WO2023210671A1 - Copolymer, polymer film, measuring device, and support for measurement - Google Patents

Copolymer, polymer film, measuring device, and support for measurement Download PDF

Info

Publication number
WO2023210671A1
WO2023210671A1 PCT/JP2023/016392 JP2023016392W WO2023210671A1 WO 2023210671 A1 WO2023210671 A1 WO 2023210671A1 JP 2023016392 W JP2023016392 W JP 2023016392W WO 2023210671 A1 WO2023210671 A1 WO 2023210671A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
independently
substance
structural unit
present disclosure
Prior art date
Application number
PCT/JP2023/016392
Other languages
French (fr)
Japanese (ja)
Inventor
秀治 栗岡
ちさと 小村
剛 安藤
広治 網代
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023210671A1 publication Critical patent/WO2023210671A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic

Definitions

  • the present disclosure relates to a copolymer used to form a polymer membrane used in a measuring device.
  • the present disclosure also relates to a polymer membrane obtained using the copolymer, and a measuring device or a measuring carrier provided with the polymer membrane.
  • a surface acoustic wave sensor is disclosed in Patent Document 1 as an example of a measuring device that measures the concentration of a substance to be measured (for example, a biomolecule).
  • a measuring device includes a detection section on which a substance (for example, an antibody) that interacts with a substance to be measured contained in a specimen is immobilized.
  • a polymer film is often formed in the detection section in order to immobilize a substance that interacts with the substance to be measured contained in the sample.
  • the copolymer according to one embodiment includes two hydrophilic blocks A containing at least one structural unit (a) among the structural units (a) represented by the following formulas (1) to (6), (In the formula, R 1 to R 7 are each independently H or CH 3 , X 1 to X 4 are each independently O or NH, and p 1 to p 5 are each independently 1 to 3 The following integers are shown, and q 1 to q 2 are each independently an integer between 1 and 5.) Between the two hydrophilic blocks A, a hydrophobic block B containing at least one structural unit (b) among the structural units (b) represented by the following formulas (7) and (8), (In the formula, R 8 and R 10 are each independently H or CH 3 , R 9 , R 11 and R 12 are each independently an alkyl group having 1 to 6 carbon atoms, and X 5 and 6 is O or NH, and r is an integer from 1 to 3.)
  • the hydrophobic block B is a copolymer having disulfide bonds between the structural
  • the polymer membrane according to one embodiment includes a hydrophilic block A containing at least one structural unit (a) among structural units (a) represented by the following formulas (1) to (6); (In the formula, R 1 to R 7 are each independently H or CH 3 , X 1 to X 4 are each independently O or NH, and p 1 to p 5 are each independently 1 to 3 The following integers are shown, and q 1 to q 2 are each independently an integer between 1 and 5.) A hydrophobic block B containing at least one structural unit (b) among the structural units (b) represented by the following formulas (7) and (8), (In the formula, R 8 and R 10 are each independently H or CH 3 , R 9 , R 11 and R 12 are each independently an alkyl group having 1 to 6 carbon atoms, and X 5 and 6 is O or NH, and r is an integer from 1 to 3.)
  • the end of the hydrophobic block B opposite to the side bonded to the hydrophilic block A is a polymer membrane containing a cop
  • FIG. 1 is a schematic diagram showing an example of a measuring device according to the present disclosure. It is a top view showing the sensor with which the above-mentioned measuring device is provided.
  • FIG. 2 is a conceptual diagram showing a polymer included in the detection section 23 shown in FIG. 1.
  • FIG. FIG. 2 is a plan view showing an example of a measurement carrier according to the present disclosure. It is a graph showing the relationship between the unit ratio (CBMA1/BMA) in the triblock copolymer and the amount of non-specific adsorption according to the present disclosure. It is a graph showing the relationship between the average degree of polymerization of CBMA1 in the triblock copolymer according to the present disclosure and the amount of non-specific adsorption.
  • CBMA1/BMA unit ratio
  • FIG. 1 schematically shows a sensor 2 of a measuring device 100 according to this embodiment.
  • the measurement device 100 can detect a specific substance (first substance) as a target from a measurement target (sample).
  • the first substance 5 is, for example, an in-vivo substance. Examples of the above-mentioned biological substances include proteins, DNA, substrates for enzymatic reactions, and the like.
  • the measuring device 100 includes a sensor 2 that can detect the first substance and a control device 6 that can control the measuring device 100.
  • the sensor 2 may be any sensor that uses, for example, elastic waves, QCM (Quartz Crystal Microbalance), SPR (Surface Plasmon Resonance), or FET (Field Effect Transistor). That is, the sensor 2 only needs to be able to mutually convert electrical signals and elastic waves, QCM, SPR, FET, etc.
  • the sensor 2 according to one embodiment is a sensor that uses elastic waves. That is, by using the sensor 2, the measuring device 100 according to one embodiment can detect a change in the elastic wave based on the presence of the first substance as a change in the electrical signal.
  • the sensor 2 may be manufactured by a conventionally known method, except for the polymer film 1 described below. In this case, the inspection information included in the identification information includes the initial phase of the elastic wave, the orientation of the substrate 22, etc. , information specific to a sensor that uses elastic waves may be included.
  • the sensor 2 has an external terminal 21.
  • the sensor 2 can be electrically connected to a control device 6 that controls the measuring device 100 via an external terminal 21 . That is, the sensor 2 and the control device 6 can input and output electrical signals to each other via the external terminal 21. Therefore, the control device 6 can detect, for example, the first substance based on the electrical signal input from the sensor 2. For example, the control device 6 may calculate the concentration of the first substance contained in the sample. Alternatively, the control device 6 may identify the first substance, for example.
  • the control device 6 and the external terminals 21 may be manufactured using conventionally known techniques. Further, the configuration for electrically connecting the sensor 2 and the control device 6 is not limited to the external terminal 21.
  • the sensor 2 and the control device 6 may be electrically connected by electromagnetic induction.
  • the sensor 2 may be a disposable cartridge. According to this, the step of cleaning the sensor 2 after measurement is unnecessary, and the influence of insufficient cleaning on the measurement results can be eliminated.
  • FIG. 2 shows a plan view of the sensor 2.
  • the sensor 2 includes a substrate 22, a detection section 23 located on the substrate 22, a reference section 24, and a pair of first IDT (Inter Digital Transducer) electrodes 25a arranged on the substrate 22 so as to sandwich the detection section 23 therebetween. , a pair of second IDT electrodes 25b.
  • the detection section 23, the reference section 24, the pair of first IDT electrodes 25a, and the pair of second IDT electrodes 25b may be located on the substrate 22.
  • the substrate 22 is, for example, a piezoelectric substrate.
  • the substrate 22 is, for example, a crystal substrate.
  • the substrate 22 is not limited to a crystal substrate as long as it can propagate elastic waves. That is, the substrate 22 may be made of any material that can propagate elastic waves.
  • the substrate 22 may be a substrate containing metals such as gold, silver, copper, platinum, and aluminum, lithium tantalate, and a piezoelectric single crystal such as quartz. Further, the substrate 22 may be manufactured by a conventionally known method.
  • a substance (second substance 4) that reacts with the first substance 5 is fixed to the detection unit 23. Therefore, in the detection unit 23, the first substance 5 contained in the specimen and the fixed second substance 4 can react.
  • the detection unit 23 changes the propagation characteristics of the elastic waves of the substrate 22 by causing the first substance 5 and the second substance 4 to react. Specifically, the detection unit 23 changes the weight applied to the substrate 22 or the viscosity of the liquid that contacts the surface of the substrate 22 by causing the first substance 5 and the second substance 4 to react, for example. The magnitude of these changes correlates with the amount of reaction between the first substance 5 and the second substance 4. Further, the characteristics of the elastic wave (for example, phase, amplitude, period, etc.) change as it propagates through the detection unit 23.
  • the magnitude of the change in characteristics correlates with, for example, the magnitude of the weight applied to the substrate 22 or the magnitude of the viscosity of the liquid that contacts the surface of the substrate 22. Therefore, the sensor 2 can detect the first substance 5 based on changes in the characteristics of the elastic waves. Specifically, the measuring device 100 can measure, for example, the concentration of the first substance 5 contained in the sample. Details of the detection unit 23 will be described later.
  • the pair of first IDT electrodes 25a can generate elastic waves between the pair of first IDT electrodes 25a.
  • the elastic waves that propagate on the surface of the substrate 22 are also referred to as surface acoustic waves (SAW).
  • SAW surface acoustic waves
  • the pair of first IDT electrodes 25a may be located on the substrate 22 so as to sandwich the detection section 23 therebetween.
  • an electrical signal is input to one of the pair of first IDT electrodes 25a.
  • the input electrical signal is converted into an elastic wave that propagates toward the detection section 23 and is emitted from one first IDT electrode 25a.
  • the emitted elastic waves pass through the detection section 23.
  • the other first IDT electrode 25a can receive the elastic wave that has passed through the detection section 23.
  • the received elastic waves are converted into electrical signals.
  • the pair of first IDT electrodes 25a may be made of, for example, a metal material such as gold, chromium, or titanium. Further, the pair of first IDT electrodes 25a may be a single layer electrode made of a single material, or a multilayer electrode made of a plurality of materials.
  • the sensor 2 may have two or more combinations of the detection section 23 and the pair of first IDT electrodes 25a.
  • the measuring device 100 may detect different types of target substances for each combination, for example.
  • the measuring device 100 may, for example, detect the same type of target substance in multiple combinations and compare the respective detection results.
  • FIG. 3 shows a conceptual diagram showing the polymer membrane 1 included in the detection section 23.
  • a polymer film 1 containing a polymer 3 is fixed on a substrate 22.
  • a substance (second substance 4) that reacts with the first substance 5 is fixed on the polymer film 1.
  • the polymer membrane 1 is a membrane that has been adjusted to have high specific adsorption and is a membrane that has been adjusted to reduce non-specific adsorption.
  • the reaction between the first substance 5 and the second substance 4 may be any reaction that causes a change in the output of the sensor 2.
  • a reaction may be, for example, a reaction in which the first substance 5 and the second substance 4 are bonded together through a redox reaction, an enzyme reaction, an antigen-antibody reaction, chemisorption, intermolecular interaction, or ionic interaction. It's okay.
  • the reaction between the first substance 5 and the second substance 4 may be a reaction in which a new substance (third substance) is produced by an enzymatic reaction or the like.
  • the second substance 4 to be fixed to the detection unit 23 may be appropriately selected depending on the first substance 5.
  • the second substance 4 may be an antibody, a peptide, an aptamer, or the like.
  • the second substance 4 may be an antigen.
  • the second substance 4 may be an enzyme.
  • the measuring device 100 may indirectly detect the first substance 5 that is the target.
  • a substance similar to the first substance 5 may be fixed to the detection unit 23 as the second substance 4. That is, for example, an antibody whose antigen is the first substance 5 may be reacted with the first substance 5 in advance, and the unreacted antibody may be reacted with the immobilized second substance 4.
  • the measuring device 100 can indirectly calculate the amount of the first substance 5 from the amount of detected antibody.
  • the triblock copolymer of the present disclosure is a copolymer containing two hydrophilic blocks A and a hydrophobic block B between the two hydrophilic blocks.
  • Hydrophilic block A includes at least one structural unit (a) among the structural units (a) represented by the following formulas (1) to (6).
  • R 1 to R 7 are each independently H or CH 3 .
  • X 1 to X 4 are each independently O or NH
  • p 1 to p 5 are each independently an integer of 1 or more and 3 or less (1, 2 or 3).
  • q 1 to q 2 are each independently an integer from 1 to 5 (1, 2, 3, 4, or 5).
  • the structural unit (a) may have a betaine structure.
  • the structural unit (a) may have a COO 2 - group in terms of making it easier to immobilize antibodies and the like.
  • Examples of the structural unit (a) include the following structural units.
  • the proportion of the structural unit (a) constituting the hydrophilic block A contained in the triblock copolymer of the present disclosure may be 20 mol% or more, and may be 30 mol% or more in terms of reducing nonspecific adsorption.
  • the amount may be 40 mol% or more.
  • the above ratio may be 70 mol% or less, 60 mol% or less, or 50 mol% or less.
  • the hydrophilic block A may have a structural unit other than the structural unit (a) within a range that does not impair the effects of the present disclosure.
  • each structural unit may be contained in the block A by any mode such as random copolymerization or block copolymerization.
  • the two hydrophilic blocks A contained in the triblock copolymer of the present disclosure may have the same or different structures. In the case where two hydrophilic blocks A have the same structure, it is sufficient that they have the same structural unit (a) within a range that does not impair the effects of the present disclosure.
  • the equivalent structural unit (a) may have the same structural unit (a), and may have a structural unit other than the structural unit (a).
  • the equivalent structural unit (a) may have the same structure as the structural unit (a), for example, the relative position and number average degree of polymerization of the structural unit (a) may be the same. .
  • Hydrophobic block B includes at least one structural unit (b) among the structural units (b) represented by the following formulas (7) and (8).
  • R 8 and R 10 are each independently H or CH 3 .
  • R 9 , R 11 and R 12 are each independently an alkyl group having 1 or more and 6 or less carbon atoms.
  • X 5 and X 6 are O or NH.
  • r is an integer (1, 2 or 3) of 1 or more and 3 or less.
  • alkyl group having 1 to 6 carbon atoms examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, heptyl group, hexyl group, etc. .
  • Examples of the structural unit (b) include the following structural units.
  • the proportion of the structural unit (b) constituting the hydrophobic block B contained in the triblock copolymer of the present disclosure may be 30 mol% or more in terms of ease of forming micelles of the polymer. , may be 40 mol% or more, or may be 50 mol% or more. Further, the above ratio may be 80 mol% or less, 60 mol% or less, or 50 mol% or less.
  • the hydrophobic block B may have a structural unit other than the structural unit (b) as long as the effects of the present disclosure are not impaired.
  • each structural unit may be contained in the block B by any mode such as random copolymerization or block copolymerization.
  • Hydrophobic block B has a disulfide bond between structural units (b).
  • the number of disulfide bonds may be one or more.
  • At least one end of the triblock copolymer of the present disclosure may have a thiol group or a dithioester group from the viewpoint of ease of fixing the polymer membrane to the substrate 22 (measurement substrate 12). , may be a thiol group.
  • the ratio of the number of moles of the structural unit (a) to the number of moles of the structural unit (b) contained in the triblock copolymer of the present disclosure is determined to reduce nonspecific adsorption and form micelles of the copolymer. In terms of ease, it may be 0.20 or more, 0.50 or more, or 0.70 or more. Further, the above ratio may be 2.5 or less, 2.0 or less, or 1.5 or less.
  • the number average degree of polymerization of the triblock copolymer of the present disclosure may be 100 or more, or even 200 or more, in terms of ease of forming micelles of the copolymer, film formation density, etc. good.
  • the total number average degree of polymerization of the two hydrophilic blocks A in the triblock copolymer of the present disclosure may be 30 or more, 60 or more, 100 or more in terms of reducing nonspecific adsorption. It may be 200 or less, or it may be 150 or less.
  • the number average degree of polymerization of the hydrophobic blocks B in the triblock copolymer of the present disclosure may independently be 25 or more, and 30 It may be more than 50, it may be more than 80.
  • the triblock copolymer of the present disclosure may be identified by conventionally known organic analysis techniques.
  • the copolymer may be identified by NMR (Nuclear Magnetic Resonance).
  • NMR Nuclear Magnetic Resonance
  • it may be identified, for example, by liquid chromatography.
  • infrared spectroscopy That is, when identifying the copolymer, an apparatus capable of implementing these techniques may be used.
  • the identification method and device are not limited to these methods and devices.
  • An example of the method for producing a triblock copolymer of the present disclosure includes a step of synthesizing a hydrophobic block B (step 1) and a step of synthesizing a hydrophilic block A (step 2). Each step will be explained below.
  • hydrophobic block B is synthesized by polymerizing a hydrophobic monomer compound.
  • hydrophobic monomer compounds include the following compounds.
  • butyl methacrylic acid (BMA) etc. are mentioned as a specific example of a hydrophobic monomer compound.
  • BMA butyl methacrylic acid
  • the hydrophobic monomer compounds may be used alone or in combination of two or more.
  • R 8 to R 12 , X 5 and X 6 and r have the same meanings as R 8 to R 12 , X 5 and X 6 in formulas (7) to (8), respectively.
  • Polymerization can be produced by known polymerization such as living radical polymerization (LRP).
  • living radical polymerization examples include atom transfer radical polymerization (ATRP), single electron transfer polymerization (SET-LRP), reversible chain transfer catalyzed polymerization (RTCP), and RAFT polymerization.
  • ATRP atom transfer radical polymerization
  • SET-LRP single electron transfer polymerization
  • RTCP reversible chain transfer catalyzed polymerization
  • RAFT polymerization Reversible Addition-Fragmentation chain Transfer Polymerization
  • polymerization initiators include polymerization initiators containing disulfide bonds such as bis[2-(2'-bromoisobutyryloxy)ethyl]disulfide (BiBOEDS)).
  • Step 2 Synthesis step of hydrophilic block A>
  • hydrophilic blocks A are synthesized at both ends of hydrophobic block B by polymerizing the polymer obtained in step 1 with a hydrophilic monomer compound, thereby obtaining the triblock copolymer of the present disclosure.
  • hydrophilic monomer compounds include the following compounds (11) to (16).
  • hydrophilic monomer compound N-(carboxymethyl)-N,N-dimethyl-2-[(2-methyl-1-oxo-2-propen-1-yl)-oxy]ethanaminium (CBMA1 ), N,N-dimethylaminoethyl methacrylate (DMAEMA), 2-hydroxypropyl methacrylamide (HPMA), and the like.
  • the hydrophilic monomer compounds may be used alone or in combination of two or more. (In the formula, R 1 to R 7 , X 1 to X 4 , p 1 to p 5 and q 1 to q 2 are R 1 to R 7 , X 1 to 4 , p 1 to p 5 and q 1 to q 2. )
  • the method for producing a triblock copolymer of the present disclosure may include a quaternary ammonium salt formation step (Step 3) and a deprotection step (Step 4).
  • Step 3 Quaternary ammonium formation step of hydrophilic block A>
  • the tertiary amine structure of the structural unit (a) of the hydrophilic block A of the polymer obtained in Step 2 is converted into a quaternary ammonium structure (quaternary ammonium formation).
  • quaternary ammonium formation may be performed using a known quaternizing agent such as a halogen compound.
  • Betainization step of hydrophilic block A> a betaine structure is formed in the structural unit (a) of the hydrophilic block A of the polymer obtained in step 3 (betaine formation).
  • betaination may be performed by deprotecting the side chain protecting group (eg, tert-butyl group) of the hydrophilic block A introduced in step 3.
  • the structure derived from the polymerization initiator in the produced triblock copolymer may be removed.
  • An example of a structure derived from the polymerization initiator is bromine at the terminal of a triblock copolymer when LRP is performed using BiBOEDS as a polymerization initiator.
  • the polymer membrane of the present disclosure includes a copolymer containing a hydrophilic block A and a hydrophobic block B.
  • the copolymer is a diblock copolymer, and the diblock copolymer is also included in one embodiment of the present disclosure.
  • the diblock copolymer of the present disclosure corresponds to polymer 3 in FIG.
  • the end of the hydrophobic block B opposite to the side bonded to the hydrophilic block A has a thiol group or a dithioester group.
  • the structural units of the hydrophilic block A and the hydrophobic block B of the diblock copolymer of the present disclosure and their specific examples are the structural units of the hydrophilic block A and the hydrophobic block B of the triblock copolymer of the present disclosure and their specific examples. This is the same as the specific example.
  • the ratio of the number of moles of the structural unit (a) to the number of moles of the structural unit (b) contained in the diblock copolymer of the present disclosure is 0.20 in terms of nonspecific adsorption reduction and film formation density. or more, may be 0.50 or more, or may be 0.70 or more. Further, the above ratio may be 2.5 or less, 2.0 or less, or 1.5 or less.
  • the number average degree of polymerization of the diblock copolymer of the present disclosure may be 25 or more, 50 or more, or 200 or more in terms of film forming density.
  • the diblock copolymer of the present disclosure may have a high molecular weight.
  • the number average degree of polymerization of the hydrophilic block A in the diblock copolymer of the present disclosure may be 20 or more, 40 or more, or 60 or more in terms of reducing nonspecific adsorption. Generally, it may be 80 or more, 100 or more, or 200 or less.
  • the number average degree of polymerization of the hydrophobic blocks B in the diblock copolymer of the present disclosure may independently be 25 or more, 30 or more, or 50 or more in terms of film forming density.
  • the number may be 80 or more.
  • the diblock copolymer of the present disclosure may be identified by conventionally known organic analysis techniques.
  • the diblock copolymer of the present disclosure can be obtained by cleaving the disulfide bonds of the triblock copolymer of the present disclosure or micelles of the copolymer.
  • a conventionally known reducing agent may be used to cleave the disulfide bond.
  • An example of the method for producing a polymer film of the present disclosure includes a step of preparing a coating agent containing micelles of the triblock copolymer of the present disclosure, a step of disposing the coating agent on a substrate, and a step of preparing a coating agent containing micelles of the triblock copolymer of the present disclosure. cleaving disulfide bonds in micelles of the polymer to form a diblock copolymer.
  • Micelles of the triblock copolymer of the present disclosure are also included in one embodiment of the present disclosure.
  • the micelles are flower-shaped micelles.
  • an example of the method for producing a polymer membrane of the present disclosure includes a step of preparing a coating agent containing micelles of a diblock copolymer obtained by cleaving the disulfide bonds of the triblock copolymer of the present disclosure; arranging the coating agent on the substrate.
  • Micelles of diblock copolymers obtained by cleaving the disulfide bonds of the triblock copolymers of the present disclosure are also included in one embodiment of the present disclosure.
  • the micelles are W/O type micelles.
  • a polymer membrane formed by a diblock copolymer obtained by cleaving disulfide bonds after forming micelles of the triblock copolymer of the present disclosure has a high density of the diblock copolymer. Furthermore, a high density polymer membrane can also be achieved by using micelles of a diblock copolymer obtained by cleaving the disulfide bonds of the triblock copolymer of the present disclosure. Furthermore, the polymer membrane formed by the diblock copolymer obtained from the triblock copolymer of the present disclosure has a reduced amount of nonspecific adsorption.
  • Methods for immobilizing the diblock copolymer of the present disclosure on the substrate 22 include, for example, a method in which a polymer solution obtained by dissolving polymer 3 in a solvent is applied to the substrate 22 and dried, graft polymerization using radiation or ultraviolet rays, Examples include a chemical reaction with a functional group of the substrate 22. By these methods, the polymer film 1 made of the polymer 3 is formed on the substrate 22.
  • An example of a method for fixing the second substance 4 onto the polymer 3 (polymer membrane 1) is a method of covalently bonding the second substance 4 to a carboxyl group that the polymer 3 has.
  • polymer 3 is reacted with N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (NHS/EDC activation).
  • NHS N-hydroxysuccinimide
  • EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
  • NHS/EDC activation of the polymer 3 may be performed before immobilizing on the substrate 22 or after immobilizing the substrate 22. Since the polymer of this embodiment has high chemical stability, it is unlikely to be decomposed by NHS/EDC activation. Therefore, non-specific adsorption caused by decomposition products accompanying NHS/EDC activation can be reduced.
  • FIG. 4 shows a schematic configuration of the measurement carrier 11 according to this embodiment.
  • An example of the measurement carrier 11 is a plate for ELISA (enzyme-linked immunosorbent).
  • the measurement carrier 11 has a detection region 31 for specifically capturing the target substance (first substance 5) contained in the sample and a non-detection region 32 for non-selectively adsorbing a blocking agent etc. on the surface of the measurement substrate 12.
  • a detection region 31 for specifically capturing the target substance (first substance 5) contained in the sample
  • a non-detection region 32 for non-selectively adsorbing a blocking agent etc. on the surface of the measurement substrate 12.
  • We are preparing for The polymer film 1 is fixed to the detection region 31 .
  • a second substance 4 that reacts with the first substance 5 is fixed on the polymer membrane 1, similar to the polymer membrane 1 described in the first embodiment.
  • a membrane adjusted to increase non-specific adsorption may be fixed to the non-detection region 32.
  • a desired second substance 4 is fixed on the polymer film 1 in the detection region 31 . Further, the blocking agent is non-selectively adsorbed to the non-detection region 32 . Thereafter, by bringing the specimen into contact with the detection region 31, the first substance 5, which is a target substance contained in the specimen, reacts with the second substance 4, and the reaction is detected by the detection reagent.
  • detection reagents include redox substances, fluorescent substances, enzymes, and dye compounds.
  • the measurement substrate 12 may be made of, for example, metals such as gold, silver, copper, platinum, and aluminum; plastics such as polyethylene and polypropylene; and inorganic materials such as titanium oxide, silica, glass, and ceramics.
  • the measurement substrate 12 is not limited to these examples.
  • the shape of the measurement substrate 12 may be, for example, a plate, a particle, a microstructure, a microtiter plate, or the like.
  • the shape of the measurement substrate 12 is not limited to these examples.
  • a measurement kit including a measurement substrate 12 on which a polymer film 1 is fixed, a second substance 4, and a detection reagent is also included within the scope of the present disclosure.
  • the second substance 4 may be fixed to the polymer membrane 1 in advance during product manufacture, or may be fixed by the user before measurement.
  • the measurement kit according to this embodiment may include other reagents and instruments.
  • components other than the second substance 4 and the detection reagent described above may be included.
  • a buffer or the like may be provided.
  • the measurement kit according to the present embodiment may include a plurality of different reagents mixed in appropriate volumes and/or forms, or may be provided in separate containers.
  • the measurement kit according to the present embodiment may include an instruction sheet describing the procedure for detecting the reaction between the first substance 5 and the second substance 4. It may be written or printed on paper or other media, or it may be attached to an electronic medium such as a magnetic tape, a computer readable disk, or a CD-ROM or the like.
  • the copolymer according to aspect 1 of the present disclosure comprises two hydrophilic blocks A containing at least one structural unit (a) among the structural units (a) represented by the following formulas (1) to (6).
  • R 1 to R 7 are each independently H or CH 3
  • X 1 to X 4 are each independently O or NH
  • p 1 to p 5 are each independently 1 to 3
  • q 1 to q 2 are each independently an integer between 1 and 5.
  • a hydrophobic block B containing at least one structural unit (b) among the structural units (b) represented by the following formulas (7) and (8)
  • R 8 and R 10 are each independently H or CH 3
  • R 9 , R 11 and R 12 are each independently an alkyl group having 1 to 6 carbon atoms
  • X 5 and 6 is O or NH
  • r is an integer from 1 to 3.
  • the hydrophobic block B has a disulfide
  • the proportion of the structural unit (b) constituting the hydrophobic block B contained in the copolymer is 30 mol% or more and 80 mol% or less. It may be.
  • the proportion of the structural unit (a) constituting the hydrophilic block A contained in the copolymer is 20 mol % or more and 70 mol %. % or less.
  • the copolymer according to Aspect 4 of the present disclosure is provided in any one of Aspects 1 to 3, in which the number of moles of the structural unit (a) is 1 per mole of the structural unit (b) contained in the copolymer.
  • the numerical ratio may be 0.20 or more and 2.5 or less.
  • At least one terminal of the copolymer according to any one of Aspects 1 to 4 may have a thiol group or a dithioester group.
  • the polymer membrane according to aspect 6 of the present disclosure includes a hydrophilic block A containing at least one structural unit (a) among structural units (a) represented by the following formulas (1) to (6); (In the formula, R 1 to R 7 are each independently H or CH 3 , X 1 to X 4 are each independently O or NH, and p 1 to p 5 are each independently 1 to 3 The following integers are shown, and q 1 to q 2 are each independently an integer between 1 and 5.) A hydrophobic block B containing at least one structural unit (b) among the structural units (b) represented by the following formulas (7) and (8), (In the formula, R 8 and R 10 are each independently H or CH 3 , R 9 , R 11 and R 12 are each independently an alkyl group having 1 to 6 carbon atoms, and X 5 and 6 is O or NH, and r is an integer from 1 to 3.)
  • the end of the hydrophobic block B opposite to the side bonded to the hydrophilic block A contains a copolymer
  • a measuring device includes the polymer membrane of Aspect 6 above.
  • a measurement carrier according to Aspect 8 of the present invention includes the polymer membrane of Aspect 6 above.
  • % represents mass %.
  • p(BMA) was synthesized by the SET-LRP method.
  • 2.08 mol/L of monomer butyl methacrylic acid (BMA) and 20.0 mol/L of bis[2-(2'-bromoisobutyryloxy)ethyl] disulfide (BiBOEDS) were added to 2-propanol that had been previously subjected to deoxygenation treatment.
  • 8 mmol/L, copper (II) bromide was dissolved at 2.08 mmol/L, and N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDETA) was dissolved at 15.0 mmol/L. .
  • the obtained solution was added to a copper wire that had been reduced with hydrazine, and reacted in nitrogen at 40° C. for 6 hours.
  • the amount of copper wire was such that the concentration would be 305 mmol/L assuming that it was all dissolved.
  • the reaction solution was filtered and poured into a large amount of methanol (15 to 20 times the volume of the polymerization solution).
  • p(BMA) was obtained by filtering and drying the precipitate.
  • the degree of polymerization of the obtained p(BMA) was calculated by nuclear magnetic resonance (NMR) spectroscopy.
  • the area of the peak (peak around 2.9 ppm) derived from the methylene group bonded to sulfur of BiBOEDS in the 1 H-NMR spectrum and the side chain (methylene group bonded to oxygen) in the BMA unit of the polymer are determined. ) and the area of the peak (peak around 3.90 ppm to 4.00 ppm).
  • the degree of polymerization of the obtained p(BMA) was estimated to be 52.
  • DMAEMA N,N-dimethylaminoethyl methacrylate
  • DMAEMA Polymerization of DMAEMA was performed by the SET-LRP method using p(BMA) synthesized in Step 1 as a macroinitiator.
  • PMDETA was dissolved to a concentration of 10.8 mmol/L.
  • the obtained solution was added to a copper wire that had been reduced with hydrazine, and reacted in nitrogen at 40° C. for 8 hours.
  • the amount of copper wire was such that the concentration would be 220 mmol/L assuming that all of the copper wire was dissolved.
  • 45°C warm water was added.
  • the precipitate was filtered and dried to obtain p(BMA)-bp(DMAEMA).
  • the degree of polymerization of the obtained p(BMA)-bp(DMAEMA) was calculated by nuclear magnetic resonance (NMR) spectroscopy. Specifically, it was calculated from the ratio of the area of the peak around 1.5 ppm originating from the BMA unit and the area of the peak around 2.3 ppm originating from the DMAEMA unit of the polymer in the 1 H-NMR spectrum. As a result, the ratio of BMA units to DMAEMA units (BMA:DMAEMA) was estimated to be 52:42.
  • Betaining DMAEMA unit The side chain of the DMAEMA unit was betaineated according to the scheme below.
  • the block copolymer obtained in step 3 in which the side chain of the DMAEMA unit was quaternary ammonium was dissolved in trifluoroacetic acid and reacted at room temperature for 20 hours. After the reaction, trifluoroacetic acid was distilled off by evaporation, and polymer powder was recovered. A polymer powder was obtained by dissolving the polymer powder in methanol, adding diethyl ether to cause reprecipitation, and filtering and drying the precipitate.
  • Nuclear magnetic resonance (NMR) spectroscopy revealed that the peak derived from the tert-butyl group had disappeared in the 1 H-NMR spectrum. From the results of NMR spectroscopy, it was confirmed that the tert-butyl group was deprotected and the desired triblock copolymer p(BMA)-bp(CBMA1) was obtained.
  • the triblock copolymer obtained by the above synthesis scheme is represented by the following formula.
  • p(CBMA1)-p(BMA)-SS-p(BMA)-p(CBMA1) is the hydrophilic block A
  • p(BMA)-SS-p(BMA) is the hydrophobic block B
  • "SS" in hydrophobic block B represents a disulfide bond.
  • the degree of polymerization of each block of the triblock copolymer obtained by the above synthesis scheme was 42-52-SS-52-42. That is, by the above synthesis scheme, an ABA type triblock copolymer containing a hydrophobic block B containing a disulfide bond and having a degree of polymerization of 104 between two hydrophilic blocks A having a degree of polymerization of 42 was obtained. It was done.
  • a triblock copolymer (p(CBMA1)-p(BMA)-SS-p(BMA)-p(CBMA1)) having the following degree of polymerization was also produced. ⁇ 24-27-SS-27-24 ⁇ 24-31-SS-31-24 ⁇ 20-84-SS-84-20 ⁇ 71-31-SS-31-71 ⁇ 80-84-SS-84-80
  • the polymerization of HPMA was carried out by the SET-LRP method using p(BMA) in which the p(BMA) unit was an 86-mer synthesized in the same manner as in Step 1 as a macroinitiator.
  • Me 6 TREN tris[2-(dimethylamino)ethylamine
  • the obtained solution was added to a copper wire that had been reduced with hydrazine, and reacted in nitrogen at 40° C. for 91 hours.
  • the amount of copper wire was such that the concentration would be 305 mmol/L assuming that it was all dissolved.
  • water was added to the soluble portion of the solution.
  • the soluble portion was removed by a decanting method, and p(BMA)-bp(HPMA) was obtained by drying.
  • the degree of polymerization of the obtained p(BMA)-bp(HPMA) was calculated by nuclear magnetic resonance (NMR) spectroscopy.
  • Example 2 Measurement of non-specific adsorption amount The non-specific adsorption amount of fetal bovine serum to the polymer membrane was measured under the following conditions. Measuring device: Biacore X100 manufactured by GE Healthcare Measurement conditions: Running buffer: HBS-P Temperature: 25°C Flow rate: 10 ⁇ L/min Sample contact time: 9 minutes (sample injection volume 90 ⁇ L)
  • SIA kit Au manufactured by GE Healthcare
  • piranha solution was washed with piranha solution.
  • piranha solution was immersed in a 1 mmol/L ethanol solution of 1-dodecanethiol and left overnight.
  • the SPR chip was washed with ethanol and ultrapure water.
  • it was immersed for 18 hours in a methanol solution in which the triblock copolymer was dissolved at a concentration of 0.3 mg/mL to form a polymer film.
  • the chip was washed with ultrapure water and dried in a nitrogen stream to obtain an SPR chip with a polymer film formed thereon.
  • FIG. 5 is a graph showing the relationship between the unit ratio (CBMA1/BMA) of the triblock copolymer and the amount of non-specific adsorption.
  • FIG. 6 is a graph showing the relationship between the average degree of polymerization of CBMA1 in the triblock copolymer and the amount of non-specific adsorption.
  • the non-specific adsorption amount of the polymer membrane is preferably 20 ng/cm 2 or less, and it is known that the higher the film formation density, the lower the non-specific adsorption amount. From the results in Table 1 and Figures 5 and 6, when the unit ratio (CBMA1/BMA) of the triblock copolymer is 0.20 or more and 2.5 or less, the amount of nonspecific adsorption decreases, and the unit ratio is 1 or less. was found to be more preferable. Further, it was found that the number average degree of polymerization of CBMA1 is preferably up to about 70, and more preferably about 20 to 40. Since CBMA1 has the ability to suppress non-specific adsorption, at first glance it seems preferable to have more CBMA1 units. On the other hand, since it is thought that it is more advantageous to have fewer CBMA units for micelle formation, the results of this example suggest that forming micelles is effective in reducing non-specific adsorption.
  • the present disclosure can be used in a measurement device and a measurement plate that include a detection section on which a polymer film is formed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

This copolymer comprises: two blocks A including at least one structural unit (a) selected from among structural units (a) represented by formulae (1) to (6); and a block B interposed between the two blocks A, the block B including at least one structural unit (b) selected from between structural units (b) represented by formulae (7) and (8). The block B has a disulfide bond between structural units (b).

Description

共重合体、高分子膜、測定用装置および測定用担体Copolymers, polymer membranes, measurement devices and measurement carriers
 本開示は、測定装置に使用される高分子膜の形成に使用される共重合体に関する。また、本開示は、当該共重合体を使用して得られる高分子膜、および、当該高分子膜を備える測定用装置または測定用担体に関する。 The present disclosure relates to a copolymer used to form a polymer membrane used in a measuring device. The present disclosure also relates to a polymer membrane obtained using the copolymer, and a measuring device or a measuring carrier provided with the polymer membrane.
 測定対象物質(例えば、生体分子)の濃度を測定する測定装置の一例として、弾性表面波センサが特許文献1に開示されている。このような測定装置は、検体に含まれる測定対象物質と相互作用する物質(例えば、抗体)が固定された検出部を備えている。上記検出部には、検体に含まれる測定対象物質と相互作用する物質を固定するために、高分子膜が形成されることが多い。 A surface acoustic wave sensor is disclosed in Patent Document 1 as an example of a measuring device that measures the concentration of a substance to be measured (for example, a biomolecule). Such a measuring device includes a detection section on which a substance (for example, an antibody) that interacts with a substance to be measured contained in a specimen is immobilized. A polymer film is often formed in the detection section in order to immobilize a substance that interacts with the substance to be measured contained in the sample.
日本国特開2008-286606号公報Japanese Patent Application Publication No. 2008-286606
 一実施形態に係る共重合体は、下記式(1)~(6)で表される構造単位(a)のうち、少なくとも1つの構造単位(a)を含む2つの親水性ブロックAと、
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
(式中、R~Rはそれぞれ独立してHまたはCHであり、X~Xはそれぞれ独立してOまたはNHであり、p~pはそれぞれ独立して1以上3以下の整数であり、q~qはそれぞれ独立しては1以上5以下の整数である。)
 前記2つの親水性ブロックAの間に、下記式(7)および(8)で表される構造単位(b)のうち少なくとも1つの構造単位(b)を含む疎水性ブロックBと、を含み、
Figure JPOXMLDOC01-appb-C000009
(式中、RおよびR10はそれぞれ独立してHまたはCHであり、R、R11およびR12はそれぞれ独立して炭素数1以上6以下のアルキル基であり、XおよびXはOまたはNHであり、rは1以上3以下の整数である。)
 前記疎水性ブロックBは、前記構造単位(b)の間にジスルフィド結合を有する、共重合体である。
The copolymer according to one embodiment includes two hydrophilic blocks A containing at least one structural unit (a) among the structural units (a) represented by the following formulas (1) to (6),
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
(In the formula, R 1 to R 7 are each independently H or CH 3 , X 1 to X 4 are each independently O or NH, and p 1 to p 5 are each independently 1 to 3 The following integers are shown, and q 1 to q 2 are each independently an integer between 1 and 5.)
Between the two hydrophilic blocks A, a hydrophobic block B containing at least one structural unit (b) among the structural units (b) represented by the following formulas (7) and (8),
Figure JPOXMLDOC01-appb-C000009
(In the formula, R 8 and R 10 are each independently H or CH 3 , R 9 , R 11 and R 12 are each independently an alkyl group having 1 to 6 carbon atoms, and X 5 and 6 is O or NH, and r is an integer from 1 to 3.)
The hydrophobic block B is a copolymer having disulfide bonds between the structural units (b).
 一実施形態に係る高分子膜は、下記式(1)~(6)で表される構造単位(a)のうち、少なくとも1つの構造単位(a)を含む親水性ブロックAと、
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
(式中、R~Rはそれぞれ独立してHまたはCHであり、X~Xはそれぞれ独立してOまたはNHであり、p~pはそれぞれ独立して1以上3以下の整数であり、q~qはそれぞれ独立しては1以上5以下の整数である。)
 下記式(7)および(8)で表される構造単位(b)のうち、少なくとも1つの構造単位(b)を含む疎水性ブロックBと、を含み、
Figure JPOXMLDOC01-appb-C000012
(式中、RおよびR10はそれぞれ独立してHまたはCHであり、R、R11およびR12はそれぞれ独立して炭素数1以上6以下のアルキル基であり、XおよびXはOまたはNHであり、rは1以上3以下の整数である。)
 前記疎水性ブロックBの前記親水性ブロックAと結合している側とは反対側の末端が、チオール基またはジチオエステル基を有する共重合体を含む、高分子膜である。
The polymer membrane according to one embodiment includes a hydrophilic block A containing at least one structural unit (a) among structural units (a) represented by the following formulas (1) to (6);
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
(In the formula, R 1 to R 7 are each independently H or CH 3 , X 1 to X 4 are each independently O or NH, and p 1 to p 5 are each independently 1 to 3 The following integers are shown, and q 1 to q 2 are each independently an integer between 1 and 5.)
A hydrophobic block B containing at least one structural unit (b) among the structural units (b) represented by the following formulas (7) and (8),
Figure JPOXMLDOC01-appb-C000012
(In the formula, R 8 and R 10 are each independently H or CH 3 , R 9 , R 11 and R 12 are each independently an alkyl group having 1 to 6 carbon atoms, and X 5 and 6 is O or NH, and r is an integer from 1 to 3.)
The end of the hydrophobic block B opposite to the side bonded to the hydrophilic block A is a polymer membrane containing a copolymer having a thiol group or a dithioester group.
本開示に係る測定装置の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of a measuring device according to the present disclosure. 上記測定装置が備えるセンサを示す平面図である。It is a top view showing the sensor with which the above-mentioned measuring device is provided. 図1に示す検出部23が備える高分子を示す概念図である。FIG. 2 is a conceptual diagram showing a polymer included in the detection section 23 shown in FIG. 1. FIG. 本開示に係る測定用担体の一例を示す平面図である。FIG. 2 is a plan view showing an example of a measurement carrier according to the present disclosure. 本開示に係るトリブロック共重合体中のユニット比(CBMA1/BMA)と非特異吸着量との関係を示すグラフである。It is a graph showing the relationship between the unit ratio (CBMA1/BMA) in the triblock copolymer and the amount of non-specific adsorption according to the present disclosure. 本開示に係るトリブロック共重合体中のCBMA1の平均重合度と非特異吸着量との関係を示すグラフである。It is a graph showing the relationship between the average degree of polymerization of CBMA1 in the triblock copolymer according to the present disclosure and the amount of non-specific adsorption.
 〔実施形態1〕
 以下、図面を適宜に使用して、本開示に係る測定装置に備えられるセンサについて説明する。図1に、本実施形態に係る測定装置100のセンサ2の概略を示す。
[Embodiment 1]
Hereinafter, a sensor included in a measuring device according to the present disclosure will be described using the drawings as appropriate. FIG. 1 schematically shows a sensor 2 of a measuring device 100 according to this embodiment.
 測定装置100は、測定対象(検体)から特定の物質(第1物質)を標的として検出することができる。第1物質5は、例えば、生体内物質である。上記生体内物質の例として、タンパク質、DNA、酵素反応の基質等を例示することができる。測定装置100は、第1物質を検出可能なセンサ2および測定装置100を制御することができる制御装置6を備える。 The measurement device 100 can detect a specific substance (first substance) as a target from a measurement target (sample). The first substance 5 is, for example, an in-vivo substance. Examples of the above-mentioned biological substances include proteins, DNA, substrates for enzymatic reactions, and the like. The measuring device 100 includes a sensor 2 that can detect the first substance and a control device 6 that can control the measuring device 100.
 センサ2は、例えば、弾性波、QCM(Quartz Crystal Microbalance)、SPR(Surface Plasmon Resonance)、またはFET(Field Effect Transistor)などを利用するセンサであればよい。すなわち、センサ2は、電気信号と弾性波、QCM、SPR、FETなどを相互に変換することができればよい。一実施形態に係るセンサ2は、弾性波を利用するセンサである。すなわち、一実施形態に係る測定装置100は、センサ2を使用することによって、第1物質の存在に基づく弾性波の変化を電気信号の変化として検出することができる。センサ2は、下記高分子膜1を除いては、従来周知の方法によって作製すればよいまた、この場合、識別情報に含まれる検査情報には、弾性波の初期位相、および基板22の方位など、弾性波を利用するセンサに特有の情報が含まれてよい。 The sensor 2 may be any sensor that uses, for example, elastic waves, QCM (Quartz Crystal Microbalance), SPR (Surface Plasmon Resonance), or FET (Field Effect Transistor). That is, the sensor 2 only needs to be able to mutually convert electrical signals and elastic waves, QCM, SPR, FET, etc. The sensor 2 according to one embodiment is a sensor that uses elastic waves. That is, by using the sensor 2, the measuring device 100 according to one embodiment can detect a change in the elastic wave based on the presence of the first substance as a change in the electrical signal. The sensor 2 may be manufactured by a conventionally known method, except for the polymer film 1 described below. In this case, the inspection information included in the identification information includes the initial phase of the elastic wave, the orientation of the substrate 22, etc. , information specific to a sensor that uses elastic waves may be included.
 本実施形態に係る測定装置100では、センサ2は外部端子21を有している。センサ2は外部端子21を介して、測定装置100を制御する制御装置6と電気的に接続することができる。すなわち、センサ2と制御装置6は、外部端子21を介して互いに電気信号を入出力することができる。そのため、制御装置6は、センサ2から入力された電気信号に基づいて、例えば、第1物質を検出することができる。制御装置6は、例えば、検体に含まれる第1物質の濃度を算出してもよい。または、制御装置6は、例えば、第1物質を同定してもよい。制御装置6および外部端子21は、従来周知の技術によって作製すればよい。また、センサ2と制御装置6を電気的に接続する構成は、外部端子21に限定されない。例えば、センサ2と制御装置6が電気的に接続することができるのであれば、センサ2と制御装置6は、端子などにより物理的に接続されなくてもよい。例えば、センサ2と制御装置6は、電磁誘導によって電気的に接続されてもよい。 In the measuring device 100 according to this embodiment, the sensor 2 has an external terminal 21. The sensor 2 can be electrically connected to a control device 6 that controls the measuring device 100 via an external terminal 21 . That is, the sensor 2 and the control device 6 can input and output electrical signals to each other via the external terminal 21. Therefore, the control device 6 can detect, for example, the first substance based on the electrical signal input from the sensor 2. For example, the control device 6 may calculate the concentration of the first substance contained in the sample. Alternatively, the control device 6 may identify the first substance, for example. The control device 6 and the external terminals 21 may be manufactured using conventionally known techniques. Further, the configuration for electrically connecting the sensor 2 and the control device 6 is not limited to the external terminal 21. For example, as long as the sensor 2 and the control device 6 can be electrically connected, the sensor 2 and the control device 6 do not need to be physically connected through a terminal or the like. For example, the sensor 2 and the control device 6 may be electrically connected by electromagnetic induction.
 センサ2は、使い捨てのカートリッジであってもよい。これによれば、測定後にセンサ2を洗浄する工程が不要となり、不十分な洗浄による測定結果への影響を排除することができる。 The sensor 2 may be a disposable cartridge. According to this, the step of cleaning the sensor 2 after measurement is unnecessary, and the influence of insufficient cleaning on the measurement results can be eliminated.
 図2に、センサ2の平面図を示す。センサ2は、基板22と、基板22上に位置した検出部23と、参照部24と、基板22上に検出部23を挟むように配された一対の第1IDT(Inter Digital Transducer)電極25aと、一対の第2IDT電極25bを備える。検出部23、参照部24、一対の第1IDT電極25a、および一対の第2IDT電極25bは、基板22上に位置してよい。 FIG. 2 shows a plan view of the sensor 2. The sensor 2 includes a substrate 22, a detection section 23 located on the substrate 22, a reference section 24, and a pair of first IDT (Inter Digital Transducer) electrodes 25a arranged on the substrate 22 so as to sandwich the detection section 23 therebetween. , a pair of second IDT electrodes 25b. The detection section 23, the reference section 24, the pair of first IDT electrodes 25a, and the pair of second IDT electrodes 25b may be located on the substrate 22.
 (基板)
 基板22は、例えば圧電性を有する基板である。具体的には、基板22は、例えば水晶基板である。基板22は、弾性波を伝搬することができるのであれば、水晶基板に限られない。すなわち、基板22は、弾性波を伝搬することができる任意の材料で構成されればよい。例えば、基板22は、金、銀、銅、白金およびアルミニウム等の金属、タンタル酸リチウム、水晶などの圧電性を有する単結晶を含む基板であってもよい。また、基板22は、従来周知の手法により作製されればよい。
(substrate)
The substrate 22 is, for example, a piezoelectric substrate. Specifically, the substrate 22 is, for example, a crystal substrate. The substrate 22 is not limited to a crystal substrate as long as it can propagate elastic waves. That is, the substrate 22 may be made of any material that can propagate elastic waves. For example, the substrate 22 may be a substrate containing metals such as gold, silver, copper, platinum, and aluminum, lithium tantalate, and a piezoelectric single crystal such as quartz. Further, the substrate 22 may be manufactured by a conventionally known method.
 (検出部)
 検出部23には、第1物質5と反応する物質(第2物質4)が固定されている。したがって、検出部23において、検体に含まれる第1物質5と固定された第2物質4とが反応することができる。検出部23は、第1物質5と第2物質4とを反応させることによって、基板22の弾性波の伝搬特性が変化する。具体的には、検出部23は、例えば、第1物質5と第2物質4とを反応させることで、基板22にかかる重量、あるいは基板22の表面に接触する液体の粘度が変化する。これらの変化の大きさは、第1物質5と第2物質4の反応量に相関する。また、弾性波の特性(例えば位相、振幅、あるいは周期等)は、検出部23を伝搬することで変化する。特性の変化の大きさは、例えば、基板22にかかる重量の大きさ、あるいは基板22の表面に接触する液体の粘度の大きさなどと相関する。したがって、センサ2は、弾性波の特性の変化に基づいて、第1物質5を検出することができる。具体的には、測定装置100は、例えば検体に含まれる第1物質5の濃度を測定することができる。検出部23の詳細については後述する。
(Detection unit)
A substance (second substance 4) that reacts with the first substance 5 is fixed to the detection unit 23. Therefore, in the detection unit 23, the first substance 5 contained in the specimen and the fixed second substance 4 can react. The detection unit 23 changes the propagation characteristics of the elastic waves of the substrate 22 by causing the first substance 5 and the second substance 4 to react. Specifically, the detection unit 23 changes the weight applied to the substrate 22 or the viscosity of the liquid that contacts the surface of the substrate 22 by causing the first substance 5 and the second substance 4 to react, for example. The magnitude of these changes correlates with the amount of reaction between the first substance 5 and the second substance 4. Further, the characteristics of the elastic wave (for example, phase, amplitude, period, etc.) change as it propagates through the detection unit 23. The magnitude of the change in characteristics correlates with, for example, the magnitude of the weight applied to the substrate 22 or the magnitude of the viscosity of the liquid that contacts the surface of the substrate 22. Therefore, the sensor 2 can detect the first substance 5 based on changes in the characteristics of the elastic waves. Specifically, the measuring device 100 can measure, for example, the concentration of the first substance 5 contained in the sample. Details of the detection unit 23 will be described later.
 一対の第1IDT電極25aは、一対の第1IDT電極25a間に弾性波を発生させることができる。発生した弾性波のうち、基板22の表面を伝搬する弾性波は、弾性表面波(SAW:Surface Acoustic Wave)ともいう。一対の第1IDT電極25aは、基板22において、検出部23を挟むように位置していればよい。一実施形態に係る測定装置100において、一対の第1IDT電極25aの一方に電気信号が入力される。入力された電気信号は、検出部23に向かって伝搬する弾性波に変換されて一方の第1IDT電極25aから発信される。発信された弾性波は、検出部23を通過する。他方の第1IDT電極25aは、検出部23を通過した弾性波を受信することができる。受信された弾性波は、電気信号に変換される。一対の第1IDT電極25aは、例えば、金、クロムまたはチタンなどの金属材料で形成されていればよい。また、一対の第1IDT電極25aは、単一の材料で構成された単層の電極、または複数の材料で構成された多層の電極であってもよい。 The pair of first IDT electrodes 25a can generate elastic waves between the pair of first IDT electrodes 25a. Among the generated elastic waves, the elastic waves that propagate on the surface of the substrate 22 are also referred to as surface acoustic waves (SAW). The pair of first IDT electrodes 25a may be located on the substrate 22 so as to sandwich the detection section 23 therebetween. In the measuring device 100 according to one embodiment, an electrical signal is input to one of the pair of first IDT electrodes 25a. The input electrical signal is converted into an elastic wave that propagates toward the detection section 23 and is emitted from one first IDT electrode 25a. The emitted elastic waves pass through the detection section 23. The other first IDT electrode 25a can receive the elastic wave that has passed through the detection section 23. The received elastic waves are converted into electrical signals. The pair of first IDT electrodes 25a may be made of, for example, a metal material such as gold, chromium, or titanium. Further, the pair of first IDT electrodes 25a may be a single layer electrode made of a single material, or a multilayer electrode made of a plurality of materials.
 センサ2は、検出部23および一対の第1IDT電極25aの組合せを2つ以上有していてもよい。この場合、測定装置100は、例えば、組合せごとに異なる種類の標的物質を検出してもよい。または、測定装置100は、例えば、同じ種類の標的物質を複数の組合せで検出し、それぞれの検出結果を比較してもよい。 The sensor 2 may have two or more combinations of the detection section 23 and the pair of first IDT electrodes 25a. In this case, the measuring device 100 may detect different types of target substances for each combination, for example. Alternatively, the measuring device 100 may, for example, detect the same type of target substance in multiple combinations and compare the respective detection results.
 図3に、検出部23が備える高分子膜1を示す概念図を示す。検出部23において、基板22上にポリマー3を含む高分子膜1が固定されている。さらに、高分子膜1上に、第1物質5と反応する物質(第2物質4)が固定されている。 FIG. 3 shows a conceptual diagram showing the polymer membrane 1 included in the detection section 23. In the detection unit 23, a polymer film 1 containing a polymer 3 is fixed on a substrate 22. Furthermore, a substance (second substance 4) that reacts with the first substance 5 is fixed on the polymer film 1.
 高分子膜1は、特異的吸着性が高くなるように調整された膜であり、非特異的吸着を低減するように調整された膜である。 The polymer membrane 1 is a membrane that has been adjusted to have high specific adsorption and is a membrane that has been adjusted to reduce non-specific adsorption.
 (第1物質と第2物質)
 第1物質5と第2物質4との反応は、センサ2の出力に変化をもたらす反応であればよい。このような反応として、例えば、酸化還元反応、酵素反応、抗原抗体反応、化学吸着、分子間相互作用、またはイオン間相互作用などによって第1物質5と第2物質4とが結合する反応であってもよい。あるいは、第1物質5と第2物質4との反応は、酵素反応等によって新たな物質(第3物質)を生成する反応であってもよい。
(first substance and second substance)
The reaction between the first substance 5 and the second substance 4 may be any reaction that causes a change in the output of the sensor 2. Such a reaction may be, for example, a reaction in which the first substance 5 and the second substance 4 are bonded together through a redox reaction, an enzyme reaction, an antigen-antibody reaction, chemisorption, intermolecular interaction, or ionic interaction. It's okay. Alternatively, the reaction between the first substance 5 and the second substance 4 may be a reaction in which a new substance (third substance) is produced by an enzymatic reaction or the like.
 検出部23に固定される第2物質4は、第1物質5に応じて適宜選択すればよい。例えば、第1物質5が検体中の特定のタンパク質、DNA、または細胞などである場合は、第2物質4は、抗体、ペプチド、またはアプタマーなどを使用してもよい。また、例えば、第1物質5が抗体である場合は、第2物質4は抗原を使用してもよい。また、例えば、第1物質5が基質である場合は、第2物質4は酵素を使用してもよい。 The second substance 4 to be fixed to the detection unit 23 may be appropriately selected depending on the first substance 5. For example, when the first substance 5 is a specific protein, DNA, or cell in the specimen, the second substance 4 may be an antibody, a peptide, an aptamer, or the like. Further, for example, when the first substance 5 is an antibody, the second substance 4 may be an antigen. Furthermore, for example, when the first substance 5 is a substrate, the second substance 4 may be an enzyme.
 測定装置100は、標的である第1物質5を間接的に検出してもよい。例えば、第1物質5に類似する物質を第2物質4として検出部23に固定してもよい。すなわち、例えば、第1物質5を抗原とする抗体と第1物質5とを予め反応させ、反応しなかった抗体を固定された第2物質4と反応させてもよい。この場合、測定装置100は、例えば、抗体の量が既知であれば、検出された抗体の量から間接的に第1物質5の量を算出することができる。 The measuring device 100 may indirectly detect the first substance 5 that is the target. For example, a substance similar to the first substance 5 may be fixed to the detection unit 23 as the second substance 4. That is, for example, an antibody whose antigen is the first substance 5 may be reacted with the first substance 5 in advance, and the unreacted antibody may be reacted with the immobilized second substance 4. In this case, for example, if the amount of antibody is known, the measuring device 100 can indirectly calculate the amount of the first substance 5 from the amount of detected antibody.
 (トリブロック共重合体)
 次に、高分子膜1の形成に使用される共重合体の一例である、本開示のトリブロック共重合体について説明する。
(Triblock copolymer)
Next, a triblock copolymer of the present disclosure, which is an example of a copolymer used to form the polymer membrane 1, will be described.
 本開示のトリブロック共重合体は、2つの親水性ブロックAと当該2つの親水性ブロックの間に疎水性ブロックBとを含む共重合体である。 The triblock copolymer of the present disclosure is a copolymer containing two hydrophilic blocks A and a hydrophobic block B between the two hydrophilic blocks.
 <親水性ブロックA>
 親水性ブロックAは、下記式(1)~(6)で表される構造単位(a)のうち、少なくとも1つの構造単位(a)を含む。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
<Hydrophilic block A>
Hydrophilic block A includes at least one structural unit (a) among the structural units (a) represented by the following formulas (1) to (6).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 式中、R~Rはそれぞれ独立してHまたはCHである。X~Xはそれぞれ独立してOまたはNHである、p~pはそれぞれ独立して1以上3以下の整数(1、2または3)である。q~qはそれぞれ独立しては1以上5以下の整数(1、2、3、4または5)である。 In the formula, R 1 to R 7 are each independently H or CH 3 . X 1 to X 4 are each independently O or NH, and p 1 to p 5 are each independently an integer of 1 or more and 3 or less (1, 2 or 3). q 1 to q 2 are each independently an integer from 1 to 5 (1, 2, 3, 4, or 5).
 非特異的吸着の更なる低減の点で、構造単位(a)はベタイン構造を有していてもよい。また、抗体等を固定化し易くなる点で、構造単位(a)はCOO基を有していてもよい。 In order to further reduce non-specific adsorption, the structural unit (a) may have a betaine structure. In addition, the structural unit (a) may have a COO 2 - group in terms of making it easier to immobilize antibodies and the like.
 構造単位(a)の例として、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Examples of the structural unit (a) include the following structural units.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 本開示のトリブロック共重合体に含まれる親水性ブロックAを構成する構造単位(a)の割合は、非特異吸着低減の点で、20モル%以上であってもよく、30モル%以上であってもよく、40モル%以上であってもよい。また、上記の割合は、70モル%以下であってもよく、60モル%以下であってもよく、50モル%以下であってもよい。 The proportion of the structural unit (a) constituting the hydrophilic block A contained in the triblock copolymer of the present disclosure may be 20 mol% or more, and may be 30 mol% or more in terms of reducing nonspecific adsorption. The amount may be 40 mol% or more. Further, the above ratio may be 70 mol% or less, 60 mol% or less, or 50 mol% or less.
 親水性ブロックAには、本開示の効果を損なわない範囲で、構造単位(a)以外の構造単位を有していてもよい。 The hydrophilic block A may have a structural unit other than the structural unit (a) within a range that does not impair the effects of the present disclosure.
 親水性ブロックAに2種以上の構造単位が含まれる場合、各構造単位は、ランダム共重合、ブロック共重合等のいずれの態様によって当該ブロックA中において含まれていてもよい。 When the hydrophilic block A contains two or more types of structural units, each structural unit may be contained in the block A by any mode such as random copolymerization or block copolymerization.
 本開示のトリブロック共重合体に含まれる2つの親水性ブロックAは、互いに構造が同じであってもよいし、異なっていてもよい。2つの親水性ブロックAが互いに構造が同じ場合とは、本開示の効果を損なわない範囲で、同等の構造単位(a)を有していれば良い。具体的には、同等の構造単位(a)とは、例えば、構造単位(a)が同じであればよく、構造単位(a)以外の構造単位を有していてもよい。また、同等の構造単位(a)とは、構造単位(a)で構成される構造が同じであればよく、例えば、構造単位(a)の相対位置および数平均重合度が同じであればよい。 The two hydrophilic blocks A contained in the triblock copolymer of the present disclosure may have the same or different structures. In the case where two hydrophilic blocks A have the same structure, it is sufficient that they have the same structural unit (a) within a range that does not impair the effects of the present disclosure. Specifically, the equivalent structural unit (a) may have the same structural unit (a), and may have a structural unit other than the structural unit (a). In addition, the equivalent structural unit (a) may have the same structure as the structural unit (a), for example, the relative position and number average degree of polymerization of the structural unit (a) may be the same. .
 <疎水性ブロックB>
 疎水性ブロックBは、下記式(7)および(8)で表される構造単位(b)のうち少なくとも1つの構造単位(b)を含む。
Figure JPOXMLDOC01-appb-C000019
<Hydrophobic block B>
Hydrophobic block B includes at least one structural unit (b) among the structural units (b) represented by the following formulas (7) and (8).
Figure JPOXMLDOC01-appb-C000019
 式中、RおよびR10はそれぞれ独立してHまたはCHである。R、R11およびR12はそれぞれ独立して炭素数1以上6以下のアルキル基である。XおよびXはOまたはNHである。rは1以上3以下の整数(1、2または3)である。 In the formula, R 8 and R 10 are each independently H or CH 3 . R 9 , R 11 and R 12 are each independently an alkyl group having 1 or more and 6 or less carbon atoms. X 5 and X 6 are O or NH. r is an integer (1, 2 or 3) of 1 or more and 3 or less.
 炭素数1以上6以下のアルキル基の例として、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ヘプチル基、ヘキシル基等が挙げられる。 Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, heptyl group, hexyl group, etc. .
 構造単位(b)の例として、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Examples of the structural unit (b) include the following structural units.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 本開示のトリブロック共重合体に含まれる疎水性ブロックBを構成する構造単位(b)の割合は、当該ポリマーのミセルの形成のし易さの点で、30モル%以上であってもよく、40モル%以上であってもよく、50モル%以上であってもよい。また、上記の割合は、80モル%以下であってもよく、60モル%以下であってもよく、50モル%以下であってもよい。 The proportion of the structural unit (b) constituting the hydrophobic block B contained in the triblock copolymer of the present disclosure may be 30 mol% or more in terms of ease of forming micelles of the polymer. , may be 40 mol% or more, or may be 50 mol% or more. Further, the above ratio may be 80 mol% or less, 60 mol% or less, or 50 mol% or less.
 疎水性ブロックBには、本開示の効果を損なわない範囲で、構造単位(b)以外の構造単位を有していてもよい。 The hydrophobic block B may have a structural unit other than the structural unit (b) as long as the effects of the present disclosure are not impaired.
 疎水性ブロックBに2種以上の構造単位が含まれる場合、各構造単位は、ランダム共重合、ブロック共重合等のいずれの態様によって当該ブロックB中において含まれていてもよい。 When the hydrophobic block B contains two or more types of structural units, each structural unit may be contained in the block B by any mode such as random copolymerization or block copolymerization.
 疎水性ブロックBは、構造単位(b)の間にジスルフィド結合を有する。ジスルフィド結合の数は1つであってもよいし、複数であってもよい。 Hydrophobic block B has a disulfide bond between structural units (b). The number of disulfide bonds may be one or more.
 本開示のトリブロック共重合体の少なくとも一方の末端は、基板22(測定基板12)への高分子膜の固定のし易さの点で、チオール基またはジチオエステル基を有していてもよく、チオール基であってもよい。 At least one end of the triblock copolymer of the present disclosure may have a thiol group or a dithioester group from the viewpoint of ease of fixing the polymer membrane to the substrate 22 (measurement substrate 12). , may be a thiol group.
 本開示のトリブロック共重合体に含まれる、構造単位(b)のモル数1に対する、構造単位(a)のモル数の割合は、非特異吸着低減および当該共重合体のミセルの形成のし易さの点で、0.20以上であってもよく、0.50以上であってもよく、0.70以上であってもよい。また、上記割合は、2.5以下であってもよく、2.0以下であってもよく、1.5以下であってもよい。 The ratio of the number of moles of the structural unit (a) to the number of moles of the structural unit (b) contained in the triblock copolymer of the present disclosure is determined to reduce nonspecific adsorption and form micelles of the copolymer. In terms of ease, it may be 0.20 or more, 0.50 or more, or 0.70 or more. Further, the above ratio may be 2.5 or less, 2.0 or less, or 1.5 or less.
 本開示のトリブロック共重合体の数平均重合度は、当該共重合体のミセルの形成のし易さおよび膜形成密度等の点で、100以上であってもよく、200以上であってもよい。 The number average degree of polymerization of the triblock copolymer of the present disclosure may be 100 or more, or even 200 or more, in terms of ease of forming micelles of the copolymer, film formation density, etc. good.
 本開示のトリブロック共重合体における2つの親水性ブロックAの合計の数平均重合度は、非特異吸着低減の点で、30以上であってもよく、60以上であってもよく、100以上であってもよく、200以下であってもよく、150以下であってもよい。 The total number average degree of polymerization of the two hydrophilic blocks A in the triblock copolymer of the present disclosure may be 30 or more, 60 or more, 100 or more in terms of reducing nonspecific adsorption. It may be 200 or less, or it may be 150 or less.
 本開示のトリブロック共重合体における疎水性ブロックBの数平均重合度はそれぞれ独立して、当該共重合体のミセルの形成のし易さ等の点で、25以上であってもよく、30以上であってもよく、50以上であってもよく、80以上であってもよい。 The number average degree of polymerization of the hydrophobic blocks B in the triblock copolymer of the present disclosure may independently be 25 or more, and 30 It may be more than 50, it may be more than 80.
 本開示のトリブロック共重合体は、従来公知の有機分析手法により同定してもよい。例えば、当該共重合体は、NMR(Nuclear Magnetic Resonance)によって同定されてもよい。または、例えば、液体クロマトグラフによって同定されてもよい。または、例えば、赤外分光法により同定されてもよい。すなわち、当該共重合体を同定する場合、これらの手法を実施可能な装置を使用すればよい。当該共重合体を同定することが可能であれば、同定手法及び装置は、これらの手法及び装置に限定されるものではない。 The triblock copolymer of the present disclosure may be identified by conventionally known organic analysis techniques. For example, the copolymer may be identified by NMR (Nuclear Magnetic Resonance). Alternatively, it may be identified, for example, by liquid chromatography. Alternatively, it may be identified, for example, by infrared spectroscopy. That is, when identifying the copolymer, an apparatus capable of implementing these techniques may be used. As long as the copolymer can be identified, the identification method and device are not limited to these methods and devices.
 <トリブロック共重合体の製造方法> <Method for producing triblock copolymer>
 本開示のトリブロック共重合体の製造方法の一例は、疎水性ブロックBの合成工程(ステップ1)、親水性ブロックAの合成工程(ステップ2)を含む。以下、各工程を説明する。 An example of the method for producing a triblock copolymer of the present disclosure includes a step of synthesizing a hydrophobic block B (step 1) and a step of synthesizing a hydrophilic block A (step 2). Each step will be explained below.
 <ステップ1:疎水性ブロックBの合成工程>
 本工程では、疎水性モノマー化合物を重合させることによって、疎水性ブロックBを合成する。疎水性モノマー化合物の例として、以下の化合物が挙げられる。また、疎水性モノマー化合物の具体例として、ブチルメタクリル酸(BMA)等が挙げられる。疎水性モノマー化合物は、単独で使用しても、2種以上を組み合わせて使用してもよい。
<Step 1: Synthesis step of hydrophobic block B>
In this step, hydrophobic block B is synthesized by polymerizing a hydrophobic monomer compound. Examples of hydrophobic monomer compounds include the following compounds. Moreover, butyl methacrylic acid (BMA) etc. are mentioned as a specific example of a hydrophobic monomer compound. The hydrophobic monomer compounds may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000022
(式中、R~R12、XおよびXならびにrはそれぞれ、式(7)~(8)中のR~R12、XおよびXと同義である。)
Figure JPOXMLDOC01-appb-C000022
(In the formula, R 8 to R 12 , X 5 and X 6 and r have the same meanings as R 8 to R 12 , X 5 and X 6 in formulas (7) to (8), respectively.)
 重合は、リビングラジカル重合(LRP:Living Radical Polymerization)等の公知の重合によって製造することが可能である。リビングラジカル重合の例として、原子移動ラジカル重合(ATRP:Atom Transfer Radical Polymerization)、一電子移動重合(SET-LRP:Single Electron Transfer Polymerization、可逆移動触媒重合(RTCP:Reversible Chain Transfer Catalyzed Polymerization)、RAFT重合(Reversible Addition-Fragmentation chain Transfer Polymerization)等が挙げられる。 Polymerization can be produced by known polymerization such as living radical polymerization (LRP). Examples of living radical polymerization include atom transfer radical polymerization (ATRP), single electron transfer polymerization (SET-LRP), reversible chain transfer catalyzed polymerization (RTCP), and RAFT polymerization. (Reversible Addition-Fragmentation chain Transfer Polymerization).
 重合開始剤の例として、ビス[2-(2’-ブロモイソブチリルオキシ)エチル]ジスルフィド(BiBOEDS))等のジスルフィド結合を含む重合開始剤が挙げられる。 Examples of polymerization initiators include polymerization initiators containing disulfide bonds such as bis[2-(2'-bromoisobutyryloxy)ethyl]disulfide (BiBOEDS)).
 <ステップ2:親水性ブロックAの合成工程>
 本工程では、ステップ1で得られた重合体に親水性モノマー化合物を重合させることによって、疎水性ブロックBの両端それぞれに親水性ブロックAを合成し、本開示のトリブロック共重合体が得られる。親水性モノマー化合物の例として、以下の化合物(11)~(16)が挙げられる。また、親水性モノマー化合物の具体例として、N-(カルボキシメチル)-N,N-ジメチル-2-[(2-メチル-1-オキソ-2-プロペン-1-イル)-オキシ]エタナミニウム(CBMA1)、N,N-ジメチルアミノエチルメタクリレート(DMAEMA)、2-ヒドロキシプロピルメタクリルアミド(HPMA)、等が挙げられる。親水性モノマー化合物は、単独で使用しても、2種以上を組み合わせて使用してもよい。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
(式中、R~R、X~X、p~pおよびq~qはそれぞれ、式(1)~(6)中のR~R、X~X、p~pおよびq~qと同義である。)
<Step 2: Synthesis step of hydrophilic block A>
In this step, hydrophilic blocks A are synthesized at both ends of hydrophobic block B by polymerizing the polymer obtained in step 1 with a hydrophilic monomer compound, thereby obtaining the triblock copolymer of the present disclosure. . Examples of hydrophilic monomer compounds include the following compounds (11) to (16). Further, as a specific example of the hydrophilic monomer compound, N-(carboxymethyl)-N,N-dimethyl-2-[(2-methyl-1-oxo-2-propen-1-yl)-oxy]ethanaminium (CBMA1 ), N,N-dimethylaminoethyl methacrylate (DMAEMA), 2-hydroxypropyl methacrylamide (HPMA), and the like. The hydrophilic monomer compounds may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
(In the formula, R 1 to R 7 , X 1 to X 4 , p 1 to p 5 and q 1 to q 2 are R 1 to R 7 , X 1 to 4 , p 1 to p 5 and q 1 to q 2. )
 また、本開示のトリブロック共重合体の製造方法は、4級アンモニウム塩の形成工程(ステップ3)および脱保護工程(ステップ4)を含んでいてもよい。 Furthermore, the method for producing a triblock copolymer of the present disclosure may include a quaternary ammonium salt formation step (Step 3) and a deprotection step (Step 4).
 <ステップ3:親水性ブロックAの4級アンモニウム化工程>
 本工程では、ステップ2で得られた重合体の親水性ブロックAの構造単位(a)の3級アミン構造から4級アンモニウム構造に変換する(4級アンモニウム化)。例えば、4級アンモニウム化は、ハロゲン化合物等の公知の4級化剤を使用して行ってもよい。
<Step 3: Quaternary ammonium formation step of hydrophilic block A>
In this step, the tertiary amine structure of the structural unit (a) of the hydrophilic block A of the polymer obtained in Step 2 is converted into a quaternary ammonium structure (quaternary ammonium formation). For example, quaternary ammonium formation may be performed using a known quaternizing agent such as a halogen compound.
 <ステップ4:親水性ブロックAのベタイン化工程>
 本工程では、ステップ3で得られた重合体の親水性ブロックAの構造単位(a)にベタイン構造を形成させる(ベタイン化)。例えば、ベタイン化は、ステップ3において導入された親水性ブロックAの側鎖の保護基(例えば、tert-ブチル基)を脱保護することによって行ってもよい。
<Step 4: Betainization step of hydrophilic block A>
In this step, a betaine structure is formed in the structural unit (a) of the hydrophilic block A of the polymer obtained in step 3 (betaine formation). For example, betaination may be performed by deprotecting the side chain protecting group (eg, tert-butyl group) of the hydrophilic block A introduced in step 3.
 ステップ3および4を行うことによって、非特異吸着をさらに低減させることができる。 By performing steps 3 and 4, non-specific adsorption can be further reduced.
 必要に応じて、製造されたトリブロック共重合体中の重合開始剤に由来する構造を除去してもよい。当該重合開始剤に由来する構造の例として、BiBOEDSを重合開始剤としてLRPを行ったときの、トリブロック共重合体の末端の臭素が挙げられる。 If necessary, the structure derived from the polymerization initiator in the produced triblock copolymer may be removed. An example of a structure derived from the polymerization initiator is bromine at the terminal of a triblock copolymer when LRP is performed using BiBOEDS as a polymerization initiator.
 (高分子膜)
 本開示の高分子膜は、親水性ブロックAと疎水性ブロックBとを含む共重合体を含む。当該共重合体はジブロック共重合体であり、当該ジブロック共重合体も本開示の一態様に含まれる。本開示のジブロック共重合体が図3のポリマー3に相当する。
(polymer membrane)
The polymer membrane of the present disclosure includes a copolymer containing a hydrophilic block A and a hydrophobic block B. The copolymer is a diblock copolymer, and the diblock copolymer is also included in one embodiment of the present disclosure. The diblock copolymer of the present disclosure corresponds to polymer 3 in FIG.
 <ジブロック共重合体>
 本開示のジブロック共重合体において、疎水性ブロックBの親水性ブロックAと結合している側とは反対側の末端が、チオール基またはジチオエステル基を有する。本開示のジブロック共重合体の親水性ブロックAおよび疎水性ブロックBの構成単位およびその具体例は、本開示のトリブロック共重合体の親水性ブロックAおよび疎水性ブロックBの構成単位およびその具体例と同様である。
<Diblock copolymer>
In the diblock copolymer of the present disclosure, the end of the hydrophobic block B opposite to the side bonded to the hydrophilic block A has a thiol group or a dithioester group. The structural units of the hydrophilic block A and the hydrophobic block B of the diblock copolymer of the present disclosure and their specific examples are the structural units of the hydrophilic block A and the hydrophobic block B of the triblock copolymer of the present disclosure and their specific examples. This is the same as the specific example.
 本開示のジブロック共重合体に含まれる、構造単位(b)のモル数1に対する、構造単位(a)のモル数の割合は、非特異吸着低減および膜形成密度の点で、0.20以上であってもよく、0.50以上であってもよく、0.70以上であってもよい。また、上記割合は、2.5以下であってもよく、2.0以下であってもよく、1.5以下であってもよい。 The ratio of the number of moles of the structural unit (a) to the number of moles of the structural unit (b) contained in the diblock copolymer of the present disclosure is 0.20 in terms of nonspecific adsorption reduction and film formation density. or more, may be 0.50 or more, or may be 0.70 or more. Further, the above ratio may be 2.5 or less, 2.0 or less, or 1.5 or less.
 本開示のジブロック共重合体の数平均重合度は、膜形成密度の点で、25以上であってもよく、50以上であってもよく、200以上であってもよい。第1物質5が尿に含まれる物質であるときは、本開示のジブロック共重合体は高分子量であってもよい。 The number average degree of polymerization of the diblock copolymer of the present disclosure may be 25 or more, 50 or more, or 200 or more in terms of film forming density. When the first substance 5 is a substance contained in urine, the diblock copolymer of the present disclosure may have a high molecular weight.
 本開示のジブロック共重合体における親水性ブロックAの数平均重合度は、非特異吸着低減の点で、20以上であってもよく、40以上であってもよく、60以上であってもよく、80以上であってもよく、100以上であってもよく、200以下であってもよい。 The number average degree of polymerization of the hydrophilic block A in the diblock copolymer of the present disclosure may be 20 or more, 40 or more, or 60 or more in terms of reducing nonspecific adsorption. Generally, it may be 80 or more, 100 or more, or 200 or less.
 本開示のジブロック共重合体における疎水性ブロックBの数平均重合度はそれぞれ独立して、膜形成密度の点で、25以上であってもよく、30以上であってもよく、50以上であってもよく、80以上であってもよい。 The number average degree of polymerization of the hydrophobic blocks B in the diblock copolymer of the present disclosure may independently be 25 or more, 30 or more, or 50 or more in terms of film forming density. The number may be 80 or more.
 本開示のジブロック共重合体は、本開示のトリブロック共重合体と同様に、従来公知の有機分析手法により同定してもよい。 The diblock copolymer of the present disclosure, like the triblock copolymer of the present disclosure, may be identified by conventionally known organic analysis techniques.
 本開示のジブロック共重合体は、本開示のトリブロック共重合体または当該共重合体のミセルのジスルフィド結合を切断することによって得られる。ジスルフィド結合の切断は、従来公知の還元剤を使用さればよい。 The diblock copolymer of the present disclosure can be obtained by cleaving the disulfide bonds of the triblock copolymer of the present disclosure or micelles of the copolymer. A conventionally known reducing agent may be used to cleave the disulfide bond.
 <高分子膜の製造方法>
 本開示の高分子膜の製造方法の一例は、本開示のトリブロック共重合体のミセルを含むコーティング剤を調製する工程と、当該コーティング剤を基板に配置する工程と、本開示のトリブロック共重合体のミセルのジスルフィド結合を切断し、ジブロック共重合体を形成する工程と、を含む。
<Production method of polymer membrane>
An example of the method for producing a polymer film of the present disclosure includes a step of preparing a coating agent containing micelles of the triblock copolymer of the present disclosure, a step of disposing the coating agent on a substrate, and a step of preparing a coating agent containing micelles of the triblock copolymer of the present disclosure. cleaving disulfide bonds in micelles of the polymer to form a diblock copolymer.
 本開示のトリブロック共重合体のミセルも本開示の一態様に含まれる。当該ミセルはフラワー型ミセルである。 Micelles of the triblock copolymer of the present disclosure are also included in one embodiment of the present disclosure. The micelles are flower-shaped micelles.
 また、本開示の高分子膜の製造方法の一例は、本開示のトリブロック共重合体のジスルフィド結合を切断して得られたジブロック共重合体のミセルを含むコーティング剤を調製する工程と、当該コーティング剤を基板に配置する工程と、を含む。 Further, an example of the method for producing a polymer membrane of the present disclosure includes a step of preparing a coating agent containing micelles of a diblock copolymer obtained by cleaving the disulfide bonds of the triblock copolymer of the present disclosure; arranging the coating agent on the substrate.
 本開示のトリブロック共重合体のジスルフィド結合を切断して得られたジブロック共重合体のミセルも、本開示の一態様に含まれる。当該ミセルは、W/O型ミセルである。 Micelles of diblock copolymers obtained by cleaving the disulfide bonds of the triblock copolymers of the present disclosure are also included in one embodiment of the present disclosure. The micelles are W/O type micelles.
 本開示のトリブロック共重合体のミセルを形成後、ジスルフィド結合を切断することによって得られるジブロック共重合体によって形成される高分子膜は、当該ジブロック共重合体の密度が高い。また、本開示のトリブロック共重合体のジスルフィド結合を切断して得られたジブロック共重合体のミセルを使用することによっても、高分子膜の高密度を達成することができる。また、本開示のトリブロック共重合体から得られるジブロック共重合体によって形成される高分子膜は、非特異吸着量が低減される。 A polymer membrane formed by a diblock copolymer obtained by cleaving disulfide bonds after forming micelles of the triblock copolymer of the present disclosure has a high density of the diblock copolymer. Furthermore, a high density polymer membrane can also be achieved by using micelles of a diblock copolymer obtained by cleaving the disulfide bonds of the triblock copolymer of the present disclosure. Furthermore, the polymer membrane formed by the diblock copolymer obtained from the triblock copolymer of the present disclosure has a reduced amount of nonspecific adsorption.
 本開示のジブロック共重合体を基板22に固定化する方法として、例えば、溶媒にポリマー3を溶解させて得られたポリマー溶液を基板22に塗布し乾燥させる方法、放射線または紫外線によるグラフト重合、基板22の官能基との化学反応等が挙げられる。これらの方法によって、基板22上にポリマー3から構成される高分子膜1が形成される。 Methods for immobilizing the diblock copolymer of the present disclosure on the substrate 22 include, for example, a method in which a polymer solution obtained by dissolving polymer 3 in a solvent is applied to the substrate 22 and dried, graft polymerization using radiation or ultraviolet rays, Examples include a chemical reaction with a functional group of the substrate 22. By these methods, the polymer film 1 made of the polymer 3 is formed on the substrate 22.
 第2物質4をポリマー3(高分子膜1)上に固定する方法として、例えば、ポリマー3が有するカルボキシル基に第2物質4を共有結合させる方法が挙げられる。例えば、ポリマー3を、N-ヒドロキシスクシンイミド(NHS)および1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)と反応させる(NHS/EDC活性化)。そして、ポリマー3が有するカルボキシル基がNHSエステル基に置換する。この活性化されたNHSエステル基に第2物質4のアミノ基を反応させることによって、第2物質4がポリマー3(高分子膜1)上に固定される。ポリマー3のNHS/EDC活性化は、基板22に固定化する前に行ってもよく、基板22の固定化後に行ってもよい。本実施形態のポリマーは、高い化学的安定性を有するため、NHS/EDC活性化によって分解が起こり難い。したがって、NHS/EDC活性化に伴う分解物に起因する非特異吸着を低減することができる。 An example of a method for fixing the second substance 4 onto the polymer 3 (polymer membrane 1) is a method of covalently bonding the second substance 4 to a carboxyl group that the polymer 3 has. For example, polymer 3 is reacted with N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (NHS/EDC activation). Then, the carboxyl group that polymer 3 has is substituted with an NHS ester group. The second substance 4 is fixed on the polymer 3 (polymer membrane 1) by reacting the activated NHS ester group with the amino group of the second substance 4. NHS/EDC activation of the polymer 3 may be performed before immobilizing on the substrate 22 or after immobilizing the substrate 22. Since the polymer of this embodiment has high chemical stability, it is unlikely to be decomposed by NHS/EDC activation. Therefore, non-specific adsorption caused by decomposition products accompanying NHS/EDC activation can be reduced.
 〔実施形態2〕
 以下、図面を適宜に使用して、一実施形態に係る測定用担体について説明する。説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。図4に、本実施形態に係る測定用担体11の概略構成を示す。測定用担体11の例として、ELISA(酵素結合免疫吸着)用のプレート等が挙げられる。
[Embodiment 2]
Hereinafter, a measurement carrier according to one embodiment will be described using the drawings as appropriate. For convenience of explanation, members having the same functions as those described in the above embodiments are denoted by the same reference numerals, and the description thereof will not be repeated. FIG. 4 shows a schematic configuration of the measurement carrier 11 according to this embodiment. An example of the measurement carrier 11 is a plate for ELISA (enzyme-linked immunosorbent).
 測定用担体11は、検体に含まれる標的物質(第1物質5)を特異的に捕捉するための検出領域31およびブロッキング剤等を非選択的に吸着させる非検出領域32を測定基板12の表面に備えている。検出領域31には、高分子膜1が固定されている。 The measurement carrier 11 has a detection region 31 for specifically capturing the target substance (first substance 5) contained in the sample and a non-detection region 32 for non-selectively adsorbing a blocking agent etc. on the surface of the measurement substrate 12. We are preparing for The polymer film 1 is fixed to the detection region 31 .
 高分子膜1上には、実施形態1で説明した高分子膜1と同様に、第1物質5と反応する第2物質4が固定されている。非検出領域32には、非特異吸着性が高まるように調整された膜を固定していてもよい。 A second substance 4 that reacts with the first substance 5 is fixed on the polymer membrane 1, similar to the polymer membrane 1 described in the first embodiment. A membrane adjusted to increase non-specific adsorption may be fixed to the non-detection region 32.
 (測定用担体の使用例)
 まず、検出領域31の高分子膜1に所望の第2物質4を固定する。また、非検出領域32に、ブロッキング剤を非選択的に吸着させる。その後、検体を検出領域31に接触させることにより、検体に含まれる標的物質である第1物質5が第2物質4と反応し、当該反応を検出試薬によって検出する。検出試薬の例として、酸化還元物質、蛍光物質、酵素および色素化合物等が挙げられる。
(Example of use of measurement carrier)
First, a desired second substance 4 is fixed on the polymer film 1 in the detection region 31 . Further, the blocking agent is non-selectively adsorbed to the non-detection region 32 . Thereafter, by bringing the specimen into contact with the detection region 31, the first substance 5, which is a target substance contained in the specimen, reacts with the second substance 4, and the reaction is detected by the detection reagent. Examples of detection reagents include redox substances, fluorescent substances, enzymes, and dye compounds.
 (測定基板)
 測定基板12は、例えば、金、銀、銅、白金およびアルミニウム等の金属;ポリエチレンおよびポリプロピレン等のプラスチック;酸化チタン、シリカ、ガラスおよびセラミック等の無機素材;などであればよい。測定基板12は、これらの例に限定されない。
(Measurement board)
The measurement substrate 12 may be made of, for example, metals such as gold, silver, copper, platinum, and aluminum; plastics such as polyethylene and polypropylene; and inorganic materials such as titanium oxide, silica, glass, and ceramics. The measurement substrate 12 is not limited to these examples.
 測定基板12の形状は、例えば、板状、粒子、微小構造体およびマイクロタイタープレート等であればよい。測定基板12の形状は、これらの例に限定されない。 The shape of the measurement substrate 12 may be, for example, a plate, a particle, a microstructure, a microtiter plate, or the like. The shape of the measurement substrate 12 is not limited to these examples.
 (測定キット)
 高分子膜1が固定された測定基板12と、第2物質4と、検出試薬とを含む測定キットも本開示の範囲に含まれる。第2物質4は、製品の製造時において高分子膜1に予め固定されていてもよいし、測定前にユーザによって固定されてもよい。
(Measurement kit)
A measurement kit including a measurement substrate 12 on which a polymer film 1 is fixed, a second substance 4, and a detection reagent is also included within the scope of the present disclosure. The second substance 4 may be fixed to the polymer membrane 1 in advance during product manufacture, or may be fixed by the user before measurement.
 本実施形態に係る測定キットは、他の試薬や器具を含んでもよい。例えば、上述した、第2物質4および検出試薬以外の成分を備えていてもよい。また、バッファー等を備えていてもよい。また、本実施形態に係る測定キットは、複数の異なる試薬を、適切な容量および/または形態で混合していてもよいし、それぞれ別の容器により提供してもよい。また、本実施形態に係る測定キットには、上記第1物質5と第2物質4との反応の検出を得るための手順等を記載した指示書を含んでもよい。紙もしくはその他の媒体に書かれていても印刷されていてもよく、または磁気テープ、コンピューター等の読み取り可能なディスクまたはCD-ROM等のような電子媒体に付されてもよい。 The measurement kit according to this embodiment may include other reagents and instruments. For example, components other than the second substance 4 and the detection reagent described above may be included. Further, a buffer or the like may be provided. Furthermore, the measurement kit according to the present embodiment may include a plurality of different reagents mixed in appropriate volumes and/or forms, or may be provided in separate containers. Further, the measurement kit according to the present embodiment may include an instruction sheet describing the procedure for detecting the reaction between the first substance 5 and the second substance 4. It may be written or printed on paper or other media, or it may be attached to an electronic medium such as a magnetic tape, a computer readable disk, or a CD-ROM or the like.
 〔まとめ〕
 本開示の態様1に係る共重合体は、下記式(1)~(6)で表される構造単位(a)のうち、少なくとも1つの構造単位(a)を含む2つの親水性ブロックAと、
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
(式中、R~Rはそれぞれ独立してHまたはCHであり、X~Xはそれぞれ独立してOまたはNHであり、p~pはそれぞれ独立して1以上3以下の整数であり、q~qはそれぞれ独立しては1以上5以下の整数である。)
 前記2つの親水性ブロックAの間に、下記式(7)および(8)で表される構造単位(b)のうち少なくとも1つの構造単位(b)を含む疎水性ブロックBと、を含み、
Figure JPOXMLDOC01-appb-C000027
(式中、RおよびR10はそれぞれ独立してHまたはCHであり、R、R11およびR12はそれぞれ独立して炭素数1以上6以下のアルキル基であり、XおよびXはOまたはNHであり、rは1以上3以下の整数である。)
 前記疎水性ブロックBは、前記構造単位(b)の間にジスルフィド結合を有する。
〔summary〕
The copolymer according to aspect 1 of the present disclosure comprises two hydrophilic blocks A containing at least one structural unit (a) among the structural units (a) represented by the following formulas (1) to (6). ,
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
(In the formula, R 1 to R 7 are each independently H or CH 3 , X 1 to X 4 are each independently O or NH, and p 1 to p 5 are each independently 1 to 3 The following integers are shown, and q 1 to q 2 are each independently an integer between 1 and 5.)
Between the two hydrophilic blocks A, a hydrophobic block B containing at least one structural unit (b) among the structural units (b) represented by the following formulas (7) and (8),
Figure JPOXMLDOC01-appb-C000027
(In the formula, R 8 and R 10 are each independently H or CH 3 , R 9 , R 11 and R 12 are each independently an alkyl group having 1 to 6 carbon atoms, and X 5 and 6 is O or NH, and r is an integer from 1 to 3.)
The hydrophobic block B has a disulfide bond between the structural units (b).
 本開示の態様2に係る共重合体は、前記態様1において、前記共重合体に含まれる前記疎水性ブロックBを構成する前記構造単位(b)の割合は、30モル%以上80モル%以下であってもよい。 In the copolymer according to Aspect 2 of the present disclosure, in Aspect 1, the proportion of the structural unit (b) constituting the hydrophobic block B contained in the copolymer is 30 mol% or more and 80 mol% or less. It may be.
 本開示の態様3に係る共重合体は、前記態様1または2において、前記共重合体に含まれる前記親水性ブロックAを構成する前記構造単位(a)の割合は、20モル%以上70モル%以下であってもよい。 In the copolymer according to Aspect 3 of the present disclosure, in Aspect 1 or 2, the proportion of the structural unit (a) constituting the hydrophilic block A contained in the copolymer is 20 mol % or more and 70 mol %. % or less.
 本開示の態様4に係る共重合体は、前記態様1から3のいずれかにおいて、前記共重合体に含まれる、前記構造単位(b)のモル数1に対する、前記構造単位(a)のモル数の割合は、0.20以上2.5以下であってもよい。 The copolymer according to Aspect 4 of the present disclosure is provided in any one of Aspects 1 to 3, in which the number of moles of the structural unit (a) is 1 per mole of the structural unit (b) contained in the copolymer. The numerical ratio may be 0.20 or more and 2.5 or less.
 本開示の態様5に係る共重合体は、前記態様1から4のいずれかにおいて、前記共重合体の少なくとも一方の末端が、チオール基またはジチオエステル基を有していてもよい。 In the copolymer according to Aspect 5 of the present disclosure, at least one terminal of the copolymer according to any one of Aspects 1 to 4 may have a thiol group or a dithioester group.
 本開示の態様6に係る高分子膜は、下記式(1)~(6)で表される構造単位(a)のうち、少なくとも1つの構造単位(a)を含む親水性ブロックAと、
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
(式中、R~Rはそれぞれ独立してHまたはCHであり、X~Xはそれぞれ独立してOまたはNHであり、p~pはそれぞれ独立して1以上3以下の整数であり、q~qはそれぞれ独立しては1以上5以下の整数である。)
 下記式(7)および(8)で表される構造単位(b)のうち、少なくとも1つの構造単位(b)を含む疎水性ブロックBと、を含み、
Figure JPOXMLDOC01-appb-C000030
(式中、RおよびR10はそれぞれ独立してHまたはCHであり、R、R11およびR12はそれぞれ独立して炭素数1以上6以下のアルキル基であり、XおよびXはOまたはNHであり、rは1以上3以下の整数である。)
 前記疎水性ブロックBの前記親水性ブロックAと結合している側とは反対側の末端が、チオール基またはジチオエステル基を有する共重合体を含む。
The polymer membrane according to aspect 6 of the present disclosure includes a hydrophilic block A containing at least one structural unit (a) among structural units (a) represented by the following formulas (1) to (6);
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
(In the formula, R 1 to R 7 are each independently H or CH 3 , X 1 to X 4 are each independently O or NH, and p 1 to p 5 are each independently 1 to 3 The following integers are shown, and q 1 to q 2 are each independently an integer between 1 and 5.)
A hydrophobic block B containing at least one structural unit (b) among the structural units (b) represented by the following formulas (7) and (8),
Figure JPOXMLDOC01-appb-C000030
(In the formula, R 8 and R 10 are each independently H or CH 3 , R 9 , R 11 and R 12 are each independently an alkyl group having 1 to 6 carbon atoms, and X 5 and 6 is O or NH, and r is an integer from 1 to 3.)
The end of the hydrophobic block B opposite to the side bonded to the hydrophilic block A contains a copolymer having a thiol group or a dithioester group.
 本発明の態様7に係る測定用装置は、前記態様6の高分子膜を備える。 A measuring device according to Aspect 7 of the present invention includes the polymer membrane of Aspect 6 above.
 本発明の態様8に係る測定用担体は、前記態様6の高分子膜を備える。 A measurement carrier according to Aspect 8 of the present invention includes the polymer membrane of Aspect 6 above.
 以上、本開示に係る発明について、諸図面および実施例に基づいて説明してきた。しかし、本開示に係る発明は上述した各実施形態に限定されるものではない。すなわち、本開示に係る発明は本開示で示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示に係る発明の技術的範囲に含まれる。つまり、当業者であれば本開示に基づき種々の変形または修正を行うことが容易であることに注意されたい。また、これらの変形または修正は本開示の範囲に含まれることに留意されたい。 The invention according to the present disclosure has been described above based on the drawings and examples. However, the invention according to the present disclosure is not limited to each embodiment described above. That is, the invention according to the present disclosure can be modified in various ways within the scope shown in the present disclosure, and the invention according to the present disclosure also applies to embodiments obtained by appropriately combining technical means disclosed in different embodiments. Included in technical scope. In other words, it should be noted that those skilled in the art can easily make various changes or modifications based on the present disclosure. It should also be noted that these variations or modifications are included within the scope of this disclosure.
 以下の実施例中、特に記載がない限り、%は質量%を表す。 In the following examples, unless otherwise specified, % represents mass %.
 〔実施例1〕トリブロック共重合体の製造
 <ステップ1.ポリブチルメタクリレート<p(BMA)の合成>
 以下のスキームにしたがって、疎水性ブロックBに相当するp(BMA)を合成した。
Figure JPOXMLDOC01-appb-C000031
[Example 1] Production of triblock copolymer <Step 1. Synthesis of polybutyl methacrylate <p(BMA)>
p(BMA) corresponding to hydrophobic block B was synthesized according to the scheme below.
Figure JPOXMLDOC01-appb-C000031
 p(BMA)はSET-LRP法により合成した。あらかじめ脱酸素処理を行った2-プロパノールに、モノマーのブチルメタクリル酸(BMA)を2.08mol/L、ビス[2-(2’-ブロモイソブチリルオキシ)エチル]ジスルフィド(BiBOEDS)を20.8mmol/L、臭化銅(II)を2.08mmol/L、N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミン(PMDETA)を15.0mmol/Lとなるように溶解した。次に、得られた溶液を、ヒドラジンで還元処理を行った銅ワイヤに加え、窒素中、40℃で6時間反応させた。銅ワイヤの量は、全て溶解すると仮定した際の濃度が305mmol/Lとなる量とした。反応後、反応溶液をろ過し、反応溶液を大量のメタノール(重合溶液に対して15~20倍量)に投入した。そして、沈殿物を濾過して乾燥させることによってp(BMA)を得た。得られたp(BMA)の重合度は核磁気共鳴(NMR)分光法によって算出した。具体的には、H-NMRスペクトルにおける、BiBOEDSの硫黄に結合したメチレン基に由来するピーク(2.9ppm付近のピーク)の面積と、ポリマーのBMAユニットにおける酸素に結合した側鎖(メチレン基)に由来するピーク(3.90ppm~4.00ppm付近のピーク)の面積との比率から算出した。その結果、得られたp(BMA)の重合度は52と推定された。 p(BMA) was synthesized by the SET-LRP method. 2.08 mol/L of monomer butyl methacrylic acid (BMA) and 20.0 mol/L of bis[2-(2'-bromoisobutyryloxy)ethyl] disulfide (BiBOEDS) were added to 2-propanol that had been previously subjected to deoxygenation treatment. 8 mmol/L, copper (II) bromide was dissolved at 2.08 mmol/L, and N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDETA) was dissolved at 15.0 mmol/L. . Next, the obtained solution was added to a copper wire that had been reduced with hydrazine, and reacted in nitrogen at 40° C. for 6 hours. The amount of copper wire was such that the concentration would be 305 mmol/L assuming that it was all dissolved. After the reaction, the reaction solution was filtered and poured into a large amount of methanol (15 to 20 times the volume of the polymerization solution). Then, p(BMA) was obtained by filtering and drying the precipitate. The degree of polymerization of the obtained p(BMA) was calculated by nuclear magnetic resonance (NMR) spectroscopy. Specifically, the area of the peak (peak around 2.9 ppm) derived from the methylene group bonded to sulfur of BiBOEDS in the 1 H-NMR spectrum and the side chain (methylene group bonded to oxygen) in the BMA unit of the polymer are determined. ) and the area of the peak (peak around 3.90 ppm to 4.00 ppm). As a result, the degree of polymerization of the obtained p(BMA) was estimated to be 52.
 <ステップ2.N,N-ジメチルアミノエチルメタクリレート(DMAEMA)の重合>
 以下のスキームにしたがって、DMAEMAを重合した。
Figure JPOXMLDOC01-appb-C000032
<Step 2. Polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA)>
DMAEMA was polymerized according to the following scheme.
Figure JPOXMLDOC01-appb-C000032
 DMAEMAの重合は、ステップ1で合成したp(BMA)をマクロ開始剤として使用したSET-LRP法により行った。あらかじめ脱酸素処理を行った2-プロパノールに、モノマーのDMAEMAを1.50mol/L、ステップ1で合成したp(BMA)を15.0mmol/L、臭化銅(II)を1.50mmol/L、PMDETAを10.8mmol/Lとなるように溶解した。次に、得られた溶液を、ヒドラジンで還元処理を行った銅ワイヤに加え、窒素中、40℃で8時間反応させた。銅ワイヤの量は、全て溶解すると仮定した際の濃度が220mmol/Lとなる量とした。反応後45℃の温水を投入した。そして、沈殿物を濾過して乾燥させることによってp(BMA)-b-p(DMAEMA)を得た。得られたp(BMA)-b-p(DMAEMA)の重合度は、核磁気共鳴(NMR)分光法によって算出した。具体的には、H-NMRスペクトルにおける、BMAユニットに由来する1.5ppm付近のピークの面積と、ポリマーのDMAEMAユニットに由来する2.3ppm付近のピークの面積との比率から算出した。その結果、BMAユニットとDMAEMAユニットとの比率(BMA:DMAEMA)が52:42と推定された。 Polymerization of DMAEMA was performed by the SET-LRP method using p(BMA) synthesized in Step 1 as a macroinitiator. Add 1.50 mol/L of monomer DMAEMA, 15.0 mmol/L of p(BMA) synthesized in step 1, and 1.50 mmol/L of copper(II) bromide to 2-propanol that has been previously deoxidized. , PMDETA was dissolved to a concentration of 10.8 mmol/L. Next, the obtained solution was added to a copper wire that had been reduced with hydrazine, and reacted in nitrogen at 40° C. for 8 hours. The amount of copper wire was such that the concentration would be 220 mmol/L assuming that all of the copper wire was dissolved. After the reaction, 45°C warm water was added. Then, the precipitate was filtered and dried to obtain p(BMA)-bp(DMAEMA). The degree of polymerization of the obtained p(BMA)-bp(DMAEMA) was calculated by nuclear magnetic resonance (NMR) spectroscopy. Specifically, it was calculated from the ratio of the area of the peak around 1.5 ppm originating from the BMA unit and the area of the peak around 2.3 ppm originating from the DMAEMA unit of the polymer in the 1 H-NMR spectrum. As a result, the ratio of BMA units to DMAEMA units (BMA:DMAEMA) was estimated to be 52:42.
<ステップ3.DMAEMAユニットの4級アンモニウム化>
 以下のスキームにしたがって、DMAEMAユニットの側鎖を4級アンモニウム化した。
Figure JPOXMLDOC01-appb-C000033
<Step 3. Quaternary ammonium conversion of DMAEMA unit>
The side chain of the DMAEMA unit was converted into a quaternary ammonium according to the scheme below.
Figure JPOXMLDOC01-appb-C000033
 ステップ2で合成したp(BMA)-b-p(DMAEMA)をDMAEMAユニットが500mmol/Lとなるように溶解させた2-プロパノールに、ブロモ酢酸tert-ブチルを750mmol/Lとなるように加え、室温で20時間反応させた。反応をn-ヘキサンを投入した。そして沈殿物をろ過して乾燥させることによってDMAEMAユニット側鎖を4級アンモニウム化した。核磁気共鳴(NMR)分光法により、H-NMRスペクトルにてtert-ブチル基に由来するピークが見られ、DMAEMAユニット側鎖の4級アンモニウム化を確認した。 To 2-propanol in which p(BMA)-bp(DMAEMA) synthesized in step 2 was dissolved so that the DMAEMA unit was 500 mmol/L, tert-butyl bromoacetate was added at a concentration of 750 mmol/L. The reaction was allowed to proceed at room temperature for 20 hours. N-hexane was added to the reaction. The precipitate was then filtered and dried to convert the DMAEMA unit side chain into a quaternary ammonium. By nuclear magnetic resonance (NMR) spectroscopy, a peak derived from a tert-butyl group was observed in the 1 H-NMR spectrum, confirming quaternary ammonium formation of the side chain of the DMAEMA unit.
<ステップ4.DMAEMAユニットのベタイン化>
 以下のスキームにしたがって、DMAEMAユニットの側鎖をベタイン化した。
Figure JPOXMLDOC01-appb-C000034
 ステップ3で得られた、DMAEMAユニットの側鎖が4級アンモニウム化されたブロック共重合体をトリフルオロ酢酸に溶解させ、室温で20時間反応させた。反応後、エバポレーションによりトリフルオロ酢酸を留去し、ポリマーの粉末を回収した。ポリマーの粉末をメタノールに溶解させ、ジエチルエーテルを投入して再沈殿させ、沈殿物をろ過して乾燥させることにより、ポリマーの粉末を得た。核磁気共鳴(NMR)分光法により、H-NMRスペクトルにてtert-ブチル基に由来するピークが消失していた。NMR分光法の結果から、tert-ブチル基が脱保護され、目的のトリブロック共重合体であるp(BMA)-b-p(CBMA1)が得られたことを確認した。
<Step 4. Betaining DMAEMA unit>
The side chain of the DMAEMA unit was betaineated according to the scheme below.
Figure JPOXMLDOC01-appb-C000034
The block copolymer obtained in step 3 in which the side chain of the DMAEMA unit was quaternary ammonium was dissolved in trifluoroacetic acid and reacted at room temperature for 20 hours. After the reaction, trifluoroacetic acid was distilled off by evaporation, and polymer powder was recovered. A polymer powder was obtained by dissolving the polymer powder in methanol, adding diethyl ether to cause reprecipitation, and filtering and drying the precipitate. Nuclear magnetic resonance (NMR) spectroscopy revealed that the peak derived from the tert-butyl group had disappeared in the 1 H-NMR spectrum. From the results of NMR spectroscopy, it was confirmed that the tert-butyl group was deprotected and the desired triblock copolymer p(BMA)-bp(CBMA1) was obtained.
 上記合成スキームによって得られたトリブロック共重合体は、以下の式で表される。
 p(CBMA1)-p(BMA)-SS-p(BMA)-p(CBMA1)
 「p(CBMA1」)が親水性ブロックAであり、「p(BMA)-SS-p(BMA)」が疎水性ブロックBである。疎水性ブロックB中の「SS」はジスルフィド結合を表す。
The triblock copolymer obtained by the above synthesis scheme is represented by the following formula.
p(CBMA1)-p(BMA)-SS-p(BMA)-p(CBMA1)
"p(CBMA1") is the hydrophilic block A, and "p(BMA)-SS-p(BMA)" is the hydrophobic block B. "SS" in hydrophobic block B represents a disulfide bond.
 上記合成スキームによって得られたトリブロック共重合体の各ブロックの重合度は、42-52-SS-52-42であった。すなわち、上記合成スキームによって、重合度が42である2つの親水性ブロックAの間に、重合度が104である、ジスルフィド結合を含む疎水性ブロックBを含む、ABA型トリブロック共重合体が得られた。 The degree of polymerization of each block of the triblock copolymer obtained by the above synthesis scheme was 42-52-SS-52-42. That is, by the above synthesis scheme, an ABA type triblock copolymer containing a hydrophobic block B containing a disulfide bond and having a degree of polymerization of 104 between two hydrophilic blocks A having a degree of polymerization of 42 was obtained. It was done.
 また、以下の重合度であるトリブロック共重合体(p(CBMA1)-p(BMA)-SS-p(BMA)-p(CBMA1))も製造した。
・24-27-SS-27-24
・24-31-SS-31-24
・20-84-SS-84-20
・71-31-SS-31-71
・80-84-SS-84-80
A triblock copolymer (p(CBMA1)-p(BMA)-SS-p(BMA)-p(CBMA1)) having the following degree of polymerization was also produced.
・24-27-SS-27-24
・24-31-SS-31-24
・20-84-SS-84-20
・71-31-SS-31-71
・80-84-SS-84-80
 さらに、以下のスキームにしたがって、トリブロック共重合体(p(HPMA)-p(BMA)-SS-p(BMA)-p(HPMA))も製造した。
Figure JPOXMLDOC01-appb-C000035
Furthermore, a triblock copolymer (p(HPMA)-p(BMA)-SS-p(BMA)-p(HPMA)) was also produced according to the following scheme.
Figure JPOXMLDOC01-appb-C000035
 HPMAの重合は、ステップ1と同様の方法で合成したp(BMA)ユニットが86量体であるp(BMA)をマクロ開始剤として使用したSET-LRP法により行った。あらかじめ脱酸素処理を行った2-プロパノールに、モノマーのHPMAを2.00mol/L、ステップ1で合成したp(BMA)を10.0mmol/L、臭化銅(II)を2.00mmol/L、MeTREN(トリス[2-(ジメチルアミノ)エチルアミン)を15.0mmol/Lとなるように溶解した。次に、得られた溶液を、ヒドラジンで還元処理を行った銅ワイヤに加え、窒素中、40℃で91時間反応させた。銅ワイヤの量は、全て溶解すると仮定した際の濃度が305mmol/Lとなる量とした。反応後、溶液の可溶部に水を投入した。そして、傾斜法により可溶部を除去し、乾燥させることによってp(BMA)-b-p(HPMA)を得た。得られたp(BMA)-b-p(HPMA)の重合度は、核磁気共鳴(NMR)分光法によって算出した。具体的には、H-NMRスペクトルにおける、BMAユニットに由来する4ppm付近のピークの面積と、ポリマーのHPMAユニットに由来する2.9ppm付近のピークの面積との比率から算出した。その結果、BMAユニットとHPMAユニットとの比率(BMA:HPMA)が86:14と推定された。 The polymerization of HPMA was carried out by the SET-LRP method using p(BMA) in which the p(BMA) unit was an 86-mer synthesized in the same manner as in Step 1 as a macroinitiator. Add 2.00 mol/L of monomer HPMA, 10.0 mmol/L of p(BMA) synthesized in step 1, and 2.00 mmol/L of copper(II) bromide to 2-propanol that has been previously deoxidized. , Me 6 TREN (tris[2-(dimethylamino)ethylamine) was dissolved at a concentration of 15.0 mmol/L. Next, the obtained solution was added to a copper wire that had been reduced with hydrazine, and reacted in nitrogen at 40° C. for 91 hours. The amount of copper wire was such that the concentration would be 305 mmol/L assuming that it was all dissolved. After the reaction, water was added to the soluble portion of the solution. Then, the soluble portion was removed by a decanting method, and p(BMA)-bp(HPMA) was obtained by drying. The degree of polymerization of the obtained p(BMA)-bp(HPMA) was calculated by nuclear magnetic resonance (NMR) spectroscopy. Specifically, it was calculated from the ratio of the area of the peak around 4 ppm originating from the BMA unit and the area of the peak around 2.9 ppm originating from the HPMA unit of the polymer in the 1 H-NMR spectrum. As a result, the ratio of BMA units to HPMA units (BMA:HPMA) was estimated to be 86:14.
 〔実施例2〕非特異吸着量の測定
 当該高分子膜への胎児ウシ血清の非特異吸着量を下記条件により測定した。
 測定装置:GEヘルスケア社製 Biacore X100
 測定条件:ランニング緩衝液:HBS-P
   温度:25℃
   流速:10μL/分
   検体接触時間:9分(検体注入量 90μL)
[Example 2] Measurement of non-specific adsorption amount The non-specific adsorption amount of fetal bovine serum to the polymer membrane was measured under the following conditions.
Measuring device: Biacore X100 manufactured by GE Healthcare
Measurement conditions: Running buffer: HBS-P
Temperature: 25℃
Flow rate: 10μL/min Sample contact time: 9 minutes (sample injection volume 90μL)
 表面にp(CBMA1)-p(BMA)-SS-p(BMA)-p(CBMA1)からなる高分子膜を形成させたSPRチップを使用し、検体注入後9分間ランニング緩衝液を流した後のSPR信号値と、検体注入前のSPR信号値との差分を非特異吸着量とし、10RUを1ng/cmと換算した。 Using an SPR chip on which a polymer film consisting of p(CBMA1)-p(BMA)-SS-p(BMA)-p(CBMA1) was formed, running buffer was allowed to flow for 9 minutes after sample injection. The difference between the SPR signal value of and the SPR signal value before sample injection was defined as the non-specific adsorption amount, and 10 RU was converted to 1 ng/cm 2 .
 高分子膜を形成させたSPRチップの作成条件を以下に示す。SIA kit Au(GEヘルスケア社製)をピラニア溶液で洗浄した。次に、1-ドデカンチオールの1mmol/Lエタノール溶液に浸漬し、一晩放置した。次に、SPRチップをエタノールおよび超純水で洗浄した。次に、トリブロック共重合体を濃度0.3mg/mLとなるように溶解したメタノール溶液に18時間浸漬し、高分子膜を形成させた。その後、チップを超純水で洗浄し、窒素流にて乾燥させて、高分子膜を形成させたSPRチップを得た。 The conditions for creating an SPR chip with a polymer film formed are shown below. SIA kit Au (manufactured by GE Healthcare) was washed with piranha solution. Next, it was immersed in a 1 mmol/L ethanol solution of 1-dodecanethiol and left overnight. Next, the SPR chip was washed with ethanol and ultrapure water. Next, it was immersed for 18 hours in a methanol solution in which the triblock copolymer was dissolved at a concentration of 0.3 mg/mL to form a polymer film. Thereafter, the chip was washed with ultrapure water and dried in a nitrogen stream to obtain an SPR chip with a polymer film formed thereon.
 非特異吸着量の測定結果を表1および図5~6に示す。図5はトリブロック共重合体のユニット比(CBMA1/BMA)と非特異吸着量との関係を示すグラフである。図6は、トリブロック共重合体中のCBMA1の平均重合度と非特異吸着量との関係を示すグラフである。 The measurement results of the amount of non-specific adsorption are shown in Table 1 and Figures 5 and 6. FIG. 5 is a graph showing the relationship between the unit ratio (CBMA1/BMA) of the triblock copolymer and the amount of non-specific adsorption. FIG. 6 is a graph showing the relationship between the average degree of polymerization of CBMA1 in the triblock copolymer and the amount of non-specific adsorption.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 高分子膜の非特異吸着量は20ng/cm以下が好ましく、膜形成密度が高い程非特異吸着量が低減することが知られている。表1および図5~6の結果から、トリブロック共重合体のユニット比(CBMA1/BMA)が0.20以上2.5以下であると、非特異吸着量が低減し、ユニット比は1以下がさらに好ましいことが分かった。また、CBMA1の数平均重合度は70程度までが好ましく、20~40程度がさらに好ましいことがわかった。CBMA1は非特異吸着抑制能を有するため、一見、CBMA1ユニットが多い方が好ましいと思われる。一方で、ミセル形成にはCBMA1ユニットが少ない方が有利であると考えられるため、本実施例の結果はミセルを形成することが、非特異吸着低減に有効であることを示唆している。 The non-specific adsorption amount of the polymer membrane is preferably 20 ng/cm 2 or less, and it is known that the higher the film formation density, the lower the non-specific adsorption amount. From the results in Table 1 and Figures 5 and 6, when the unit ratio (CBMA1/BMA) of the triblock copolymer is 0.20 or more and 2.5 or less, the amount of nonspecific adsorption decreases, and the unit ratio is 1 or less. was found to be more preferable. Further, it was found that the number average degree of polymerization of CBMA1 is preferably up to about 70, and more preferably about 20 to 40. Since CBMA1 has the ability to suppress non-specific adsorption, at first glance it seems preferable to have more CBMA1 units. On the other hand, since it is thought that it is more advantageous to have fewer CBMA units for micelle formation, the results of this example suggest that forming micelles is effective in reducing non-specific adsorption.
 本開示は、高分子膜が形成された検出部を備える測定装置、測定用プレートに利用することができる。 The present disclosure can be used in a measurement device and a measurement plate that include a detection section on which a polymer film is formed.
 1 高分子膜
 2 センサ
 3 ポリマー
 4 第2物質
 5 第1物質
 6 制御装置
 11 測定用担体
 12 測定基板
 21 外部端子
 22 基板
 23 検出部
 24 参照部
 25a 第1IDT電極
 25b 第2IDT電極
 26 流路部材
 27 供給口
 28 排出口
 31 検出領域
 32 非検出領域
 100 測定装置
1 Polymer membrane 2 Sensor 3 Polymer 4 Second substance 5 First substance 6 Control device 11 Measurement carrier 12 Measurement substrate 21 External terminal 22 Substrate 23 Detection section 24 Reference section 25a First IDT electrode 25b Second IDT electrode 26 Channel member 27 Supply port 28 Discharge port 31 Detection area 32 Non-detection area 100 Measuring device

Claims (12)

  1.  下記式(1)~(6)で表される構造単位(a)のうち、少なくとも1つの構造単位(a)を含む2つの親水性ブロックAと、
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式中、R~Rはそれぞれ独立してHまたはCHであり、X~Xはそれぞれ独立してOまたはNHであり、p~pはそれぞれ独立して1以上3以下の整数であり、q~qはそれぞれ独立しては1以上5以下の整数である。)
     前記2つの親水性ブロックAの間に、下記式(7)および(8)で表される構造単位(b)のうち少なくとも1つの構造単位(b)を含む疎水性ブロックBと、を含み、
    Figure JPOXMLDOC01-appb-C000003
    (式中、RおよびR10はそれぞれ独立してHまたはCHであり、R、R11およびR12はそれぞれ独立して炭素数1以上6以下のアルキル基であり、XおよびXはOまたはNHであり、rは1以上3以下の整数である。)
     前記疎水性ブロックBは、前記構造単位(b)の間にジスルフィド結合を有する、共重合体。
    Two hydrophilic blocks A containing at least one structural unit (a) among the structural units (a) represented by the following formulas (1) to (6),
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 to R 7 are each independently H or CH 3 , X 1 to X 4 are each independently O or NH, and p 1 to p 5 are each independently 1 to 3 The following integers are shown, and q 1 to q 2 are each independently an integer between 1 and 5.)
    Between the two hydrophilic blocks A, a hydrophobic block B containing at least one structural unit (b) among the structural units (b) represented by the following formulas (7) and (8),
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 8 and R 10 are each independently H or CH 3 , R 9 , R 11 and R 12 are each independently an alkyl group having 1 to 6 carbon atoms, and X 5 and 6 is O or NH, and r is an integer from 1 to 3.)
    The hydrophobic block B is a copolymer having a disulfide bond between the structural units (b).
  2.  前記共重合体に含まれる前記疎水性ブロックBを構成する前記構造単位(b)の割合は、30モル%以上80モル%以下である、請求項1に記載の共重合体。 The copolymer according to claim 1, wherein the proportion of the structural unit (b) constituting the hydrophobic block B contained in the copolymer is 30 mol% or more and 80 mol% or less.
  3.  前記共重合体に含まれる前記親水性ブロックAを構成する前記構造単位(a)の割合は、20モル%以上70モル%以下である、請求項1または2に記載の共重合体。 The copolymer according to claim 1 or 2, wherein the proportion of the structural unit (a) constituting the hydrophilic block A contained in the copolymer is 20 mol% or more and 70 mol% or less.
  4.  前記共重合体に含まれる、前記構造単位(b)のモル数1に対する、前記構造単位(a)のモル数の割合は、0.20以上2.5以下である、請求項1~3のいずれか1項に記載の共重合体。 Claims 1 to 3, wherein the ratio of the number of moles of the structural unit (a) to the number of moles of the structural unit (b) contained in the copolymer is 0.20 or more and 2.5 or less. The copolymer according to any one of the items.
  5.  前記共重合体の少なくとも一方の末端が、チオール基またはジチオエステル基を有する、請求項1~4のいずれか1項に記載の共重合体。 The copolymer according to any one of claims 1 to 4, wherein at least one terminal of the copolymer has a thiol group or a dithioester group.
  6.  前記2つの親水性ブロックAは、互いに構造が同じである、請求項1~5のいずれか1項に記載の共重合体。 The copolymer according to any one of claims 1 to 5, wherein the two hydrophilic blocks A have the same structure.
  7.  前記2つの親水性ブロックAは、数平均重合度が100以上である、請求項1~6のいずれか1項に記載の共重合体。 The copolymer according to any one of claims 1 to 6, wherein the two hydrophilic blocks A have a number average degree of polymerization of 100 or more.
  8.  前記2つの親水性ブロックAは、両者の合計の数平均重合度が30以上である、請求項1~7のいずれか1項に記載の共重合体。 The copolymer according to any one of claims 1 to 7, wherein the two hydrophilic blocks A have a total number average degree of polymerization of 30 or more.
  9.  前記疎水性ブロックBは、数平均重合度が25以上である、請求項1~8のいずれか1項に記載の共重合体。 The copolymer according to any one of claims 1 to 8, wherein the hydrophobic block B has a number average degree of polymerization of 25 or more.
  10.  下記式(1)~(6)で表される構造単位(a)のうち、少なくとも1つの構造単位(a)を含む親水性ブロックAと、
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (式中、R~Rはそれぞれ独立してHまたはCHであり、X~Xはそれぞれ独立してOまたはNHであり、p~pはそれぞれ独立して1以上3以下の整数であり、q~qはそれぞれ独立しては1以上5以下の整数である。)
     下記式(7)および(8)で表される構造単位(b)のうち、少なくとも1つの構造単位(b)を含む疎水性ブロックBと、を含み、
    Figure JPOXMLDOC01-appb-C000006
    (式中、RおよびR10はそれぞれ独立してHまたはCHであり、R、R11およびR12はそれぞれ独立して炭素数1以上6以下のアルキル基であり、XおよびXはOまたはNHであり、rは1以上3以下の整数である。)
     前記疎水性ブロックBの前記親水性ブロックAと結合している側とは反対側の末端が、チオール基またはジチオエステル基を有する共重合体を含む、高分子膜。
    A hydrophilic block A containing at least one structural unit (a) among the structural units (a) represented by the following formulas (1) to (6),
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, R 1 to R 7 are each independently H or CH 3 , X 1 to X 4 are each independently O or NH, and p 1 to p 5 are each independently 1 to 3 The following integers are shown, and q 1 to q 2 are each independently an integer between 1 and 5.)
    A hydrophobic block B containing at least one structural unit (b) among the structural units (b) represented by the following formulas (7) and (8),
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, R 8 and R 10 are each independently H or CH 3 , R 9 , R 11 and R 12 are each independently an alkyl group having 1 to 6 carbon atoms, and X 5 and 6 is O or NH, and r is an integer from 1 to 3.)
    A polymer membrane, wherein the end of the hydrophobic block B opposite to the side bonded to the hydrophilic block A contains a copolymer having a thiol group or a dithioester group.
  11.  請求項10に記載の高分子膜を備える測定用装置。 A measuring device comprising the polymer membrane according to claim 10.
  12.  請求項10に記載の高分子膜を備える測定用担体。 A measurement carrier comprising the polymer membrane according to claim 10.
PCT/JP2023/016392 2022-04-26 2023-04-26 Copolymer, polymer film, measuring device, and support for measurement WO2023210671A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-072657 2022-04-26
JP2022072657 2022-04-26

Publications (1)

Publication Number Publication Date
WO2023210671A1 true WO2023210671A1 (en) 2023-11-02

Family

ID=88519069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016392 WO2023210671A1 (en) 2022-04-26 2023-04-26 Copolymer, polymer film, measuring device, and support for measurement

Country Status (1)

Country Link
WO (1) WO2023210671A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504093A (en) * 1996-10-11 2001-03-27 アルザ コーポレイション Fusion liposome compositions and methods
US20030181613A1 (en) * 2002-03-18 2003-09-25 Lele Bhalchandra Shripad Amphiphilic diblock, triblock and star-block copolymers and their pharmaceutical compositions
JP2004509181A (en) * 2000-09-18 2004-03-25 ロディア・シミ Synthetic method of block polymer by controlled radical polymerization in the presence of disulfide compound
WO2007063320A1 (en) * 2005-12-03 2007-06-07 The University Of Sheffield Polymer gelator
JP2008506780A (en) * 2004-07-19 2008-03-06 セレーター ファーマスーティカルズ、インク. Particulate constructs for active agent release
CN101563377A (en) * 2006-08-17 2009-10-21 罗地亚运作公司 Block copolymer, process for making the same, and use in emulsions
US20120245244A1 (en) * 2007-10-17 2012-09-27 Sankaran Thayumanavan Cleavable block copolymers, functionalized nanoporous thin films and related methods of preparation
CN104072694A (en) * 2014-06-20 2014-10-01 北京科技大学 Preparation method and application of quadruple-responsiveness block micelle
CN113289015A (en) * 2021-05-13 2021-08-24 华中科技大学 Method for adjusting aggregation degree of photosensitizer, nano coordination polymer and preparation method and application thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504093A (en) * 1996-10-11 2001-03-27 アルザ コーポレイション Fusion liposome compositions and methods
JP2004509181A (en) * 2000-09-18 2004-03-25 ロディア・シミ Synthetic method of block polymer by controlled radical polymerization in the presence of disulfide compound
US20030181613A1 (en) * 2002-03-18 2003-09-25 Lele Bhalchandra Shripad Amphiphilic diblock, triblock and star-block copolymers and their pharmaceutical compositions
JP2008506780A (en) * 2004-07-19 2008-03-06 セレーター ファーマスーティカルズ、インク. Particulate constructs for active agent release
WO2007063320A1 (en) * 2005-12-03 2007-06-07 The University Of Sheffield Polymer gelator
CN101563377A (en) * 2006-08-17 2009-10-21 罗地亚运作公司 Block copolymer, process for making the same, and use in emulsions
US20120245244A1 (en) * 2007-10-17 2012-09-27 Sankaran Thayumanavan Cleavable block copolymers, functionalized nanoporous thin films and related methods of preparation
CN104072694A (en) * 2014-06-20 2014-10-01 北京科技大学 Preparation method and application of quadruple-responsiveness block micelle
CN113289015A (en) * 2021-05-13 2021-08-24 华中科技大学 Method for adjusting aggregation degree of photosensitizer, nano coordination polymer and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US7943370B2 (en) Structure, target substance detection element and target substance detection kit
Brown et al. Synthesis of oligo (ethylene glycol) methacrylate polymer brushes
EP1208126B1 (en) Polymer brushes for immobilizing molecules to a surface or substrate, where the polymers have water-soluble or water-dispersible segments and probes bonded thereto
US7205161B2 (en) Polymer brushes for immobilizing molecules to a surface or substrate having improved stability
US7728094B2 (en) Selfassembled grafted polymeric layer for use in biosensor technology
JP4630865B2 (en) Substance immobilizing agent, substance immobilizing method using the same, and substance immobilizing substrate using the same
JP4818056B2 (en) Structure having a binding functional group on a substrate for binding a capture molecule for capturing a target substance
JP4996579B2 (en) Methods for biomolecule immobilization
US20090148346A1 (en) Substrate with binding functional group
Rastogi et al. Preventing nonspecific adsorption on polymer brush covered gold electrodes using a modified ATRP initiator
JP7443396B2 (en) Copolymers, measuring devices and measuring carriers
WO2023210671A1 (en) Copolymer, polymer film, measuring device, and support for measurement
JP7333462B2 (en) Copolymer, method for producing same, measuring device and carrier for measurement
JP2006322717A (en) Sensor chip and its manufacturing method
JP5672892B2 (en) Copolymer for immobilizing ligand and method for immobilizing ligand with the copolymer
US20040018532A1 (en) Electronic sensor device
EP1369692A2 (en) Sensor surface
JP2011007785A (en) Target molecular interaction substance-immobilized carrier
JP2006335912A (en) Immobilizing agent for physiologically active substance
Brault Multifunctional Zwitterionic Surface Chemistry for Applications in Complex Media
Dong Development of membrane-assisted microfluidic immunosensors with optical detection
JPH11271306A (en) Formation of biologically active substance with high molecular weight
JP2016020822A (en) Carrier for analysis, production method thereof, and use method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796411

Country of ref document: EP

Kind code of ref document: A1