector method (non-patent document 7), and (18) is solved.
[B]浮遊リンクを持つハイブリッドリンク系
[B-1]ハイブリッドリンク系の動力学
図1に示すようなハイブリッドリンク系について考える。ヒューマノイドや人間の骨格モデルへ応用するために、ベースリンクが固定されていない浮遊リンク系を仮定する。浮遊リンク系において、ベースリンクは環境に固定されておらず、接触力によって間接的に作動する。
[B] Hybrid link system with floating links [B-1] Dynamics of hybrid link system Consider a hybrid link system as shown in Figure 1. In order to apply it to humanoid and human skeletal models, we assume a floating link system in which the base link is not fixed. In floating link systems, the base link is not fixed to the environment and is actuated indirectly by contact forces.
ハイブリッドリンク系の運動方程式は次式のように表される。
Figure JPOXMLDOC01-appb-I000035
 Mは慣性行列;
 bはバイアスベクトル;
 q¨は、ハイブリッドリンクの一般化加速度;
 q0∈R6は、ベースリンクの6次元一般化座標;
 θ∈Rnは、n自由度の剛体リンクの関節ベクトル;
 qS∈R6Nは、PCSモデルによって近似された柔軟リンクの一般化座標;
 M0は、ベースリンクに関連する慣性行列;
 MRは、剛体リンクに関連する慣性行列;
 MSは、柔軟リンクに関連する慣性行列;
 M0Rは、ベースリンクと剛体リンクの接続関係に起因する慣性行列;
 M0Sは、ベースリンクに柔軟リンクの接続関係に起因する慣性行列;
 MRSは、剛体リンクと柔軟リンクの接続関係に起因する慣性行列;
 b0は、ベースリンクに関連するバイアスベクトル:
 bRは、剛体リンクに関連するバイアスベクトル;
 bSは、柔軟リンクに関連するバイアスベクトル;
 τRは、剛体リンクの一般化力;
 τsは、柔軟リンクの粘弾性力を含む一般化力;
 JC,i∈R3×(6+n+6N)は、一般化速度を接触点の速度に写像するヤコビ行列;
 fC,i∈R3は、接触力、である。
The equation of motion of the hybrid link system is expressed as follows.
Figure JPOXMLDOC01-appb-I000035
M is the inertia matrix;
b is bias vector;
q¨ is the generalized acceleration of the hybrid link;
q 0 ∈R 6 is the 6-dimensional generalized coordinate of the base link;
θ∈R n is the joint vector of the rigid link with n degrees of freedom;
q S ∈R 6N is the generalized coordinate of the flexible link approximated by the PCS model;
M 0 is the inertia matrix associated with the base link;
M R is the inertia matrix associated with the rigid link;
M S is the inertia matrix associated with the flexible link;
M 0R is the inertia matrix due to the connection relationship between the base link and the rigid link;
M 0S is an inertia matrix due to the connection relationship between the base link and the flexible link;
M RS is the inertia matrix due to the connection relationship between rigid links and flexible links;
b 0 is the bias vector associated with the base link:
b R is the bias vector associated with the rigid link;
b S is the bias vector associated with the flexible link;
τ R is the generalized force of the rigid link;
τ s is the generalized force including the viscoelastic force of the flexible link;
J C,i ∈R3 ×(6+n+6N) is the Jacobian matrix that maps the generalized velocity to the velocity of the contact point;
f C,i ∈R 3 is the contact force.
式(20)の動力学計算には、慣性行列M、バイアスベクトルbが必要となる。慣性行列M、バイアスベクトルbの計算手法については、幾つかの手法を用い得る。ハイブリッドリンク系のそれぞれのリンクもしくはセグメントに関するヤコビ行列Jiやその時間微分をハイブリッドリンク構造に基づいて計算し、それらを用いて行列Mやベクトルbを計算することが可能である。具体的な計算については、例えば、非特許文献3を参照することができる。非特許文献3には、慣性行列Mやバイアスベクトルbの計算において、PCSモデル(柔軟リンク)の密度を積分した結果を用いることが開示されている。本実施形態では、ハイブリッドリンク系において逆動力学計算の再帰アルゴリズムを検討し、これを、単位ベクトル法に用いて慣性行列Mとバイアスベクトルbを計算する。逆動力学の再帰アルゴリズムの計算において、PCSモデル(柔軟リンク)の密度を積分した結果が用いられる。単位ベクトル法を用いる場合には、ヤコビ行列やその時間微分を計算する必要はなく、リンクとリンク(もしくはセグメント)の接続関係が分かっていれば、逆動力学の計算を繰り返すことで慣性行列Mやバイアスベクトルbを計算することができる。 The dynamic calculation of equation (20) requires an inertia matrix M and a bias vector b. Several methods can be used to calculate the inertia matrix M and bias vector b. It is possible to calculate the Jacobian matrix J i and its time derivative for each link or segment of the hybrid link system based on the hybrid link structure, and use them to calculate the matrix M and vector b. For specific calculations, for example, refer to Non-Patent Document 3. Non-Patent Document 3 discloses that the result of integrating the density of a PCS model (flexible link) is used in calculating the inertia matrix M and the bias vector b. In this embodiment, a recursive algorithm for inverse dynamics calculation is considered in a hybrid link system, and this is used in a unit vector method to calculate an inertia matrix M and a bias vector b. In the calculation of the recursive algorithm of inverse dynamics, the result of integrating the density of the PCS model (flexible link) is used. When using the unit vector method, there is no need to calculate the Jacobian matrix or its time derivative; if the connection relationship between links (or segments) is known, the inertia matrix M can be calculated by repeating the inverse dynamics calculation. and bias vector b can be calculated.
[B-2]逆動力学計算
上述のように、再帰式を用いてPCSモデルの逆動力学計算を実行する。ハイブリッドリンク系の逆動力学計算を剛体リンクと柔軟リンクの接続部での適切な変換を考慮しつつ実装する(表1)。
Figure JPOXMLDOC01-appb-I000036
[B-2] Inverse dynamics calculation As described above, the inverse dynamics calculation of the PCS model is performed using the recursive formula. We implement inverse dynamics calculations for hybrid link systems while considering appropriate transformations at the connections between rigid links and flexible links (Table 1).
Figure JPOXMLDOC01-appb-I000036
[B-2-1]順方向計算
図3に示すように、i-1番目の剛体リンクとi番目の柔軟リンクのセグメント(すなわちベース)と間の接続部を考える。ここで、添え字iは剛体リンクとPCSモデルのセグメントを区別しないリンクのIDである。逆動力学計算の順方向計算では、剛性リンクi-1のツイスト速度からPCSモデルのベースiのツイスト速度への変換が必要となる。順方向計算における、剛体リンクの速度ツイストηi-1とPCSモデルのベースの速度ツイストηiの変換は次式のように得られる。
Figure JPOXMLDOC01-appb-I000037
ここで、Gi-1,i∈SE(3)は図3に示すように剛性リンクi-1とPCSモデルのベース(セグメント)iの間の座標変換を表す。また加速度ツイストη i-1とη iの変換は式(21)を時間で一階微分することによって得られる。
[B-2-1] Forward calculation As shown in FIG. 3, consider the connection between the i-1th rigid link and the i-th flexible link segment (ie, base). Here, the subscript i is a link ID that does not distinguish between rigid links and PCS model segments. The forward calculation of the inverse dynamics calculation requires conversion from the twisting speed of rigid link i-1 to the twisting speed of base i of the PCS model. In the forward direction calculation, the transformation between the velocity twist η i-1 of the rigid link and the base velocity twist η i of the PCS model is obtained as follows.
Figure JPOXMLDOC01-appb-I000037
Here, G i-1,i ∈SE(3) represents the coordinate transformation between the rigid link i-1 and the base (segment) i of the PCS model, as shown in FIG. Furthermore, the conversion of acceleration twist η · i−1 and η · i can be obtained by first-order differentiating equation (21) with respect to time.
[B-2-1]逆方向計算
逆方向計算においてはレンチベクトルFiとFi-1の変換が必要であり、次式のように得られる。
Figure JPOXMLDOC01-appb-I000038
ここで、FiとFi-1は、6次元レンチベクトル(3次元並進力ベクトルと3次元回転モーメントベクトルからなる)である。
[B-2-1] Reverse calculation In the backward calculation, it is necessary to transform the wrench vectors F i and F i-1 , which is obtained as shown in the following equation.
Figure JPOXMLDOC01-appb-I000038
Here, F i and F i-1 are six-dimensional wrench vectors (consisting of a three-dimensional translational force vector and a three-dimensional rotational moment vector).
逆運動力学計算における速度ツイストの変換やレンチベクトルの変換に用いる変換行列は、事前に取得される。例えば、柔軟リンクが義足の場合に、板バネを固定する継ぎ手の寸法と板バネの取り付け位置の幾何学的な情報に基づいて変換行列を取得することができる。あるいは、例えば光学式モーションキャプチャの計測の初期設定時に、例えば、Tの字のポーズを被験者に取ってもらって静止した状態で計測し、得られた複数の光学式マーカの位置情報から変換行列を取得してもよい。 A transformation matrix used for velocity twist transformation and wrench vector transformation in inverse kinematics calculations is obtained in advance. For example, when the flexible link is a prosthetic leg, a transformation matrix can be obtained based on the dimensions of a joint that fixes a leaf spring and geometric information about the attachment position of the leaf spring. Alternatively, for example, when initializing optical motion capture measurements, for example, have the subject assume a T-shaped pose and measure while standing still, and obtain a transformation matrix from the position information of the multiple optical markers obtained. You may.
[B-3]順動力学計算
式(20)の順動力学計算は、
1)慣性行列Mとバイアスベクトルbの計算:剛体リンク系と同様に、逆動力学計算において単位ベクトル法を適用することで、慣性行列Mとバイアスベクトルbを計算する。
2)接触ヤコビ行列JC,iの計算:単位ベクトル法を用いて、接触ヤコビ行列JC,iを計算する。Mとbは前ステップで計算されている。ヤコビ行列の列ベクトルは、単位ベクトルを接触力fC,iとすることで計算され、逆動力学計算によって一般化力を計算する。
3)接触力fC,i∈R3のモデリング:ロボットと環境の接触を非完全弾性衝突であると仮定して、接触力fC,iを計算する(非特許文献6)。
4) 順動力学計算:上記の三つのステップの計算を用いて、ハイブリッドリンク系の一般化加速度を計算する。式(20)から、一般化加速度は、以下のように求められる。
Figure JPOXMLDOC01-appb-I000039
[B-3] Forward dynamics calculation of forward dynamics calculation formula (20) is,
1) Calculation of inertia matrix M and bias vector b: As with the rigid link system, inertia matrix M and bias vector b are calculated by applying the unit vector method in inverse dynamics calculation.
2) Calculation of contact Jacobian matrix J C,i : Calculate contact Jacobian matrix J C,i using the unit vector method. M and b were calculated in the previous step. The column vector of the Jacobian matrix is calculated by setting the unit vector to be the contact force f C,i , and the generalized force is calculated by inverse dynamics calculation.
3) Modeling of contact force f C,i ∈R 3 : Assuming that the contact between the robot and the environment is a non-perfect elastic collision, the contact force f C,i is calculated (Non-Patent Document 6).
4) Forward dynamics calculation: Calculate the generalized acceleration of the hybrid link system using the calculations in the three steps above. From equation (20), the generalized acceleration is obtained as follows.
Figure JPOXMLDOC01-appb-I000039
[C]重心ヤコビ行列(COG Jacobian Matrix)
[C-1]ハイブリッドリンク系の重心ヤコビ行列
ヒューマノイドの制御において、重心は重要な特徴量である。ヒューマノイド(二足歩行ロボット)では、転倒しないようにバランスを維持する制御を行う場合に重心をできるだけ一定に保つような制御が必要になる。例えば、板バネを付けた二足歩行ロボットのハイブリッドリンクの運動学・動力学計算の際、このようなバランスを維持する制御においてハイブリッドリンク系の重心ヤコビ行列が用いられる。なお、重心ヤコビ行列の利用は、ヒューマノイドに限定されるものではなく、例えば、バランスを取りやすい板バネの形状を最適計算するような場合に人体の運動解析に用い得る。
[C] Centroid Jacobian Matrix (COG Jacobian Matrix)
[C-1] Centroid Jacobian Matrix of Hybrid Link System In the control of humanoids, the center of gravity is an important feature. When controlling a humanoid (bipedal walking robot) to maintain balance to prevent it from falling over, it is necessary to control the center of gravity to keep it as constant as possible. For example, when calculating the kinematics and dynamics of a hybrid link of a bipedal walking robot equipped with a leaf spring, the center-of-gravity Jacobian matrix of the hybrid link system is used for control to maintain such balance. Note that the use of the center-of-gravity Jacobian matrix is not limited to humanoids, and can be used for human body motion analysis, for example, when optimally calculating the shape of a leaf spring that facilitates balance.
ハイブリッドリンク系の重心ヤコビ行列について述べる。各リンクの質量と重心をそれぞれmiとpG,i∈R3とする。ここで、前節と同様に、添え字iは剛体リンクとPCSモデルを区別しない。ハイブリッドリンク系全体の重心速度p G∈R3は次式のように計算できる。
Figure JPOXMLDOC01-appb-I000040
ここで、JG,iはi番目のリンクの重心ヤコビ行列であり;p G,i=JG,iqであり;Mは全質量(M=Σimi);である。
This section describes the centroid Jacobian matrix of a hybrid link system. Let m i and p G,i ∈R 3 be the mass and center of gravity of each link, respectively. Here, as in the previous section, the subscript i does not distinguish between rigid links and PCS models. The center of gravity velocity p · G ∈R 3 of the entire hybrid link system can be calculated as follows.
Figure JPOXMLDOC01-appb-I000040
Here, J G,i is the centroid Jacobian matrix of the i-th link; p · G,i = J G,i q · ; M is the total mass (M = Σ i m i );
ハイブリッドリンク系全体の重心ヤコビ行列JGは次式のように計算できる。
Figure JPOXMLDOC01-appb-I000041
リンク中の局所座標系において、剛体リンクでは、リンクの重心は一定であり、重心ヤコビ行列の計算法はすでに確立されている(非特許文献8)。一方、PCSのセグメントの重心はセグメントの体積や形状の変化に伴って移動する。そこで以下では、PCSモデルの重心ヤコビ行列について述べる。
The centroid Jacobian matrix J G of the entire hybrid link system can be calculated as shown below.
Figure JPOXMLDOC01-appb-I000041
In a local coordinate system in a link, the center of gravity of a rigid link is constant, and a method for calculating the center of gravity Jacobian matrix has already been established (Non-Patent Document 8). On the other hand, the center of gravity of a PCS segment moves as the volume or shape of the segment changes. Therefore, below, we will discuss the centroid Jacobian matrix of the PCS model.
[C-2]PCSモデルの重心ヤコビ行列
PCSモデルのiセグメントの重心速度は次式のように計算できる。
Figure JPOXMLDOC01-appb-I000042
ここで、ρ(s)とA(s)はPCSモデルのi番目のセグメントの密度と断面積である。セグメントにおいてρ(s)とA(s)が一定であると仮定すると、式(26)は、以下のように簡略化される。
Figure JPOXMLDOC01-appb-I000043
式(27)の時間微分を考え、また、p(s)とツイストベクトルの並進速度vの間で次の関係
Figure JPOXMLDOC01-appb-I000044
を持つことを利用して、並進速度vは、式(12)の並進速度の部分から以下のように計算できる。
Figure JPOXMLDOC01-appb-I000045
式(29)において、η(Li-1)、ξiは、それぞれ以下の通りとなる。
Figure JPOXMLDOC01-appb-I000046
ここで、SS,i∈R6×6は一般化速度qからi番目のPCSセグメントξiを選ぶ選択行列である。
[C-2] Centroid Jacobian matrix of PCS model
The center of gravity velocity of the i-segment of the PCS model can be calculated as follows.
Figure JPOXMLDOC01-appb-I000042
Here, ρ(s) and A(s) are the density and cross-sectional area of the i-th segment of the PCS model. Assuming that ρ(s) and A(s) are constant in the segment, equation (26) can be simplified as follows.
Figure JPOXMLDOC01-appb-I000043
Considering the time derivative of equation (27), the following relationship is established between p(s) and the translational velocity v of the twist vector.
Figure JPOXMLDOC01-appb-I000044
Using this fact, the translational velocity v can be calculated from the translational velocity part of equation (12) as follows.
Figure JPOXMLDOC01-appb-I000045
In equation (29), η(L i-1 ) and ξ · i are as follows.
Figure JPOXMLDOC01-appb-I000046
Here, S S,i ∈R 6×6 is a selection matrix that selects the i-th PCS segment ξ i from the generalized velocity q.
式(27)-(31)から、重心速度p G,i、重心ヤコビ行列は次式のように計算できる。
Figure JPOXMLDOC01-appb-I000047
ここで、R(Li-1)=R(s)RT i、s∈[Li-1,Li]、と式(15)を利用した。
From equations (27) to (31), the center of gravity velocity p · G,i and the center of gravity Jacobian matrix can be calculated as follows.
Figure JPOXMLDOC01-appb-I000047
Here, R(L i-1 )=R(s)R T i , s∈[L i-1 ,L i ], and equation (15) was used.
[D]ハイブリッドリンク系のヒューマノイドのコンプライアンス最適化
[D-1]コンプライアンス分配制御
ハイブリッドリンク系としてモデル化されたヒューマノイドの立位安定化制御について検討する。コンプライアンス最適化制御(非特許文献9)をハイブリッドリンク系に適用する。ここでは、単純化のため、義足のような柔軟リンクが、τsの制御によってアクティブコンプライアンスを生成すると仮定する。この仮定は、義足が受動的なコンプライアンスを持つような現実の場合には適用されない点に留意されたい。ここでの目的は、ハイブリッドリンク系の順動力学計算を検証することにある。したがって、τsは能動的に制御可能であると仮定し、ハイブリッドリンク系の駆動トルクτは以下のように与えられる。
Figure JPOXMLDOC01-appb-I000048
ここで、以下の関節コンプライアンス制御によって重心を得ることを考える。
Figure JPOXMLDOC01-appb-I000049
ここで、Kq、Dq∈R(n+6N)×(n+6N)は、それぞれ弾性行列、粘性行列である。立脚バランスが最大となるように、COGコンプライアンスKG、DG∈R3×3を設計する。仮想仕事の原理より、KqとKGの関係は、以下のように表される。
Figure JPOXMLDOC01-appb-I000050
ここで、JG3×(n+6N)は、COGとτに関連する一般化速度との関係を表すヤコビ行列である。式(36)を満たすKqの一般解は以下のように与えられる。
Figure JPOXMLDOC01-appb-I000051
ここで、Yは任意の正定値行列であり、剛性行列の逆行列の目標値とみなすことができる。J GはJGの疑似逆行列であり、粘性Dqも同様に計算することができる。
[D] Compliance optimization of a humanoid in a hybrid link system [D-1] Compliance distribution control We will examine the standing stabilization control of a humanoid modeled as a hybrid link system. Compliance optimization control (Non-Patent Document 9) is applied to a hybrid link system. Here, for simplicity, we assume that a flexible link such as a prosthesis generates active compliance by controlling τ s . Note that this assumption does not apply in real cases where the prosthesis has passive compliance. The purpose here is to verify the forward dynamics calculation of a hybrid link system. Therefore, assuming that τ s can be actively controlled, the driving torque τ of the hybrid link system is given as follows.
Figure JPOXMLDOC01-appb-I000048
Here, consider obtaining the center of gravity by the following joint compliance control.
Figure JPOXMLDOC01-appb-I000049
Here, K q and D q ∈R (n+6N)×(n+6N) are an elastic matrix and a viscous matrix, respectively. Design COG compliance K G , D G ∈R 3×3 so that stance balance is maximized. Based on the principle of virtual work, the relationship between K q and K G is expressed as follows.
Figure JPOXMLDOC01-appb-I000050
Here, J G3×(n+6N) is a Jacobian matrix representing the relationship between COG and the generalization speed related to τ. The general solution for K q that satisfies equation (36) is given as follows.
Figure JPOXMLDOC01-appb-I000051
Here, Y is any positive definite matrix and can be regarded as the target value of the inverse matrix of the stiffness matrix. J G is a pseudo inverse matrix of J G , and the viscosity D q can be calculated in the same way.
[D-2]片脚支持時の立脚バランス制御
ハイブリッドリンク系の力学計算を検証するために、スポーツ義足を装着したヒューマノイドを想定し、コンプライアンス最適化制御によるバランス制御の動力学シミュレーションを行った。ここで、静油圧駆動ヒューマノイドHydra(非特許文献10)の脚を義足(PCSモデル)に置き換えたモデル(図1右図)において左足の片足支持期における立位安定化制御を考える。シミュレーショにおいて、関節コンプライアンスの目標値を以下のように設定した。
Figure JPOXMLDOC01-appb-I000052
ここで、Yk、Ydは、それぞれ、剛性行列、粘性行列の目標値である。kd、ddは正の定数である。
目標の粘性行列を、dd=0.2として設定し、目標の弾性行列を、正の定数kdを用いて、kdを100,200,400と値を変化させて検証した。kd=100の時には約8s後にバランスを崩したが、kd=200 と400では12秒間立位姿勢を維持することができた。また、kdの値が大きいほど重心を早く収束させることが確認された。
[D-2] Stance balance control when supporting one leg In order to verify the dynamic calculations of the hybrid link system, we simulated the dynamics of balance control using compliance optimization control assuming a humanoid wearing a sports prosthesis. Here, we will consider the standing stabilization control during the single-leg support phase of the left leg in a model (right figure in FIG. 1) in which the legs of the hydrostatically driven humanoid Hydra (Non-Patent Document 10) are replaced with prosthetic legs (PCS model). In the simulation, the target value of joint compliance was set as follows.
Figure JPOXMLDOC01-appb-I000052
Here, Y k and Y d are target values of the stiffness matrix and the viscosity matrix, respectively. k d and d d are positive constants.
The target viscosity matrix was set as d d =0.2, and the target elastic matrix was verified using a positive constant k d by changing the value of k d to 100, 200, and 400. At k d = 100, he lost his balance after about 8 seconds, but at k d = 200 and 400, he was able to maintain his standing position for 12 seconds. It was also confirmed that the larger the value of k d , the faster the center of gravity converges.
[3]モデルに基づく競技用義足の柔軟変形の計算と剛性パラメータ・粘性パラメータの推定
[A]概要・背景
義足の機械的特性と身体動作の間には強い相互作用があることから、適切な機能を持つ義足を設計するためには、身体動作の予測が重要である。人の全身運動を考慮したシミュレーションモデルを用いた動作予測に関する研究がなされている。しかし、義足のダイナミクスや運動の再構成に関して下肢全体を簡易的なバネ質点モデルとして扱うものや、剛体リンク系で義足のモデル化を扱うものなど、義足の柔軟変形が考慮されていないものが多い。また運動は2次元に限定されるものが多い。一方、ソフトロボティクスの分野では柔軟な梁やロッドの変形を計算するPiece-wise Constant Strain (PCS)モデル(非特許文献3、4)が提案されている。このモデルは多関節剛体リンク系の動力学モデルとの拡張性・親和性が高く、比較的低コストで柔軟変形の計算が可能である。ここでは、競技用義足を含む義足ランナーの運動解析を目的として、PCSモデルを競技用義足の柔軟変形計算に応用することを考える。まず実際の義足の寸法と画像データに基づいて各セグメントのPCSモデルのひずみパラメータを求めることで、競技用義足の形状をモデル化する。また義足に荷重をかけた際の変形量を光学式モーションキャプチャを用いて計測し、計測データに基づき逆運動学及び静力学の計算、そして数値最適化をすることで競技用義足の剛性パラメータ及び粘性パラメータを推定する。本章において、数式番号は独立して付与される点に留意されたい。
[3] Calculation of flexible deformation of a competition prosthesis based on the model and estimation of stiffness and viscosity parameters
[A] Overview/Background Because there is a strong interaction between the mechanical properties of a prosthetic leg and body motion, prediction of body motion is important in order to design a prosthetic leg with appropriate functionality. Research is being conducted on motion prediction using simulation models that take into account human whole body motion. However, many methods do not take into account the flexible deformation of the prosthetic leg, such as those that treat the entire lower limb as a simple spring mass point model for reconstructing the dynamics and motion of the prosthetic leg, or those that model the prosthetic leg using a rigid link system. . Furthermore, motion is often limited to two dimensions. On the other hand, in the field of soft robotics, a Piece-wise Constant Strain (PCS) model (Non-Patent Documents 3 and 4) has been proposed to calculate the deformation of flexible beams and rods. This model has high extensibility and compatibility with dynamic models of multi-joint rigid link systems, and allows calculation of flexible deformation at relatively low cost. Here, for the purpose of kinematic analysis of prosthetic runners including competitive prosthetic legs, we will consider applying the PCS model to the calculation of flexible deformation of competitive prosthetic legs. First, the shape of the competition prosthesis is modeled by determining the strain parameters of the PCS model for each segment based on the actual prosthesis dimensions and image data. In addition, the amount of deformation when a load is applied to the prosthetic leg is measured using optical motion capture, and based on the measurement data, inverse kinematics and statics are calculated, and numerical optimization is performed to improve the stiffness parameters of the prosthetic leg for competitions. Estimate the viscosity parameters. Please note that in this chapter, formula numbers are assigned independently.
[B]義足の柔軟変形モデル
[B-1]Piece wise constant strain(PCS)モデル
図4(a)に今回対象とする競技用義足(Sprinter 1E90, Ottobock,Germany)を示す。この柔軟変形を図4(b)のようなPCSモデル(非特許文献3)によってモデル化する。図4(c)にPCSモデルの概略を示す。PCS モデルは離散的なCosseratモデル(非特許文献2)に基づき、梁やロッドの柔軟変形を有限個のセグメントに分割して計算するものである。連続Cosseratモデルの構成曲線は次のように表される。
Figure JPOXMLDOC01-appb-I000053
ただし、sは連続体の中心軸座標であり、R∈SO(3)、p∈R3はそれぞれ回転行列、位置ベクトルを表す。
[B] Flexible deformation model of prosthetic leg
[B-1] Piece wise constant strain (PCS) model Figure 4 (a) shows the competition prosthesis (Sprinter 1E90, Ottobock, Germany) that is the subject of this study. This flexible deformation is modeled using a PCS model (non-patent document 3) as shown in FIG. 4(b). Figure 4(c) shows an outline of the PCS model. The PCS model is based on the discrete Cosserat model (Non-Patent Document 2), and calculates the flexible deformation of a beam or rod by dividing it into a finite number of segments. The constitutive curve of the continuous Cosserat model is expressed as follows.
Figure JPOXMLDOC01-appb-I000053
Here, s is the central axis coordinate of the continuum, and R∈SO(3) and p∈R 3 represent a rotation matrix and a position vector, respectively.
PCSモデルでは、柔軟変形により生じる構成曲線G(s)の変位を6次元のひずみベクトルξ(s)として次式のように定義する。
Figure JPOXMLDOC01-appb-I000054
ただし、k,uはそれぞれ回転方向、並進方向のひずみを表す。PCSモデルでは、競技用義足のような複雑な梁の構造を有限個の区間に分割し、各セグメントではひずみξが一定であると仮定する。すなわち、あるセグメントiの一定ひずみξiを次式のように定義する。
Figure JPOXMLDOC01-appb-I000055
ただし、Liはセグメントiの中心座標sの値を示す。このひずみベクトルを用いて、PCS モデルの一般化座標q∈R6Nは次式のように定義できる。
Figure JPOXMLDOC01-appb-I000056
ただし、Nはセグメントの分割数である。
In the PCS model, the displacement of the constituent curve G(s) caused by flexible deformation is defined as a six-dimensional strain vector ξ(s) as shown in the following equation.
Figure JPOXMLDOC01-appb-I000054
However, k and u represent strain in the rotational direction and translational direction, respectively. In the PCS model, a complex beam structure such as an athletic prosthesis is divided into a finite number of sections, and the strain ξ is assumed to be constant in each segment. That is, the constant strain ξ i of a certain segment i is defined as follows.
Figure JPOXMLDOC01-appb-I000055
However, L i indicates the value of the center coordinate s of segment i. Using this strain vector, the generalized coordinates q∈R 6N of the PCS model can be defined as follows.
Figure JPOXMLDOC01-appb-I000056
However, N is the number of segment divisions.
各セグメントにおける構成曲線G(s)は式(2)から次式のように計算できる。
Figure JPOXMLDOC01-appb-I000057
ただし、Gi(s)は指数写像を用いて以下のように計算できる。
Figure JPOXMLDOC01-appb-I000058
The constituent curve G(s) in each segment can be calculated from equation (2) as follows.
Figure JPOXMLDOC01-appb-I000057
However, G i (s) can be calculated as follows using an exponential mapping.
Figure JPOXMLDOC01-appb-I000058
構成曲線G(s)の時間変化は、次式のようなツイストベクトルη(s)として定義する。
Figure JPOXMLDOC01-appb-I000059
ただし、w,vはそれぞれ回転、並進速度を表す。各セグメントiについて、速度ツイストη(s)と一般化速度qの関係は次式のように得られる。
Figure JPOXMLDOC01-appb-I000060
ただし、Ti(s)は、以下に示す指数写像であり、
Figure JPOXMLDOC01-appb-I000061
ここで、AdGは、SE(3)の随伴表現であり、ξは、se(3)の随伴表現であり、以下のように定義される。
Figure JPOXMLDOC01-appb-I000062
ここで、J(s)=[J1,J2,・・・,JN]∈R6×6Nは、PCSモデルのヤコビ行列であり、以下のように計算される。
Figure JPOXMLDOC01-appb-I000063
このように多関節剛体リンク系における運動学と同様に、一般化速度qをヤコビ行列を使ってツイストベクトルηに写像することができる。
The time change of the constituent curve G(s) is defined as a twist vector η(s) as shown in the following equation.
Figure JPOXMLDOC01-appb-I000059
However, w and v represent rotational and translational speeds, respectively. For each segment i, the relationship between velocity twist η(s) and generalized velocity q can be obtained as follows.
Figure JPOXMLDOC01-appb-I000060
However, T i (s) is an exponential map shown below,
Figure JPOXMLDOC01-appb-I000061
Here, Ad G is an adjoint expression of SE(3), ξ is an adjoint expression of se(3), and is defined as follows.
Figure JPOXMLDOC01-appb-I000062
Here, J(s)=[J 1 ,J 2 ,...,J N ]∈R 6×6N is the Jacobian matrix of the PCS model and is calculated as follows.
Figure JPOXMLDOC01-appb-I000063
In this way, similar to the kinematics of an articulated rigid link system, the generalized velocity q can be mapped to the twist vector η using the Jacobian matrix.
[B-2]PCSモデルによる義足のモデル化
競技用義足の形状を再現するPCSモデルのひずみパラメータを計算する。まず、セグメントiにおいて式(6)にs=Li,ξ=ξiを代入して変形すると、次式を得る。
Figure JPOXMLDOC01-appb-I000064
ただし、
Figure JPOXMLDOC01-appb-I000065
の関係を用いた。すなわち、各セグメントの端面の同次変換行列G(Li-1), G(Li)が分かればひずみを計算することができる。本実施形態では、競技用義足のCADモデルから、側面に相当する二次元平面内上の中心曲線を抽出し、一定曲率で近似できる区間として形状を6つのセグメントに分割した上で、各区間のGLiを求めた。図4(b)に、競技用義足の形状をPCSモデルとして描画したものを示す。
[B-2] Modeling the prosthetic leg using the PCS model Calculate the strain parameters of the PCS model that reproduces the shape of the prosthetic leg for competition. First, in segment i, by substituting s=L i and ξ=ξ i into equation (6) and transforming it, the following equation is obtained.
Figure JPOXMLDOC01-appb-I000064
however,
Figure JPOXMLDOC01-appb-I000065
The following relationship was used. That is, if the homogeneous transformation matrices G(L i-1 ) and G(L i ) of the end faces of each segment are known, the strain can be calculated. In this embodiment, a central curve on a two-dimensional plane corresponding to the side surface is extracted from a CAD model of a competition prosthetic leg, the shape is divided into six segments that can be approximated by a constant curvature, and each segment is I asked for G Li . Figure 4(b) shows the shape of a competition prosthetic leg drawn as a PCS model.
[C]スポーツ義足のモーションキャプチャ計測
[C-1]義足の変形計測実験
競技用義足の持つ粘弾性を推定するため、義足に荷重Fj∈R6を加えた際のひずみΔqjを計測するための実験を行った。まず、義足の上端に力とモーメントを加えるための治具を設計した。実験は義足に荷重をかけ、光学式モーションキャプチャと床反力計を使用することで義足の変形量と端点にかかる力を計測した。実験では22個の再帰性反射材を使用した光学マーカを取り付けた。図5右図は実験で使用したマーカの配置を示す。実験では、義足を並進方向、回転方向と8種類の異なる方向に対してそれぞれ5から10段階で荷重をかけ、それら静的な変形状態を計測した。義足の所定部位に設けた複数個の光学式マーカの座標を光学式モーションキャプチャ方式で計測し、計測値を用いて、最適化計算によって、各セグメントの変形量を計算することができる。マーカ位置及び義足の寸法についてテーブル1に記載する。
 
Figure JPOXMLDOC01-appb-I000066
テーブル2に今回行った実験項目を記載する。
Figure JPOXMLDOC01-appb-I000067
[C] Motion capture measurement of sports prosthesis
[C-1] Experiment to measure the deformation of a prosthetic leg In order to estimate the viscoelasticity of a competitive prosthetic leg, an experiment was conducted to measure the strain Δqj when a load F j ∈R 6 was applied to the prosthetic leg. First, they designed a jig to apply force and moment to the upper end of the prosthesis. In the experiment, a load was applied to the prosthesis, and the amount of deformation of the prosthesis and the force applied to the end points were measured using optical motion capture and a ground reaction force meter. In the experiment, 22 optical markers using retroreflective materials were installed. The right figure in FIG. 5 shows the arrangement of markers used in the experiment. In the experiment, loads were applied to the prosthetic leg in 5 to 10 steps in eight different directions, including the translational and rotational directions, and the static deformation states were measured. The coordinates of a plurality of optical markers provided at predetermined parts of the prosthetic leg are measured using an optical motion capture method, and the amount of deformation of each segment can be calculated by optimization calculation using the measured values. The marker positions and the dimensions of the prosthesis are listed in Table 1.

Figure JPOXMLDOC01-appb-I000066
Table 2 lists the experimental items conducted this time.
Figure JPOXMLDOC01-appb-I000067
[C-2]逆運動学計算
計測したマーカの位置データから逆運動学計算によりPCSモデルの一般化座標qの値を得る。本実施形態において、1つの態様は、筋骨格モデルと義足からなるハイブリッドリンク系のシミュレーションである。義足は、肢と接続されることを考慮して、上端側がベースリンクとしてモデル化され、図5左図に示すような浮遊リンクシステムとして、逆運動学計算が実行される。図5左図において、ベースリンク(segment1)は環境のどこにも固定されていない状況を考えており、ベースリンクの位置と姿勢の6自由度を変数として表すために、仮想的に環境とベースリンクを接続する仮想関節を考えて、仮想関節の関節角でベースリンクの位置と姿勢の6自由度を表すことを想定している。ツイスト速度η(s)と一般化座標qとの運動関係は以下のように表される。
Figure JPOXMLDOC01-appb-I000068
ここで、J^(s)は、浮遊ベースPCSモデルのヤコビアン行列である。その計算結果を図6に示す。
[C-2] Inverse kinematics calculation Obtain the value of the generalized coordinate q of the PCS model by inverse kinematics calculation from the measured marker position data. In this embodiment, one aspect is a simulation of a hybrid link system consisting of a musculoskeletal model and a prosthetic leg. Considering that the prosthetic leg is connected to the limb, the upper end side is modeled as a base link, and inverse kinematics calculations are performed as a floating link system as shown in the left diagram of FIG. In the left diagram of Figure 5, we are considering a situation in which the base link (segment 1) is not fixed anywhere in the environment, and in order to represent the 6 degrees of freedom of the base link's position and orientation as variables, we have created a virtual environment and base link. It is assumed that the joint angle of the virtual joint represents the six degrees of freedom of the position and posture of the base link. The motion relationship between the twist speed η(s) and the generalized coordinate q is expressed as follows.
Figure JPOXMLDOC01-appb-I000068
Here, J^(s) is the Jacobian matrix of the floating-based PCS model. The calculation results are shown in FIG.
計測したマーカの位置データから逆運動学計算によりPCS モデルの一般化座標qの値を得る。ここで、取得した実験データの番号を表す添え字をjとする。例えば、20kgの重りを使ってx方向に荷重を与えた時のPCSモデルの一般化座標と一般化力のデータの番号をj=1とし、重りを10kg増やして30kgの重りを使ってx方向に荷重を与えた時のPCSモデルの一般化座標と一般化力のデータの番号をj=2と、荷重の方向を変えてu方向に荷重20kgを与えた時のPCSモデルの一般化座標と一般化力のデータの番号をj=・・等とする。得られたデータのインデックスをjとし、PCSモデルの一般化座標のデータqjと床反力のデータfj,τjから競技用義足の剛性を最小二乗推定する。 Obtain the value of the generalized coordinate q of the PCS model by inverse kinematics calculation from the measured marker position data. Here, the subscript representing the number of the acquired experimental data is j. For example, when a load is applied in the x direction using a 20kg weight, the generalized coordinate and generalized force data number of the PCS model is set to j=1, and when the weight is increased by 10kg and a 30kg weight is applied in the x direction. The generalized coordinates of the PCS model when a load is applied to Let the data number of generalization power be j=...etc. The index of the obtained data is set as j, and the stiffness of the competition prosthetic leg is estimated by least squares from the generalized coordinate data qj of the PCS model and the ground reaction force data fj, τj.
次のセクションで、柔軟リンクの剛性パラメータ・粘性パラメータの推定について説明するが、剛性パラメータ・粘性パラメータの推定には、
a)PCSモデルの一般化座標、一般化速度、一般化加速度;
b)外部から荷重を加えた際の荷重の大きさと向き、PCSモデルのどの点に荷重を加えたかという情報;
c)PCSモデルの密度;
が用いられる。
床反力にヤコビ行列の転置行列をかけてPCSモデルの一般化力に変換する(後述する(21)式)ことで、一般化座標と一般化力の関係が取得できる。
In the next section, we will explain the estimation of stiffness and viscosity parameters of flexible links.
a) Generalized coordinates, generalized velocity, and generalized acceleration of the PCS model;
b) Information on the magnitude and direction of the load when externally applied, and at what point on the PCS model the load was applied;
c) Density of PCS model;
is used.
By multiplying the ground reaction force by the transposed matrix of the Jacobian matrix and converting it into the generalized force of the PCS model (Equation (21) described later), the relationship between the generalized coordinates and the generalized force can be obtained.
c)PCSモデルの密度に関連して、粘性パラメータの推定時には、慣性行列Mの値が使用されるが、慣性行列Mの計算の際に、PCSモデルの密度の値を事前に取得しておく必要がある。関連して、逆動力学計算や順動力学計算においてもPCSモデルの密度は既知である必要がある。柔軟リンクが、例えば、板バネのように単一の材料から構成される物体では、密度は全体として一定となる。材料の型番情報から密度のカタログ値を参照できる場合は、その値を用いることができる。あるいは、柔軟リンクの質量を計測器で測った後、3D CADのデータから体積を算出し、密度を計算することができる。PCSモデル自体は密度が一定でなく、セグメント毎に異なる密度の値をもつ物体も扱うことができる。 c) Regarding the density of the PCS model, the value of the inertia matrix M is used when estimating the viscosity parameter, but the value of the density of the PCS model is obtained in advance when calculating the inertia matrix M. There is a need. Relatedly, the density of the PCS model also needs to be known in inverse dynamics calculations and forward dynamics calculations. In objects in which the flexible links are made of a single material, such as a leaf spring, the density is constant throughout. If the density catalog value can be referenced from the material model number information, that value can be used. Alternatively, after measuring the mass of the flexible link with a measuring device, the volume can be calculated from 3D CAD data and the density can be calculated. The PCS model itself does not have a constant density, and can handle objects with different density values for each segment.
[D]義足の剛性パラメータの推定
[D-1]PCSモデルの剛性行列の推定
PCSモデルの一般化力をτとし、一般化座標qと一般化速度qの間に次式のような粘弾性が存在することを考える。
Figure JPOXMLDOC01-appb-I000069
ただし、q0は無負荷状態でのPCSモデルの一般化座標の値を表し、K,Dはそれぞれ剛性行列、粘性行列を表す。
[D] Estimation of stiffness parameters of prosthetic leg
[D-1] Estimation of stiffness matrix of PCS model
Let τ be the generalized force of the PCS model, and consider that viscoelasticity exists between the generalized coordinate q and the generalized velocity q as shown in the following equation.
Figure JPOXMLDOC01-appb-I000069
However, q 0 represents the value of the generalized coordinates of the PCS model under no load, and K and D represent the stiffness matrix and viscosity matrix, respectively.
ここでは、静的なつり合いを考え、剛性のみを推定する。また、競技用義足のように剛性の高い構造では、並進方向のひずみuは回転方向のひずみkに比べて無視できるほど小さいと仮定し、以下では特に断りのない限り、q,τのうち回転方向のひずみに関してのみ考慮する。すなわち、q∈R3N,τ∈R3N,K∈R3N×3Nである。 Here, we consider static balance and estimate only the stiffness. In addition, in a highly rigid structure such as a prosthetic leg for competitions, it is assumed that the strain u in the translational direction is negligibly small compared to the strain k in the rotational direction, and unless otherwise specified, the rotation Only directional strain is considered. That is, q∈R 3N , τ∈R 3N , K∈R 3N×3N .
式(18)に基づき、実験データを用いて以下のような最適化により剛性行列を推定する。
Figure JPOXMLDOC01-appb-I000070
ただし、Wは重み行列であり、Δqjは次式のように定義した。
Figure JPOXMLDOC01-appb-I000071
また、ここでは静的な釣り合いの状態を考えているため、τjは仮想仕事の原理より次式のように計算できる。
Figure JPOXMLDOC01-appb-I000072
Based on equation (18), the stiffness matrix is estimated by the following optimization using experimental data.
Figure JPOXMLDOC01-appb-I000070
However, W is a weight matrix, and Δqj was defined as in the following equation.
Figure JPOXMLDOC01-appb-I000071
Also, since we are considering a state of static equilibrium here, τj can be calculated as follows using the principle of virtual work.
Figure JPOXMLDOC01-appb-I000072
[D-2]半正定値計画問題による剛性の推定
元々のPCS モデル(非特許文献3)ではシリコンゴム等の柔軟材料で構成されるソフトロボットを想定し、また剛性行列Kとして対角行列のみが想定されていた。本実施形態で扱う競技用義足では、より剛性の大きい材料であること、1つのセグメントにおいても力と変形の間に方向の干渉が起こりえること、を考慮して、Kを次式のようなブロック対角行列として考えることとした。
Figure JPOXMLDOC01-appb-I000073
ただし、Kiはセグメントiの内部に存在する剛性行列であり、より一般的な正定値対称行列として考える。式(19)の最適化をKi≧0の条件のもとで解くため、半正定値計画問題を考える。半正定値計画問題では変数に対して線形な目的関数を考える必要があり、補助変数tを導入して式(19)を以下のように書き換える。
Figure JPOXMLDOC01-appb-I000074
式(23)の不等式は、Schurの補元を用いて以下の線形行列不等式に変換できる。
Figure JPOXMLDOC01-appb-I000075
[D-2] Estimation of stiffness by semidefinite programming problem The original PCS model (Non-Patent Document 3) assumes a soft robot made of flexible material such as silicone rubber, and only a diagonal matrix is used as the stiffness matrix K. was expected. In the competition prosthetic leg used in this embodiment, considering that it is made of a material with greater rigidity and that directional interference may occur between force and deformation even in one segment, K is calculated as follows: We decided to consider it as a block diagonal matrix.
Figure JPOXMLDOC01-appb-I000073
However, K i is a stiffness matrix existing inside segment i, and is considered as a more general positive definite symmetric matrix. In order to solve the optimization of equation (19) under the condition of Ki≧0, consider a semidefinite programming problem. In a semidefinite programming problem, it is necessary to consider a linear objective function for variables, so we introduce an auxiliary variable t and rewrite equation (19) as follows.
Figure JPOXMLDOC01-appb-I000074
The inequality in equation (23) can be converted to the following linear matrix inequality using Schur's complement.
Figure JPOXMLDOC01-appb-I000075
[E] 粘性パラメータの推定
本セクションにおいて、数式番号は独立して付与されている点に留意されたい。
[E-1]PCSモデル
PCSモデルにおける動力学方程式は、以下の通りである。
Figure JPOXMLDOC01-appb-I000076
ここで、τは内部弾性負荷であり、以下のように定義され、
Figure JPOXMLDOC01-appb-I000077
ここで、F(q)は外部集中負荷であり、以下のように定義される。
Figure JPOXMLDOC01-appb-I000078
[E] Estimation of viscosity parameters Please note that in this section, equation numbers are assigned independently.
[E-1]PCS model
The dynamic equation in the PCS model is as follows.
Figure JPOXMLDOC01-appb-I000076
Here, τ is the internal elastic load, defined as:
Figure JPOXMLDOC01-appb-I000077
Here, F(q) is the external concentrated load and is defined as follows.
Figure JPOXMLDOC01-appb-I000078
[E-2]粘性行列の推定
式(1)から導かれる運動方程式は、以下の通りである。
Figure JPOXMLDOC01-appb-I000079
ここで、左辺は、慣性行列Mを用いて逆動力学計算によって計算され、q, q , q¨は以下のように定義される。
Figure JPOXMLDOC01-appb-I000080
各値は、数値微分によって計算される。式8のp,αは、ベースリンクの位置、姿勢を表す。αは、例えばオイラー角の3つの変数をまとめたベクトルとなる。ベースリンクの角速度ω0は、以下のように計算できる。
ここで、回転行列の微分は、以下のように計算される。
Figure JPOXMLDOC01-appb-I000081
ここで、
Figure JPOXMLDOC01-appb-I000082
したがって、粘性行列Dは、以下の最適化計算によって推定される。
Figure JPOXMLDOC01-appb-I000083
ここで、τpは、以下のように定義される。
Figure JPOXMLDOC01-appb-I000084
この不等式は、シューア補行列を用いて、以下の線形行列不等式に変換される。
Figure JPOXMLDOC01-appb-I000085
[E-2] Estimation of viscosity matrix The equation of motion derived from equation (1) is as follows.
Figure JPOXMLDOC01-appb-I000079
Here, the left side is calculated by inverse dynamics calculation using the inertia matrix M, and q, q · , q¨ are defined as follows.
Figure JPOXMLDOC01-appb-I000080
Each value is calculated by numerical differentiation. p and α in Equation 8 represent the position and orientation of the base link. α is a vector that summarizes three variables, for example, Euler angles. The angular velocity ω 0 of the base link can be calculated as follows.
Here, the differential of the rotation matrix is calculated as follows.
Figure JPOXMLDOC01-appb-I000081
here,
Figure JPOXMLDOC01-appb-I000082
Therefore, the viscosity matrix D is estimated by the following optimization calculation.
Figure JPOXMLDOC01-appb-I000083
Here, τ p is defined as follows.
Figure JPOXMLDOC01-appb-I000084
This inequality is transformed into the following linear matrix inequality using the Schur complement.
Figure JPOXMLDOC01-appb-I000085
[F]義足の粘弾性の推定
ハイブリッドリンク系の運動解析には、柔軟デバイスの粘弾性力が必要となる。粘弾性力は、その柔軟デバイス(材質、形状等)に固有のもので、基本的にはデバイス毎に推定した推定値を用いる必要がある。粘弾性力は、剛性パラメータ(剛性行列)と粘性パラメータ(粘性行列)から計算される。粘弾性力の推定には、柔軟デバイスに発生している変形量とその変化速度、及び柔軟デバイス上のある特定の位置に働く6軸の力(3次元の並進力と3次元の回転モーメント)が必要となる。
[F] Estimating the viscoelasticity of the prosthetic leg The kinematic analysis of the hybrid link system requires the viscoelastic force of the flexible device. The viscoelastic force is unique to the flexible device (material, shape, etc.), and basically it is necessary to use an estimated value for each device. Viscoelastic force is calculated from stiffness parameters (stiffness matrix) and viscosity parameters (viscosity matrix). In order to estimate the viscoelastic force, the amount of deformation occurring in the flexible device, its rate of change, and the 6-axis force (3-dimensional translational force and 3-dimensional rotational moment) acting on a specific position on the flexible device are used. Is required.
柔軟デバイスとして例示する義足の粘弾性力の推定について説明する。図10に示すように、フォースプレート上の義足(複数のマーカが取り付けてある)に異なる方向から力を作用させた時の当該義足の運動(変形)を光学式モーションキャプチャシステムで計測し、複数のマーカの3次元位置pを取得すると同時に、フォースプレートで力fを取得する。義足の変形計測実験の詳細については、[3][C-1]を参照することができる。本セクションにおいて、数式番号は独立して付与されている点に留意されたい。 Estimation of the viscoelastic force of a prosthetic leg, which is exemplified as a flexible device, will be explained. As shown in Figure 10, an optical motion capture system measures the movement (deformation) of the prosthetic leg (on which multiple markers are attached) when force is applied from different directions to the prosthetic leg on the force plate. Obtain the three-dimensional position p of the marker and at the same time obtain the force f using the force plate. For details on the prosthetic leg deformation measurement experiment, please refer to [3][C-1]. Please note that in this section, formula numbers are given independently.
図10に示すように、マーカの3次元位置pを用いて逆運動学計算を実行することで一般化座標qを取得する。逆運動学計算で取得した一般化座標qとフォースプレートで取得した力fを用いて、半正定値計画問題(semi-definite programming)を解くことで剛性行列Kを算出する。 As shown in FIG. 10, generalized coordinates q are obtained by performing inverse kinematic calculation using the three-dimensional position p of the marker. The stiffness matrix K is calculated by solving a semi-definite programming problem using the generalized coordinates q obtained by inverse kinematic calculation and the force f obtained by the force plate.
剛性パラメータの推定において、板バネ義足の場合には「荷重して計測した後、荷重を取り除く」という試行を何度か繰り返しており、各試行が終了したときの無負荷時の義足の形状を比べてみると、試行ごとに微妙なバラつきがあることがわかった。以下の式では、荷重を付加・取り除いた際に、義足に塑性的な(微妙な)変形が生じているものと推測され、そのバラつきの影響も含めてパラメータとして推定する。 When estimating the stiffness parameters, in the case of a leaf spring prosthesis, we repeat several trials by applying a load, measuring it, and then removing the load. When compared, it was found that there were subtle variations between trials. In the equation below, it is assumed that plastic (subtle) deformation occurs in the prosthetic leg when a load is applied or removed, and the parameters are estimated including the influence of this variation.
逆運動学計算やモデル化誤差によるqerrがあるとき、
Figure JPOXMLDOC01-appb-I000086
となり、全ての試行を含めるときの評価関数は、
Figure JPOXMLDOC01-appb-I000087
となる。
When there is q err due to inverse kinematics calculation or modeling error,
Figure JPOXMLDOC01-appb-I000086
So, the evaluation function when including all trials is
Figure JPOXMLDOC01-appb-I000087
becomes.
図10に示すように、逆運動学計算で取得した一般化座標q(及びその数値微分)とフォースプレートで取得した力fを用いて、逆動力学計算を実行することで一般化力τを算出する。推定された剛性行列Kと逆動力学計算で取得した一般化力τを用いて、半正定値計画問題(semi-definite programming)を解くことで、粘性行列Dを算出する。 As shown in Figure 10, the generalized force τ is calculated by performing inverse dynamics calculation using the generalized coordinate q (and its numerical derivative) obtained by inverse kinematics calculation and the force f obtained by the force plate. calculate. The viscosity matrix D is calculated by solving a semi-definite programming problem using the estimated stiffness matrix K and the generalized force τ obtained by inverse dynamics calculation.
粘性行列Dを推定するための評価関数は以下の通りである。
Figure JPOXMLDOC01-appb-I000088
The evaluation function for estimating the viscosity matrix D is as follows.
Figure JPOXMLDOC01-appb-I000088
義足の粘弾性の推定について説明したが、上記推定手段は例示である。加重を付加しながら柔軟デバイスの変形量を計測する場合に、計測方法は必ずしもモーションキャプチャに限定されるものではなく、例えば義足の場合であれば、その構造の表面にひずみセンサを貼って、変形量を計測してもよい。また、変形時に柔軟デバイスに加わる力の変化を計測するために、フォースプレートに代えて、6軸力センサを用いてもよい。柔軟デバイスを含むハイブリッドリンク系の運動解析においては、当該柔軟デバイスの粘弾性が既知の場合には、その値を用いることができる。その柔軟デバイスが一品製作物ではなく、同じ製品・型番の複数の同一デバイスとして提供されている場合であれば、1つのデイバイスについて代表して取得した粘弾性を共通の粘弾性(軽微な個体差は許容誤差として扱い得る)として用い得る。また、ハイブリッドリンク系の運動解析において、剛性行列及び粘性行列として、適当な値を与えて運動解析を行うこともあり得る。例えば実際のデバイスよりも柔らかい構造を想定したシミュレーションをしたい場合に、シミュレーション内で弾性行列Kや粘性行列Dの仮想的な値を設定してもよい。実際に使用しているものよりも柔らかい/硬い義足を使用したときに、どのような影響があるかを、仮想的な弾性行列K、粘性行列Dの値を設定してシミュレーションを実行してもよい。 Although the estimation of the viscoelasticity of the prosthetic leg has been described, the above estimation means is merely an example. When measuring the amount of deformation of a flexible device while applying a load, the measurement method is not necessarily limited to motion capture; for example, in the case of a prosthetic leg, strain sensors are attached to the surface of the structure to measure deformation. The amount may also be measured. Further, in order to measure changes in the force applied to the flexible device during deformation, a six-axis force sensor may be used instead of the force plate. In the motion analysis of a hybrid link system including a flexible device, if the viscoelasticity of the flexible device is known, that value can be used. If the flexible device is not a one-piece product but is provided as multiple identical devices of the same product/model number, the viscoelasticity obtained as a representative of one device is the common viscoelasticity (minor individual differences). can be treated as a tolerance). Furthermore, in the motion analysis of a hybrid link system, the motion analysis may be performed by giving appropriate values to the stiffness matrix and the viscosity matrix. For example, when it is desired to perform a simulation assuming a structure that is softer than the actual device, virtual values of the elastic matrix K and the viscous matrix D may be set within the simulation. The effect of using a prosthesis that is softer/harder than the one actually used can be seen by running a simulation by setting the values of the virtual elastic matrix K and viscosity matrix D. good.
[G]モーションキャプチャを用いたハイブリッドリンク系の運動分析
モーションキャプチャを用いたハイブリッドリンク系の運動分析について説明する。ハイブリッドリンク系は、リジッドパートとソフトパートからなり、リジッドパートは剛体リンク系として扱うことができ、ソフトパートはPCSモデルとして扱われる。本実施形態では、ソフトパートとして義足が例示され、義足ランナーについて、 義足の部分を6セグメントのPCSモデル、ヒトの筋骨格部分を剛体リンク系でそれぞれモデル化し、これらを統合してハイブリッドリンク系を用いて運動分析を行う。図11に、義足を装着した人間の運動解析の流れを示す。本章において、数式番号は独立して付与されている点に留意されたい。
[G] Motion analysis of a hybrid link system using motion capture Motion analysis of a hybrid link system using motion capture will be explained. A hybrid link system consists of a rigid part and a soft part, and the rigid part can be treated as a rigid link system, and the soft part can be treated as a PCS model. In this embodiment, a prosthetic leg is exemplified as a soft part, and for a prosthetic runner, the prosthetic leg part is modeled as a 6-segment PCS model, the human musculoskeletal part is modeled as a rigid link system, and these are integrated to form a hybrid link system. Perform motion analysis using Figure 11 shows the flow of motion analysis for a human wearing a prosthetic leg. Please note that in this chapter, formula numbers are assigned independently.
[G-1]ハイブリッドリンク系の運動学
ハイブリッドリンク系において、モデルはN個のパートに分かれ、それぞれのパートが剛体リンク系またはPCSモデルから構成される。図12において、パート、リンク、セグメントの関係を次のように定義する。
(ア)添え字j(j=1,…N)は、パートの添え字であり、Nはパートの数である。
(イ)qjは、パートjの一般化座標であり、リジットパートであるかソフトパートであるかは区別しない。
(ウ)リジットパートにおいては、一般化座標qjは関節角度ベクトルで定義され、ソフトパートにおいては、一般化座標qjはひずみベクトルで定義される。
(エ)添え字i(i=1,…nj)は、パートjにおける剛体リンクないしPCSセグメントのインデクスであり、njは、パートjにおけるリンクないしセグメントの数である。
(オ)Gj,iは、リジッドパートjにおけるリンクiの位置及び姿勢である。
(カ)Gj,i(s)は、PCSパートjにおけるセグメントiのs(中心軸)の位置及び姿勢である。
(キ)Gjは、パートjにおけるベースリンクないしベースセグメントの位置及び姿勢である。
(ク)j-1Gj(qj-1)は、親パートj-1から子パートjへの同次変換行列であり、qj-1の関数である。
[G-1] Kinematics of a hybrid link system In a hybrid link system, the model is divided into N parts, and each part is composed of a rigid link system or a PCS model. In FIG. 12, the relationships among parts, links, and segments are defined as follows.
(a) The subscript j (j=1,...N) is the subscript of the part, and N is the number of parts.
(a) q j is the generalized coordinate of part j, and does not distinguish whether it is a rigid part or a soft part.
(C) In the rigid part, the generalized coordinates q j are defined by joint angle vectors, and in the soft part, the generalized coordinates q j are defined by the strain vectors.
(D) The subscript i (i=1,...n j ) is the index of the rigid link or PCS segment in part j, and n j is the number of links or segments in part j.
(e) G j,i is the position and orientation of link i in rigid part j.
(f) G j,i (s) is the position and orientation of s (center axis) of segment i in PCS part j.
(g) G j is the position and orientation of the base link or base segment in part j.
(h) j-1 G j (q j-1 ) is a homogeneous transformation matrix from parent part j-1 to child part j, and is a function of q j-1 .
親パート及び子パートの順運動学の再帰式は、
Figure JPOXMLDOC01-appb-I000089
で表され、さらに、Gj,i、Gj,i(s)を、
Figure JPOXMLDOC01-appb-I000090
から計算することができる。
The recursive formula for the forward kinematics of the parent part and child part is
Figure JPOXMLDOC01-appb-I000089
Furthermore, G j,i , G j,i (s) are expressed as
Figure JPOXMLDOC01-appb-I000090
It can be calculated from
ベースリンクの位置と姿勢を表す同次変換行列G0と全てのリンク、セグメントでの一般化座標qjが与えられると、再帰的に上記式を適用することで、ハイブリッドリンク系における任意のリンクないしセグメントの位置及び姿勢を計算することができる。ベースリンクが固定されていない浮遊リンク系を仮定すると、G0を含むハイブリッドリンク系の一般化座標は、以下のように表される。
Figure JPOXMLDOC01-appb-I000091
Given the homogeneous transformation matrix G 0 representing the position and orientation of the base link and the generalized coordinates q j of all links and segments, by recursively applying the above formula, any link in the hybrid link system can be or the position and orientation of the segment can be calculated. Assuming a floating link system in which the base link is not fixed, the generalized coordinates of the hybrid link system including G 0 are expressed as follows.
Figure JPOXMLDOC01-appb-I000091
[G-2]ハイブリッドリンク系のヤコビ行列
ハイブリッドリンク系におけるGj,iのヤコビ行列wJj,iについて説明する。パートjのリンクないしセグメントiの速度ツイストwvj,iは、以下のように表される。
Figure JPOXMLDOC01-appb-I000092
この式は以下のように書き直すことができる。
Figure JPOXMLDOC01-appb-I000093
ここで、wvjは、パートjのベースリンクないしセグメントの速度であり、右辺の第1項はパートjのベースそのものが持っている速度ツイストの影響(pは位置ベクトル)を表し、第2項はパートjのベースが固定されている状態で考えたセグメントiの速度ツイストの影響(Rは回転行列をブロック対角要素として持つ6次元正方行列)を表す。
[G-2] Jacobian matrix of hybrid link system The Jacobian matrix w J j,i of G j ,i in the hybrid link system will be explained. The velocity twist w v j,i of link or segment i of part j is expressed as follows.
Figure JPOXMLDOC01-appb-I000092
This formula can be rewritten as follows.
Figure JPOXMLDOC01-appb-I000093
Here, w v j is the velocity of the base link or segment of part j, the first term on the right side represents the influence of velocity twist (p is the position vector) of the base itself of part j, and the second term is the velocity of the base link or segment of part j. The term represents the effect of velocity twist on segment i (R is a 6-dimensional square matrix with rotation matrix as block diagonal element) considering the base of part j is fixed.
パートjのベースリンクの速度ツイストjvj,iは、パートjのヤコビ行列Ji(qj)を用いて、以下の通りとなり、
Figure JPOXMLDOC01-appb-I000094
以下の式が得られる。
Figure JPOXMLDOC01-appb-I000095
ここで、wJi(qj)は、ヤコビ行列Ji(qj)を世界座標系に変換したヤコビ行列である。速度ツイストwvj は、親パートj-1のエンドリンクの速度ツイストwvj-1,nj-1と同じであり、
Figure JPOXMLDOC01-appb-I000096
となる。
The velocity twist j v j,i of the base link of part j is as follows using the Jacobian matrix J i (q j ) of part j,
Figure JPOXMLDOC01-appb-I000094
The following formula is obtained.
Figure JPOXMLDOC01-appb-I000095
Here, w J i (q j ) is a Jacobian matrix obtained by converting the Jacobian matrix J i (q j ) to the world coordinate system. The velocity twist w v j is the same as the velocity twist of the end link of the parent part j-1 w v j-1,nj-1 ,
Figure JPOXMLDOC01-appb-I000096
becomes.
上記再帰式を解くことで、ヤコビ行列wJj,iは以下ように取得することができる。
Figure JPOXMLDOC01-appb-I000097
wJk(k= 0, ..., N-1)は、k番目のパートのヤコビ行列であり、[ wJ0 ... wJN-1 ]の中に含まれるそれぞれの行列を表す。k>iの場合には零行列となり、k≦iの場合には、再帰計算によって表現される。
By solving the above recursive equation, the Jacobian matrix w J j,i can be obtained as follows.
Figure JPOXMLDOC01-appb-I000097
w J k (k= 0, ..., N-1) is the Jacobian matrix of the kth part, and each matrix contained in [ w J 0 ... w J N-1 ] is represent. When k>i, it becomes a zero matrix, and when k≦i, it is expressed by recursive calculation.
[G-3]モーションキャプチャを用いた動作計測
ハイブリッドリンク系の運動分析に用いるモーションキャプチャの種類は限定されないが、1つの態様では、マーカを用いた光学式モーションキャプチャが用いられる。義足を装着した人体をモデル化したハイブリッドリンク系は、2つのパートからなる(N = 2)。1つのパートは、右下肢が欠損した人体骨格モデルであり、1つの態様では50本の剛体リンクと対応する関節と、からなるが、右下肢に対応する3本のリンクは含まれていない。右下肢と接続するリンクは、スポーツ用義足に接続されるシリンダに置き換えられる。もう一つのパートは、スポーツ用義足であり、6個のセグメントからなるPCSモデルである。実験では、54個の光学式マーカが用いられ、33個は人体リンクに装着し、残りの21個は義足に装着する。
[G-3] Motion measurement using motion capture The type of motion capture used for motion analysis of the hybrid link system is not limited, but in one embodiment, optical motion capture using markers is used. The hybrid link system, which models the human body with a prosthetic leg, consists of two parts (N = 2). One part is a human skeletal model with a missing right lower limb, and in one embodiment, it consists of 50 rigid links and corresponding joints, but does not include the three links corresponding to the right lower limb. The link that connects to the right lower limb is replaced by a cylinder that is connected to the sports prosthesis. The other part is a sports prosthetic leg, which is a PCS model consisting of six segments. In the experiment, 54 optical markers were used: 33 were attached to the human body link, and the remaining 21 were attached to the prosthetic leg.
光学式モーションキャプチャシステムは、多数のマーカの3次元位置データを出力する。pk∈R3(i=k,..,M)をマーカ位置、Mをマーカ数とした時に、全てのpkを格納するベクトルを、
Figure JPOXMLDOC01-appb-I000098
と定義する。モーションキャプチャによって計測されたマーカ位置をp^とすると、逆運動学問題は、以下のように定式化できる。
Figure JPOXMLDOC01-appb-I000099
この最適化問題を勾配法で解く際に、各マーカ位置のヤコビ行列Jkが必要となる。
Optical motion capture systems output three-dimensional position data of a large number of markers. When p k ∈R 3 (i=k,..,M) is the marker position and M is the number of markers, the vector that stores all p k is
Figure JPOXMLDOC01-appb-I000098
It is defined as If p^ is the marker position measured by motion capture, the inverse kinematics problem can be formulated as follows.
Figure JPOXMLDOC01-appb-I000099
When solving this optimization problem using the gradient method, a Jacobian matrix J k at each marker position is required.
マーカのヤコビ行列を計算するために、k番目のマーカのローカル座標系Gkを考える。図13に示すように、Gkの原点はipkとは異なる。ipkは、i番目のリンクないしセグメントからk番目のマーカへの相対位置である。vkをマーカ座標系のツイストベクトルとすると、vkとハイブリッドリンク系の一般化速度との関係は以下のように書ける。
Figure JPOXMLDOC01-appb-I000100
上記式からwJkを計算する。
Figure JPOXMLDOC01-appb-I000101
全マーカ位置のためのヤコビ行列は以下のように取得される。
Figure JPOXMLDOC01-appb-I000102
To calculate the Jacobian matrix of a marker, consider the local coordinate system G k of the kth marker. As shown in FIG. 13, the origin of G k is different from i p k . i p k is the relative position from the i-th link or segment to the k-th marker. If v k is a twist vector in the marker coordinate system, the relationship between v k and the generalized speed of the hybrid link system can be written as follows.
Figure JPOXMLDOC01-appb-I000100
Calculate w J k from the above formula.
Figure JPOXMLDOC01-appb-I000101
The Jacobian matrix for all marker positions is obtained as follows.
Figure JPOXMLDOC01-appb-I000102
[G-4]ハイブリッドリンク系の運動分析
図11に示すように、モーションキャプチャから得られたマーカ位置情報に基づいて逆運動学計算を行うことで、一般化座標、一般化速度、一般化加速度を算出する。一般化座標、一般化速度、一般化加速度を用いて逆動力学を行うことで、PCSモデルの一般化力τS、人体骨格モデルの関節トルク(剛体の一般化力)τR、接触力fCを取得する。
[G-4] Motion analysis of hybrid link system As shown in Figure 11, by performing inverse kinematics calculations based on marker position information obtained from motion capture, generalized coordinates, generalized velocity, and generalized acceleration can be calculated. Calculate. By performing inverse dynamics using generalized coordinates, generalized velocity, and generalized acceleration, we can calculate the generalized force τ S of the PCS model, the joint torque (generalized force of a rigid body) τ R of the human skeleton model, and the contact force f Get C.
ハイブリッドリンク系の動力学は以下の式で表すことができる。
The dynamics of the hybrid link system can be expressed by the following equation.
逆動力学計算のための最適化関数は以下の通りである。
2次計画問題を解くことで、PCSモデルの一般化力τs、人体骨格モデルの関節トルク(剛体の一般化力)τR、接触力fCを推定する。(図11参照)。refτsは、事前推定した弾性行列K、粘性行列Dを用いて計算される。人体骨格モデルの関節トルク(剛体の一般化力)τRを用いて、筋張力fmを推定することができる。
The optimization function for inverse dynamics calculations is as follows.
By solving a quadratic programming problem, the generalized force τ s of the PCS model, the joint torque (generalized force of a rigid body) τ R of the human skeleton model, and the contact force f C are estimated. (See Figure 11). ref τ s is calculated using the elasticity matrix K and viscosity matrix D estimated in advance. The muscle tension f m can be estimated using the joint torque (generalized force of a rigid body) τ R of the human skeleton model.

Claims (13)

  1.  浮遊ベースリンクを含む複数の剛体リンクからなる剛体リンク系と、少なくとも1つの柔軟リンクと、から構成されるハイブリッドリンク系において、
     前記柔軟リンクは、Cosserat理論に基づくモデルで近似されており、
     ハイブリッドリンク系の運動方程式を、
    Figure JPOXMLDOC01-appb-I000001
    で定義し、
     前記運動方程式に基づいて動力学計算を実行する、
     運動解析方法。
     ここで、
     Mは慣性行列;
     bはバイアスベクトル;
     q¨は、混合リンクの一般化加速度;
     q0は、ベースリンクの一般化座標;
     θは、n自由度の剛体リンクの関節ベクトル;
     qSは、Cosserat理論に基づくモデルで近似された柔軟リンクの一般化座標;
     M0は、ベースリンクに関連する慣性行列;
     MRは、剛体リンクに関連する慣性行列;
     MSは、柔軟リンクに関連する慣性行列;
     M0Rは、ベースリンクと剛体リンクの接続関係に起因する慣性行列;
     M0Sは、ベースリンクに柔軟リンクの接続関係に起因する慣性行列;
     MRSは、剛体リンクと柔軟リンクの接続関係に起因する慣性行列;
     b0は、ベースリンクに関連するバイアスベクトル:
     bRは、剛体リンクに関連するバイアスベクトル;
     bSは、柔軟リンクに関連するバイアスベクトル;
     τRは、剛体リンクの一般化力;
     τsは、柔軟リンクの粘弾性力を含む一般化力;
     JC,iは、一般化速度を接触点の速度に写像するヤコビ行列;
     fC,iは、接触力、である。
    In a hybrid link system consisting of a rigid link system consisting of a plurality of rigid links including a floating base link and at least one flexible link,
    The flexible link is approximated by a model based on Cosserat theory,
    The equation of motion of the hybrid link system is
    Figure JPOXMLDOC01-appb-I000001
    Defined by
    performing a dynamic calculation based on the equation of motion;
    Motion analysis method.
    here,
    M is the inertia matrix;
    b is bias vector;
    q¨ is the generalized acceleration of the mixed link;
    q 0 is the generalized coordinate of the base link;
    θ is the joint vector of the rigid link with n degrees of freedom;
    q S is the generalized coordinate of the flexible link approximated by a model based on Cosserat theory;
    M 0 is the inertia matrix associated with the base link;
    M R is the inertia matrix associated with the rigid link;
    M S is the inertia matrix associated with the flexible link;
    M 0R is the inertia matrix due to the connection relationship between the base link and the rigid link;
    M 0S is an inertia matrix due to the connection relationship between the base link and the flexible link;
    M RS is the inertia matrix due to the connection relationship between rigid links and flexible links;
    b 0 is the bias vector associated with the base link:
    b R is the bias vector associated with the rigid link;
    b S is the bias vector associated with the flexible link;
    τ R is the generalized force of the rigid link;
    τ s is the generalized force including the viscoelastic force of the flexible link;
    J C,i is the Jacobian matrix that maps the generalized velocity to the velocity of the contact point;
    f C,i is the contact force.
  2.  前記柔軟リンクは、Cosserat理論に基づくモデルにおいて変形量であるひずみが位置によらず一定であると仮定したモデル、もしくはそれを複数のセグメントに離散化し、各セグメントにおいて、ひずみが位置によらず一定であると仮定したモデルである、
     請求項1に記載の運動解析方法。
    The flexible link is a model based on Cosserat theory that assumes that strain, which is the amount of deformation, is constant regardless of position, or a model that is discretized into multiple segments, and in each segment, strain is constant regardless of position. This is a model that assumes that
    The motion analysis method according to claim 1.
  3.  前記動力学計算は逆動力学計算であり、
     ハイブリッドリンク系からなる対象の運動を計測して運動データを取得し、
     前記運動データには、剛体リンク系の運動データである第1運動データと、柔軟リンクの運動データである第2運動データが含まれ、
     前記第1運動データに基づいて、前記ベースリンクの一般化座標、一般化速度、一般化加速度、剛体リンク系の一般化座標、一般化速度、一般化加速度を取得し、
     前記第2運動データに基づいて、柔軟リンクの一般化座標、一般化速度、一般化加速度を取得し、
     前記ハイブリッドリンク系の一般化座標、一般化速度、一般化加速度と、計測ないし推定された接触力と、慣性行列と、バイアスベクトルと、一般化速度を接触点の速度に写像するヤコビ行列と、柔軟リンクの剛性パラメータ及び粘性パラメータと、を用いて、剛体リンクの一般化力、柔軟リンクの一般化力を算出する、
     請求項1に記載の運動解析方法。
    The dynamic calculation is an inverse dynamic calculation,
    Measure the movement of the target consisting of a hybrid link system and obtain movement data,
    The motion data includes first motion data that is motion data of a rigid link system and second motion data that is motion data of a flexible link,
    Based on the first motion data, obtain generalized coordinates, generalized velocity, generalized acceleration of the base link, generalized coordinates, generalized velocity, and generalized acceleration of the rigid link system,
    obtaining generalized coordinates, generalized velocity, and generalized acceleration of the flexible link based on the second motion data;
    Generalized coordinates, generalized velocity, and generalized acceleration of the hybrid link system, a measured or estimated contact force, an inertia matrix, a bias vector, and a Jacobian matrix that maps the generalized velocity to the velocity of the contact point; Calculating the generalized force of the rigid link and the generalized force of the flexible link using the rigidity parameter and viscosity parameter of the flexible link,
    The motion analysis method according to claim 1.
  4.  逆動力学計算の順方向計算において、剛体リンクと柔軟リンクの接続部において、以下の式を用いて、i-1番目剛体リンクの速度ツイストηiと、i番目の柔軟リンクないし柔軟リンクのセグメントの速度ツイストηi-1と、の変換が実行される、
    Figure JPOXMLDOC01-appb-I000002
     請求項3に記載の運動解析方法。
     ここで、
     速度ツイストは、並進速度と回転速度をまとめたベクトルであり、
     Gi-1,iは、i-1番目の剛体リンクとi番目の柔軟リンクないし柔軟リンクのセグメントとの座標変換を表す行列である。
    In the forward calculation of the inverse dynamics calculation, at the connection between the rigid link and the flexible link, the velocity twist η i of the i-1st rigid link and the segment of the i-th flexible link or flexible link are calculated using the following formula. With the velocity twist η i-1 , the transformation of is performed,
    Figure JPOXMLDOC01-appb-I000002
    The motion analysis method according to claim 3.
    here,
    Velocity twist is a vector that combines translational velocity and rotational velocity,
    G i-1,i is a matrix representing coordinate transformation between the i-1th rigid link and the i-th flexible link or segment of the flexible link.
  5.  逆動力学計算の順方向計算において、剛体リンクと柔軟リンクの接続部において、i-1番目剛体リンクの加速度ツイストη iと、i番目の柔軟リンクないし柔軟リンクのセグメントの加速度ツイストη i-1と、の変換が実行される、
     請求項4に記載の運動解析方法。
     ここで、加速度ツイストは並進加速度と回転加速度をまとめたベクトルである。
    In the forward calculation of the inverse dynamics calculation, at the connection between the rigid link and the flexible link, the acceleration twist η i of the i-1st rigid link and the acceleration twist η i of the i-th flexible link or segment of the flexible link are calculated. -1 and the conversion is performed,
    The motion analysis method according to claim 4.
    Here, the acceleration twist is a vector that combines translational acceleration and rotational acceleration.
  6.  逆動力学計算の逆方向計算において、剛体リンクと柔軟リンクの接続部において、以下の式を用いて、注目しているリンクに接続されたリンクの並進力および回転モーメントを表すレンチベクトルFiと、注目しているリンクの並進力および回転モーメントを表すレンチベクトルFi-1と、の変換が実行される、
    Figure JPOXMLDOC01-appb-I000003
     請求項3に記載の運動解析方法。
     ここで、
     Gi-1,iは、レンチベクトルFiと、レンチベクトルFi-1と、の座標変換を表す行列である。
    In the backward calculation of the inverse dynamics calculation, at the connection between the rigid link and the flexible link, use the following formula to calculate the wrench vector F i that represents the translational force and rotational moment of the link connected to the link of interest. , wrench vector F i-1 representing the translational force and rotational moment of the link of interest, is transformed into
    Figure JPOXMLDOC01-appb-I000003
    The motion analysis method according to claim 3.
    here,
    G i-1,i is a matrix representing coordinate transformation between wrench vector F i and wrench vector F i-1 .
  7.   対象の運動を解析する運動解析装置であって、
     前記対象は、浮動ベースリンクを含む複数の剛体リンクからなる剛体リンク系と、少なくとも1つの柔軟リンクと、から構成されるハイブリッドリンク系であって、前記柔軟リンクは、Cosserat理論に基づくモデルで近似されており、
      該装置は、処理部と記憶部とを有し、
      該記憶部には、ハイブリッドリンク系の運動方程式、
    Figure JPOXMLDOC01-appb-I000004
    が格納されており、
      該処理部は、前記運動方程式に基づいて動力学計算を実行するように構成されている、
      運動解析装置。
     ここで、
     Mは慣性行列;
     bはバイアスベクトル;
     q¨は、混合リンクの一般化加速度;
     q0は、ベースリンクの一般化座標;
     θは、n自由度の剛体リンクの関節ベクトル;
     qSは、Cosserat理論に基づくモデルで近似された柔軟リンクの一般化座標;
     M0は、ベースリンクに関連する慣性行列;
     MRは、剛体リンクに関連する慣性行列;
     MSは、柔軟リンクに関連する慣性行列;
     M0Rは、ベースリンクと剛体リンクの接続関係に起因する慣性行列;
     M0Sは、ベースリンクに柔軟リンクの接続関係に起因する慣性行列;
     MRSは、剛体リンクと柔軟リンクの接続関係に起因する慣性行列;
     b0は、ベースリンクに関連するバイアスベクトル:
     bRは、剛体リンクに関連するバイアスベクトル;
     bSは、柔軟リンクに関連するバイアスベクトル;
     τRは、剛体リンクの一般化力;
     τsは、柔軟リンクの粘弾性力を含む一般化力;
     JC,iは、一般化速度を接触点の速度に写像するヤコビ行列;
     fC,iは、接触力、である。
    A motion analysis device that analyzes the motion of a target,
    The target is a hybrid link system consisting of a rigid link system consisting of a plurality of rigid links including a floating base link and at least one flexible link, the flexible link being approximated by a model based on Cosserat theory. has been
    The device includes a processing section and a storage section,
    The storage unit stores the equation of motion of the hybrid link system,
    Figure JPOXMLDOC01-appb-I000004
    is stored,
    The processing unit is configured to perform a dynamic calculation based on the equation of motion.
    Motion analysis device.
    here,
    M is the inertia matrix;
    b is bias vector;
    q¨ is the generalized acceleration of the mixed link;
    q 0 is the generalized coordinate of the base link;
    θ is the joint vector of the rigid link with n degrees of freedom;
    q S is the generalized coordinate of the flexible link approximated by a model based on Cosserat theory;
    M 0 is the inertia matrix associated with the base link;
    M R is the inertia matrix associated with the rigid link;
    M S is the inertia matrix associated with the flexible link;
    M 0R is the inertia matrix due to the connection relationship between the base link and the rigid link;
    M 0S is an inertia matrix due to the connection relationship between the base link and the flexible link;
    M RS is the inertia matrix due to the connection relationship between rigid links and flexible links;
    b 0 is the bias vector associated with the base link:
    b R is the bias vector associated with the rigid link;
    b S is the bias vector associated with the flexible link;
    τ R is the generalized force of the rigid link;
    τ s is the generalized force including the viscoelastic force of the flexible link;
    J C,i is the Jacobian matrix that maps the generalized velocity to the velocity of the contact point;
    f C,i is the contact force.
  8.  前記柔軟リンクは、Cosserat理論に基づくモデルにおいて変形量であるひずみが位置によらず一定であると仮定したモデル、もしくはそれを複数のセグメントに離散化し、各セグメントにおいて、ひずみが位置によらず一定であると仮定したモデルである、
     請求項7に記載の運動解析装置。
    The flexible link is a model based on Cosserat theory that assumes that strain, which is the amount of deformation, is constant regardless of position, or a model that is discretized into multiple segments, and in each segment, strain is constant regardless of position. This is a model that assumes that
    The motion analysis device according to claim 7.
  9.  前記処理部は、運動計測手段と、逆運動学手段と、逆動力学手段と、を備え、
     前記運動計測手段は、ハイブリッドリンク系からなる対象の運動を計測して運動データを取得し、前記運動データには、剛体リンク系の運動データである第1運動データと、柔軟リンクの運動データである第2運動データが含まれ、
     前記逆運動学手段は、
     前記第1運動データに基づいて、前記ベースリンクの一般化座標、一般化速度、一般化加速度、剛体リンク系の一般化座標、一般化速度、一般化加速度を取得する第1逆運動学手段と、
     前記第2運動データに基づいて、柔軟リンクの一般化座標、一般化速度、一般化加速度を取得する第2逆運動学手段と、を備え、
     前記逆動力学手段は、前記ハイブリッドリンク系の一般化座標、一般化速度、一般化加速度と、計測ないし推定された接触力と、慣性行列と、バイアスベクトルと、一般化速度を接触点の速度に写像するヤコビ行列と、柔軟リンクの剛性パラメータ及び粘性パラメータと、を用いて、剛体リンクの一般化力、柔軟リンクの一般化力を算出する、
     請求項7に記載の運動解析装置。
    The processing unit includes a motion measurement means, an inverse kinematics means, and an inverse dynamics means,
    The motion measuring means measures the motion of an object made of a hybrid link system to obtain motion data, and the motion data includes first motion data that is motion data of a rigid link system and motion data of a flexible link. Some second movement data is included,
    The inverse kinematics means are:
    a first inverse kinematics means for acquiring generalized coordinates, generalized velocity, generalized acceleration of the base link, generalized coordinates, generalized velocity, and generalized acceleration of the rigid link system based on the first motion data; ,
    a second inverse kinematics means for acquiring generalized coordinates, generalized velocity, and generalized acceleration of the flexible link based on the second motion data,
    The inverse dynamics means converts the generalized coordinates, generalized velocity, and generalized acceleration of the hybrid link system, the measured or estimated contact force, the inertia matrix, the bias vector, and the generalized velocity into the velocity of the contact point. Calculate the generalization force of the rigid link and the generalization force of the flexible link using the Jacobian matrix mapped to the , and the stiffness parameter and viscosity parameter of the flexible link.
    The motion analysis device according to claim 7.
  10.  前記逆運動学手段は、順方向計算において、剛体リンクと柔軟リンクの接続部において、以下の式を用いて、i-1番目剛体リンクの速度ツイストηiと、i番目の柔軟リンクないし柔軟リンクのセグメントの速度ツイストηi-1と、の変換を実行するツイスト速度変換手段を含んでいる、
    Figure JPOXMLDOC01-appb-I000005
     請求項9に記載の運動解析装置。
     ここで、
     速度ツイストは、並進速度と回転速度をまとめたベクトルであり、
     Gi-1,iは、i-1番目の剛体リンクとi番目の柔軟リンクないし柔軟リンクのセグメントとの座標変換を表す行列である。
    In the forward direction calculation, the inverse kinematics means calculates the velocity twist η i of the i-1st rigid link and the i-th flexible link or the flexible link at the connection part between the rigid link and the flexible link using the following formula. the velocity twist η i-1 of the segment of and twist velocity conversion means for performing the transformation of
    Figure JPOXMLDOC01-appb-I000005
    The motion analysis device according to claim 9.
    here,
    Velocity twist is a vector that combines translational velocity and rotational velocity,
    G i-1,i is a matrix representing coordinate transformation between the i-1th rigid link and the i-th flexible link or segment of the flexible link.
  11.  前記逆動力学手段は、順方向計算において、剛体リンクと柔軟リンクの接続部において、i-1番目剛体リンクの加速度ツイストη iと、i番目の柔軟リンクないし柔軟リンクのセグメントの加速度ツイストη i-1と、の変換を実行するツイスト加速度変換手段を含んでいる、
     請求項10に記載の運動解析装置。
     ここで、加速度ツイストは並進加速度と回転加速度をまとめたベクトルである。
    In the forward calculation, the inverse dynamics means calculates the acceleration twist η · i of the i-1st rigid link and the acceleration twist η of the i-th flexible link or segment of the flexible link at the connection portion between the rigid link and the flexible link. - includes twist acceleration conversion means for performing the conversion of i-1 ;
    The motion analysis device according to claim 10.
    Here, the acceleration twist is a vector that combines translational acceleration and rotational acceleration.
  12.  前記逆動力学手段は、逆方向計算において、剛体リンクと柔軟リンクの接続部において、以下の式を用いて、注目しているリンクに接続されたリンクの並進力および回転モーメントを表すレンチベクトルFiと、注目しているリンクの並進力および回転モーメントを表すレンチベクトルFi-1と、の変換を実行するレンチベクトル変換手段を含んでいる、
    Figure JPOXMLDOC01-appb-I000006
     請求項9に記載の運動解析装置。
     ここで、
     Gi-1,iは、レンチベクトルFiと、レンチベクトルFi-1と、の座標変換を表す行列である。
    In the reverse direction calculation, the inverse dynamics means calculates a wrench vector F representing the translational force and rotational moment of the link connected to the link of interest using the following formula at the connection between the rigid link and the flexible link. i and a wrench vector F i-1 representing the translational force and rotational moment of the link of interest;
    Figure JPOXMLDOC01-appb-I000006
    The motion analysis device according to claim 9.
    here,
    G i-1,i is a matrix representing coordinate transformation between wrench vector F i and wrench vector F i-1 .
  13.  浮動ベースリンクを含む複数の剛体リンクからなる剛体リンク系と、少なくとも1つの柔軟リンクと、から構成されるハイブリッドリンク系の対象の運動解析を実行するために、
     コンピュータを、請求項7~12いずれか1項に記載の記憶部、処理部として機能させるように構成されたコンピュータプログラム。
    In order to perform motion analysis of a target of a hybrid link system consisting of a rigid link system consisting of a plurality of rigid links including a floating base link and at least one flexible link,
    A computer program configured to cause a computer to function as the storage unit and processing unit according to any one of claims 7 to 12.
PCT/JP2023/020000 2022-05-30 2023-05-30 Motion analysis method and device WO2023234279A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-087347 2022-05-30
JP2022087347 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023234279A1 true WO2023234279A1 (en) 2023-12-07

Family

ID=89025063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020000 WO2023234279A1 (en) 2022-05-30 2023-05-30 Motion analysis method and device

Country Status (1)

Country Link
WO (1) WO2023234279A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007213015A (en) * 2006-01-12 2007-08-23 Toyota Central Res & Dev Lab Inc Method of constructing musculo-skeletal model, method of estimating human body stress/distortion, program, and recording medium
JP2020042406A (en) * 2018-09-07 2020-03-19 国立大学法人 筑波大学 Arithmetic unit and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007213015A (en) * 2006-01-12 2007-08-23 Toyota Central Res & Dev Lab Inc Method of constructing musculo-skeletal model, method of estimating human body stress/distortion, program, and recording medium
JP2020042406A (en) * 2018-09-07 2020-03-19 国立大学法人 筑波大学 Arithmetic unit and program

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HASEGAWA SHOICHI, MITAKE HIRONORI, TAZAKI YUICHI: "Springhead: A Physics Engine for Motion and Behavior", JOURNAL OF THE ROBOTICS SOCIETY OF JAPAN, vol. 30, no. 9, 1 November 2012 (2012-11-01), pages 841 - 848, XP093117505, DOI: 10.7210/jrsj.30.841 *
HIDEFUMI WAKAMATSU, TSUNENORI KATO, AKIRA TSUMAYA, KEIICHI SHIRASE, EIJI ARAI, SHINICHI HIRAI: "Modeling of Linear Object Deformation Including Knotted Shape", TVRSJ. TRANSACTIONS OF THE VIRTUAL REALITY SOCIETY OF JAPAN, vol. 8, no. 3, 2 October 2003 (2003-10-02), pages 287 - 294, XP093117509, DOI: 10.18974/tvrsj.8.3_287 *
ONG CHEA XIN, YURIKA NOMURA, JUN ISHIKAWA: "2A2-L11. Attitude Control of Jumping Robot with Bending-Stretching Mechanism ", PROCEEDINGS OF THE 2018 JSME CONFERENCE ON ROBOTICS AND MECHATRONICS, KITAKYUSHU, JAPAN, 1 November 2018 (2018-11-01) - 5 June 2018 (2018-06-05), Kitakyushu, Japan, pages 1 - 4, XP093117501, DOI: 10.1299/jsmermd.2018.2A2-L11 *
SEGUCHI, JUNICHIRO ET AL.: "Feet force control of a quadraped robot with elastic actuators", PROCEEDINGS OF THE 60TH ANNUAL CONFERENCE OF THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS; KYOTO, JAPAN; MAY 25-27, 2016, ISCIE, JP, 25 May 2016 (2016-05-25) - 27 May 2016 (2016-05-27), JP, XP009551532 *

Similar Documents

Publication Publication Date Title
EP3751434A2 (en) Information processing device, information processing method, and storage medium
CA2418727C (en) Method for generating a motion of a human type link system
JP3972854B2 (en) Robot motion control device
JP4764431B2 (en) System and method for estimating joint loads using a closed-form dynamics approach
JP5229796B2 (en) Muscle tension database construction method, muscle tension calculation method and apparatus using muscle tension database
WO2009147875A1 (en) Mechanical parameter identification method
JP4440759B2 (en) Method for estimating floor reaction force of biped walking object
EP3296068B1 (en) Robot behavior generation method
Wagner et al. Assessing the importance of motion dynamics for ergonomic analysis of manual materials handling tasks using the AnyBody Modeling System
Danilov et al. Zmp trajectory from human body locomotion dynamics evaluated by kinect-based motion capture system
WO2023234279A1 (en) Motion analysis method and device
Bajrami et al. Kinematics and dynamics modelling of the biped robot
Yunardi et al. Robotic leg design to analysis the human leg swing from motion capture
Abedi et al. Modelling and Simulation of Human-like Movements for Humanoid Robots.
Chung et al. Optimization-based dynamic 3D human running prediction: effects of foot location and orientation
Bravo M et al. Trajectory generation from motion capture for a planar biped robot in swing phase
González-Islas et al. Biped gait analysis based on forward kinematics modeling using quaternions algebra
Shimane et al. Application of piece-wise constant strain model to flexible deformation calculation of sports prosthesis and stiffness estimation
Valle et al. Computed-torque control of a simulated bipedal robot with locomotion by reinforcement learning
JP5586015B2 (en) Motion and posture generation method and apparatus using inverse kinematics
Mummolo et al. Whole-body balancing criteria for biped robots in sagittal plane
Absalan et al. Human Body Modeling for Ground Contact Force Estimation of RoboWalk
Homma et al. Utilization of Minimum Set of Inertial Parameters Identification Method Using Free Vibration Measurement to Improve the Accuracy of Ground Reaction Force Estimation
Kutilek et al. Study of human walking by SimMechanics
JP6893353B2 (en) Joint load estimation method and system using musculoskeletal model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23816036

Country of ref document: EP

Kind code of ref document: A1