WO2023229239A1 - Method for predicting and analyzing side effects of vaccine by using artificial intelligence learning model based on vaccine subject variable information, and apparatus therefor - Google Patents

Method for predicting and analyzing side effects of vaccine by using artificial intelligence learning model based on vaccine subject variable information, and apparatus therefor Download PDF

Info

Publication number
WO2023229239A1
WO2023229239A1 PCT/KR2023/005635 KR2023005635W WO2023229239A1 WO 2023229239 A1 WO2023229239 A1 WO 2023229239A1 KR 2023005635 W KR2023005635 W KR 2023005635W WO 2023229239 A1 WO2023229239 A1 WO 2023229239A1
Authority
WO
WIPO (PCT)
Prior art keywords
side effect
vaccine
information
learning
model
Prior art date
Application number
PCT/KR2023/005635
Other languages
French (fr)
Korean (ko)
Inventor
장은찬
이채원
이상준
송규선
사순옥
홍명희
한현욱
Original Assignee
차의과학대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 차의과학대학교 산학협력단 filed Critical 차의과학대학교 산학협력단
Publication of WO2023229239A1 publication Critical patent/WO2023229239A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/80ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for detecting, monitoring or modelling epidemics or pandemics, e.g. flu

Definitions

  • the present invention relates to a method and device for predicting and analyzing vaccine side effects. More specifically, the present invention relates to a method and device for predicting and analyzing vaccine side effects using an artificial intelligence learning model based on vaccine subject variable information.
  • coronavirus disease 19 is a respiratory infectious disease that first broke out in Wuhan, China in December 2019 and has since spread around the world.
  • the World Health Organization (WHO) announced on January 9, 2020, The pathogen was confirmed on the 1st, revealing that the cause of the pneumonia was a new type of coronavirus (SARS-CoV-2, named on February 11 by the International Committee on Taxonomy of Viruses).
  • SARS-CoV-2 coronavirus
  • COVID-19 is transmitted when an infected person's droplets penetrate the respiratory tract or the mucous membranes of the eyes, nose, and mouth. If infected, an incubation period of approximately 2 to 14 days (estimated) is followed by a fever (37.5 degrees Celsius). ) and respiratory symptoms such as coughing or difficulty breathing, and pneumonia are the main symptoms, but cases of asymptomatic infection are also rare.
  • the present invention was designed to solve the problems described above. It can quickly predict the type and frequency of side effects of various vaccines according to the individual's disease or variable characteristics and further provide customized recommendations for the type of vaccine with a low risk of side effects for each individual.
  • the purpose is to provide a vaccine side effect prediction analysis method and device using an artificial intelligence learning model based on vaccine subject variable information that can quickly and accurately predict vaccine side effects for each individual.
  • a method according to an embodiment of the present invention for solving the problems described above is a method of operating a vaccine side effect prediction and analysis device, comprising: acquiring subject variable information of a person subject to vaccine side effect prediction analysis; Obtaining side effect variable information corresponding to the subject variable information; Inputting the subject variable information and the side effect variable information into a pre-built vaccine side effect variable learning-based artificial intelligence model to obtain an estimated vaccine side effect classification model and probability information; and outputting vaccine side effect prediction analysis information based on the estimated vaccine side effect classification model and probability information.
  • An apparatus for solving the problems described above is a vaccine side effect prediction and analysis device, comprising: a subject variable information processor that acquires subject variable information of a subject of vaccine side effect prediction analysis; a side effect variable information processing unit that acquires side effect variable information corresponding to the subject variable information; An analysis processing unit that inputs the subject variable information and the side effect variable information into a pre-built vaccine side effect variable learning-based artificial intelligence model to obtain an estimated vaccine side effect classification model and probability information; and a prediction result output unit that outputs vaccine side effect prediction analysis information based on the estimated vaccine side effect classification model and probability information.
  • the subject variable information and side effect variable information of the vaccine side effect prediction analysis subject are input into a pre-built vaccine side effect variable learning-based artificial intelligence model to obtain an estimated vaccine side effect classification model and probability information, It is possible to provide predictive analysis information for vaccine side effects based on an estimated vaccine side effect classification model and probability information, and thus, predictive analysis of vaccine side effects can be performed.
  • the present invention it is possible to provide a means for testing vaccine side effects that enables simple and accessible initial diagnosis without a separate biological test, and the types and frequencies of side effects of various vaccines according to individual diseases or variable characteristics. It is possible to provide a vaccine side effect prediction and analysis method and device using an artificial intelligence learning model based on vaccine subject variable information that can quickly predict and further recommend the type of vaccine with a low risk of side effects for each individual.
  • Figure 1 is a block diagram specifically illustrating a vaccine side effect prediction and analysis device according to an embodiment of the present invention.
  • Figure 2 is a flowchart for explaining the operation method of the vaccine side effect prediction and analysis device according to an embodiment of the present invention.
  • FIGS 3 and 4 are flowcharts to explain the process of building an artificial intelligence learning model according to an embodiment of the present invention.
  • 5 to 10 are graphs showing performance test analysis results of an artificial intelligence learning model according to an embodiment of the present invention.
  • block diagrams herein should be understood as representing a conceptual view of an example circuit embodying the principles of the invention.
  • all flow diagrams, state transition diagrams, pseudo-code, etc. are understood to represent various processes that can be substantially represented on a computer-readable medium and are performed by a computer or processor, whether or not the computer or processor is explicitly shown. It has to be.
  • processor control, or similar concepts should not be construed as exclusively referring to hardware capable of executing software, and should not be construed as referring exclusively to hardware capable of executing software, including, without limitation, digital signal processor (DSP) hardware, and ROM for storing software. It should be understood as implicitly including ROM, RAM, and non-volatile memory. Other hardware for public use may also be included.
  • DSP digital signal processor
  • Figure 1 is a block diagram specifically illustrating a vaccine side effect prediction and analysis device according to an embodiment of the present invention.
  • the vaccine side effect prediction and analysis device 100 includes a vaccine subject variable information processing unit 110, a side effect variable information processing unit 120, an analysis processing unit 130, and an artificial intelligence learning-based It includes a model building unit 140 and a prediction result output unit 140.
  • the vaccine side effect prediction and analysis device 100 described in this specification includes personal computers (PCs), laptop computers, mobile phones, tablet PCs, personal digital assistants (PDAs), PMP (Portable Multimedia Player), etc. may be included.
  • PCs personal computers
  • PDAs personal digital assistants
  • PMP Portable Multimedia Player
  • the present invention is not limited to the above device classification and may also include devices such as a server system that can enhance and expand data processing, storage, and management functions.
  • the vaccine side effect prediction and analysis device 100 acquires subject variable information and side effect variable information of the analysis subject from an external mobile terminal, a server, or directly input user input information,
  • the subject variable information and the side effect variable information are input into a pre-built artificial intelligence model based on vaccine side effect variable learning to obtain a vaccine side effect classification prediction model and probability information, and a vaccine based on the vaccine side effect classification prediction model and probability information.
  • It may be an analysis device that outputs side effect analysis information.
  • the vaccine side effect analysis information output from the vaccine side effect prediction and analysis device 100 may include recommendation guidance information corresponding to the predicted vaccine side effect, and may be displayed through the above-mentioned mobile terminal, server, or separate display device. can be printed.
  • the recommended guidance information corresponding to the predicted vaccine side effects may be provided through a system such as a server provided by a health care center, or may be provided through a mobile terminal, and for this purpose, the vaccine side effect prediction analysis device 100 , can be connected to a mobile terminal or server system through a wired/wireless network.
  • Devices or terminals connected to the network can communicate with each other through a preset network channel and may be equipped with a communication module that supports each protocol for communication.
  • the network includes Local Area Network (LAN), Wide Area Network (WAN), Value Added Network (VAN), Personal Area Network (PAN), and Mobile Network (Mobile Area Network). It can be implemented as any type of wired/wireless network, such as a radio communication network or satellite communication network.
  • LAN Local Area Network
  • WAN Wide Area Network
  • VAN Value Added Network
  • PAN Personal Area Network
  • Mobile Network Mobile Area Network
  • the vaccine subject variable information processing unit 110 can perform information acquisition processing to obtain the subject variables of the analysis subject, and the side effect variable information processing unit 120 can perform the acquisition processing of variable information related to side effects. there is.
  • the subject variable information of the subject obtained from the vaccine subject variable information processing unit 110 is information that can be input in relation to the subject, for example, the subject's gender information, body information (e.g., age information, weight information , height information), disease information, disease history information, health status information, lifestyle information (e.g., drinking status information and drinking frequency information, smoking status information and smoking frequency information, eating habits information, exercise status information, and exercise frequency information etc.), medication information (e.g., information on the type of drug consumed, dosage information and frequency information, etc.), and biomarker information, etc., and preferably, gender information and age information are essential. may be included. This can be preprocessed as subject variable information for predicting a vaccine side effect model.
  • body information e.g., age information, weight information , height information
  • disease information e.g., disease history information, health status information, lifestyle information (e.g., drinking status information and drinking frequency information, smoking status information and smoking frequency information, eating habits information, exercise status information, and exercise frequency information etc.
  • the side effect variable information obtained from the side effect variable information processing unit 120 includes vaccine manufacturer information, vaccine type information, vaccination order information, vaccination site information, vaccination route information, information on whether side effects that appear after vaccination have been completely cured, Information on the period until side effects occurred after vaccination, information on whether life was threatened due to side effects after vaccination, information on whether people visited the hospital due to side effects after vaccination, information on the period of stay in the hospital due to side effects after vaccination , It may include at least one of information on whether a disability occurred due to a side effect after vaccination, and preferably, vaccine manufacturer information, vaccine type information, and vaccination order information may be necessarily included. This can be preprocessed as side effect variable information for predicting a vaccine side effect model.
  • the analysis processing unit 130 inputs the vaccine subject variable information and the side effect variable information into an artificial intelligence model based on vaccine side effect variable learning pre-built by the learning process of the artificial intelligence learning-based model construction unit 140. , predicted vaccine side effect classification model information and probability information can be obtained.
  • the prediction result output unit 140 may output vaccine side effect prediction analysis information based on the vaccine side effect classification model information and probability information. Depending on the prediction result, the output unit 140 may output various types of vaccine guidance interfaces including the vaccine side effect prediction analysis information using a mobile terminal, server, or user display device.
  • the artificial intelligence learning-based model construction unit 140 configures the vaccine subject variable information and the side effect variable information as input values when constructing an artificial intelligence model based on learning the vaccine subject variable information and the side effect variable information.
  • Artificial intelligence-based machine learning can be performed using a learning data set that consists of an appropriate vaccine side effect model and vaccine side effect model classification information and probability information representing the probability as output values.
  • the artificial intelligence learning-based model construction unit 140 may preprocess the vaccine subject variable information and the side effect variable information according to a standardization algorithm.
  • the artificial intelligence learning-based model construction unit 140 uses the vaccine subject variable information and the side effect variable information using a tree-based pipeline optimization tool ( Optimization can be done using TPOT (Tree-based Pipeline Optimization Tool).
  • the artificial intelligence learning-based model construction unit 140 selectively combines one or more of the vaccine subject variable information and the side effect variable information and repeatedly processes the model performance test, thereby creating the vaccine subject variable information and the Among the side effect variable information, a plurality of learning variables without performance degradation can be determined as the final model input variables. For example, five variables selected from the vaccine subject variable information can be determined as model input variables, and depending on the combination, various input variable model combinations, such as six or seven, can be configured.
  • the artificial intelligence learning-based model construction unit 140 sets model input variables obtained from the vaccine subject variable information and the side effect variable information as input values, and the subject's vaccine side effect model classification information corresponding to the input values. By setting the probability information as the output value, artificial intelligence model learning based on gradient boosting learning can be performed.
  • examples of input variables and output variables used to build a model in the artificial intelligence learning-based model building unit 140 according to an embodiment of the present invention are as follows.
  • type information can be assigned to each variable item, and the output variable includes side effect model classification determined according to each input variable and probability information that the subject falls into each side effect model classification. It can be included.
  • probability information may be configured as probability level information.
  • the artificial intelligence model based on gradient boosting learning which is constructed according to these input and output variables, may be a model learned using a parallel processing-based extreme gradient boosting (XGBoost, eXtreme Gradient Boosting) algorithm.
  • XGBoost parallel processing-based extreme gradient boosting
  • eXtreme Gradient Boosting extreme gradient boosting
  • training scale weights (scale_pos_weight) for each level of vaccine side effect model classification information and probability information may be appropriately set to adjust classification imbalance (imbalance classification). More detailed learning model construction and operation methods will be described in more detail later.
  • Figure 2 is a flowchart for explaining the operation method of the vaccine side effect prediction and analysis device according to an embodiment of the present invention
  • Figures 3 and 4 are flowcharts for explaining the construction process of an artificial intelligence learning model according to an embodiment of the present invention. am.
  • the vaccine side effect prediction and analysis device 100 preprocesses the vaccine side effect variables and vaccine subject variables as parameters of the learning model to obtain the vaccine side effect learning variables and vaccine subject learning variables. Obtain (S101).
  • the vaccine side effect prediction analysis device 100 sets the vaccine side effect learning variable and the subject learning variable as input values, sets the subject's estimated vaccine side effect classification model and probability corresponding thereto as output values, and adjusts the weight.
  • the vaccine side effect prediction and analysis device 100 preprocesses the subject input information of the analysis subject and configures subject variable information and side effect variable information of the analysis subject (S105).
  • the vaccine side effect prediction and analysis device 100 inputs the subject variable information and side effect variable information of the analysis subject into the constructed artificial intelligence model to obtain an estimated vaccine side effect classification model and probability information of the analysis subject (S107).
  • the vaccine side effect prediction and analysis device 100 provides vaccine side effect guidance information tailored to the analysis subject using a vaccine side effect classification model and probability information (S107).
  • the vaccine side effect prediction and analysis device 100 can provide various customized vaccine guidance services based on vaccine side effect analysis information to a mobile terminal or server system.
  • the learning-based artificial intelligence model according to an embodiment of the present invention is the above-mentioned As such, it can be pre-built using the parallel processing-based extreme gradient boosting (XGBoost, eXtreme Gradient Boosting) algorithm.
  • XGBoost parallel processing-based extreme gradient boosting
  • eXtreme Gradient Boosting eXtreme Gradient Boosting
  • the XGBoost algorithm used for learning is a machine learning algorithm that uses gradient boosting tree algorithm technology, and combines a plurality of tree models generated according to learning variables. This is an algorithm known to make the final decision by correcting the errors of the previous tree model when creating tree models (this is called boosting), and at this time, using the gradient descent algorithm to minimize the loss.
  • XGBoost can handle missing values using a sparsity-aware split finding method and has the advantage of accelerating calculation speed using GPU.
  • variable values classified for each level may be composed of variable values classified for each level.
  • the estimated vaccine side effect classification model and probability information may fall into any one of the first level, less than 30%, the second level, less than 60%, and the third level, less than 100%, Accordingly, any one of the three levels can be selectively assigned.
  • the output result may be determined as a positive or negative result according to the estimated vaccine side effect classification model and probability information.
  • the threshold for each level for a positive or negative result of the level may be set in advance, and the threshold may be set differently for each subgroup, which will be described later.
  • At least some of the learning variables according to an embodiment of the present invention may be normalized.
  • standardization processing may be performed to remove the mean and readjust to the unit variance.
  • the standardization process for this can be explained as Equation 1.
  • z represents the normalized input value
  • x is the original input value
  • u is the average value of the input values
  • s represents the standard deviation of the input values
  • the artificial intelligence learning-based model construction unit 140 sets the subject variable information and side effect variable information preprocessed according to standardization using Equation 1 as input values, and the above-mentioned estimated vaccine side effects It constructs a learning data set that sets the classification model and probability information prediction level as output values, performs a learning process based on the gradient boosting tree algorithm using actual clinical data, and repeatedly improves the performance of result prediction to arrive at the optimal model. can be built.
  • the artificial intelligence learning-based model construction unit 140 repeatedly processes model performance tests using the subject learning variables and side effect learning variables, and selects a plurality of learning variables that show the best performance among the subject learning variables and side effect learning variables. You can perform input variable selection optimization to determine these as model input variables.
  • the artificial intelligence learning-based model building unit 140 can select feature variables from the subject learning variables and side effect learning variables, and for this purpose, the artificial intelligence learning-based model building unit ( 140) removes the least important variable among the model variables according to the feature importance value calculated from the You can remove any variables that are not present and perform the performance test again. Additionally, the artificial intelligence learning-based model construction unit 140 repeats this process until there is no performance degradation when compared to the initial model, thereby reducing the number of input variables required for input. According to a test according to an embodiment of the present invention, it was confirmed that there was no deterioration in model performance from the initial 12 input variables to 7.
  • the artificial intelligence learning-based model building unit 140 converts the hyperparameters of XGBoost into the Tree-based Pipeline Optimization Tool (TPOT), an automated artificial intelligence tool. By optimizing, higher performance can be achieved. More specifically, TPOT is an automated machine learning tool for Python that uses genetic programming to optimize machine learning pipelines.
  • TPOT Tree-based Pipeline Optimization Tool
  • the scale positive weight (scale_pos_weight) variable is a variable that adjusts the imbalance when the output ratio is usually unbalanced in a binary classification model. It is a value adjusted by the output ratio of the training data, and is usually a large ratio. A value may be set by dividing the number of groups by the number of a small percentage of groups.
  • the artificial intelligence learning-based model building unit 140 can set the learning model for each level and its learning parameters differently, and in particular, adjust the scale positive weight (scale_pos_weight) variable to The imbalance between positive/negative output ratios for each level can be adjusted in advance.
  • scale_pos_weight scale positive weight
  • the learning model according to an embodiment of the present invention can be classified into one or more subgroups according to the characteristics of the input variables, and a different estimated vaccine side effect classification model can be determined corresponding to each subgroup, and corresponding Probability information can be determined, and by assigning a prediction level threshold corresponding to each probability information, the predictability of side effects can be processed to more accurately predict by model variation.
  • the subgroup may be divided into at least four groups depending on the probability level for each side effect model, and this is used to correct problems that may cause model prediction performance to deteriorate due to individual differences.
  • the analysis processing unit 130 determines the subgroup information classification of the estimated vaccine side effect classification model and sets a threshold for each model according to the subgroup information classification (S203).
  • the subgroup information classification may be classified and processed in the analysis processing unit 130 according to the estimated vaccine side effect classification model and probability information, as described above.
  • Figure 4 illustrates the classification process processed in step S203 in more detail.
  • at least six subgroup types can be set according to information about the input value.
  • subgroup information classification can be set according to whether the age information is 65 years or older, gender is male, and vaccine manufacturer is Pfizer, and each of the six types accordingly. Subgroups may be formed.
  • the analysis processing unit 130 may further perform specialized service processes to guide each subgroup classified by each estimated vaccine side effect classification model and each reference value of probability information. For example, the analysis processing unit 130 performs a first service process that provides action information in the event of respiratory-related side effects in men over 65 years of age, depending on individual characteristics and side effect subgroup classification, or performs a first service process that provides action information when a respiratory-related side effect occurs in a man aged 65 or older, or the heart rate when receiving the Pfizer vaccine. When a related side effect occurs, a process such as performing a second service process that provides action information may be performed.
  • the analysis processing unit 130 performs standardization processing of the input variables (S205).
  • the standardization process can be performed through Equation 1 described above, and as a result, standardization of input information is possible using the data used for learning.
  • the analysis processing unit 130 applies the standardized input information to the pre-trained artificial intelligence model, and according to the positive or negative information for each estimated vaccine side effect classification model and probability information level obtained as output information, the estimated vaccine Determine the side effect classification model and probability information (S209).
  • the analysis processing unit 130 generates information on the occurrence of vaccine side effects based on the threshold set corresponding to the previously determined subgroup type, the estimated vaccine side effect classification model, and the level probability information (S211).
  • the analysis processing unit 130 calculates the SHAP (SHapley Additive exPlanations) value and generates explanatory information explaining the contribution of each input variable corresponding to the prediction of the occurrence of vaccine side effects ( S213).
  • SHAP SHapley Additive exPlanations
  • the analysis processing unit 130 can configure vaccine side effect analysis result information, including an estimated vaccine side effect classification model and probability information, and explanatory information related to the degree to which the input value contributed, and output it to the prediction result output unit 140. There is (S215).
  • the analysis processing unit 130 calculates the contribution of each input variable corresponding to the subject variable information and side effect variable information to SHAP (SHapley Additive). exPlanations) algorithm calculation, generate analysis information based on the contribution of each input variable, and include it in the vaccine side effect analysis information.
  • SHAP SHapley Additive
  • 5 to 10 are graphs showing performance test analysis results of an artificial intelligence learning model according to an embodiment of the present invention.
  • Figures 5 and 10 are learning data, which are the results of learning and internal verification using 9,267 cases using the Vaccine Adverse Event Reporting System (VAERS) data, and are the results of selection applicable to the general population. Indicates the results of inspection and verification.
  • VAERS Vaccine Adverse Event Reporting System
  • the estimated vaccine side effect classification model was constructed to select an analysis algorithm for each side effect model using an artificial intelligence learning model according to an embodiment of the present invention, and was processed to selectively determine a model with excellent performance.
  • the artificial intelligence model used in the test analysis was selectively constructed from Decision Tree, Random Foreset, Etra Trees, LightGBM, It has been done.
  • the graphs shown in FIGS. 5 to 10 are ROC graphs showing the prediction performance for each model in Table 3, and the final performance result is that the AUC (Area under the Curve) records a maximum of 0.94, and the accuracy records a maximum of 0.94. By recording 0.88, it can be confirmed that reliable model construction and operation is possible according to the accumulation of learning data for each model.
  • the vaccine side effect prediction analysis device 100 and its operation method according to the embodiment of the present invention separate Even without biological testing, vaccine side effects can be quickly and easily predicted by simply entering subject variable information and side effect variable information.
  • the present invention enables prediction and monitoring of customized vaccine side effects depending on the type of vaccine or the type of disease of chronically ill patients, and not only reduces socioeconomic costs due to vaccine side effects, but also enables analysis using artificial intelligence. Through this, as learning data accumulates, more accurate services and device operations can be provided.
  • the method according to the present invention described above can be produced as a program to be executed on a computer and stored in a computer-readable recording medium.
  • Examples of computer-readable recording media include ROM, RAM, CD-ROM, and magnetic tape. , floppy disks, optical data storage devices, etc.
  • the computer-readable recording medium is distributed in a computer system connected to a network, so that computer-readable code can be stored and executed in a distributed manner. And, functional programs, codes, and code segments for implementing the method can be easily deduced by programmers in the technical field to which the present invention pertains.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Evolutionary Computation (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

An operation method for a vaccine side effect prediction and analysis apparatus, according to an embodiment of the present invention, comprises the steps of: acquiring subject variable information about vaccine side effect prediction and analysis subjects; acquiring side effect variable information corresponding to the subject variable information; acquiring an estimated vaccine side effect classification model and probability information by inputting the subject variable information and the side effect variable information into a pre-constructed vaccine side effect variable learning-based artificial intelligence model; and outputting vaccine side effect prediction and analysis information on the basis of the estimated vaccine side effect classification model and the probability information.

Description

백신 대상자 변수 정보 기반의 인공지능 학습 모델을 이용한 백신 부작용 예측 분석 방법 및 그 장치Vaccine side effect prediction analysis method and device using an artificial intelligence learning model based on vaccine subject variable information
본 발명은 백신 부작용 예측 분석 방법 및 그 장치에 관한 것이다. 보다 구체적으로, 본 발명은 백신 대상자 변수 정보 기반의 인공지능 학습 모델을 이용한 백신 부작용 예측 분석 방법 및 그 장치에 관한 것이다.The present invention relates to a method and device for predicting and analyzing vaccine side effects. More specifically, the present invention relates to a method and device for predicting and analyzing vaccine side effects using an artificial intelligence learning model based on vaccine subject variable information.
현재 전 세계적으로 예측하기 어려운 새로운 타입의 신종 바이러스들이 발현되고 있으며, 다양한 변이들도 출현되어 지속적으로 예방 백신 공급 부족 사태가 발생하고 있으며, 이에 수반하여 신속한 백신 개발이 지속적으로 요구되고 있다.Currently, new types of new viruses that are difficult to predict are emerging around the world, and various mutations are also emerging, resulting in a continuous shortage of preventive vaccine supply. As a result, rapid vaccine development is continuously required.
특히, 코로나바이러스감염증-19 (corona virus disease 19, COVID-19)는 2019년 12월 중국 우한에서 처음 발생한 뒤 전 세계로 확산된 호흡기 감염질환으로, 세계보건기구(WHO)가 2020년 1월 9일 해당 폐렴의 원인이 새로운 유형의 코로나바이러스(SARS-CoV-2, 국제바이러스분류위원회 2월 11일 명명)라고 밝히면서 병원체가 확인되었다. 코로나바이러스감염증-19는 감염자의 비말(침방울)이 호흡기나 눈·코·입의 점막으로 침투될 때 전염된다고 알려져 있으며, 감염되면 약 2~14일(추정)의 잠복기를 거친 뒤 발열(37.5도) 및 기침이나 호흡곤란 등 호흡기 증상,폐렴이 주증상으로 나타나지만 무증상 감염 사례도 드물게 나오고 있다.In particular, coronavirus disease 19 (COVID-19) is a respiratory infectious disease that first broke out in Wuhan, China in December 2019 and has since spread around the world. The World Health Organization (WHO) announced on January 9, 2020, The pathogen was confirmed on the 1st, revealing that the cause of the pneumonia was a new type of coronavirus (SARS-CoV-2, named on February 11 by the International Committee on Taxonomy of Viruses). It is known that COVID-19 is transmitted when an infected person's droplets penetrate the respiratory tract or the mucous membranes of the eyes, nose, and mouth. If infected, an incubation period of approximately 2 to 14 days (estimated) is followed by a fever (37.5 degrees Celsius). ) and respiratory symptoms such as coughing or difficulty breathing, and pneumonia are the main symptoms, but cases of asymptomatic infection are also rare.
그러나, 백신의 신속한 개발은 그 부작용에 대한 우려도 함께 수반되고 있다. 최근 COVID-19 백신의 경우, 개인의 기저질환에 따라 당뇨환자, 고지혈증 환자 등의 만성질환자들은 백신 부작용 위험에 우려도가 높은 실정이다.However, the rapid development of vaccines is also accompanied by concerns about their side effects. In the case of the recent COVID-19 vaccine, chronic disease patients such as diabetics and hyperlipidemia patients, depending on the individual's underlying disease, are highly concerned about the risk of vaccine side effects.
이에 반해, 현재 기술은 백신 접종 후 부작용에 대해 생물학적 반응을 검사하는 수준에 머물러 있으며, 이는 생체시료를 채취하여 RNA의 발현량의 비 및 염증성 사이토카인의 발현량의 상관관계로 백신 부작용을 예측하는 방법으로서, 매우 번거롭고 많은 시간과 비용이 소요되는 단점이 있다. In contrast, current technology remains at the level of testing biological responses to side effects after vaccination, which involves collecting biological samples and predicting vaccine side effects based on the correlation between the expression level of RNA and the expression level of inflammatory cytokines. As a method, it has the disadvantage of being very cumbersome and requiring a lot of time and money.
본 발명은 상기한 바와 같은 문제점을 해결하고자 안출된 것으로, 개인의 질환이나 변수 특성에 따른 다양한 백신의 부작용 종류와 빈도를 신속히 예측하고 더 나아가 개인별로 부작용 위험도가 낮은 백신의 종류를 맞춤형으로 권고할 수 있도록 하기 위해, 각 개인별 백신 부작용을 빠르고 정확하게 예측할 수 있는 백신 대상자 변수 정보 기반의 인공지능 학습 모델을 이용한 백신 부작용 예측 분석 방법 및 그 장치를 제공하는데 그 목적이 있다.The present invention was designed to solve the problems described above. It can quickly predict the type and frequency of side effects of various vaccines according to the individual's disease or variable characteristics and further provide customized recommendations for the type of vaccine with a low risk of side effects for each individual. The purpose is to provide a vaccine side effect prediction analysis method and device using an artificial intelligence learning model based on vaccine subject variable information that can quickly and accurately predict vaccine side effects for each individual.
상기한 바와 같은 과제를 해결하기 위한 본 발명의 실시 예에 따른 방법은, 백신 부작용 예측 분석 장치의 동작 방법에 있어서, 백신 부작용 예측 분석 대상자의 대상자 변수 정보를 획득하는 단계; 상기 대상자 변수 정보에 대응하는 부작용 변수 정보를 획득하는 단계; 상기 대상자 변수 정보 및 상기 부작용 변수 정보를, 사전 구축된 백신 부작용 변수 학습 기반 인공지능 모델에 입력하여, 추정 백신 부작용 분류 모델 및 확률 정보를 획득하는 단계; 및 상기 추정 백신 부작용 분류 모델 및 확률 정보에 기초한 백신 부작용 예측 분석 정보를 출력하는 단계를 포함한다.A method according to an embodiment of the present invention for solving the problems described above is a method of operating a vaccine side effect prediction and analysis device, comprising: acquiring subject variable information of a person subject to vaccine side effect prediction analysis; Obtaining side effect variable information corresponding to the subject variable information; Inputting the subject variable information and the side effect variable information into a pre-built vaccine side effect variable learning-based artificial intelligence model to obtain an estimated vaccine side effect classification model and probability information; and outputting vaccine side effect prediction analysis information based on the estimated vaccine side effect classification model and probability information.
상기한 바와 같은 과제를 해결하기 위한 본 발명의 실시 예에 따른 장치는, 백신 부작용 예측 분석 장치에 있어서, 백신 부작용 예측 분석 대상자의 대상자 변수 정보를 획득하는 대상자 변수 정보 처리부; 상기 대상자 변수 정보에 대응하는 부작용 변수 정보를 획득하는 부작용 변수 정보 처리부; 상기 대상자 변수 정보 및 상기 부작용 변수 정보를, 사전 구축된 백신 부작용 변수 학습 기반 인공지능 모델에 입력하여, 추정 백신 부작용 분류 모델 및 확률 정보를 획득하는 분석 처리부; 및 상기 추정 백신 부작용 분류 모델 및 확률 정보에 기초한 백신 부작용 예측 분석 정보를 출력하는 예측 결과 출력부를 포함한다.An apparatus according to an embodiment of the present invention for solving the problems described above is a vaccine side effect prediction and analysis device, comprising: a subject variable information processor that acquires subject variable information of a subject of vaccine side effect prediction analysis; a side effect variable information processing unit that acquires side effect variable information corresponding to the subject variable information; An analysis processing unit that inputs the subject variable information and the side effect variable information into a pre-built vaccine side effect variable learning-based artificial intelligence model to obtain an estimated vaccine side effect classification model and probability information; and a prediction result output unit that outputs vaccine side effect prediction analysis information based on the estimated vaccine side effect classification model and probability information.
본 발명의 실시 예에 따르면, 백신 부작용 예측 분석 대상자의 대상자 변수 정보와 부작용 변수 정보를 사전 구축된 백신 부작용 변수 학습 기반 인공지능 모델에 입력하여, 추정 백신 부작용 분류 모델 및 확률 정보를 획득하며, 상기 추정 백신 부작용 분류 모델 및 확률 정보에 기초한 백신 부작용 예측 분석 정보를 제공할 수 있게 되며, 이에 따른 백신 부작용의 예측 분석을 수행할 수 있게 된다.According to an embodiment of the present invention, the subject variable information and side effect variable information of the vaccine side effect prediction analysis subject are input into a pre-built vaccine side effect variable learning-based artificial intelligence model to obtain an estimated vaccine side effect classification model and probability information, It is possible to provide predictive analysis information for vaccine side effects based on an estimated vaccine side effect classification model and probability information, and thus, predictive analysis of vaccine side effects can be performed.
이에 따라, 본 발명의 실시 예에 따르면, 별도의 생물학적 검사 없이도, 간편하고 접근성 높은 초기 진단이 가능한 백신 부작용 검사 수단을 제공할 수 있으며, 개인의 질환이나 변수 특성에 따른 다양한 백신의 부작용 종류와 빈도를 신속히 예측하고 더 나아가 개인별로 부작용 위험도가 낮은 백신의 종류를 맞춤형으로 권고할 수 있는 백신 대상자 변수 정보 기반의 인공지능 학습 모델을 이용한 백신 부작용 예측 분석 방법 및 그 장치를 제공할 수 있게 된다.Accordingly, according to an embodiment of the present invention, it is possible to provide a means for testing vaccine side effects that enables simple and accessible initial diagnosis without a separate biological test, and the types and frequencies of side effects of various vaccines according to individual diseases or variable characteristics. It is possible to provide a vaccine side effect prediction and analysis method and device using an artificial intelligence learning model based on vaccine subject variable information that can quickly predict and further recommend the type of vaccine with a low risk of side effects for each individual.
도 1은 본 발명의 실시 예에 따른 백신 부작용 예측 분석 장치를 구체적으로 도시한 블록도이다.Figure 1 is a block diagram specifically illustrating a vaccine side effect prediction and analysis device according to an embodiment of the present invention.
도 2는 본 발명의 실시 예에 따른 백신 부작용 예측 분석 장치의 동작 방법을 설명하기 위한 흐름도이다.Figure 2 is a flowchart for explaining the operation method of the vaccine side effect prediction and analysis device according to an embodiment of the present invention.
도 3 및 도 4는 본 발명의 실시 예에 따른 인공지능 학습 모델의 구축 과정을 설명하기 위한 흐름도이다.Figures 3 and 4 are flowcharts to explain the process of building an artificial intelligence learning model according to an embodiment of the present invention.
도 5 내지 도 10은 본 발명의 실시 예에 따른 인공지능 학습 모델의 성능 테스트 분석 결과를 나타내는 그래프이다.5 to 10 are graphs showing performance test analysis results of an artificial intelligence learning model according to an embodiment of the present invention.
이하의 내용은 단지 본 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만 본 발명의 원리를 구현하고 본 발명의 개념과 범위에 포함된 다양한 장치와 방법을 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시 예들은 원칙적으로, 본 발명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이와 같이 특별히 열거된 실시 예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한다.The following merely illustrates the principles of the invention. Therefore, those skilled in the art will be able to invent various devices and methods that embody the principles of the present invention and are included in the concept and scope of the present invention, although not explicitly described or shown herein. In addition, all conditional terms and examples listed herein are, in principle, expressly intended only for the purpose of enabling the concept of the invention to be understood, and should be understood not as limiting to the examples and states specifically listed as such. do.
또한, 본 발명의 원리, 관점 및 실시 예들 뿐만 아니라 특정 실시 예를 열거하는 모든 상세한 설명은 이러한 사항의 구조적 및 기능적 균등물을 포함하도록 의도되는 것으로 이해되어야 한다. 또한 이러한 균등물들은 현재 공지된 균등물뿐만 아니라 장래에 개발될 균등물 즉 구조와 무관하게 동일한 기능을 수행하도록 발명된 모든 소자를 포함하는 것으로 이해되어야 한다.Additionally, it is to be understood that any detailed description reciting the principles, aspects and embodiments of the invention, as well as specific embodiments, is intended to encompass structural and functional equivalents thereof. In addition, these equivalents should be understood to include not only currently known equivalents but also equivalents developed in the future, that is, all elements invented to perform the same function regardless of structure.
따라서, 예를 들어, 본 명세서의 블록도는 본 발명의 원리를 구체화하는 예시적인 회로의 개념적인 관점을 나타내는 것으로 이해되어야 한다. 이와 유사하게, 모든 흐름도, 상태 변환도, 의사 코드 등은 컴퓨터가 판독 가능한 매체에 실질적으로 나타낼 수 있고 컴퓨터 또는 프로세서가 명백히 도시되었는지 여부를 불문하고 컴퓨터 또는 프로세서에 의해 수행되는 다양한 프로세스를 나타내는 것으로 이해되어야 한다.Accordingly, for example, the block diagrams herein should be understood as representing a conceptual view of an example circuit embodying the principles of the invention. Similarly, all flow diagrams, state transition diagrams, pseudo-code, etc. are understood to represent various processes that can be substantially represented on a computer-readable medium and are performed by a computer or processor, whether or not the computer or processor is explicitly shown. It has to be.
또한 프로세서, 제어 또는 이와 유사한 개념으로 제시되는 용어의 명확한 사용은 소프트웨어를 실행할 능력을 가진 하드웨어를 배타적으로 인용하여 해석되어서는 아니 되고, 제한 없이 디지털 신호 프로세서(DSP) 하드웨어, 소프트웨어를 저장하기 위한 롬(ROM), 램(RAM) 및 비휘발성 메모리를 암시적으로 포함하는 것으로 이해되어야 한다. 주지관용의 다른 하드웨어도 포함될 수 있다.Additionally, the clear use of terms such as processor, control, or similar concepts should not be construed as exclusively referring to hardware capable of executing software, and should not be construed as referring exclusively to hardware capable of executing software, including, without limitation, digital signal processor (DSP) hardware, and ROM for storing software. It should be understood as implicitly including ROM, RAM, and non-volatile memory. Other hardware for public use may also be included.
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 실시함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다.The above-described purpose, features and advantages will become clearer through the following detailed description in conjunction with the accompanying drawings, and accordingly, those skilled in the art will be able to easily implement the technical idea of the present invention. There will be. Additionally, in carrying out the present invention, if it is determined that a detailed description of known techniques related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description will be omitted.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in this application are only used to describe specific embodiments and are not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시 예를 보다 상세하게 설명하고자 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the attached drawings. In order to facilitate overall understanding when describing the present invention, the same reference numerals are used for the same components in the drawings, and duplicate descriptions for the same components are omitted.
도 1은 본 발명의 실시 예에 따른 백신 부작용 예측 분석 장치를 구체적으로 도시한 블록도이다.Figure 1 is a block diagram specifically illustrating a vaccine side effect prediction and analysis device according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시 예에 따른 백신 부작용 예측 분석 장치(100)는, 백신 대상자 변수 정보 처리부(110), 부작용 변수 정보 처리부(120), 분석 처리부(130), 인공지능 학습 기반 모델 구축부(140) 및 예측 결과 출력부(140)를 포함한다.Referring to FIG. 1, the vaccine side effect prediction and analysis device 100 according to an embodiment of the present invention includes a vaccine subject variable information processing unit 110, a side effect variable information processing unit 120, an analysis processing unit 130, and an artificial intelligence learning-based It includes a model building unit 140 and a prediction result output unit 140.
먼저, 본 명세서에서 설명되는 백신 부작용 예측 분석 장치(100)는, PC(personal computer), 노트북 컴퓨터(laptop computer), 휴대폰(Mobile phone), 태블릿 PC(Tablet PC), PDA(Personal Digital Assistants), PMP(Portable Multimedia Player) 등이 포함될 수 있다. 하지만, 본 발명은 상기 장치 구분에 한정되지 않고 데이터 처리 및 저장, 관리 기능을 고도화하여 확장할 수 있는 서버 시스템 등의 장치를 포함할 수도 있다.First, the vaccine side effect prediction and analysis device 100 described in this specification includes personal computers (PCs), laptop computers, mobile phones, tablet PCs, personal digital assistants (PDAs), PMP (Portable Multimedia Player), etc. may be included. However, the present invention is not limited to the above device classification and may also include devices such as a server system that can enhance and expand data processing, storage, and management functions.
그리고, 본 발명의 실시 예에 따른 백신 부작용 예측 분석 장치(100)는, 외부의 모바일 단말이나, 서버 또는 직접 입력되는 사용자 입력 정보로부터, 분석 대상자의 대상자 변수 정보와, 부작용 변수 정보를 획득하고, 상기 대상자 변수 정보 및 상기 부작용 변수 정보를, 사전 구축된 백신 부작용 변수 학습 기반 인공지능 모델에 입력하여, 백신 부작용 분류 예측 모델 및 확률 정보를 획득하고, 상기 백신 부작용 분류 예측 모델 및 확률 정보에 기초한 백신 부작용 분석 정보를 출력하는 분석 장치일 수 있다.In addition, the vaccine side effect prediction and analysis device 100 according to an embodiment of the present invention acquires subject variable information and side effect variable information of the analysis subject from an external mobile terminal, a server, or directly input user input information, The subject variable information and the side effect variable information are input into a pre-built artificial intelligence model based on vaccine side effect variable learning to obtain a vaccine side effect classification prediction model and probability information, and a vaccine based on the vaccine side effect classification prediction model and probability information. It may be an analysis device that outputs side effect analysis information.
여기서, 백신 부작용 예측 분석 장치(100)에서 출력되는 상기 백신 부작용 분석 정보는, 예측된 백신 부작용에 대응하는 권고 안내 정보를 포함할 수 있으며, 전술한 모바일 단말, 서버 또는 별도의 디스플레이 장치 등을 통해 출력될 수 있다. 예를 들어, 상기 예측된 백신 부작용에 대응하는 권고 안내 정보는 건강 관리센터에서 제공하는 서버 등의 시스템으로 제공되거나, 모바일 단말로 제공될 수 있으며, 이를 위해, 백신 부작용 예측 분석 장치(100)는, 유선/무선 네트워크를 통해 모바일 단말 또는 서버 시스템에 연결될 수 있다.Here, the vaccine side effect analysis information output from the vaccine side effect prediction and analysis device 100 may include recommendation guidance information corresponding to the predicted vaccine side effect, and may be displayed through the above-mentioned mobile terminal, server, or separate display device. can be printed. For example, the recommended guidance information corresponding to the predicted vaccine side effects may be provided through a system such as a server provided by a health care center, or may be provided through a mobile terminal, and for this purpose, the vaccine side effect prediction analysis device 100 , can be connected to a mobile terminal or server system through a wired/wireless network.
상기 네트워크에 연결된 장치 또는 단말은 사전 설정된 네트워크 채널을 통해 상호간 통신을 수행할 수 있으며, 통신을 위한 각각의 프로토콜을 지원하는 통신 모듈을 구비할 수 있다.Devices or terminals connected to the network can communicate with each other through a preset network channel and may be equipped with a communication module that supports each protocol for communication.
여기서 상기 네트워크는 근거리 통신망(Local Area Network; LAN), 광역 통신망(Wide Area Network; WAN), 부가가치 통신망(Value Added Network; VAN), 개인 근거리 무선통신(Personal Area Network; PAN), 이동 통신망(Mobile radio communication network) 또는 위성 통신망 등과 같은 모든 종류의 유/무선 네트워크로 구현될 수 있다.Here, the network includes Local Area Network (LAN), Wide Area Network (WAN), Value Added Network (VAN), Personal Area Network (PAN), and Mobile Network (Mobile Area Network). It can be implemented as any type of wired/wireless network, such as a radio communication network or satellite communication network.
이러한 백신 부작용 예측 분석 장치(100)의 백신 부작용 예측 분석 데이터 처리에 의해, 별도의 생물학적 검사 없이 대상자의 변수 정보 입력만으로도 백신 부작용의 예측을 가능하게 하는 바, 이를 구현하기 위해, 도 1을 참조하면, 먼저 백신 대상자 변수 정보 처리부(110)는 분석 대상자의 대상자 변수를 획득하기 위한 정보의 획득 처리를 수행할 수 있으며, 부작용 변수 정보 처리부(120)는 부작용과 관련된 변수 정보의 획득 처리를 수행할 수 있다.By processing the vaccine side effect prediction analysis data of the vaccine side effect prediction and analysis device 100, it is possible to predict vaccine side effects just by inputting the subject's variable information without a separate biological test. To implement this, see Figure 1. , First, the vaccine subject variable information processing unit 110 can perform information acquisition processing to obtain the subject variables of the analysis subject, and the side effect variable information processing unit 120 can perform the acquisition processing of variable information related to side effects. there is.
여기서, 백신 대상자 변수 정보 처리부(110)에서 획득되는 상기 대상자의 대상자 변수 정보는, 대상자와 연관하여 입력 가능한 정보로서, 예를 들어 대상자의 성별 정보, 신체 정보(예를 들어, 나이 정보, 체중 정보, 키 정보), 질환 정보, 질병이력 정보, 건강상태 정보, 생활습관 정보(예를 들어, 음주 여부 정보 및 음주 빈도 정보, 흡연 여부 정보 및 흡연 빈도 정보, 식습관 정보, 운동 여부 정보 및 운동 빈도 정보 등), 복용의약 정보(예를 들어, 섭취 약물의 종류 정보, 용량 정보 및 횟수 정보 등), 바이오 마커 정보 등의 다양한 변수 정보가 예시될 수 있으며, 바람직하게는 성별 정보 및 나이 정보가 필수적으로 포함될 수 있다. 이는 백신 부작용 모델 예측을 위한 대상자 변수 정보로서 전처리될 수 있다.Here, the subject variable information of the subject obtained from the vaccine subject variable information processing unit 110 is information that can be input in relation to the subject, for example, the subject's gender information, body information (e.g., age information, weight information , height information), disease information, disease history information, health status information, lifestyle information (e.g., drinking status information and drinking frequency information, smoking status information and smoking frequency information, eating habits information, exercise status information, and exercise frequency information etc.), medication information (e.g., information on the type of drug consumed, dosage information and frequency information, etc.), and biomarker information, etc., and preferably, gender information and age information are essential. may be included. This can be preprocessed as subject variable information for predicting a vaccine side effect model.
그리고, 부작용 변수 정보 처리부(120)에서 획득되는 부작용 변수 정보는, 백신 제조사 정보, 백신 타입 정보, 백신 접종 차수 정보, 백신 접종 부위 정보, 백신 접종 경로 정보, 백신 접종 후 나타난 부작용의 완치 여부 정보, 백신 접종 후 부작용 발생까지의 기간 정보, 백신 접종 후 부작용에 의해 생명의 위협을 느꼈는지 그 여부 정보, 백신 접종 후 부작용으로 인해 병원에 방문하였는지 그 여부 정보, 백신 접종 후 부작용으로 인해 병원에 머무른 기간 정보, 백신 접종 후 부작용으로 인해 장애가 발생하였는지 그 여부 정보 중 적어도 하나를 포함할 수 있으며, 바람직하게는 백신 제조사 정보, 백신 타입 정보, 백신 접종 차수 정보가 필수적으로 포함될 수 있다. 이는 백신 부작용 모델 예측을 위한 부작용 변수 정보로서 전처리될 수 있다.In addition, the side effect variable information obtained from the side effect variable information processing unit 120 includes vaccine manufacturer information, vaccine type information, vaccination order information, vaccination site information, vaccination route information, information on whether side effects that appear after vaccination have been completely cured, Information on the period until side effects occurred after vaccination, information on whether life was threatened due to side effects after vaccination, information on whether people visited the hospital due to side effects after vaccination, information on the period of stay in the hospital due to side effects after vaccination , It may include at least one of information on whether a disability occurred due to a side effect after vaccination, and preferably, vaccine manufacturer information, vaccine type information, and vaccination order information may be necessarily included. This can be preprocessed as side effect variable information for predicting a vaccine side effect model.
그리고, 분석 처리부(130)는, 상기 백신 대상자 변수 정보 및 상기 부작용 변수 정보를, 인공지능 학습 기반 모델 구축부(140)의 학습 프로세스에 의해 사전 구축된 백신 부작용 변수 학습 기반 인공지능 모델에 입력하여, 예측된 백신 부작용 분류 모델 정보 및 확률 정보를 획득할 수 있다.And, the analysis processing unit 130 inputs the vaccine subject variable information and the side effect variable information into an artificial intelligence model based on vaccine side effect variable learning pre-built by the learning process of the artificial intelligence learning-based model construction unit 140. , predicted vaccine side effect classification model information and probability information can be obtained.
또한, 예측 결과 출력부(140)는, 상기 백신 부작용 분류 모델 정보 및 확률 정보에 기초한 백신 부작용 예측 분석 정보를 출력할 수 있다. 예측 결과에 따라, 출력부(140)는 모바일 단말, 서버 또는 사용자 디스플레이 장치 등을 이용하여, 상기 백신 부작용 예측 분석 정보를 포함하는 다양한 형태의 백신 안내 인터페이스를 출력할 수 있다.Additionally, the prediction result output unit 140 may output vaccine side effect prediction analysis information based on the vaccine side effect classification model information and probability information. Depending on the prediction result, the output unit 140 may output various types of vaccine guidance interfaces including the vaccine side effect prediction analysis information using a mobile terminal, server, or user display device.
그리고, 인공지능 학습 기반 모델 구축부(140)는, 상기 백신 대상자 변수 정보 및 상기 부작용 변수 정보 학습 기반 인공지능 모델을 구축함에 있어서, 상기 백신 대상자 변수 정보 및 상기 부작용 변수 정보를 입력값으로 구성하고, 적합한 백신 부작용 모델 및 확률을 나타내는 백신 부작용 모델 분류 정보 및 확률 정보를 출력값으로 구성하는 학습 데이트 세트를 이용한 인공지능 기반의 기계학습을 수행할 수 있다.In addition, the artificial intelligence learning-based model construction unit 140 configures the vaccine subject variable information and the side effect variable information as input values when constructing an artificial intelligence model based on learning the vaccine subject variable information and the side effect variable information. , Artificial intelligence-based machine learning can be performed using a learning data set that consists of an appropriate vaccine side effect model and vaccine side effect model classification information and probability information representing the probability as output values.
이를 위해, 인공지능 학습 기반 모델 구축부(140)는, 상기 백신 대상자 변수 정보 및 상기 부작용 변수 정보를 표준화 알고리즘에 따라 전처리할 수 있다.To this end, the artificial intelligence learning-based model construction unit 140 may preprocess the vaccine subject variable information and the side effect variable information according to a standardization algorithm.
여기서, 상기 인공지능 학습 기반 모델 구축부(140)는, 그래디언트 부스팅 학습 기반의 인공지능 모델이 최상의 성능을 발휘할 수 있도록, 상기 백신 대상자 변수 정보 및 상기 부작용 변수 정보를, 트리 기반 파이프라인 최적화 툴(TPOT, Tree-based Pipeline Optimization Tool)를 이용하여 최적화 처리할 수 있다. Here, the artificial intelligence learning-based model construction unit 140 uses the vaccine subject variable information and the side effect variable information using a tree-based pipeline optimization tool ( Optimization can be done using TPOT (Tree-based Pipeline Optimization Tool).
또한, 인공지능 학습 기반 모델 구축부(140)는, 상기 백신 대상자 변수 정보 중 한 개 이상과, 상기 부작용 변수 정보를 선택적으로 조합하여, 모델 성능 테스트를 반복 처리함으로써, 상기 백신 대상자 변수 정보 및 상기 부작용 변수 정보 중 성능 저하가 없는 복수의 학습 변수들을 최종 모델 입력 변수로 결정할 수 있다. 예를 들어, 상기 백신 대상자 변수 정보에서 선택된 5가지의 변수가 모델 입력 변수로 결정될 수 있는 것이며, 그 조합에 따라서는 6가지, 7가지 등의 다양한 입력 변수 모델 조합들이 구성될 수 있다.In addition, the artificial intelligence learning-based model construction unit 140 selectively combines one or more of the vaccine subject variable information and the side effect variable information and repeatedly processes the model performance test, thereby creating the vaccine subject variable information and the Among the side effect variable information, a plurality of learning variables without performance degradation can be determined as the final model input variables. For example, five variables selected from the vaccine subject variable information can be determined as model input variables, and depending on the combination, various input variable model combinations, such as six or seven, can be configured.
또한, 인공지능 학습 기반 모델 구축부(140)는, 상기 백신 대상자 변수 정보 및 상기 부작용 변수 정보로부터 획득되는 모델 입력 변수를 입력값으로 설정하고, 상기 입력값에 대응하는 대상자의 백신 부작용 모델 분류 정보 및 확률 정보를 출력값으로 설정하여, 그래디언트 부스팅 학습 기반의 인공지능 모델 학습을 수행할 수 있다.In addition, the artificial intelligence learning-based model construction unit 140 sets model input variables obtained from the vaccine subject variable information and the side effect variable information as input values, and the subject's vaccine side effect model classification information corresponding to the input values. By setting the probability information as the output value, artificial intelligence model learning based on gradient boosting learning can be performed.
보다 구체적으로, 본 발명의 실시 예에 따라 인공지능 학습 기반 모델 구축부(140)에서의 모델 구축에 이용된 입력 변수 및 출력 변수의 예시는 하기와 같다.More specifically, examples of input variables and output variables used to build a model in the artificial intelligence learning-based model building unit 140 according to an embodiment of the present invention are as follows.
입력 변수input variable 종류type
성별
나이
백신 제조사
백신 접종 차수
백신 접종 부위
백신 접종 경로
백신 접종 후 나타난 부작용의 완치 여부
백신 접종 후 부작용 발생까지의 기간
백신 접종 후 부작용에 의해 생명의 위협을 느꼈는지 그 여부
백신 접종 후 부작용으로 인해 병원에 방문하였는지 그 여부
백신 접종 후 부작용으로 인해 병원에 머무른 기간
백신 접종 후 부작용으로 인해 장애가 발생하였는지 그 여부
gender
age
vaccine manufacturer
Number of vaccinations
vaccination site
Vaccination route
Whether or not side effects that occurred after vaccination have been cured
Period until side effects occur after vaccination
Whether you felt life-threatening due to side effects after vaccination
Whether you visited the hospital due to side effects after vaccination
Length of stay in hospital due to side effects after vaccination
Whether disability occurred due to side effects after vaccination
범주형
연속형
범주형
연속형
범주형
범주형
범주형
연속형
범주형
범주형
연속형
범주형
categorical
continuous type
categorical
continuous type
categorical
categorical
categorical
continuous type
categorical
categorical
continuous type
categorical
출력 변수output variable 종류type
중추신경 관련 중대 부작용
호흡기 관련 중대 부작용
심장 관련 중대 부작용
혈액 관련 중대 부작용
기타(중추신경/호흡기/심장/소화기/혈액에 속하지 않는) 중대 부작용
사망 여부
Serious side effects related to the central nervous system
Serious respiratory side effects
Serious heart-related side effects
Serious blood-related side effects
Other (non-central nervous/respiratory/heart/digestive/blood) serious side effects
Dead or not
범주형categorical
상기 표 1 및 2에 개시된 바와 같이, 각 변수 항목별 종류 정보가 할당될 수 있으며, 출력 변수는 각 입력 변수에 따라 결정되는 부작용 모델 분류와, 대상자가 각각의 부작용 모델 분류에 해당할 확률 정보를 포함할 수 있다. 여기서, 확률 정보는 확률 레벨 정보로서 구성될 수 있다As disclosed in Tables 1 and 2 above, type information can be assigned to each variable item, and the output variable includes side effect model classification determined according to each input variable and probability information that the subject falls into each side effect model classification. It can be included. Here, probability information may be configured as probability level information.
.그리고, 이러한 입력 및 출력 변수에 따라 구성되는 상기 그래디언트 부스팅 학습 기반의 인공지능 모델은, 병렬 처리 기반의 익스트림 그래디언트 부스팅(XGBoost, eXtreme Gradient Boosting) 알고리즘을 이용하여 학습되는 모델이 이용될 수 있다..And, the artificial intelligence model based on gradient boosting learning, which is constructed according to these input and output variables, may be a model learned using a parallel processing-based extreme gradient boosting (XGBoost, eXtreme Gradient Boosting) algorithm.
또한, 상기 그래디언트 부스팅 학습 기반의 인공지능 모델은, 분류 불균형(imbalance classification)을 조정하기 위한 백신 부작용 모델 분류 정보 및 확률 정보 레벨별 훈련 스케일 가중치(scale_pos_weight)가 각각 적절하게 설정되어 있을 수 있다. 보다 상세한 학습 모델 구축 및 동작 방식에 대하여는 보다 구체적으로 후술하도록 한다.In addition, in the artificial intelligence model based on gradient boosting learning, training scale weights (scale_pos_weight) for each level of vaccine side effect model classification information and probability information may be appropriately set to adjust classification imbalance (imbalance classification). More detailed learning model construction and operation methods will be described in more detail later.
도 2는 본 발명의 실시 예에 따른 백신 부작용 예측 분석 장치의 동작 방법을 설명하기 위한 흐름도이며, 도 3 및 도 4는 본 발명의 실시 예에 따른 인공지능 학습 모델의 구축 과정을 설명하기 위한 흐름도이다.Figure 2 is a flowchart for explaining the operation method of the vaccine side effect prediction and analysis device according to an embodiment of the present invention, and Figures 3 and 4 are flowcharts for explaining the construction process of an artificial intelligence learning model according to an embodiment of the present invention. am.
먼저, 도 2를 참조하면, 본 발명의 실시 예에 따른 백신 부작용 예측 분석 장치(100)는, 백신 부작용 변수, 백신 대상자 변수를 학습 모델의 매개 변수로서 전처리하여, 백신 부작용 학습 변수 및 대상자 학습 변수를 획득한다(S101).First, referring to FIG. 2, the vaccine side effect prediction and analysis device 100 according to an embodiment of the present invention preprocesses the vaccine side effect variables and vaccine subject variables as parameters of the learning model to obtain the vaccine side effect learning variables and vaccine subject learning variables. Obtain (S101).
그리고, 백신 부작용 예측 분석 장치(100)는, 상기 백신 부작용 학습 변수 및 상기 대상자 학습 변수를 입력값으로 설정하고, 이에 대응하는 상기 대상자의 추정 백신 부작용 분류 모델 및 확률을 출력값으로 설정하여, 가중치 조절된 그래디언트 부스팅 학습 기반 인공지능 모델을 구축한다(S103).In addition, the vaccine side effect prediction analysis device 100 sets the vaccine side effect learning variable and the subject learning variable as input values, sets the subject's estimated vaccine side effect classification model and probability corresponding thereto as output values, and adjusts the weight. Build an artificial intelligence model based on gradient boosting learning (S103).
이후, 백신 부작용 예측 분석 장치(100)는, 분석 대상자의 대상자 입력 정보를 전처리하여, 분석 대상자의 대상자 변수 정보 및 부작용 변수 정보를 구성한다(S105).Thereafter, the vaccine side effect prediction and analysis device 100 preprocesses the subject input information of the analysis subject and configures subject variable information and side effect variable information of the analysis subject (S105).
그리고, 백신 부작용 예측 분석 장치(100)는, 분석 대상자의 대상자 변수 정보 및 부작용 변수 정보를 상기 구축된 인공지능 모델에 입력하여 분석 대상자의 추정 백신 부작용 분류 모델 및 확률 정보를 획득한다(S107).Then, the vaccine side effect prediction and analysis device 100 inputs the subject variable information and side effect variable information of the analysis subject into the constructed artificial intelligence model to obtain an estimated vaccine side effect classification model and probability information of the analysis subject (S107).
이후, 백신 부작용 예측 분석 장치(100)는, 백신 부작용 분류 모델 및 확률 정보를 이용한 상기 분석 대상자 맞춤형 백신 부작용 안내 정보를 제공한다(S107).Thereafter, the vaccine side effect prediction and analysis device 100 provides vaccine side effect guidance information tailored to the analysis subject using a vaccine side effect classification model and probability information (S107).
백신 부작용 예측 분석 장치(100)는, 백신 부작용 분석 정보 기반의 다양한 맞춤형 백신 안내 서비스를 모바일 단말 또는 서버 시스템으로 제공할 수 있다.The vaccine side effect prediction and analysis device 100 can provide various customized vaccine guidance services based on vaccine side effect analysis information to a mobile terminal or server system.
그리고, 도 3 및 도 4는 본 발명의 실시 예에 따른 인공지능 학습 모델의 구축 및 분석 과정을 보다 구체적으로 도시한 것으로, 먼저, 본 발명의 실시 예에 따른 학습 기반 인공지능 모델은, 전술한 것처럼 병렬 처리 기반의 익스트림 그래디언트 부스팅(XGBoost, eXtreme Gradient Boosting) 알고리즘을 이용하여 사전 구축될 수 있다.3 and 4 show in more detail the construction and analysis process of an artificial intelligence learning model according to an embodiment of the present invention. First, the learning-based artificial intelligence model according to an embodiment of the present invention is the above-mentioned As such, it can be pre-built using the parallel processing-based extreme gradient boosting (XGBoost, eXtreme Gradient Boosting) algorithm.
여기서, 본 발명의 실시 예에 따라 학습에 이용되는 XGBoost 알고리즘은, 그래디언트 부스팅 (gradient boosting) 트리 알고리즘 (tree algorithm) 기술을 사용하는 기계학습 알고리즘이며, 학습 변수에 따라 생성된 복수의 트리 모델을 결합하여 최종 판단을 수행하는 것으로 알려진 알고리즘으로서, 트리 모델들을 생성할 때 이전 트리 모델의 오류를 수정하며(이를 부스팅이라고 함), 이때 그래디언트 하강 (gradient descent) 알고리즘을 사용하여 손실을 최소화하는 방식이다. 또한, XGBoost는 희소성 인식 분할 색인(sparsity-aware split finding) 방식으로 결측값을 처리할 수 있으며, GPU를 사용하여 계산 속도를 가속할 수 있는 장점이 있다.Here, the XGBoost algorithm used for learning according to an embodiment of the present invention is a machine learning algorithm that uses gradient boosting tree algorithm technology, and combines a plurality of tree models generated according to learning variables. This is an algorithm known to make the final decision by correcting the errors of the previous tree model when creating tree models (this is called boosting), and at this time, using the gradient descent algorithm to minimize the loss. In addition, XGBoost can handle missing values using a sparsity-aware split finding method and has the advantage of accelerating calculation speed using GPU.
그리고, 이러한 XGBoost 알고리즘을 본 발명의 실시 예에 따른 추정 백신 부작용 분류 모델 및 확률 정보 획득에 이용하기 위해, 본 발명의 실시 예에 따른 추정 백신 부작용 분류 모델 및 확률 정보의 학습 변수는 사전 설정된 범위에 따라, 각 레벨 별로 분류 처리된 변수 값으로 구성될 수 있다.And, in order to use this Accordingly, it may be composed of variable values classified for each level.
예를 들어, 추정 백신 부작용 분류 모델 및 확률 정보는 제1 레벨인 30% 미만인 범주와, 제2 레벨인 60% 미만인 범주와, 제3 레벨인 100% 미만인 범주 중 어느 하나에 해당될 수 있으며, 이에 따라 3개의 레벨 중 어느 하나가 선택적으로 할당될 수 있다. 그리고, 출력 결과는 상기 추정 백신 부작용 분류 모델 및 확률 정보에 따라, 긍정(positive) 또는 부정(negative) 결과로서 결정될 수 있다. 또한, 레벨의 긍정 또는 부정 결과를 위한 각 레벨별 역치가 사전에 설정될 수 있으며, 후술할 서브 그룹별로 역치는 상이하게 설정될 수 있다.For example, the estimated vaccine side effect classification model and probability information may fall into any one of the first level, less than 30%, the second level, less than 60%, and the third level, less than 100%, Accordingly, any one of the three levels can be selectively assigned. And, the output result may be determined as a positive or negative result according to the estimated vaccine side effect classification model and probability information. In addition, the threshold for each level for a positive or negative result of the level may be set in advance, and the threshold may be set differently for each subgroup, which will be described later.
또한, 이와 같은 추정 백신 부작용 분류 모델 및 확률 정보의 학습을 위해, 본 발명의 실시 예에 따른 학습 변수 중 적어도 일부는 정규화 처리될 수 있다.Additionally, for learning such estimated vaccine side effect classification model and probability information, at least some of the learning variables according to an embodiment of the present invention may be normalized.
보다 구체적으로 예를 들어, 본 발명의 실시 예에 따른 대상자 변수 정보 중, 나이 정보, 체중 정보 등의 경우 평균을 제거하고 단위 분산에 맞게 재조정하는 표준화 처리가 수행될 수 있다. 이에 대한 표준화 처리 과정은 수학식 1과 같이 설명될 수 있다.More specifically, for example, among subject variable information according to an embodiment of the present invention, in the case of age information, weight information, etc., standardization processing may be performed to remove the mean and readjust to the unit variance. The standardization process for this can be explained as Equation 1.
Figure PCTKR2023005635-appb-img-000001
Figure PCTKR2023005635-appb-img-000001
여기서, z는 표준화 처리된 입력값을 나타내며, x는 원본 입력값, u는 입력 값들의 평균값이며, s는 입력값들의 표준편차를 나타낸다.Here, z represents the normalized input value, x is the original input value, u is the average value of the input values, and s represents the standard deviation of the input values.
이에 따라 본 발명의 실시 예에 따른 인공지능 학습 기반 모델 구축부(140)는, 수학식 1을 이용한 표준화에 따라 전처리된 대상자 변수 정보와 부작용 변수 정보를 입력값으로 설정하고, 전술한 추정 백신 부작용 분류 모델 및 확률 정보 예측 레벨을 출력값으로 설정하는 학습 데이터 세트를 구성하며, 실제의 임상 데이터를 이용한 그래디언트 부스팅 트리 알고리즘 기반의 학습 프로세스를 수행하며, 결과 예측의 성능을 반복적으로 향상시켜, 최적의 모델을 구축할 수 있다.Accordingly, the artificial intelligence learning-based model construction unit 140 according to an embodiment of the present invention sets the subject variable information and side effect variable information preprocessed according to standardization using Equation 1 as input values, and the above-mentioned estimated vaccine side effects It constructs a learning data set that sets the classification model and probability information prediction level as output values, performs a learning process based on the gradient boosting tree algorithm using actual clinical data, and repeatedly improves the performance of result prediction to arrive at the optimal model. can be built.
또한, 여기서 인공지능 학습 기반 모델 구축부(140)는, 상기 대상자 학습 변수 및 부작용 학습 변수를 이용한 모델 성능 테스트를 반복 처리하여, 상기 대상자 학습 변수 및 부작용 학습 변수 중 최상의 성능을 보이는 복수의 학습 변수들을 모델 입력 변수로 결정하는 입력 변수 선택 최적화를 수행할 수 있다.In addition, here, the artificial intelligence learning-based model construction unit 140 repeatedly processes model performance tests using the subject learning variables and side effect learning variables, and selects a plurality of learning variables that show the best performance among the subject learning variables and side effect learning variables. You can perform input variable selection optimization to determine these as model input variables.
예를 들어, 본 발명의 실시 예에 따른 인공지능 학습 기반 모델 구축부(140)는, 상기 대상자 학습 변수 및 부작용 학습 변수에서 특징 변수를 선택할 수 있으며, 이를 위해, 인공지능 학습 기반 모델 구축부(140)는, XGBoost 모델에서 계산된 특성 중요도(feature importance) 값에 따라 모델 변수들 중 가장 중요하지 않은 변수를 제거한 후, 훈련 데이터를 이용해 모델 성능을 확인하고 모델 성능 하락이 없다면 그 다음으로 중요하지 않은 변수를 제거하고 다시 성능 테스트를 수행할 수 있다. 그리고, 인공지능 학습 기반 모델 구축부(140)는, 이 과정을 최초 모델과 비교했을 때 성능 저하가 없을 때까지 반복함에 따라, 입력에 필요한 입력변수들의 개수를 줄일 수 있다. 본 발명의 실시 예에 따른 테스트에 따르면, 입력 변수는 최초 12개에서 7개가 될 때까지 모델 성능 저하가 없었음을 확인할 수 있었다.For example, the artificial intelligence learning-based model building unit 140 according to an embodiment of the present invention can select feature variables from the subject learning variables and side effect learning variables, and for this purpose, the artificial intelligence learning-based model building unit ( 140) removes the least important variable among the model variables according to the feature importance value calculated from the You can remove any variables that are not present and perform the performance test again. Additionally, the artificial intelligence learning-based model construction unit 140 repeats this process until there is no performance degradation when compared to the initial model, thereby reducing the number of input variables required for input. According to a test according to an embodiment of the present invention, it was confirmed that there was no deterioration in model performance from the initial 12 input variables to 7.
한편, 본 발명의 실시 예에 따른 인공지능 학습 기반 모델 구축부(140)는, XGBoost의 하이퍼파라미터를, 자동화된 인공지능 도구인 트리 기반 파이프라인 최적화 툴(TPOT, Tree-based Pipeline Optimization Tool)로 최적화함에 따라, 보다 높은 성능을 도모할 수 있다. 보다 구체적으로, TPOT은 유전 프로그래밍을 사용하여 기계 학습 파이프라인을 최적화하는 파이썬(Python)용 자동 기계 학습 도구이다.Meanwhile, the artificial intelligence learning-based model building unit 140 according to an embodiment of the present invention converts the hyperparameters of XGBoost into the Tree-based Pipeline Optimization Tool (TPOT), an automated artificial intelligence tool. By optimizing, higher performance can be achieved. More specifically, TPOT is an automated machine learning tool for Python that uses genetic programming to optimize machine learning pipelines.
특히, 본 발명의 실시 예에 따른 최적화가 수행된 하이퍼파라미터들은 아래의 표 3과 같다.In particular, the hyperparameters on which optimization was performed according to an embodiment of the present invention are shown in Table 3 below.
Figure PCTKR2023005635-appb-img-000002
Figure PCTKR2023005635-appb-img-000002
여기서, 특히 스케일 긍정 가중치(scale_pos_weight) 변수는, 통상적으로 이진 분류 모델에서 출력 비율이 불균형일 때, 불균형을 조정해 주는 변수로서, 훈련데이터의 출력 비율로 조정되는 값이며, 통상적으로는 많은 비율의 집단의 수를 적은 비율의 집단의 수로 나눈 값이 설정될 수 있다.Here, in particular, the scale positive weight (scale_pos_weight) variable is a variable that adjusts the imbalance when the output ratio is usually unbalanced in a binary classification model. It is a value adjusted by the output ratio of the training data, and is usually a large ratio. A value may be set by dividing the number of groups by the number of a small percentage of groups.
이에 따라, 본 발명의 실시 예에 따른 인공지능 학습 기반 모델 구축부(140)는 각각의 레벨별 학습 모델 및 그 학습 파라미터를 서로 상이하게 설정할 수 있으며, 특히 스케일 긍정 가중치(scale_pos_weight) 변수를 조정하여 각 레벨에 따른 긍/부정 출력 비율 간 불균형을 사전에 조정할 수 있다.Accordingly, the artificial intelligence learning-based model building unit 140 according to an embodiment of the present invention can set the learning model for each level and its learning parameters differently, and in particular, adjust the scale positive weight (scale_pos_weight) variable to The imbalance between positive/negative output ratios for each level can be adjusted in advance.
또한, 본 발명의 실시 예에 따른 학습 모델은 그 입력 변수의 특징에 따라 하나 이상의 서브 그룹으로 분류 처리할 수 있으며, 각 서브 그룹에 대응하여 서로 다른 추정 백신 부작용 분류 모델이 결정될 수 있고, 이에 대응하는 확률 정보가 결정될 수 있으며, 각 확률 정보에 대응하는 예측 레벨 역치를 할당함에 따라, 부작용 예측 가능성을 모델 가변에 의해 보다 정확하게 예측하도록 처리할 수 있다. 여기서, 상기 서브 그룹은 특히 각 부작용 모델별 확률 레벨에 따라 적어도 4개 이상의 그룹으로 구분될 수 있으며, 이는 개인차에 의해 모델 예측 성능이 저하될 수 있는 문제점들을 보정하는 데 이용된다.In addition, the learning model according to an embodiment of the present invention can be classified into one or more subgroups according to the characteristics of the input variables, and a different estimated vaccine side effect classification model can be determined corresponding to each subgroup, and corresponding Probability information can be determined, and by assigning a prediction level threshold corresponding to each probability information, the predictability of side effects can be processed to more accurately predict by model variation. Here, the subgroup may be divided into at least four groups depending on the probability level for each side effect model, and this is used to correct problems that may cause model prediction performance to deteriorate due to individual differences.
이와 같이 모델이 구축되면, 도 3 및 도 4에 도시된 바와 같은 분석 프로세스가 수행될 수 있다.Once the model is built in this way, the analysis process as shown in FIGS. 3 and 4 can be performed.
먼저, 분석 처리부(130)는, 추정 백신 부작용 분류 모델의 서브그룹 정보 분류를 결정하고, 서브그룹 정보 분류에 따른 모델별 역치를 설정한다(S203).First, the analysis processing unit 130 determines the subgroup information classification of the estimated vaccine side effect classification model and sets a threshold for each model according to the subgroup information classification (S203).
여기서, 서브그룹 정보 분류는, 전술한 바와 같이 추정 백신 부작용 분류 모델 및 확률 정보에 따라 분석 처리부(130)에서 분류 처리될 수 있다.Here, the subgroup information classification may be classified and processed in the analysis processing unit 130 according to the estimated vaccine side effect classification model and probability information, as described above.
도 4는 S203 단계에서 처리되는 분류 프로세스를 보다 구체적으로 예시한 것으로, 도 4에 도시된 바와 같이, 입력값에 대한 정보에 따라 적어도 6개의 서브그룹타입으로 설정될 수 있다. 예를 들어, 도 4를 참조하면, 서브그룹 정보 분류는 나이 정보가 65세 이상인지 여부, 성별이 남성인지 여부, 백신 제조사가 화이자인지 여부에 따라 설정될 수 있으며, 이에 따른 각각의 6가지의 서브 그룹이 구성될 수 있다.Figure 4 illustrates the classification process processed in step S203 in more detail. As shown in Figure 4, at least six subgroup types can be set according to information about the input value. For example, referring to Figure 4, subgroup information classification can be set according to whether the age information is 65 years or older, gender is male, and vaccine manufacturer is Pfizer, and each of the six types accordingly. Subgroups may be formed.
또한, 분석 처리부(130)는, 각 추정 백신 부작용 분류 모델 및 확률 정보의 각 기준값에 의해 분류된 서브그룹별로 이를 안내하는 각각의 특화된 서비스 프로세스를 더 수행할 수도 있다. 예를 들어, 분석 처리부(130)는, 개인의 특성 및 부작용 서브그룹 분류에 따라, 65세 이상 남성의 호흡기 관련 부작용 발생시 조치 정보를 제공하는 제1 서비스 프로세스를 수행하거나, 화이자 백신 접종시의 심장 관련 부작용 발생시 조치 정보를 제공하는 제2 서비스 프로세스를 수행하는 등의 프로세스가 수행될 수 있다.In addition, the analysis processing unit 130 may further perform specialized service processes to guide each subgroup classified by each estimated vaccine side effect classification model and each reference value of probability information. For example, the analysis processing unit 130 performs a first service process that provides action information in the event of respiratory-related side effects in men over 65 years of age, depending on individual characteristics and side effect subgroup classification, or performs a first service process that provides action information when a respiratory-related side effect occurs in a man aged 65 or older, or the heart rate when receiving the Pfizer vaccine. When a related side effect occurs, a process such as performing a second service process that provides action information may be performed.
그리고, 다시 도 3을 참조하면, 분석 처리부(130)는, 입력된 변수의 표준화 처리를 수행한다(S205).And, referring again to FIG. 3, the analysis processing unit 130 performs standardization processing of the input variables (S205).
여기서 상기 표준화 처리는 앞서 설명한 수학식 1을 통해 수행될 수 있으며, 결과적으로 학습에 이용된 데이터를 이용하여, 입력 정보의 표준화 처리가 가능하게 된다.Here, the standardization process can be performed through Equation 1 described above, and as a result, standardization of input information is possible using the data used for learning.
그리고, 분석 처리부(130)는, 사전 학습된 인공지능 모델에 상기 표준화 처리된 입력 정보를 적용하여, 출력 정보로서 획득되는 추정 백신 부작용 분류 모델 및 확률 정보 레벨 별 긍정 또는 부정 정보에 따라, 추정 백신 부작용 분류 모델 및 확률 정보를 결정한다(S209).Then, the analysis processing unit 130 applies the standardized input information to the pre-trained artificial intelligence model, and according to the positive or negative information for each estimated vaccine side effect classification model and probability information level obtained as output information, the estimated vaccine Determine the side effect classification model and probability information (S209).
이후, 분석 처리부(130)는, 앞서 결정된 서브그룹 타입에 대응하여 설정된 역치와, 추정 백신 부작용 분류 모델 및 레벨 확률 정보에 기초하여, 백신 부작용 발생 정보를 생성한다(S211).Thereafter, the analysis processing unit 130 generates information on the occurrence of vaccine side effects based on the threshold set corresponding to the previously determined subgroup type, the estimated vaccine side effect classification model, and the level probability information (S211).
여기서, 분석 처리부(130)는, 백신 부작용 발생 예측 시, SHAP(SHapley Additive exPlanations) 값을 계산하여, 백신 부작용 발생 예측에 대응하는 각 입력 변수가 기여한 정도를 설명하는 설명정보를 생성할 수 있다(S213).Here, when predicting the occurrence of vaccine side effects, the analysis processing unit 130 calculates the SHAP (SHapley Additive exPlanations) value and generates explanatory information explaining the contribution of each input variable corresponding to the prediction of the occurrence of vaccine side effects ( S213).
이에 따라, 분석 처리부(130)는 추정 백신 부작용 분류 모델 및 확률 정보 및 입력값이 기여한 정도와 연관된 설명 정보를 포함하는, 백신 부작용 분석 결과 정보를 구성하여 예측 결과 출력부(140)로 출력할 수 있다(S215).Accordingly, the analysis processing unit 130 can configure vaccine side effect analysis result information, including an estimated vaccine side effect classification model and probability information, and explanatory information related to the degree to which the input value contributed, and output it to the prediction result output unit 140. There is (S215).
예를 들어, 상기 분석 처리부(130)는, 추정 백신 부작용 분류 모델 및 확률 정보에 따라 백신 부작용 발생이 예측된 경우, 상기 대상자 변수 정보 및 부작용 변수 정보에 대응하는 입력 변수별 기여도를 SHAP(SHapley Additive exPlanations) 알고리즘 연산에 따라 획득하고, 상기 입력 변수별 기여도에 기초한 분석 정보를 생성하여, 상기 백신 부작용 분석 정보에 포함시킬 수 있는 것이다.For example, when the occurrence of vaccine side effects is predicted according to the estimated vaccine side effect classification model and probability information, the analysis processing unit 130 calculates the contribution of each input variable corresponding to the subject variable information and side effect variable information to SHAP (SHapley Additive). exPlanations) algorithm calculation, generate analysis information based on the contribution of each input variable, and include it in the vaccine side effect analysis information.
도 5 내지 도 10은 본 발명의 실시 예에 따른 인공지능 학습 모델의 성능 테스트 분석 결과를 나타내는 그래프이다.5 to 10 are graphs showing performance test analysis results of an artificial intelligence learning model according to an embodiment of the present invention.
도 5 및 도 10는 학습 데이터로서, 백신부작용보고시스템(VAERS:Vaccine Adverse Event Reporting System) 데이터를 이용하여9,267 사례를 이용하여 학습을 수행하고,내부 검증한 결과로서, 일반 인구집단에 적용 가능한 선별 검사 및 검증이 수행된 결과를 나타낸다.Figures 5 and 10 are learning data, which are the results of learning and internal verification using 9,267 cases using the Vaccine Adverse Event Reporting System (VAERS) data, and are the results of selection applicable to the general population. Indicates the results of inspection and verification.
테스트 분석에서, 추정 백신 부작용 분류 모델은, 본 발명의 실시 예에 따른 인공지능 학습 모델을 이용하되, 각 부작용 모델별로 분석 알고리즘을 선택하도록 구성하였으며, 그 성능이 우수한 모델을 선택적으로 결정하도록 처리하였다. 테스트 분석에 활용된 인공지능 모델은 Decision Tree, Random Foreset, Etra Trees, LightGBM, Xgboost, CatBoost, Neural Network, Nearest Neighbors 중에서 선택적으로 구성하였으며, 각 부작용 모델별 선택된 최고 성능 알고리즘은 아래 표 4와 같이 확인되었다.In the test analysis, the estimated vaccine side effect classification model was constructed to select an analysis algorithm for each side effect model using an artificial intelligence learning model according to an embodiment of the present invention, and was processed to selectively determine a model with excellent performance. . The artificial intelligence model used in the test analysis was selectively constructed from Decision Tree, Random Foreset, Etra Trees, LightGBM, It has been done.
부작용 모델side effect model 알고리즘algorithm AUCAUC F1-scoreF1-score 정확도accuracy
중추신경 관련 중대 부작용Serious side effects related to the central nervous system CatBoostCatBoost 0.770.77 0.740.74 0.720.72
호흡기 관련 중대 부작용Serious respiratory side effects CatBoostCatBoost 0.940.94 0.880.88 0.880.88
심장 관련 중대 부작용Serious heart-related side effects CatBoostCatBoost 0.900.90 0.850.85 0.840.84
혈액 관련 중대 부작용Serious blood-related side effects LightGBMLightGBM 0.690.69 0.690.69 0.650.65
기타(중추신경/호흡기/심장/소화기/혈액에 속하지 않는) 중대 부작용Other (non-central nervous/respiratory/heart/digestive/blood) serious side effects CatBoostCatBoost 0.840.84 0.780.78 0.770.77
사망 여부Dead or not Extra TreesExtra Trees 0.900.90 0.840.84 0.830.83
도 5 내지 도 10 각각에 도시된 그래프는, 상기 표 3에서의 각 모델별 예측 성능을 나타내는 ROC 그래프이며, 최종적인 성능 결과는 AUC(Area under the Curve)가 최대 0.94를 기록하고, 정확도는 최대 0.88을 기록하여 각 모델의 학습 데이터 누적에 따라 신뢰성 있는 모델 구축 및 운용이 가능한 것을 확인할 수 있다.이와 같은 본 발명의 실시 예에 따른 백신 부작용 예측 분석 장치(100) 및 그 동작 방법에 따라, 별도의 생물학적 검사 없이도, 대상자 변수 정보와 부작용 변수 정보만 입력하면, 백신 부작용을 신속 용이하게 예측할 수 있게 된다.The graphs shown in FIGS. 5 to 10 are ROC graphs showing the prediction performance for each model in Table 3, and the final performance result is that the AUC (Area under the Curve) records a maximum of 0.94, and the accuracy records a maximum of 0.94. By recording 0.88, it can be confirmed that reliable model construction and operation is possible according to the accumulation of learning data for each model. According to the vaccine side effect prediction analysis device 100 and its operation method according to the embodiment of the present invention, separate Even without biological testing, vaccine side effects can be quickly and easily predicted by simply entering subject variable information and side effect variable information.
이에 따라, 본 발명은 백신의 종류나, 만성 질환자의 질환 종류 등에 따라 각각 적합한 맞춤형 백신 부작용 예측 모니터링을 가능하게 하며, 백신 부작용으로 인한 사회경제적 비용을 절감할 수 있을 뿐만 아니라, 인공지능을 이용한 분석을 통해, 학습 데이터가 누적됨에 따라 보다 정확한 서비스 및 기기 동작을 제공할 수 있게 된다.Accordingly, the present invention enables prediction and monitoring of customized vaccine side effects depending on the type of vaccine or the type of disease of chronically ill patients, and not only reduces socioeconomic costs due to vaccine side effects, but also enables analysis using artificial intelligence. Through this, as learning data accumulates, more accurate services and device operations can be provided.
상술한 본 발명에 따른 방법은 컴퓨터에서 실행되기 위한 프로그램으로 제작되어 컴퓨터가 읽을 수 있는 기록 매체에 저장될 수 있으며, 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있다.The method according to the present invention described above can be produced as a program to be executed on a computer and stored in a computer-readable recording medium. Examples of computer-readable recording media include ROM, RAM, CD-ROM, and magnetic tape. , floppy disks, optical data storage devices, etc.
컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 상기 방법을 구현하기 위한 기능적인(function) 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.The computer-readable recording medium is distributed in a computer system connected to a network, so that computer-readable code can be stored and executed in a distributed manner. And, functional programs, codes, and code segments for implementing the method can be easily deduced by programmers in the technical field to which the present invention pertains.
또한, 이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.In addition, although preferred embodiments of the present invention have been shown and described above, the present invention is not limited to the specific embodiments described above, and the technical field to which the invention pertains without departing from the gist of the present invention as claimed in the claims. Of course, various modifications can be made by those skilled in the art, and these modifications should not be understood individually from the technical idea or perspective of the present invention.

Claims (15)

  1. 백신 부작용 예측 분석 장치의 동작 방법에 있어서,In the method of operating the vaccine side effect prediction analysis device,
    백신 부작용 예측 분석 대상자의 대상자 변수 정보를 획득하는 단계;Obtaining subject variable information of the subject of vaccine side effect prediction analysis;
    상기 대상자 변수 정보에 대응하는 부작용 변수 정보를 획득하는 단계;Obtaining side effect variable information corresponding to the subject variable information;
    상기 대상자 변수 정보 및 상기 부작용 변수 정보를, 사전 구축된 백신 부작용 변수 학습 기반 인공지능 모델에 입력하여, 추정 백신 부작용 분류 모델 및 확률 정보를 획득하는 단계; 및Inputting the subject variable information and the side effect variable information into a pre-built vaccine side effect variable learning-based artificial intelligence model to obtain an estimated vaccine side effect classification model and probability information; and
    상기 추정 백신 부작용 분류 모델 및 확률 정보에 기초한 백신 부작용 예측 분석 정보를 출력하는 단계를 포함하는Including the step of outputting vaccine side effect prediction analysis information based on the estimated vaccine side effect classification model and probability information.
    백신 부작용 예측 분석 장치의 동작 방법.Method of operation of vaccine side effect prediction analysis device.
  2. 제1항에 있어서,According to paragraph 1,
    상기 대상자의 대상자 변수 정보는 나이 정보, 성별 정보, 질환 정보 중 적어도 하나를 포함하고,The subject variable information of the subject includes at least one of age information, gender information, and disease information,
    상기 대상자의 부작용 변수 정보는, 백신 제조사 정보, 백신 타입 정보 중 적어도 하나를 포함하는The subject's side effect variable information includes at least one of vaccine manufacturer information and vaccine type information.
    백신 부작용 예측 분석 장치의 동작 방법.Method of operation of vaccine side effect prediction analysis device.
  3. 제2항에 있어서,According to paragraph 2,
    상기 추정 백신 부작용 분류 모델은,The estimated vaccine side effect classification model is,
    중추신경 관련 중대 부작용 모델, 호흡기 관련 중대 부작용 모델, 심장 관련 중대 부작용 모델, 혈액 관련 중대 부작용 모델 중 적어도 하나를 포함하는Containing at least one of the central nervous system-related serious side effect model, respiratory-related serious side effect model, heart-related serious side effect model, and blood-related serious side effect model.
    백신 부작용 예측 분석 장치의 동작 방법.Method of operation of vaccine side effect prediction analysis device.
  4. 제1항에 있어서,According to paragraph 1,
    상기 백신 부작용 변수 학습 기반 인공지능 모델을 구축하는 단계를 더 포함하고,Further comprising the step of building an artificial intelligence model based on learning the vaccine side effect variables,
    상기 구축하는 단계는,The construction step is,
    대상자 학습 변수 및 부작용 학습 변수를 표준화 알고리즘에 따라 전처리하는 단계; 및Preprocessing subject learning variables and side effect learning variables according to a standardization algorithm; and
    상기 전처리된 대상자 학습 변수 및 부작용 학습 변수를 입력값으로 설정하고, 상기 입력값에 대응하는 대상자의 추정 백신 부작용 분류 모델 및 확률 정보를 출력값으로 설정하여, 그래디언트 부스팅 학습 기반의 인공지능 모델 학습을 수행하는 단계를 포함하는The preprocessed subject learning variables and side effect learning variables are set as input values, and the subject's estimated vaccine side effect classification model and probability information corresponding to the input values are set as output values to perform artificial intelligence model learning based on gradient boosting learning. containing the steps of
    백신 부작용 예측 분석 장치의 동작 방법.Method of operation of vaccine side effect prediction analysis device.
  5. 제4항에 있어서,According to clause 4,
    상기 그래디언트 부스팅 학습 기반의 인공지능 모델은, 병렬 처리 기반의 익스트림 그래디언트 부스팅(XGBoost, eXtreme Gradient Boosting) 알고리즘을 이용하여 학습된 것인The artificial intelligence model based on gradient boosting learning is learned using the parallel processing-based extreme gradient boosting (XGBoost, eXtreme Gradient Boosting) algorithm.
    백신 부작용 예측 분석 장치의 동작 방법.Method of operation of vaccine side effect prediction analysis device.
  6. 제4항에 있어서,According to clause 4,
    상기 그래디언트 부스팅 학습 기반의 인공지능 모델은,The artificial intelligence model based on gradient boosting learning is,
    분류 불균형을 조정하기 위한 추정 백신 부작용 분류 모델 및 확률 정보에 대응하는 훈련 파라미터의 스케일 긍정 가중치가 각각 설정되는The scale positive weights of the training parameters corresponding to the estimated vaccine side effect classification model and probability information to adjust classification imbalance are set, respectively.
    백신 부작용 예측 분석 장치의 동작 방법.Method of operation of vaccine side effect prediction analysis device.
  7. 제4항에 있어서,According to clause 4,
    상기 구축하는 단계는,The construction step is,
    트리 기반 파이프라인 최적화 툴(TPOT, Tree-based Pipeline Optimization Tool)로 최적화된 하이퍼파라미터를 상기 그래디언트 부스팅 학습 기반의 인공지능 모델에 적용하는 단계를 더 포함하는Further comprising the step of applying hyperparameters optimized with a Tree-based Pipeline Optimization Tool (TPOT) to the gradient boosting learning-based artificial intelligence model.
    백신 부작용 예측 분석 장치의 동작 방법.Method of operation of vaccine side effect prediction analysis device.
  8. 제4항에 있어서,According to clause 4,
    상기 전처리하는 단계는,The preprocessing step is,
    상기 대상자 학습 변수 및 부작용 학습 변수를 이용한 모델 성능 테스트를 반복 처리하여, 상기 대상자 학습 변수 및 부작용 학습 변수 중 성능 저하가 없는 복수의 학습 변수들을 모델 입력 변수로 결정하는, 입력 변수 선택 최적화를 수행하는 단계를 포함하는Performing input variable selection optimization by repeatedly processing model performance tests using the subject learning variables and side effect learning variables to determine a plurality of learning variables without performance degradation among the subject learning variables and side effect learning variables as model input variables. containing steps
    백신 부작용 예측 분석 장치의 동작 방법.Method of operation of vaccine side effect prediction analysis device.
  9. 제1항에 있어서,According to paragraph 1,
    상기 백신 부작용 예측 분석 정보를 출력하는 단계는,The step of outputting the vaccine side effect prediction analysis information,
    상기 추정 백신 부작용 분류 모델 및 확률 정보에 따라 백신 부작용이 예측된 경우, 상기 대상자 변수 및 상기 부작용 변수에 대응하는 입력 변수별 기여도를 SHAP(SHapley Additive exPlanations) 알고리즘 연산에 따라 획득하고, 상기 입력 변수별 기여도에 기초한 분석 정보를 생성하여, 상기 백신 부작용 예측 분석 정보에 포함시키는 단계를 포함하는When vaccine side effects are predicted according to the estimated vaccine side effect classification model and probability information, the contribution for each input variable corresponding to the subject variable and the side effect variable is obtained according to the SHAP (SHapley Additive exPlanations) algorithm operation, and for each input variable Generating analysis information based on contribution and including it in the vaccine side effect prediction analysis information.
    백신 부작용 예측 분석 장치의 동작 방법.Method of operation of vaccine side effect prediction analysis device.
  10. 백신 부작용 예측 분석 장치에 있어서,In the vaccine side effect prediction analysis device,
    백신 부작용 예측 분석 대상자의 대상자 변수 정보를 획득하는 대상자 변수 정보 처리부;a subject variable information processing unit that acquires subject variable information of the subject of vaccine side effect prediction analysis;
    상기 대상자 변수 정보에 대응하는 부작용 변수 정보를 획득하는 부작용 변수 정보 처리부;a side effect variable information processing unit that acquires side effect variable information corresponding to the subject variable information;
    상기 대상자 변수 정보 및 상기 부작용 변수 정보를, 사전 구축된 백신 부작용 변수 학습 기반 인공지능 모델에 입력하여, 추정 백신 부작용 분류 모델 및 확률 정보를 획득하는 분석 처리부; 및An analysis processing unit that inputs the subject variable information and the side effect variable information into a pre-built vaccine side effect variable learning-based artificial intelligence model to obtain an estimated vaccine side effect classification model and probability information; and
    상기 추정 백신 부작용 분류 모델 및 확률 정보에 기초한 백신 부작용 예측 분석 정보를 출력하는 예측 결과 출력부를 포함하는Comprising a prediction result output unit that outputs vaccine side effect prediction analysis information based on the estimated vaccine side effect classification model and probability information.
    백신 부작용 예측 분석 장치.Vaccine side effect prediction analysis device.
  11. 제10항에 있어서,According to clause 10,
    상기 대상자의 대상자 변수 정보는 나이 정보, 성별 정보, 신체정보, 질환 정보, 복용의약 정보, 바이오 마커 정보, 생활습관 정보 중 적어도 하나를 포함하고,The subject variable information of the subject includes at least one of age information, gender information, physical information, disease information, medication information, biomarker information, and lifestyle information,
    상기 대상자의 부작용 변수 정보는, 백신 제조사 정보, 백신 타입 정보 중 적어도 하나를 포함하며,The subject's side effect variable information includes at least one of vaccine manufacturer information and vaccine type information,
    상기 추정 백신 부작용 분류 모델은,The estimated vaccine side effect classification model is,
    중추신경 관련 중대 부작용 모델, 호흡기 관련 중대 부작용 모델, 심장 관련 중대 부작용 모델, 혈액 관련 중대 부작용 모델 중 적어도 하나를 포함하는Containing at least one of the central nervous system-related serious side effect model, respiratory-related serious side effect model, heart-related serious side effect model, and blood-related serious side effect model.
    백신 부작용 예측 분석 장치.Vaccine side effect prediction analysis device.
  12. 제10항에 있어서,According to clause 10,
    백신 부작용 변수 학습 기반 인공지능 모델을 구축하는 인공지능 학습 기반 모델 구축부를 더 포함하고,It further includes an artificial intelligence learning-based model construction unit that builds an artificial intelligence model based on vaccine side effect variable learning,
    상기 인공지능 학습 기반 모델 구축부는,The artificial intelligence learning-based model construction unit,
    대상자 학습 변수 및 부작용 학습 변수를 표준화 알고리즘에 따라 전처리하고, 상기 전처리된 대상자 학습 변수 및 부작용 학습 변수를 입력값으로 설정하고, 상기 입력값에 대응하는 대상자의 추정 백신 부작용 분류 모델 및 확률 정보를 출력값으로 설정하여, 그래디언트 부스팅 학습 기반의 인공지능 모델 학습을 수행하는Subject learning variables and side effect learning variables are preprocessed according to a standardization algorithm, the preprocessed subject learning variables and side effect learning variables are set as input values, and the subject's estimated vaccine side effect classification model and probability information corresponding to the input values are output values. Set to perform artificial intelligence model learning based on gradient boosting learning.
    백신 부작용 예측 분석 장치.Vaccine side effect prediction analysis device.
  13. 제12항에 있어서,According to clause 12,
    상기 그래디언트 부스팅 학습 기반의 인공지능 모델은, 병렬 처리 기반의 익스트림 그래디언트 부스팅(XGBoost, eXtreme Gradient Boosting) 알고리즘을 이용하여 학습되며,The artificial intelligence model based on gradient boosting learning is learned using the parallel processing-based extreme gradient boosting (XGBoost, eXtreme Gradient Boosting) algorithm,
    상기 익스트림 그래디언트 부스팅 알고리즘에 따라, 분류 불균형을 조정하기 위한 백신 부작용 분류 모델별 훈련 스케일 가중치(scale_pos_weight)가 각각 설정된 것인According to the extreme gradient boosting algorithm, the training scale weight (scale_pos_weight) for each vaccine side effect classification model to adjust classification imbalance is set, respectively.
    백신 부작용 예측 분석 장치.Vaccine side effect prediction analysis device.
  14. 제12항에 있어서,According to clause 12,
    상기 인공지능 학습 기반 모델 구축부는,The artificial intelligence learning-based model construction unit,
    트리 기반 파이프라인 최적화 툴(TPOT, Tree-based Pipeline Optimization Tool)로 최적화된 하이퍼파라미터를 상기 그래디언트 부스팅 학습 기반의 인공지능 모델에 적용하고,Hyperparameters optimized with the Tree-based Pipeline Optimization Tool (TPOT) are applied to the gradient boosting learning-based artificial intelligence model,
    상기 대상자 학습 변수 및 부작용 학습 변수를 이용한 모델 성능 테스트를 반복 처리하여, 상기 대상자 학습 변수 및 부작용 학습 변수 중 성능 저하가 없는 복수의 학습 변수들을 모델 입력 변수로 결정하는, 입력 변수 선택 최적화를 수행하는 단계를 포함하는Performing input variable selection optimization by repeatedly processing model performance tests using the subject learning variables and side effect learning variables to determine a plurality of learning variables without performance degradation among the subject learning variables and side effect learning variables as model input variables. containing steps
    백신 부작용 예측 분석 장치.Vaccine side effect prediction analysis device.
  15. 제12항에 있어서,According to clause 12,
    상기 분석 처리부는, 상기 추정 백신 부작용 분류 모델 및 확률 정보에 따라 백신 부작용이 예측된 경우, 상기 대상자 변수 및 상기 부작용 변수에 대응하는 입력 변수별 기여도를 SHAP(SHapley Additive exPlanations) 알고리즘 연산에 따라 획득하고, 상기 입력 변수별 기여도에 기초한 분석 정보를 생성하여, 상기 백신 부작용 예측 분석 정보에 포함시키는When a vaccine side effect is predicted according to the estimated vaccine side effect classification model and probability information, the analysis processing unit obtains the contribution of each input variable corresponding to the subject variable and the side effect variable according to SHAP (SHapley Additive exPlanations) algorithm operation, , generating analysis information based on the contribution of each input variable and including it in the vaccine side effect prediction analysis information.
    백신 부작용 예측 분석 장치.Vaccine side effect prediction analysis device.
PCT/KR2023/005635 2022-05-24 2023-04-26 Method for predicting and analyzing side effects of vaccine by using artificial intelligence learning model based on vaccine subject variable information, and apparatus therefor WO2023229239A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0063341 2022-05-24
KR1020220063341A KR20230163713A (en) 2022-05-24 2022-05-24 A kidney function prediction analysis method and a device using artificial intelligence learning model based on urine dipstick test information

Publications (1)

Publication Number Publication Date
WO2023229239A1 true WO2023229239A1 (en) 2023-11-30

Family

ID=88919579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005635 WO2023229239A1 (en) 2022-05-24 2023-04-26 Method for predicting and analyzing side effects of vaccine by using artificial intelligence learning model based on vaccine subject variable information, and apparatus therefor

Country Status (2)

Country Link
KR (1) KR20230163713A (en)
WO (1) WO2023229239A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200023689A (en) * 2018-08-20 2020-03-06 아주대학교산학협력단 The method of artificial intelligence(AI)-based adverse drug reactions detection and the system thereof
KR20210018610A (en) * 2019-08-06 2021-02-18 고려대학교 산학협력단 System for Prescriptive Analytics and Variable Importance Analysis of Prognostic Factors for Cancer Patients using Artificial Intelligence
KR20220041711A (en) * 2020-09-25 2022-04-01 충북대학교 산학협력단 Method and apparatus for predicting semiconductor failure time based on machine learning
KR20220057821A (en) * 2020-10-30 2022-05-09 가천대학교 산학협력단 AI-based device and method for predicting drug responsiveness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200023689A (en) * 2018-08-20 2020-03-06 아주대학교산학협력단 The method of artificial intelligence(AI)-based adverse drug reactions detection and the system thereof
KR20210018610A (en) * 2019-08-06 2021-02-18 고려대학교 산학협력단 System for Prescriptive Analytics and Variable Importance Analysis of Prognostic Factors for Cancer Patients using Artificial Intelligence
KR20220041711A (en) * 2020-09-25 2022-04-01 충북대학교 산학협력단 Method and apparatus for predicting semiconductor failure time based on machine learning
KR20220057821A (en) * 2020-10-30 2022-05-09 가천대학교 산학협력단 AI-based device and method for predicting drug responsiveness

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROSYPARK: "머신러닝 알고리즘 - XGBoost(eXtreme Gradient Boosting)", ROSY'S ARTIFICIAL INTELLIGENT BLOG, 15 October 2019 (2019-10-15), XP093112065, Retrieved from the Internet <URL:https://rosypark.tistory.com/59> [retrieved on 20231214] *

Also Published As

Publication number Publication date
KR20230163713A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2019017508A1 (en) Method for predicting success of health consulting
WO2022145782A2 (en) Big data and cloud system-based artificial intelligence emergency medical care decision making and emergency patient transporting system and method therefor
WO2019031794A1 (en) Method for generating prediction result for predicting occurrence of fatal symptoms of subject in advance and device using same
WO2019182297A1 (en) Apparatus and method for clinical trial result prediction
WO2021095987A1 (en) Multi-type entity-based knowledge complementing method and apparatus
CN109192312B (en) Intelligent management system and method for adverse events of heart failure patients
US20210398683A1 (en) Passive data collection and use of machine-learning models for event prediction
WO2023229239A1 (en) Method for predicting and analyzing side effects of vaccine by using artificial intelligence learning model based on vaccine subject variable information, and apparatus therefor
CN113488157B (en) Intelligent diagnosis guiding processing method and device, electronic equipment and storage medium
CN115938593B (en) Medical record information processing method, device, equipment and computer readable storage medium
WO2023121051A1 (en) Patient information provision method, patient information provision apparatus, and computer-readable recording medium
WO2023146120A1 (en) Survey-based diagnosis method and system therefor
CN115346690B (en) System for guiding operator to ask help seeker
Naemi et al. Personalized predictive models for identifying clinical deterioration using LSTM in emergency departments
CN115732074A (en) Medical information processing system, medical information processing method, and storage medium
WO2021112317A1 (en) Health prediction system and method using oral microorganism analysis device
KR20230088912A (en) Techniques for generating predictive outcomes related to spinal muscular atrophy using artificial intelligence
WO2020080689A2 (en) Apparatus and method for generating index value for comparing body composition change performance
Mirarchi et al. Data mining techniques for vestibular data classification
WO2023008699A1 (en) Method and system for generating interpretable prediction result for patient
Chowdhur An Improved Novel Corona virus (COVID-19) Detection Model Employing Convolutional Neural Networks Based on Lung X-Ray Imag
WO2023191564A1 (en) Device and method for predicting disease of interest on basis of deep neural network, and computer-readable program therefor
WO2024039218A1 (en) Method, computer program, and apparatus for augmenting bio-signal data
WO2024096307A1 (en) Method for operating medical artificial intelligence model, and electronic device for performing same
WO2022131607A1 (en) Cell selection apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23812015

Country of ref document: EP

Kind code of ref document: A1