WO2023229023A1 - Powdered agent and production method for same - Google Patents

Powdered agent and production method for same Download PDF

Info

Publication number
WO2023229023A1
WO2023229023A1 PCT/JP2023/019585 JP2023019585W WO2023229023A1 WO 2023229023 A1 WO2023229023 A1 WO 2023229023A1 JP 2023019585 W JP2023019585 W JP 2023019585W WO 2023229023 A1 WO2023229023 A1 WO 2023229023A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
lipid
particles
peg
dileucine
Prior art date
Application number
PCT/JP2023/019585
Other languages
French (fr)
Japanese (ja)
Inventor
知将 奥田
浩一 岡本
Original Assignee
学校法人 名城大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 名城大学 filed Critical 学校法人 名城大学
Publication of WO2023229023A1 publication Critical patent/WO2023229023A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles

Definitions

  • Inhalers which can deliver drugs directly and non-invasively to the lungs, are expected to have a rapid onset of action and have the advantage of reducing systemic side effects because they require a smaller dose than oral administration. Therefore, it is attracting attention as an administration route that can be expected not only to be a locally active drug but also to have a systemic effect with low absorption in the gastrointestinal tract (Patent Document 1).
  • Inhalants are classified into three types: metered-dose inhaler (MDI), inhalation solution, and dry powder inhaler (DPI).
  • MDI metered-dose inhaler
  • DPI dry powder inhaler
  • the drug powder is generally broken down and dispersed into the air by the patient's inhalation effort and delivered to the respiratory treatment area, so synchronization of powder spray and inhalation is easy, no propellant is required, and the inhalation technique is simple. It has the advantage that it is simple and the inhalation device is relatively small and has excellent portability.
  • DDS drug delivery system
  • the present specification provides a powder that has excellent delivery of active ingredients to the lungs during inhalation and forms lipid particles that impart DDS functionality to the active ingredients at the site of arrival.
  • the present inventors further investigated and evaluated various formulations for DPI formulations that achieve excellent pulmonary delivery, and found that in addition to the reachability and cellular penetration of active ingredients such as RNA interference agents, the retention We succeeded in discovering an ingredient that is effective in controlling these conditions. According to this specification, the following means are provided based on this knowledge.
  • a powder agent a lipid component containing a polyethylene glycol (PEG)-lipid conjugate; Leucine and/or dileucine; A powder containing constituent particles containing.
  • the lipid component further includes 1,2-dioleyloxy-3-trimethylammoniumpropane (DOTMA), 1,2-dioleyloxy-3-dimelaminopropane (DODMA), and 1,2-dioleyloxy-3-trimethylammoniumpropane (DOTMA).
  • DOTMA 1,2-dioleyloxy-3-trimethylammoniumpropane
  • DODMA 1,2-dioleyloxy-3-dimelaminopropane
  • DOTMA 1,2-dioleyloxy-3-trimethylammoniumpropane
  • DPPC palmitoyl-sn-glycero-3-phosphatidylcholine
  • EPC egg-derived phosphatidylcholine
  • SM sphingomyelin
  • [5] The powder agent according to any one of [1] to [4], wherein the constituent particles are porous spherical particles.
  • MSLI multi-stage liquid impinger
  • the powder according to any one of [1] to [10] which contains an RNA interference agent as an active ingredient.
  • a method for producing a powder comprising: preparing a liquid containing an active ingredient, a lipid component containing a PEG-lipid conjugate, and leucine and/or dileucine; Drying the liquid by a spray drying method or a spray freeze drying method to produce a powder containing the active ingredient, the PEG-lipid conjugate, and the leucine and/or dileucine; Equipped with The manufacturing method, wherein the powder is a powder containing constituent particles that form a large number of lipid particles in an aqueous suspension of the powder.
  • FIG. 2 is a diagram showing the formulation of the powder prepared in Example 1 (spray freeze-drying method) and the physical properties of lipid particles produced after dissolution.
  • LNP in the table is an abbreviation for lipid particle.
  • * indicates the lipid component content (w/w) in the powder particles
  • ** indicates the mixing ratio (v/v) of water and organic solvent in the component solution.
  • SFD microparticles and SD microparticles with the same # number in the product name have the same composition.
  • SFD#3, SFD#3', SFD#3'', SD#3, and SD#3' have the same composition, but differ in the concentration of component solutions or the mixing ratio of water and organic solvent.
  • FIG. 2 is a diagram showing the formulation of the powder prepared in Example 1 (spray drying method) and the physical properties of lipid particles produced after dissolution.
  • FIG. 2 is a diagram showing an example of a SEM image of constituent particles of the powder preparation prepared in Example 1 and a constituent particle addition device.
  • 3A and 3B are diagrams illustrating the evaluation results of the inhalation characteristics of the constituent particles of the powder preparation prepared in Example 1.
  • FIG. 3 is a diagram showing the cell binding and uptake amount of lipid particles generated after dissolving constituent particles of a powder.
  • FIG. 6 is a diagram showing the formulation of the powder prepared in Example 6 (spray freeze-drying method and spray drying method) and the physical properties of lipid particles generated after dissolution.
  • FIG. 6 is a diagram showing the observation results of the shape of constituent particles of the powder preparation prepared in Example 6.
  • FIG. 3 is a diagram showing evaluation results of gene silencing effect and cytotoxicity of lipid particles loaded with siRNA (RNA interference agent).
  • FIG. 3 is a diagram showing the evaluation results of cell binding/uptake ability of siRNA-loaded lipid particles.
  • FIG. 6 is a diagram showing the inhalation characteristics of the powder prepared in Example 6.
  • FIG. 7 is a diagram showing the evaluation results of the intrapulmonary distribution of siRNA after administration of the powder prepared in Example 6 into the lungs of mice.
  • the disclosure of this specification relates to a powder agent (hereinafter also simply referred to as the agent) and a method for producing the same.
  • This agent is generally intended for medicinal use.
  • the constituent particles of this drug contain a predetermined lipid component and leucine and/or dileucine, so they have excellent ability to reach the lungs, and dissolve (wet) at the site where they reach, for example, a large number of nano-level particles. Generate lipid particles. Therefore, this drug can cause lipid particles to reach the target site in the lungs or to remain there.
  • this agent can effectively incorporate lipid particles and/or active ingredients into cells by lipid particles generated in the presence of water in vivo. Additionally, the lipid particles can retain the lipid particles and/or the active ingredient at the target site.
  • RNA interference agent-loaded lipid particles with a small and uniform particle size can be formed. Furthermore, by employing a PEG-cholesterol conjugate as the PEG-lipid conjugate, RNA interference agent-loaded lipid particles with excellent gene silencing effects and cell binding/uptake abilities can be formed. Furthermore, according to this drug containing an RNA interference agent, when inhaled into the lungs, it dissolves and deposits in the lungs to form lipid particles loaded with the RNA interference agent, improving the stability and retention of the RNA interference agent. do.
  • RNA interference agent-loaded lipid particles with a smaller particle size and uniformity can be formed. Furthermore, by employing the SFD method, it is possible to obtain a powder that has excellent lung delivery properties even with a high content of RNA interference agent/lipid components.
  • the particles included in this drug can potentially contain lipid particles, and the lipid particles can be used to achieve an effective DDS function by inhaling air into the lungs. Moreover, when this agent is introduced into a living body, the reachability, intracellular transfer, and retention of the active ingredient can be controlled by lipid particles generated in the presence of water.
  • an inhalable powder that has excellent ability to reach the lungs and has particles that dissolve at the site of arrival to produce a large number of lipid particles can be easily produced. can do.
  • the powder agent disclosed herein contains particles (constituent particles).
  • the constituent particles can take the form of a powder or the like as a whole. This agent can contain an active ingredient in some of these constituent particles.
  • the constituent components, various properties, etc. of this agent will be explained below, and then the manufacturing method of this agent will be explained.
  • composition of this drug The agent is suspended in an aqueous medium such as water or a buffer (eg, a biocompatible phosphate buffered saline, a HEPES buffer (pH 7.4), etc.) to produce lipid particles.
  • a buffer eg, a biocompatible phosphate buffered saline, a HEPES buffer (pH 7.4), etc.
  • the present agent can contain, for example, a lipid component capable of functioning as a lipid particle called a liposome or the like, and a pharmaceutically acceptable excipient.
  • lipid component As the lipid component contained in this agent, one or more types selected from cationic lipids and non-cationic lipids may be used.
  • Cationic lipids are advantageous in that they can facilitate uptake of lipid particles into cells.
  • known cationic lipids can be used, such as 1,2-dioleyloxy-3-trimethylammoniumpropane (DOTMA), 1,2-dioleyloxy-3-dimelamino Propane (DODMA), 1,2-dioleyl-3-trimethylammoniumpropane (DOTAP), 1,2-dioleyl-3-dimethylammoniumpropane (DODAP), 3 ⁇ -(N-(N',N'-dimethylaminoethane) ) carbamoyl) cholesterol (DC-Chol), N,N-distearyl-N,N-dimethylammonium bromide (DDAB), N-(1,2-dimyristyloxyprop-3-yl)-N,N-dimethyl -N-Hydroxyethylammonium bromide (DMRI), N
  • DDAB 1,2-dimyr
  • cationic lipids When these cationic lipids are combined with a PEG-lipid conjugate and are formed into lipid particles in vivo, they may be able to quickly contribute to the cellular uptake of the lipid particles and/or the active ingredient within the lipid particles. be. Among these, for example, either or both of DOTMA and DODMA can be used. In some cases, it may be preferable to use DOTMA alone.
  • DOTMA DOTMA alone.
  • the above cationic lipids and other cationic lipids may be salts with acid groups such as chlorine ions. In this agent, for example, a cationic lipid can be used as a predominant lipid component among all lipid components.
  • the content of the cationic lipid is not particularly limited, but may be, for example, 30% by mass or more and 70% by mass or less based on the total amount of lipid components. Within this range, the above effects of cationic lipids are effective.
  • the cationic lipid is, for example, 40% by mass or more and 70% by mass or less, for example, 40% by mass or more and 65% by mass or less, and for example, 40% by mass or more and 60% by mass or less.
  • the content of cationic lipid is, for example, 3% by mass or more and 30% by mass or less, for example, 4% by mass or more and 25% by mass or less, and for example, 4% by mass or less, based on the total amount of the drug. % or more and 20% by mass or less.
  • Non-cationic lipid As the non-cationic lipid, known non-cationic lipids such as zwitterionic lipids can be used, such as 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), egg-derived phosphatidylcholine, etc. (EPC), phosphatidyl cholinelipids such as 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), etc. Examples include sphingolipids such as ethanolamine lipids and sphingomyelin (SM).
  • DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine
  • EPC egg-derived phosphatidylcholine, etc.
  • DPPE 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine
  • non-cationic lipids When combined with a PEG-lipid conjugate, these non-cationic lipids have a DDS function that improves the sustained release or retention of active ingredients when they are formed into lipid particles in vivo, such as on airway epithelium. You may be able to contribute.
  • non-cationic lipids may be used as the predominant lipid component among the total lipid components.
  • the content of the non-cationic lipid is not particularly limited, but can be, for example, 30% by mass or more and 70% by mass or less based on the total amount of lipid components. Within this range, the above effects of cationic lipids are effective.
  • the non-cationic lipid is, for example, 40% by mass or more and 70% by mass or less, for example, 40% by mass or more and 65% by mass or less, and for example, 40% by mass or more and 60% by mass or less.
  • the content of non-cationic lipids is, for example, 3% by mass or more and 30% by mass or less, for example, 4% by mass or more and 25% by mass or less, and for example, It can be set to 20% by mass or more and 20% by mass or less.
  • PEG-lipid conjugate This agent can use known PEG-lipid conjugates as the complex lipid, but for example, in addition to various PEG-cholesterol conjugates, PEG-phospholipid conjugates such as PEG-DSPE (especially non-cationic PEG-diacylglycerol conjugates such as PEG-DMG (dimyristoylglycerol) can be used.
  • PEG-DSPE especially non-cationic PEG-diacylglycerol conjugates such as PEG-DMG (dimyristoylglycerol)
  • PEG-DMG diristoylglycerol
  • PEG-cholesterol conjugates include those in which PEG and lipid are directly bonded.
  • the molecular weight of PEG is also not particularly limited, but can be appropriately selected within the range of, for example, 500 to 10,000.
  • a PEG conjugate with a number average molecular weight of 1,500 to 2,500 may be effective for the intracellular transfer of lipid particles and/or active ingredients.
  • even a PEG conjugate having a number average molecular weight of 4,000 to 6,000 may be effective for the intracellular transfer of lipid particles and/or active ingredients.
  • PEG-lipid conjugates such as PEG-DSPE and PEG-DMG may have, for example, a glycerol skeleton. It can contribute to the retention effect of the active ingredient.
  • the content of such a PEG-lipid conjugate is not particularly limited, but may be, for example, 10% by mass or more and 50% by mass or less based on the total amount of lipid components. This is because within this range, various conjugates are effective in exerting their respective effects. Further, for example, the content is 15% by mass or more and 45% by mass or less, and for example, 20% by mass or more and 40% by mass or less. In addition, the content of the PEG-lipid conjugate is, for example, 2% by mass or more and 20% by mass or less, and, for example, 2.5% by mass or more and 15% by mass or less, based on the total amount of the drug. For example, it is 3% by mass or more and 13% by mass or less.
  • lipid components As other lipid components, various known lipids that contribute to the formation of lipid particles such as liposomes can be used. For example, cholesterol, dioleoylphosphatidylethanolamine (DOPE), etc. can be used. These other lipid components can contribute to in-vivo stability and endosomal escape of lipid particles and the like.
  • DOPE dioleoylphosphatidylethanolamine
  • the content of other lipids is not particularly limited, but may be, for example, 5% by mass or more and 30% by mass or less based on the total amount of lipid components. This is because within this range, it can contribute to the above-mentioned effects. Further, for example, the content is 10% by mass or more and 30% by mass or less, and for example, 15% by mass or more and 25% by mass or less. In addition, the content of other lipids is, for example, 1% by mass or more and 10% by mass or less, and for example, 1% by mass or more and 5% by mass, based on the total amount of this drug. % or less, and for example, from 1% by mass to 3% by mass.
  • the total amount of lipid components in this drug is not particularly limited, but is, for example, 5% by mass or more and 60% by mass or less, and, for example, 7% by mass or more and 50% by mass, based on the total amount of this drug. For example, it is 8% by mass or more and 45% by mass or less.
  • the agent may further contain an excipient.
  • the excipient is not particularly limited, for example, leucine and dileucine, which is a dipeptide, can be used.
  • leucine or dileucine By using leucine or dileucine, even if the amount of the lipid component is increased, it is possible to suppress the increase in the average particle diameter of the lipid particles when the spherical particles are dissolved in water, and maintain the range of, for example, 50 nm to 250 nm. , PdI can produce lipid particles with a uniform particle size and a low value.
  • leucine and/or dileucine it may be possible to enhance the cell binding/uptake properties of lipid particles.
  • L-leucine and/or D-leucine can be used as leucine and dileucine.
  • L-leucine and L-leucine dipeptides can be used.
  • the content of leucine or dileucine is not particularly limited, but is, for example, 5% by mass or more and 95% by mass or less, and, for example, 10% by mass or more and 90% by mass or less, based on the total amount of the drug. , or 10% by mass or more and 80% by mass or less.
  • This drug can contain active ingredients.
  • the content of the active ingredient is not particularly limited, but may be, for example, about 0.1% by mass or more and 5% by mass or less based on the total amount of the agent.
  • the active ingredient is not particularly limited as long as it can be used in the spray drying method and spray freeze drying method described below, and is generally an organic compound.
  • the active ingredient may be, for example, an active ingredient for treatment or prevention of diseases related to the lungs, or an active ingredient for treatment or prevention that is intended to be administered systemically through the bloodstream through the lungs. It may be.
  • This drug reaches the lungs and dissolves on the spot to generate lipid particles, which can be taken into cells or the bloodstream via the lipid particles. Therefore, any active ingredient that can be encapsulated by lipid particles can be used. I can do it.
  • Nucleic acids include natural nucleic acids that are polymers of naturally occurring deoxyribonucleotides and/or ribonucleotides and non-natural nucleic acids that are polymers that include deoxyribonucleotides and/or ribonucleotides that have at least a non-natural structure. I can do it. Natural deoxyribonucleotides and ribonucleotides contain natural bases. Natural bases are those found in natural DNA and RNA and include adenine, thymine, guanine, cytosine and uracil.
  • the phosphoric acid at the 5-position of the 2-deoxyribose and/or ribose and the 3' hydroxyl group of the adjacent deoxyribose and/or ribose form a phosphate diester bond. It has a skeleton connected by.
  • the natural nucleic acid may be DNA, RNA, or a chimera of deoxyribonucleotides and ribonucleotides (hereinafter also referred to as a DNA/RNA chimera).
  • DNA and RNA may each be single-stranded, double-stranded of the same type, or a hybrid of DNA and RNA hybridized.
  • DNA/RNA chimera may be a hybrid hybridized with DNA, RNA, or a DNA/RNA chimera.
  • a non-natural nucleic acid refers to a nucleic acid that has a non-natural structure in at least a portion of either the base or the backbone (sugar moiety and phosphate moiety).
  • Various non-natural bases are known as non-natural bases.
  • various skeletons that can replace the natural ribose phosphate skeleton are also provided. Examples include glycol nucleic acids, peptide nucleic acids, and the like having about 3 carbon atoms instead of a sugar-ribose skeleton.
  • natural nucleic acids are L-DNA or L-RNA, but non-natural nucleic acids include nucleic acids that have at least a portion of the structure of D-DNA and D-RNA.
  • Non-natural nucleic acids also include various forms such as single-stranded, double-stranded, hybrid, and chimeric.
  • This type of non-natural nucleic acid is generally not a coding strand that encodes a protein or a template strand, but has other functions, such as interacting with a certain type of nucleic acid within a cell to change the function of that nucleic acid. It is used for such things. Typically, it is used to express a function of inhibiting the expression or function of a target protein. Examples include nucleic acids that act directly on in vivo nucleic acids without mediating gene expression, and specific examples include antisense nucleic acids, sense nucleic acids, shRNAs, siRNAs, decoy nucleic acids, aptamers, miRNAs, and the like. This type of non-natural nucleic acid is often an oligonucleotide in which about ten to several dozen nucleotides are polymerized.
  • nucleic acid for example, when this agent is intended for gene expression, a nucleic acid construct (non-viral vector) using a plasmid can be mentioned. Furthermore, for example, when suppressing gene expression is intended, non-viral vectors such as plasmid DNA encoding shRNA can be used.
  • the form of the nucleic acid is not particularly limited, and may be linear, circular (closed or open ring), or supercoiled. It can be provided with a form depending on the purpose.
  • the shape of the constituent particles contained in this agent can be observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • platinum coating is applied as necessary to make it suitable for SEM observation, and observation is performed.
  • the component particle addition device and the spraying method for example, those used in the examples described later can be employed.
  • the shape of the constituent particles is not particularly limited, but for example, in consideration of dispersibility, it may be preferable to have a spherical shape. Further, in consideration of dispersibility, swelling property, etc., it may be preferable to be porous.
  • the constituent particles are, for example, porous spherical particles.
  • Porous spherical particles have, for example, a large number of continuous pores (hollow parts) generated by sublimation of water, and adjacent pores have partition walls and/or mesh-like pores made of components such as lipid components and excipients. It has a three-dimensional structure divided by a skeleton. Such partition walls or skeletons are observed, for example, in the form of pleats or networks on the surface of spherical particles in the SEM.
  • Such constituent particles may be produced, for example, by a spray freeze-drying method when producing the present drug.
  • constituent particles can also take the form of spherical particles with generally smooth surfaces.
  • the spherical particles in this case may or may not be porous.
  • Such constituent particles may be produced, for example, by a spray drying method using dileucine when producing the present agent.
  • constituent particles can also take the form of wrinkled particles whose surfaces are rich in irregularities.
  • Such constituent particles may be produced, for example, by a spray freeze-drying method when producing the present drug.
  • it may be produced using leucine instead of dileucine.
  • the average particle diameter of the constituent particles contained in this drug can be determined by, for example, using a scanning electron microscope, setting an observation field that contains 10 to 20 constituent particles, observing their diameters across the field, and determining the average value. I can do it.
  • the average particle diameter of the constituent particles of the present agent is not particularly limited, but in consideration of dispersibility, it can be, for example, 1 ⁇ m or more and 100 ⁇ m or less, or 1 ⁇ m or more and 50 ⁇ m or less, or 1 ⁇ m or more and 40 ⁇ m or less.
  • the thickness can be, for example, 5 ⁇ m or more and 40 ⁇ m or less, 10 ⁇ m or more and 30 ⁇ m or less, etc. Further, for example, according to the spray drying method described below, the thickness can be set to, for example, 1 ⁇ m or more and 10 ⁇ m or less.
  • This drug is delivered to the respiratory tract by inhalation (gas flow during suction from the oral cavity to the bronchi), and its characteristics in that case (inhalation characteristics), In other words, the dispersibility and delivery properties of this drug can be evaluated. Although dispersibility and deliverability are independent properties, they are interrelated.
  • MSLI evaluation method using multi-stage liquid impinger
  • the MSLI method refers to the method described in 17th Edition Japanese Pharmacopoeia 1st Supplement General Test Methods 6.15 Aerodynamic Particle Size Measurement Method for Inhalants 5.1 Multi-Stage Liquid Impinger Method (Apparatus 1). Use measuring equipment. A pre-separator can be used as appropriate.
  • the outline of the measuring device and the measuring method can be based on the above general test method.
  • the evaluation of this drug by the MSLI method can be carried out in accordance with the procedure for measuring inhalation powder in 5.1.2 of the above general test method 5.1 Multi-stage liquid impinger method (apparatus 1).
  • OE Output Efficiency: %), which is the emission rate from the device, FPF (%) (collection rate of particles equivalent to 5 ⁇ m or less), and UPF (%) (Ultrafine Particle Fraction) (collection rate of particles equivalent to 2 ⁇ m or less) ) is the above general test method 6.15 Aerodynamic particle size determination method for inhalants 6. Based on calculations, each is calculated using the following formulas (1) to (3).
  • OE (%) Recovery amount T/Total recovery amount x 100 (1) (However, the collected amount T is the collected amount from the throat onward.)
  • FPF (%) Collection amount of particles corresponding to 5 ⁇ m or less */Total collection x 100
  • UPF (%) Collection amount of particles equivalent to 2 ⁇ m or less ** / Total collection amount x 100 (3)
  • OE is an index of dispersibility
  • FPF is an index of intrapulmonary delivery
  • UPF is an index value of deep lung delivery.
  • This drug can have, for example, an OE of 80% or more in the inhalation characteristics evaluation using the MSLI method. This is because when it is 80% or more, it can be said that the release rate is good.
  • the OE is, for example, 85% or more, 90% or more, or 95% or more.
  • this drug can have an FPF of 10% or more, for example, 15% or more, or 20% or more, or 25% or more, in the inhalation characteristics evaluation using the MSLI method. , for example, 30% or more, or, for example, 40% or more. For example, it can be said that the larger the value, the better the lung delivery rate. Note that, depending on the active ingredients and uses of the inhalable powder, an FPF of 10% or more may be sufficient.
  • this drug has a UPF of, for example, 10% or more, 15% or more, 20% or more, 25% or more, or 30% or more in the inhalation property evaluation using the MSLI method. % or more. This is because it can be said that the larger the value, the better the deep lung delivery rate. Note that depending on the active ingredients and uses of the inhalable powder, a UPF of 10% or less, for example, 5% or less, or, for example, 1% or less may be sufficient.
  • the water-insoluble lipid component can form lipid particles that are finer than the constituent particles contained in the agent.
  • an average particle size of 400 nm or less can be obtained.
  • a polydispersity index (PdI) of 0.420 or less can be obtained.
  • the particle size distribution of lipid particles determined by dynamic light scattering was determined using Zetasizer Nano manufactured by Malvern after stirring and standing for 30 minutes at a suspension concentration of 0.2 mg/mL as the concentration of lipid components in the powder. It can be obtained by measuring using ZS. Note that the average particle size and particle size distribution by the dynamic light scattering method can be obtained based on the diffusion coefficient using an autocorrelation function obtained by software attached to this device.
  • the average particle diameter is, for example, 50 nm or more, 60 nm or more, 70 nm or more, 80 nm or more, and 90 nm or more.
  • the average particle size is also, for example, 300 nm or less, such as 280 nm or less, such as 260 nm or less, such as 240 nm or less, such as 220 nm or less, and such as 200 nm or less.
  • it is 180 nm or less, for example, 170 nm or less, for example, 160 nm or less, and for example, 140 nm or less.
  • the range of the average particle diameter can be appropriately selected and set from the above lower and upper limits, and is, for example, 60 nm or more and 280 nm or less, and also, for example, 60 nm or more and 260 nm or less, and for example, 60 nm or more and 240 nm or less. etc.
  • PdI is also, for example, 0.400 or less, for example, 0.390 or less, for example, 0.380 or less, and for example, 0.370 or less.
  • This agent can be manufactured by a spray drying method or a spray freeze drying method. By employing such a manufacturing method, it is possible to easily obtain this drug which has excellent lung reach and contains particles that form lipid particles when dissolved in water or when wet. From the viewpoints of formation of spherical porous particles, cell membrane binding/intracellular uptake, and high content of lipid components, it may be advantageous to produce this agent by spray freeze-drying.
  • the manufacturing method of this drug includes, for example, a step of preparing a liquid containing an active ingredient, a lipid component containing a PEG-lipid conjugate, and leucine and/or dileucine, and spray-drying or spray-freezing this liquid.
  • the method may include a step of producing a powder containing an active ingredient, a component containing a PEG-lipid conjugate, and leucine and/or dileucine by drying by a drying method.
  • a powder is obtained by a spray drying method or a spray freeze drying method, the powder is a powder containing constituent particles that form a large number of lipid particles in an aqueous suspension of the powder.
  • the liquid to be subjected to the spray drying method or the spray freeze drying method contains an active ingredient, a lipid component containing a PEG-lipid conjugate, and leucine and/or dileucine, and these are uniformly dispersed or It is sufficient if it is dissolved.
  • the lipid component may be finely and uniformly dispersed even if it is not dissolved.
  • a lipid component is mixed with a liquid dissolved in a solvent that dissolves the lipid component and a liquid dissolved in a solvent that dissolves an excipient such as leucine and/or dileucine, and then sprayed. It may also include making it into a liquid for use. In this way, a homogeneous liquid for spraying can be prepared.
  • the solvent for dissolving the lipid component is preferably an organic solvent that is miscible with water. This is because when leucine and/or dileucine is dissolved in water, a uniform mixture with the leucine and/or dileucine solution can be prepared.
  • organic solvents include alcohols such as methanol, ethanol, n-propanol, 2-propanol, and tert-butyl alcohol, and acetonitrile.
  • the solvent for dissolving dileucine it may be preferable to use water or a mixture of water and an organic solvent that is miscible with water.
  • Such an organic solvent has the same meaning as an organic solvent in a solvent for dissolving a lipid component.
  • the active ingredient can be dissolved in a solution of either the lipid component and leucine and/or dileucine.
  • they can be dissolved in the same or other solvents that are miscible with the solvents used for these solutions, and mixed with solutions of other components.
  • the mixing ratio of water and organic solvent in the final spraying liquid is, for example, 9:1 to 1:9, or 9:1 to 3:7, or 9:1 to 3:7. 4:6, or, for example, can be appropriately set in the range of 9:1 to 5:5.
  • compositions of the lipid components and leucine and/or dileucine in each solution are not particularly limited, and may be within the composition ranges described above.
  • concentrations of these components are also adjusted to a final concentration suitable for use in spray drying or spray freeze drying.
  • the total amount of the active ingredient, lipid component, and excipient such as leucine and/or dileucine is, for example, 5 to 100 mg/mL, depending on the content of the lipid component and excipient, and the type of solvent. It can be appropriately set in the range of 5 to 80 mg/mL, for example 5 to 50 mg/mL, further for example 5 to 30 mg/mL, further for example 5 to 25 mg/mL.
  • the drying step of pulverizing this liquid by a spray drying method or a spray freeze drying method can be carried out according to a conventionally known spray drying method or a spray freeze drying method.
  • this drug prescribed lipid components and dileucine are used, so by powdering it according to the conventional method, this drug has excellent lung delivery and contains particles that form a large number of lipid particles when dissolved in water. can be easily obtained.
  • This agent can be used for various purposes such as medical use depending on the active ingredient.
  • this drug can be applied to organs that can be accessed from the outside using a catheter or the like non-invasively or almost non-invasively in animals including humans, such as the nasal cavity, eyes, oral cavity, respiratory tract, lungs, stomach, duodenum, etc.
  • the active ingredient can be delivered to the target area by injecting this drug through an appropriate gas. can.
  • the supply of a powder to the lung mucosa or nasal mucosa is well known as an inhalation method.
  • the agent may be directly supplied to the inside of the animal, for example, subcutaneously, into the muscle, into the abdominal cavity, into a lesion such as a tumor, etc., through laparotomy or incision.
  • this agent it is also possible to adopt methods such as transplanting it inside the target tissue, on its surface, or in its vicinity.
  • the agent can also be supported on the surface of a gel-like material, a porous body such as a sponge, a nonwoven fabric, and the like.
  • the agent exhibits sufficient effects even if it is dissolved before use.
  • the agent can be suspended or dissolved in an aqueous medium such as water, physiological saline, a buffer, a glucose solution, or a culture medium to prepare a redissolved product and then applied.
  • an aqueous medium such as water, physiological saline, a buffer, a glucose solution, or a culture medium.
  • redissolution the agent is suspended or diluted using an aqueous medium such as water. Since a different amount and type of solvent can be used than before freeze-drying, relatively high concentration suspensions and solutions, which have been difficult to prepare in the past, can be easily prepared.
  • the present agent dissolved or suspended in an appropriate liquid medium can be prepared using any method commonly used for introducing nucleic acids or derivatives thereof into living cells.
  • a powder agent a lipid component containing a PEG-lipid conjugate; Leucine and/or dileucine; A powder containing constituent particles containing.
  • the powder agent according to [1] wherein the constituent particles produce a large number of lipid particles in an aqueous suspension of the particles.
  • the lipid component is further one or more selected from the group consisting of DOTMA, DODMA, DPPC, EPC, and SM, or one or more selected from salts thereof; [ 1] or the powder according to [2].
  • the porous spherical particles are three-dimensional porous bodies including partition walls and/or skeletons that define continuous pores.
  • the lipid particles have an average particle diameter of 50 nm or more and 300 nm or less, as measured by a dynamic light scattering method for a suspension obtained by suspending the particles in water or a buffer solution, [1]
  • MSLI multi-stage liquid impinger
  • a method for producing a powder comprising: preparing a liquid containing an active ingredient, a lipid component containing a PEG-lipid conjugate, and leucine and/or dileucine; Drying the liquid by a spray drying method or a spray freeze drying method to produce a powder containing the active ingredient, the PEG-lipid conjugate, and the leucine and/or dileucine; Equipped with The manufacturing method, wherein the powder is a powder containing constituent particles that form a large number of lipid particles in an aqueous suspension of the powder.
  • a powder agent an RNA interference agent; a lipid component containing a PEG-lipid conjugate; Leucine and/or dileucine; A powder containing constituent particles containing.
  • the porous spherical particles are three-dimensional porous bodies including partition walls and/or skeletons that define continuous pores.
  • the powder agent according to any one of [1] to [7], wherein the constituent particles have an average particle diameter of 1 ⁇ m or more and 100 ⁇ m or less.
  • the lipid particles have an average particle diameter of 50 nm or more and 300 nm or less, as measured by a dynamic light scattering method for a suspension obtained by suspending the particles in water or a buffer solution, [1]
  • the powder agent according to any one of ⁇ [8].
  • MSLI multi-stage liquid impinger
  • the powder according to any one of [1] to [10] which has an FPF (%) of 10% or more in characteristic evaluation by MSLI.
  • an inhalable powder was manufactured by spray freeze-drying (SFD) and spray drying (FD) using the lipid components and excipients shown in FIGS. 1 and 2.
  • SFD spray freeze-drying
  • FD spray drying
  • NBD-DPPE nitrobenzoxadiazolated phospholipid
  • PDEX dexamethasone palmitate
  • the usage amounts of various components shown in Figures 1 and 2 were as follows.
  • the total amount was set to 50 mg and 100 mg, respectively.
  • the spraying liquid was prepared as follows.
  • the PEG derivative the following PEG-lipid conjugate was used.
  • conjugates with a PEG Mn of 2000 were used, except for SFD #12, in which a conjugate with a PEG Mn of 5000 was used.
  • the SFD method was performed as follows. That is, the SFD method consists of two steps: a spraying step and a freeze-drying step. First, using a two-fluid spray nozzle attached to a spray dryer (SD-1000, Tokyo Rikakikai Co., Ltd.), the sample solution was rapidly sprayed at 150 kPa into liquid nitrogen (500 mL) 15 cm below the nozzle tip. Frozen. The sample solution was fed at a rate of 5 mL/min, and spraying was continued for 1.5 min.
  • the obtained ice droplets were placed in a square dry chamber (DRC-1000 Tokyo Rikakikai Co., Ltd.) connected to a freeze dryer (FDU-210 Tokyo Rikakikai Co., Ltd.) and dried at -40°C for 24 hours or more under vacuum conditions, then The desired formulation was obtained by drying at 25° C. for 12 hours or more.
  • the SD method was performed as follows. That is, the SD method consists of two steps: a spraying step and a drying step. First, a nebulizer (Medium) was attached to the spray head attached to a spray dryer (B-90HP, Nihon Buchi), and the inlet temperature was set to 90°C and the gas flow rate was set to 120 L/min. .
  • a nebulizer Medium
  • B-90HP Nihon Buchi
  • the inlet temperature was set to 90°C and the gas flow rate was set to 120 L/min.
  • Example 1 Evaluation of physical properties of lipid particles after dissolving powder
  • the various powders prepared in Example 1 were dissolved in water to a lipid concentration of 0.2 mg/mL, and after standing for 30 minutes, the particle size distribution and zeta potential of the particles in the liquid were measured using dynamic and electrical methods. It was measured by electrophoretic light scattering method (Zetasizer Nano ZS manufactured by Malvern). Note that the average particle size and particle size distribution obtained by the dynamic light scattering method can be obtained based on the diffusion coefficient using the autocorrelation function obtained from the measurement results using software attached to this apparatus.
  • the standard values were 300 nm as the average particle diameter and 0.42 as the polydispersity index (PdI), and when both analytical values were below the standard values, it was determined that the sample had "good ability to form lipid particles.” The results are also shown in FIGS. 1 and 2.
  • the average particle diameter is 80 to 150 nm and the PdI is 0.170 to 0.400, which are generally below the standard values, and regardless of the type of main lipid, it is a good product. Lipid particle forming ability was obtained. Furthermore, there were no clear differences in the average particle diameter and PdI with respect to the type of PEG derivative (PEG-lipid conjugate), the concentration of the component solution, and the solvent composition. When comparing SFD constituent particles and SD constituent particles of the same composition, the average particle diameter and PdI of the lipid particles formed were similar. On the other hand, the zeta potential showed -35 to +60 mV corresponding to the charge of the main lipid, confirming that various lipid particles with different surface charges could be formed.
  • powders (SFD#3'', 7-11; SD#3', 7-11) were manufactured by changing the type of excipient and lipid component content while fixing the lipid component, and forming after dissolution.
  • the physical properties of lipid particles were compared.
  • SFD-derived particles when leucine was used as an excipient, both the average particle diameter and PdI were below the standard values up to a lipid component content of 20%, but when the lipid component content reached 40%, the average particle size and PdI decreased. Both the particle diameter and PdI exceeded the standard values, and it was determined that the ability to form lipid particles had been lost.
  • Example 1 Evaluation of particle shape by scanning electron microscope of powder agent
  • SEM scanning electron microscope
  • Example 1 The particle shape of the powder particles prepared in Example 1 was observed using a scanning electron microscope (SEM: JSM-IT100LA, JEOL Ltd.).
  • Spraying was performed using the component particle addition device for dispersion addition shown in FIG.
  • As for the spraying method 0.25 mL of air was compressed in a 1 mL syringe (TERUMO) connected via a three-way connection to a 100 ⁇ L tip filled with a small amount of the prepared powder, and the three-way stopcock was opened.
  • TERUMO 1 mL syringe
  • Example 1 Evaluation of inhalation characteristics of powder by MSLI
  • performance evaluation was performed on SFD #7, #10, and #11, which were able to form lipid particles exhibiting good physical properties even with a relatively high content of lipid components.
  • MSLI Multi-Stage Liquid Impinger, Copley Scientific
  • lipids can be used as lipid components in both the SFD method and SD method studied when developing an inhalation powder that constructs intrapulmonary lipid particles. . Furthermore, based on the results that the cellular binding/uptake ability of lipid particles varied greatly depending on the charge of the lipid, it was found that the application of cationic lipids increased the intracellular transferability of the encapsulated drug. Furthermore, we have found that by applying PEG-Chol as a PEG derivative and dileucine as an excipient, the cell binding/uptake ability of lipid particles containing cationic lipids can be further improved.
  • the sponge-like constituent particles produced by the SFD method using dileucine have lung delivery properties that are equivalent to or better than existing commercially available inhalation powders, good lipid particle formation ability, and high cell binding / The usefulness of demonstrating uptake ability was clarified.
  • siRNA siGL3 or fluorescently labeled siGL3 (Cy5.5-siGL3), manufactured by Hokkaido System Science Co., Ltd.
  • excipient dileucine (also called diLeu)
  • leucine also referred to as Leu
  • DOTMA lipid component
  • DODMA DODMA
  • PEG derivatives PEG derivatives
  • cholesterol Chol
  • the mixed solution was quickly frozen by spraying it into liquid nitrogen (500 mL) 15 cm below the nozzle tip at 150 kPa. .
  • the sample solution was fed at a rate of 5 mL/min, and spraying was continued for 60 seconds when the volume of the mixed solution was 2.5 mL, and for 90 seconds when the volume was 5 mL.
  • the obtained ice droplets were placed in a rectangular dry chamber (DRC-1000 Tokyo Rika Kikai Co., Ltd.) connected to a freeze dryer (FDU-210 Tokyo Rika Kikai Co., Ltd.) and continuously heated at -40°C for 24 h or more under vacuum conditions.
  • the desired powder was obtained by drying at 25° C. for 12 hours or more.
  • As the PEG derivative a conjugate of PEG with Mn of 5000 was used.
  • siRNA siGL3 or fluorescently labeled siGL3 (Cy5.5-siGL3)
  • excipient dileucine or leucine
  • lipid component DOTMA, DODMA
  • PEG derivative, Chol PEG derivative, Chol
  • the experiment was conducted as follows. Each powder was dissolved in 10 mM HEPES buffer (pH 7.4) so that the siRNA/lipid concentration was 0.2 mg/mL, and after standing for 30 minutes, the siRNA-loaded lipid particles (siRNA-LNP) in the solution were dissolved. Particle size distribution and zeta potential were measured by dynamic electrophoretic light scattering (Zetasizer Nano ZS manufactured by Malvern). The standard values were 300 nm as the average particle diameter and 0.4 as the polydispersity index (PdI), and when both analytical values were below the standard values, it was determined that the sample had "good ability to form lipid particles.” The results are shown in FIG.
  • siRNA-LNP No clear difference in the physical properties of siRNA-LNP was observed depending on the presence or absence of Cy5.5 chemical modification to siRNA and the chemical structure of the lipophilic portion of the PEG derivative. Almost similar results were obtained with leucine and dileucine, but under the condition with the highest siRNA/lipid content (dileucine/leucine #4), dileucine had a higher average particle diameter and PdI value of siRNA-LNP. was small, suggesting the superiority of dileucine in preparing siRNA/high lipid content formulations.
  • Example 6 In vitro gene silencing effect and cytotoxicity of siRNA-loaded lipid particles formed by dissolving powder
  • luciferase-expressing human lung cancer cells A549-Luc cells
  • luciferin and Alamar Blue reagent were added at a predetermined time, and the luminescence corresponding to luciferase expression and the fluorescence (excitation wavelength: 465 nm, fluorescence wavelength: 600 nm) due to reaction with the Alamar Blue reagent were measured using an in vivo imaging system ( Detection and intensity analysis were performed using IVIS, Perkinelmer). Based on the obtained luminescence/fluorescence intensity, Gene expression and Cell viability were calculated using the following formulas. The results are shown in FIG.
  • the obtained supernatant was added to a microplate, and fluorescence derived from Cy5.5 was detected and intensity analyzed using a fluorescence image analyzer (Amersham Typhoonscanner 5 system, GE Healthcare). Subsequently, this supernatant was subjected to denaturing polyacrylamide gel electrophoresis (PAGE), and a band corresponding to Cy5.5-siGL3 in the gel was detected using a fluorescent image analyzer in the same manner. The presence of Cy5.5-siGL3 was confirmed. For comparison, a solution of Cy5.5-siGL3 alone (naked siRNA) was also added and evaluated in the same manner. The results are shown in FIG.
  • the fluorescence intensity of the measurement sample (cell lysate) ( Figure 9(a)) and the band density in the electrophoretic image ( Figure 9(b)) were correlated to some extent. It was determined that the difference in intensity reflects the difference in the dynamics of Cy5.5-siGL3 itself (the influence of fluorescence derived from decomposition products or dissociated Cy5.5 is small). Compared to naked siRNA, the fluorescence intensity was higher in the siRNA-LNP addition group formed from each powder, suggesting that the cell binding/uptake ability of siRNA was increased by lipid particle formation.
  • the fluorescence intensity is higher in the order of "PEG-Chol > PEG-DMG > PEG-DSPE" (comparison of leucine #2', #9', #10'), and as a result of gene silencing effect in cultured cells ( Since this corresponds to Fig. 8), it is considered that the difference in the gene silencing effect was caused by the difference in the cell binding/uptake ability of siRNA-LNP depending on the PEG derivative. It was confirmed that when dileucine was used as an excipient like leucine, siRNA-LNPs with similarly high fluorescence intensity and excellent cell binding/uptake ability were formed.
  • the fluorescence intensity of the dileucine preparation was lower than that of the leucine preparation (leucine #3') with the same siRNA/lipid content, but this difference is due to the difference in fluorescence intensity during siRNA-LNP formation (same Cy5. Comparing the fluorescence intensity of the powder solution with 5-siGL3 concentration, it seems that this is due to the fact that dileucine #3 has a lower fluorescence intensity.
  • the concentration of fluorescein sodium was determined using a multimode plate reader (EnSpire, PerkinElmer Japan Co., Ltd.) to quantify the amount (excitation wavelength: 490 nm, fluorescence wavelength: 515 nm), and calculate the recovery amount and recovery rate for each part. Dilution and quantification were performed as necessary.
  • RNA extracts prepared from the excised lungs
  • a band corresponding to Cy5.5-siGL3 in the gel was detected using a fluorescence image analyzer. The presence of Cy5.5-siGL3 was confirmed.
  • Cy5.5-siGL3 alone solution naked siRNA
  • each Cy5.5-siGL3-containing powder solution dileucine/leucine #3'solution
  • Fluorescence intensity in areas other than the lungs analyzed from in vivo fluorescence imaging images was lower in the group administered with each powder and its solution compared to the group administered with naked siRNA. -LNP formation) to avoid siRNA degradation and systemic translocation. From the electrophoretic image of the lung tissue sample ( Figure 11(c)), a band corresponding to Cy5.5-siGL3 could not be detected in the naked siRNA administration group, so the fluorescence detected in the lung region ( Figure 11(b) )) was determined to be due to a degradation product of Cy5.5-siGL3 or dissociated Cy5.5.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Preparation (AREA)

Abstract

Provided is a powdered agent that forms lipid particles that give an active ingredient an excellent ability to reach the lungs when inhaled and also give the active ingredient a DDS function at the site of arrival. The powdered agent includes constituent particles that contain: a lipid component that contains a PEG-lipid conjugate; and leucine and/or dileucine.

Description

粉末剤及びその製造方法Powder and its manufacturing method
 本明細書は、粉末剤及びその製造方法等に関する。
 本出願は、2022年5月25日付けで出願された日本国特許出願である特願2022-85620及び特願2022-85625に基づく優先権を主張するものであり、ここに、これらの日本国特許出願の内容を本明細書の一部を構成するものとして援用する。
The present specification relates to a powder, a method for producing the same, and the like.
This application claims priority based on Japanese patent applications No. 2022-85620 and No. 2022-85625, which are Japanese patent applications filed on May 25, 2022. The content of the patent application is incorporated herein by reference.
 肺に対して直接かつ非侵襲的に薬物送達可能な吸入剤は、速やかな作用発現が期待でき、経口投与に比べて投与量も少ないため、全身性の副作用を軽減できるなどの長所を持っているため、局所作用薬のみならず消化管吸収性の低い全身作用が期待できる投与経路として注目されている(特許文献1)。 Inhalers, which can deliver drugs directly and non-invasively to the lungs, are expected to have a rapid onset of action and have the advantage of reducing systemic side effects because they require a smaller dose than oral administration. Therefore, it is attracting attention as an administration route that can be expected not only to be a locally active drug but also to have a systemic effect with low absorption in the gastrointestinal tract (Patent Document 1).
 吸入剤は吸入エアゾール剤(Metered-Dose Inhaler;MDI)、吸入液剤(Inhalation Solution)、吸入粉末剤(Dry Powder Inhaler;DPI)の3種に分類される。なかでも、DPIでは一般に薬物粉末が患者の吸入努力により気中に崩壊・分散され、呼吸器系治療域へ送達されるため、粉末噴霧と吸入との同調が容易かつ噴射剤が不要で吸入手技が簡便である点及び吸入デバイスが比較的小さく携帯性に優れると言うメリットがある。 Inhalants are classified into three types: metered-dose inhaler (MDI), inhalation solution, and dry powder inhaler (DPI). Among these, in DPI, the drug powder is generally broken down and dispersed into the air by the patient's inhalation effort and delivered to the respiratory treatment area, so synchronization of powder spray and inhalation is easy, no propellant is required, and the inhalation technique is simple. It has the advantage that it is simple and the inhalation device is relatively small and has excellent portability.
 一方、DPIは、粉末剤であるために、肺へ到達させるため、患者の吸入能力や口腔・咽頭などへの付着という問題があった。そこで、構成粒子を簡易にかつ効果的に肺に到達させることができるDPI製剤も開発されている(特許文献2)。 On the other hand, since DPI is a powder, it has to reach the lungs, so there are problems with the patient's inhalation ability and adhesion to the oral cavity, pharynx, etc. Therefore, a DPI formulation has been developed that allows constituent particles to easily and effectively reach the lungs (Patent Document 2).
特表2007-522246号公報Special Publication No. 2007-522246 国際公開第2020/071448号パンフレットInternational Publication No. 2020/071448 pamphlet
 DPI製剤の使用性をさらに高めるためには、肺に到達後における有効成分の滞留性・細胞内移行性の向上などのドラッグデリバリーシステム(DDS)機能の付与が要請される。 In order to further enhance the usability of DPI preparations, it is necessary to add drug delivery system (DDS) functions such as improving the retention and intracellular transfer of the active ingredient after it reaches the lungs.
 本明細書は、吸入時において肺への有効成分の到達性に優れるとともに到達部位で有効成分にDDS機能を付与する脂質粒子を形成する粉末剤を提供する。 The present specification provides a powder that has excellent delivery of active ingredients to the lungs during inhalation and forms lipid particles that impart DDS functionality to the active ingredients at the site of arrival.
 本発明者らは、優れた肺送達性を実現するDPI製剤につき、種々の製剤検討及び評価をさらに行った結果、RNA干渉剤などの有効成分の到達性及び細胞内移行性のほか、滞留性などを制御するに有効な成分を見出すことに成功した。本明細書によれば、こうした知見に基づき以下の手段が提供される。 The present inventors further investigated and evaluated various formulations for DPI formulations that achieve excellent pulmonary delivery, and found that in addition to the reachability and cellular penetration of active ingredients such as RNA interference agents, the retention We succeeded in discovering an ingredient that is effective in controlling these conditions. According to this specification, the following means are provided based on this knowledge.
[1]粉末剤であって、
 ポリエチレングリコール(PEG)-脂質コンジュゲートを含有する脂質成分と、
 ロイシン及び/又はジロイシンと、
を含有する構成粒子を含む粉末剤。
[2]前記構成粒子は、前記粒子の水懸濁液において多数個の脂質粒子を生成する、[1]に記載の粉末剤。
[3]前記脂質成分は、さらに、1,2-ジオレイルオキシ-3-トリメチルアンモニウムプロパン(DOTMA)、1,2-ジオレイルオキシ-3-ジメルアミノプロパン(DODMA)、1,2-ジパルミトイル-sn-グリセロ-3-ホスファチジルコリン(DPPC)、卵由来ホスファチジルコリン(EPC)及びスフィンゴミエリン(SM)からなる群から選択される1種若しくは2種以上又はこれらの塩から選択される1種又は2種以上である、[1]又は[2]に記載の粉末剤。
[4]前記脂質成分を前記構成粒子の総量に対して10質量%以上60質量%以下含有する、[1]~[3]のいずれかに記載の粉末剤。
[5]前記構成粒子は、多孔質球状粒子である、[1]~[4]のいずれかに記載の粉末剤。
[6]前記多孔質球状粒子は、連続する孔部を規定する隔壁及び/又は骨格を備える三次元多孔質体である、[5]に記載の粉末剤。
[7]前記構成粒子の平均粒子径は、1μm以上100μm以下である、[1]~[6]のいずれかに記載の粉末剤。
[8]前記脂質粒子は、前記粒子を水又は緩衝液に懸濁して得られた懸濁液につき、動的光散乱法により測定した平均粒子径は、50nm以上300nm以下である、[1]~[7]のいずれかに記載の粉末剤。
[9]前記構成粒子は、マルチステージリキッドインピンジャー(MSLI)による特性評価において、OE(%)=スロート以降からの回収量(mg)/全回収量(mg)×100が、80%以上である、[1]~[8]のいずれかに記載の粉末剤。
[10]MSLIによる特性評価において、FPF(%)が10%以上である、[1]~[9]のいずれかに記載の粉末剤。
[11]有効成分として、RNA干渉剤を含有する、[1]~[10]のいずれかに記載の粉末剤。
[12]前記PEG-脂質コンジュゲートは、PEG-リン脂質コンジュゲート及び/又はPEG-ジアシルグリセロールコンジュゲートである、[1]~[11]のいずれかに記載の粉末剤。
[13]前記PEG-脂質コンジュゲートは、PEG-コレステロールコンジュゲートである、[1]~[11]のいずれかに記載の粉末剤。
[14]ロイシン及びジロイシンのうちジロイシンのみを含有する、[1]~[13]のいずれかに記載の粉末剤。
[15]粉末剤の製造方法であって、
 有効成分と、PEG-脂質コンジュゲートを含有する脂質成分と、ロイシン及び/又はジロイシンと、を含む液を準備する工程と、
 前記液を、噴霧乾燥法又は噴霧凍結乾燥法により乾燥することにより、前記有効成分と、前記PEG-脂質コンジュゲートと、前記ロイシン及び/又はジロイシンと、を含有する粉末を製造する工程と、
を備え、
 前記粉末は、前記粉末の水懸濁液において多数個の脂質粒子を形成する構成粒子を含有する粉末である、製造方法。
[1] A powder agent,
a lipid component containing a polyethylene glycol (PEG)-lipid conjugate;
Leucine and/or dileucine;
A powder containing constituent particles containing.
[2] The powder agent according to [1], wherein the constituent particles produce a large number of lipid particles in an aqueous suspension of the particles.
[3] The lipid component further includes 1,2-dioleyloxy-3-trimethylammoniumpropane (DOTMA), 1,2-dioleyloxy-3-dimelaminopropane (DODMA), and 1,2-dioleyloxy-3-trimethylammoniumpropane (DOTMA). One or more selected from the group consisting of palmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), egg-derived phosphatidylcholine (EPC), and sphingomyelin (SM), or one or two selected from salts thereof. The powder agent according to [1] or [2], which is a type or more.
[4] The powder agent according to any one of [1] to [3], which contains the lipid component in an amount of 10% by mass or more and 60% by mass or less based on the total amount of the constituent particles.
[5] The powder agent according to any one of [1] to [4], wherein the constituent particles are porous spherical particles.
[6] The powder agent according to [5], wherein the porous spherical particles are three-dimensional porous bodies including partition walls and/or skeletons that define continuous pores.
[7] The powder agent according to any one of [1] to [6], wherein the constituent particles have an average particle diameter of 1 μm or more and 100 μm or less.
[8] The lipid particles have an average particle diameter of 50 nm or more and 300 nm or less, as measured by a dynamic light scattering method for a suspension obtained by suspending the particles in water or a buffer solution, [1] The powder agent according to any one of ~[7].
[9] The constituent particles have an OE (%) = recovery amount from the throat onwards (mg) / total recovery amount (mg) x 100 of 80% or more in a characteristic evaluation using a multi-stage liquid impinger (MSLI). The powder agent according to any one of [1] to [8].
[10] The powder according to any one of [1] to [9], which has an FPF (%) of 10% or more in characteristic evaluation by MSLI.
[11] The powder according to any one of [1] to [10], which contains an RNA interference agent as an active ingredient.
[12] The powder according to any one of [1] to [11], wherein the PEG-lipid conjugate is a PEG-phospholipid conjugate and/or a PEG-diacylglycerol conjugate.
[13] The powder according to any one of [1] to [11], wherein the PEG-lipid conjugate is a PEG-cholesterol conjugate.
[14] The powder preparation according to any one of [1] to [13], which contains only dileucine among leucine and dileucine.
[15] A method for producing a powder, comprising:
preparing a liquid containing an active ingredient, a lipid component containing a PEG-lipid conjugate, and leucine and/or dileucine;
Drying the liquid by a spray drying method or a spray freeze drying method to produce a powder containing the active ingredient, the PEG-lipid conjugate, and the leucine and/or dileucine;
Equipped with
The manufacturing method, wherein the powder is a powder containing constituent particles that form a large number of lipid particles in an aqueous suspension of the powder.
実施例1で調製した粉末剤の処方(噴霧凍結乾燥法)及び溶解後に生成した脂質粒子の物性を示す図である。ただし、図1及び図2に関し、表中のLNPは脂質粒子の略記である。表中の*は粉末微粒子に占める脂質成分含量 (w/w)、**は成分溶液中の水と有機溶媒の混合比(v/v)をそれぞれ示している。Product name中で同じ#番号のSFD微粒子とSD微粒子は、同組成である。SFD#3、 SFD#3’、SFD#3''、 SD#3 、SD#3’は、同組成であるが、成分溶液の濃度または水と有機溶媒の混合比が異なる。脂質粒子の物性で基準値を超えた結果について、背景を灰色で示している。なお、図中、Leuはロイシン、diLeuはジロイシンを表す。FIG. 2 is a diagram showing the formulation of the powder prepared in Example 1 (spray freeze-drying method) and the physical properties of lipid particles produced after dissolution. However, regarding FIGS. 1 and 2, LNP in the table is an abbreviation for lipid particle. In the table, * indicates the lipid component content (w/w) in the powder particles, and ** indicates the mixing ratio (v/v) of water and organic solvent in the component solution. SFD microparticles and SD microparticles with the same # number in the product name have the same composition. SFD#3, SFD#3', SFD#3'', SD#3, and SD#3' have the same composition, but differ in the concentration of component solutions or the mixing ratio of water and organic solvent. The background of results in which the physical properties of lipid particles exceed the standard values is shown in gray. In addition, in the figure, Leu represents leucine, and diLeu represents dileucine. 実施例1で調製した粉末剤の処方(噴霧乾燥法)及び溶解後に生成した脂質粒子の物性を示す図である。FIG. 2 is a diagram showing the formulation of the powder prepared in Example 1 (spray drying method) and the physical properties of lipid particles produced after dissolution. 実施例1で調製した粉末剤の構成粒子のSEM画像の例と、構成粒子添加デバイスと、を示す図である。FIG. 2 is a diagram showing an example of a SEM image of constituent particles of the powder preparation prepared in Example 1 and a constituent particle addition device. 実施例1で調製した粉末剤の構成粒子の吸入特性の評価結果を示す図(a)及び(b)である。3A and 3B are diagrams illustrating the evaluation results of the inhalation characteristics of the constituent particles of the powder preparation prepared in Example 1. FIG. 粉末剤の構成粒子の溶解後に生成した脂質粒子の細胞結合及び取り込み量を示す図である。FIG. 3 is a diagram showing the cell binding and uptake amount of lipid particles generated after dissolving constituent particles of a powder. 実施例6で調製した粉末剤の処方(噴霧凍結乾燥法及び噴霧乾燥法)及び溶解後に生成した脂質粒子の物性等を示す図である。FIG. 6 is a diagram showing the formulation of the powder prepared in Example 6 (spray freeze-drying method and spray drying method) and the physical properties of lipid particles generated after dissolution. 実施例6で調製した粉末剤の構成粒子の形状の観察結果を示す図である。FIG. 6 is a diagram showing the observation results of the shape of constituent particles of the powder preparation prepared in Example 6. siRNA(RNA干渉剤)搭載脂質粒子の遺伝子サイレンシング効果および細胞毒性の評価結果を示す図である。FIG. 3 is a diagram showing evaluation results of gene silencing effect and cytotoxicity of lipid particles loaded with siRNA (RNA interference agent). siRNA搭載脂質粒子の細胞結合/取り込み能の評価結果を示す図である。FIG. 3 is a diagram showing the evaluation results of cell binding/uptake ability of siRNA-loaded lipid particles. 実施例6で調製した粉末剤の吸入特性を示す図である。FIG. 6 is a diagram showing the inhalation characteristics of the powder prepared in Example 6. 実施例6で調製した粉末剤のマウス肺内投与後のsiRNAの肺内分布等の評価結果を示す図である。FIG. 7 is a diagram showing the evaluation results of the intrapulmonary distribution of siRNA after administration of the powder prepared in Example 6 into the lungs of mice.
 本明細書の開示は、粉末剤(以下、単に、本剤ともいう。)及びその製造方法に関する。本剤は、概して、医薬用を意図している。本剤が備えている構成粒子は、所定の脂質成分とロイシン及び/又はジロイシンとを含有するため肺到達性に優れるとともに、到達した部位において溶解(湿潤)して、例えば、多数のナノレベルの脂質粒子を生成する。このため、本剤は、脂質粒子を、肺のターゲット部位にまで到達させたりあるいはターゲット部位で滞留させることができる。 The disclosure of this specification relates to a powder agent (hereinafter also simply referred to as the agent) and a method for producing the same. This agent is generally intended for medicinal use. The constituent particles of this drug contain a predetermined lipid component and leucine and/or dileucine, so they have excellent ability to reach the lungs, and dissolve (wet) at the site where they reach, for example, a large number of nano-level particles. Generate lipid particles. Therefore, this drug can cause lipid particles to reach the target site in the lungs or to remain there.
 また、本剤は、生体内において水の存在下に生成した脂質粒子により、脂質粒子及び/又は有効成分を効果的に細胞内に取り込ませることができる。また、脂質粒子は、ターゲット部位において、脂質粒子及び/又は有効成分を滞留させることができる。 Additionally, this agent can effectively incorporate lipid particles and/or active ingredients into cells by lipid particles generated in the presence of water in vivo. Additionally, the lipid particles can retain the lipid particles and/or the active ingredient at the target site.
 さらにまた、RNA干渉剤を含有する本剤によれば、PEG-脂質コンジュゲートの添加により、粒子径が小さく均一なRNA干渉剤搭載脂質粒子を形成できる。また、PEG-脂質コンジュゲートとして、PEG-コレステロールコンジュゲートを採用することで、遺伝子サイレンシング効果および細胞結合/取り込み能に優れたRNA干渉剤搭載脂質粒子を形成できる。さらに、RNA干渉剤を含有する本剤によれば、肺に吸入した場合において、肺内で溶解・沈着してRNA干渉剤搭載脂質粒子を形成し、RNA干渉剤の安定性および滞留性を向上する。さらにまた、RNA干渉剤とジロイシンを含有する本剤によれば、RNA干渉剤及び脂質成分が高含量でも、より粒子径が小さく均一なRNA干渉剤搭載脂質粒子を形成できる。さらにまた、SFD法を採用することで、RNA干渉剤/脂質成分が高含量でも肺送達性に優れた粉末剤を得ることができる。 Furthermore, according to the present agent containing an RNA interference agent, by adding a PEG-lipid conjugate, RNA interference agent-loaded lipid particles with a small and uniform particle size can be formed. Furthermore, by employing a PEG-cholesterol conjugate as the PEG-lipid conjugate, RNA interference agent-loaded lipid particles with excellent gene silencing effects and cell binding/uptake abilities can be formed. Furthermore, according to this drug containing an RNA interference agent, when inhaled into the lungs, it dissolves and deposits in the lungs to form lipid particles loaded with the RNA interference agent, improving the stability and retention of the RNA interference agent. do. Furthermore, according to the present agent containing an RNA interference agent and dileucine, even if the contents of the RNA interference agent and lipid components are high, RNA interference agent-loaded lipid particles with a smaller particle size and uniformity can be formed. Furthermore, by employing the SFD method, it is possible to obtain a powder that has excellent lung delivery properties even with a high content of RNA interference agent/lipid components.
 以上のことから、本剤が備える粒子は、脂質粒子を潜在的に内包しえて、脂質粒子を用いて肺への吸気による効果的なDDS機能を実現できる。また、本剤は、生体内に導入されたとき、水の存在下に生成する脂質粒子により有効成分の到達性及び細胞内移行性ならびに滞留性を制御することができる。 From the above, the particles included in this drug can potentially contain lipid particles, and the lipid particles can be used to achieve an effective DDS function by inhaling air into the lungs. Moreover, when this agent is introduced into a living body, the reachability, intracellular transfer, and retention of the active ingredient can be controlled by lipid particles generated in the presence of water.
 また、本明細書に開示される粉末剤の製造方法によれば、簡易に、肺到達性に優れるとともに、到達した部位において溶解して多数の脂質粒子を生成する粒子を備える吸入粉末剤を製造することができる。 Furthermore, according to the method for manufacturing a powder disclosed in this specification, an inhalable powder that has excellent ability to reach the lungs and has particles that dissolve at the site of arrival to produce a large number of lipid particles can be easily produced. can do.
(粉末剤)
 本明細書に開示される粉末剤は、粒子(構成粒子)を含有している。構成粒子は、全体として粉末などの形態を採ることができる。本剤は、こうした構成粒子の一部に有効成分を含有することができる。以下、こうした本剤の構成成分、各種特性等について説明し、次いで、本剤の製造方法について説明する。
(powder)
The powder agent disclosed herein contains particles (constituent particles). The constituent particles can take the form of a powder or the like as a whole. This agent can contain an active ingredient in some of these constituent particles. The constituent components, various properties, etc. of this agent will be explained below, and then the manufacturing method of this agent will be explained.
(本剤の組成)
 本剤は、水や緩衝液(例えば、生体適合性のあるリン酸緩衝生理食塩水、HEPES緩衝液(pH7.4)などの緩衝液)の水性媒体に懸濁して、脂質粒子を生成する。この観点から、本剤は、例えば、リポソームなどと称される脂質粒子として機能しうる脂質成分を薬学上許容される賦形剤を含有することができる。
(Composition of this drug)
The agent is suspended in an aqueous medium such as water or a buffer (eg, a biocompatible phosphate buffered saline, a HEPES buffer (pH 7.4), etc.) to produce lipid particles. From this point of view, the present agent can contain, for example, a lipid component capable of functioning as a lipid particle called a liposome or the like, and a pharmaceutically acceptable excipient.
(脂質成分)
 本剤が含有する脂質成分としては、カチオン性脂質及び非カチオン性脂質から選択される1種又は2種以上を用いることができる場合がある。
(lipid component)
As the lipid component contained in this agent, one or more types selected from cationic lipids and non-cationic lipids may be used.
(カチオン性脂質)
 カチオン性脂質は、脂質粒子の細胞への取り込みを促進できる点において有利である。カチオン性脂質としては、公知のカチオン性脂質を用いることができるが、例えば、1,2-ジオレイルオキシ-3-トリメチルアンモニウムプロパン(DOTMA)、1,2-ジオレイルオキシ-3-ジメルアミノプロパン(DODMA)、1,2-ジオレイル-3-トリメチルアンモニウムプロパン(DOTAP)、1,2-ジオレイル-3-ジメチルアンモニウムプロパン(DODAP)、3β-(N-(N′,N′-ジメチルアミノエタン)カルバモイル)コレステロール(DC-Chol)、N,N-ジステアリル-N,N-ジメチルアンモニウムブロミド(DDAB)、N-(1,2-ジミリスチルオキシプロパ-3-イル)-N,N-ジメチル-N-ヒドロキシエチルアンモニウムブロミド(DMRI)、N,N-ジオレイル-N,N-ジメチルアンモニウムクロリド(DODAC)、ジヘプタデシルアミドグリシルスペルミジン(DOGS)、N-(1-(2,3-ジオレイルオキシ)プロピル)-N-(2-(スペルミンカルボキサミド)エチル)-N,N-ジメチルアンモニウムトリフルオロアセタート(DOSPA)並びにそれらの組み合わせが挙げられる。これらのうち1種又は2種以上を組み合わせて用いることができる。これらのカチオン性脂質は、PEG-脂質コンジュゲートとの組合せによって、例えば、生体内において脂質粒子化したとき、速やかに脂質粒子及び/又は脂質粒子内の有効成分の細胞内取り込みに貢献できる場合がある。これらのうち、例えば、DOTMA、DODMAのいずれか又は双方を用いることができる。DOTMAを単独で用いることが好ましい場合もある。なお、以上のカチオン性脂質及びその他のカチオン性脂質は、塩素イオンなどの酸基などとの塩であってもよい。本剤においては、例えば、カチオン性脂質を全脂質成分のうちの優勢な脂質成分として用いることができる。
(cationic lipid)
Cationic lipids are advantageous in that they can facilitate uptake of lipid particles into cells. As the cationic lipid, known cationic lipids can be used, such as 1,2-dioleyloxy-3-trimethylammoniumpropane (DOTMA), 1,2-dioleyloxy-3-dimelamino Propane (DODMA), 1,2-dioleyl-3-trimethylammoniumpropane (DOTAP), 1,2-dioleyl-3-dimethylammoniumpropane (DODAP), 3β-(N-(N',N'-dimethylaminoethane) ) carbamoyl) cholesterol (DC-Chol), N,N-distearyl-N,N-dimethylammonium bromide (DDAB), N-(1,2-dimyristyloxyprop-3-yl)-N,N-dimethyl -N-Hydroxyethylammonium bromide (DMRI), N,N-dioleyl-N,N-dimethylammonium chloride (DODAC), diheptadecylamidoglycylspermidine (DOGS), N-(1-(2,3-diolyl) and combinations thereof. One type or a combination of two or more types of these can be used. When these cationic lipids are combined with a PEG-lipid conjugate and are formed into lipid particles in vivo, they may be able to quickly contribute to the cellular uptake of the lipid particles and/or the active ingredient within the lipid particles. be. Among these, for example, either or both of DOTMA and DODMA can be used. In some cases, it may be preferable to use DOTMA alone. Note that the above cationic lipids and other cationic lipids may be salts with acid groups such as chlorine ions. In this agent, for example, a cationic lipid can be used as a predominant lipid component among all lipid components.
 カチオン性脂質の含有量は、特に限定するものではないが、例えば、脂質成分の総量に対して30質量%以上70質量%以下などとすることができる。この範囲であると、カチオン性脂質の上記作用に有効である。カチオン性脂質は、また例えば、40質量%以上70質量%以下であり、また例えば、40質量%以上65質量%以下であり、また例えば、40質量%以上60質量%以下である。また、カチオン性脂質の含有量は、本剤の総量に対して、例えば、3質量%以上30質量%以下であり、また例えば、4質量%以上25質量%以下であり、また例えば、4質量%以上20質量%以下とすることができる。 The content of the cationic lipid is not particularly limited, but may be, for example, 30% by mass or more and 70% by mass or less based on the total amount of lipid components. Within this range, the above effects of cationic lipids are effective. The cationic lipid is, for example, 40% by mass or more and 70% by mass or less, for example, 40% by mass or more and 65% by mass or less, and for example, 40% by mass or more and 60% by mass or less. In addition, the content of cationic lipid is, for example, 3% by mass or more and 30% by mass or less, for example, 4% by mass or more and 25% by mass or less, and for example, 4% by mass or less, based on the total amount of the drug. % or more and 20% by mass or less.
(非カチオン性脂質)
 非カチオン性脂質としては、公知の双性イオン性脂質などの非カチオン性脂質を用いることができるが、例えば、1,2-ジパルミトイル-sn-グリセロ-3-ホスファチジルコリン(DPPC)、卵由来ホスファチジルコリン(EPC)などのホスファチジルコリン脂質、1,2-ジパルミトイル-sn-グリセロ-3-ホスフォエタノールアミン(DPPE)、1,2-ジステアロイルーsn-グリセロ-3-ホスフォエタノールアミン(DSPE)などのホスファチジルエタノールアミン脂質、スフィンゴミエリン(SM)などのスフィンゴ脂質が挙げられる。これらのうち1種又は2種以上を組み合わせて用いることができる。これらの非カチオン性脂質は、PEG-脂質コンジュゲートとの組合せによって、例えば、気道上皮上などの生体内で脂質粒子化したとき、有効成分の徐放性又は滞留性を向上させるというDDS機能に貢献できる場合がある。本剤においては、例えば、非カチオン性脂質を全脂質成分のうちの優勢な脂質成分として用いることができる場合がある。
(Non-cationic lipid)
As the non-cationic lipid, known non-cationic lipids such as zwitterionic lipids can be used, such as 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), egg-derived phosphatidylcholine, etc. (EPC), phosphatidyl cholinelipids such as 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), etc. Examples include sphingolipids such as ethanolamine lipids and sphingomyelin (SM). One type or a combination of two or more types of these can be used. When combined with a PEG-lipid conjugate, these non-cationic lipids have a DDS function that improves the sustained release or retention of active ingredients when they are formed into lipid particles in vivo, such as on airway epithelium. You may be able to contribute. In this agent, for example, non-cationic lipids may be used as the predominant lipid component among the total lipid components.
 非カチオン性脂質の含有量は、特に限定するものではないが、例えば、脂質成分の総量に対して30質量%以上70質量%以下などとすることができる。この範囲であると、カチオン性脂質の上記作用に有効である。非カチオン性脂質は、また例えば、40質量%以上70質量%以下であり、また例えば、40質量%以上65質量%以下であり、また例えば、40質量%以上60質量%以下である。また、非カチオン性脂質の含有量は、本剤の総量に対して、例えば、3質量%以上30質量%以下であり、また例えば、4質量%以上25質量%以下であり、また例えば、4質量%以上20質量%以下とすることができる。 The content of the non-cationic lipid is not particularly limited, but can be, for example, 30% by mass or more and 70% by mass or less based on the total amount of lipid components. Within this range, the above effects of cationic lipids are effective. The non-cationic lipid is, for example, 40% by mass or more and 70% by mass or less, for example, 40% by mass or more and 65% by mass or less, and for example, 40% by mass or more and 60% by mass or less. In addition, the content of non-cationic lipids is, for example, 3% by mass or more and 30% by mass or less, for example, 4% by mass or more and 25% by mass or less, and for example, It can be set to 20% by mass or more and 20% by mass or less.
(PEG-脂質コンジュゲート)
 本剤は、複合脂質として、公知のPEG-脂質コンジュゲートを用いることができるが、例えば、各種のPEG-コレステロールコンジュゲートのほか、PEG-DSPEなどのPEG-リン脂質コンジュゲート(特に、非カチオン性脂質を用いる場合)、PEG-DMG(ジミリストイルグリセロール)などのPEG-ジアシルグリセロールコンジュゲートを用いることができる。
(PEG-lipid conjugate)
This agent can use known PEG-lipid conjugates as the complex lipid, but for example, in addition to various PEG-cholesterol conjugates, PEG-phospholipid conjugates such as PEG-DSPE (especially non-cationic PEG-diacylglycerol conjugates such as PEG-DMG (dimyristoylglycerol) can be used.
 PEG-脂質コンジュゲートのうち、PEG-コレステロールコンジュゲートは、PEGと脂質とが直接結合したものが挙げられる。PEGの分子量も特に限定するものでもないが、例えば、500~10000の範囲で適宜選択することができる。また例えば、数平均分子量1500~5500のPEGのコンジュゲートを用いることが有利な場合があり、また例えば、数平均分子量2000~5000のPEGのコンジュゲートを用いることができる。例えば、数平均分子量が1500~2500のPEGのコンジュゲートであれば、脂質粒子及び/又は有効成分の細胞内移行性に有効な場合がある。また例えば、数平均分子量が4000~6000のPEGのコンジュゲートであっても、脂質粒子及び/又は有効成分の細胞内移行性に有効な場合がある。 Among PEG-lipid conjugates, PEG-cholesterol conjugates include those in which PEG and lipid are directly bonded. The molecular weight of PEG is also not particularly limited, but can be appropriately selected within the range of, for example, 500 to 10,000. Also, for example, it may be advantageous to use a conjugate of PEG with a number average molecular weight of 1500 to 5500, and for example a conjugate of PEG with a number average molecular weight of 2000 to 5000 can be used. For example, a PEG conjugate with a number average molecular weight of 1,500 to 2,500 may be effective for the intracellular transfer of lipid particles and/or active ingredients. Furthermore, for example, even a PEG conjugate having a number average molecular weight of 4,000 to 6,000 may be effective for the intracellular transfer of lipid particles and/or active ingredients.
 PEG-DSPE、PEG-DMGなどのPEG-脂質コンジュゲートは、例えば、グリセロール骨格を有していてもよい。有効成分の滞留性の作用に貢献することができる。 PEG-lipid conjugates such as PEG-DSPE and PEG-DMG may have, for example, a glycerol skeleton. It can contribute to the retention effect of the active ingredient.
 こうしたPEG-脂質コンジュゲートの含有量は、特に限定するものではないが、例えば、脂質成分の総量に対して10質量%以上50質量%以下などとすることができる。この範囲であると、各種のコンジュゲートがそれぞれの作用の発揮に有効であるからである。また例えば、15質量%以上45質量%以下であり、また例えば、20質量%以上40質量%以下である。また、PEG-脂質コンジュゲートの含有量は、本剤の総量に対して、例えば、2質量%以上20質量%以下であり、また例えば、2.5質量%以上15質量%以下であり、また例えば、3質量%以上13質量%以下である。 The content of such a PEG-lipid conjugate is not particularly limited, but may be, for example, 10% by mass or more and 50% by mass or less based on the total amount of lipid components. This is because within this range, various conjugates are effective in exerting their respective effects. Further, for example, the content is 15% by mass or more and 45% by mass or less, and for example, 20% by mass or more and 40% by mass or less. In addition, the content of the PEG-lipid conjugate is, for example, 2% by mass or more and 20% by mass or less, and, for example, 2.5% by mass or more and 15% by mass or less, based on the total amount of the drug. For example, it is 3% by mass or more and 13% by mass or less.
(その他の脂質成分)
 その他の脂質成分としては、リポソームなどの脂質粒子の形成の貢献する公知の各種脂質を用いることができる。例えば、コレステロール、ジオレオイルホスファチジルエタノールアミン(DOPE)等を用いることができる。これらのその他の脂質成分は、脂質粒子等の生体内安定性やエンドソーム脱出に貢献できる。
(Other lipid components)
As other lipid components, various known lipids that contribute to the formation of lipid particles such as liposomes can be used. For example, cholesterol, dioleoylphosphatidylethanolamine (DOPE), etc. can be used. These other lipid components can contribute to in-vivo stability and endosomal escape of lipid particles and the like.
 その他の脂質の含有量は、特に限定するものではないが、例えば、脂質成分の総量に対して5質量%以上30質量%以下などとすることができる。この範囲であると、上記した作用に貢献できるからである。また例えば、10質量%以上30質量%以下であり、また例えば、15質量%以上25質量%以下である。また、その他の脂質の含有量は、本剤の総量に対して、例えば、本剤の総量に対して、例えば、1質量%以上10質量%以下であり、また例えば、1質量%以上5質量%以下であり、また例えば、1質量%以上3質量%以下である。 The content of other lipids is not particularly limited, but may be, for example, 5% by mass or more and 30% by mass or less based on the total amount of lipid components. This is because within this range, it can contribute to the above-mentioned effects. Further, for example, the content is 10% by mass or more and 30% by mass or less, and for example, 15% by mass or more and 25% by mass or less. In addition, the content of other lipids is, for example, 1% by mass or more and 10% by mass or less, and for example, 1% by mass or more and 5% by mass, based on the total amount of this drug. % or less, and for example, from 1% by mass to 3% by mass.
 本剤における脂質成分の総量は、特に限定するものではないが、例えば、本剤の総量に対して、例えば、5質量%以上60質量%以下であり、また例えば、7質量%以上50質量%以下であり、また例えば、8質量%以上45質量%以下である。 The total amount of lipid components in this drug is not particularly limited, but is, for example, 5% by mass or more and 60% by mass or less, and, for example, 7% by mass or more and 50% by mass, based on the total amount of this drug. For example, it is 8% by mass or more and 45% by mass or less.
(賦形剤)
 本剤は、さらに、賦形剤を含有することができる。賦形剤としては、特に限定するものではないが、例えば、ロイシン、ジペプチドであるジロイシンを用いることができる。ロイシン又はジロイシンを用いることにより、脂質成分を増量しても、球状粒子の水溶解時における脂質粒子の平均粒子径の増大を抑制して、例えば、50nm~250nmの範囲を維持することができるほか、PdIが低値の均一な粒子径を有する脂質粒子を生成できる。また、ロイシン及び/又はジロイシンを用いることで、脂質粒子の細胞結合性/取り込み性を高めることができる場合がある。
(Excipient)
The agent may further contain an excipient. Although the excipient is not particularly limited, for example, leucine and dileucine, which is a dipeptide, can be used. By using leucine or dileucine, even if the amount of the lipid component is increased, it is possible to suppress the increase in the average particle diameter of the lipid particles when the spherical particles are dissolved in water, and maintain the range of, for example, 50 nm to 250 nm. , PdI can produce lipid particles with a uniform particle size and a low value. Furthermore, by using leucine and/or dileucine, it may be possible to enhance the cell binding/uptake properties of lipid particles.
 なお、ロイシン及びジロイシンは、L-ロイシン及び/又はD-ロイシンを用いることができる。例えば、L-ロイシン、L-ロイシンのジペプチドを用いることができる。 Note that L-leucine and/or D-leucine can be used as leucine and dileucine. For example, L-leucine and L-leucine dipeptides can be used.
 ロイシン又はジロイシンの含有量は、特に限定するものではないが、本剤の総量に対して、例えば、5質量%以上95質量%以下であり、また例えば、10質量%以上90質量%以下であり、又は、10質量%以上80質量%以下である。 The content of leucine or dileucine is not particularly limited, but is, for example, 5% by mass or more and 95% by mass or less, and, for example, 10% by mass or more and 90% by mass or less, based on the total amount of the drug. , or 10% by mass or more and 80% by mass or less.
 本剤には、有効成分を含有することができる。有効成分の含有量は特に限定するものではないが、例えば、本剤の総量に対して0.1質量%以上5質量%以下程度とすることができる。 This drug can contain active ingredients. The content of the active ingredient is not particularly limited, but may be, for example, about 0.1% by mass or more and 5% by mass or less based on the total amount of the agent.
 有効成分として、特に限定するものではないが、後述する噴霧乾燥法及び噴霧凍結乾燥法に用いられうるものであればよく、一般的には、有機化合物である。 The active ingredient is not particularly limited as long as it can be used in the spray drying method and spray freeze drying method described below, and is generally an organic compound.
 有効成分としては、例えば、肺に関連する疾患のための治療又は予防用の有効成分であってもよいし、肺を介して血流により全身投与を意図して用いる治療又は予防用の有効成分であってもよい。本剤は、肺に到達して、その場で溶解して脂質粒子を生成し、脂質粒子を介して細胞又は血流に取り込まれうるため、脂質粒子によって内包可能な有効成分であれば用いることができる。 The active ingredient may be, for example, an active ingredient for treatment or prevention of diseases related to the lungs, or an active ingredient for treatment or prevention that is intended to be administered systemically through the bloodstream through the lungs. It may be. This drug reaches the lungs and dissolves on the spot to generate lipid particles, which can be taken into cells or the bloodstream via the lipid particles. Therefore, any active ingredient that can be encapsulated by lipid particles can be used. I can do it.
 有効成分の一例は核酸である。核酸は、天然に存在するデオキシリボクレオチド及び/又はリボヌクレオチドの重合体である天然核酸及び少なくとも一部に非天然構造を有するデオキシリボヌクレオチド及び/又はリボヌクレオチドを含む重合体である非天然核酸を含むことができる。天然のデオキシリボヌクレオチド及びリボヌクレオチドは天然塩基を備えている。天然塩基は、天然のDNA及びRNAにおける塩基であって、アデ二ン、チミン、グアニン、シトシン及びウラシルが挙げられる。また、天然のデオキシリボヌクレオチド及び/又はリボヌクレオチドは、その2-デオキシリボース及び/又はリボースの5位のリン酸と隣接するデオキシリボース及び/又はリボースの3’の水酸基とがリン酸ジ工ステル結合で連結した骨格を有している。本明細書において、天然核酸としては、DNA、RNA及びデオキシリボヌクレオチドとリボヌクレオチドとのキメラ(以下、DNA/RNAキメラともいう。)であってもよい。また、DNA、RNAはそれぞれ一本鎖であってもよいし、同種の二本鎖であってもよいし、DNAとRNAとがハイブリダイズしたハイブリッドであってもよい。さらには、DNA/RNAキメラが、DNA、RNA又はDNA/RNAキメラとハイブリダイズしたハイブリッドであってもよい。 An example of an active ingredient is a nucleic acid. Nucleic acids include natural nucleic acids that are polymers of naturally occurring deoxyribonucleotides and/or ribonucleotides and non-natural nucleic acids that are polymers that include deoxyribonucleotides and/or ribonucleotides that have at least a non-natural structure. I can do it. Natural deoxyribonucleotides and ribonucleotides contain natural bases. Natural bases are those found in natural DNA and RNA and include adenine, thymine, guanine, cytosine and uracil. In addition, in natural deoxyribonucleotides and/or ribonucleotides, the phosphoric acid at the 5-position of the 2-deoxyribose and/or ribose and the 3' hydroxyl group of the adjacent deoxyribose and/or ribose form a phosphate diester bond. It has a skeleton connected by. In this specification, the natural nucleic acid may be DNA, RNA, or a chimera of deoxyribonucleotides and ribonucleotides (hereinafter also referred to as a DNA/RNA chimera). Moreover, DNA and RNA may each be single-stranded, double-stranded of the same type, or a hybrid of DNA and RNA hybridized. Furthermore, the DNA/RNA chimera may be a hybrid hybridized with DNA, RNA, or a DNA/RNA chimera.
 非天然の核酸は、塩基、骨格(糖部分及びリン酸部分)のいずれかにおいて、少なくとも一部に非天然構造を有する核酸をいう。非天然塩基としては、種々の非天然塩基が知られている。また、天然のリボースーリン酸骨格を代替する各種の骨格も提供されている。例えば、糖-リボース骨格に替えて炭素数が3個程度の炭素を有するグリコール核酸、ペプチド核酸等が挙げられる。また、天然の核酸はL-DNA又はL-RNAであるが、D-DNA及びD-RNAの構造を少なくとも一部に備える核酸は非天然核酸に含まれる。非天然の核酸においても、一本鎖、二本鎖、ハイブリッド及びキメラ等の各種態様が含まれる。 A non-natural nucleic acid refers to a nucleic acid that has a non-natural structure in at least a portion of either the base or the backbone (sugar moiety and phosphate moiety). Various non-natural bases are known as non-natural bases. In addition, various skeletons that can replace the natural ribose phosphate skeleton are also provided. Examples include glycol nucleic acids, peptide nucleic acids, and the like having about 3 carbon atoms instead of a sugar-ribose skeleton. Furthermore, natural nucleic acids are L-DNA or L-RNA, but non-natural nucleic acids include nucleic acids that have at least a portion of the structure of D-DNA and D-RNA. Non-natural nucleic acids also include various forms such as single-stranded, double-stranded, hybrid, and chimeric.
 この種の非天然核酸は、概して、タンパク質をコードするコード鎖や鋳型鎖でなく、例えば、他の機能、例えば、細胞内である種の核酸と相互作用させて、その核酸の機能を変化させるなどに用いられる。典型的には、標的タンパク質の発現阻害や機能阻害という機能発現のために用いられる。例えば、遺伝子発現を介することなく、生体内核酸に直接作用する核酸が挙げられ、具体的には、アンチセンス核酸、センス核酸、shRNA、siRNA、デコイ核酸、アプタマー、miRNA等が挙げられる。この種の非天然核酸は、ヌクレオチドが十数個から数十個程度が重合したオリゴヌクレオチドである場合が多い。 This type of non-natural nucleic acid is generally not a coding strand that encodes a protein or a template strand, but has other functions, such as interacting with a certain type of nucleic acid within a cell to change the function of that nucleic acid. It is used for such things. Typically, it is used to express a function of inhibiting the expression or function of a target protein. Examples include nucleic acids that act directly on in vivo nucleic acids without mediating gene expression, and specific examples include antisense nucleic acids, sense nucleic acids, shRNAs, siRNAs, decoy nucleic acids, aptamers, miRNAs, and the like. This type of non-natural nucleic acid is often an oligonucleotide in which about ten to several dozen nucleotides are polymerized.
 核酸としては、例えば、本剤が遺伝子発現を意図する場合には、プラスミドを用いた核酸コンストラクト(非ウイルス性ベクター)が挙げられる。また、例えば、遺伝子発現の抑制を意図する場合には、shRNAをコードするプラスミドDNAなどの非ウイルス性ベクターが挙げられる。 As the nucleic acid, for example, when this agent is intended for gene expression, a nucleic acid construct (non-viral vector) using a plasmid can be mentioned. Furthermore, for example, when suppressing gene expression is intended, non-viral vectors such as plasmid DNA encoding shRNA can be used.
 核酸の形態は、特に限定するものではなく、リニアであってもよいし、サーキュラー(閉環又は開環)であってもよい、また、スーパーコイル状であってもよい。目的に応じた形態を適宜備えることができる。 The form of the nucleic acid is not particularly limited, and may be linear, circular (closed or open ring), or supercoiled. It can be provided with a form depending on the purpose.
(構成粒子の粒子形状)
 本剤が含む構成粒子の形状は、走査型電子顕微鏡(SEM)で観察することができる。観察にあたっては、例えば、本剤の分散添加に用いられる構成粒子添加デバイスを用いて試料台上に噴霧後、SEM観察に適するように、プラチナコーティングを必要に応じて行い、観察する。構成粒子添加デバイス及び噴霧方法としては、例えば、後述する実施例において用いるものを採用することができる。
(Particle shape of constituent particles)
The shape of the constituent particles contained in this agent can be observed with a scanning electron microscope (SEM). For observation, for example, after spraying onto a sample stage using a component particle addition device used for dispersing and adding the present agent, platinum coating is applied as necessary to make it suitable for SEM observation, and observation is performed. As the component particle addition device and the spraying method, for example, those used in the examples described later can be employed.
 構成粒子の形状は、特に限定するものではないが、例えば、分散性等を考慮すると、球状であることが好ましい場合がある。また、分散性や膨潤性等を考慮すると多孔質であることが好ましい場合がある。 The shape of the constituent particles is not particularly limited, but for example, in consideration of dispersibility, it may be preferable to have a spherical shape. Further, in consideration of dispersibility, swelling property, etc., it may be preferable to be porous.
 構成粒子は、例えば、多孔質球状粒子である。多孔質球状粒子は、例えば、水の昇華によって生じる多数の連続する気孔(中空部)を有し、隣接する気孔が、脂質成分や賦形剤などの構成成分からなる隔壁及び/又は網目状の骨格で区画されている三次元構造を有する。こうした隔壁又は骨格は、SEMにおいては、例えば、球状粒子表面において球状表面においてヒダ状又は網目状に観察される。こうした構成粒子は、例えば、噴霧凍結乾燥法によって、本剤を製造するときに、製造される場合がある。 The constituent particles are, for example, porous spherical particles. Porous spherical particles have, for example, a large number of continuous pores (hollow parts) generated by sublimation of water, and adjacent pores have partition walls and/or mesh-like pores made of components such as lipid components and excipients. It has a three-dimensional structure divided by a skeleton. Such partition walls or skeletons are observed, for example, in the form of pleats or networks on the surface of spherical particles in the SEM. Such constituent particles may be produced, for example, by a spray freeze-drying method when producing the present drug.
 また、構成粒子は、表面が概して滑らかな球状粒子の形態を採ることもできる。この場合の球状粒子は、多孔質性であってもよいしそうでなくてもよい。こうした構成粒子は、例えば、ジロイシンを用いて噴霧乾燥法によって、本剤を製造するときに、製造される場合がある。 Furthermore, the constituent particles can also take the form of spherical particles with generally smooth surfaces. The spherical particles in this case may or may not be porous. Such constituent particles may be produced, for example, by a spray drying method using dileucine when producing the present agent.
 また、構成粒子は、表面が凹凸に富むしわ状粒子の形態を採ることもできる。こうした構成粒子は、例えば、噴霧凍結乾燥法によって、本剤を製造するときに、製造される場合がある。また例えば、ジロイシンでなく、ロイシンを用いて製造するときに、製造される場合がある。 Further, the constituent particles can also take the form of wrinkled particles whose surfaces are rich in irregularities. Such constituent particles may be produced, for example, by a spray freeze-drying method when producing the present drug. For example, it may be produced using leucine instead of dileucine.
(構成粒子の粒子径)
 本剤が含む構成粒子の平均粒子径は、例えば、走査電子顕微鏡において、10個~20個の構成粒子が入る観察視野を設定し、これらの差し渡し径を観察して、その平均値とすることができる。本剤の構成粒子の平均粒子径は、特に限定するものではないが分散性を考慮すると、例えば、1μm以上100μm以下、また例えば、1μm以上50μm以下、1μm以上40μm以下などとすることができる。また例えば、後述する噴霧凍結乾燥法などによれば、例えば、5μm以上40μm以下、10μm以上30μm以下などとすることができる。また例えば、後述する噴霧乾燥法によれば、例えば、1μm以上10μm以下などとすることができる。
(Particle diameter of constituent particles)
The average particle diameter of the constituent particles contained in this drug can be determined by, for example, using a scanning electron microscope, setting an observation field that contains 10 to 20 constituent particles, observing their diameters across the field, and determining the average value. I can do it. The average particle diameter of the constituent particles of the present agent is not particularly limited, but in consideration of dispersibility, it can be, for example, 1 μm or more and 100 μm or less, or 1 μm or more and 50 μm or less, or 1 μm or more and 40 μm or less. Further, for example, according to the spray freeze-drying method described below, the thickness can be, for example, 5 μm or more and 40 μm or less, 10 μm or more and 30 μm or less, etc. Further, for example, according to the spray drying method described below, the thickness can be set to, for example, 1 μm or more and 10 μm or less.
(吸入特性)
 本剤は、吸気(口腔から気管支への吸引時のガス流)によって呼吸器に送達されるが、マルチステージリキッドインピンジャー(MSLI)法により評価することで、その場合の特性(吸入特性)、すなわち、本剤の分散性及び送達性を評価できる。分散性及び送達性はそれぞれ独立の特性であるが相互に関連している。
(Inhalation characteristics)
This drug is delivered to the respiratory tract by inhalation (gas flow during suction from the oral cavity to the bronchi), and its characteristics in that case (inhalation characteristics), In other words, the dispersibility and delivery properties of this drug can be evaluated. Although dispersibility and deliverability are independent properties, they are interrelated.
(マルチステージリキッドインピンジャー(MSLI)法による評価方法)
 本明細書において、MSLI法とは、第17改正日本薬局方第一追補一般試験法6.15吸入剤の空気力学的粒度測定法5.1 マルチステージリキッドインピンジャー法(装置1)に記載の測定装置を用いる。プレセパレーターを適宜用いることができる。
(Evaluation method using multi-stage liquid impinger (MSLI) method)
In this specification, the MSLI method refers to the method described in 17th Edition Japanese Pharmacopoeia 1st Supplement General Test Methods 6.15 Aerodynamic Particle Size Measurement Method for Inhalants 5.1 Multi-Stage Liquid Impinger Method (Apparatus 1). Use measuring equipment. A pre-separator can be used as appropriate.
 測定装置の概要及び測定方法は、上記一般試験法に基づくことができる。MSLI法による本剤の評価は、上記一般試験法5.1マルチステージリキッドインピンジャー法(装置1)の5.1.2吸入粉末剤の測定手順に準ずることができる。 The outline of the measuring device and the measuring method can be based on the above general test method. The evaluation of this drug by the MSLI method can be carried out in accordance with the procedure for measuring inhalation powder in 5.1.2 of the above general test method 5.1 Multi-stage liquid impinger method (apparatus 1).
(分散性及び送達特性)
 デバイスからの放出率であるOE(Output Efficiency:%)、FPF(%)(5μm以下に相当する粒子の回収率)及びUPF(%)(Ultrafine Particle Fraction)(2μm以下に相当する粒子の回収率)は、上記一般試験法6.15吸入剤の空気力学的粒度測定法6.計算に基づくとともに、それぞれ、以下の式(1)~(3)で算出する。
OE(%)=回収量T/全回収量×100   (1)
(ただし、回収量Tは、スロート以降からの回収量である。)
FPF(%)=5μm以下に相当する粒子の回収量*/全回収×100   (2)
UPF(%)=2μm以下に相当する粒子の回収量**/全回収量×100   (3)
(Dispersibility and delivery characteristics)
OE (Output Efficiency: %), which is the emission rate from the device, FPF (%) (collection rate of particles equivalent to 5 μm or less), and UPF (%) (Ultrafine Particle Fraction) (collection rate of particles equivalent to 2 μm or less) ) is the above general test method 6.15 Aerodynamic particle size determination method for inhalants 6. Based on calculations, each is calculated using the following formulas (1) to (3).
OE (%) = Recovery amount T/Total recovery amount x 100 (1)
(However, the collected amount T is the collected amount from the throat onward.)
FPF (%) = Collection amount of particles corresponding to 5 μm or less */Total collection x 100 (2)
UPF (%) = Collection amount of particles equivalent to 2 μm or less ** / Total collection amount x 100 (3)
 なお、*及び**は、上記一般試験法6.15吸入剤の空気力学的粒度測定法6.計算の表6.15-6装置1での計算に当てはめて、内挿により構成粒子量を計算する。 Note that * and ** refer to the above general test method 6.15 Aerodynamic particle size measurement method for inhalants 6. Calculation Table 6.15-6 Applying to the calculation in device 1, calculate the amount of constituent particles by interpolation.
 OEは分散性の指標となり、FPFは、肺内送達性の指標、UPFは肺深部送達性の指標値となる。 OE is an index of dispersibility, FPF is an index of intrapulmonary delivery, and UPF is an index value of deep lung delivery.
 本剤は、MSLI法による吸入特性評価において、例えば、OEが80%以上とすることができる。80%以上であると、放出率が良好であるといえるからである。OEは、また例えば同85%以上であり、また例えば同90%以上であり、また例えば同95%以上である。 This drug can have, for example, an OE of 80% or more in the inhalation characteristics evaluation using the MSLI method. This is because when it is 80% or more, it can be said that the release rate is good. The OE is, for example, 85% or more, 90% or more, or 95% or more.
 また、本剤は、MSLI法による吸入特性評価において、例えば、FPFが10%以上とすることができ、また例えば、同15%以上、また例えば、同20%以上、また例えば、同25%以上、また例えば、同30%以上、また例えば、同40%以上とすることができる。例えば、数値が大きいほど肺送達率が極めて良好であるといえるからである。なお、吸入粉末剤の有効成分や用途によっては、FPFが10%以上でも十分である場合もある。 In addition, this drug can have an FPF of 10% or more, for example, 15% or more, or 20% or more, or 25% or more, in the inhalation characteristics evaluation using the MSLI method. , for example, 30% or more, or, for example, 40% or more. For example, it can be said that the larger the value, the better the lung delivery rate. Note that, depending on the active ingredients and uses of the inhalable powder, an FPF of 10% or more may be sufficient.
 また、本剤は、MSLI法における吸入特性評価において、UPFが、例えば、10%以上、また例えば、同15%以上、また例えば、20%以上、また例えば、同25%以上、また例えば同30%以上とすることができる。数値が大きいほど肺深部送達率が良好であるといえるからである。なお、吸入粉末剤の有効成分や用途によっては、UPFがより10%以下、また例えば、5%以下、また例えば、1%以下で十分である場合もある。 In addition, this drug has a UPF of, for example, 10% or more, 15% or more, 20% or more, 25% or more, or 30% or more in the inhalation property evaluation using the MSLI method. % or more. This is because it can be said that the larger the value, the better the deep lung delivery rate. Note that depending on the active ingredients and uses of the inhalable powder, a UPF of 10% or less, for example, 5% or less, or, for example, 1% or less may be sufficient.
(脂質粒子の形成能)
 本剤は、また、水に懸濁させたとき、水不溶性の脂質成分が、本剤に含まれる構成粒子よりも微細な脂質粒子を形成することができる。具体的には、例えば、本剤(粉末)の懸濁液につき、動的光散乱法により粒子径分布を測定するとき、400nm以下の平均粒子径を得ることができる。また、多分散性指数(PdI)0.420以下を得ることができる。なお、動的光散乱法による脂質粒子の粒子径分布は、懸濁液濃度として粉末中の脂質成分の濃度として0.2mg/mLとして撹拌して30分静置後、Malvern社製のZetasizer Nano ZSを用いて測定することより得ることができる。なお、動的光散乱法による平均粒子径及び粒子径分布は、この装置に付属するソフトウェアによって取得した自己相関関数を用いて拡散係数に基づいて取得できる。
(Ability to form lipid particles)
Also, when this agent is suspended in water, the water-insoluble lipid component can form lipid particles that are finer than the constituent particles contained in the agent. Specifically, for example, when measuring the particle size distribution of a suspension of the present agent (powder) by dynamic light scattering, an average particle size of 400 nm or less can be obtained. Further, a polydispersity index (PdI) of 0.420 or less can be obtained. The particle size distribution of lipid particles determined by dynamic light scattering was determined using Zetasizer Nano manufactured by Malvern after stirring and standing for 30 minutes at a suspension concentration of 0.2 mg/mL as the concentration of lipid components in the powder. It can be obtained by measuring using ZS. Note that the average particle size and particle size distribution by the dynamic light scattering method can be obtained based on the diffusion coefficient using an autocorrelation function obtained by software attached to this device.
 平均粒子径は、また例えば、50nm以上であり、また例えば、60nm以上であり、また例えば、70nm以上であり、また例えば、80nm以上であり、また例えば、90nm以上である。平均粒子径は、また例えば、300nm以下であり、また例えば、280nm以下であり、また例えば、260nm以下であり、また例えば、240nm以下であり、また例えば、220nm以下であり、また例えば、200nm以下であり、また例えば、180nm以下であり、また例えば、170nm以下であり、また例えば、160nm以下であり、また例えば、140nm以下である。平均粒子径の範囲は、上記の下限及び上限から適宜選択して設定することができるが、例えば、60nm以上280nm以下であり、また例えば、60nm以上260nm以下であり、また例えば、60nm以上240nm以下などとすることができる。 The average particle diameter is, for example, 50 nm or more, 60 nm or more, 70 nm or more, 80 nm or more, and 90 nm or more. The average particle size is also, for example, 300 nm or less, such as 280 nm or less, such as 260 nm or less, such as 240 nm or less, such as 220 nm or less, and such as 200 nm or less. For example, it is 180 nm or less, for example, 170 nm or less, for example, 160 nm or less, and for example, 140 nm or less. The range of the average particle diameter can be appropriately selected and set from the above lower and upper limits, and is, for example, 60 nm or more and 280 nm or less, and also, for example, 60 nm or more and 260 nm or less, and for example, 60 nm or more and 240 nm or less. etc.
 PdIは、また例えば、0.400以下であり、また例えば、0.390以下であり、また例えば、0.380以下であり、また例えば、0.370以下である。 PdI is also, for example, 0.400 or less, for example, 0.390 or less, for example, 0.380 or less, and for example, 0.370 or less.
(本剤の製造方法)
 本剤は、噴霧乾燥法又は噴霧凍結乾燥法によって製造することができる。かかる製造法を採用することで、肺到達性に優れ、水溶解時ないし湿潤時には脂質粒子を形成する粒子を含む本剤を容易に取得できる。球状多孔質粒子の形成、細胞膜結合性/細胞内取り込み性、及び脂質成分の高含有量化の観点から、噴霧凍結乾燥法によって本剤を製造することが有利な場合がある。
(Manufacturing method of this drug)
This agent can be manufactured by a spray drying method or a spray freeze drying method. By employing such a manufacturing method, it is possible to easily obtain this drug which has excellent lung reach and contains particles that form lipid particles when dissolved in water or when wet. From the viewpoints of formation of spherical porous particles, cell membrane binding/intracellular uptake, and high content of lipid components, it may be advantageous to produce this agent by spray freeze-drying.
 本剤の製造方法は、例えば、有効成分と、PEG-脂質コンジュゲートを含む脂質成分と、ロイシン及び/又はジロイシンと、を含む液を準備する工程と、この液を、噴霧乾燥法又は噴霧凍結乾燥法により乾燥することにより、有効成分と、PEG-脂質コンジュゲートを含む成分と、ロイシン及び/又はジロイシンンと、を含有する粉末を製造する工程と、を備えることができる。ここで、噴霧乾燥法又は噴霧凍結乾燥法によって粉末を得るとき、粉末は、この粉末の水懸濁液において多数個の脂質粒子を形成する構成粒子を含有する粉末である。 The manufacturing method of this drug includes, for example, a step of preparing a liquid containing an active ingredient, a lipid component containing a PEG-lipid conjugate, and leucine and/or dileucine, and spray-drying or spray-freezing this liquid. The method may include a step of producing a powder containing an active ingredient, a component containing a PEG-lipid conjugate, and leucine and/or dileucine by drying by a drying method. Here, when a powder is obtained by a spray drying method or a spray freeze drying method, the powder is a powder containing constituent particles that form a large number of lipid particles in an aqueous suspension of the powder.
 液の準備工程において、噴霧乾燥法又は噴霧凍結乾燥法に供する液は、有効成分と、PEG-脂質コンジュゲートを含む脂質成分と、ロイシン及び/又はジロイシンを含有して、これらを均一に分散又は溶解していればよい。溶解していなくても、例えば、脂質成分が微細に均一に分散している状態であってもよい。 In the liquid preparation step, the liquid to be subjected to the spray drying method or the spray freeze drying method contains an active ingredient, a lipid component containing a PEG-lipid conjugate, and leucine and/or dileucine, and these are uniformly dispersed or It is sufficient if it is dissolved. For example, the lipid component may be finely and uniformly dispersed even if it is not dissolved.
 液の準備工程は、例えば、脂質成分は、脂質成分を溶解する溶媒に溶解した液と、ロイシン及び/又はジロイシンなどの賦形剤を溶解する溶媒に溶解した液と、を混合して、噴霧用の液とすることを含んでいてもよい。こうすることで、均質な噴霧用の液を準備することができる。 In the liquid preparation step, for example, a lipid component is mixed with a liquid dissolved in a solvent that dissolves the lipid component and a liquid dissolved in a solvent that dissolves an excipient such as leucine and/or dileucine, and then sprayed. It may also include making it into a liquid for use. In this way, a homogeneous liquid for spraying can be prepared.
 脂質成分を溶解する溶媒としては、有機溶媒であって、水と混和する有機溶媒であることが好ましい場合がある。ロイシン及び/又はジロイシンを水に溶解するとき、ロイシン及び/又はジロイシン液と均一な混合液を調製できるからである。こうした有機溶媒としては、メタノール、エタノール、n-プロパノール、2-プロパノール、tert-ブチルアルコールなどのアルコ-ル、アセトニトリル等が挙げられる。 The solvent for dissolving the lipid component is preferably an organic solvent that is miscible with water. This is because when leucine and/or dileucine is dissolved in water, a uniform mixture with the leucine and/or dileucine solution can be prepared. Examples of such organic solvents include alcohols such as methanol, ethanol, n-propanol, 2-propanol, and tert-butyl alcohol, and acetonitrile.
 ジロイシンを溶解する溶媒としては、水又は水と水と混和する有機溶媒との混液であることが好ましい場合がある。こうした有機溶媒としては、脂質成分を溶解する溶媒における有機溶媒と同義である。 As the solvent for dissolving dileucine, it may be preferable to use water or a mixture of water and an organic solvent that is miscible with water. Such an organic solvent has the same meaning as an organic solvent in a solvent for dissolving a lipid component.
 有効成分は、その溶解性により、脂質成分及びロイシン及び/又はジロイシンの何れかの溶解液に合わせて溶解することができる。また、これらの溶解液とは独立して、これらの溶解液に用いた溶媒と混和する同一又は他の溶媒に溶解して、他成分の溶解液と混合することもできる。 Depending on its solubility, the active ingredient can be dissolved in a solution of either the lipid component and leucine and/or dileucine. In addition, independently of these solutions, they can be dissolved in the same or other solvents that are miscible with the solvents used for these solutions, and mixed with solutions of other components.
 最終的な噴霧用液における水と有機溶媒と混合比率は、水:有機溶媒が、例えば、9:1~1:9、また例えば、9:1~3:7、また例えば、9:1~4:6、また例えば、9:1~5:5の範囲で適宜設定することができる。 The mixing ratio of water and organic solvent in the final spraying liquid is, for example, 9:1 to 1:9, or 9:1 to 3:7, or 9:1 to 3:7. 4:6, or, for example, can be appropriately set in the range of 9:1 to 5:5.
 脂質成分及びロイシン及び/又はジロイシンの各溶解液における、これらの成分の組成は特に限定するものではなく、既述した組成の範囲であればよい。また、これらの成分の濃度は、噴霧乾燥法又は噴霧凍結乾燥法に供するのに適切な最終濃度になるように調製される。例えば、有効成分、脂質成分及びロイシン及び/又はジロイシンなどの賦形剤の総量は、脂質成分や賦形剤の内容や溶媒の種類にもよるが、例えば、5~100mg/mL、また例えば、5~80mg/mL、また例えば、5~50mg/mL、また例えば、5~30mg/mL、また例えば、5~25mg/mLの範囲で適宜設定できる。 The compositions of the lipid components and leucine and/or dileucine in each solution are not particularly limited, and may be within the composition ranges described above. The concentrations of these components are also adjusted to a final concentration suitable for use in spray drying or spray freeze drying. For example, the total amount of the active ingredient, lipid component, and excipient such as leucine and/or dileucine is, for example, 5 to 100 mg/mL, depending on the content of the lipid component and excipient, and the type of solvent. It can be appropriately set in the range of 5 to 80 mg/mL, for example 5 to 50 mg/mL, further for example 5 to 30 mg/mL, further for example 5 to 25 mg/mL.
 噴霧乾燥法又は噴霧凍結乾燥法によってこの液を粉末化する乾燥工程は、従来公知の噴霧乾燥法又は噴霧凍結乾燥法に従い実施することができる。本剤の製造方法においては、所定の脂質成分及びジロイシンを用いているため、常法に従い粉末化することで、肺到達性に優れ、水溶解時には多数の脂質粒子を形成する粒子を含む本剤を容易に取得できる。 The drying step of pulverizing this liquid by a spray drying method or a spray freeze drying method can be carried out according to a conventionally known spray drying method or a spray freeze drying method. In the manufacturing method of this drug, prescribed lipid components and dileucine are used, so by powdering it according to the conventional method, this drug has excellent lung delivery and contains particles that form a large number of lipid particles when dissolved in water. can be easily obtained.
(本剤の用途)
 本剤は、有効成分に応じて、医療用等の種々の用途に用いることができる。また、本剤は、ヒトを含む動物等において、外部から非侵襲的又はおおよそ非侵襲的にカテーテル等を用いて到達可能な臓器、例えば、鼻腔、眼、口腔、気道、肺、胃、十二指腸、小腸、大腸、直腸、膀胱、膣、子宮、心臓、血管等の内表面(粘膜)に対しては、本剤を、適当なガスを介したインジェクションにより、有効成分を標的箇所に到達させることができる。例えば、肺粘膜や鼻腔粘膜に対する粉末剤等の供給は、吸入法等として周知である。また、開腹や切開等によって動物の内部、例えば、皮下、筋肉、腹腔、腫瘍等の病変部に、直接本剤を供給してもよい。なお、本剤の適用にあたっては、標的組織内部、その表面又はその近傍に移植するなどの手段を採ることもできる。また、ゲル状物、スポンジなどの多孔体、不織布などの表面に本剤を担持させて留置することもできる。
(Applications of this drug)
This agent can be used for various purposes such as medical use depending on the active ingredient. In addition, this drug can be applied to organs that can be accessed from the outside using a catheter or the like non-invasively or almost non-invasively in animals including humans, such as the nasal cavity, eyes, oral cavity, respiratory tract, lungs, stomach, duodenum, etc. For the inner surfaces (mucosal membranes) of the small intestine, large intestine, rectum, bladder, vagina, uterus, heart, blood vessels, etc., the active ingredient can be delivered to the target area by injecting this drug through an appropriate gas. can. For example, the supply of a powder to the lung mucosa or nasal mucosa is well known as an inhalation method. Alternatively, the agent may be directly supplied to the inside of the animal, for example, subcutaneously, into the muscle, into the abdominal cavity, into a lesion such as a tumor, etc., through laparotomy or incision. In addition, when applying this agent, it is also possible to adopt methods such as transplanting it inside the target tissue, on its surface, or in its vicinity. The agent can also be supported on the surface of a gel-like material, a porous body such as a sponge, a nonwoven fabric, and the like.
 本剤は、用時に溶解して用いても十分な効果を発揮する。例えば、用時に、本剤を、水、生理食塩水、緩衝液、ブドウ糖溶液、培地液などの水系媒体に懸濁又は溶解することにより再溶解物を調製して適用することも可能である。再溶解については、本剤を、例えば、水等の水性媒体を用いて懸濁又は稀釈する。凍結乾燥前と異なる量、異なる種類の溶媒を用いることができるため、従来困難であった比較的高濃度の懸濁液や溶液も容易に調製することができる。 This agent exhibits sufficient effects even if it is dissolved before use. For example, at the time of use, the agent can be suspended or dissolved in an aqueous medium such as water, physiological saline, a buffer, a glucose solution, or a culture medium to prepare a redissolved product and then applied. For redissolution, the agent is suspended or diluted using an aqueous medium such as water. Since a different amount and type of solvent can be used than before freeze-drying, relatively high concentration suspensions and solutions, which have been difficult to prepare in the past, can be easily prepared.
 このように、適当な液性媒体で溶解又は懸濁した本剤は、生体細胞への核酸、又はその誘導体の導入に通常用いられる任意の方法を用いることができる。 As described above, the present agent dissolved or suspended in an appropriate liquid medium can be prepared using any method commonly used for introducing nucleic acids or derivatives thereof into living cells.
 本明細書は、以下の構成を含むことができる。
[1]粉末剤であって、
 PEG-脂質コンジュゲートを含有する脂質成分と、
 ロイシン及び/又はジロイシンと、
を含有する構成粒子を含む粉末剤。
[2]前記構成粒子は、前記粒子の水懸濁液において多数個の脂質粒子を生成する、[1]に記載の粉末剤。
[3]前記脂質成分は、さらに、DOTMA、DODMA、DPPC、EPC及びSMからなる群から選択される1種若しくは2種以上又はこれらの塩から選択される1種又は2種以上である、[1]又は[2]に記載の粉末剤。
[4]前記脂質成分を前記構成粒子の総量に対して10質量%以上60質量%以下含有する、[1]~[3]のいずれかに記載の粉末剤。
[5]前記構成粒子は、多孔質球状粒子である、[1]~[4]のいずれかに記載の粉末剤。
[6]前記多孔質球状粒子は、連続する孔部を規定する隔壁及び/又は骨格を備える三次元多孔質体である、[5]に記載の粉末剤。
[7]前記構成粒子の平均粒子径は、1μm以上100μm以下である、[1]~[6]のいずれかに記載の粉末剤。
[8]前記脂質粒子は、前記粒子を水又は緩衝液に懸濁して得られた懸濁液につき、動的光散乱法により測定した平均粒子径は、50nm以上300nm以下である、[1]~[7]のいずれかに記載の粉末剤。
[9]前記構成粒子は、マルチステージリキッドインピンジャー(MSLI)による特性評価において、OE(%)=スロート以降からの回収量(mg)/全回収量(mg)×100が、80%以上である、[1]~[8]のいずれかに記載の粉末剤。
[10]MSLIによる特性評価において、FPF(%)が10%以上である、[1]~[9]のいずれかに記載の粉末剤。
[11]粉末剤の製造方法であって、
 有効成分と、PEG-脂質コンジュゲートを含有する脂質成分と、ロイシン及び/又はジロイシンと、を含む液を準備する工程と、
 前記液を、噴霧乾燥法又は噴霧凍結乾燥法により乾燥することにより、前記有効成分と、前記PEG-脂質コンジュゲートと、前記ロイシン及び/又はジロイシンと、を含有する粉末を製造する工程と、
を備え、
 前記粉末は、前記粉末の水懸濁液において多数個の脂質粒子を形成する構成粒子を含有する粉末である、製造方法。
This specification can include the following configurations.
[1] A powder agent,
a lipid component containing a PEG-lipid conjugate;
Leucine and/or dileucine;
A powder containing constituent particles containing.
[2] The powder agent according to [1], wherein the constituent particles produce a large number of lipid particles in an aqueous suspension of the particles.
[3] The lipid component is further one or more selected from the group consisting of DOTMA, DODMA, DPPC, EPC, and SM, or one or more selected from salts thereof; [ 1] or the powder according to [2].
[4] The powder agent according to any one of [1] to [3], which contains the lipid component in an amount of 10% by mass or more and 60% by mass or less based on the total amount of the constituent particles.
[5] The powder agent according to any one of [1] to [4], wherein the constituent particles are porous spherical particles.
[6] The powder agent according to [5], wherein the porous spherical particles are three-dimensional porous bodies including partition walls and/or skeletons that define continuous pores.
[7] The powder agent according to any one of [1] to [6], wherein the constituent particles have an average particle diameter of 1 μm or more and 100 μm or less.
[8] The lipid particles have an average particle diameter of 50 nm or more and 300 nm or less, as measured by a dynamic light scattering method for a suspension obtained by suspending the particles in water or a buffer solution, [1] The powder agent according to any one of ~[7].
[9] The constituent particles have an OE (%) = recovery amount from the throat onwards (mg) / total recovery amount (mg) x 100 of 80% or more in a characteristic evaluation using a multi-stage liquid impinger (MSLI). The powder agent according to any one of [1] to [8].
[10] The powder according to any one of [1] to [9], which has an FPF (%) of 10% or more in characteristic evaluation by MSLI.
[11] A method for producing a powder, comprising:
preparing a liquid containing an active ingredient, a lipid component containing a PEG-lipid conjugate, and leucine and/or dileucine;
Drying the liquid by a spray drying method or a spray freeze drying method to produce a powder containing the active ingredient, the PEG-lipid conjugate, and the leucine and/or dileucine;
Equipped with
The manufacturing method, wherein the powder is a powder containing constituent particles that form a large number of lipid particles in an aqueous suspension of the powder.
 本明細書は、以下の構成を含むことができる。
[1]粉末剤であって、
 RNA干渉剤と、
 PEG-脂質コンジュゲートを含有する脂質成分と、
 ロイシン及び/又はジロイシンと、
を含有する構成粒子を含む粉末剤。
[2]前記PEG-脂質コンジュゲートは、PEG-コレステロールコンジュゲートである、[1]に記載の粉末剤。
[3]ロイシン及びジロイシンのうちジロイシンのみを含有する、[1]又は[2]に記載の粉末剤。
[4]前記構成粒子は、前記粒子の水懸濁液において多数個の脂質粒子を生成する、[1]~[3]のいずれかに記載の粉末剤。
[5]前記脂質成分を前記構成粒子の総量に対して10質量%以上60質量%以下含有する、[1]~[4]のいずれかに記載の粉末剤。
[6]前記構成粒子は、多孔質球状粒子である、[1]~[5]のいずれかに記載の粉末剤。
[7]前記多孔質球状粒子は、連続する孔部を規定する隔壁及び/又は骨格を備える三次元多孔質体である、[6]に記載の粉末剤。
[8]前記構成粒子の平均粒子径は、1μm以上100μm以下である、[1]~[7]のいずれかに記載の粉末剤。
[9]前記脂質粒子は、前記粒子を水又は緩衝液に懸濁して得られた懸濁液につき、動的光散乱法により測定した平均粒子径は、50nm以上300nm以下である、[1]~[8]のいずれかに記載の粉末剤。
[10]前記構成粒子は、マルチステージリキッドインピンジャー(MSLI)による特性評価において、OE(%)=スロート以降からの回収量(mg)/全回収量(mg)×100が、80%以上である、[1]~[9]のいずれかに記載の粉末剤。
[11]MSLIによる特性評価において、FPF(%)が10%以上である、[1]~[10]のいずれかに記載の粉末剤。
[12]前記干渉剤は、siRNAである、[1]~[11]のいずれかに記載の粉末剤。
This specification can include the following configurations.
[1] A powder agent,
an RNA interference agent;
a lipid component containing a PEG-lipid conjugate;
Leucine and/or dileucine;
A powder containing constituent particles containing.
[2] The powder according to [1], wherein the PEG-lipid conjugate is a PEG-cholesterol conjugate.
[3] The powder according to [1] or [2], which contains only dileucine among leucine and dileucine.
[4] The powder agent according to any one of [1] to [3], wherein the constituent particles produce a large number of lipid particles in an aqueous suspension of the particles.
[5] The powder agent according to any one of [1] to [4], which contains the lipid component in an amount of 10% by mass or more and 60% by mass or less based on the total amount of the constituent particles.
[6] The powder agent according to any one of [1] to [5], wherein the constituent particles are porous spherical particles.
[7] The powder agent according to [6], wherein the porous spherical particles are three-dimensional porous bodies including partition walls and/or skeletons that define continuous pores.
[8] The powder agent according to any one of [1] to [7], wherein the constituent particles have an average particle diameter of 1 μm or more and 100 μm or less.
[9] The lipid particles have an average particle diameter of 50 nm or more and 300 nm or less, as measured by a dynamic light scattering method for a suspension obtained by suspending the particles in water or a buffer solution, [1] The powder agent according to any one of ~[8].
[10] The constituent particles have an OE (%) = recovery amount from the throat and beyond (mg) / total recovery amount (mg) x 100 of 80% or more in a characteristic evaluation using a multi-stage liquid impinger (MSLI). The powder agent according to any one of [1] to [9].
[11] The powder according to any one of [1] to [10], which has an FPF (%) of 10% or more in characteristic evaluation by MSLI.
[12] The powder preparation according to any one of [1] to [11], wherein the interfering agent is siRNA.
 以下、本明細書の開示をより具体的に説明するために具体例としての実施例を記載する。以下の実施例は、本明細書の開示を説明するためのものであって、その範囲を限定するものではない。 Hereinafter, examples will be described as specific examples to more specifically explain the disclosure of this specification. The following examples are intended to illustrate the disclosure herein and are not intended to limit its scope.
(吸入粉末剤の調製)
 本実施例では、図1及び図2に示す脂質成分及び賦形剤を用いて、噴霧凍結乾燥法(SFD)及び噴霧乾燥法(FD)により、吸入粉末剤を製造した。なお、ナノサイズの脂質粒子のラベル試薬として蛍光脂質であるニトロベンゾオキサジアゾール化リン脂質(NBD-DPPE)を用い、モデル薬物としてパルミチン酸デキサメタゾン(PDEX)を用いた。
(Preparation of inhalation powder)
In this example, an inhalable powder was manufactured by spray freeze-drying (SFD) and spray drying (FD) using the lipid components and excipients shown in FIGS. 1 and 2. Note that a fluorescent lipid, nitrobenzoxadiazolated phospholipid (NBD-DPPE), was used as a labeling reagent for nanosized lipid particles, and dexamethasone palmitate (PDEX) was used as a model drug.
 図1及び図2に示す、各種成分の使用量は以下のとおりとした。なお、SFD法及びSD法では、それぞれ全量が50mg及び100mgとなるようにした。また、噴霧用液の調製は以下のとおりとした。なお、PEG誘導体としては、以下に示すPEG-脂質コンジュゲートを用いた。PEG誘導体は、SFD#12につき、PEGのMnが5000のコンジュゲートを用いた以外は、PEGのMnが2000のコンジュゲートを用いた。 The usage amounts of various components shown in Figures 1 and 2 were as follows. In addition, in the SFD method and the SD method, the total amount was set to 50 mg and 100 mg, respectively. In addition, the spraying liquid was prepared as follows. As the PEG derivative, the following PEG-lipid conjugate was used. As for the PEG derivatives, conjugates with a PEG Mn of 2000 were used, except for SFD #12, in which a conjugate with a PEG Mn of 5000 was used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[1]SFD#1~3
 脂質成分の全量を、tert-ブチルアルコール0.333mLに溶解した液と、賦形剤の全量を水2.667mLに溶解した液とを、よく混合して、噴霧用液とした。
[1] SFD#1-3
A solution in which the entire amount of the lipid component was dissolved in 0.333 mL of tert-butyl alcohol and a solution in which the entire amount of the excipient was dissolved in 2.667 mL of water were thoroughly mixed to prepare a solution for spraying.
[2]SFD#3’~6
 脂質成分の全量を、tert-ブチルアルコール2mLに溶解した液と、賦形剤の全量を水2mLに溶解した液とを、よく混合して、噴霧用液とした。
[2] SFD#3'-6
A solution in which the entire amount of the lipid component was dissolved in 2 mL of tert-butyl alcohol and a solution in which the entire amount of the excipient was dissolved in 2 mL of water were thoroughly mixed to prepare a solution for spraying.
[3]SFD#3’’~11
 脂質成分の全量を、tert-ブチルアルコール0.444mLに溶解した液と、賦形剤の全量を水3.556mLに溶解した液とを、よく混合して、噴霧用液とした。
[3] SFD#3''~11
A solution in which the entire amount of the lipid component was dissolved in 0.444 mL of tert-butyl alcohol and a solution in which the entire amount of the excipient was dissolved in 3.556 mL of water were thoroughly mixed to prepare a solution for spraying.
[4]SFD#12
 モデル薬物等と脂質成分の全量を、tert-ブチルアルコール0.278mLに溶解した液と、賦形剤の全量を水2.222mLに溶解した液とを、よく混合して、噴霧用液とした。
[4] SFD#12
A solution in which the entire amount of model drugs, etc. and lipid components were dissolved in 0.278 mL of tert-butyl alcohol, and a solution in which the entire amount of excipients was dissolved in 2.222 mL of water were mixed well to prepare a solution for spraying. .
[5]SD#1~3
 脂質成分の全量を、エタノール2.22mLに溶解した液と、賦形剤の全量を水17.78mLに溶解した液とを、よく混合して、噴霧用液とした。
[5] SD#1-3
A solution in which the entire amount of the lipid component was dissolved in 2.22 mL of ethanol and a solution in which the entire amount of the excipient was dissolved in 17.78 mL of water were thoroughly mixed to prepare a solution for spraying.
[6]SD#3’~11
 脂質成分の全量を、エタノール10mLに溶解した液と、賦形剤の全量を水10mLに溶解した液とを、よく混合して、噴霧用液とした。
[6] SD#3'-11
A solution in which the entire amount of the lipid component was dissolved in 10 mL of ethanol and a solution in which the entire amount of the excipient was dissolved in 10 mL of water were thoroughly mixed to prepare a solution for spraying.
 SFD法は、以下のとおりに実施した。すなわち、SFD法は、噴霧工程と凍結乾燥工程の2工程からなる。まず、噴霧乾燥機(SD-1000、東京理化器械株式会社)に付属する2流体噴霧ノズルを用いて、試料溶液をノズル先端から15cm下の液体窒素(500mL)中に150kPaで噴霧することにより急速凍結した。試料溶液は5mL/minで送液し、1.5min噴霧を続けた。得られた氷滴を凍結乾燥機(FDU-210東京理化器械株式会社)を接続した角形ドライチャンバー(DRC-1000東京理化器械株式会社)に入れ、真空条件下、-40℃で24hr以上、次いで、25℃で12hr以上乾燥することにより目的の製剤を得た。 The SFD method was performed as follows. That is, the SFD method consists of two steps: a spraying step and a freeze-drying step. First, using a two-fluid spray nozzle attached to a spray dryer (SD-1000, Tokyo Rikakikai Co., Ltd.), the sample solution was rapidly sprayed at 150 kPa into liquid nitrogen (500 mL) 15 cm below the nozzle tip. Frozen. The sample solution was fed at a rate of 5 mL/min, and spraying was continued for 1.5 min. The obtained ice droplets were placed in a square dry chamber (DRC-1000 Tokyo Rikakikai Co., Ltd.) connected to a freeze dryer (FDU-210 Tokyo Rikakikai Co., Ltd.) and dried at -40°C for 24 hours or more under vacuum conditions, then The desired formulation was obtained by drying at 25° C. for 12 hours or more.
 SD法は、以下のとおりに実施した。すなわち、SD法は、噴霧工程と乾燥工程の2工程からなる。まず、噴霧乾燥機(B-90HP、日本ビュッヒ)に付属するスプレーヘッドにネブライザー(Medium)を装着し、入口温度を90℃、ガス流量を120L/minにそれぞれ設定して噴霧することにより乾燥した。 The SD method was performed as follows. That is, the SD method consists of two steps: a spraying step and a drying step. First, a nebulizer (Medium) was attached to the spray head attached to a spray dryer (B-90HP, Nihon Buchi), and the inlet temperature was set to 90°C and the gas flow rate was set to 120 L/min. .
(粉末剤の溶解後の脂質粒子の物性評価)
 実施例1で調製した各種粉末剤を脂質濃度として0.2mg/mLになるように水に溶解し、30分静置後、液中の粒子の粒子径分布とゼータ電位を、動的・電気泳動光散乱法により測定した(Malvern社製のZetasizer Nano ZS)。なお、動的光散乱法による平均粒子径及び粒子径分布は、この装置に付属するソフトウェアにより、測定結果から取得した自己相関関数を用いて拡散係数に基づいて取得できる。平均粒子径として300nm、多分散性指数(PdI)として0.42を基準値とし、両解析値ともに基準値以下であった場合に「良好な脂質粒子形成能を有する」と判断した。結果を、図1及び図2に併せて示す。
(Evaluation of physical properties of lipid particles after dissolving powder)
The various powders prepared in Example 1 were dissolved in water to a lipid concentration of 0.2 mg/mL, and after standing for 30 minutes, the particle size distribution and zeta potential of the particles in the liquid were measured using dynamic and electrical methods. It was measured by electrophoretic light scattering method (Zetasizer Nano ZS manufactured by Malvern). Note that the average particle size and particle size distribution obtained by the dynamic light scattering method can be obtained based on the diffusion coefficient using the autocorrelation function obtained from the measurement results using software attached to this apparatus. The standard values were 300 nm as the average particle diameter and 0.42 as the polydispersity index (PdI), and when both analytical values were below the standard values, it was determined that the sample had "good ability to form lipid particles." The results are also shown in FIGS. 1 and 2.
 図1及び図2に示すように、平均粒子径が80~150nm、PdIが0.170~0.400のとおり、概して、両方とも基準値以下であり、主脂質の種類に依らず、良好な脂質粒子形成能が得られた。また、PEG誘導体(PEG-脂質コンジュゲート)の種類、成分溶液の濃度および溶媒組成についても、平均粒子径、PdIに明確な違いを生じなかった。同組成のSFD構成粒子とSD構成粒子の比較においても、形成する脂質粒子の平均粒子径、PdIは同様であった。一方、主脂質の電荷に対応してゼータ電位は-35~+60mVを示し、表面電荷が異なる種々の脂質粒子を形成できることを確認した。 As shown in Figures 1 and 2, the average particle diameter is 80 to 150 nm and the PdI is 0.170 to 0.400, which are generally below the standard values, and regardless of the type of main lipid, it is a good product. Lipid particle forming ability was obtained. Furthermore, there were no clear differences in the average particle diameter and PdI with respect to the type of PEG derivative (PEG-lipid conjugate), the concentration of the component solution, and the solvent composition. When comparing SFD constituent particles and SD constituent particles of the same composition, the average particle diameter and PdI of the lipid particles formed were similar. On the other hand, the zeta potential showed -35 to +60 mV corresponding to the charge of the main lipid, confirming that various lipid particles with different surface charges could be formed.
 続いて、脂質成分を固定しつつ賦形剤の種類および脂質成分含量を変えて粉末剤(SFD#3’’、7~11;SD#3’、7~11)を製造し、溶解後に形成する脂質粒子の物性を比較した。SFD由来粒子の結果について、ロイシンを賦形剤に用いた場合には、脂質成分含量が20%までは平均粒子径、PdIともに基準値以下であったが、脂質成分含量が40%になると平均粒子径、PdIともに基準値を超え、脂質粒子形成能を損失したと判断した。一方、ジロイシンを賦形剤に用いた場合には、脂質成分含量が40%でも平均粒子径、PdIともに基準値以下であり、良好な脂質粒子形成能が得られた。次に、SD構成粒子の結果について、ロイシンを賦形剤に用いた場合では脂質成分含量が20%以上、ジロイシンを賦形剤に用いた場合では脂質成分含量が40%で平均粒子径、PdIの一方または両方が基準値を超え、同組成のSFD構成粒子と比べて脂質粒子形成能を損失しやすい傾向が窺えた。これらの結果より、脂質成分が高含量でも良好な脂質粒子形成能を得られる利点から、ジロイシンを賦形剤に用いてSFD法により製造することの優位性が明らかとなった。 Subsequently, powders (SFD#3'', 7-11; SD#3', 7-11) were manufactured by changing the type of excipient and lipid component content while fixing the lipid component, and forming after dissolution. The physical properties of lipid particles were compared. Regarding the results of SFD-derived particles, when leucine was used as an excipient, both the average particle diameter and PdI were below the standard values up to a lipid component content of 20%, but when the lipid component content reached 40%, the average particle size and PdI decreased. Both the particle diameter and PdI exceeded the standard values, and it was determined that the ability to form lipid particles had been lost. On the other hand, when dileucine was used as an excipient, even when the lipid component content was 40%, both the average particle diameter and PdI were below the reference value, and good lipid particle forming ability was obtained. Next, regarding the results of SD constituent particles, when leucine was used as an excipient, the lipid component content was 20% or more, and when dileucine was used as an excipient, the lipid component content was 40%, the average particle diameter, PdI One or both of them exceeded the standard value, and it was observed that the lipid particle forming ability was more likely to be lost compared to SFD constituent particles of the same composition. From these results, it became clear that manufacturing by the SFD method using dileucine as an excipient has the advantage of obtaining good lipid particle forming ability even with a high content of lipid components.
 また薬物としてPDEXを適用した場合(SFD#12)にも、良好な脂質粒子形成能が得られた。 Also, when PDEX was applied as a drug (SFD #12), good lipid particle forming ability was obtained.
(粉末剤の走査型電子顕微鏡による粒子形状の評価)
 実施例1で調製した粉末粒子の粒子形状を走査型電子顕微鏡(SEM:JSM-IT100LA、日本電子株式会社)で観察した。図3に示す分散添加のための構成粒子添加デバイスを用いて、噴霧した。噴霧方法としては、調製した粉末剤を少量充填した100μLチップに三方活性を介して接続した1mLシリンジ(TERUMO)内で0.25mLの空気を圧縮し、三方活栓を開放した。黒色両面テープを貼付した試料台上に構成粒子を分散添加後、30mV、90secの条件でプラチナコーティング(EC-3000FC、日本電子株式会社)し、SEM観察した。結果を図3に示す。
(Evaluation of particle shape by scanning electron microscope of powder agent)
The particle shape of the powder particles prepared in Example 1 was observed using a scanning electron microscope (SEM: JSM-IT100LA, JEOL Ltd.). Spraying was performed using the component particle addition device for dispersion addition shown in FIG. As for the spraying method, 0.25 mL of air was compressed in a 1 mL syringe (TERUMO) connected via a three-way connection to a 100 μL tip filled with a small amount of the prepared powder, and the three-way stopcock was opened. After dispersing and adding the constituent particles onto a sample stand attached with black double-sided tape, the sample was coated with platinum (EC-3000FC, JEOL Ltd.) under the conditions of 30 mV and 90 seconds, and observed with SEM. The results are shown in Figure 3.
 図3に示すように、SEM観察において、直径が約10~20μmでスポンジ状のSFD由来粒子と直径が約1~2μmのより小さなSD由来粒子で明確な粒子構造の違いを確認できた。一方、両粒子ともに、脂質成分の組成および含量による明確な粒子構造の違いは見られなかった。賦形剤の効果に関する興味深い知見として、SFD由来粒子においてロイシンとジロイシンを含む場合で粒子構造の明確な違いは認められなかったのに対し、SD由来粒子においてロイシンを含む場合には表面が凹凸に富むいびつな粒子構造を有し、ジロイシンを含む場合には表面が滑らかで球形度の高い粒子構造を有するという明確な違いが見られた。 As shown in FIG. 3, in SEM observation, a clear difference in particle structure was confirmed between the spongy SFD-derived particles with a diameter of about 10 to 20 μm and the smaller SD-derived particles with a diameter of about 1 to 2 μm. On the other hand, no clear difference in particle structure was observed depending on the composition and content of lipid components in both particles. An interesting finding regarding the effect of excipients is that no clear difference in particle structure was observed between SFD-derived particles containing leucine and dileucine, whereas the surface of SD-derived particles became uneven when leucine was included. A clear difference was seen in that the particles had a rich and distorted particle structure, while those containing dileucine had a smooth surface and a highly spherical particle structure.
(粉末剤のMSLIによる吸入特性の評価)
 実施例1で調製した構成粒子のうち、脂質成分含量が比較的高くても良好な物性を示す脂質粒子を形成できたSFD#7、#10及び#11について、性能評価を行った。吸入特性の詳細なデータを得るため、MSLI(マルチステージリキッドインピンジャー、Copley Scientific)を用いて吸入特性評価を行った。
(Evaluation of inhalation characteristics of powder by MSLI)
Among the constituent particles prepared in Example 1, performance evaluation was performed on SFD #7, #10, and #11, which were able to form lipid particles exhibiting good physical properties even with a relatively high content of lipid components. In order to obtain detailed data on inhalation properties, inhalation properties were evaluated using MSLI (Multi-Stage Liquid Impinger, Copley Scientific).
 評価方法は、試料約1.0mgを2号HPMCカプセル(クオリカプス株式会社)に充填し、真空ポンプ(KRF40A-V01B、オリオン機械株式会社)によって、流量(60L/分)にて吸引を行った。吸引時間は4secとした。吸入デバイスにはジェットヘラー(Jethaler(登録商標)Standard、トキコシステムソリューションズ株式会社)を用いた。 In the evaluation method, approximately 1.0 mg of the sample was filled into a No. 2 HPMC capsule (Qualicaps Co., Ltd.), and suction was performed at a flow rate (60 L/min) using a vacuum pump (KRF40A-V01B, Orion Kikai Co., Ltd.). The suction time was 4 seconds. A jethaler (Jethaler (registered trademark) Standard, Tokico System Solutions Co., Ltd.) was used as an inhalation device.
(粉末剤の回収率の算出)
 デバイス、カプセル、スロート、フィルター、各ステージに沈着した試料をリン酸緩衝液(PBS)10mL又は20mLに溶解した後、FlNa(フルオレセインナトリウム。定量用に1wt%で粉末剤に含有)の濃度をマルチモードプレートリーダー(EnSpire、株式会社パーキンエルマージャパン)にて定量(励起波長:490nm、蛍光波長:515nm)し、各パーツにおける回収量及び回収率を算出した。必要に応じて希釈定量を行った。また、本実験結果から、OE、FPF(肺治療域到達性指標値)、UPF(肺深部到達性指標値)を既述の式(1)~(3)及び第17改正日本薬局方第一追補一般試験法6.15吸入剤の空気力学的粒度測定法6.計算に基づき算出した。結果を図4に示す。
(Calculation of powder recovery rate)
After dissolving the sample deposited on the device, capsule, throat, filter, and each stage in 10 mL or 20 mL of phosphate buffer (PBS), the concentration of FlNa (sodium fluorescein, contained in the powder at 1 wt% for quantitative determination) was multiplied. Quantification was performed using a mode plate reader (EnSpire, PerkinElmer Japan Co., Ltd.) (excitation wavelength: 490 nm, fluorescence wavelength: 515 nm), and the recovery amount and recovery rate for each part were calculated. Dilution and quantification were performed as necessary. In addition, from the results of this experiment, OE, FPF (pulmonary therapeutic range reachability index value), and UPF (deep lung reachability index value) were calculated using the previously described formulas (1) to (3) and the 17th revised Japanese Pharmacopoeia No. 1. Supplementary General Test Method 6.15 Aerodynamic Particle Size Determination of Inhalants 6. Calculated based on calculations. The results are shown in Figure 4.
 図4に示すように、全ての構成粒子でカプセルからスロートまでの沈着量が比較的少なく、指標値のOEでも90%以上と良好な放出性を示した。一方、賦形剤としてロイシンを含むSFD#7では、大部分がステージ1で沈着したのに対し、ジロイシンを含むSFD#10およびSFD#11では、より高ステージ側での沈着量が多い傾向が認められた。指標値のFPF/UPFとしては、SFD#7で約12%/4%、SFD#10で約45%/21%、SFD#11で約33%/13%の値が得られ、賦形剤としてロイシンよりもジロイシンを含む方が、肺送達性に優れていることを明らかにした。SFD#10とSFD#11の比較より、脂質成分含量の増加に伴う肺送達性の低下傾向が認められたものの、両構成粒子ともに市販吸入粉末剤の肺送達性(FPFで20~40%)と比べて同等以上であり、実用化が十分に見込める吸入特性であった。 As shown in Figure 4, the amount of deposition from the capsule to the throat was relatively small for all the constituent particles, and the index value of OE was 90% or higher, indicating good release properties. On the other hand, in SFD #7 containing leucine as an excipient, most of the deposits occurred at stage 1, whereas in SFD #10 and SFD #11 containing dileucine, the amount of deposition tended to be larger on the higher stage side. Admitted. The index values of FPF/UPF were approximately 12%/4% for SFD#7, approximately 45%/21% for SFD#10, and approximately 33%/13% for SFD#11. As a result, it was revealed that drugs containing dileucine have better lung delivery properties than leucine. Comparison of SFD #10 and SFD #11 revealed a tendency for lung delivery performance to decrease as the lipid component content increased, but both component particles had better lung delivery performance than commercially available inhalation powders (FPF: 20-40%). The inhalation characteristics were the same or better than those of the previous one, and the inhalation characteristics were sufficiently promising for practical use.
(粒子溶解後に形成する脂質粒子の細胞結合/取り込み能評価)
 粉末の構成粒子をハンクス平衡塩溶液に溶解することで形成した脂質粒子を含む分散液を、マイクロプレートに播種したヒト肺がん(NCI-H441)細胞に添加した。その2時間後に回収した細胞溶解液の蛍光強度測定を基に、脂質粒子の細胞結合/取り込み量を算出した。製造した粉末粒子のうち、良好な脂質粒子形成能が認められたものに絞り、形成した脂質粒子の細胞結合/取り込み能の評価・比較を行った。結果を図5に示す。
(Evaluation of cell binding/uptake ability of lipid particles formed after particle dissolution)
A dispersion containing lipid particles formed by dissolving constituent particles of the powder in Hanks' balanced salt solution was added to human lung cancer (NCI-H441) cells seeded in a microplate. Based on the fluorescence intensity measurement of the cell lysate collected 2 hours later, the amount of lipid particles bound/uptaked by the cells was calculated. Among the powder particles produced, we selected those that were found to have good ability to form lipid particles, and evaluated and compared the cell binding/uptake ability of the formed lipid particles. The results are shown in Figure 5.
 図5に示すように、主脂質を変えて製造した構成粒子(SFD#1~6;SD#1~6)で比較したところ、DOTMAを含む場合に添加量に対して15%以上の細胞結合/取り込み量を示し、その他の主脂質を含む場合の細胞結合/取り込み量は添加量に対して2%未満であった。DOTMAを含む場合には、形成する脂質粒子の表面が生理的pHで正電荷を帯びていることにより、負電荷を帯びた細胞膜との静電的相互作用により細胞結合/取り込み能を増大したと考えている。さらにPEG誘導体として、PEG-DSPEと比べてPEG-Cholを用いた場合に、DOTMAを含む脂質粒子の細胞結合/取り込み能をより高められることを見出した。 As shown in Figure 5, when comparing constituent particles manufactured with different main lipids (SFD #1 to 6; SD #1 to 6), when DOTMA was included, cell binding was more than 15% of the added amount. / uptake amount, and when other main lipids were included, the cell binding/uptake amount was less than 2% of the added amount. When DOTMA is included, the surface of the lipid particles formed is positively charged at physiological pH, which increases cell binding/uptake ability through electrostatic interaction with negatively charged cell membranes. thinking. Furthermore, we have found that when PEG-Chol is used as a PEG derivative compared to PEG-DSPE, the cell binding/uptake ability of lipid particles containing DOTMA can be further enhanced.
 実験時の温度を37℃から4℃に変更することで、細胞結合/取り込み能が顕著に低下した結果(#3’と#3’(4℃)の違い)より、この脂質粒子がエンドサイトーシスを一部介して、細胞内に取り込まれている可能性が示唆された。 By changing the temperature during the experiment from 37°C to 4°C, the cell binding/uptake ability was significantly reduced (difference between #3' and #3' (4°C)), indicating that this lipid particle was endocytosed. It was suggested that the protein may be taken up into cells partially through tosis.
 賦形剤の種類および脂質成分含量を変えて製造した構成粒子(SFD#3’’,7,9~11;SD#3’,9)で比較したところ、ロイシンを賦形剤に用いた場合には、脂質成分含量が10%から20%に増えた際に細胞結合/取り込み能が低下する傾向が見られた。一方、ジロイシンを賦形剤に用いた場合には、ロイシンを用いた際よりも細胞結合/取り込み能が高く、また脂質成分含量が40%でも細胞結合/取り込み能が比較的高かった。このジロイシンによる脂質粒子の細胞内結合/取り込み促進効果の理由は不明であるが、脂質粒子の機能向上に貢献することがわかった。 A comparison of constituent particles (SFD#3'', 7, 9-11; SD#3', 9) manufactured with different types of excipients and lipid component contents showed that when leucine was used as an excipient There was a tendency for the cell binding/uptake ability to decrease when the lipid component content increased from 10% to 20%. On the other hand, when dileucine was used as an excipient, the cell binding/uptake ability was higher than when leucine was used, and even when the lipid component content was 40%, the cell binding/uptake ability was relatively high. Although the reason for this effect of promoting intracellular binding/uptake of lipid particles by dileucine is unknown, it was found that it contributes to improving the functionality of lipid particles.
 一方、SFD#1、4~6及びSD#1、4~6では、脂質粒子の細胞結合/取り込み能は低かったが、これは、当該部位における脂質粒子の滞留性を示すものであると考えられた。また、PEG-CholよりもPEG-DSPEを含む場合に脂質粒子の細胞結合/取り込み能が低かった結果(#2と#3の違い)も踏まえて、上記の粉末剤に含まれる脂質成分である非カチオン性脂質およびDODMAとPEG-リン脂質コンジュゲートの組み合わせにより、形成した脂質粒子が細胞上で滞留し、内封薬物の徐放化および作用持続化に貢献するものと考えられた。 On the other hand, in SFD#1, 4-6 and SD#1, 4-6, the cell binding/uptake ability of lipid particles was low, but this is thought to indicate the retention of lipid particles in the relevant site. It was done. In addition, based on the result that the cell binding/uptake ability of lipid particles was lower when containing PEG-DSPE than PEG-Chol (difference between #2 and #3), the lipid components contained in the above powder It was thought that the combination of the non-cationic lipid, DODMA, and PEG-phospholipid conjugate caused the formed lipid particles to stay on the cells, contributing to sustained release and sustained action of the encapsulated drug.
 同組成のSFD由来粒子とSD由来粒子の比較において、形成した脂質粒子の細胞結合/取り込み能に明確な違いは認められず、主に構成粒子の組成により脂質粒子の細胞結合/取り込み能が決定付けられ、製造法による影響は比較的小さいことが示された。 In comparing SFD-derived particles and SD-derived particles of the same composition, no clear difference was observed in the cell binding/uptake ability of the formed lipid particles, and the cell binding/uptake ability of lipid particles is mainly determined by the composition of the constituent particles. It was shown that the influence of the manufacturing method is relatively small.
 以上の実施例によれば、肺内脂質粒子構築型吸入粉末剤の開発に際し、検討したSFD法、SD法のいずれの製造法においても、脂質成分として多種多様な脂質を適用できることを明らかにした。また、脂質の電荷により脂質粒子の細胞結合/取り込み能が大きく異なった結果を基に、カチオン性脂質の適用により内封薬物の細胞内移行性を高めることがわかった。また、PEG誘導体としてPEG-Cholおよび賦形剤としてジロイシンを適用することで、カチオン性脂質を含む脂質粒子の細胞結合/取り込み能をさらに向上できることを見出した。特に、ジロイシンを用いてSFD法により製造したスポンジ状の構成粒子について、脂質成分が高含量でも、既存の市販吸入粉末剤と同等以上の肺送達性ならびに良好な脂質粒子形成能および高い細胞結合/取り込み能を発揮する有用性を明らかにした。 According to the above examples, it has become clear that a wide variety of lipids can be used as lipid components in both the SFD method and SD method studied when developing an inhalation powder that constructs intrapulmonary lipid particles. . Furthermore, based on the results that the cellular binding/uptake ability of lipid particles varied greatly depending on the charge of the lipid, it was found that the application of cationic lipids increased the intracellular transferability of the encapsulated drug. Furthermore, we have found that by applying PEG-Chol as a PEG derivative and dileucine as an excipient, the cell binding/uptake ability of lipid particles containing cationic lipids can be further improved. In particular, the sponge-like constituent particles produced by the SFD method using dileucine have lung delivery properties that are equivalent to or better than existing commercially available inhalation powders, good lipid particle formation ability, and high cell binding / The usefulness of demonstrating uptake ability was clarified.
(粉末剤の製造)
 以下の表に示す組成に従い、噴霧凍結乾燥(SFD)法では、siRNA(siGL3または蛍光標識siGL3(Cy5.5-siGL3)、北海道システムサイエンス株式会社製)と賦形剤(ジロイシン(diLeuともいう。)またはロイシン(Leuともいう。))を水に、脂質成分(DOTMA、DODMA、PEG誘導体、コレステロール(Chol))をtert-ブチルアルコールに溶解後、それらの混合液を調製した。噴霧乾燥機(SD-1000,東京理化器械株式会社)に付属する2流体噴霧ノズルを用いて、混合液をノズル先端から15cm下の液体窒素(500mL)中に150kPaで噴霧することにより急速凍結した。試料溶液は5mL/minで送液し、混合液の液量が2.5mLの場合には60sec、5mLの場合には90sec噴霧を続けた。得られた氷滴を凍結乾燥機(FDU-210東京理化器械株式会社)を接続した角形ドライチャンバー(DRC-1000東京理化器械株式会社)に入れ、真空条件下で-40℃で24h以上、続いて25℃で12h以上乾燥することにより目的の粉末剤を得た。PEG誘導体は、PEGのMnが5000のコンジュゲートを用いた。
(Manufacture of powder)
According to the composition shown in the table below, in the spray freeze drying (SFD) method, siRNA (siGL3 or fluorescently labeled siGL3 (Cy5.5-siGL3), manufactured by Hokkaido System Science Co., Ltd.) and excipient (dileucine (also called diLeu)) were used. ) or leucine (also referred to as Leu)) in water and lipid components (DOTMA, DODMA, PEG derivatives, cholesterol (Chol)) in tert-butyl alcohol, a mixture thereof was prepared. Using a two-fluid spray nozzle attached to a spray dryer (SD-1000, Tokyo Rikakikai Co., Ltd.), the mixed solution was quickly frozen by spraying it into liquid nitrogen (500 mL) 15 cm below the nozzle tip at 150 kPa. . The sample solution was fed at a rate of 5 mL/min, and spraying was continued for 60 seconds when the volume of the mixed solution was 2.5 mL, and for 90 seconds when the volume was 5 mL. The obtained ice droplets were placed in a rectangular dry chamber (DRC-1000 Tokyo Rika Kikai Co., Ltd.) connected to a freeze dryer (FDU-210 Tokyo Rika Kikai Co., Ltd.) and continuously heated at -40°C for 24 h or more under vacuum conditions. The desired powder was obtained by drying at 25° C. for 12 hours or more. As the PEG derivative, a conjugate of PEG with Mn of 5000 was used.
 以下の表に示す組成に従い、噴霧乾燥(SD)法では、siRNA(siGL3または蛍光標識siGL3(Cy5.5-siGL3))と賦形剤(ジロイシンまたはロイシン)を水に、脂質成分(DOTMA、DODMA、PEG誘導体、Chol)をエタノールに溶解後、それらの混合液を調製した。噴霧乾燥機(B-90HP、日本ビュッヒ)に付属するスプレーヘッドにネブライザー(Medium)を装着し、入口温度を70℃、ガス流量を120L/minにそれぞれ設定して混合液を噴霧することにより、高温気流中で乾燥し、目的の粉末剤を得た。 In the spray drying (SD) method, siRNA (siGL3 or fluorescently labeled siGL3 (Cy5.5-siGL3)) and excipient (dileucine or leucine) are mixed in water and lipid component (DOTMA, DODMA) according to the composition shown in the table below. , PEG derivative, Chol) were dissolved in ethanol, and a mixture thereof was prepared. By attaching a nebulizer (Medium) to the spray head attached to a spray dryer (B-90HP, Nippon Buchi), setting the inlet temperature to 70°C and the gas flow rate to 120 L/min, and spraying the mixed liquid, It was dried in a high-temperature air stream to obtain the desired powder.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、実験は、以下のとおり行った。各粉末剤をsiRNA/脂質濃度として0.2mg/mLになるように10mM HEPES緩衝液(pH7.4)に溶解し、30分静置後、液中のsiRNA搭載脂質粒子(siRNA-LNP)の粒子径分布とゼータ電位を、動的・電気泳動光散乱法により測定した(Malvern社製のZetasizerNano ZS)。平均粒子径として300nm、多分散性指数(PdI)として0.4を基準値とし、両解析値ともに基準値以下であった場合に「良好な脂質粒子形成能を有する」と判断した。結果を図6に示す。 The experiment was conducted as follows. Each powder was dissolved in 10 mM HEPES buffer (pH 7.4) so that the siRNA/lipid concentration was 0.2 mg/mL, and after standing for 30 minutes, the siRNA-loaded lipid particles (siRNA-LNP) in the solution were dissolved. Particle size distribution and zeta potential were measured by dynamic electrophoretic light scattering (Zetasizer Nano ZS manufactured by Malvern). The standard values were 300 nm as the average particle diameter and 0.4 as the polydispersity index (PdI), and when both analytical values were below the standard values, it was determined that the sample had "good ability to form lipid particles." The results are shown in FIG.
 ロイシンと同様にジロイシンを賦形剤に用いた場合でも、脂質成分としてPEG誘導体を含まない場合(ジロイシン/ロイシン#1)には、形成したsiRNA-LNPの平均粒子径およびPdIの値が基準値を超えた。一方、PEG誘導体を含む場合には、形成したsiRNA-LNPの平均粒子径およびPdIの値が全て基準値の範囲内であり、効率的な脂質粒子の形成にはPEG誘導体の添加が必須であることを確認できた。全体的に、SD製剤と比べてSFD製剤において、PdIがより小さい値を示す傾向にあり、脂質粒子形成能がより優れていることが窺えた。siRNAへのCy5.5の化学修飾の有無およびPEG誘導体の脂溶性部分の化学構造によるsiRNA-LNPの物性への明確な違いは認められなかった。ロイシンとジロイシンでほぼ同様の結果が得られたが、検討した中でsiRNA/脂質含量が最大の条件(ジロイシン/ロイシン#4)において、ジロイシンの方がsiRNA-LNPの平均粒子径およびPdIの値が小さく、siRNA/脂質高含量製剤化におけるジロイシンの優位性が示唆された。 Even when dileucine is used as an excipient like leucine, if a PEG derivative is not included as a lipid component (dileucine/leucine #1), the average particle diameter and PdI value of the formed siRNA-LNP are the standard values. exceeded. On the other hand, when a PEG derivative is included, the average particle diameter and PdI value of the formed siRNA-LNP are all within the standard value range, and the addition of the PEG derivative is essential for efficient lipid particle formation. I was able to confirm that. Overall, PdI tended to show a smaller value in the SFD formulation compared to the SD formulation, indicating that the lipid particle forming ability was superior. No clear difference in the physical properties of siRNA-LNP was observed depending on the presence or absence of Cy5.5 chemical modification to siRNA and the chemical structure of the lipophilic portion of the PEG derivative. Almost similar results were obtained with leucine and dileucine, but under the condition with the highest siRNA/lipid content (dileucine/leucine #4), dileucine had a higher average particle diameter and PdI value of siRNA-LNP. was small, suggesting the superiority of dileucine in preparing siRNA/high lipid content formulations.
(構成粒子の粒子形状)
 実施例6で作製した粉末剤の構成粒子の粒子形状を走査型電子顕微鏡(SEM:JSM-IT100LA、日本電子株式会社)で観察した。専用の粉末分散添加・投与デバイスを用いて、少量の粉末剤を導電性カーボン両面テープを貼付した試料台上に分散添加後、30mV、90secの条件でプラチナコーティング(JEC-3000FC、日本電子株式会社)し、SEM観察した。結果を図7に示す。
(Particle shape of constituent particles)
The particle shape of the constituent particles of the powder prepared in Example 6 was observed using a scanning electron microscope (SEM: JSM-IT100LA, JEOL Ltd.). Using a special powder dispersion/dosing device, a small amount of powder was dispersed and added onto a sample stand attached with conductive carbon double-sided tape, and then plated with platinum coating (JEC-3000FC, JEOL Ltd.) under the conditions of 30 mV and 90 sec. ) and observed by SEM. The results are shown in FIG.
 図7に示すように、SEM観察において、直径が約10~20μmでスポンジ状のSFD製剤と直径が約1~2μmのより小さなSD製剤で明確な粒子構造の違いを確認できた。一方、両製剤ともに、siRNA/脂質成分の組成および含量による明確な粒子構造の違いは見られなかった。賦形剤の効果に関する興味深い知見として、SFD製剤においてロイシンとジロイシンを含む場合で粒子構造の明確な違いは認められなかったのに対し、SD製剤においてロイシンを含む場合には表面が凹凸に富むいびつな粒子構造を有し、ジロイシンを含む場合には表面が滑らかで球形度の高い粒子構造を有するという明確な違いが見られた。 As shown in FIG. 7, in SEM observation, a clear difference in particle structure was confirmed between the sponge-like SFD formulation with a diameter of approximately 10 to 20 μm and the smaller SD formulation with a diameter of approximately 1 to 2 μm. On the other hand, in both formulations, no clear difference in particle structure was observed depending on the composition and content of siRNA/lipid components. An interesting finding regarding the effect of excipients is that in the SFD formulation, no clear difference in particle structure was observed between leucine and dileucine, whereas in the SD formulation, when leucine was included, the surface was uneven and distorted. A clear difference was seen in that the particles had a smooth surface and a highly spherical particle structure when dileucine was included.
(粉末剤の溶解により形成したsiRNA搭載脂質粒子のin vitro遺伝子サイレンシング効果および細胞毒性)
 実施例6で作製した各粉末剤をOpti-MEMに溶解し、マイクロプレートに播種したルシフェラーゼ発現ヒト肺がん細胞(A549-Luc細胞)に添加した。その後、所定の時間にルシフェリンおよびアラマーブルー試薬を添加し、ルシフェラーゼ発現に対応する発光およびアラマーブルー試薬との反応による蛍光(励起波長:465nm、蛍光波長:600nm)をそれぞれin vivoイメージングシステム(IVIS,Perkinelmer)を用いて検出・強度解析した。得られた発光・蛍光強度を基に、以下の式を用いてGene expression及びCell viabilityをそれぞれ算出した。結果を、図8に示す。
(In vitro gene silencing effect and cytotoxicity of siRNA-loaded lipid particles formed by dissolving powder)
Each powder prepared in Example 6 was dissolved in Opti-MEM and added to luciferase-expressing human lung cancer cells (A549-Luc cells) seeded in a microplate. Thereafter, luciferin and Alamar Blue reagent were added at a predetermined time, and the luminescence corresponding to luciferase expression and the fluorescence (excitation wavelength: 465 nm, fluorescence wavelength: 600 nm) due to reaction with the Alamar Blue reagent were measured using an in vivo imaging system ( Detection and intensity analysis were performed using IVIS, Perkinelmer). Based on the obtained luminescence/fluorescence intensity, Gene expression and Cell viability were calculated using the following formulas. The results are shown in FIG.
[1]Gene expression(% of No treatment)=(LIsample-LIblank)/(LInt-LIblank)
×100
LIsample:各試料で処理した細胞の発光強度
LIblank:細胞を播種していないウェルの発光強度
LInt:未処理(培地のみ添加)の細胞の発光強度
[1] Gene expression(% of No treatment)=(LIsample-LIblank)/(LInt-LIblank)
×100
LIsample: Luminescence intensity of cells treated with each sample
LIblank: Luminescence intensity of wells without cell seeding
LInt: Luminescence intensity of untreated cells (only medium added)
[2]Cell viability(% of No treatment)=(FIsample-FIblank)/(FInt-FIblank)
×100
FIsample:各試料で処理した細胞の蛍光強度
FIblank:細胞を播種していないウェルの蛍光強度
FInt:未処理(培地のみ添加)の細胞の蛍光強度
[2] Cell viability (% of No treatment) = (FIsample-FIblank)/(FInt-FIblank)
×100
FIsample: Fluorescence intensity of cells treated with each sample
FIblank: Fluorescence intensity of wells without cell seeding
FInt: Fluorescence intensity of untreated cells (only medium added)
 図8に示すように、形成したsiRNA-LNPの培養細胞における遺伝子サイレンシング効果および細胞毒性について、(1)脂質成分としてPEG誘導体を含まない場合には、遺伝子サイレンシング効果を著しく損ねること(#1と#3の比較)、(2)PEG誘導体として「PEG-Chol>PEG-DMG>PEG-DSPE」の順で遺伝子サイレンシング効果が高いこと(#3、#5、#6の比較)、(3)siRNA/脂質成分が比較的高含量でも、SFD・SD製剤ともに優れた遺伝子サイレンシング効果が得られること(#2、#3、#4、#7、#8の比較)、(4)検討した範囲内で細胞生存率の顕著な低下を示さなかったこと、の各結果について、ジロイシンとロイシンで同様であった。 As shown in Figure 8, regarding the gene silencing effect and cytotoxicity of the formed siRNA-LNP in cultured cells, (1) when the lipid component does not contain a PEG derivative, the gene silencing effect is significantly impaired (# (Comparison of #1 and #3), (2) As a PEG derivative, the gene silencing effect is higher in the order of "PEG-Chol>PEG-DMG>PEG-DSPE" (comparison of #3, #5, #6), (3) Excellent gene silencing effects can be obtained with both SFD and SD formulations even with relatively high siRNA/lipid component content (comparison of #2, #3, #4, #7, and #8); (4) ) Dileucine and leucine showed no significant decrease in cell viability within the range studied.
(粉末剤の構成粒子の溶解により生成したsiRNA搭載脂質粒子の細胞結合/取り込み能の評価)
 実施例6で作製した各Cy5.5-siGL3含有粉末剤をOpti-MEMに溶解し、マイクロプレートに播種したルシフェラーゼ発現ヒト肺がん細胞(NCI-H441-Luc細胞)に添加した。その2時間後に、リン酸緩衝液(PBS、pH7.4)で細胞表面を洗浄し、Lysis bufferを添加することで細胞を溶解・回収した。回収した細胞溶解液を凍結・融解、遠心処理した後に、上清を回収した。得られた上清をマイクロプレートに添加し、蛍光イメージアナライザー(Amersham Typhoonscanner5システム、GE Healthcare)を用いて、Cy5.5に由来する蛍光を検出・強度解析した。続いて、この上清について変性ポリアクリルアミドゲル電気泳動(PAGE)を行い、同様に蛍光イメージアナライザーを用いて、ゲル中のCy5.5-siGL3に相当するバンドを検出することで、細胞中でのCy5.5-siGL3の存在を確認した。比較対象として、Cy5.5-siGL3単独溶液(naked siRNA)についても、同様に添加・評価を行った。結果を図9に示す。
(Evaluation of cell binding/uptake ability of siRNA-loaded lipid particles generated by dissolving constituent particles of powder)
Each Cy5.5-siGL3-containing powder prepared in Example 6 was dissolved in Opti-MEM and added to luciferase-expressing human lung cancer cells (NCI-H441-Luc cells) seeded in a microplate. Two hours later, the cell surface was washed with phosphate buffer (PBS, pH 7.4), and Lysis buffer was added to lyse and collect the cells. The collected cell lysate was frozen, thawed, and centrifuged, and then the supernatant was collected. The obtained supernatant was added to a microplate, and fluorescence derived from Cy5.5 was detected and intensity analyzed using a fluorescence image analyzer (Amersham Typhoonscanner 5 system, GE Healthcare). Subsequently, this supernatant was subjected to denaturing polyacrylamide gel electrophoresis (PAGE), and a band corresponding to Cy5.5-siGL3 in the gel was detected using a fluorescent image analyzer in the same manner. The presence of Cy5.5-siGL3 was confirmed. For comparison, a solution of Cy5.5-siGL3 alone (naked siRNA) was also added and evaluated in the same manner. The results are shown in FIG.
 図9に示すように、測定試料(細胞溶解液)の蛍光強度(図9(a))と電気泳動画像におけるバンドの濃さ(図9(b))がある程度相関していたことから、蛍光強度の差はCy5.5-siGL3自身の動態の違いを反映している(分解物あるいは解離したCy5.5に由来する蛍光の影響は小さい)と判断した。Naked siRNAと比べて、各粉末剤から形成したsiRNA-LNP添加群では蛍光強度が高く、脂質粒子化によるsiRNAの細胞結合/取り込み能の増大が示唆された。PEG誘導体として「PEG-Chol>PEG-DMG>PEG-DSPE」の順で蛍光強度が高く(ロイシン#2’、#9’、#10’の比較)、培養細胞における遺伝子サイレンシング効果の結果(図8)と対応していることから、PEG誘導体によりsiRNA-LNPの細胞結合/取り込み能が異なることで遺伝子サイレンシング効果の差を生じたと考えられる。ロイシンと同様にジロイシンを賦形剤に用いた場合でも、同様に蛍光強度が高く、細胞結合/取り込み能に優れたsiRNA-LNPを形成することを確認できた。siRNA/脂質含量が同じロイシン製剤(ロイシン#3’)と比べるとジロイシン製剤(ジロイシン#3’)では蛍光強度が小さかったが、この差はsiRNA-LNP形成時の蛍光強度の違い(同Cy5.5-siGL3濃度で粉末剤溶解液の蛍光強度を比較すると、ジロイシン#3の方が小さい)によると思われる。 As shown in Figure 9, the fluorescence intensity of the measurement sample (cell lysate) (Figure 9(a)) and the band density in the electrophoretic image (Figure 9(b)) were correlated to some extent. It was determined that the difference in intensity reflects the difference in the dynamics of Cy5.5-siGL3 itself (the influence of fluorescence derived from decomposition products or dissociated Cy5.5 is small). Compared to naked siRNA, the fluorescence intensity was higher in the siRNA-LNP addition group formed from each powder, suggesting that the cell binding/uptake ability of siRNA was increased by lipid particle formation. As a PEG derivative, the fluorescence intensity is higher in the order of "PEG-Chol > PEG-DMG > PEG-DSPE" (comparison of leucine #2', #9', #10'), and as a result of gene silencing effect in cultured cells ( Since this corresponds to Fig. 8), it is considered that the difference in the gene silencing effect was caused by the difference in the cell binding/uptake ability of siRNA-LNP depending on the PEG derivative. It was confirmed that when dileucine was used as an excipient like leucine, siRNA-LNPs with similarly high fluorescence intensity and excellent cell binding/uptake ability were formed. The fluorescence intensity of the dileucine preparation (dileucine #3') was lower than that of the leucine preparation (leucine #3') with the same siRNA/lipid content, but this difference is due to the difference in fluorescence intensity during siRNA-LNP formation (same Cy5. Comparing the fluorescence intensity of the powder solution with 5-siGL3 concentration, it seems that this is due to the fact that dileucine #3 has a lower fluorescence intensity.
(粉末剤の吸入特性)
 MSLI(マルチステージリキッドインピンジャー、Copley Scientific)を用いて、粉末剤の吸入特性評価を行った。粉末剤約1.0mgを2号HPMCカプセル(クオリカプス株式会社)に充填し、真空ポンプ(KRF40A-V01B、オリオン機械株式会社)によって、流量(60L/min)にて吸引を行った。吸引時間は4secとした。吸入デバイスにはジェットヘラー(Jethaler(登録商標)Standard、トキコシステムソリューションズ株式会社)を用いた。デバイス、カプセル、スロート、フィルター、各ステージに沈着した粉末剤をPBS10mLまたは20mLに溶解した後、フルオレセインナトリウム(FlNa:定量用に1wt%で粉末剤に含有)の濃度をマルチモードプレートリーダー(EnSpire、株式会社パーキンエルマージャパン)にて定量(励起波長:490nm、蛍光波長:515nm)し、各パーツにおける回収量及び回収率を算出した。必要に応じて希釈定量を行った。また、本実験結果から、OE、FPF(肺治療域到達性指標値)、UPF(肺深部到達性指標値)を既述の式(1)~(3)及び第17改正日本薬局方第一追補一般試験法6.15吸入剤の空気力学的粒度測定法6.計算に基づき算出した。結果を図10に示す。
(Inhalation characteristics of powder)
The inhalation properties of the powder were evaluated using MSLI (Multi-Stage Liquid Impinger, Copley Scientific). Approximately 1.0 mg of the powder was filled into a No. 2 HPMC capsule (Qualicaps Co., Ltd.), and suction was performed at a flow rate (60 L/min) using a vacuum pump (KRF40A-V01B, Orion Kikai Co., Ltd.). The suction time was 4 seconds. A jethaler (Jethaler (registered trademark) Standard, Tokico System Solutions Co., Ltd.) was used as an inhalation device. After dissolving the powder deposited on the device, capsule, throat, filter, and each stage in 10 mL or 20 mL of PBS, the concentration of fluorescein sodium (FlNa: contained in the powder at 1 wt% for quantification) was determined using a multimode plate reader (EnSpire, PerkinElmer Japan Co., Ltd.) to quantify the amount (excitation wavelength: 490 nm, fluorescence wavelength: 515 nm), and calculate the recovery amount and recovery rate for each part. Dilution and quantification were performed as necessary. In addition, from the results of this experiment, OE, FPF (pulmonary therapeutic range reachability index value), and UPF (deep lung reachability index value) were calculated using the previously described formulas (1) to (3) and the 17th revised Japanese Pharmacopoeia No. 1. Supplementary General Test Method 6.15 Aerodynamic Particle Size Determination of Inhalants 6. Calculated based on calculations. The results are shown in FIG.
 図10に示すように、評価した全ての粉末剤でOEが75%以上を示し、吸入デバイスからの放出性は比較的良好であった。ロイシンを用いた際には、siRNA/脂質含量がより少ない条件(#2、#7)においてSFD・SD製剤ともにFPFで40%以上、UPFで20%以上の優れた肺送達性を示したが、siRNA/脂質含量がより多い条件(#3、#8)においてFPFで27%以下、UPFで8%以下まで低下した。一方、ジロイシンを用いたSFD製剤(#2、#3)では、siRNA/脂質含量によらずFPFが35-40%と同様に高値であったことから、siRNA/脂質成分が高含量でも肺送達性を維持できる優位性が明らかとなった。ただし、ジロイシンを用いたSD製剤(#7、#8)では、ロイシンと同様にsiRNA/脂質含量の増加に伴うFPF、UPFの低下が認められ、ジロイシンを用いた吸入粉末剤開発においてはSFD法を採用することの重要性が明らかとなった。 As shown in FIG. 10, all of the powders evaluated showed an OE of 75% or more, and the release properties from the inhalation device were relatively good. When leucine was used, both SFD and SD formulations showed excellent lung delivery of over 40% in FPF and over 20% in UPF under conditions with lower siRNA/lipid content (#2, #7). , FPF decreased to 27% or less and UPF decreased to 8% or less under conditions with higher siRNA/lipid content (#3, #8). On the other hand, in the SFD formulations using dileucine (#2, #3), the FPF was as high as 35-40% regardless of the siRNA/lipid content, indicating that lung delivery was possible even at high siRNA/lipid content. The advantage of being able to maintain sex has become clear. However, in the SD formulations using dileucine (#7, #8), a decrease in FPF and UPF was observed as the siRNA/lipid content increased, similar to the case with leucine. The importance of adopting
(マウス肺内投与後のsiRNAの肺内分布/安定性)
 各Cy5.5-siGL3含有粉末剤(ジロイシン/ロイシン#3’powder)をマウスに肺内投与し、24時間後にIVISを用いてマウス全身におけるCy5.5由来の蛍光画像を撮像した。得られた蛍光画像を基に、図11(a)のように肺領域(縦:1.5cm、横:3.5cm)および肺以外領域(縦:3.5cm、横:3.5cm)を配置し、領域内の蛍光強度を解析した。その後、摘出した肺から調製した肺組織サンプル(RNA抽出液)についてPAGEを行い、蛍光イメージアナライザーを用いて、ゲル中のCy5.5-siGL3に相当するバンドを検出することで、肺組織中でのCy5.5-siGL3の存在を確認した。比較対象として、Cy5.5-siGL3単独溶液(naked siRNA)および各Cy5.5-siGL3含有粉末剤溶解液(ジロイシン/ロイシン#3’solution)についても、同様に投与・評価を行った。
(Lung distribution/stability of siRNA after intrapulmonary administration in mice)
Each Cy5.5-siGL3-containing powder (dileucine/leucine #3'powder) was intrapulmonarily administered to mice, and 24 hours later, Cy5.5-derived fluorescence images of the whole mouse body were captured using IVIS. Based on the obtained fluorescence image, the lung area (vertical: 1.5 cm, horizontal: 3.5 cm) and non-lung area (vertical: 3.5 cm, horizontal: 3.5 cm) were determined as shown in Figure 11(a). The fluorescence intensity within the area was analyzed. After that, PAGE was performed on lung tissue samples (RNA extracts) prepared from the excised lungs, and a band corresponding to Cy5.5-siGL3 in the gel was detected using a fluorescence image analyzer. The presence of Cy5.5-siGL3 was confirmed. For comparison, Cy5.5-siGL3 alone solution (naked siRNA) and each Cy5.5-siGL3-containing powder solution (dileucine/leucine #3'solution) were similarly administered and evaluated.
In vivo蛍光イメージング画像から解析した肺以外領域の蛍光強度(図11(b))について、Naked siRNA投与群と比べて各粉末剤およびその溶解液投与群では低かったことから、脂質粒子化(siRNA-LNPの形成)によるsiRNAの分解および全身移行の回避が示唆された。肺組織サンプルの電気泳動画像(図11(c))より、Naked siRNA投与群ではCy5.5-siGL3に相当するバンドを検出できなかったことから、肺領域で検出された蛍光(図11(b))はCy5.5-siGL3の分解物あるいは解離したCy5.5によると判断した。一方、各粉末剤およびその溶解液投与群ではCy5.5-siGL3に相当するバンドを検出でき、肺内でCy5.5-siGL3が構造を維持したまま存在することを明らかにした。この結果より、脂質粒子化によりsiRNAの肺内滞留性/安定が向上したと考えられる。また、ロイシンと同様にジロイシンを含む粉末剤(ジロイシン#3’powder)でも、その溶解液(ジロイシン#3’solution:予め水中でLNPを形成)と同様の結果が得られたことから、投与した粉末剤が肺内で沈着・溶解して、期待通りにLNPを形成していることを実証できたと考えられる。 Fluorescence intensity in areas other than the lungs analyzed from in vivo fluorescence imaging images (Figure 11(b)) was lower in the group administered with each powder and its solution compared to the group administered with naked siRNA. -LNP formation) to avoid siRNA degradation and systemic translocation. From the electrophoretic image of the lung tissue sample (Figure 11(c)), a band corresponding to Cy5.5-siGL3 could not be detected in the naked siRNA administration group, so the fluorescence detected in the lung region (Figure 11(b) )) was determined to be due to a degradation product of Cy5.5-siGL3 or dissociated Cy5.5. On the other hand, in the groups administered with each powder and its solution, a band corresponding to Cy5.5-siGL3 could be detected, revealing that Cy5.5-siGL3 exists in the lungs while maintaining its structure. From this result, it is considered that the retention/stability of siRNA in the lungs was improved by the formation of lipid particles. In addition, similar results were obtained with a powder containing dileucine (dileucine #3' powder) as well as with its solution (dileucine #3' solution: LNPs were formed in water in advance), so administration was conducted. It is thought that it was possible to demonstrate that the powder was deposited and dissolved in the lungs to form LNPs as expected.

Claims (15)

  1.  粉末剤であって、
     PEG-脂質コンジュゲートを含有する脂質成分と、
     ロイシン及び/又はジロイシンと、
    を含有する構成粒子を含む粉末剤。
    A powder agent,
    a lipid component containing a PEG-lipid conjugate;
    Leucine and/or dileucine;
    A powder containing constituent particles containing.
  2.  前記構成粒子は、前記粒子の水懸濁液において多数個の脂質粒子を生成する、請求項1に記載の粉末剤。 The powder agent according to claim 1, wherein the constituent particles produce a large number of lipid particles in an aqueous suspension of the particles.
  3.  前記脂質成分は、さらに、1,2-ジオレイルオキシ-3-トリメチルアンモニウムプロパン(DOTMA)、1,2-ジオレイルオキシ-3-ジメルアミノプロパン(DODMA)、1,2-ジパルミトイル-sn-グリセロ-3-ホスファチジルコリン(DPPC)、卵由来ホスファチジルコリン(EPC)及びスフィンゴミエリン(SM)からなる群から選択される1種若しくは2種以上又はこれらの塩から選択される1種又は2種以上である、請求項1に記載の粉末剤。 The lipid component further includes 1,2-dioleyloxy-3-trimethylammoniumpropane (DOTMA), 1,2-dioleyloxy-3-dimelaminopropane (DODMA), 1,2-dipalmitoyl-sn - One or more selected from the group consisting of glycero-3-phosphatidylcholine (DPPC), egg-derived phosphatidylcholine (EPC), and sphingomyelin (SM), or one or more selected from salts thereof. The powder agent according to claim 1, which is.
  4.  前記脂質成分を前記構成粒子の総量に対して10質量%以上60質量%以下含有する、請求項1に記載の粉末剤。 The powder agent according to claim 1, which contains the lipid component in an amount of 10% by mass or more and 60% by mass or less based on the total amount of the constituent particles.
  5.  前記構成粒子は、多孔質球状粒子である、請求項1に記載の粉末剤。 The powder agent according to claim 1, wherein the constituent particles are porous spherical particles.
  6.  前記多孔質球状粒子は、連続する孔部を規定する隔壁及び/又は骨格を備える三次元多孔質体である、請求項5に記載の粉末剤。 The powder agent according to claim 5, wherein the porous spherical particles are three-dimensional porous bodies comprising partition walls and/or skeletons that define continuous pores.
  7.  前記構成粒子の平均粒子径は、1μm以上100μm以下である、請求項1に記載の粉末剤。 The powder agent according to claim 1, wherein the constituent particles have an average particle diameter of 1 μm or more and 100 μm or less.
  8.  前記脂質粒子は、前記粒子を水又は緩衝液に懸濁して得られた懸濁液につき、動的光散乱法により測定した平均粒子径は、50nm以上300nm以下である、請求項1に記載の粉末剤。 The lipid particles according to claim 1, have an average particle diameter of 50 nm or more and 300 nm or less, as measured by a dynamic light scattering method for a suspension obtained by suspending the particles in water or a buffer solution. Powder.
  9.  前記構成粒子は、マルチステージリキッドインピンジャー(MSLI)による特性評価において、OE(%)=スロート以降からの回収量(mg)/全回収量(mg)×100が、80%以上である、請求項1に記載の粉末剤。 The constituent particles are characterized in that OE (%) = recovery amount from the throat and beyond (mg) / total recovery amount (mg) x 100 is 80% or more in characteristic evaluation using a multi-stage liquid impinger (MSLI). Item 1. Powder preparation according to item 1.
  10.  MSLIによる特性評価において、FPF(%)が10%以上である、請求項1に記載の粉末剤。 The powder agent according to claim 1, which has an FPF (%) of 10% or more in characteristic evaluation by MSLI.
  11.  有効成分として、RNA干渉剤を含有する、請求項1~10のいずれかに記載の粉末剤。 The powder according to any one of claims 1 to 10, which contains an RNA interference agent as an active ingredient.
  12.  前記PEG-脂質コンジュゲートは、PEG-リン脂質コンジュゲート及び/又はPEG-ジアシルグリセロールコンジュゲートである、請求項11に記載の粉末剤。 The powder according to claim 11, wherein the PEG-lipid conjugate is a PEG-phospholipid conjugate and/or a PEG-diacylglycerol conjugate.
  13.   前記PEG-脂質コンジュゲートは、PEG-コレステロールコンジュゲートである、請求項11に記載の粉末剤。 The powder according to claim 11, wherein the PEG-lipid conjugate is a PEG-cholesterol conjugate.
  14.  ロイシン及びジロイシンのうちジロイシンのみを含有する、請求項12又は13に記載の粉末剤。 The powder according to claim 12 or 13, which contains only dileucine among leucine and dileucine.
  15.  粉末剤の製造方法であって、
     有効成分と、PEG-脂質コンジュゲートを含有する脂質成分と、ロイシン及び/又はジロイシンと、を含む液を準備する工程と、
     前記液を、噴霧乾燥法又は噴霧凍結乾燥法により乾燥することにより、前記有効成分と、前記PEG-脂質コンジュゲートと、前記ロイシン及び/又はジロイシンと、を含有する粉末を製造する工程と、
    を備え、
     前記粉末は、前記粉末の水懸濁液において多数個の脂質粒子を形成する構成粒子を含有する粉末である、製造方法。
    A method for producing a powder, the method comprising:
    preparing a liquid containing an active ingredient, a lipid component containing a PEG-lipid conjugate, and leucine and/or dileucine;
    Drying the liquid by a spray drying method or a spray freeze drying method to produce a powder containing the active ingredient, the PEG-lipid conjugate, and the leucine and/or dileucine;
    Equipped with
    The manufacturing method, wherein the powder is a powder containing constituent particles that form a large number of lipid particles in an aqueous suspension of the powder.
PCT/JP2023/019585 2022-05-25 2023-05-25 Powdered agent and production method for same WO2023229023A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022085620 2022-05-25
JP2022-085625 2022-05-25
JP2022085625 2022-05-25
JP2022-085620 2022-05-25

Publications (1)

Publication Number Publication Date
WO2023229023A1 true WO2023229023A1 (en) 2023-11-30

Family

ID=88919399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019585 WO2023229023A1 (en) 2022-05-25 2023-05-25 Powdered agent and production method for same

Country Status (1)

Country Link
WO (1) WO2023229023A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513031A (en) * 1999-10-29 2003-04-08 インヘール セラピューティック システムズ, インコーポレイテッド Dry powder composition with improved dispersibility
JP2004517127A (en) * 2000-12-21 2004-06-10 ネクター セラピューティックス Pulmonary delivery of polyene antifungals
JP2012521389A (en) * 2009-03-25 2012-09-13 ノバルティス アーゲー Pharmaceutical composition containing drug and siRNA
JP2012526858A (en) * 2009-05-16 2012-11-01 クイ クニュアン Composition comprising a cationic amphiphile and a colipid for delivering a therapeutic molecule
JP2017520549A (en) * 2014-06-26 2017-07-27 ラモット アット テル アビブ ユニバーシティ, リミテッド Liposome formulation for delivery of nucleic acids
WO2020071448A1 (en) * 2018-10-02 2020-04-09 学校法人名城大学 Powder inhaler, method for assessing same, and use of same
JP2021172597A (en) * 2020-04-21 2021-11-01 国立大学法人北海道大学 Lipid nanoparticle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513031A (en) * 1999-10-29 2003-04-08 インヘール セラピューティック システムズ, インコーポレイテッド Dry powder composition with improved dispersibility
JP2004517127A (en) * 2000-12-21 2004-06-10 ネクター セラピューティックス Pulmonary delivery of polyene antifungals
JP2012521389A (en) * 2009-03-25 2012-09-13 ノバルティス アーゲー Pharmaceutical composition containing drug and siRNA
JP2012526858A (en) * 2009-05-16 2012-11-01 クイ クニュアン Composition comprising a cationic amphiphile and a colipid for delivering a therapeutic molecule
JP2017520549A (en) * 2014-06-26 2017-07-27 ラモット アット テル アビブ ユニバーシティ, リミテッド Liposome formulation for delivery of nucleic acids
WO2020071448A1 (en) * 2018-10-02 2020-04-09 学校法人名城大学 Powder inhaler, method for assessing same, and use of same
JP2021172597A (en) * 2020-04-21 2021-11-01 国立大学法人北海道大学 Lipid nanoparticle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROKO OTAKE, TOMOYUKI OKUDA, HIROKAZU OKAMOTO: "Development of Spray-Freeze-Dried Powders for Inhalation with High Inhalation Performance and Antihygroscopic Property", CHEMICAL AND PHARMACEUTICAL BULLETIN, PHARMACEUTICAL SOCIETY OF JAPAN, JP, vol. 64, no. 3, 1 March 2016 (2016-03-01), JP , pages 239 - 245, XP093112376, ISSN: 0009-2363 *

Similar Documents

Publication Publication Date Title
Sun et al. Clodronate-loaded liposomal and fibroblast-derived exosomal hybrid system for enhanced drug delivery to pulmonary fibrosis
JP6357481B2 (en) Prostacyclin compounds and methods of using prostacyclin compounds
JP6392209B2 (en) Lipid-based drug carriers for rapid permeation through the mucus lining
JP2021530547A (en) Dry powder formulation for messenger RNA
Ding et al. Pulmonary siRNA delivery for lung disease: review of recent progress and challenges
CN112843019A (en) Nucleic acid lipid nanoparticle composition, pharmaceutical preparation containing same, and preparation method and application thereof
Sheoran et al. Recent patents, formulation techniques, classification and characterization of liposomes
Lehofer et al. Impact of atomization technique on the stability and transport efficiency of nebulized liposomes harboring different surface characteristics
JP2010094128A (en) Delivery of nucleic acid-like compound
WO1995024201A1 (en) Liposome preparation
Amararathna et al. Pulmonary nano-drug delivery systems for lung cancer: current knowledge and prospects
EP1435232A1 (en) Esters of L-carnitine or alkanoyl L-carnitines useful as cationic lipids for the intracellular delivery of pharmacologically active compounds
Wang et al. Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery
JP2002525270A (en) Condensed plasmid-liposome complex for transfection
JP2022120034A (en) Inhalable powder, and evaluation method thereof and use thereof
WO2021196659A1 (en) Glycosyl polyether compound liposome, preparation method therefor and medicine thereof
JP2018536679A (en) Method for producing liposome
García et al. pH-temperature dual-sensitive nucleolipid-containing stealth liposomes anchored with PEGylated AuNPs for triggering delivery of doxorubicin
JP7126287B2 (en) Nucleic acid introduction composition and its use
JP2022075622A (en) Drug delivery carrier and pharmaceutical preparation for delivering many kinds of therapeutic agents in common using the same
CN109381429B (en) Paclitaxel targeted sustained-release liposome modified by leukocyte membrane and preparation method thereof
WO2023229023A1 (en) Powdered agent and production method for same
WO2010067617A1 (en) Lipid membrane structure
JP5914418B2 (en) Lipid particle, nucleic acid delivery carrier, composition for producing nucleic acid delivery carrier, lipid particle production method and gene introduction method
CN103006560B (en) Hyaluronic acid oligosaccharide encased paclitaxel liposome and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811895

Country of ref document: EP

Kind code of ref document: A1