WO2023210376A1 - Pressure sensor and robot - Google Patents

Pressure sensor and robot Download PDF

Info

Publication number
WO2023210376A1
WO2023210376A1 PCT/JP2023/014905 JP2023014905W WO2023210376A1 WO 2023210376 A1 WO2023210376 A1 WO 2023210376A1 JP 2023014905 W JP2023014905 W JP 2023014905W WO 2023210376 A1 WO2023210376 A1 WO 2023210376A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
pressure sensor
image sensor
pressure
Prior art date
Application number
PCT/JP2023/014905
Other languages
French (fr)
Japanese (ja)
Inventor
哲朗 三ツ井
陽大 石井
直之 師岡
遼司 姫野
慎一 森嶌
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023210376A1 publication Critical patent/WO2023210376A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements

Definitions

  • the present invention relates to a pressure sensor used as a blood pressure sensor, a tactile sensor, etc., and a robot equipped with this pressure sensor.
  • Pressure sensors are used in various fields. For example, in recent years, blood pressure has been measured not only in medical facilities but also at home in order to check the state of health and maintain health. Blood pressure measurement devices usually measure blood pressure by wrapping a blood pressure measurement cuff called a cuff around the arm or wrist, compressing blood vessels, blocking blood flow, and then releasing the pressure. , measured using a method called the oscillometric method.
  • blood pressure varies depending on the health condition of the subject. Therefore, for example, if there is a possibility of developing a high-risk disease such as cerebrovascular disease or cardiovascular disease, it is preferable to measure blood pressure continuously.
  • a blood pressure measuring method called tonometry is known as a blood pressure measuring method that can easily and continuously measure blood pressure.
  • the tonometry method is a blood pressure measurement method in which, for example, a pressure sensor is pressed flat against the radial artery near the body surface of the wrist and the blood pressure is measured every beat.
  • Patent Document 1 describes a method for generating blood pressure data by processing output signals from a two-dimensional array of photosensitive elements, in which the two-dimensional array of photosensitive elements is placed on the body surface of a subject. and an output signal from one or a set of photosensitive elements;
  • the optical blood pressure sensor generates a two-dimensional image of the subject's body surface during the period in which blood pressure information is being determined about the subject. and digitally processing the two-dimensional image to thereby obtain a two-dimensional array of digital output values, the output values being output values for one or a set of photosensitive elements.
  • a method for measuring blood pressure by tonometry is disclosed, further comprising applying a calibration relationship to a portion of the array of digital output values corresponding to one or a set of photosensitive elements, thereby obtaining blood pressure data.
  • Non-Patent Document 1 discloses a system that calculates pressure by measuring the deformation of a membrane when it comes into contact with an object from a captured image.
  • the blood pressure measurement method described in Patent Document 1 mentioned above includes a flexible light-reflecting film, a line light source formed by arranging a plurality of light sources in a line, and a line light source disposed between the light-reflecting surface and the line light source. Blood pressure is measured using a line sensor.
  • a flexible light-reflecting film is pressed against the radial artery from the body surface of the subject, and measurement light is irradiated from a line light source to the light-reflecting film. Then, the measurement light reflected by the light reflection film is photometered by a line sensor. Since the light reflecting surface has flexibility, it deforms in response to expansion of the radial artery due to heartbeat. Further, the degree of deformation of the light reflecting surface changes depending on blood pressure. As a result, the intensity of reflected light received by each pixel of the line sensor also changes depending on the blood pressure. Therefore, blood pressure can be measured by knowing in advance the relationship between blood pressure and the image output by the line sensor.
  • the pressure sensor has a fast response to pressure, a wide pressure measurement range, high accuracy, and the ability to detect the contact area and shape.
  • the device for robot applications, for example, it is required that the device be of a size that is easy to install in a required location, that wiring is easy, and that data processing is easy.
  • the system described in Non-Patent Document 1 has simple wiring and is easy to implement on a robot arm.
  • this system measures pressure from the deformation of the membrane, special calculation processing is required for pressure measurement.
  • the object of the present invention is to provide a new pressure sensor that can easily measure pressure, which is used for blood pressure measurement using the tonometry method as described above, tactile sensing in robot applications, etc.
  • the purpose of the present invention is to provide a robot equipped with a tactile sensor.
  • the present invention has the following configuration.
  • An image sensor a light reflecting layer whose reflection characteristics change according to pressure, the layer facing the imaging surface of the imaging device and disposed apart from the imaging device; Pressure is detected from changes in the image captured by the image sensor when pressure is applied from the side of the light reflection layer opposite to the image sensor with light entering between the image sensor and the light reflection layer. sensor.
  • the pressure sensor according to [1] which includes a light guide layer between the image sensor and the light reflection layer.
  • the pressure sensor according to [1] which includes a light source that enters light between the image sensor and the light reflection layer.
  • the pressure sensor according to [2] which includes a light source that enters light between the image sensor and the light reflection layer.
  • the cellulose contains a cured product of a cellulose compound having a polymerizable group.
  • a novel pressure sensor that can easily measure pressure, which is used for blood pressure measurement by tonometry method, tactile detection in robot applications, etc., and a tactile sensor for this pressure sensor.
  • a robot that can be installed as a robot is provided.
  • FIG. 1 is a diagram conceptually showing an example in which an example of the pressure sensor of the present invention is utilized as a blood pressure sensor.
  • FIG. 2 is a plan view of the blood pressure sensor shown in FIG. 1.
  • FIG. 3 is a diagram conceptually showing an example of a state in which the blood pressure sensor shown in FIG. 1 is attached to a subject.
  • FIG. 4 is a diagram conceptually showing another example in which the pressure sensor of the present invention is used as a blood pressure sensor.
  • FIG. 5 is a diagram conceptually showing another example in which the pressure sensor of the present invention is used as a blood pressure sensor.
  • FIG. 6 is a plan view of the blood pressure sensor shown in FIG. 5.
  • FIG. 7 is a diagram conceptually showing another example of the pressure sensor of the present invention.
  • FIG. 8 is a diagram conceptually showing an example of the use of the pressure sensor shown in FIG. 7.
  • a numerical range expressed using “ ⁇ ” means a range that includes the numerical values written before and after “ ⁇ ” as lower and upper limits.
  • “same” includes a generally accepted error range in the technical field.
  • the bonding direction of the divalent group (for example, -CO-O-, etc.) described herein is not limited unless otherwise specified.
  • Y in a compound represented by the formula "X-Y-Z" is -CO-O-
  • the above compound has the formula "X-O-CO-Z" and "X-CO-O- Z" may be used.
  • FIG. 1 conceptually shows an example in which the pressure sensor of the present invention is used as a blood pressure sensor.
  • the following explanation is an explanation of an example in which the pressure sensor of the present invention is used as a blood pressure sensor, but the structure and pressure measurement function of the pressure sensor of the present invention are basically similar to the blood pressure sensor described below. The same is true. Therefore, the following description also serves as a description of the pressure sensor of the present invention even if there is no particular description of "pressure sensor.”
  • the blood pressure sensor 10 shown in FIG. 1 includes a substrate 12, an image sensor 14, a light guide layer 16, a light reflection layer 18, a light absorption layer 20 as a light shielding layer, and a light source 24.
  • FIG. 2 shows a diagram of the blood pressure sensor 10 viewed from the light absorption layer 20 side.
  • the image sensor 14, the light guide layer 16, the light reflection layer 18, and the light absorption layer 20 are all sheet-like (plate-like, film-like, layer-like) members.
  • the image sensor 14, the light guide layer 16, the light reflection layer 18, and the light absorption layer 20 have the same rectangular (rectangular) planar shape and are stacked with their outer peripheries aligned.
  • the sizes and/or shapes of the image sensor 14, the light guide layer 16, the light reflection layer 18, and the light absorption layer 20 may not have to match.
  • Each component may be shifted even if it has the same size and/or shape.
  • the light absorption layer 20 may partially cover the side surface of the light reflection layer 18.
  • three light sources 24 are arranged in the longitudinal direction of the image sensor 14 so as to sandwich the image sensor 14 in the lateral direction.
  • FIG. 3 conceptually shows a state in which the blood pressure sensor 10 is attached to a blood pressure subject.
  • the blood pressure sensor 10 is used, for example, in a wristwatch-type blood pressure measurement device, and is fixed inside a band 28 of the blood pressure measurement device.
  • the blood pressure sensor 10 is attached to a band 28 with the light absorption layer 20 facing the epidermis S of the subject, so that the longitudinal direction of the image sensor 14 crosses the blood vessel to be measured, for example, the radial artery A (see FIG. 2). It is attached to the epidermis S of the wrist of the subject.
  • the blood pressure sensor 10 is attached by pressing the epidermis S of the subject with a constant force so as to press the radial artery A with a constant force. Therefore, the band 28 of the wristwatch-type blood pressure measuring device is wrapped around the subject's wrist so as to tighten the subject's wrist with a constant force when measuring blood pressure.
  • the blood pressure measurement device has an actuator at the part of the band 28 where the blood pressure sensor 10 is attached, and by lightly tightening the band 28 with the actuator, the band 28 tightens the subject's wrist with a constant force.
  • the blood pressure measuring device thereby presses the radial artery A with the blood pressure sensor 10 with a constant force.
  • the band 28 is provided with a pressure sensor, and the amount by which the band 28 is tightened by the actuator is adjusted according to the pressure measurement result by the pressure sensor so that the tightening force of the band 28 on the wrist becomes a predetermined force.
  • the blood pressure sensor 10 has a rigidity that does not bend due to the band 28 pressing the epidermis S, that is, pressing the radial artery A.
  • This rigidity may be ensured, for example, by the rigidity of one or more members of the substrate 12, the image sensor 14, and the light guide layer 16 that constitute the blood pressure sensor 10.
  • the blood pressure sensor 10 may include a high-rigidity plate having the necessary rigidity. Note that this highly rigid plate is provided closer to the substrate 12 than the light reflecting layer 18 . Further, when this high-rigidity plate is provided closer to the light reflection layer 18 than the imaging surface of the image sensor 14, the high-rigidity plate needs to have a light transmittance similar to that of the light guide layer 16.
  • the actuator and pressure sensor attached to the band 28 are not limited, and various known types can be used.
  • the actuator include general-purpose actuators such as a piezo actuator, an electromagnetic actuator, and a servo motor.
  • general-purpose pressure sensors such as MEMS (Micro Electro Mechanical Systems) pressure sensors, strain gauge pressure sensors, piezoelectric sensors, resistance pressure sensors, capacitance pressure sensors, and photodetection pressure sensors are used. Sensors are available.
  • the wristwatch-type blood pressure measuring device using the blood pressure sensor 10 may include a display for displaying blood pressure measurement results, etc., and a blood pressure sensor, for example, at a position of the band 28 that is the clock part of the wristwatch, as necessary. 10 (blood pressure measuring device), etc. may be provided.
  • the operation means known ones such as a touch panel and a button type operation means can be used.
  • the band 28 may be provided with a battery for driving the blood pressure sensor 10 and the like.
  • the band 28 is equipped with auxiliary or additional sensors such as optical sensors such as photocapacitance pulse wave (PPG) sensors, electrochemical measurement sensors, and potential measurement sensors for electrocardiogram and electromyography measurements. It's okay.
  • PPG photocapacitance pulse wave
  • a wristwatch-type blood pressure measuring device using the blood pressure sensor 10 may connect the substrate 12 of the blood pressure sensor 10 to an external device wirelessly or by wire, and display the blood pressure measurement results on this external device.
  • the external device may be used as the power supply source, or the external device may assume at least part of the functions of the board 12, which will be described later.
  • a wristwatch-type blood pressure measuring device using the blood pressure sensor 10 connects the image sensor 14 of the blood pressure sensor 10 and an external device wirelessly or by wire, and processes images captured by the image sensor 14 in the external device. , blood pressure measurement results may be displayed.
  • an external device may be used as the power supply source.
  • the blood pressure sensor 10 includes the substrate 12, the image sensor 14, the light guide layer 16, the light reflection layer 18, the light absorption layer 20, and the light source 24.
  • Three light sources 24 are arranged in the longitudinal direction of the image sensor 14 so as to sandwich the image sensor 14 in the lateral direction. The number and placement locations of the light sources 24 can be adjusted as appropriate.
  • the board 12 is a known printed wiring board (electronic circuit board).
  • the board 12 controls the lighting of a light source 24, which will be described later, and performs image processing of an image captured by the image sensor 14.
  • the image sensor 14 is also a known image sensor.
  • the image sensor 14 is arranged with its imaging surface (imaging surface) facing away from the substrate 12, that is, toward the light reflective layer 18 side.
  • the image sensor 14 may be a so-called area sensor in which pixels are arranged two-dimensionally, or may be a so-called line sensor in which only one row of pixels is arranged according to the color to be imaged.
  • the image sensor 14 of the blood pressure sensor 10 shown in FIGS. 1 and 2 is an area sensor.
  • the image sensor 14 may be a monochrome sensor that captures a monochrome image (luminance image), a monochrome sensor that captures monochrome images such as a red image, a green image, and a blue image, or a monochrome sensor that captures monochrome images such as a red image, a green image, and a blue image.
  • a color sensor that captures a two-color image may be used, or a color sensor that captures a full-color image of a red image, a green image, and a blue image may be used.
  • a color sensor that captures a full color image is preferably used.
  • the wavelengths of the measurement light and the light measured by the sensor can be selected depending on the application of the pressure sensor of the present invention, and for example, near-infrared light, far-infrared light, etc. can also be used.
  • the image sensor 14, the light guide layer 16, the light reflection layer 18, the light absorption layer 20, and the light source 24 can be suitably adjusted and selected.
  • the space between the light source 24 and the light guide layer 16, between the light guide layer 16 and the light reflecting layer 18, and between the light guide layer 16 and the image sensor 14 may be A filter such as an optical filter that passes only a part of the light and a semi-transmissive filter (ND filter) that adjusts the amount of light may be provided at at least one location of the light source.
  • ND filter semi-transmissive filter
  • Such a filter may have wavelength selectivity, transmittance, etc. adjusted by a light absorption material, and may be an interference filter made of a liquid crystal film, a laminated film, etc., a polarizing filter, etc.
  • the image sensor 14 when the light reflecting layer 18 has wavelength selectivity in reflection like a cholesteric liquid crystal layer described later, a monochrome sensor that captures a monochrome image or a color sensor that captures a two-color image is used as the image sensor 14. In some cases, it is preferable to use a sensor that is sensitive to the wavelength range that is selectively reflected by the light reflecting layer 18. Regarding the above points, the same applies to the pressure sensor 30 shown in FIG. 7, which will be described later.
  • a color sensor refers to a color sensor that captures a full-color image.
  • image sensor 14 various known image sensors can be used.
  • a solid-state image sensor is preferably exemplified, and a CCD image sensor that uses a photodiode made of silicon and uses a charge-coupled device for signal transmission, and a CMOS image sensor that uses a CMOS for signal transmission. etc. can be used.
  • an organic thin film image sensor using an organic semiconductor, an image sensor using other semiconductors, etc. can be used as the image sensor 14.
  • CCD image sensors, CMOS image sensors, organic thin film image sensors, and the like are preferably used.
  • the pixel interval in the image sensor 14 is preferably smaller than the thickness of the radial artery A, preferably 0.5 mm or less, more preferably 0.2 mm or less, and even more preferably 0.1 mm or less.
  • a light reflective layer 18 is provided apart from the image sensor 14 and facing the imaging surface of the image sensor 14.
  • an image sensor 14, a light guide layer 16, and a light reflection layer 18 are stacked with a light guide layer 16, which will be described later, interposed therebetween. That is, in the blood pressure sensor 10, the image sensor 14 and the light guide layer 16 are in contact with each other, and the light guide layer 16 and the light reflection layer 18 are in contact with each other.
  • the light reflecting layer 18 reflects light emitted from a light source 24, which will be described later.
  • the light emitted by the light source 24 is also referred to as measurement light for convenience
  • the measurement light reflected by the light reflection layer 18 is also referred to as reflected light for convenience.
  • the light-reflecting layer 18 has such low elasticity that its thickness changes depending on the pressure (pulse pressure) caused by the expansion of the radial artery A in response to the heartbeat (see the lower part of FIG. 3).
  • the light reflecting layer 18 has a low elasticity with a Young's modulus of about 0.05 to 0.5 MPa.
  • the physical properties of the light reflecting layer 18 can be appropriately selected outside the above-mentioned range depending on the object of pressure measurement and the configuration of the pressure measurement device.
  • the light reflective layer 18 has reflective characteristics that change depending on pressure. Specifically, in a preferred embodiment, the light reflecting layer 18 has wavelength selectivity in the reflection of light, and changes the wavelength of the light that is selectively reflected in response to deformation (compression and expansion) caused by pressure. changes. Alternatively, the light reflection layer 18 may have a light reflectance that changes in response to deformation due to pressure. In this case, the light reflecting layer 18 may or may not have wavelength selectivity in light reflection.
  • the light reflection layer 18 can be used as long as the reflection characteristics change according to pressure.
  • the light reflection layer 18 may be a light reflection layer that uses black diffraction due to regularly arranged scatterers, a light reflection layer that uses liquid crystal, etc.
  • a light reflecting layer 18 whose reflection wavelength characteristics (reflection spectrum) change when exposed to light is suitable.
  • the light reflecting layer 18 using liquid crystal is suitable, considering both low elasticity (flexibility) that can be sufficiently deformed with small pressure and regular alignment.
  • a preferable example of the light reflecting layer 18 using liquid crystal having such light reflecting characteristics is a cholesteric liquid crystal layer in which a cholesteric liquid crystal phase is fixed.
  • a cholesteric liquid crystal layer formed by fixing a cholesteric liquid crystal phase has a helical structure in which liquid crystal compounds are spirally rotated and stacked, and a structure in which liquid crystal compounds are stacked in a spiral manner by making one rotation (360° rotation).
  • the liquid crystal compound has a structure in which a plurality of pitches of liquid crystal compounds spirally swirled are stacked with one pitch of the spiral (helix pitch P).
  • a cholesteric liquid crystal phase exhibits selective reflection at a specific wavelength.
  • the helical pitch P is one pitch of the helical structure of the cholesteric liquid crystal phase (the period of the helix).
  • the helical pitch P is the number of turns of the helix, that is, the direction of the helical axis in which the director of the liquid crystal compound constituting the cholesteric liquid crystal phase (in the case of a rod-like liquid crystal, the long axis direction) rotates 360°. It is the length.
  • the cholesteric liquid crystal phase exhibits selective reflection property for either left or right circularly polarized light at a specific wavelength. Whether the reflected light is right-handed circularly polarized light or left-handed circularly polarized light depends on the twist direction (sense) of the helix of the cholesteric liquid crystal phase. Selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right-handed circularly polarized light when the helical twist direction of the cholesteric liquid crystal phase is to the right, and reflects left-handed circularly polarized light when the helical twist direction of the cholesteric liquid crystal phase is to the left.
  • the direction in which the helix of the cholesteric liquid crystal phase is twisted is in the right direction.
  • the direction of rotation of the cholesteric liquid crystal phase can be controlled by the type of liquid crystal compound forming the cholesteric liquid crystal layer and/or the type of chiral agent added.
  • the width of the selective reflection wavelength range can be controlled by adjusting ⁇ n.
  • ⁇ n can be adjusted by the type of liquid crystal compound forming the cholesteric liquid crystal layer, the mixing ratio thereof, and the temperature at which the orientation is fixed.
  • the thickness becomes thinner according to the pressing force from the radial artery A, and the helical pitch P changes accordingly, so that the light that is selectively reflected becomes thinner.
  • the wavelength range changes.
  • the cholesteric liquid crystal layer has a so-called short-wavelength structure in which the wavelength of selectively reflected light becomes shorter as the incident angle of light with respect to the direction perpendicular to the main surface of the cholesteric liquid crystal layer (normal direction) becomes larger.
  • a shift blue shift
  • the main surface is the largest surface of the sheet-like material, and usually both surfaces in the thickness direction.
  • cholesteric liquid crystal layer various known cholesteric liquid crystal layers can be used as long as they have the above-mentioned low elasticity.
  • a cholesteric liquid crystal elastomer film made of a low-molecular liquid crystal compound that can be designed to respond to force stimuli and visualize color changes, as introduced in ⁇ Development to Optical Functional Devices'' (Ritsumeikan University). .
  • the light-reflecting layer 18 contains cellulose.
  • celluloses include unsubstituted cellulose, cellulose derivatives, and cured products thereof.
  • unsubstituted cellulose is a polymer compound in which a large number of glucoses are polymerized through ⁇ -1,4-glycosidic bonds, and the carbon atoms at the 2nd, 3rd, and 6th positions in the glucose ring of cellulose are It means that the hydroxyl group bonded directly or indirectly is unsubstituted.
  • cellulose derivative refers to one in which the hydroxyl groups directly or indirectly bonded to carbon atoms at the 2nd, 3rd, and 6th positions in the glucose ring of cellulose are substituted with substituents.
  • examples of cellulose derivatives include cellulose compounds having a polymerizable group (hereinafter also simply referred to as "specific cellulose compounds").
  • the light-reflecting layer 18 may include a cured product of a specific cellulose compound (a cured product obtained by polymerizing polymerizable groups of a specific cellulose compound).
  • the cellulose derivative is preferably a specific cellulose compound that exhibits thermotropic cholesteric liquid crystallinity or lyotropic cholesteric liquid crystallinity, has elasticity, and can be fixed in orientation at the wavelength of Bragg reflection.
  • the polymerizable group in the specific cellulose compound is not particularly limited, and preferably a polymerizable group capable of radical polymerization or cationic polymerization.
  • the radically polymerizable group generally known radically polymerizable groups can be used, and preferred examples include an acryloyloxy group and a methacryloyloxy group.
  • an acryloyloxy group generally has a high polymerization rate, and an acryloyloxy group is preferred from the viewpoint of improving productivity, but a methacryloyloxy group can also be used as a polymerizable group.
  • the cationic polymerizable group generally known cationic polymerizable groups can be used, and specifically, alicyclic ether group, cyclic acetal group, cyclic lactone group, cyclic thioether group, spiro-orthoester group, and , vinyloxy group.
  • an alicyclic ether group or a vinyloxy group is preferred, and an epoxy group, an oxetanyl group, or a vinyloxy group is more preferred.
  • the specific cellulose compound has a repeating unit represented by the following formula (I).
  • SP 1 , SP 2 and SP 3 each independently represent a single bond, a linear or branched alkylene group having 1 to 12 carbon atoms, or a C 1 to 12 linear or branched alkylene group.
  • L 1 , L 2 and L 3 each independently represent a hydrogen atom, a hydroxyl group, or a monovalent organic group, and at least one of L 1 , L 2 and L 3 One represents a polymerizable group.
  • R 1 , R 2 and R 5 each independently represent a hydrogen atom, a hydroxyl group, or an alkyl group having 1 to 12 carbon atoms.
  • -O-CO-, -O-, -C( S)O-, -O-CR 1 R 2 -, -O-CR 1 R 2 -CR 1 R 2 -O-CR 1 R 2 -CR 1 R 2 -, -CO-O-CR 1 R 2 -, -O-CO-CR 1 R 2 -, -O-CO-NR 5 -, -O-CO-NR 5 -, -O-CO-NR 5 -CR 1 R 2 -CR 1 R 2 -, -CO-NR 5 -CR 1 R 2 -CR 1 R 2 -, and -CO-NR 5 -, preferably -O-CO-, -O -, -O-CO-NR 5 -, and -O-CO-NR 5 -CR 1 R 2 -CR 1 R 2
  • examples of the linear or branched alkylene group having 1 to 12 carbon atoms represented by one embodiment of SP 1 , SP 2 and SP 3 include a methylene group, an ethylene group, a propylene group, and a butylene group. group, pentylene group, hexylene group, methylhexylene group, and heptylene group.
  • SP 1 and SP 2 are such that one or more of -CH 2 - constituting a linear or branched alkylene group having 1 to 12 carbon atoms is -O-, -S-, -NH -, may be a divalent linking group substituted with -, -N(Q)-, -CO-, or -O-CO-NH-, and constitute a linear or branched alkylene group - It is also preferred that one or more of CH 2 - is a divalent linking group substituted with -O- or -O-CO-NH-.
  • Examples of the substituent represented by Q include an alkyl group, an alkoxy group, an alkylcarbonyl group, an alkoxycarbonyl group, an alkylcarbonyloxy group, an alkylamino group, and an alkylamido group, and among them, an alkyl group is preferred.
  • examples of the monovalent organic group represented by L 1 , L 2 and L 3 include an alkyl group, an aryl group, and a heteroaryl group.
  • the alkyl group may be linear, branched or cyclic, but linear is preferred.
  • the number of carbon atoms in the alkyl group is preferably 1 to 30, more preferably 1 to 20, even more preferably 1 to 10.
  • the aryl group may be monocyclic or polycyclic, but monocyclic is preferable.
  • the number of carbon atoms in the aryl group is preferably 6 to 25, more preferably 6 to 10.
  • the heteroaryl group may be monocyclic or polycyclic.
  • the number of heteroatoms constituting the heteroaryl group is preferably 1 to 3.
  • the heteroatom constituting the heteroaryl group is preferably a nitrogen atom, a sulfur atom, or an oxygen atom.
  • the heteroaryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms. Further, the alkyl group, aryl group and heteroaryl group may be unsubstituted or may have a substituent.
  • the polymerizable group represented by at least one of L 1 , L 2 and L 3 is not particularly limited, and a polymerizable group capable of radical polymerization or cationic polymerization is preferable.
  • a polymerizable group capable of radical polymerization or cationic polymerization is preferable.
  • the radically polymerizable group generally known radically polymerizable groups can be used, and preferred examples include an acryloyloxy group and a methacryloyloxy group. In this case, it is known that an acryloyloxy group generally has a high polymerization rate, and an acryloyloxy group is preferred from the viewpoint of improving productivity, but a methacryloyloxy group can also be used as a polymerizable group.
  • cationic polymerizable groups generally known cationic polymerizable groups can be used, and specifically, alicyclic ether group, cyclic acetal group, cyclic lactone group, cyclic thioether group, spiro-orthoester group, and , vinyloxy group.
  • an alicyclic ether group or a vinyloxy group is preferred, and an epoxy group, an oxetanyl group, or a vinyloxy group is more preferred.
  • Particularly preferred examples of polymerizable groups include polymerizable groups represented by any of the following formulas (P-1) to (P-20).
  • the specific cellulose compound has a repeating unit represented by the following formula (II).
  • R 1 , R 2 and R 3 are each independently a hydroxyl group, -O-R 4 , -(O-CH 2 -CH(CH 3 )) m -R 5 , or Represents a polymerizable group.
  • R 4 represents a hydrogen atom, -CO-R 6 or -CO-NH-R 7 .
  • R 5 represents a hydroxyl group, -OCO-R 8 , -OCO-NH-R 9 or a polymerizable group.
  • R 6 , R 7 , R 8 and R 9 each independently represent an alkyl group or an aryl group which may have a polymerizable group as a substituent, and R 1 , R 2 and R 3 At least one of them has a polymerizable group. Further, m represents an integer from 1 to 10.
  • a compound represented by the following formula (III) is preferably mentioned, and specifically, D 1 , D 2 and D 3 in the following formula (1),
  • Examples of SP 1 , SP 2 and SP 3 , L 1 , L 2 and L 3 include compounds having side chain structures shown in Table 1 below.
  • the celluloses contain a cured product of a cellulose compound having a polymerizable group and an unsubstituted cellulose compound from the viewpoint of controlling flexibility, liquid crystallinity, stability, etc.
  • the molecular weight of cellulose is not particularly limited, but the number average molecular weight (Mn) is preferably in the range of 5,000 to 1,000,000, more preferably in the range of 10,000 to 500,000, and more preferably in the range of 20,000 to 200. A range of ,000 is more preferred, and a range of 30,000 to 100,000 is particularly preferred.
  • the mass average molecular weight (Mw) is preferably in the range of 7,000 to 5,000,000, more preferably in the range of 15,000 to 2,500,000, and more preferably in the range of 20,000 to 1,500,000. is more preferred, and a range of 30,000 to 500,000 is particularly preferred.
  • the molecular weight distribution (MWD) is preferably in the range of 1.1 to 5.0, more preferably in the range of 1.2 to 3.5, even more preferably in the range of 1.3 to 3.0.
  • Mn number average molecular weight
  • Mw mass average molecular weight
  • MWD molecular weight distribution
  • GPC gel permeation chromatography
  • the light-reflecting layer 18 contains the above-mentioned cellulose, it is preferable that a cholesteric liquid crystal layer is formed. Further, from the viewpoint of controlling the reflected wavelength range, it is preferable that the cellulose exhibits thermotropic liquid crystallinity. When cellulose exhibits thermotropic liquid crystallinity, it is easy to control the temperature during curing.
  • the cholesteric liquid crystal layer can be formed by a known method.
  • a coating composition containing a liquid crystal compound, a chiral agent, etc. is prepared, the coating composition is applied to an alignment film, and then the liquid crystal compound is aligned to a cholesteric liquid crystal phase by heating. Thereafter, the coating composition is dried to form a cholesteric liquid crystal layer.
  • the alignment of the liquid crystal compound and the drying of the coating composition may be performed simultaneously. Further, after drying the coating composition, the liquid crystal compound may be polymerized by irradiation with ultraviolet rays or the like, if necessary.
  • an alignment film for aligning a liquid crystal compound is usually formed on the surface of a support such as a resin film, and a cholesteric liquid crystal layer is formed on the surface of this alignment film. . Therefore, when the light reflecting layer 18 is a cholesteric liquid crystal layer, it may be used after being peeled off from the alignment film. Alternatively, when the light reflective layer 18 is a cholesteric liquid crystal layer, the blood pressure sensor 10 may have a cholesteric liquid crystal layer and an alignment film peeled off from the support.
  • the blood pressure sensor 10 may include a cholesteric liquid crystal layer, an alignment film, and a support.
  • the blood pressure sensor 10 pressure sensor of the present invention
  • the blood pressure sensor 10 includes a cholesteric liquid crystal layer as the light reflection layer 18 and an alignment film or further a support
  • the cholesteric liquid crystal layer is arranged so that the cholesteric liquid crystal layer faces the image sensor 14.
  • a laminate including a liquid crystal layer may be arranged, or an alignment film and a support may be provided on the image sensor 14 side.
  • the alignment film and the support are located on the image sensor 14 side, it is necessary to adjust the optical properties such as the transmittance of the alignment film and the support as appropriate so as not to obstruct all of the reflected light from entering the image sensor 14. be.
  • the support may be selected so that, for example, the support also serves as a light absorption layer 20 (light-shielding layer), which will be described later.
  • the light reflection layer 18 is a two-layer cholesteric liquid crystal layer in which the selective reflection center wavelength is the same and the direction of rotation of the selectively reflected circularly polarized light is opposite. It may have.
  • the light reflecting layer 18, whose wavelength of selectively reflected light changes according to deformation (compression and expansion) due to pressure, is not limited to an organic cholesteric liquid crystal layer, but may be any layer having the above-mentioned low elasticity.
  • Various known ones can be used.
  • inorganic layered compounds containing smectite clay minerals, layered potassium hexaniobate, layered perovskite, and graphite are introduced in "https://prtimes.jp/main/html/rd/p/000000012.000047155.html"
  • An example of this is the inorganic nanosheet structural color gel (Fukuoka Institute of Technology), which is made of inorganic nanosheet liquid crystals obtained by exfoliating and dispersing.
  • the thickness of the light-reflecting layer 18 there is no limit to the thickness of the light-reflecting layer 18, and the thickness of the light-reflecting layer 18 should be determined so as to provide the necessary light-reflecting properties and the necessary low elasticity, that is, the necessary amount of change in thickness against expansion pressure of the radial artery A. What is necessary is just to set it suitably according to the formation material of 18, etc.
  • the light reflection layer 18 be thicker in terms of increasing the reflectance of the measurement light.
  • the thicker the light reflecting layer is, the more disadvantageous it becomes in terms of deformability against pressure and the thickness of the blood pressure sensor 10.
  • the thickness of the light reflecting layer 18 is preferably 0.1 to 500 ⁇ m, more preferably 1 to 100 ⁇ m.
  • the light reflecting layer 18 may be made of wet gel.
  • the above-mentioned wet gel means a fluid solid component, and preferably includes a liquid component. That is, the light reflecting layer 18 may contain a liquid component.
  • the liquid component is not particularly limited, and includes liquid components in which the contained material (especially liquid crystal material) can be well dissolved or dispersed.
  • the component contained in the light reflective layer 18 is a liquid component that easily exhibits liquid crystallinity.
  • the light reflective layer 18 contains cellulose, water or an organic solvent is preferably selected as the liquid component.
  • the light-reflecting layer contains a liquid component
  • the light reflecting layer is preferably sealed with a sealing material.
  • a sealing material or a base material that inhibits volatilization of the liquid component be provided above, below, and on the side surfaces of the light-reflecting layer. It is desirable to select a material with low moisture permeability depending on the liquid component.
  • inorganic thin films such as silicon compounds such as aluminum oxide and silicon oxide, organic thin films such as parylene and acrylic resin, and laminated films thereof can be used as the gas barrier film.
  • polyolefin (PO) resins such as homopolymers, copolymers, or copolymers of ethylene, polypropylene, and butene
  • amorphous polyolefin resins such as cyclic polyolefins
  • APO Polyester resins such as polyethylene terephthalate (PET) and polyethylene 2,6-naphthalate (PEN): Polyamide-based (PA) resins such as nylon 6, nylon 12 and copolymerized nylon: Polyvinyl alcohol (PVA) resins and ethylene - Polyvinyl alcohol resin such as vinyl alcohol copolymer (EVOH): Polyimide (PI) resin: Polyetherimide (PEI) resin: Polysulfone (PS) resin: Polyethersulfone (PES) resin: Polyetheretherketone ( PEEK) resin: polycarbonate (PC) resin: polyvinyl butyrate (PVB) resin: polyarylate (PAR) resin: ethylene-
  • a resin base material a material in which one or more of these materials are laminated by means such as lamination and coating.
  • a base material made of the above material and coated with the above-mentioned inorganic thin film and organic thin film can also be used.
  • a light guide layer 16 is provided between the image sensor 14 and the light reflective layer 18.
  • the light guide layer 16 is a member that forms an optical path of measurement light between the image sensor 14 and the light reflection layer 18. That is, the light guide layer 16 guides the measurement light in the plane direction between the image sensor 14 and the light reflective layer 18, and also fills the gap between the image sensor 14 and the light reflective layer 18, that is, the gap between the image sensor 14 and the light reflective layer 18. This is to maintain an appropriate positional relationship with the Preferably, the light guide layer 16 guides the measurement light to the entire surface of the image sensor 14 and the light reflective layer 18 in the plane direction.
  • the light guide layer 16 is provided as a preferred embodiment and is not an essential component. Therefore, when the blood pressure sensor of the present invention does not have a light guide layer, the light source 24 (described later) is placed between the image sensor 14 and the light reflective layer 18 which are provided apart from each other, or toward the image sensor 14. Alternatively, measurement light is irradiated toward the light reflecting layer 18.
  • the light source 24 is arranged so as to make measurement light incident on the end surface of the light guide layer 16, as indicated by the white arrow in the figure.
  • the measurement light incident on the light guide layer 16 is guided by the light guide layer 16 and travels between the image sensor 14 and the light reflective layer 18 in the plane direction of the image sensor 14 and the light reflective layer 18 .
  • the measurement light traveling through the light guide layer 16 is transmitted to the image sensor 14 and the image sensor 14 depending on the angle of incidence to the interface between the light guide layer 16 and the image sensor 14 and the interface between the light guide layer 16 and the light reflective layer 18.
  • the light is incident on the light reflecting layer 18.
  • the light guide layer 16 there is no limit to the light guide layer 16, and various layers can be used as long as it can transmit the measurement light emitted by the light source 24 and the light reflected by the light reflection layer 18. That is, various layers can be used as the light guide layer 16 as long as it serves as an optical path for the measurement light in the surface direction and allows the light reflected by the light reflection layer 18 to pass through in the thickness direction.
  • the light guide layer 16 include resin layers made of various resin materials such as acrylic resin, polycarbonate resin, vinyl chloride resin, polyethylene terephthalate resin, cellulose resin, and olefin resin, and glass layers (glass plates). be done.
  • the thickness of the light guide layer 16 there is no limit to the thickness of the light guide layer 16, and depending on the configuration of the blood pressure sensor, the material for forming the light guide layer 16, the configuration of the blood pressure sensor, etc., the thickness of the light guide layer 16 may vary depending on the thickness of the light guide layer 16. What is necessary is to appropriately set the thickness that allows the guide. Note that when the light guide layer 16 is not provided, the gap between the image sensor 14 and the light reflection layer 18 is such that a light source 24 (described later) makes measurement light incident on the entire surface between the image sensor 14 and the light reflection layer 18. The gap that can be formed may be set as appropriate.
  • the blood pressure sensor 10 has a light absorption layer 20 as a light shielding layer on the surface of the light reflection layer 18 on the side opposite to the image sensor 14. Note that in the present invention, the light absorption layer 20 is provided as a preferred embodiment and is not an essential component.
  • the wristwatch-type blood pressure measuring device is worn on the wrist of the subject with the light absorption layer 20 of the blood pressure sensor 10 facing the epidermis S.
  • the blood pressure sensor 10 In the blood pressure sensor 10, environmental light incident on the subject's wrist (arm), measurement light from the light source 24, etc. that is incident on the subject's wrist unnecessarily is reflected within the subject's wrist, etc. , may enter the inside of the blood pressure sensor 10 from the light reflecting layer 18 . If such unnecessary light enters the blood pressure sensor 10 and is measured by the image sensor 14, it becomes noise and causes an error in the measured blood pressure, which is not preferable.
  • the light absorption layer 20 is a layer for preventing such unnecessary light from entering the blood pressure sensor 10 from the light reflection layer 18. That is, the blood pressure sensor 10 of the present invention has the light absorption layer 20 on the surface of the light reflection layer 18 opposite to the image sensor 14, thereby making it possible to measure blood pressure with higher precision.
  • the light absorption layer 20 may be any of a variety of known layers as long as it absorbs specific light depending on the purpose.
  • the light absorption layer 20 includes a black layer using a black material such as carbon black, black paint, and black dye, an organic material such as an organic dye that absorbs in the visible region, and a metal that absorbs in the visible region. Examples include light absorption layers using inorganic materials such as oxides, organic materials that absorb in the ultraviolet or infrared region, and inorganic materials that absorb in the ultraviolet or infrared region.
  • the light-shielding layer for preventing unnecessary light from entering the inside of the blood pressure sensor 10 from the light-reflecting layer 18 is not limited to the light-absorbing layer 20; Various layers are available that can achieve this. For example, metal foil, a light reflecting layer that reflects specific light, a layer that blocks light by reflecting and absorbing light, an optical filter that blocks specific light, etc. can also be used as the light blocking layer.
  • the thickness of the light absorption layer 20 there is no limit to the thickness of the light absorption layer 20, and a thickness that can prevent unnecessary light from entering the blood pressure sensor 10 may be appropriately set depending on the material of the light absorption layer 20. In this regard, the same applies to other light shielding layers.
  • the light source 24 is arranged so as to sandwich the image sensor 14 in the lateral direction, which is a stacked body having a rectangular planar shape and including the image sensor 14, the light guide layer 16, the light reflection layer 18, and the light absorption layer 20. Placed. Further, three light sources 24 are arranged in the longitudinal direction of the above-described laminate.
  • a laminate having a rectangular planar shape and including the image sensor 14, the light guide layer 16, the light reflection layer 18, and the light absorption layer 20 is also simply referred to as a "laminate.”
  • the longitudinal direction and the lateral direction refer to the longitudinal direction and the lateral direction of a rectangle in the planar shape of the stacked body, that is, the image sensor 14.
  • the light source 24 emits measurement light for the blood pressure sensor 10 to measure blood pressure.
  • the light source 24 is provided so as to sandwich the light guide layer, and as described above, is provided so that the measurement light is incident on the end surface of the light guide layer 16.
  • the light source 24 is not limited, and various light sources (light emitting elements) can be used as long as they can emit a predetermined measurement light.
  • Examples of the light source 24 include an LED (Light Emitting Diode), an LD (Laser Diode), and a fluorescent lamp.
  • the light source 24 may be a white light source, or may be a light source that emits monochromatic light such as red light, blue light, and green light, such as light in a wavelength range that is selectively reflected by the light reflection layer 18. A light source that emits light of multiple colors such as green light may also be used. In addition, when the light source 24 is other than a white light source, it is preferable that the measurement light emitted by the light source 24 includes light in the wavelength range reflected by the light reflection layer 18. Further, the light source 24 may be a light source that emits invisible light such as infrared light.
  • the illustrated blood pressure sensor 10 has three light sources 24 arranged in the longitudinal direction of the image sensor 14, the present invention is not limited to this. That is, the number of light sources 24 arranged may be two or less, or four or more, depending on the length of the laminate in the longitudinal direction. Further, the light source 24 may be a rod-shaped light source (linear light source) such as a fluorescent lamp instead of a point light source. Furthermore, the light source 24 may be provided so as to sandwich the image sensor 14 in the longitudinal direction instead of being provided so as to sandwich the image sensor 14 in the lateral direction.
  • the light source 24 may have a circular polarizer so that the circularly polarized light selectively reflected by the cholesteric liquid crystal layer is incident on the light guide layer 16.
  • the circular polarizer for example, a circular polarizer consisting of a linear polarizer and a quarter wavelength plate ( ⁇ /4 plate) is exemplified.
  • the light source 24 is provided as a preferred embodiment and is not an essential component.
  • the blood pressure sensor of the present invention does not have a light source, and allows environmental light such as an indoor light and natural light such as sunlight to enter the light guide layer 16, or between the image sensor 14 and the light reflective layer 18. The blood pressure may be measured as described below.
  • the blood pressure sensor 10 is used in a wristwatch-type blood pressure measuring device, and is fixed inside the band 28 of the blood pressure measuring device.
  • the blood pressure measuring device is attached to a band with the light absorption layer 20 side facing the epidermis S of the subject so that the longitudinal direction of the imaging element 14 (laminated body) of the blood pressure sensor 10 crosses the radial artery A (see FIG. 2). 28 is attached to the wrist of the subject.
  • the blood pressure sensor 10 is attached by pressing the epidermis S of the subject with a constant force so as to press the radial artery A with a constant force.
  • the board 12 turns on the light source 24.
  • the blood sensor 10 is, for example, a wristwatch-type blood pressure measurement device.
  • the light source 24 makes measurement light incident on the end surface of the light guide layer 16.
  • the measurement light incident on the light guide layer 16 is guided by the light guide layer 16 in the plane direction of the image sensor 14 and the light reflective layer 18, and is directly incident on the image sensor 14, or is directly reflected by the light guide layer 16.
  • the light enters the layer 18 and is reflected, and the reflected light enters the image sensor 14 and is imaged.
  • An image captured by the image sensor 14 is processed by the substrate 12, for example.
  • the radial artery A When the heart is in an expanded state, that is, when the blood pressure is low, the radial artery A is in a state responsive to the pressure applied by the blood pressure sensor 10, as conceptually shown in the upper part of FIG. Therefore, in this state, the measurement light directly incident from the light guide layer 16 and the reflected light reflected by the undeformed flat plate-shaped light reflection layer 18 are incident on the imaging element 14.
  • the light reflecting layer 18 is a low elastic layer whose thickness changes depending on the pressure (pulse pressure) caused by expansion of the radial artery A in response to heartbeat. Therefore, when the radial artery A expands, the light reflecting layer 18 is pressed by this expansion, and is deformed (compressed) by this pressing. Therefore, when the radial artery A is expanded, the imaging device 14 receives measurement light directly incident from the light guide layer 16 and is reflected by the light reflection layer 18 whose thickness has partially changed due to the pressure applied by the radial artery A. reflected light is incident.
  • the light reflective layer 18 has reflective characteristics that change depending on pressure.
  • the light reflecting layer 18 has wavelength selectivity for reflected light, like a cholesteric liquid crystal layer, and the wavelength of the selectively reflected light changes in response to deformation (compression and expansion) due to pressure. Therefore, for example, when the light reflection layer 18 is a cholesteric liquid crystal layer, the helical pitch of the cholesteric liquid crystal phase changes due to the change in thickness due to the pressure of the radial artery A, and the incident angle of the measurement light with respect to the helical axis also changes. Change.
  • the light reflection layer 18 changes in thickness due to the pressure of the radial artery A, and the wavelength of the measurement light that the light reflection layer 18 selectively reflects, that is, the wavelength of the reflected light, depending on the incident angle of the measurement light.
  • the wavelength (reflection spectrum) changes.
  • the blood pressure is low when the light reflection layer 18 is not pressed by the radial artery A in which the heart is dilated, as shown in the upper row of FIG.
  • the color and density of the image captured by the image sensor 14 are different. , partially changing.
  • the measurement light is white light or monochromatic light such as red light and green light
  • the image sensor 14 is a black and white monochrome sensor (luminance sensor) or a sensor compatible with monochromatic light
  • the upper part of FIG. The density (brightness) of the image captured by the image sensor 14 partially changes between a low blood pressure state and a high blood pressure state shown in the lower part of FIG.
  • the measurement light is monochromatic light such as red light and green light
  • the image sensor 14 is a color sensor, a state in which the blood pressure is low as shown in the upper part of FIG. 3, and a state in which the blood pressure is high as shown in the lower part of FIG.
  • the density (brightness) of the image captured by the image sensor 14 partially changes.
  • the color tone of the image captured by the image sensor 14 may also be slightly different in some parts. ,Change.
  • the state of pressing of the light reflective layer 18 by the radial artery A that is, the state of deformation of the light reflective layer 18 by the radial artery A
  • the amount of expansion of the radial artery A that is, the blood pressure. Therefore, if the blood pressure of the radial artery A differs, the image captured by the image sensor 14 also changes depending on the blood pressure.
  • the present invention utilizes this, and the relationship between the blood pressure of the radial artery A and the image captured by the image sensor 14 is known in advance and stored in, for example, the substrate 12.
  • the light reflecting layer 18 may be designed, controlled, and manufactured so that the image captured by the image sensor 14 becomes a predetermined image that has a correlation with blood pressure. Then, as described above, by wrapping the band 28 around the wrist of the blood pressure subject, the blood pressure sensor 10 is pressed against the radial artery A, and measurement light is incident on the light guide layer 16 from the light source 24, An image is captured by the image sensor 14.
  • the blood pressure measurement results are displayed on a display provided on the band 28, for example.
  • the blood pressure measurement result or the image captured by the image sensor 14 is transmitted from the board 12 to an external device wirelessly or by wire, and the blood pressure measurement result is displayed on the external device.
  • at least a part of the image processing such as matching performed by the substrate 12 may be performed by an external device.
  • the blood pressure sensor 10 (pressure sensor) of the present invention
  • blood pressure can be easily measured by simply wrapping the band 28 of a wristwatch-type pressure measuring device around the wrist of a blood pressure test subject, for example.
  • the image sensor 14 can normally capture moving images. Therefore, the blood pressure sensor 10 of the present invention is capable of continuously measuring blood pressure, for example, continuously measuring the maximum value of blood pressure for each beat, and continuously outputting and observing fluctuations in blood pressure.
  • the blood pressure sensor 10 of the present invention detects an image captured by the image sensor by changing not only the image density (brightness) according to the blood pressure but also the color (wavelength) according to the blood pressure. be able to.
  • the blood pressure sensor 10 of the present invention more detailed changes in captured images can be detected, and as a result, blood pressure can be measured with higher precision and higher resolution. Furthermore, in the blood pressure sensor 10 of the present invention, all of the laminates except the image sensor 14 are formed by laminating film-like members. Therefore, the first blood pressure sensor 10 can be made thin and can continuously measure blood pressure with less burden on the subject.
  • the advantage of the present invention is that the color of the captured image according to the blood pressure can be changed in addition to the density, making it possible to measure blood pressure with higher accuracy and resolution.
  • the image sensor 14 is a color sensor.
  • the above example is an example of measuring the systolic blood pressure, but when measuring the diastolic blood pressure, for example, the pressure of tightening by the band 28 of the blood pressure measuring device is changed, and the blood pressure sensor 10 detects pulsation. It is also possible to detect the pressure that is no longer possible.
  • the light source 24 may emit measuring light continuously or may emit pulsed light.
  • the measurement light emitted by the light source 24 as pulsed light and making the emission period higher than the body movement period of the subject, for example, by filter cutting using a low-pass filter, the influence of body movement on blood pressure measurement results can be reduced. This allows for more accurate blood pressure measurements.
  • the blood pressure sensor 10 shown in FIGS. 1 and 2 makes measurement light incident on the end face of the light guide layer 16, the present invention is not limited to this.
  • the measurement light may be incident on the light guide layer 16 and guided in the surface direction.
  • the measurement light emitted by the light sources 24 passes through the light guide layer 16 in the thickness direction and directly enters the image sensor 14. can be prevented from happening.
  • the blood pressure sensor of the present invention can also use a line sensor instead of an area sensor as an imaging element.
  • An example is conceptually shown in FIGS. 5 and 6. Note that FIG. 5 and FIG. 6 are views of the blood pressure sensor viewed from the same direction as FIG. 1 and FIG. 2, respectively.
  • the blood pressure sensor 10b is provided with a light source 24 so as to sandwich the line sensor 14L in the lateral direction. Also in the illustrated example, the measurement light from the light source 24 is incident on the end surface of the light guide layer 16. Further, the blood pressure sensor 10b is attached to and pressed on the subject's wrist so that the longitudinal direction of the line sensor 14L crosses the radial artery A, as conceptually shown in FIG.
  • the longitudinal direction of the image sensor 14 (line sensor 14L) and the light reflection layer 18 must cross a blood vessel to be measured, such as the radial artery A. It needs to be as long as possible. However, on the other hand, it is preferable for the blood pressure sensor 10 to be small.
  • the length in the longitudinal direction of the image sensor 14 and the light reflection layer 18 is preferably 10 mm or more, and more preferably 20 mm or more.
  • the length of the image sensor 14 and the light reflective layer 18 in the longitudinal direction is preferably 10 to 100 mm, more preferably 20 to 40 mm.
  • a line sensor is more advantageous than an area sensor as an image sensor.
  • an area sensor is more advantageous than a line sensor in that the change in the image captured by the image sensor depending on the blood pressure can be more clearly seen.
  • the length of the image sensor 14 in the lateral direction is preferably 5 mm or less.
  • a light source 24 is provided so as to sandwich the image sensor 14 (line sensor 14L), and measurement light is incident on both sides of the image sensor 14.
  • the present invention is not limited to this, and the light sources 24 may be arranged (arranged) only on one side without sandwiching the image sensor 14.
  • the light source 24 is provided so as to sandwich the image sensor 14, as in the blood pressure sensor in the illustrated example. It is preferable that the measurement light be incident on both sides of the image sensor 14.
  • the laminate of the blood pressure sensor has a rectangular planar shape, but the present invention is not limited to this, and the laminate can have a planar shape other than circular, elliptical, square, and rectangular. Various shapes are available, such as polygons.
  • the planar shape and size of the image sensor 14, the light guide layer 16, the light reflection layer 18, and the light absorption layer 20 may be different from each other.
  • the light reflective layer 18 be provided so as to cover the entire imaging surface of the image sensor 14.
  • the light absorption layer 20 is preferably provided so as to cover the entire surface of the light reflection layer 18 on the side opposite to the image sensor 14.
  • the pressure sensor of the present invention is not limited to this and can be used for various pressure measurements. Examples include a tactile sensor at the tip of a robot's arm, a touch sensor on a panel, a button, and the like. Among them, the pressure sensor of the present invention is suitably used for the above-mentioned blood pressure sensor and a tactile sensor for robots.
  • FIG. 7 conceptually shows another example of the pressure sensor of the present invention.
  • this pressure sensor 30 is provided at one tip of an arm member 48 in a robot arm 46 in a robot application, and is used when the robot arm 46 grips or grasps an object. , is suitably used as a tactile sensor that measures pressure and pressure distribution applied to a robot arm, that is, an object.
  • the shape of the arm member and the mounting position of the pressure sensor are not limited to the shape shown in FIG. 8. That is, when the pressure sensor of the present invention is used in a robot arm, arms of various shapes can be used, and it can be used as appropriate in the location where it is desired to detect a tactile sensation on the arm.
  • the pressure sensor of the present invention is not limited to being mounted on an arm-type robot as shown in FIG. 8, but can also be used, for example, on a hand-type robot imitating a plurality of fingers. Furthermore, the pressure sensor of the present invention can be mounted not only on the tips of arms and hands, but also on various parts (surfaces) of the robot that come into contact with objects. Thus, a robot using the pressure sensor of the present invention as a tactile sensor is a robot of the present invention.
  • the pressure sensor 30 shown in FIG. 7 includes an image sensor 32, a lens 34, a light source 36, a light reflection layer 38, a light absorption layer 40 as a light shielding layer, and a housing 42.
  • the same image sensor 32, light source 36, light reflection layer 38, and light absorption layer 40 as in the blood pressure sensor 10 described above can be used.
  • preferred embodiments of each member in the pressure sensor 30 used as a tactile sensor for robot applications will be described. However, these aspects can also be used in pressure sensors of the present invention other than the pressure sensor 30 used as a tactile sensor of a robot.
  • the pressure sensor 30 shown in FIG. 7 is configured by incorporating an image sensor 32, a lens 34, a light source 36, a light reflection layer 38, and a light absorption layer 40 into a housing 42.
  • the housing 42 is, for example, a rectangular parallelepiped.
  • the image sensor 32 is held on the upper wall surface in the figure with its imaging surface facing inside the casing 42 .
  • the light reflecting layer 38 is held on the lower wall surface in the figure, and a light absorbing layer 40 is laminated on the outer surface side of the light reflecting layer 38.
  • Each member in the housing 42 may be held by a known method using a holding member or the like.
  • the pressure sensor 30 shown in FIG. 7 has a housing 42 fixed to the tip of an arm member 48 of a robot arm 46 with the imaging element 32 side facing the arm member 48, as shown in FIG. 8 described above. and used.
  • the robot arm 46 grips an object
  • pressure from the object is applied to the light reflective layer 38 via the light absorbing layer 40 .
  • the light reflection characteristics of the light reflection layer 38 particularly the reflection wavelength (reflection spectrum), change depending on the pressure applied to the light reflection layer 38.
  • the pressure sensor 30 measures the pressure distribution applied to the light reflective layer 38 , that is, the gripped object, from the light reflected by the light reflective layer 38 by capturing an image of the light reflective layer 38 with the image sensor 32 .
  • the light reflection characteristics of the light reflection layer 38 change depending on the pressure. Therefore, the change in the light reflection characteristics when a prescribed pressure is applied is measured in advance, and the relationship between the pressure applied to the light reflection layer 38 and the characteristics of the reflected light, for example, the pressure applied to the light reflection layer 38 and the wavelength of the reflected light, is measured. Understand the relationship between By using this relationship, the pressure applied to each location on the light reflective layer 38 can be measured from the reflected light at each location on the light reflective layer 38.
  • the pressure sensor 30 there are no restrictions on the shape, size, forming material, wall thickness, etc. of the housing 42.
  • suitable examples of the forming material include plastic, and metals such as stainless steel and aluminum.
  • the pressure sensor 30 shown in FIG. 7 measures pressure by making measurement light from a light source 36 enter the light reflection layer 38 and capturing an image of the reflected light from the light reflection layer 38 with the imaging element 32. Therefore, when external environmental light enters the housing 42, this light becomes noise, reducing measurement accuracy. Therefore, it is preferable that the housing 42 has a light shielding property against light in the wavelength range measured by the image sensor 32.
  • the inner surface of the housing 42 be able to absorb the measurement light emitted by the light source 36 and the reflected light from the light reflection layer 38.
  • the method of making the inner surface of the casing 42 absorb the measurement light and the reflected light such as selecting the material for forming the casing 42, coating the inner surface of the casing 42 with a light absorbing material, etc.
  • Known methods are available.
  • the thickness of the wall of the casing 42 that is, the thickness of the plate material that constitutes the casing 42.
  • the plate material constituting the casing 42 is preferably thicker in terms of strength of the pressure sensor 30, while thinner is preferable in terms of reducing the weight and size of the pressure sensor 30.
  • the thickness of the plate material constituting the housing 42 is preferably 0.05 to 10 mm, more preferably 0.1 to 5 mm.
  • the image sensor 32, the light reflection layer 38, and the light absorption layer 40 are preferably all sheet-like (plate-like, film-like, layered) members, but may be curved or three-dimensional depending on the application. It may have a similar shape. Moreover, the size and/or shape of the image sensor 32, the light reflection layer 38, and the light absorption layer 40 may be the same or different. Further, the image sensor 32, the lens 34, the light reflecting layer 38, and the light absorbing layer 40 may be arranged on the same axis or may be staggered.
  • the image sensor 32 is connected to an image processing device such as a computer.
  • the image processing device stores the above-described relationship between the pressure applied to the light reflection layer 38 and the characteristics of reflected light.
  • the image processing device processes and analyzes the image of the light reflective layer 38 captured by the image sensor 32, detects the pressure applied to each location of the light reflective layer 38, and detects the pressure applied to the light reflective layer 38 by, for example, displaying the image. Output pressure distribution.
  • the image sensor 32 is similar to the image sensor 14 in the blood pressure sensor 10 described above, and the known image sensor described above can be used.
  • the image sensor 32 may be an area sensor or a line sensor.
  • the pressure sensor 30 used for robot applications is required to measure pressure in a certain area. Considering this point, it is preferable that the image sensor 32 is an area sensor.
  • the type of sensor such as monochrome or color, measurement light wavelength, various filters, etc. are the same as those of the image sensor 14 in the blood pressure sensor 10, as described above.
  • the number of pixels of the image sensor 32 is preferably 100,000 or more, more preferably 300,000 or more, and even more preferably 1,000,000 or more. Although there is no particular upper limit to the number of pixels of the image sensor 32, considering that image processing requires energy and time, the number of pixels is preferably 10 million or less.
  • the size of the image sensor 32 is preferably 1 to 1000 mm 2 , more preferably 10 to 500 mm 2 , and even more preferably 20 to 400 mm 2 .
  • a light reflective layer 38 is provided apart from the image sensor 32 and facing the imaging surface of the image sensor 32. That is, in the pressure sensor 30 used as a tactile sensor in a robot arm or the like, a space is preferably provided between the image sensor 32 and the light reflective layer 38. This point will be explained in detail later.
  • the light reflection layer 38 reflects measurement light emitted from a light source 36, which will be described later.
  • This light reflection layer 38 also has a reflection characteristic that changes depending on the pressure, and is similar to the light reflection layer 18 of the blood pressure sensor 10 described above. Therefore, the above description of the light reflective layer 18 of the blood pressure sensor 10 also serves as a description of the light reflective layer 38 of the pressure sensor 30.
  • the image sensor 32 is arranged with its imaging surface (light receiving surface) facing the light reflective layer 38 side. Moreover, in the pressure sensor 30, a space is provided between the image sensor 32 and the light reflection layer 38 as a preferable aspect, and a lens 34 is provided between the two as a more preferable aspect. That is, in the pressure sensor 30, as a preferred embodiment, the image sensor 32 and the light reflection layer 38 are arranged apart from each other, and as a more preferred embodiment, the lens 34 is provided between them.
  • the pressure sensor 30 shown in FIG. 7 is suitably used as a tactile sensor or the like in the gripping portion (tip) of the robot arm 46.
  • the pressure sensor 30 used as a tactile sensor of a robot arm or the like is capable of measuring pressure in a certain area, such as 2 ⁇ 2 cm or 3 ⁇ 3 cm, for example. Therefore, in order to perform proper imaging, the imaging surfaces of the imaging elements 32 must also be of the same size.
  • the imaging surface of an image sensor is usually about 1 ⁇ 1 cm, and the larger the imaging surface, the more expensive it is and the more power it consumes.
  • the pressure sensor 30 of the present invention there is a space between the image sensor 32 and the light reflecting layer 38, and in a more preferred embodiment, a lens 34 is provided between the two.
  • a lens 34 is provided between the two.
  • the lens 34 it becomes possible to easily configure the apparatus using the general-purpose image sensor 32. Furthermore, by selecting the lens 34, it is possible to prevent the distance between the image sensor 32 and the light reflection layer 38 from becoming wider than necessary, that is, to prevent the pressure sensor 30 from becoming larger. Although there is no limit to the interval (distance) between the image sensor 32 and the light reflection layer 38, it is preferable that it be short in order to downsize the pressure sensor 30 in consideration of mounting it on a robot or the like. On the other hand, considering the arrangement of the lens 34 and the miniaturization of the image sensor 32, it is preferable that there be an optically significant distance. Considering this point, the distance between the image sensor 32 and the light reflective layer 38 is preferably 0.1 to 50 mm, more preferably 1 to 30 mm, and even more preferably 3 to 20 mm.
  • the area of the imaging surface of the image sensor 32 is smaller than the area of the light reflective layer 38.
  • the configuration in which the area of the imaging surface of the image sensor is smaller than the area of the light-reflecting layer is only a preferred embodiment, and in the pressure sensor of the present invention, the area of the imaging surface of the image-capturing element is the same as the area of the light-reflecting layer.
  • the area of the imaging surface may be larger than the area of the light reflecting layer.
  • the pressure sensor 30 has a light absorption layer 40 as a light shielding layer on the surface of the light reflection layer 38 on the side opposite to the image sensor 14 .
  • the light absorption layer 40 is provided as a preferred embodiment and is not an essential component.
  • the pressure sensor 30 is used with the light absorption layer 40 facing the object to be contacted.
  • ambient light from the surroundings (external ambient light) and measurement light from the light source 36 that is unnecessarily incident on the object to be gripped are reflected on the object surface and reflected from the light reflecting layer 38 to the pressure sensor 30 .
  • the pressure sensor 30 There is a possibility that it may enter the interior. If such unnecessary light enters the pressure sensor 30 and is measured by the image sensor 32, it becomes noise and causes an error in the measured pressure, which is not preferable.
  • the light absorption layer 40 is a layer for preventing such unnecessary light from entering the inside of the pressure sensor 30 from the light reflection layer 38. That is, the pressure sensor 30 of the present invention has the light absorption layer 40 on the surface of the light reflection layer 38 opposite to the image pickup device 32, thereby making it possible to measure pressure with higher precision.
  • Such a light absorption layer 40 is similar to the light absorption layer 20 of the blood pressure sensor 10 described above, and absorbs unnecessary light and releases pressure from the surface of the light reflection layer 38 opposite to the image sensor 32.
  • Various layers can be used as long as they can prevent light from entering the sensor 30. Therefore, the light absorption layer 40 that is exemplified for the light absorption layer 20 can be used.
  • the light source 36 emits measurement light for the pressure sensor 30 to measure pressure.
  • the light source 36 is provided so that measurement light is incident on the light reflective layer 38.
  • the light source 36 is the same as the light source 24 of the blood pressure sensor 10 described above except for the incident position of the measurement light. Therefore, the above description of the light source 24 of the blood pressure sensor 10 also serves as a description of the light source 36 of the pressure sensor 30.
  • the pressure sensor 30 is used for tactile sensing in robot applications, for example, and is attached to the tip of the arm member 48 of the robot arm 46 and used as a tactile sensor for the robot arm 46. Ru. Moreover, the pressure sensor 30 is connected to an image processing device such as a computer, for example.
  • the light source 36 is turned on and measurement light is made incident on the light reflection layer 38.
  • the light source 36 may be turned on by controlling an image processing device to which the pressure sensor 30 is connected, or by providing a switch in the casing 42 of the pressure sensor 30.
  • the measurement light incident on the light reflective layer 38 is reflected by the light reflective layer 38.
  • the light reflected by the light reflection layer 38 is focused and imaged by the lens 34, and enters the image sensor 32, where it is imaged.
  • a portion of the measurement light from the light source 36 directly enters the image sensor 32 through the lens 34, and is imaged together with the reflected image from the light reflective layer 38.
  • the image captured by the image sensor 32 is output to the image processing device and processed.
  • the light reflective layer 38 is a low elastic layer whose thickness changes depending on the pressure applied by an object. Therefore, when the robot arm to which the pressure sensor 30 is attached performs an operation of grasping an object, the light reflecting layer 38 is pressed by the object, and is deformed (compressed) by this pressing. Further, the pressure applied to the light reflecting layer 38 differs depending on the shape of the object and the like.
  • the light reflective layer 38 has reflective characteristics that change depending on pressure.
  • the light reflecting layer 38 has wavelength selectivity for reflected light, like a cholesteric liquid crystal layer, and the wavelength of the selectively reflected light changes in response to deformation (compression and expansion) due to pressure. Therefore, for example, when the light reflection layer 38 is a cholesteric liquid crystal layer, the helical pitch of the cholesteric liquid crystal phase changes due to the change in thickness due to the pressure of an object, and the incident angle of the measurement light with respect to the helical axis also changes. .
  • the light-reflecting layer 38 has a wavelength of the measurement light selectively reflected by the light-reflection layer 38, that is, a wavelength of the reflected light ( reflection spectrum) changes.
  • the image captured by the image sensor 32 will depend on the location being pressed and the strength of the pressure at each location. Color and density change locally.
  • the measurement light is white light or monochromatic light such as red light and green light
  • the image sensor 32 is a black and white monochrome sensor (luminance sensor) or a sensor compatible with monochromatic light
  • the pressed location The density (brightness) of the image captured by the image sensor 32 partially changes depending on the strength of the pressure at each location.
  • the measurement light is monochromatic light such as red light and green light
  • the image sensor 32 is a color sensor
  • the image sensor 32 The density (brightness) of the image captured by the camera changes partially.
  • the color tone of the image captured by the image sensor 32 may also be slightly different in some parts. ,Change.
  • the state in which the light reflection layer 38 is pressed by the object differs depending on the applied pressure. Further, as described above, the pressure applied to the light reflecting layer 38 differs depending on the shape of the object and the like. Therefore, the image captured by the image sensor 32 also changes depending on the shape of the object to be grasped, the force with which the robot arm grasps the object, and the like.
  • the present invention utilizes this, and the relationship between the pressure caused by the contacting object and the image captured by the image sensor 32 is known in advance and stored in, for example, an image processing device.
  • the pressure sensor 30 is attached to the robot arm 46, the object is gripped by the robot arm 46, measurement light is incident on the light reflection layer 38 from the light source 36, and the image sensor 32 Take an image.
  • the captured image is output to an image processing device to perform necessary image processing, and matching is performed between the image captured by the image sensor 32 and the image corresponding to the pressure stored in advance.
  • the color or wavelength of each location in the image captured by the image sensor 32 is matched with the color or wavelength corresponding to the pressure stored in advance.
  • image matching may be performed using a known method. This makes it possible to measure the pressure (pressure distribution) applied to each position of the robot arm 46 (arm member 48) that grips the object, that is, the pressure at each position of the object. This measurement result is displayed on a display connected to the image processing device, for example.
  • the relationship between the pressure caused by a contacting object and the image captured by the image sensor 32 can be known in advance and stored in, for example, an image processing device.
  • an image processing device For example, it is possible to measure the pressure (pressure distribution) applied to each position of the robot arm gripping an object, that is, to perform tactile sensing on the robot arm, without performing complicated calculations.
  • the image sensor 32 can normally capture moving images. Therefore, the pressure sensor 30 of the present invention is capable of continuously measuring the pressure applied to the robot arm 46 gripping an object. For example, even when the robot arm 46 is operated to change the gripping force and the orientation of the object, Pressure and pressure distribution fluctuations can be measured continuously.
  • the image captured by the image sensor is detected by not only changing the image density (brightness) according to the pressure, but also changing the color (wavelength) according to the pressure. be able to.
  • the light-reflecting layer 38 image of the light-reflecting layer 38
  • An image can be formed on the image sensor 32 at the same time. Therefore, according to the pressure sensor 30 of the present invention, more detailed changes in captured images can be captured and detected with high quality, and as a result, pressure distribution can be measured with higher precision and higher resolution.
  • the advantages of the present invention particularly in that the pressure sensor 30 is able to change not only the density but also the color of the captured image according to the pressure, making it possible to measure blood pressure with higher precision and resolution.
  • the light source 36 is preferably a white light source
  • the image sensor 32 is preferably a color sensor.
  • the light source 36 may emit measuring light continuously or may emit pulsed light.
  • the measurement light emitted by the light source 36 is pulsed light, and the emission period is set to a higher frequency than, for example, the vibration period of the measuring object, thereby eliminating the influence of vibration on the pressure measurement results, for example, by filter cutting using a low-pass filter. This allows for more accurate pressure measurements.
  • HPC Hydroxypropylcellulose
  • Product name Hydroxypropylcellulose 2.0 to 2.9
  • HPC Hydroxypropylcellulose
  • 0.40 mL (3.2 mmol) of Karenz AOI (2-isocyanatoethyl acrylate, manufactured by Showa Denko K.K.) was added to the HPC solution at room temperature, and the mixture was reacted at 50° C. for 2 hours.
  • the obtained solution was diluted by adding 100 mL of ethyl acetate, 24 g of sodium hydrogen carbonate and 100 mL of water were added, and after stirring for 1 hour, a liquid separation operation was performed to remove the aqueous layer.
  • a liquid separation operation was performed to remove the aqueous layer.
  • 200 mL of ethyl acetate and 200 mL of 1N HCL aqueous solution were added, a liquid separation operation was performed, and the aqueous layer was removed.
  • 200 mL of 15% by mass brine was added to the remaining organic layer, the aqueous layer was removed by separation, and the solvent was removed by drying under reduced pressure at 60° C.
  • the polyvinylidene chloride base material and the PET base material are pasted together with a transparent adhesive film (450 ⁇ m) made of acrylic resin, and placed so that there is no gap around the mixed liquid 1, so that the surroundings of the mixed liquid 1 are covered with polyvinylidene. It was installed so that it was covered with a vinylidene chloride base material, a PET base material, and a transparent adhesive film made of acrylic resin. Thereafter, from the PET base material side, it was exposed to light using a high-pressure mercury lamp adjusted to have an illumination intensity of 0.03 W/cm 2 in the UV-A region at an exposure amount of 0.03 J/cm 2 (UV-A region), and cured. In this way, a light reflective layer 1 was obtained.
  • a transparent adhesive film 450 ⁇ m
  • the light reflecting layer 1 produced in this way has cholesteric liquid crystallinity with a reflection band with a reflectance of about 40% in the green light region (light wavelength 450 to 550 nm), and the color changes from blue to ultraviolet depending on the pressure. It was possible for the color to change in response to minute pressure.
  • the polyvinylidene chloride base material and the PET base material are bonded together using a transparent adhesive film (450 ⁇ m) made of acrylic resin, and placed so that there is no gap around the mixed liquid 3, so that the surroundings of the mixed liquid 3 are It was installed so that it was covered with a polyvinylidene chloride base material, a PET base material, and a transparent adhesive film made of acrylic resin. Thereafter, from the PET base material side, it was exposed to light with a high-pressure mercury lamp adjusted so that the illuminance in the UV-A region was 0.03 W/cm 2 at an exposure amount of 0.03 J/cm 2 (UV-A region) and cured. , a light reflective layer 3 was obtained.
  • a transparent adhesive film 450 ⁇ m
  • the light reflecting layer 3 produced in this way has cholesteric liquid crystallinity with a reflection band with a reflectance of about 40% in the green light region (light wavelength 450 to 550 nm), and the color changes from blue to ultraviolet depending on the pressure. It was possible for the color to change on the skin in response to vascular pressure associated with pulsation.
  • Light reflective layers 2, 4 to 11 were produced according to the same procedure as that for light reflective layer 1 or light reflective layer 3, except that the manufacturing conditions for light reflective layers 1 and 3 were changed to those shown in Table 2 below.
  • the light reflection layers 2, 4 to 9 have cholesteric liquid crystallinity with a reflection band of 40% reflectance in the green light region, and the color changes from blue to ultraviolet region depending on the pressure, and reduces blood vessel pressure associated with pulsation. It was possible for the color to change on the skin as a result of the exposure.
  • the light-reflecting layer 10 has cholesteric liquid crystallinity with a reflection band in the red region with a reflectance of 40%, and its color changes from green to ultraviolet region depending on the pressure.
  • the light-reflecting layer 11 has cholesteric liquid crystallinity with a reflection band in the blue region with a reflectance of 40%, and its color changes to the ultraviolet region according to pressure, and changes color on the skin in response to vascular pressure associated with pulsation. It was possible to change the taste.
  • the "Compound 1 (g)” column represents the amount (g) of specific cellulose compound 1 used.
  • the “Compound 2 (g)” column represents the amount (g) of specific cellulose compound 2 used.
  • the “HPC (g)” column represents the amount (g) of hydroxypropyl cellulose used.
  • the "color before pressurization” column indicates the color of the light-reflecting layer before pressurization, which was visually confirmed.
  • the numerical values in the "responsiveness” column represent the following.
  • “1" The color (reflection wavelength) changes with very weak pressure.
  • “2” The color (reflection wavelength) changes in response to slightly weak pressure.
  • “3” The color (reflection wavelength) changes in response to weak pressure.
  • "4" The color (reflection wavelength) changes in response to slightly strong pressure.
  • "5" The color (reflection wavelength) changes in response to strong pressure.
  • the film thickness of the liquid crystal film of the light reflective layer 12 was adjusted to 100 ⁇ m by controlling the distance between the glass substrates using a spacer when sandwiching them between the glass substrates.
  • the light-reflecting layer 12 produced in this manner has cholesteric liquid crystallinity with a reflection band with a reflectance of about 30% in the green light region (light wavelength 450 to 550 nm), and the color changes from blue to ultraviolet depending on the pressure. It was possible for the color to change in response to minute pressure.
  • the light reflective layers 1 to 12 were capable of changing color under pressure.
  • blood pressure sensors of Examples 1 to 12 were manufactured using these light reflection layers 1 to 12 as the light reflection layer 18 provided in the blood pressure sensor 10 shown in FIG. 1, respectively. It was confirmed that when pressure was applied to the blood pressure sensors of Examples 1 to 12, they exhibited the above-mentioned color change.
  • pressure sensors of Examples 13 to 24 were manufactured using the light reflection layers 1 to 12 as the light reflection layer 38 provided in the pressure sensor 30 shown in FIG. 7, respectively. It was confirmed that when pressure was applied to the pressure sensors of Examples 13 to 24, the above-mentioned color changes were exhibited.

Abstract

The present invention addresses the problem of providing a pressure sensor that makes it possible to easily measure pressure such as blood pressure and a robot including the pressure sensor. In order to solve the problem, this pressure sensor comprises an imaging element, a light reflecting layer opposed to an imaging surface and disposed with a space from the imaging element, the light reflecting layer having reflective characteristics that change depending on pressure, and a light source for emitting light that enters the space between the imaging element and the light reflecting layer, and pressure is detected from a change in an image captured by the imaging element when pressure is applied from a side of the light reflecting layer facing away from the imaging element, with the light from the light source entering the space between the imaging element and the light reflecting layer.

Description

圧力センサおよびロボットPressure sensors and robots
 本発明は、血圧センサおよび触覚センサ等に利用される圧力センサ、および、この圧力センサを搭載するロボットに関する。 The present invention relates to a pressure sensor used as a blood pressure sensor, a tactile sensor, etc., and a robot equipped with this pressure sensor.
 圧力センサが、様々な分野で利用されている。
 例えば、近年では、血圧は、医療施設のみならず、健康状態を確認し、健康を維持するために、家庭においても測定されている。
 血圧測定装置は、通常、カフと呼ばれる血圧測定用の縛帯を腕あるいは手首に巻き付け、血管を圧迫して、一度、血流を遮断し、その後、圧力を解除することによって、血圧を測定する、オシロメトリック法と呼ばれる方法で測定される。
Pressure sensors are used in various fields.
For example, in recent years, blood pressure has been measured not only in medical facilities but also at home in order to check the state of health and maintain health.
Blood pressure measurement devices usually measure blood pressure by wrapping a blood pressure measurement cuff called a cuff around the arm or wrist, compressing blood vessels, blocking blood flow, and then releasing the pressure. , measured using a method called the oscillometric method.
 ここで、血圧は、被検者の健康状態に応じて変動する。そのため、例えば、脳血管疾患および心臓血管疾患などの危険性が高い疾患を発症する可能性が有る場合には、連続的に血圧を測定するのが好ましい。 Here, blood pressure varies depending on the health condition of the subject. Therefore, for example, if there is a possibility of developing a high-risk disease such as cerebrovascular disease or cardiovascular disease, it is preferable to measure blood pressure continuously.
 しかしながら、オシロメトリック法では、血圧を測定するために、一度、血流を遮断する必要が有るので、連続的な血圧の測定を行うことができない。また、オシロメトリック法は、1回の血圧の測定に、時間と手間が掛かり、連続的な血圧の測定は実質的に困難である。
 これに対して、簡便に連続的な血圧の測定が可能な血圧の測定方法として、トノメトリ法という血圧の測定方法が知られている。
 トノメトリ法とは、例えば、手首の体表近くにある橈骨動脈に、圧力センサを平らに押し当てて、1拍毎に血圧を測定する血圧の測定方法である。
However, in the oscillometric method, it is necessary to cut off blood flow once in order to measure blood pressure, and therefore blood pressure cannot be measured continuously. Furthermore, in the oscillometric method, it takes time and effort to measure blood pressure once, and continuous blood pressure measurement is substantially difficult.
On the other hand, a blood pressure measuring method called tonometry is known as a blood pressure measuring method that can easily and continuously measure blood pressure.
The tonometry method is a blood pressure measurement method in which, for example, a pressure sensor is pressed flat against the radial artery near the body surface of the wrist and the blood pressure is measured every beat.
 例えば、特許文献1には、感光素子の2次元配列からの出力信号を処理して、血圧データを生成する方法であって、感光素子の2次元配列は、被検者の体表に設置されて被検者の血流に反応して被検者の肉体の運動についての光学情報を得るようにした光学血圧センサに組み入れられており、1個または1組の感光素子からの出力信号と、出力信号との間の較正関係を生成して既知の血圧測定値とする工程と、光学血圧センサにより、被検者について血圧情報を求めている期間中に被検者の体表の2次元画像を得る工程と、2次元画像をディジタル処理し、それにより、ディジタル出力値の2次元配列を獲得する工程とを含み、出力値としては、1個または1組の感光素子についての出力値があり、1個または1組の感光素子に対応するディジタル出力値の配列の一部に較正関係を適用し、それにより、血圧データを得る工程をさらに含む、トノメトリ法による血圧の測定方法が開示されている。 For example, Patent Document 1 describes a method for generating blood pressure data by processing output signals from a two-dimensional array of photosensitive elements, in which the two-dimensional array of photosensitive elements is placed on the body surface of a subject. and an output signal from one or a set of photosensitive elements; The optical blood pressure sensor generates a two-dimensional image of the subject's body surface during the period in which blood pressure information is being determined about the subject. and digitally processing the two-dimensional image to thereby obtain a two-dimensional array of digital output values, the output values being output values for one or a set of photosensitive elements. , a method for measuring blood pressure by tonometry is disclosed, further comprising applying a calibration relationship to a portion of the array of digital output values corresponding to one or a set of photosensitive elements, thereby obtaining blood pressure data. There is.
 また、圧力センサは、血圧測定以外でも、各種の用途に利用されている。
 例えば、ロボティクスおよび入力インターフェースなどの触覚センシング(触覚検出)の用途で、圧力センサに対する要求が高まっている。
 具体的には、ロボット用途では、ロボットが何かを掴む際に形および硬さ等に応じた適切な力を加えられるように、圧力、接触面積および変形量を常に検出し続けることが望まれている。これに対応して、例えば、非特許文献1には、物体と接触した際の膜の変形を、撮像した画像から測定することで、圧力を算出するシステムが開示されている。
Moreover, pressure sensors are used for various purposes other than blood pressure measurement.
For example, there is an increasing demand for pressure sensors in tactile sensing applications such as robotics and input interfaces.
Specifically, in robot applications, it is desirable to constantly detect pressure, contact area, and amount of deformation so that when a robot grasps something, it can apply an appropriate force depending on the shape, hardness, etc. ing. In response to this, for example, Non-Patent Document 1 discloses a system that calculates pressure by measuring the deformation of a membrane when it comes into contact with an object from a captured image.
特表2003-532475号公報Special Publication No. 2003-532475
 上述した特許文献1に記載される血圧測定方法は、可撓性を有する光反射膜、複数の光源をライン上に配列してなるライン光源、および、光反射面とライン光源との間に配置されるラインセンサを用いて、血圧を測定するものである。 The blood pressure measurement method described in Patent Document 1 mentioned above includes a flexible light-reflecting film, a line light source formed by arranging a plurality of light sources in a line, and a line light source disposed between the light-reflecting surface and the line light source. Blood pressure is measured using a line sensor.
 すなわち、特許文献1に記載される血圧測定方法では、被検者の体表から、可撓性を有する光反射膜を橈骨動脈に押圧した状態で、ライン光源から光反射膜に測定光を照射し、光反射膜によって反射された測定光を、ラインセンサによって測光する。
 光反射面は、可撓性を有するので、心拍による橈骨動脈の拡張に応じて、変形する。また、光反射面の変形の程度は、血圧に応じて変化する。その結果、血圧に応じて、ラインセンサの各画素が受光する反射光の強度も変化する。
 従って、血圧と、ラインセンサが出力する画像との関係を、予め知見しておくことで、血圧を測定することができる。
That is, in the blood pressure measurement method described in Patent Document 1, a flexible light-reflecting film is pressed against the radial artery from the body surface of the subject, and measurement light is irradiated from a line light source to the light-reflecting film. Then, the measurement light reflected by the light reflection film is photometered by a line sensor.
Since the light reflecting surface has flexibility, it deforms in response to expansion of the radial artery due to heartbeat. Further, the degree of deformation of the light reflecting surface changes depending on blood pressure. As a result, the intensity of reflected light received by each pixel of the line sensor also changes depending on the blood pressure.
Therefore, blood pressure can be measured by knowing in advance the relationship between blood pressure and the image output by the line sensor.
 そのため、特許文献1に記載されるような、トノメトリ法による血圧の測定方法によれば、1拍毎の血圧を、連続的に測定することが可能になる。 Therefore, according to the method for measuring blood pressure using tonometry, as described in Patent Document 1, it becomes possible to continuously measure blood pressure for each beat.
 血圧測定以外の用途を考えた場合にも、簡便に圧力の測定を行うことが望まれる。その際、圧力センサには、圧力に対する応答性が速く、圧力測定範囲が広く、精度が高く、接触面積および形状を検知できることが望まれる。
 さらに、例えばロボット用途であれば、必要な場所に設置しやすいサイズ、配線が容易であること、および、データ処理のしやすさなども要求される。
 例えば、非特許文献1に記載されるシステムは、配線が単純でロボットアームに実装しやすい特徴がある。その反面、このシステムは、膜の変形から圧力を測定するため、圧力測定に特殊な演算処理が必要である。
Even when considering uses other than blood pressure measurement, it is desired to easily measure pressure. In this case, it is desired that the pressure sensor has a fast response to pressure, a wide pressure measurement range, high accuracy, and the ability to detect the contact area and shape.
Furthermore, for robot applications, for example, it is required that the device be of a size that is easy to install in a required location, that wiring is easy, and that data processing is easy.
For example, the system described in Non-Patent Document 1 has simple wiring and is easy to implement on a robot arm. On the other hand, since this system measures pressure from the deformation of the membrane, special calculation processing is required for pressure measurement.
 本発明の目的は、上述のようなトノメトリ法による血圧の測定、ロボット用途などにおける触覚センシング等に利用される、簡便に圧力の測定を行うことができる新規な圧力センサ、および、この圧力センサを触感センサとして搭載するロボットを提供することにある。 The object of the present invention is to provide a new pressure sensor that can easily measure pressure, which is used for blood pressure measurement using the tonometry method as described above, tactile sensing in robot applications, etc. The purpose of the present invention is to provide a robot equipped with a tactile sensor.
 この課題を解決するために、本発明は、以下の構成を有する。
 [1] 撮像素子と、
 撮像素子の撮像面と対面して、撮像素子と離間して配置された、圧力に応じて反射特性が変化する光反射層と、
 撮像素子と光反射層との間に光を入射した状態で、光反射層の撮像素子とは反対側から圧力がかけられた際における、撮像素子による撮像画像の変化から圧力を検出する、圧力センサ。
 [2] 撮像素子と光反射層との間に、光ガイド層を有する、[1]に記載の圧力センサ。
 [3] 撮像素子と光反射層との間に光を入射する光源を有する、[1]に記載の圧力センサ。
 [4] 撮像素子と光反射層との間に光を入射する光源を有する、[2]に記載の圧力センサ。
 [5] 撮像素子と光ガイド層とが接しており、かつ、光反射層と光ガイド層とが接している、[2]または[4]に記載の圧力センサ。
 [6] 光ガイド層が、樹脂層またはガラス層である、[2]、[4]および[5]のいずれかに記載の圧力センサ。
 [7] 光源を複数有し、光ガイド層を挟むように、光源が配置される、[4]~[6]のいずれかに記載の圧力センサ。
 [8] 撮像素子の撮像面の面積が、光反射層の面積よりも小さい、[2]、[4]~[7]のいずれかに記載の圧力センサ。
 [9] 撮像素子と光反射層との間に空間を有する、[1]に記載の圧力センサ。
 [10] 光反射層に光を照射する光源を有する、[9]記載の圧力センサ。
 [11] 撮像素子と光反射層との間にレンズを有する、[9]または[10]に記載の圧力センサ。
 [12] 撮像素子の撮像面の面積が、光反射層の面積よりも小さい、[9]~[11]のいずれかに記載の圧力センサ。
 [13] 撮像素子の撮像面の面積が、光反射層の面積よりも小さい、[1]または[3]に記載の圧力センサ。
 [14] 光反射層の撮像素子とは反対側に、遮光層を有する、[1]~[13]のいずれかに記載の圧力センサ。
 [15] 光反射層が、コレステリック液晶層である、[1]~[14]のいずれかに記載の圧力センサ。
 [16] 光反射層が、セルロース類を含む、[1]~[15]のいずれかに記載の圧力センサ。
 [17] セルロース類が、重合性基を有するセルロース化合物の硬化物を含む、[16]に記載の圧力センサ。
 [18] セルロース類が、無置換のセルロース化合物を含む、[16]または[17]に記載の圧力センサ。
 [19] 光反射層が、ウェットゲルで構成される、[1]~[18]のいずれかに記載の圧力センサ。
 [20] 光反射層が、液状成分を含む、[1]~[19]のいずれかに記載の圧力センサ。
 [21] 光反射層が、封止材で封止されている、[1]~[20]のいずれかに記載の圧力センサ。
 [22] 撮像素子が、カラーセンサである、[1]~[21]のいずれかに記載の圧力センサ。
 [23] 血圧センサである、[1]~[22]に記載の圧力センサ。
 [24] 触覚センサである、[1]~[22]のいずれかに記載の圧力センサ。
 [25] [1]~[22]のいずれかの圧力センサを触感センサとして搭載する、ロボット。
In order to solve this problem, the present invention has the following configuration.
[1] An image sensor,
a light reflecting layer whose reflection characteristics change according to pressure, the layer facing the imaging surface of the imaging device and disposed apart from the imaging device;
Pressure is detected from changes in the image captured by the image sensor when pressure is applied from the side of the light reflection layer opposite to the image sensor with light entering between the image sensor and the light reflection layer. sensor.
[2] The pressure sensor according to [1], which includes a light guide layer between the image sensor and the light reflection layer.
[3] The pressure sensor according to [1], which includes a light source that enters light between the image sensor and the light reflection layer.
[4] The pressure sensor according to [2], which includes a light source that enters light between the image sensor and the light reflection layer.
[5] The pressure sensor according to [2] or [4], wherein the image sensor and the light guide layer are in contact with each other, and the light reflection layer and the light guide layer are in contact with each other.
[6] The pressure sensor according to any one of [2], [4] and [5], wherein the light guide layer is a resin layer or a glass layer.
[7] The pressure sensor according to any one of [4] to [6], which has a plurality of light sources, and the light sources are arranged so as to sandwich the light guide layer.
[8] The pressure sensor according to any one of [2] and [4] to [7], wherein the area of the imaging surface of the image sensor is smaller than the area of the light reflective layer.
[9] The pressure sensor according to [1], which has a space between the image sensor and the light reflective layer.
[10] The pressure sensor according to [9], which includes a light source that irradiates the light reflection layer with light.
[11] The pressure sensor according to [9] or [10], which includes a lens between the image sensor and the light reflective layer.
[12] The pressure sensor according to any one of [9] to [11], wherein the area of the imaging surface of the image sensor is smaller than the area of the light reflective layer.
[13] The pressure sensor according to [1] or [3], wherein the area of the imaging surface of the image sensor is smaller than the area of the light reflective layer.
[14] The pressure sensor according to any one of [1] to [13], further comprising a light-shielding layer on the side of the light-reflecting layer opposite to the image sensor.
[15] The pressure sensor according to any one of [1] to [14], wherein the light reflecting layer is a cholesteric liquid crystal layer.
[16] The pressure sensor according to any one of [1] to [15], wherein the light reflecting layer contains cellulose.
[17] The pressure sensor according to [16], wherein the cellulose contains a cured product of a cellulose compound having a polymerizable group.
[18] The pressure sensor according to [16] or [17], wherein the cellulose contains an unsubstituted cellulose compound.
[19] The pressure sensor according to any one of [1] to [18], wherein the light reflecting layer is composed of a wet gel.
[20] The pressure sensor according to any one of [1] to [19], wherein the light reflecting layer contains a liquid component.
[21] The pressure sensor according to any one of [1] to [20], wherein the light reflecting layer is sealed with a sealing material.
[22] The pressure sensor according to any one of [1] to [21], wherein the image sensor is a color sensor.
[23] The pressure sensor according to [1] to [22], which is a blood pressure sensor.
[24] The pressure sensor according to any one of [1] to [22], which is a tactile sensor.
[25] A robot equipped with any one of the pressure sensors of [1] to [22] as a tactile sensor.
 本発明によれば、トノメトリ法による血圧の測定、および、ロボット用途などにおける触覚検出等に利用される、簡便に圧力の測定を行うことができる新規な圧力センサ、および、この圧力センサを触感センサとして搭載するロボットが提供される。 According to the present invention, there is provided a novel pressure sensor that can easily measure pressure, which is used for blood pressure measurement by tonometry method, tactile detection in robot applications, etc., and a tactile sensor for this pressure sensor. A robot that can be installed as a robot is provided.
図1は、本発明の圧力センサの一例を血圧センサに利用した一例を概念的に示す図である。FIG. 1 is a diagram conceptually showing an example in which an example of the pressure sensor of the present invention is utilized as a blood pressure sensor. 図2は、図1に示す血圧センサの平面図である。FIG. 2 is a plan view of the blood pressure sensor shown in FIG. 1. 図3は、図1に示す血圧センサを被検者に装着した状態の一例を概念的に示す図である。FIG. 3 is a diagram conceptually showing an example of a state in which the blood pressure sensor shown in FIG. 1 is attached to a subject. 図4は、本発明の圧力センサを血圧センサに利用した別の例を概念的に示す図である。FIG. 4 is a diagram conceptually showing another example in which the pressure sensor of the present invention is used as a blood pressure sensor. 図5は、本発明の圧力センサを血圧センサに利用した別の例を概念的に示す図である。FIG. 5 is a diagram conceptually showing another example in which the pressure sensor of the present invention is used as a blood pressure sensor. 図6は、図5に示す血圧センサの平面図である。FIG. 6 is a plan view of the blood pressure sensor shown in FIG. 5. 図7は、本発明の圧力センサの別の例を概念的に示す図である。FIG. 7 is a diagram conceptually showing another example of the pressure sensor of the present invention. 図8は、図7に示す圧力センサの用途の一例を概念的に示す図である。FIG. 8 is a diagram conceptually showing an example of the use of the pressure sensor shown in FIG. 7.
 以下、本発明の圧力センサおよびロボットについて、添付の図面に示される好適実施例を基に詳細に説明する。 Hereinafter, the pressure sensor and robot of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、「同一」は、技術分野で一般的に許容される誤差範囲を含むものとする。
In this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits.
In this specification, "same" includes a generally accepted error range in the technical field.
 本明細書において、表記される2価の基(例えば、-CO-O-等)の結合方向は、特段の断りがない限り、制限されない。例えば、「X-Y-Z」なる式で表される化合物中の、Yが-CO-O-である場合、上記化合物は「X-O-CO-Z」及び「X-CO-O-Z」のいずれであってもよい。 In this specification, the bonding direction of the divalent group (for example, -CO-O-, etc.) described herein is not limited unless otherwise specified. For example, when Y in a compound represented by the formula "X-Y-Z" is -CO-O-, the above compound has the formula "X-O-CO-Z" and "X-CO-O- Z" may be used.
 なお、以下に示す図は、いずれも、本発明を説明するための概念的な図である。従って、各部材の形状、厚さ、大きさ、および、位置関係等は、必ずしも、実際のものとは一致しない。 Note that all the figures shown below are conceptual diagrams for explaining the present invention. Therefore, the shape, thickness, size, positional relationship, etc. of each member do not necessarily match the actual one.
 図1に、本発明の圧力センサを血圧センサに利用した一例を概念的に示す。
 なお、以下の説明は、本発明の圧力センサを血圧センサに利用した例の説明であるが、本発明の圧力センサの構造および圧力測定の作用は、基本的に、以下に説明する血圧センサと同様である。従って、以下の説明は、特に『圧力センサ』との記載が無くても、本発明の圧力センサの説明を兼ねている。
FIG. 1 conceptually shows an example in which the pressure sensor of the present invention is used as a blood pressure sensor.
Note that the following explanation is an explanation of an example in which the pressure sensor of the present invention is used as a blood pressure sensor, but the structure and pressure measurement function of the pressure sensor of the present invention are basically similar to the blood pressure sensor described below. The same is true. Therefore, the following description also serves as a description of the pressure sensor of the present invention even if there is no particular description of "pressure sensor."
 図1に示す血圧センサ10は、基板12と、撮像素子14と、光ガイド層16と、光反射層18と、遮光層としての光吸収層20と、光源24とを有する。 The blood pressure sensor 10 shown in FIG. 1 includes a substrate 12, an image sensor 14, a light guide layer 16, a light reflection layer 18, a light absorption layer 20 as a light shielding layer, and a light source 24.
 図2に、血圧センサ10を光吸収層20側から見た図を示す。
 血圧センサ10において、撮像素子14、光ガイド層16、光反射層18および光吸収層20は、いずれも、シート状(板状、フィルム状、層状)の部材である。図示例において、撮像素子14、光ガイド層16、光反射層18および光吸収層20は、同じ矩形(長方形)の平面形状を有し、外周を一致して積層される。ただし、光源24の位置および導入光等によっては、撮像素子14、光ガイド層16、光反射層18および光吸収層20の大きさ、および/または、形状を一致させなくても良く、また、同じ大きさ、および/または、形状でも各構成要素をずらしても良い。また、光吸収層20が、一部、光反射層18の側面を覆っていても良い。
 また、図2に示すように、光源24は、撮像素子14を短手方向に挟むように、撮像素子14の長手方向に3つが配列されて設けられている。
FIG. 2 shows a diagram of the blood pressure sensor 10 viewed from the light absorption layer 20 side.
In the blood pressure sensor 10, the image sensor 14, the light guide layer 16, the light reflection layer 18, and the light absorption layer 20 are all sheet-like (plate-like, film-like, layer-like) members. In the illustrated example, the image sensor 14, the light guide layer 16, the light reflection layer 18, and the light absorption layer 20 have the same rectangular (rectangular) planar shape and are stacked with their outer peripheries aligned. However, depending on the position of the light source 24, the introduced light, etc., the sizes and/or shapes of the image sensor 14, the light guide layer 16, the light reflection layer 18, and the light absorption layer 20 may not have to match. Each component may be shifted even if it has the same size and/or shape. Further, the light absorption layer 20 may partially cover the side surface of the light reflection layer 18.
Further, as shown in FIG. 2, three light sources 24 are arranged in the longitudinal direction of the image sensor 14 so as to sandwich the image sensor 14 in the lateral direction.
 図3に、血圧センサ10を血圧の被検者に装着した状態を概念的に示す。
 血圧センサ10は、一例として、腕時計型の血圧測定デバイスに用いられるものであり、血圧測定デバイスのバンド28の内側に固定される。
 血圧センサ10は、光吸収層20側を被検者の表皮Sに向けて、撮像素子14の長手方向が測定対象となる血管、例えば橈骨動脈Aを横切るように(図2参照)、バンド28によって被検者の手首の表皮Sに装着される。
FIG. 3 conceptually shows a state in which the blood pressure sensor 10 is attached to a blood pressure subject.
The blood pressure sensor 10 is used, for example, in a wristwatch-type blood pressure measurement device, and is fixed inside a band 28 of the blood pressure measurement device.
The blood pressure sensor 10 is attached to a band 28 with the light absorption layer 20 facing the epidermis S of the subject, so that the longitudinal direction of the image sensor 14 crosses the blood vessel to be measured, for example, the radial artery A (see FIG. 2). It is attached to the epidermis S of the wrist of the subject.
 ここで、血圧センサ10は、図3に示すように、一定の力で橈骨動脈Aを押圧するように、一定の力で被検者の表皮Sを押圧して装着される。
 そのため、腕時計型の血圧測定デバイスのバンド28は、血圧の測定時には、一定の力で被検者の手首を締めるように、被検者の手首に巻き付けられる。血圧測定デバイスは、一例として、バンド28の血圧センサ10装着部にアクチュエータを有し、アクチュエータでバンド28を軽く締めることで、バンド28が一定の力で被検者の手首を締めるようにする。血圧測定デバイスは、これにより、一定の力で、血圧センサ10によって橈骨動脈Aを押圧する。
 好ましくは、バンド28に圧力センサを設け、圧力センサによる圧力の測定結果に応じて、バンド28による手首の締め付け力が所定の力になるように、アクチュエータによるバンド28の締め付け量を調節する。
Here, as shown in FIG. 3, the blood pressure sensor 10 is attached by pressing the epidermis S of the subject with a constant force so as to press the radial artery A with a constant force.
Therefore, the band 28 of the wristwatch-type blood pressure measuring device is wrapped around the subject's wrist so as to tighten the subject's wrist with a constant force when measuring blood pressure. For example, the blood pressure measurement device has an actuator at the part of the band 28 where the blood pressure sensor 10 is attached, and by lightly tightening the band 28 with the actuator, the band 28 tightens the subject's wrist with a constant force. The blood pressure measuring device thereby presses the radial artery A with the blood pressure sensor 10 with a constant force.
Preferably, the band 28 is provided with a pressure sensor, and the amount by which the band 28 is tightened by the actuator is adjusted according to the pressure measurement result by the pressure sensor so that the tightening force of the band 28 on the wrist becomes a predetermined force.
 ここで、血圧センサ10は、バンド28による表皮Sの押圧すなわち橈骨動脈Aの押圧によって撓まない剛性を有する。
 この剛性は、一例として、血圧センサ10を構成する基板12、撮像素子14および光ガイド層16の1以上の部材が有する剛性によって確保すればよい。
 あるいは、表皮Sの押圧によって血圧センサ10が撓むことを防止するために、血圧センサ10が、必要な剛性を有する高剛性板を有してもよい。なお、この高剛性板は、光反射層18よりも基板12側に設ける。また、この高剛性板を撮像素子14の撮像面よりも光反射層18側に設ける場合には、高剛性板は、光ガイド層16に準じる光透過性を有する必要がある。
Here, the blood pressure sensor 10 has a rigidity that does not bend due to the band 28 pressing the epidermis S, that is, pressing the radial artery A.
This rigidity may be ensured, for example, by the rigidity of one or more members of the substrate 12, the image sensor 14, and the light guide layer 16 that constitute the blood pressure sensor 10.
Alternatively, in order to prevent the blood pressure sensor 10 from bending due to the pressure of the epidermis S, the blood pressure sensor 10 may include a high-rigidity plate having the necessary rigidity. Note that this highly rigid plate is provided closer to the substrate 12 than the light reflecting layer 18 . Further, when this high-rigidity plate is provided closer to the light reflection layer 18 than the imaging surface of the image sensor 14, the high-rigidity plate needs to have a light transmittance similar to that of the light guide layer 16.
 バンド28に装着するアクチュエータおよび圧力センサには、制限はなく、公知の各種のものが利用可能である。
 アクチュエータとしては、ピエゾアクチュエータ、電磁アクチェーター、および、サーボモーター等の汎用のアクチュエータが例示される。
 また、圧力センサとしては、MEMS(Micro Electro Mechanical Systems)圧力センサ、歪ゲージ式圧力センサ、圧電センサ、抵抗式圧力センサ、静電容量式圧力センサ、および、光検出式圧力センサ等の汎用の圧力センサが利用可能である。
The actuator and pressure sensor attached to the band 28 are not limited, and various known types can be used.
Examples of the actuator include general-purpose actuators such as a piezo actuator, an electromagnetic actuator, and a servo motor.
In addition, as pressure sensors, general-purpose pressure sensors such as MEMS (Micro Electro Mechanical Systems) pressure sensors, strain gauge pressure sensors, piezoelectric sensors, resistance pressure sensors, capacitance pressure sensors, and photodetection pressure sensors are used. Sensors are available.
 また、血圧センサ10を用いる腕時計型の血圧測定デバイスは、必要に応じて、例えば、バンド28の腕時計の時計部分となる位置に、血圧の測定結果等を表示するためのディスプレイ、および、血圧センサ10(血圧測定デバイス)の操作手段等を有してもよい。操作手段としては、タッチパネルおよびボタン式の操作手段など、公知のものが利用可能である。また、バンド28には、血圧センサ10等を駆動するためのバッテリーを設けてもよい。さらに、バンド28には、補助もしくは追加のセンサとして、光電容量脈波方式(PPG)センサなどの光センサ、電気化学測定センサ、ならびに、心電図および筋電測定用の電位測定センサなどが付加されていても良い。
 あるいは、血圧センサ10を用いる腕時計型の血圧測定デバイスは、血圧センサ10の基板12と外部装置とを無線または有線で接続して、この外部装置に、血圧の測定結果を表示してもよい。この際には、外部装置を電力供給源としてもよく、また、後述する基板12の機能の少なくとも一部を、外部装置が担うようにしてもよい。
 さらに、血圧センサ10を用いる腕時計型の血圧測定デバイスは、血圧センサ10の撮像素子14と外部装置とを無線または有線で接続して、外部装置において、撮像素子14が撮像した画像を処理して、血圧の測定結果を表示してもよい。この際にも、外部装置を電力供給源としてもよい。
Further, the wristwatch-type blood pressure measuring device using the blood pressure sensor 10 may include a display for displaying blood pressure measurement results, etc., and a blood pressure sensor, for example, at a position of the band 28 that is the clock part of the wristwatch, as necessary. 10 (blood pressure measuring device), etc. may be provided. As the operation means, known ones such as a touch panel and a button type operation means can be used. Further, the band 28 may be provided with a battery for driving the blood pressure sensor 10 and the like. In addition, the band 28 is equipped with auxiliary or additional sensors such as optical sensors such as photocapacitance pulse wave (PPG) sensors, electrochemical measurement sensors, and potential measurement sensors for electrocardiogram and electromyography measurements. It's okay.
Alternatively, a wristwatch-type blood pressure measuring device using the blood pressure sensor 10 may connect the substrate 12 of the blood pressure sensor 10 to an external device wirelessly or by wire, and display the blood pressure measurement results on this external device. In this case, the external device may be used as the power supply source, or the external device may assume at least part of the functions of the board 12, which will be described later.
Furthermore, a wristwatch-type blood pressure measuring device using the blood pressure sensor 10 connects the image sensor 14 of the blood pressure sensor 10 and an external device wirelessly or by wire, and processes images captured by the image sensor 14 in the external device. , blood pressure measurement results may be displayed. Also in this case, an external device may be used as the power supply source.
 上述のように、血圧センサ10は、基板12と、撮像素子14と、光ガイド層16と、光反射層18と、光吸収層20と、光源24とを有する。
 また、光源24は、撮像素子14を短手方向に挟むように、撮像素子14の長手方向に3つが配列されて設けられている。光源24の個数および配置場所等については、適宜、調節することができる。
As described above, the blood pressure sensor 10 includes the substrate 12, the image sensor 14, the light guide layer 16, the light reflection layer 18, the light absorption layer 20, and the light source 24.
Three light sources 24 are arranged in the longitudinal direction of the image sensor 14 so as to sandwich the image sensor 14 in the lateral direction. The number and placement locations of the light sources 24 can be adjusted as appropriate.
 基板12は、公知のプリント配線基板(電子回路基板)である。
 基板12は、後述する光源24の点灯の制御、撮像素子14が撮像した画像の画像処理等を行う。
The board 12 is a known printed wiring board (electronic circuit board).
The board 12 controls the lighting of a light source 24, which will be described later, and performs image processing of an image captured by the image sensor 14.
 撮像素子14も、公知の撮像素子である。
 撮像素子14は、撮像面(撮像面)を基板12とは逆側、すなわち、光反射層18側に向けて配置される。
The image sensor 14 is also a known image sensor.
The image sensor 14 is arranged with its imaging surface (imaging surface) facing away from the substrate 12, that is, toward the light reflective layer 18 side.
 本発明の血圧センサにおいて、撮像素子14は、二次元的に画素が配列された、いわゆるエリアセンサでもよく、撮像する色に応じた画素配列を1列のみ有する、いわゆるラインセンサでもよい。
 図1および図2に示す血圧センサ10の撮像素子14は、エリアセンサである。
In the blood pressure sensor of the present invention, the image sensor 14 may be a so-called area sensor in which pixels are arranged two-dimensionally, or may be a so-called line sensor in which only one row of pixels is arranged according to the color to be imaged.
The image sensor 14 of the blood pressure sensor 10 shown in FIGS. 1 and 2 is an area sensor.
 また、撮像素子14は、白黒画像(輝度画像)を撮像するモノクロセンサでもよく、赤色画像、緑色画像および青色画像などの単色の色画像を撮像するモノクロセンサでもよく、赤色画像と緑色画像などの2色画像を撮像するカラーセンサでもよく、さらに、赤色画像、緑色画像および青色画像のフルカラー画像を撮像するカラーセンサでもよい。撮像素子14としては、フルカラー画像を撮像するカラーセンサが好ましく用いられる。
 また、測定光およびセンサが測定する光の波長については、本発明の圧力センサの用途に応じて選択することができ、例えば、近赤外光、遠赤外光などを用いることもできる。用いる光の波長により、撮像素子14、光ガイド層16、光反射層18、光吸収層20、および、光源24は、好ましく調節、選択することができる。また、本発明の圧力センサの用途に応じて、光源24と光ガイド層16との間、光ガイド層16と光反射層18との間、および、光ガイド層16と撮像素子14との間の少なくとも1か所に、一部の光のみを通す光学フィルタ、および、光量を調節する半透過フィルタ(NDフィルタ)等のフィルタを設けてもよい。このようなフィルタは、光吸収材料により波長選択性および透過率等が調節されていても良く、液晶膜および積層膜等による干渉フィルタ、および、偏光フィルタ等であっても良い。
 なお、光反射層18が、後述するコレステリック液晶層のように反射に波長選択性を有する場合に、撮像素子14として単色の色画像を撮像するモノクロセンサまたは2色画像を撮像するカラーセンサを用いる際には、光反射層18が選択的に反射する波長域に感度を有するセンサを用いるのが好ましい。
 以上の点に関しては、後述する図7に示す圧力センサ30においても同様である。
Further, the image sensor 14 may be a monochrome sensor that captures a monochrome image (luminance image), a monochrome sensor that captures monochrome images such as a red image, a green image, and a blue image, or a monochrome sensor that captures monochrome images such as a red image, a green image, and a blue image. A color sensor that captures a two-color image may be used, or a color sensor that captures a full-color image of a red image, a green image, and a blue image may be used. As the image sensor 14, a color sensor that captures a full color image is preferably used.
Furthermore, the wavelengths of the measurement light and the light measured by the sensor can be selected depending on the application of the pressure sensor of the present invention, and for example, near-infrared light, far-infrared light, etc. can also be used. Depending on the wavelength of the light used, the image sensor 14, the light guide layer 16, the light reflection layer 18, the light absorption layer 20, and the light source 24 can be suitably adjusted and selected. Furthermore, depending on the application of the pressure sensor of the present invention, the space between the light source 24 and the light guide layer 16, between the light guide layer 16 and the light reflecting layer 18, and between the light guide layer 16 and the image sensor 14 may be A filter such as an optical filter that passes only a part of the light and a semi-transmissive filter (ND filter) that adjusts the amount of light may be provided at at least one location of the light source. Such a filter may have wavelength selectivity, transmittance, etc. adjusted by a light absorption material, and may be an interference filter made of a liquid crystal film, a laminated film, etc., a polarizing filter, etc.
Note that when the light reflecting layer 18 has wavelength selectivity in reflection like a cholesteric liquid crystal layer described later, a monochrome sensor that captures a monochrome image or a color sensor that captures a two-color image is used as the image sensor 14. In some cases, it is preferable to use a sensor that is sensitive to the wavelength range that is selectively reflected by the light reflecting layer 18.
Regarding the above points, the same applies to the pressure sensor 30 shown in FIG. 7, which will be described later.
 以下の説明では、特に断りが無い場合には、カラーセンサとはフルカラー画像を撮像するカラーセンサを示すものとする。 In the following description, unless otherwise specified, a color sensor refers to a color sensor that captures a full-color image.
 撮像素子14は、公知の撮像素子が、各種、利用可能である。
 撮像素子14としては、一例として、固体撮像素子が望ましく例示され、シリコンで形成されたフォトダイオードを用い電荷結合素子による信号電送形式であるCCDイメージセンサ、および、CMOSによる信号電送形式のCMOSイメージセンサ等を用いることができる。撮像素子14としては、これ以外にも、有機半導体を用いた有機薄膜撮像素子、および、その他の半導体を用いた撮像素子等も利用可能である。
 中でも、CCDイメージセンサ、CMOSイメージセンサ、および、有機薄膜撮像素子等は好適に用いられる。
As the image sensor 14, various known image sensors can be used.
As the image sensor 14, a solid-state image sensor is preferably exemplified, and a CCD image sensor that uses a photodiode made of silicon and uses a charge-coupled device for signal transmission, and a CMOS image sensor that uses a CMOS for signal transmission. etc. can be used. In addition to this, an organic thin film image sensor using an organic semiconductor, an image sensor using other semiconductors, etc. can be used as the image sensor 14.
Among these, CCD image sensors, CMOS image sensors, organic thin film image sensors, and the like are preferably used.
 撮像素子14の空間分解能には制限はないが、基本的に、高い方が好ましい。
 具体的には、撮像素子14における画素間隔は、橈骨動脈Aの太さよりも小さいのが好ましく、0.5mm以下が好ましく、0.2mm以下がより好ましく、0.1mm以下がさらに好ましい。
Although there is no limit to the spatial resolution of the image sensor 14, it is basically preferable that it be higher.
Specifically, the pixel interval in the image sensor 14 is preferably smaller than the thickness of the radial artery A, preferably 0.5 mm or less, more preferably 0.2 mm or less, and even more preferably 0.1 mm or less.
 血圧センサ10においては、撮像素子14と離間して、撮像素子14の撮像面と対面して光反射層18が設けられる。
 図示例においては、好ましい態様として、後述する光ガイド層16を挟んで、撮像素子14と、光ガイド層16と、光反射層18とが積層される。すなわち、血圧センサ10においては、撮像素子14と光ガイド層16とが接しており、光ガイド層16と光反射層18とが接している。
In the blood pressure sensor 10, a light reflective layer 18 is provided apart from the image sensor 14 and facing the imaging surface of the image sensor 14.
In the illustrated example, as a preferred embodiment, an image sensor 14, a light guide layer 16, and a light reflection layer 18 are stacked with a light guide layer 16, which will be described later, interposed therebetween. That is, in the blood pressure sensor 10, the image sensor 14 and the light guide layer 16 are in contact with each other, and the light guide layer 16 and the light reflection layer 18 are in contact with each other.
 光反射層18は、後述する光源24が出射した光を反射するものである。
 以下の説明では、光源24が出射した光を便宜的に測定光、光反射層18が反射した測定光を便宜的に反射光ともいう。
The light reflecting layer 18 reflects light emitted from a light source 24, which will be described later.
In the following description, the light emitted by the light source 24 is also referred to as measurement light for convenience, and the measurement light reflected by the light reflection layer 18 is also referred to as reflected light for convenience.
 本発明において、光反射層18は、心拍に応じた橈骨動脈Aの拡張による押圧(脈圧)によって厚さが変化する程度の低弾性のものである(図3下段参照)。具体的には、光反射層18は、ヤング率が0.05~0.5MPa程度の低弾性のものである。なお、本発明の圧力センサにおいて、光反射層18の物性は、圧力の測定対象、および、圧力測定デバイスの構成等に応じて、上述の範囲以外でも、適宜、選択可能である。 In the present invention, the light-reflecting layer 18 has such low elasticity that its thickness changes depending on the pressure (pulse pressure) caused by the expansion of the radial artery A in response to the heartbeat (see the lower part of FIG. 3). Specifically, the light reflecting layer 18 has a low elasticity with a Young's modulus of about 0.05 to 0.5 MPa. In the pressure sensor of the present invention, the physical properties of the light reflecting layer 18 can be appropriately selected outside the above-mentioned range depending on the object of pressure measurement and the configuration of the pressure measurement device.
 また、光反射層18は、圧力に応じて反射特性が変化するものである。
 具体的には、光反射層18は、好ましい態様として、光の反射に波長選択性を有するものであり、かつ、圧力による変形(圧縮および伸張)に応じて、選択的に反射する光の波長が変化する。
 あるいは、光反射層18は、圧力による変形に応じて、光の反射率が変化するものであってもよい。この際には、光反射層18は、光の反射に波長選択性を有しても有さなくてもよい。
Further, the light reflective layer 18 has reflective characteristics that change depending on pressure.
Specifically, in a preferred embodiment, the light reflecting layer 18 has wavelength selectivity in the reflection of light, and changes the wavelength of the light that is selectively reflected in response to deformation (compression and expansion) caused by pressure. changes.
Alternatively, the light reflection layer 18 may have a light reflectance that changes in response to deformation due to pressure. In this case, the light reflecting layer 18 may or may not have wavelength selectivity in light reflection.
 光反射層18は、圧力に応じて反射特性が変化するものであれば、各種のものが利用可能である。ここで、光反射層18は、少ない変形でも、十分な反射特性の変化が得られると、高い感度での血圧の測定が可能になる。
 この点を考慮すると、光反射層18としては、規則的に配列された散乱体によるブラック回折を利用する光反射層、および、液晶を利用する光反射層等のように、上述のような圧力を受けた際に反射の波長特性(反射分光スペクトル)が変化する光反射層18が好適である。特に、小さい圧力で十分に変形が可能な低弾性(柔軟性)と、規則配列性の両立を考慮すると、液晶を利用する光反射層18は、好適である。
Various types of light reflection layer 18 can be used as long as the reflection characteristics change according to pressure. Here, even if the light reflection layer 18 is only slightly deformed, if a sufficient change in reflection characteristics is obtained, blood pressure can be measured with high sensitivity.
Considering this point, the light reflection layer 18 may be a light reflection layer that uses black diffraction due to regularly arranged scatterers, a light reflection layer that uses liquid crystal, etc. A light reflecting layer 18 whose reflection wavelength characteristics (reflection spectrum) change when exposed to light is suitable. In particular, the light reflecting layer 18 using liquid crystal is suitable, considering both low elasticity (flexibility) that can be sufficiently deformed with small pressure and regular alignment.
 このような光反射特性を有する、液晶を用いる光反射層18としては、コレステリック液晶相を固定してなるコレステリック液晶層が好ましく例示される。 A preferable example of the light reflecting layer 18 using liquid crystal having such light reflecting characteristics is a cholesteric liquid crystal layer in which a cholesteric liquid crystal phase is fixed.
 コレステリック液晶相を固定してなるコレステリック液晶層は、液晶化合物が螺旋状に旋回して積み重ねられた螺旋構造を有し、液晶化合物が螺旋状に1回転(360°回転)して積み重ねられた構成を螺旋1ピッチ(螺旋ピッチP)として、螺旋状に旋回する液晶化合物が、複数ピッチ、積層された構造を有する。 A cholesteric liquid crystal layer formed by fixing a cholesteric liquid crystal phase has a helical structure in which liquid crystal compounds are spirally rotated and stacked, and a structure in which liquid crystal compounds are stacked in a spiral manner by making one rotation (360° rotation). The liquid crystal compound has a structure in which a plurality of pitches of liquid crystal compounds spirally swirled are stacked with one pitch of the spiral (helix pitch P).
 周知のように、コレステリック液晶相は、特定の波長において選択反射性を示す。
 一般的なコレステリック液晶相において、選択反射の中心波長(選択反射中心波長λ)は、コレステリック液晶相における螺旋のピッチ(螺旋ピッチP)に依存し、コレステリック液晶相の平均屈折率nとλ=n×Pの関係に従う。
 そのため、この螺旋ピッチを調節することによって、選択反射中心波長を調節することができる。コレステリック液晶相の選択反射中心波長は、螺旋ピッチPが長いほど、長波長になる。
As is well known, a cholesteric liquid crystal phase exhibits selective reflection at a specific wavelength.
In a general cholesteric liquid crystal phase, the center wavelength of selective reflection (selective reflection center wavelength λ) depends on the helical pitch (helix pitch P) in the cholesteric liquid crystal phase, and the average refractive index n and λ=n of the cholesteric liquid crystal phase. According to the relationship ×P.
Therefore, by adjusting this helical pitch, the selective reflection center wavelength can be adjusted. The longer the helical pitch P, the longer the selective reflection center wavelength of the cholesteric liquid crystal phase becomes.
 なお、螺旋ピッチPとは、上述したように、コレステリック液晶相の螺旋構造1ピッチ分(螺旋の周期)である。螺旋ピッチPとは、言い換えれば、螺旋の巻き数1回分であり、すなわち、コレステリック液晶相を構成する液晶化合物のダイレクター(棒状液晶であれば長軸方向)が360°回転する螺旋軸方向の長さである。 Note that, as described above, the helical pitch P is one pitch of the helical structure of the cholesteric liquid crystal phase (the period of the helix). In other words, the helical pitch P is the number of turns of the helix, that is, the direction of the helical axis in which the director of the liquid crystal compound constituting the cholesteric liquid crystal phase (in the case of a rod-like liquid crystal, the long axis direction) rotates 360°. It is the length.
 また、周知のように、コレステリック液晶相は、特定の波長において左右いずれかの円偏光に対して選択反射性を示す。反射光が右円偏光であるか左円偏光であるかは、コレステリック液晶相の螺旋の捩れ方向(センス)による。コレステリック液晶相による円偏光の選択反射は、コレステリック液晶相の螺旋の捩れ方向が右の場合は右円偏光を反射し、螺旋の捩れ方向が左の場合は左円偏光を反射する。
 例えば、右円偏光を選択的に反射するコレステリック液晶層であれば、コレステリック液晶相の螺旋の捩れ方向が右方向である。
 なお、コレステリック液晶相の旋回の方向は、コレステリック液晶層を形成する液晶化合物の種類および/または添加されるキラル剤の種類によって調節できる。
Furthermore, as is well known, the cholesteric liquid crystal phase exhibits selective reflection property for either left or right circularly polarized light at a specific wavelength. Whether the reflected light is right-handed circularly polarized light or left-handed circularly polarized light depends on the twist direction (sense) of the helix of the cholesteric liquid crystal phase. Selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right-handed circularly polarized light when the helical twist direction of the cholesteric liquid crystal phase is to the right, and reflects left-handed circularly polarized light when the helical twist direction of the cholesteric liquid crystal phase is to the left.
For example, in the case of a cholesteric liquid crystal layer that selectively reflects right-handed circularly polarized light, the direction in which the helix of the cholesteric liquid crystal phase is twisted is in the right direction.
Note that the direction of rotation of the cholesteric liquid crystal phase can be controlled by the type of liquid crystal compound forming the cholesteric liquid crystal layer and/or the type of chiral agent added.
 また、コレステリック液晶相が選択反射を示す選択反射波長域(円偏光反射波長域)の半値幅Δλ(nm)は、コレステリック液晶相のΔnと螺旋ピッチPとに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射波長域の幅の制御は、Δnを調節して行うことができる。Δnは、コレステリック液晶層を形成する液晶化合物の種類およびその混合比率、ならびに、配向固定時の温度により調節できる。 In addition, the half-width Δλ (nm) of the selective reflection wavelength range (circularly polarized light reflection wavelength range) in which the cholesteric liquid crystal phase exhibits selective reflection depends on Δn of the cholesteric liquid crystal phase and the helical pitch P, and Δλ=Δn×P. Follow the relationship. Therefore, the width of the selective reflection wavelength range can be controlled by adjusting Δn. Δn can be adjusted by the type of liquid crystal compound forming the cholesteric liquid crystal layer, the mixing ratio thereof, and the temperature at which the orientation is fixed.
 従って、コレステリック液晶層を光反射層18として用いた場合には、橈骨動脈Aによる押圧力に応じて厚さが薄くなり、それに応じて螺旋ピッチPが変化して、選択的に反射する光の波長域が変化する。 Therefore, when a cholesteric liquid crystal layer is used as the light reflection layer 18, the thickness becomes thinner according to the pressing force from the radial artery A, and the helical pitch P changes accordingly, so that the light that is selectively reflected becomes thinner. The wavelength range changes.
 また、周知のように、コレステリック液晶層は、コレステリック液晶層の主面と直交する方向(法線方向)に対する光の入射角度が大きくなるほど、選択的に反射する光の波長が短くなる、いわゆる短波シフト(ブルーシフト)が生じる。なお、主面とは、シート状物の最大面であり、通常、厚さ方向の両面である。 In addition, as is well known, the cholesteric liquid crystal layer has a so-called short-wavelength structure in which the wavelength of selectively reflected light becomes shorter as the incident angle of light with respect to the direction perpendicular to the main surface of the cholesteric liquid crystal layer (normal direction) becomes larger. A shift (blue shift) occurs. Note that the main surface is the largest surface of the sheet-like material, and usually both surfaces in the thickness direction.
 このようなコレステリック液晶層は、上述した低弾性を有するものであれば、公知の各種のコレステリック液晶層が利用可能である。
 一例として、国立研究開発法人 科学技術振興機構による『https://www.jst.go.jp/tt/fair/ij2020/exhibitor/un20200420.html』の『分子性材料のナノ構造制御技術:多彩な光学機能素子への展開(立命館大学)』に紹介されている、力刺激に対する応答挙動が任意に設計可能で、色の変化を可視化できる、低分子液晶化合物からなるコレステリック液晶エラストマーフィルムが例示される。
 また、日本ゴム協会誌 第91巻第2号(2018)の第33ページ~第38ページの『ゴム弾性を有するセルロース誘導体の新しい圧力センシング(東京理科大学 古海誓一・鈴木花菜・府川将司)』に記載される、ヒドロキシプロピルセルロース(HPC)誘導体によるコレステリック液晶フィルムも利用可能である。
As such a cholesteric liquid crystal layer, various known cholesteric liquid crystal layers can be used as long as they have the above-mentioned low elasticity.
As an example, the National Research and Development Agency Japan Science and Technology Agency's "Nanostructure control technology for molecular materials: Various An example of this is a cholesteric liquid crystal elastomer film made of a low-molecular liquid crystal compound that can be designed to respond to force stimuli and visualize color changes, as introduced in ``Development to Optical Functional Devices'' (Ritsumeikan University). .
Also, "New Pressure Sensing of Cellulose Derivatives with Rubber Elasticity (Tokyo University of Science, Seiichi Furumi, Kana Suzuki, Masashi Fukawa)" on pages 33 to 38 of the Journal of the Japan Rubber Association Vol. 91, No. 2 (2018) Cholesteric liquid crystal films based on hydroxypropylcellulose (HPC) derivatives, as described in , are also available.
 光反射層18には、セルロース類が含まれることも好ましい。
 セルロース類とは、例えば、無置換のセルロース、および、セルロース誘導体またはその硬化物が挙げられる。
 なお、「無置換のセルロース」とは、多数のグルコースがβ-1,4-グリコシド結合によって重合した高分子化合物であって、セルロースのグルコース環における2位、3位、6位の炭素原子に直接又は間接的に結合している水酸基が無置換であるものを意味する。
 また、「セルロース誘導体」とは、セルロースのグルコース環における2位、3位、6位の炭素原子に直接又は間接的に結合している水酸基に置換基が置換しているものを意味する。
 セルロース誘導体としては、重合性基を有するセルロース化合物(以下、単に「特定セルロース化合物」ともいう。)が挙げられる。光反射層18は、特定セルロース化合物の硬化物(特定セルロース化合物の重合性基が重合してなる硬化物)を含んでいてもよい。
It is also preferable that the light-reflecting layer 18 contains cellulose.
Examples of celluloses include unsubstituted cellulose, cellulose derivatives, and cured products thereof.
Note that "unsubstituted cellulose" is a polymer compound in which a large number of glucoses are polymerized through β-1,4-glycosidic bonds, and the carbon atoms at the 2nd, 3rd, and 6th positions in the glucose ring of cellulose are It means that the hydroxyl group bonded directly or indirectly is unsubstituted.
Furthermore, the term "cellulose derivative" refers to one in which the hydroxyl groups directly or indirectly bonded to carbon atoms at the 2nd, 3rd, and 6th positions in the glucose ring of cellulose are substituted with substituents.
Examples of cellulose derivatives include cellulose compounds having a polymerizable group (hereinafter also simply referred to as "specific cellulose compounds"). The light-reflecting layer 18 may include a cured product of a specific cellulose compound (a cured product obtained by polymerizing polymerizable groups of a specific cellulose compound).
 セルロース誘導体としては、サーモトロピックコレステリック液晶性、または、リオトロピックコレステリック液晶性を示し、また、弾性を有し、ブラッグ反射の波長で配向が固定化され得る、特定セルロース化合物が好ましい。
 特定セルロース化合物中の重合性基は、特に限定されず、ラジカル重合またはカチオン重合可能な重合性基が好ましい。
 ラジカル重合性基としては、一般に知られているラジカル重合性基を用いることができ、好適なものとして、アクリロイルオキシ基またはメタクリロイルオキシ基が挙げられる。この場合、重合速度はアクリロイルオキシ基が一般的に速いことが知られており、生産性向上の観点からアクリロイルオキシ基が好ましいが、メタクリロイルオキシ基も重合性基として同様に使用できる。
 カチオン重合性基としては、一般に知られているカチオン重合性を用いることができ、具体的には、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、および、ビニルオキシ基が挙げられる。中でも、脂環式エーテル基、または、ビニルオキシ基が好ましく、エポキシ基、オキセタニル基、または、ビニルオキシ基がより好ましい。
The cellulose derivative is preferably a specific cellulose compound that exhibits thermotropic cholesteric liquid crystallinity or lyotropic cholesteric liquid crystallinity, has elasticity, and can be fixed in orientation at the wavelength of Bragg reflection.
The polymerizable group in the specific cellulose compound is not particularly limited, and preferably a polymerizable group capable of radical polymerization or cationic polymerization.
As the radically polymerizable group, generally known radically polymerizable groups can be used, and preferred examples include an acryloyloxy group and a methacryloyloxy group. In this case, it is known that an acryloyloxy group generally has a high polymerization rate, and an acryloyloxy group is preferred from the viewpoint of improving productivity, but a methacryloyloxy group can also be used as a polymerizable group.
As the cationic polymerizable group, generally known cationic polymerizable groups can be used, and specifically, alicyclic ether group, cyclic acetal group, cyclic lactone group, cyclic thioether group, spiro-orthoester group, and , vinyloxy group. Among these, an alicyclic ether group or a vinyloxy group is preferred, and an epoxy group, an oxetanyl group, or a vinyloxy group is more preferred.
 特定セルロース化合物は、下記式(I)で表される繰り返し単位を有することが好ましい。 It is preferable that the specific cellulose compound has a repeating unit represented by the following formula (I).
 式(I) Formula (I)
 上記式(I)中、D、DおよびDは、それぞれ独立に、単結合、または、-CO-、-O-、-S-、-C(=S)-、-CR-、-CR=CR-、-NR-、もしくは、これらの2つ以上の組み合わせからなる2価の連結基を表し、R~Rは、それぞれ独立に、水素原子、フッ素原子、または、炭素数1~12のアルキル基を表す。
 また、上記式(I)中、SP、SPおよびSPは、それぞれ独立に、単結合、炭素数1~12の直鎖状もしくは分岐状のアルキレン基、または、炭素数1~12の直鎖状もしくは分岐状のアルキレン基を構成する-CH-の1個以上が-O-、-S-、-NH-、-N(Q)-、もしくは、-CO-に置換された2価の連結基を表し、Qは、置換基を表す。
 また、上記式(I)中、L、LおよびLは、それぞれ独立に、水素原子、ヒドロキシル基、または、1価の有機基を表し、L、LおよびLの少なくとも1つは重合性基を表す。
In the above formula (I), D 1 , D 2 and D 3 are each independently a single bond or -CO-, -O-, -S-, -C(=S)-, -CR 1 R 2 -, -CR 3 =CR 4 -, -NR 5 -, or a divalent linking group consisting of two or more of these, and R 1 to R 5 each independently represent a hydrogen atom, a fluorine atom, Represents an atom or an alkyl group having 1 to 12 carbon atoms.
In the above formula (I), SP 1 , SP 2 and SP 3 each independently represent a single bond, a linear or branched alkylene group having 1 to 12 carbon atoms, or a C 1 to 12 linear or branched alkylene group. 2 in which one or more of -CH 2 - constituting a linear or branched alkylene group is substituted with -O-, -S-, -NH-, -N(Q)-, or -CO- represents a valent linking group, and Q represents a substituent.
Further, in the above formula (I), L 1 , L 2 and L 3 each independently represent a hydrogen atom, a hydroxyl group, or a monovalent organic group, and at least one of L 1 , L 2 and L 3 One represents a polymerizable group.
 上記式(I)中、D、DおよびDの一態様が示す2価の連結基としては、例えば、-O-CO-、-O-、-C(=S)O-、-CR-、-CR-CR-、-O-CR-、-O-CR-CR-O-CR-CR-、-CO-O-CR-、-O-CO-CR-、-O-CO-NR-、-O-CO-NR-CR-CR-、-CO-NR-CR-CR-、-NR-CR-、および、-CO-NR-が挙げられる。R、RおよびRは、それぞれ独立に、水素原子、ヒドロキシル基、または、炭素数1~12のアルキル基を表す。
 これらのうち、-O-CO-、-O-、-C(=S)O-、-O-CR-、-O-CR-CR-O-CR-CR-、-CO-O-CR-、-O-CO-CR-、-O-CO-NR-、-O-CO-NR-CR-CR-、-CO-NR-CR-CR-、および、-CO-NR-のいずれかであることが好ましく、-O-CO-、-O-、-O-CO-NR-、および、-O-CO-NR-CR-CR-のいずれかであることがより好ましい。
In the above formula (I), the divalent linking group represented by one embodiment of D 1 , D 2 and D 3 is, for example, -O-CO-, -O-, -C(=S)O-, - CR 1 R 2 -, -CR 1 R 2 -CR 1 R 2 -, -O-CR 1 R 2 -, -O-CR 1 R 2 -CR 1 R 2 -O-CR 1 R 2 -CR 1 R 2 -, -CO-O-CR 1 R 2 -, -O-CO-CR 1 R 2 -, -O-CO-NR 5 -, -O-CO-NR 5 -CR 1 R 2 -CR 1 R 2 -, -CO-NR 5 -CR 1 R 2 -CR 1 R 2 -, -NR 5 -CR 1 R 2 -, and -CO-NR 5 -. R 1 , R 2 and R 5 each independently represent a hydrogen atom, a hydroxyl group, or an alkyl group having 1 to 12 carbon atoms.
Among these, -O-CO-, -O-, -C(=S)O-, -O-CR 1 R 2 -, -O-CR 1 R 2 -CR 1 R 2 -O-CR 1 R 2 -CR 1 R 2 -, -CO-O-CR 1 R 2 -, -O-CO-CR 1 R 2 -, -O-CO-NR 5 -, -O-CO-NR 5 -CR 1 R 2 -CR 1 R 2 -, -CO-NR 5 -CR 1 R 2 -CR 1 R 2 -, and -CO-NR 5 -, preferably -O-CO-, -O -, -O-CO-NR 5 -, and -O-CO-NR 5 -CR 1 R 2 -CR 1 R 2 - are more preferred.
 上記式(I)中、SP、SPおよびSPの一態様が示す炭素数1~12の直鎖状または分岐状のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、メチルヘキシレン基、および、へプチレン基が挙げられる。
 なお、SPおよびSPは、上述した通り、炭素数1~12の直鎖状または分岐状のアルキレン基を構成する-CH-の1個以上が-O-、-S-、-NH-、-N(Q)-、-CO-、または、-O-CO-NH-に置換された2価の連結基であってもよく、直鎖状または分岐状のアルキレン基を構成する-CH-の1個以上が-O-、または、-O-CO-NH-に置換された2価の連結基であることも好ましい。
In the above formula (I), examples of the linear or branched alkylene group having 1 to 12 carbon atoms represented by one embodiment of SP 1 , SP 2 and SP 3 include a methylene group, an ethylene group, a propylene group, and a butylene group. group, pentylene group, hexylene group, methylhexylene group, and heptylene group.
In addition, as mentioned above, SP 1 and SP 2 are such that one or more of -CH 2 - constituting a linear or branched alkylene group having 1 to 12 carbon atoms is -O-, -S-, -NH -, may be a divalent linking group substituted with -, -N(Q)-, -CO-, or -O-CO-NH-, and constitute a linear or branched alkylene group - It is also preferred that one or more of CH 2 - is a divalent linking group substituted with -O- or -O-CO-NH-.
 また、Qで表される置換基としては、例えば、アルキル基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基、アルキルカルボニルオキシ基、アルキルアミノ基、および、アルキルアミド基が挙げられ、中でも、アルキル基が好ましい。 Examples of the substituent represented by Q include an alkyl group, an alkoxy group, an alkylcarbonyl group, an alkoxycarbonyl group, an alkylcarbonyloxy group, an alkylamino group, and an alkylamido group, and among them, an alkyl group is preferred.
 上記式(I)中、L、LおよびLが示す1価の有機基としては、例えば、アルキル基、アリール基、および、ヘテロアリール基が挙げられる。
 アルキル基は、直鎖状、分岐状または環状であってもよいが、直鎖状が好ましい。アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10がさらに好ましい。
 また、アリール基は、単環であっても多環であってもよいが単環が好ましい。アリール基の炭素数は、6~25が好ましく、6~10がより好ましい。
 また、ヘテロアリール基は、単環であっても多環であってもよい。ヘテロアリール基を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基を構成するヘテロ原子は、窒素原子、硫黄原子、または、酸素原子が好ましい。ヘテロアリール基の炭素数は6~18が好ましく、6~12がより好ましい。
 また、アルキル基、アリール基およびヘテロアリール基は、無置換であってもよく、置換基を有していてもよい。
In the above formula (I), examples of the monovalent organic group represented by L 1 , L 2 and L 3 include an alkyl group, an aryl group, and a heteroaryl group.
The alkyl group may be linear, branched or cyclic, but linear is preferred. The number of carbon atoms in the alkyl group is preferably 1 to 30, more preferably 1 to 20, even more preferably 1 to 10.
Further, the aryl group may be monocyclic or polycyclic, but monocyclic is preferable. The number of carbon atoms in the aryl group is preferably 6 to 25, more preferably 6 to 10.
Further, the heteroaryl group may be monocyclic or polycyclic. The number of heteroatoms constituting the heteroaryl group is preferably 1 to 3. The heteroatom constituting the heteroaryl group is preferably a nitrogen atom, a sulfur atom, or an oxygen atom. The heteroaryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms.
Further, the alkyl group, aryl group and heteroaryl group may be unsubstituted or may have a substituent.
 上記式(I)中、L、LおよびLの少なくとも一つが示す重合性基は、特に限定されず、ラジカル重合またはカチオン重合可能な重合性基が好ましい。
 ラジカル重合性基としては、一般に知られているラジカル重合性基を用いることができ、好適なものとして、アクリロイルオキシ基またはメタクリロイルオキシ基が挙げられる。この場合、重合速度はアクリロイルオキシ基が一般的に速いことが知られており、生産性向上の観点からアクリロイルオキシ基が好ましいが、メタクリロイルオキシ基も重合性基として同様に使用することができる。
 カチオン重合性基としては、一般に知られているカチオン重合性を用いることができ、具体的には、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、および、ビニルオキシ基が挙げられる。中でも、脂環式エーテル基、または、ビニルオキシ基が好ましく、エポキシ基、オキセタニル基、または、ビニルオキシ基がより好ましい。
 特に好ましい重合性基の例としては、下記式(P-1)~(P-20)のいずれかで表される重合性基が挙げられる。
In the above formula (I), the polymerizable group represented by at least one of L 1 , L 2 and L 3 is not particularly limited, and a polymerizable group capable of radical polymerization or cationic polymerization is preferable.
As the radically polymerizable group, generally known radically polymerizable groups can be used, and preferred examples include an acryloyloxy group and a methacryloyloxy group. In this case, it is known that an acryloyloxy group generally has a high polymerization rate, and an acryloyloxy group is preferred from the viewpoint of improving productivity, but a methacryloyloxy group can also be used as a polymerizable group.
As the cationic polymerizable group, generally known cationic polymerizable groups can be used, and specifically, alicyclic ether group, cyclic acetal group, cyclic lactone group, cyclic thioether group, spiro-orthoester group, and , vinyloxy group. Among these, an alicyclic ether group or a vinyloxy group is preferred, and an epoxy group, an oxetanyl group, or a vinyloxy group is more preferred.
Particularly preferred examples of polymerizable groups include polymerizable groups represented by any of the following formulas (P-1) to (P-20).
 特定セルロース化合物は、下記式(II)で表される繰り返し単位を有することも好ましい。 It is also preferable that the specific cellulose compound has a repeating unit represented by the following formula (II).
式(II) Formula (II)
 上記式(II)中、R、RおよびRは、それぞれ独立に、ヒドロキシル基、-O-R、-(O-CH-CH(CH))-R、または、重合性基を表す。Rは、水素原子、-CO-R、または、-CO-NH-Rを表す。Rは、ヒドロキシル基、-OCO-R、-OCO-NH-R、または、重合性基を表す。R、R、R、および、Rは、それぞれ独立に、置換基として重合性基を有していてもよいアルキル基、または、アリール基を表し、R、RおよびRの少なくとも一つは重合性基を有する。
 また、mは、1~10の整数を表す。
In the above formula (II), R 1 , R 2 and R 3 are each independently a hydroxyl group, -O-R 4 , -(O-CH 2 -CH(CH 3 )) m -R 5 , or Represents a polymerizable group. R 4 represents a hydrogen atom, -CO-R 6 or -CO-NH-R 7 . R 5 represents a hydroxyl group, -OCO-R 8 , -OCO-NH-R 9 or a polymerizable group. R 6 , R 7 , R 8 and R 9 each independently represent an alkyl group or an aryl group which may have a polymerizable group as a substituent, and R 1 , R 2 and R 3 At least one of them has a polymerizable group.
Further, m represents an integer from 1 to 10.
 特定セルロース化合物としては、具体的には、例えば、下記式(III)で表される化合物が好適に挙げられ、具体的には、下記式(1)中のD、DおよびD、SP、SPおよびSP、L、LおよびL、として、下記表1に示す側鎖構造を有する化合物がそれぞれ挙げられる。 As the specific cellulose compound, specifically, for example, a compound represented by the following formula (III) is preferably mentioned, and specifically, D 1 , D 2 and D 3 in the following formula (1), Examples of SP 1 , SP 2 and SP 3 , L 1 , L 2 and L 3 include compounds having side chain structures shown in Table 1 below.
式(III) Formula (III)
 セルロース類は、重合性基を有するセルロース化合物の硬化物と無置換のセルロース化合物とを含むことが、柔軟性、液晶性および安定性などの制御の点で好ましい。 It is preferable that the celluloses contain a cured product of a cellulose compound having a polymerizable group and an unsubstituted cellulose compound from the viewpoint of controlling flexibility, liquid crystallinity, stability, etc.
 セルロース類の分子量は特に制限されないが、数平均分子量(Mn)は、5,000~1,000,000の範囲が好ましく、10,000~500,000の範囲がより好ましく、20,000~200,000の範囲がさらに好ましく、30,000~100,000の範囲が特に好ましい。
 また、質量平均分子量(Mw)は、7,000~5,000,000の範囲が好ましく、15,000~2,500,000の範囲がより好ましく、20,000~1,500,000の範囲がさらに好ましく、30,000~500,000の範囲が特に好ましい。
 分子量分布(MWD)は1.1~5.0の範囲が好ましく、1.2~3.5の範囲がより好ましく、1.3~3.0の範囲がさらに好ましい。
 この範囲の平均分子量とすることにより、成形体の成形性等をより向上させることができる。また、この範囲の分子量分布とすることにより、成形性等をより向上させることができる。
 本発明における、数平均分子量(Mn)、質量平均分子量(Mw)及び分子量分布(MWD)の測定は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いて行うことができる。具体的には、テトラヒドロフランを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求めることができる。
The molecular weight of cellulose is not particularly limited, but the number average molecular weight (Mn) is preferably in the range of 5,000 to 1,000,000, more preferably in the range of 10,000 to 500,000, and more preferably in the range of 20,000 to 200. A range of ,000 is more preferred, and a range of 30,000 to 100,000 is particularly preferred.
The mass average molecular weight (Mw) is preferably in the range of 7,000 to 5,000,000, more preferably in the range of 15,000 to 2,500,000, and more preferably in the range of 20,000 to 1,500,000. is more preferred, and a range of 30,000 to 500,000 is particularly preferred.
The molecular weight distribution (MWD) is preferably in the range of 1.1 to 5.0, more preferably in the range of 1.2 to 3.5, even more preferably in the range of 1.3 to 3.0.
By setting the average molecular weight within this range, the moldability etc. of the molded article can be further improved. Moreover, by setting the molecular weight distribution within this range, moldability etc. can be further improved.
In the present invention, the number average molecular weight (Mn), mass average molecular weight (Mw), and molecular weight distribution (MWD) can be measured using gel permeation chromatography (GPC). Specifically, it can be determined using tetrahydrofuran as a solvent, polystyrene gel, and a reduced molecular weight calibration curve previously determined from the constitutive curve of standard monodisperse polystyrene.
 光反射層18が上記セルロース類を含む場合においても、コレステリック液晶層が形成されることが好ましい。
 また、反射する波長域の制御の観点から、セルロース類がサーモトロピック液晶性を示すことが好ましい。セルロース類がサーモトロピック液晶性を示す場合、硬化時の温度制御もしやすい。
Even when the light-reflecting layer 18 contains the above-mentioned cellulose, it is preferable that a cholesteric liquid crystal layer is formed.
Further, from the viewpoint of controlling the reflected wavelength range, it is preferable that the cellulose exhibits thermotropic liquid crystallinity. When cellulose exhibits thermotropic liquid crystallinity, it is easy to control the temperature during curing.
 コレステリック液晶層は、公知の方法で形成できる。一例として、液晶化合物およびキラル剤等を含有する塗布組成物を調製し、配向膜に塗布組成物を塗布した後、加熱することにより液晶化合物をコレステリック液晶相に配向する。その後、塗布組成物を乾燥することにより、コレステリック液晶層とする。なお、液晶化合物の配向と、塗布組成物の乾燥は、同時に行ってもよい。
 また、塗布組成物を乾燥した後、必要に応じて、紫外線の照射等によって、液晶化合物を重合してもよい。
The cholesteric liquid crystal layer can be formed by a known method. As an example, a coating composition containing a liquid crystal compound, a chiral agent, etc. is prepared, the coating composition is applied to an alignment film, and then the liquid crystal compound is aligned to a cholesteric liquid crystal phase by heating. Thereafter, the coating composition is dried to form a cholesteric liquid crystal layer. Note that the alignment of the liquid crystal compound and the drying of the coating composition may be performed simultaneously.
Further, after drying the coating composition, the liquid crystal compound may be polymerized by irradiation with ultraviolet rays or the like, if necessary.
 ここで、コレステリック液晶層を形成する際には、通常、樹脂フィルムなどの支持体の表面に液晶化合物を配向するための配向膜を形成し、この配向膜の表面に、コレステリック液晶層を形成する。
 従って、光反射層18がコレステリック液晶層である場合には、配向膜から剥離して用いてもよい。あるいは、光反射層18がコレステリック液晶層である場合には、血圧センサ10は、支持体から剥離したコレステリック液晶層と配向膜とを有してもよい。あるいは、光反射層18がコレステリック液晶層である場合には、血圧センサ10は、コレステリック液晶層と配向膜と支持体とを有してもよい。
 血圧センサ10(本発明の圧力センサ)が、光反射層18としてのコレステリック液晶層に加え、配向膜あるいはさらに支持体を有する場合には、コレステリック液晶層が撮像素子14と対面するように、コレステリック液晶層を含む積層体を配置してもよく、あるいは、配向膜および支持体が撮像素子14側に有ってもよい。配向膜および支持体が撮像素子14側に有る場合は、撮像素子14への反射光の入射を全て妨げないように配向膜および支持体の透過率などの光学特性を、適宜、調節する必要がある。また、コレステリック液晶層が撮像素子14と対面する場合は、例えば、支持体が後述する光吸収層20(遮光層)を兼用するように、支持体を選択することもできる。
Here, when forming a cholesteric liquid crystal layer, an alignment film for aligning a liquid crystal compound is usually formed on the surface of a support such as a resin film, and a cholesteric liquid crystal layer is formed on the surface of this alignment film. .
Therefore, when the light reflecting layer 18 is a cholesteric liquid crystal layer, it may be used after being peeled off from the alignment film. Alternatively, when the light reflective layer 18 is a cholesteric liquid crystal layer, the blood pressure sensor 10 may have a cholesteric liquid crystal layer and an alignment film peeled off from the support. Alternatively, when the light reflective layer 18 is a cholesteric liquid crystal layer, the blood pressure sensor 10 may include a cholesteric liquid crystal layer, an alignment film, and a support.
When the blood pressure sensor 10 (pressure sensor of the present invention) includes a cholesteric liquid crystal layer as the light reflection layer 18 and an alignment film or further a support, the cholesteric liquid crystal layer is arranged so that the cholesteric liquid crystal layer faces the image sensor 14. A laminate including a liquid crystal layer may be arranged, or an alignment film and a support may be provided on the image sensor 14 side. When the alignment film and the support are located on the image sensor 14 side, it is necessary to adjust the optical properties such as the transmittance of the alignment film and the support as appropriate so as not to obstruct all of the reflected light from entering the image sensor 14. be. Further, when the cholesteric liquid crystal layer faces the image sensor 14, the support may be selected so that, for example, the support also serves as a light absorption layer 20 (light-shielding layer), which will be described later.
 また、光反射層18としてコレステリック液晶層を用いる場合には、光反射層18は、選択反射中心波長が等しく、選択的に反射する円偏光の旋回方向が逆である、2層のコレステリック液晶層を有してもよい。 In addition, when a cholesteric liquid crystal layer is used as the light reflection layer 18, the light reflection layer 18 is a two-layer cholesteric liquid crystal layer in which the selective reflection center wavelength is the same and the direction of rotation of the selectively reflected circularly polarized light is opposite. It may have.
 圧力による変形(圧縮および伸張)に応じて、選択的に反射する光の波長が変化する光反射層18は、有機コレステリック液晶層に制限はされず、上述した低弾性を有するものであれば、公知の各種のものが利用可能である。
 一例として、『https://prtimes.jp/main/html/rd/p/000000012.000047155.html』に紹介されている、スメクタイト型粘土鉱物、層状六ニオブ酸カリウム、層状ペロブスカイトおよびグラファイトを含む無機層状化合物を剥離・分散してなる無機ナノシート液晶からなる無機ナノシート構造色ゲル(福岡工業大学)が例示される。
The light reflecting layer 18, whose wavelength of selectively reflected light changes according to deformation (compression and expansion) due to pressure, is not limited to an organic cholesteric liquid crystal layer, but may be any layer having the above-mentioned low elasticity. Various known ones can be used.
As an example, inorganic layered compounds containing smectite clay minerals, layered potassium hexaniobate, layered perovskite, and graphite are introduced in "https://prtimes.jp/main/html/rd/p/000000012.000047155.html" An example of this is the inorganic nanosheet structural color gel (Fukuoka Institute of Technology), which is made of inorganic nanosheet liquid crystals obtained by exfoliating and dispersing.
 光反射層18の厚さには制限はなく、必要な光反射特性、必要な低弾性すなわち橈骨動脈Aの拡張押圧に対して必要な膜厚の変動量を得られる膜厚を、光反射層18の形成材料等に応じて、適宜、設定すればよい。
 ここで、測定光の反射率を高くできる点では、光反射層18が厚い方が好ましい。その反面、光反射層が厚い程、圧力に対する変形性、および、血圧センサ10の厚さ等の点では不利になる。この点を考慮すると、光反射層18の厚さは、0.1~500μmが好ましく、1~100μmがより好ましい。
There is no limit to the thickness of the light-reflecting layer 18, and the thickness of the light-reflecting layer 18 should be determined so as to provide the necessary light-reflecting properties and the necessary low elasticity, that is, the necessary amount of change in thickness against expansion pressure of the radial artery A. What is necessary is just to set it suitably according to the formation material of 18, etc.
Here, it is preferable that the light reflection layer 18 be thicker in terms of increasing the reflectance of the measurement light. On the other hand, the thicker the light reflecting layer is, the more disadvantageous it becomes in terms of deformability against pressure and the thickness of the blood pressure sensor 10. Considering this point, the thickness of the light reflecting layer 18 is preferably 0.1 to 500 μm, more preferably 1 to 100 μm.
 光反射層18は、ウェットゲルで構成されていてもよい。
 上記ウェットゲルとは、流動性のある固形状の成分を意味し、液状成分を含むことが好ましい。
 つまり、光反射層18は、液状成分を含んでいてもよい。
 光反射層18がウェットゲルで構成される場合、液晶性と、微圧に応答する柔軟性をより良いバランスで両立させることができる。
 液状成分は特に制限されず、含まれる材料(特に、液晶性材料)が良好に溶解または分散される液状成分が挙げられる。液状成分としては、光反射層18に含まれる成分が液晶性を発現しやすい液状成分であることが好ましい。例えば、光反射層18がセルロース類を含む場合、液状成分として水や有機溶媒が好ましく選択される。
The light reflecting layer 18 may be made of wet gel.
The above-mentioned wet gel means a fluid solid component, and preferably includes a liquid component.
That is, the light reflecting layer 18 may contain a liquid component.
When the light-reflecting layer 18 is made of wet gel, it is possible to achieve a better balance between liquid crystallinity and flexibility that responds to slight pressure.
The liquid component is not particularly limited, and includes liquid components in which the contained material (especially liquid crystal material) can be well dissolved or dispersed. As for the liquid component, it is preferable that the component contained in the light reflective layer 18 is a liquid component that easily exhibits liquid crystallinity. For example, when the light reflective layer 18 contains cellulose, water or an organic solvent is preferably selected as the liquid component.
 また、光反射層に液状成分が含まれる場合、安定性を担保するため、その液状成分が揮発しないような仕組みを有していることが好ましい。つまり、光反射層は、封止材で封止されていることが好ましい。例えば、光反射層の上下および側面に、液状成分の揮発を阻害する封止材料または基材が設置されていることが好ましい。
 液状成分に応じてその透湿性が低い材料を選択することが望ましい。例えば、酸化アルミおよび酸化ケイ素などのケイ素化合物などの無機薄膜や、パリレンおよびアクリル樹脂などの有機薄膜、および、それらの積層膜などをガスバリア膜として用いることができる。
 また、封止材料または基材を構成する材料として、エチレン、ポリプロピレンおよびブテン等の単独重合体または共重合体または共重合体等のポリオレフィン(PO)樹脂:環状ポリオレフィン等の非晶質ポリオレフィン樹脂(APO):ポリエチレンテレフタレート(PET)およびポリエチレン2,6-ナフタレート(PEN)等のポリエステル系樹脂:ナイロン6、ナイロン12および共重合ナイロン等のポリアミド系(PA)樹脂:ポリビニルアルコール(PVA)樹脂およびエチレン-ビニルアルコール共重合体(EVOH)等のポリビニルアルコール系樹脂:ポリイミド(PI)樹脂:ポリエーテルイミド(PEI)樹脂:ポリサルホン(PS)樹脂:ポリエーテルサルホン(PES)樹脂:ポリエーテルエーテルケトン(PEEK)樹脂:ポリカーボネート(PC)樹脂:ポリビニルブチラート(PVB)樹脂:ポリアリレート(PAR)樹脂:エチレン-四フッ化エチレン共重合体(ETFE)、三フッ化塩化エチレン(PFA)、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合体(FEP)、フッ化ビニリデン(PVDF)、フッ化ビニル(PVF)およびパーフルオロエチレン-パーフロロプロピレン-パーフロロビニルエーテル-共重合体(EPA)等のフッ素系樹脂:ラジカル反応性不飽和化合物を有するアクリレート化合物によりなる樹脂組成物:上記アクリルレート化合物とチオール基を有するメルカプト化合物よりなる樹脂組成物:エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレートおよびポリエーテルアクリレート等のオリゴマーを多官能アクリレートモノマーに溶解させた樹脂組成物等の光硬化性樹脂が挙げられる。
 さらに、これらの材料の1種または2種以上をラミネートおよびコーティング等の手段によって積層させたものを樹脂基材として用いることも可能である。さらに、前述の無機薄膜および有機薄膜を上記材料からなる基材上にコーティングした基材を用いることもできる。
Further, when the light-reflecting layer contains a liquid component, in order to ensure stability, it is preferable to have a mechanism that prevents the liquid component from volatilizing. That is, the light reflecting layer is preferably sealed with a sealing material. For example, it is preferable that a sealing material or a base material that inhibits volatilization of the liquid component be provided above, below, and on the side surfaces of the light-reflecting layer.
It is desirable to select a material with low moisture permeability depending on the liquid component. For example, inorganic thin films such as silicon compounds such as aluminum oxide and silicon oxide, organic thin films such as parylene and acrylic resin, and laminated films thereof can be used as the gas barrier film.
In addition, as materials constituting the sealing material or base material, polyolefin (PO) resins such as homopolymers, copolymers, or copolymers of ethylene, polypropylene, and butene; amorphous polyolefin resins such as cyclic polyolefins ( APO): Polyester resins such as polyethylene terephthalate (PET) and polyethylene 2,6-naphthalate (PEN): Polyamide-based (PA) resins such as nylon 6, nylon 12 and copolymerized nylon: Polyvinyl alcohol (PVA) resins and ethylene - Polyvinyl alcohol resin such as vinyl alcohol copolymer (EVOH): Polyimide (PI) resin: Polyetherimide (PEI) resin: Polysulfone (PS) resin: Polyethersulfone (PES) resin: Polyetheretherketone ( PEEK) resin: polycarbonate (PC) resin: polyvinyl butyrate (PVB) resin: polyarylate (PAR) resin: ethylene-tetrafluoroethylene copolymer (ETFE), trifluorochloroethylene (PFA), tetrafluoride Fluororesins such as ethylene-perfluoroalkyl vinyl ether copolymer (FEP), vinylidene fluoride (PVDF), vinyl fluoride (PVF), and perfluoroethylene-perfluoropropylene-perfluorovinylether copolymer (EPA) : Resin composition made of an acrylate compound having a radically reactive unsaturated compound : Resin composition made of the above acrylate compound and a mercapto compound having a thiol group : Oligomers such as epoxy acrylate, urethane acrylate, polyester acrylate, and polyether acrylate Examples include photocurable resins such as resin compositions dissolved in polyfunctional acrylate monomers.
Furthermore, it is also possible to use as a resin base material a material in which one or more of these materials are laminated by means such as lamination and coating. Furthermore, a base material made of the above material and coated with the above-mentioned inorganic thin film and organic thin film can also be used.
 撮像素子14と光反射層18との間には、光ガイド層16が設けられる。光ガイド層16は、撮像素子14と光反射層18との間で、測定光の光路を形成する部材である。
 すなわち、光ガイド層16は、撮像素子14と光反射層18との間における面方向に測定光を案内すると共に、撮像素子14と光反射層18との間隙すなわち撮像素子14と光反射層18との位置関係を適正に保つものである。好ましくは、光ガイド層16は、撮像素子14および光反射層18の面方向の全面に測定光を案内する。
A light guide layer 16 is provided between the image sensor 14 and the light reflective layer 18. The light guide layer 16 is a member that forms an optical path of measurement light between the image sensor 14 and the light reflection layer 18.
That is, the light guide layer 16 guides the measurement light in the plane direction between the image sensor 14 and the light reflective layer 18, and also fills the gap between the image sensor 14 and the light reflective layer 18, that is, the gap between the image sensor 14 and the light reflective layer 18. This is to maintain an appropriate positional relationship with the Preferably, the light guide layer 16 guides the measurement light to the entire surface of the image sensor 14 and the light reflective layer 18 in the plane direction.
 なお、本発明において、光ガイド層16は好ましい態様として設けられるものであり、必須の構成要件ではない。
 従って、本発明の血圧センサが光ガイド層を有さない場合には、後述する光源24は、離間して設けられる撮像素子14と光反射層18との間、あるいは、撮像素子14に向けて、あるいは、光反射層18に向けて測定光を照射する。
Note that in the present invention, the light guide layer 16 is provided as a preferred embodiment and is not an essential component.
Therefore, when the blood pressure sensor of the present invention does not have a light guide layer, the light source 24 (described later) is placed between the image sensor 14 and the light reflective layer 18 which are provided apart from each other, or toward the image sensor 14. Alternatively, measurement light is irradiated toward the light reflecting layer 18.
 図示例の血圧センサ10において、光源24は、図中に白抜きの矢印で示すように、光ガイド層16の端面に測定光を入射するように配置される。
 光ガイド層16に入射した測定光は、光ガイド層16に案内されて、撮像素子14と光反射層18との間を、撮像素子14および光反射層18の面方向に進行する。
 光ガイド層16内を進行する測定光は、光ガイド層16と撮像素子14との界面、および、光ガイド層16と光反射層18との界面への入射角に応じて、撮像素子14および光反射層18に入射する。
In the illustrated blood pressure sensor 10, the light source 24 is arranged so as to make measurement light incident on the end surface of the light guide layer 16, as indicated by the white arrow in the figure.
The measurement light incident on the light guide layer 16 is guided by the light guide layer 16 and travels between the image sensor 14 and the light reflective layer 18 in the plane direction of the image sensor 14 and the light reflective layer 18 .
The measurement light traveling through the light guide layer 16 is transmitted to the image sensor 14 and the image sensor 14 depending on the angle of incidence to the interface between the light guide layer 16 and the image sensor 14 and the interface between the light guide layer 16 and the light reflective layer 18. The light is incident on the light reflecting layer 18.
 光ガイド層16には、制限はなく、光源24が出射した測定光、および、光反射層18による反射光が透過可能なものであれば、各種の層が利用可能である。すなわち、光ガイド層16は、面方向への測定光の光路となり、かつ、光反射層18による反射光が厚さ方向に透過可能なものであれば、各種の層が利用可能である。
 光ガイド層16としては、一例として、アクリル樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、ポリエチレンテレフタレート樹脂、セルロース樹脂およびオレフィン樹脂等の各種の樹脂材料からなる樹脂層、ならびに、ガラス層(ガラス板)が例示される。
There is no limit to the light guide layer 16, and various layers can be used as long as it can transmit the measurement light emitted by the light source 24 and the light reflected by the light reflection layer 18. That is, various layers can be used as the light guide layer 16 as long as it serves as an optical path for the measurement light in the surface direction and allows the light reflected by the light reflection layer 18 to pass through in the thickness direction.
Examples of the light guide layer 16 include resin layers made of various resin materials such as acrylic resin, polycarbonate resin, vinyl chloride resin, polyethylene terephthalate resin, cellulose resin, and olefin resin, and glass layers (glass plates). be done.
 光ガイド層16の厚さには、制限はなく、血圧センサの構成および光ガイド層16の形成材料、血圧センサの構成等に応じて、撮像素子14と光反射層18との間に測定光を案内できる厚さを、適宜、設定すればよい。
 なお、光ガイド層16を有さない場合には、撮像素子14と光反射層18との間隙は、後述する光源24が測定光を撮像素子14と光反射層18との間の全面に入射できる間隙を、適宜、設定すればよい。
There is no limit to the thickness of the light guide layer 16, and depending on the configuration of the blood pressure sensor, the material for forming the light guide layer 16, the configuration of the blood pressure sensor, etc., the thickness of the light guide layer 16 may vary depending on the thickness of the light guide layer 16. What is necessary is to appropriately set the thickness that allows the guide.
Note that when the light guide layer 16 is not provided, the gap between the image sensor 14 and the light reflection layer 18 is such that a light source 24 (described later) makes measurement light incident on the entire surface between the image sensor 14 and the light reflection layer 18. The gap that can be formed may be set as appropriate.
 血圧センサ10は、光反射層18の撮像素子14とは逆側の面に、遮光層としての光吸収層20を有する。
 なお、本発明において、光吸収層20は好ましい態様として設けられるものであり、必須の構成要件ではない。
The blood pressure sensor 10 has a light absorption layer 20 as a light shielding layer on the surface of the light reflection layer 18 on the side opposite to the image sensor 14.
Note that in the present invention, the light absorption layer 20 is provided as a preferred embodiment and is not an essential component.
 上述のように、腕時計型の血圧測定デバイスは、血圧センサ10の光吸収層20を表皮Sに向けて、被検者の手首に装着される。 As described above, the wristwatch-type blood pressure measuring device is worn on the wrist of the subject with the light absorption layer 20 of the blood pressure sensor 10 facing the epidermis S.
 血圧センサ10では、被検者の手首(腕)に入射した環境光、および、不要に被検者の手首に入射した光源24からの測定光等が、被検者の手首内等で反射され、光反射層18から血圧センサ10の内部に入射する可能性がある。
 このような不要な光が血圧センサ10に入射して、撮像素子14で測光されると、ノイズとなって、測定する血圧の誤差の原因となり、好ましくない。
In the blood pressure sensor 10, environmental light incident on the subject's wrist (arm), measurement light from the light source 24, etc. that is incident on the subject's wrist unnecessarily is reflected within the subject's wrist, etc. , may enter the inside of the blood pressure sensor 10 from the light reflecting layer 18 .
If such unnecessary light enters the blood pressure sensor 10 and is measured by the image sensor 14, it becomes noise and causes an error in the measured blood pressure, which is not preferable.
 光吸収層20は、このような不要な光が、光反射層18から血圧センサ10の内部に入射することを防止するための層である。
 すなわち、本発明の血圧センサ10は、光反射層18の撮像素子14とは逆側の面に、光吸収層20を有することにより、より高精度な血圧の測定が可能になる。
The light absorption layer 20 is a layer for preventing such unnecessary light from entering the blood pressure sensor 10 from the light reflection layer 18.
That is, the blood pressure sensor 10 of the present invention has the light absorption layer 20 on the surface of the light reflection layer 18 opposite to the image sensor 14, thereby making it possible to measure blood pressure with higher precision.
 光吸収層20には、制限はなく、不要な光を吸収して、光反射層18の撮像素子14とは逆側の面から血圧センサ10の内部に入射することを防止できるものであれば、各種の層が利用可能である。
 一例として、光吸収層20としては、目的に応じた特定の光を吸収する層であれば良く公知の各種のものが利用可能である。光吸収層20としては、具体的には、カーボンブラック、黒色の塗料および黒色の染料などの黒色材料を用いる黒色層、可視域に吸収のある有機色素などの有機物、可視域に吸収のある金属酸化物などの無機物、紫外域または赤外域に吸収のある有機物、ならびに、紫外域または赤外域に吸収のある無機物などを用いる光吸収層等が例示される。
 なお、本発明の血圧センサ10においては、不要な光が光反射層18から血圧センサ10の内部に入射することを防止するための遮光層は、光吸収層20に制限はされず、この目的を達成できる各種の層が利用可能である。例えば、金属箔、特定の光を反射する光反射層、光を反射および吸収することで遮光する層、特定の光を遮光する光学フィルタ等も、遮光層として利用可能である。
There are no restrictions on the light absorption layer 20, as long as it can absorb unnecessary light and prevent it from entering the blood pressure sensor 10 from the surface of the light reflection layer 18 opposite to the image sensor 14. , various layers are available.
As an example, the light absorption layer 20 may be any of a variety of known layers as long as it absorbs specific light depending on the purpose. Specifically, the light absorption layer 20 includes a black layer using a black material such as carbon black, black paint, and black dye, an organic material such as an organic dye that absorbs in the visible region, and a metal that absorbs in the visible region. Examples include light absorption layers using inorganic materials such as oxides, organic materials that absorb in the ultraviolet or infrared region, and inorganic materials that absorb in the ultraviolet or infrared region.
In addition, in the blood pressure sensor 10 of the present invention, the light-shielding layer for preventing unnecessary light from entering the inside of the blood pressure sensor 10 from the light-reflecting layer 18 is not limited to the light-absorbing layer 20; Various layers are available that can achieve this. For example, metal foil, a light reflecting layer that reflects specific light, a layer that blocks light by reflecting and absorbing light, an optical filter that blocks specific light, etc. can also be used as the light blocking layer.
 光吸収層20の厚さには制限はなく、光吸収層20の形成材料に応じて、血圧センサ10の内部への不要な光の入射を防止できる厚さを、適宜、設定すればよい。
 この点に関しては、他の遮光層も同様である。
There is no limit to the thickness of the light absorption layer 20, and a thickness that can prevent unnecessary light from entering the blood pressure sensor 10 may be appropriately set depending on the material of the light absorption layer 20.
In this regard, the same applies to other light shielding layers.
 血圧センサ10においては、撮像素子14、光ガイド層16、光反射層18および光吸収層20を有する、平面形状が矩形の積層体すなわち撮像素子14を短手方向に挟むように、光源24が配置される。また、光源24は、上述した積層体の長手方向に配列して3個が設けられる。
 以下の説明では、撮像素子14、光ガイド層16、光反射層18および光吸収層20を有する、平面形状が矩形の積層体を、単に『積層体』ともいう。また、以下の説明において、長手方向および短手方向とは、積層体すなわち撮像素子14の平面形状における矩形の長手方向および短手方向を示すものとする。
In the blood pressure sensor 10, the light source 24 is arranged so as to sandwich the image sensor 14 in the lateral direction, which is a stacked body having a rectangular planar shape and including the image sensor 14, the light guide layer 16, the light reflection layer 18, and the light absorption layer 20. Placed. Further, three light sources 24 are arranged in the longitudinal direction of the above-described laminate.
In the following description, a laminate having a rectangular planar shape and including the image sensor 14, the light guide layer 16, the light reflection layer 18, and the light absorption layer 20 is also simply referred to as a "laminate." Furthermore, in the following description, the longitudinal direction and the lateral direction refer to the longitudinal direction and the lateral direction of a rectangle in the planar shape of the stacked body, that is, the image sensor 14.
 光源24は、血圧センサ10が血圧を測定するための測定光を出射するものである。
 図1に示す血圧センサ10においては、光源24は、光ガイド層を挟むように設けられ、上述のように、光ガイド層16の端面に測定光を入射するように、設けられる。
The light source 24 emits measurement light for the blood pressure sensor 10 to measure blood pressure.
In the blood pressure sensor 10 shown in FIG. 1, the light source 24 is provided so as to sandwich the light guide layer, and as described above, is provided so that the measurement light is incident on the end surface of the light guide layer 16.
 光源24には制限はなく、所定の測定光を出射できるものであれば、各種の光源(発光素子)が利用可能である。
 光源24としては、LED(Light Emitting Diode)、LD(Laser Diode)、および、蛍光灯等が例示される。
The light source 24 is not limited, and various light sources (light emitting elements) can be used as long as they can emit a predetermined measurement light.
Examples of the light source 24 include an LED (Light Emitting Diode), an LD (Laser Diode), and a fluorescent lamp.
 光源24は、白色光源でもよく、あるいは、例えば光反射層18が選択的に反射する波長域の光など、赤色光、青色光および緑色光等の単色光を出射する光源でもよく、赤色光と緑色光などの複数の色の光を出射する光源でもよい。なお、光源24が白色光源以外である場合には、光源24が出射する測定光は、光反射層18が反射する波長域の光を含むのが好ましい。
 また、光源24は、赤外線などの非可視光を出射する光源であってもよい。
The light source 24 may be a white light source, or may be a light source that emits monochromatic light such as red light, blue light, and green light, such as light in a wavelength range that is selectively reflected by the light reflection layer 18. A light source that emits light of multiple colors such as green light may also be used. In addition, when the light source 24 is other than a white light source, it is preferable that the measurement light emitted by the light source 24 includes light in the wavelength range reflected by the light reflection layer 18.
Further, the light source 24 may be a light source that emits invisible light such as infrared light.
 図示例の血圧センサ10は、撮像素子14の長手方向に、3つの光源24を配列しているが、本発明は、これに制限はされない。
 すなわち、光源24の配列数は、積層体の長手方向の長さに応じて、2個以下でも、4個以上でもよい。また、光源24は、点光源ではなく、蛍光灯のような棒状光源(線状光源)でもよい。
 さらに、光源24は、撮像素子14を短手方向に挟むように設けるのではなく、撮像素子14を長手方向に挟むように設けてもよい。
Although the illustrated blood pressure sensor 10 has three light sources 24 arranged in the longitudinal direction of the image sensor 14, the present invention is not limited to this.
That is, the number of light sources 24 arranged may be two or less, or four or more, depending on the length of the laminate in the longitudinal direction. Further, the light source 24 may be a rod-shaped light source (linear light source) such as a fluorescent lamp instead of a point light source.
Furthermore, the light source 24 may be provided so as to sandwich the image sensor 14 in the longitudinal direction instead of being provided so as to sandwich the image sensor 14 in the lateral direction.
 なお、光反射層18としてコレステリック液晶層を用いる場合には、コレステリック液晶層が選択的に反射する円偏光を光ガイド層16に入射するように、光源24が、円偏光子を有してもよい。円偏光子としては、例えば直線偏光子と1/4波長板(λ/4板)とからなる円偏光子が例示される。
 また、本発明の血圧センサ10において、光源24は好ましい態様として設けられるものであり、必須の構成要素ではない。例えば、本発明の血圧センサは、光源を有さず、室内灯等の環境光および太陽光などの自然光等を光ガイド層16に入射し、あるいは、撮像素子14と光反射層18との間に入射して、後述のように血圧の測定を行ってもよい。
Note that when a cholesteric liquid crystal layer is used as the light reflection layer 18, the light source 24 may have a circular polarizer so that the circularly polarized light selectively reflected by the cholesteric liquid crystal layer is incident on the light guide layer 16. good. As the circular polarizer, for example, a circular polarizer consisting of a linear polarizer and a quarter wavelength plate (λ/4 plate) is exemplified.
Furthermore, in the blood pressure sensor 10 of the present invention, the light source 24 is provided as a preferred embodiment and is not an essential component. For example, the blood pressure sensor of the present invention does not have a light source, and allows environmental light such as an indoor light and natural light such as sunlight to enter the light guide layer 16, or between the image sensor 14 and the light reflective layer 18. The blood pressure may be measured as described below.
 以下、血圧センサ10および基板12の作用を説明することにより、本発明の圧力センサに関して、より詳細に説明する。 Hereinafter, the pressure sensor of the present invention will be explained in more detail by explaining the functions of the blood pressure sensor 10 and the substrate 12.
 図3の概念図を参照して上述したように、血圧センサ10は、腕時計型の血圧測定デバイスに用いられるものであり、血圧測定デバイスのバンド28の内側に固定される。
 血圧測定デバイスは、血圧センサ10の撮像素子14(積層体)の長手方向が橈骨動脈Aを横切るように(図2参照)、光吸収層20側を被検者の表皮Sに向けて、バンド28によって被検者の手首に装着される。この際に、血圧センサ10は、図3に示すように、一定の力で橈骨動脈Aを押圧するように、一定の力で被検者の表皮Sを押圧して装着される。
As described above with reference to the conceptual diagram of FIG. 3, the blood pressure sensor 10 is used in a wristwatch-type blood pressure measuring device, and is fixed inside the band 28 of the blood pressure measuring device.
The blood pressure measuring device is attached to a band with the light absorption layer 20 side facing the epidermis S of the subject so that the longitudinal direction of the imaging element 14 (laminated body) of the blood pressure sensor 10 crosses the radial artery A (see FIG. 2). 28 is attached to the wrist of the subject. At this time, as shown in FIG. 3, the blood pressure sensor 10 is attached by pressing the epidermis S of the subject with a constant force so as to press the radial artery A with a constant force.
 血圧センサ10が被検者の表皮S(手首)に装着されると、基板12が光源24を点灯する。本例においては、血液センサ10は、一例として、腕時計型の血圧測定デバイスである。
 上述のように、光源24は、光ガイド層16の端面に測定光を入射する。光ガイド層16に入射した測定光は、上述のように、光ガイド層16によって撮像素子14および光反射層18の面方向に案内されると共に、撮像素子14に直接入射し、あるいは、光反射層18に入射して反射され、反射光が撮像素子14に入射して、撮像される。
 撮像素子14による撮像画像は、例えば、基板12によって処理される。
When the blood pressure sensor 10 is attached to the epidermis S (wrist) of the subject, the board 12 turns on the light source 24. In this example, the blood sensor 10 is, for example, a wristwatch-type blood pressure measurement device.
As described above, the light source 24 makes measurement light incident on the end surface of the light guide layer 16. As described above, the measurement light incident on the light guide layer 16 is guided by the light guide layer 16 in the plane direction of the image sensor 14 and the light reflective layer 18, and is directly incident on the image sensor 14, or is directly reflected by the light guide layer 16. The light enters the layer 18 and is reflected, and the reflected light enters the image sensor 14 and is imaged.
An image captured by the image sensor 14 is processed by the substrate 12, for example.
 心臓が拡張状態である場合、すなわち、血圧が低い状態では、図3の上段に概念的に示すように、橈骨動脈Aは血圧センサ10による押圧に応じた状態になっている。
 従って、この状態では、撮像素子14には、光ガイド層16から直接入射した測定光と、変形していない平板状の光反射層18によって反射された反射光とが入射している。
When the heart is in an expanded state, that is, when the blood pressure is low, the radial artery A is in a state responsive to the pressure applied by the blood pressure sensor 10, as conceptually shown in the upper part of FIG.
Therefore, in this state, the measurement light directly incident from the light guide layer 16 and the reflected light reflected by the undeformed flat plate-shaped light reflection layer 18 are incident on the imaging element 14.
 一方、心臓が収縮して、血管に血液が供給されると、図3の下段に概念的に示すように、血圧によって橈骨動脈Aが拡張する。
 上述のように、光反射層18は、心拍に応じた橈骨動脈Aの拡張による押圧(脈圧)によって厚さが変化する低弾性層である。そのため、橈骨動脈Aが拡張すると、この拡張によって光反射層18は押圧され、この押圧によって変形(圧縮)される。従って、橈骨動脈Aが拡張した状態では、撮像素子14には、光ガイド層16から直接入射した測定光と、橈骨動脈Aによる押圧で部分的に厚さが変化した光反射層18によって反射された反射光とが入射している。
On the other hand, when the heart contracts and blood is supplied to the blood vessels, the radial artery A expands due to blood pressure, as conceptually shown in the lower part of FIG.
As described above, the light reflecting layer 18 is a low elastic layer whose thickness changes depending on the pressure (pulse pressure) caused by expansion of the radial artery A in response to heartbeat. Therefore, when the radial artery A expands, the light reflecting layer 18 is pressed by this expansion, and is deformed (compressed) by this pressing. Therefore, when the radial artery A is expanded, the imaging device 14 receives measurement light directly incident from the light guide layer 16 and is reflected by the light reflection layer 18 whose thickness has partially changed due to the pressure applied by the radial artery A. reflected light is incident.
 本発明において、光反射層18は、圧力に応じて反射特性が変化するものである。好ましくは、光反射層18は、コレステリック液晶層のように、反射光に波長選択性を有し、圧力による変形(圧縮および伸張)に応じて、選択的に反射する光の波長が変化する。
 従って、例えば光反射層18がコレステリック液晶層である場合には、橈骨動脈Aの押圧による厚さの変化によって、コレステリック液晶相の螺旋ピッチが変化し、また、螺旋軸に対する測定光の入射角度も変化する。その結果、光反射層18は、橈骨動脈Aの押圧による厚さの変化、および、測定光の入射角度に応じて、光反射層18が選択的に反射する測定光の波長、すなわち反射光の波長(反射スペクトル)が変化する。
In the present invention, the light reflective layer 18 has reflective characteristics that change depending on pressure. Preferably, the light reflecting layer 18 has wavelength selectivity for reflected light, like a cholesteric liquid crystal layer, and the wavelength of the selectively reflected light changes in response to deformation (compression and expansion) due to pressure.
Therefore, for example, when the light reflection layer 18 is a cholesteric liquid crystal layer, the helical pitch of the cholesteric liquid crystal phase changes due to the change in thickness due to the pressure of the radial artery A, and the incident angle of the measurement light with respect to the helical axis also changes. Change. As a result, the light reflection layer 18 changes in thickness due to the pressure of the radial artery A, and the wavelength of the measurement light that the light reflection layer 18 selectively reflects, that is, the wavelength of the reflected light, depending on the incident angle of the measurement light. The wavelength (reflection spectrum) changes.
 そのため、例えば、測定光が白色光で、撮像素子14がカラーセンサである場合には、図3の上段に示す、心臓が拡張した橈骨動脈Aによって光反射層18が押圧されていない血圧が低い状態と、図3の下段に示す、心臓が収縮して、拡張した橈骨動脈Aによって光反射層18が押圧された血圧が高い状態とで、撮像素子14が撮像する画像の色味および濃度が、部分的に変化する。
 また、測定光が白色光または赤色光および緑色光などの単色光で、撮像素子14が白黒のモノクロセンサ(輝度センサ)または単色光に対応するセンサである場合には、図3の上段に示す血圧が低い状態と、図3の下段に示す血圧が高い状態とで、撮像素子14が撮像する画像の濃度(輝度)が、部分的に変化する。
 さらに、測定光が赤色光および緑色光などの単色光で、撮像素子14がカラーセンサである場合には、図3の上段に示す血圧が低い状態と、図3の下段に示す血圧が高い状態とで、撮像素子14が撮像する画像の濃度(輝度)が、部分的に変化する。また、この場合には、測定光の波長域と、光反射層18が選択的に反射する光の波長域との関係で、撮像素子14が撮像する画像の色味も、部分的に、若干、変化する。
Therefore, for example, when the measurement light is white light and the image sensor 14 is a color sensor, the blood pressure is low when the light reflection layer 18 is not pressed by the radial artery A in which the heart is dilated, as shown in the upper row of FIG. In this state and in the state shown in the lower part of FIG. 3 where the heart is contracting and the light reflective layer 18 is pressed by the dilated radial artery A and the blood pressure is high, the color and density of the image captured by the image sensor 14 are different. , partially changing.
In addition, when the measurement light is white light or monochromatic light such as red light and green light, and the image sensor 14 is a black and white monochrome sensor (luminance sensor) or a sensor compatible with monochromatic light, the upper part of FIG. The density (brightness) of the image captured by the image sensor 14 partially changes between a low blood pressure state and a high blood pressure state shown in the lower part of FIG.
Furthermore, when the measurement light is monochromatic light such as red light and green light, and the image sensor 14 is a color sensor, a state in which the blood pressure is low as shown in the upper part of FIG. 3, and a state in which the blood pressure is high as shown in the lower part of FIG. As a result, the density (brightness) of the image captured by the image sensor 14 partially changes. In addition, in this case, due to the relationship between the wavelength range of the measurement light and the wavelength range of the light selectively reflected by the light reflection layer 18, the color tone of the image captured by the image sensor 14 may also be slightly different in some parts. ,Change.
 ここで、橈骨動脈Aによる光反射層18の押圧の状態、すなわち、橈骨動脈Aによる光反射層18の変形の状態は、橈骨動脈Aの拡張量、すなわち、血圧によって異なる。
 従って、橈骨動脈Aの血圧が異なれば、血圧に応じて、撮像素子14が撮像する画像も変化する。
Here, the state of pressing of the light reflective layer 18 by the radial artery A, that is, the state of deformation of the light reflective layer 18 by the radial artery A, differs depending on the amount of expansion of the radial artery A, that is, the blood pressure.
Therefore, if the blood pressure of the radial artery A differs, the image captured by the image sensor 14 also changes depending on the blood pressure.
 本発明は、これを利用したものであり、橈骨動脈Aの血圧と、撮像素子14が撮像する画像との関係を、予め知見しておき、例えば基板12に記憶しておく。あるいは、撮像素子14が撮像する画像が、血圧と相関を有する所定の画像となるように、光反射層18を設計して、制御、製造してもよい。
 その上で、上述のように、バンド28を血圧の被検者の手首に巻き付けることで、血圧センサ10を橈骨動脈Aに押圧し、光源24から光ガイド層16に測定光を入射して、撮像素子14によって撮像する。次いで、基板12において、撮像素子14が撮像した画像に必要な画像処理を行い、撮像素子14が撮像した画像と、予め記憶した血圧に応じた画像とのマッチングを行う。これにより、被検者の血圧を測定できる。なお、画像のマッチングは、公知の方法で行えばよい。
The present invention utilizes this, and the relationship between the blood pressure of the radial artery A and the image captured by the image sensor 14 is known in advance and stored in, for example, the substrate 12. Alternatively, the light reflecting layer 18 may be designed, controlled, and manufactured so that the image captured by the image sensor 14 becomes a predetermined image that has a correlation with blood pressure.
Then, as described above, by wrapping the band 28 around the wrist of the blood pressure subject, the blood pressure sensor 10 is pressed against the radial artery A, and measurement light is incident on the light guide layer 16 from the light source 24, An image is captured by the image sensor 14. Next, on the board 12, necessary image processing is performed on the image captured by the image sensor 14, and matching is performed between the image captured by the image sensor 14 and an image corresponding to the blood pressure stored in advance. Thereby, the subject's blood pressure can be measured. Note that image matching may be performed using a known method.
 血圧の測定結果は、例えば、バンド28に設けたディスプレイに表示する。
 あるいは、基板12から、外部装置に血圧の測定結果または撮像素子14が撮像した画像を無線または有線で送信して、外部装置において、血圧の測定結果を表示する。この際には、基板12が行うマッチング等の画像の処理の少なくとも一部を、外部装置が行うようにしてもよい。
The blood pressure measurement results are displayed on a display provided on the band 28, for example.
Alternatively, the blood pressure measurement result or the image captured by the image sensor 14 is transmitted from the board 12 to an external device wirelessly or by wire, and the blood pressure measurement result is displayed on the external device. In this case, at least a part of the image processing such as matching performed by the substrate 12 may be performed by an external device.
 すなわち、本発明の血圧センサ10(圧力センサ)によれば、例えば腕時計型の圧力測定デバイスのバンド28を血圧の被検者の手首等に巻き付けるだけで、簡便に血圧の測定を行うことができる。
 また、撮像素子14は、通常、動画を撮像できる。従って、本発明の血圧センサ10は血圧の連続測定が可能であり、例えば1拍毎の血圧の最大値を連続的に測定して、血圧の変動を連続的に出力し、観察できる。
 加えて、本発明の血圧センサ10は、撮像素子が撮像した画像は、血圧に応じた画像濃度(輝度)の変化のみならず、血圧に応じた色味(波長)も変化させて、検出することができる。そのため、本発明の血圧センサ10によれば、より詳細な撮像画像の変化を検出でき、その結果、より高精度で高分解能な血圧の測定が可能になる。
 さらに、本発明の血圧センサ10において、積層体は、撮像素子14以外は、いずれも、フィルム状の部材を積層したものである。従って、本初の血圧センサ10は、薄型にすることができ、被検者の負担を少なくして、連続的な血圧の測定を行うことができる。
That is, according to the blood pressure sensor 10 (pressure sensor) of the present invention, blood pressure can be easily measured by simply wrapping the band 28 of a wristwatch-type pressure measuring device around the wrist of a blood pressure test subject, for example. .
Further, the image sensor 14 can normally capture moving images. Therefore, the blood pressure sensor 10 of the present invention is capable of continuously measuring blood pressure, for example, continuously measuring the maximum value of blood pressure for each beat, and continuously outputting and observing fluctuations in blood pressure.
In addition, the blood pressure sensor 10 of the present invention detects an image captured by the image sensor by changing not only the image density (brightness) according to the blood pressure but also the color (wavelength) according to the blood pressure. be able to. Therefore, according to the blood pressure sensor 10 of the present invention, more detailed changes in captured images can be detected, and as a result, blood pressure can be measured with higher precision and higher resolution.
Furthermore, in the blood pressure sensor 10 of the present invention, all of the laminates except the image sensor 14 are formed by laminating film-like members. Therefore, the first blood pressure sensor 10 can be made thin and can continuously measure blood pressure with less burden on the subject.
 このような本発明の利点、特に、血圧に応じた撮像画像を、濃度に加え、色味も変化でき、より高精度かつ高分解能な血圧測定が可能である点で、光源24は白色光源が好ましく、撮像素子14はカラーセンサが好ましい。 The advantage of the present invention is that the color of the captured image according to the blood pressure can be changed in addition to the density, making it possible to measure blood pressure with higher accuracy and resolution. Preferably, the image sensor 14 is a color sensor.
 なお、以上の例は、最大血圧を測定する例であるが、最小血圧を測定する場合には、例えば、血圧測定デバイスのバンド28による締め付けの圧力を変化させて、血圧センサ10が脈動を検知できなくなった圧力で、検知することもできる。 Note that the above example is an example of measuring the systolic blood pressure, but when measuring the diastolic blood pressure, for example, the pressure of tightening by the band 28 of the blood pressure measuring device is changed, and the blood pressure sensor 10 detects pulsation. It is also possible to detect the pressure that is no longer possible.
 このような本発明の血圧センサ10による血圧の測定において、光源24は、連続的に測定光を出射してもよく、あるいは、パルス光であってもよい。
 光源24が出射する測定光をパルス光とし、発光周期を被検者の体動周期よりも高周波にすることで、例えば、ローパスフィルタを用いるフィルタカットなどによって、体動による血圧測定結果への影響を除去して、より正確な血圧の測定が可能になる。
In measuring blood pressure using the blood pressure sensor 10 of the present invention, the light source 24 may emit measuring light continuously or may emit pulsed light.
By using the measurement light emitted by the light source 24 as pulsed light and making the emission period higher than the body movement period of the subject, for example, by filter cutting using a low-pass filter, the influence of body movement on blood pressure measurement results can be reduced. This allows for more accurate blood pressure measurements.
 図1および図2に示す血圧センサ10は、光ガイド層16の端面に測定光を入射しているが、本発明は、これに制限はされない。
 例えば、図4に概念的に示す血圧センサ10aのように、撮像素子14および光ガイド層16に比して、光反射層18および光吸収層20を小さくして、光ガイド層16の主面の光反射層18に覆われていない領域に、光源24から測定光を照射することで、光ガイド層16に測定光を入射し、面方向に案内してもよい。
 本例でも、光ガイド層16を挟むように光源24を配置することにより、光源24が出射した測定光が、光ガイド層16を厚さ方向に透過して、直接的に撮像素子14に入射することを防止できる。
Although the blood pressure sensor 10 shown in FIGS. 1 and 2 makes measurement light incident on the end face of the light guide layer 16, the present invention is not limited to this.
For example, as in a blood pressure sensor 10a conceptually shown in FIG. By irradiating measurement light from the light source 24 onto a region not covered by the light reflection layer 18, the measurement light may be incident on the light guide layer 16 and guided in the surface direction.
In this example as well, by arranging the light sources 24 to sandwich the light guide layer 16, the measurement light emitted by the light sources 24 passes through the light guide layer 16 in the thickness direction and directly enters the image sensor 14. can be prevented from happening.
 また、上述のように、本発明の血圧センサは、撮像素子として、エリアセンサではなくラインセンサも利用可能である。
 図5および図6に、その一例を概念的に示す。なお、図5は図1と、図6は図2と、同じ方向から血圧センサを見た図である。
Further, as described above, the blood pressure sensor of the present invention can also use a line sensor instead of an area sensor as an imaging element.
An example is conceptually shown in FIGS. 5 and 6. Note that FIG. 5 and FIG. 6 are views of the blood pressure sensor viewed from the same direction as FIG. 1 and FIG. 2, respectively.
 図5および図6に示すように、血圧センサ10bは、ラインセンサ14Lを短手方向に挟むように、光源24が設けられる。図示例でも、光源24からの測定光は、光ガイド層16の端面に入射される。
 また、血圧センサ10bは、図6に概念的に示すように、ラインセンサ14Lの長手方向が、橈骨動脈Aを横切るように、被検者の手首に装着、押圧される。
As shown in FIGS. 5 and 6, the blood pressure sensor 10b is provided with a light source 24 so as to sandwich the line sensor 14L in the lateral direction. Also in the illustrated example, the measurement light from the light source 24 is incident on the end surface of the light guide layer 16.
Further, the blood pressure sensor 10b is attached to and pressed on the subject's wrist so that the longitudinal direction of the line sensor 14L crosses the radial artery A, as conceptually shown in FIG.
 本発明の血圧センサ10においては、血圧の測定を正確に行うためには、撮像素子14(ラインセンサ14L)および光反射層18の長手方向を、橈骨動脈Aなど、測定対象となる血管を横切ることができる長さとする必要がある。しかしながら、その反面、血圧センサ10は小さい方が好ましい。
 この点を考慮すると、撮像素子14および光反射層18の長手方向の長さは、10mm以上が好ましく、20mm以上がより好ましい。具体的には、撮像素子14および光反射層18の長手方向の長さは、10~100mmが好ましく、20~40mmがより好ましい。
In the blood pressure sensor 10 of the present invention, in order to accurately measure blood pressure, the longitudinal direction of the image sensor 14 (line sensor 14L) and the light reflection layer 18 must cross a blood vessel to be measured, such as the radial artery A. It needs to be as long as possible. However, on the other hand, it is preferable for the blood pressure sensor 10 to be small.
Considering this point, the length in the longitudinal direction of the image sensor 14 and the light reflection layer 18 is preferably 10 mm or more, and more preferably 20 mm or more. Specifically, the length of the image sensor 14 and the light reflective layer 18 in the longitudinal direction is preferably 10 to 100 mm, more preferably 20 to 40 mm.
 また、本発明の血圧センサにおいては、より高精度な血圧の測定を行うためには、撮像素子の全面に対応する領域に測定光を供給するのが好ましい。
 この点では、撮像素子は、エリアセンサよりもラインセンサの方が有利である。
 しかしながら、その反面、血圧に応じた撮像素子による撮像画像の変化を、より大きく見られる点では、撮像素子は、ラインセンサよりもエリアセンサの方が有利である。
 ただし、撮像素子の全面に対応する領域に測定光を供給することを考慮すると、撮像素子14の短手方向の長さは、5mm以下が好ましい。
Furthermore, in the blood pressure sensor of the present invention, in order to measure blood pressure with higher precision, it is preferable to supply measurement light to a region corresponding to the entire surface of the image sensor.
In this respect, a line sensor is more advantageous than an area sensor as an image sensor.
However, on the other hand, an area sensor is more advantageous than a line sensor in that the change in the image captured by the image sensor depending on the blood pressure can be more clearly seen.
However, in consideration of supplying the measurement light to a region corresponding to the entire surface of the image sensor, the length of the image sensor 14 in the lateral direction is preferably 5 mm or less.
 上述した血圧センサは、いずれも、撮像素子14(ラインセンサ14L)を挟むように光源24を設け、撮像素子14の両側から、測定光を入射している。
 しかしながら、本発明は、これに制限はされず、撮像素子14を挟まず、一方の側のみに光源24を配置(配列)してもよい。
 上述した、撮像素子の全面に対応する領域に測定光を供給し易くなる点では、本発明の血圧センサでは、図示例の血圧センサのように、撮像素子14を挟むように光源24を設け、撮像素子14の両側から、測定光を入射するのが好ましい。
In each of the blood pressure sensors described above, a light source 24 is provided so as to sandwich the image sensor 14 (line sensor 14L), and measurement light is incident on both sides of the image sensor 14.
However, the present invention is not limited to this, and the light sources 24 may be arranged (arranged) only on one side without sandwiching the image sensor 14.
In order to facilitate the supply of measurement light to the area corresponding to the entire surface of the image sensor as described above, in the blood pressure sensor of the present invention, the light source 24 is provided so as to sandwich the image sensor 14, as in the blood pressure sensor in the illustrated example. It is preferable that the measurement light be incident on both sides of the image sensor 14.
 また、以上の例は血圧センサの積層体は平面形状が矩形であったが、本発明は、これに制限はされず、積層体の平面形状は、円形、楕円形、正方形、および、四角形以外の多角形等の各種の形状が利用可能である。
 また、本発明の血圧センサにおいては、撮像素子14、光ガイド層16、光反射層18および光吸収層20の平面形状およびサイズは、互いに異なってもよい。ただし、光反射層18は、撮像素子14の撮像面の全面を覆うように設けられるのが好ましい。また、光吸収層20は、光反射層18の撮像素子14とは逆側の面の全面を覆って設けられるのが好ましい。
Further, in the above example, the laminate of the blood pressure sensor has a rectangular planar shape, but the present invention is not limited to this, and the laminate can have a planar shape other than circular, elliptical, square, and rectangular. Various shapes are available, such as polygons.
Furthermore, in the blood pressure sensor of the present invention, the planar shape and size of the image sensor 14, the light guide layer 16, the light reflection layer 18, and the light absorption layer 20 may be different from each other. However, it is preferable that the light reflective layer 18 be provided so as to cover the entire imaging surface of the image sensor 14. Further, the light absorption layer 20 is preferably provided so as to cover the entire surface of the light reflection layer 18 on the side opposite to the image sensor 14.
 以上の例は、本発明の圧力センサを血圧センサに利用した例であるが、本発明の圧力センサは、これに制限はされず、各種の圧力測定に利用可能である。
 一例として、ロボットのアーム先端の触覚センサ、ならびに、パネルおよびボタンなどでのタッチセンサ等が例示される。
 中でも、本発明の圧力センサは、上述した血圧センサ、および、ロボット用の触覚センサには、好適に利用される。
Although the above example is an example in which the pressure sensor of the present invention is used as a blood pressure sensor, the pressure sensor of the present invention is not limited to this and can be used for various pressure measurements.
Examples include a tactile sensor at the tip of a robot's arm, a touch sensor on a panel, a button, and the like.
Among them, the pressure sensor of the present invention is suitably used for the above-mentioned blood pressure sensor and a tactile sensor for robots.
 図7に、本発明の圧力センサの別の例を概念的に示す。
 この圧力センサ30は、一例として、図8に概念的に示すように、ロボット用途において、ロボットアーム46におけるアーム部材48の一方の先端に設けられ、ロボットアーム46が物体を把持すなわち掴んだ際に、ロボットアームすなわち物体に掛かる圧力および圧力分布を測定する触覚センサとして、好適に用いられるものである。
 なお、アーム部材の形状および圧力センサの搭載位置は、この図8の形に制限されるものではない。すなわち、本発明の圧力センサをロボットアームに利用する場合には、各種の形状のアームが利用可能であり、また、アームにおける触覚を検知したい場所に、適宜、使用することができる。
 また、本発明の圧力センサは、図8に示すようなアーム型のロボットに搭載するのに制限はされず、例えば、複数の指型を模したハンド型のロボットにも利用可能である。さらには、本発明の圧力センサは、アームおよびハンドの先端のみならず、ロボットの物体と接する各種の部分(面)に搭載することもできる。
 このように、本発明の圧力センサを触感センサとして用いるロボットは、本発明のロボットである。
FIG. 7 conceptually shows another example of the pressure sensor of the present invention.
For example, as conceptually shown in FIG. 8, this pressure sensor 30 is provided at one tip of an arm member 48 in a robot arm 46 in a robot application, and is used when the robot arm 46 grips or grasps an object. , is suitably used as a tactile sensor that measures pressure and pressure distribution applied to a robot arm, that is, an object.
Note that the shape of the arm member and the mounting position of the pressure sensor are not limited to the shape shown in FIG. 8. That is, when the pressure sensor of the present invention is used in a robot arm, arms of various shapes can be used, and it can be used as appropriate in the location where it is desired to detect a tactile sensation on the arm.
Further, the pressure sensor of the present invention is not limited to being mounted on an arm-type robot as shown in FIG. 8, but can also be used, for example, on a hand-type robot imitating a plurality of fingers. Furthermore, the pressure sensor of the present invention can be mounted not only on the tips of arms and hands, but also on various parts (surfaces) of the robot that come into contact with objects.
Thus, a robot using the pressure sensor of the present invention as a tactile sensor is a robot of the present invention.
 図7に示す圧力センサ30は、撮像素子32と、レンズ34と、光源36と、光反射層38と、遮光層としての光吸収層40と、筐体42と、を有する。
 圧力センサ30において、撮像素子32、光源36、光反射層38および光吸収層40は、上述した血圧センサ10と同様のものが利用可能である。以下の説明では、ロボット用途の触感センサとして利用される圧力センサ30における各部材の好ましい態様を説明する。ただし、これらの態様は、ロボットの触感センサとして利用される圧力センサ30以外の本発明の圧力センサでも利用可能である。
The pressure sensor 30 shown in FIG. 7 includes an image sensor 32, a lens 34, a light source 36, a light reflection layer 38, a light absorption layer 40 as a light shielding layer, and a housing 42.
In the pressure sensor 30, the same image sensor 32, light source 36, light reflection layer 38, and light absorption layer 40 as in the blood pressure sensor 10 described above can be used. In the following description, preferred embodiments of each member in the pressure sensor 30 used as a tactile sensor for robot applications will be described. However, these aspects can also be used in pressure sensors of the present invention other than the pressure sensor 30 used as a tactile sensor of a robot.
 図7に示す圧力センサ30は、筐体42に、撮像素子32、レンズ34、光源36、光反射層38および光吸収層40を組み込んで構成される。
 筐体42は、一例として、直方体である。撮像素子32は、図中上方の壁面に撮像面を筐体42の内部に向けて保持される。また、光反射層38は、図中下方の壁面に保持され、光反射層38の外面側には、光吸収層40が積層される。
 筐体42における各部材の保持当は、保持部材等を用いて公知の方法で行えばよい。
The pressure sensor 30 shown in FIG. 7 is configured by incorporating an image sensor 32, a lens 34, a light source 36, a light reflection layer 38, and a light absorption layer 40 into a housing 42.
The housing 42 is, for example, a rectangular parallelepiped. The image sensor 32 is held on the upper wall surface in the figure with its imaging surface facing inside the casing 42 . Further, the light reflecting layer 38 is held on the lower wall surface in the figure, and a light absorbing layer 40 is laminated on the outer surface side of the light reflecting layer 38.
Each member in the housing 42 may be held by a known method using a holding member or the like.
 図7に示す圧力センサ30は、一例として、上述した図8に示すように、ロボットアーム46のアーム部材48の先端に、撮像素子32側をアーム部材48側にして筐体42を固定することで、使用される。
 ロボットアーム46が物体を把持すると、物体による圧力が光吸収層40を介して光反射層38に加わる。
 上述した血圧センサ10と同様、光反射層38による光反射特性、特に反射波長(反射スペクトル)は、光反射層38にかかる圧力によって変化する。圧力センサ30は、撮像素子32によって光反射層38を撮像することにより、光反射層38による反射光から、光反射層38すなわち把持した物体にかかる圧力分布を測定する。
 すなわち、撮像素子32によって光反射層38の一部もしくは全体を撮像して、その反射光を検出することで、光反射層38において、圧力が加わっている場所を検出できる。上述した血圧センサ10と同様、光反射層38による光反射特性は、圧力に応じて変化する。従って、規定の圧力が加わった際の光反射特性の変化を予め測定して、光反射層38にかかる圧力と反射光の特性との関係、例えば光反射層38にかかる圧力と反射光の波長との関係を知見しておく。この関係を用いることで、光反射層38の各箇所における反射光から、光反射層38の各箇所に掛かる圧力を測定できる。
As an example, the pressure sensor 30 shown in FIG. 7 has a housing 42 fixed to the tip of an arm member 48 of a robot arm 46 with the imaging element 32 side facing the arm member 48, as shown in FIG. 8 described above. and used.
When the robot arm 46 grips an object, pressure from the object is applied to the light reflective layer 38 via the light absorbing layer 40 .
Similar to the blood pressure sensor 10 described above, the light reflection characteristics of the light reflection layer 38, particularly the reflection wavelength (reflection spectrum), change depending on the pressure applied to the light reflection layer 38. The pressure sensor 30 measures the pressure distribution applied to the light reflective layer 38 , that is, the gripped object, from the light reflected by the light reflective layer 38 by capturing an image of the light reflective layer 38 with the image sensor 32 .
That is, by capturing an image of part or all of the light reflective layer 38 with the image sensor 32 and detecting the reflected light, it is possible to detect a location on the light reflective layer 38 where pressure is applied. Similar to the blood pressure sensor 10 described above, the light reflection characteristics of the light reflection layer 38 change depending on the pressure. Therefore, the change in the light reflection characteristics when a prescribed pressure is applied is measured in advance, and the relationship between the pressure applied to the light reflection layer 38 and the characteristics of the reflected light, for example, the pressure applied to the light reflection layer 38 and the wavelength of the reflected light, is measured. Understand the relationship between By using this relationship, the pressure applied to each location on the light reflective layer 38 can be measured from the reflected light at each location on the light reflective layer 38.
 圧力センサ30において、筐体42の形状、大きさ、形成材料、および、壁の厚さ等には、制限はない。
 ここで、圧力センサ30の重さおよび強度等を考慮すると、形成材料としては、プラスチック、ならびに、ステンレスおよびアルミニウムなどの金属等が好適に例示される。
 また、図7に示す圧力センサ30は、光源36からの測定光を光反射層38に入射して、光反射層38からの反射光を撮像素子32によって撮像することで、圧力を測定する。従って、外部環境光が筐体42内に入射すると、この光がノイズとなり、測定精度が低下する。そのため、筐体42は、撮像素子32が測定する波長領域の光に対して、遮光性を有するのが好ましい。
 また、筐体42内部における散乱光がノイズになる場合には、筐体42の内面が、光源36が出射する測定光および光反射層38からの反射光を吸収できるようにするのが好ましい。なお、筐体42の内面で測定光および反射光を吸収可能にする方法には、制限はなく、筐体42の形成材料の選択、筐体42の内面を光吸収材でコーティングする方法など、公知の方法が利用可能である。
 上述のように、筐体42の壁、すなわち、筐体42を構成する板材の厚さには、制限はない。ここで、筐体42を構成する板材は、圧力センサ30の強度の点では厚い方が好ましく、一方、圧力センサ30の軽量化および小型化の点では薄い方が好ましい。この点を考慮すると、筐体42を構成する板材の厚さは、0.05~10mmが好ましく、0.1~5mmがより好ましい。
In the pressure sensor 30, there are no restrictions on the shape, size, forming material, wall thickness, etc. of the housing 42.
Here, considering the weight and strength of the pressure sensor 30, suitable examples of the forming material include plastic, and metals such as stainless steel and aluminum.
Further, the pressure sensor 30 shown in FIG. 7 measures pressure by making measurement light from a light source 36 enter the light reflection layer 38 and capturing an image of the reflected light from the light reflection layer 38 with the imaging element 32. Therefore, when external environmental light enters the housing 42, this light becomes noise, reducing measurement accuracy. Therefore, it is preferable that the housing 42 has a light shielding property against light in the wavelength range measured by the image sensor 32.
Furthermore, if the scattered light inside the housing 42 becomes noise, it is preferable that the inner surface of the housing 42 be able to absorb the measurement light emitted by the light source 36 and the reflected light from the light reflection layer 38. Note that there are no restrictions on the method of making the inner surface of the casing 42 absorb the measurement light and the reflected light, such as selecting the material for forming the casing 42, coating the inner surface of the casing 42 with a light absorbing material, etc. Known methods are available.
As described above, there is no limit to the thickness of the wall of the casing 42, that is, the thickness of the plate material that constitutes the casing 42. Here, the plate material constituting the casing 42 is preferably thicker in terms of strength of the pressure sensor 30, while thinner is preferable in terms of reducing the weight and size of the pressure sensor 30. Considering this point, the thickness of the plate material constituting the housing 42 is preferably 0.05 to 10 mm, more preferably 0.1 to 5 mm.
 圧力センサ30において、撮像素子32、光反射層38および光吸収層40は、いずれも、シート状(板状、フィルム状、層状)の部材であることが好ましいが、用途に応じて湾曲、立体的な形状をしていても良い。
 また、撮像素子32、光反射層38および光吸収層40の大きさ、および/または、形状は、それぞれ同じでも、異なっても良い。
 さらに、撮像素子32、レンズ34、光反射層38および光吸収層40は、同一軸上に並んでいても、ずらして配置されていても良い。
In the pressure sensor 30, the image sensor 32, the light reflection layer 38, and the light absorption layer 40 are preferably all sheet-like (plate-like, film-like, layered) members, but may be curved or three-dimensional depending on the application. It may have a similar shape.
Moreover, the size and/or shape of the image sensor 32, the light reflection layer 38, and the light absorption layer 40 may be the same or different.
Further, the image sensor 32, the lens 34, the light reflecting layer 38, and the light absorbing layer 40 may be arranged on the same axis or may be staggered.
 なお、図示は省略するが、撮像素子32は、コンピュータなどの画像処理装置に接続されている。
 画像処理装置は、上述した光反射層38にかかる圧力と反射光の特性との関係を記憶している。画像処理装置は、撮像素子32が撮像した光反射層38の画像を画像処理および解析して、光反射層38の各場所にかかる圧力を検出して、例えば画像表示によって光反射層38にかかる圧力分布を出力する。
Although not shown, the image sensor 32 is connected to an image processing device such as a computer.
The image processing device stores the above-described relationship between the pressure applied to the light reflection layer 38 and the characteristics of reflected light. The image processing device processes and analyzes the image of the light reflective layer 38 captured by the image sensor 32, detects the pressure applied to each location of the light reflective layer 38, and detects the pressure applied to the light reflective layer 38 by, for example, displaying the image. Output pressure distribution.
 図7に示す圧力センサ30において、撮像素子32は、上述した血圧センサ10における撮像素子14と同様のものであり、上述した公知の撮像素子が利用可能である。 In the pressure sensor 30 shown in FIG. 7, the image sensor 32 is similar to the image sensor 14 in the blood pressure sensor 10 described above, and the known image sensor described above can be used.
 また、血圧センサ10における撮像素子14と同様、撮像素子32は、エリアセンサでもよく、ラインセンサでもよい。しかしながら、ロボット用途に用いられる圧力センサ30は、一定の領域の圧力を測定することが要求される。この点を考慮すると、撮像素子32は、エリアセンサが好ましい。
 なお、モノクロまたはカラーなどのセンサの種類、測定光波長、および、各種のフィルタ等に関しては、血圧センサ10における撮像素子14と同様であるのは、上述したとおりである。
Further, like the image sensor 14 in the blood pressure sensor 10, the image sensor 32 may be an area sensor or a line sensor. However, the pressure sensor 30 used for robot applications is required to measure pressure in a certain area. Considering this point, it is preferable that the image sensor 32 is an area sensor.
Note that the type of sensor such as monochrome or color, measurement light wavelength, various filters, etc. are the same as those of the image sensor 14 in the blood pressure sensor 10, as described above.
 撮像素子32の空間分解能には制限はないが、基本的に、高い方が好ましい。撮像素子32の画素数は10万以上が好ましく、30万以上がより好ましく、100万以上がさらに好ましい。
 撮像素子32の画素数の上限は特にないが、画像処理にエネルギー、時間を要することを考慮すると、画素数は1000万以下が好ましい。
Although there is no limit to the spatial resolution of the image sensor 32, a higher resolution is basically preferable. The number of pixels of the image sensor 32 is preferably 100,000 or more, more preferably 300,000 or more, and even more preferably 1,000,000 or more.
Although there is no particular upper limit to the number of pixels of the image sensor 32, considering that image processing requires energy and time, the number of pixels is preferably 10 million or less.
 撮像素子32の大きさに特に制限はないが、圧力センサ30の小型化の観点で小さい方が好ましく、高感度、高解像度化を考慮すると大きい方が好ましい。
 撮像素子32の大きさは、1~1000mmが好ましく、10~500mmがより好まく、20~400mmがさらに好ましい。
Although there is no particular restriction on the size of the image sensor 32, a smaller size is preferable from the viewpoint of downsizing the pressure sensor 30, and a larger size is preferable from the viewpoint of high sensitivity and high resolution.
The size of the image sensor 32 is preferably 1 to 1000 mm 2 , more preferably 10 to 500 mm 2 , and even more preferably 20 to 400 mm 2 .
 圧力センサ30においては、撮像素子32と離間して、撮像素子32の撮像面と対面して光反射層38が設けられる。
 すなわち、ロボットアーム等における触覚センサ等に用いられる圧力センサ30においては、好ましい態様として、撮像素子32と光反射層38との間に、空間が設けられる。この点に関しては、後に詳述する。
In the pressure sensor 30, a light reflective layer 38 is provided apart from the image sensor 32 and facing the imaging surface of the image sensor 32.
That is, in the pressure sensor 30 used as a tactile sensor in a robot arm or the like, a space is preferably provided between the image sensor 32 and the light reflective layer 38. This point will be explained in detail later.
 光反射層38は、後述する光源36が出射した測定光を反射するものである。
 この光反射層38も、圧力に応じて反射特性が変化するものであり、上述した血圧センサ10の光反射層18と同様のものである。従って、上述した血圧センサ10の光反射層18の説明は、圧力センサ30の光反射層38の説明も兼ねる。
The light reflection layer 38 reflects measurement light emitted from a light source 36, which will be described later.
This light reflection layer 38 also has a reflection characteristic that changes depending on the pressure, and is similar to the light reflection layer 18 of the blood pressure sensor 10 described above. Therefore, the above description of the light reflective layer 18 of the blood pressure sensor 10 also serves as a description of the light reflective layer 38 of the pressure sensor 30.
 圧力センサ30において、撮像素子32は、撮像面(受光面)を光反射層38側に向けて配置される。
 また、圧力センサ30においては、好ましい態様として、撮像素子32と光反射層38との間に空間を有し、より好ましい態様として、両者の間にレンズ34が設けられる。すなわち、圧力センサ30においては、好ましい態様として、撮像素子32と光反射層38を離間して配置し、より好ましい態様として、両者の間にレンズ34が設けられる。
In the pressure sensor 30, the image sensor 32 is arranged with its imaging surface (light receiving surface) facing the light reflective layer 38 side.
Moreover, in the pressure sensor 30, a space is provided between the image sensor 32 and the light reflection layer 38 as a preferable aspect, and a lens 34 is provided between the two as a more preferable aspect. That is, in the pressure sensor 30, as a preferred embodiment, the image sensor 32 and the light reflection layer 38 are arranged apart from each other, and as a more preferred embodiment, the lens 34 is provided between them.
 上述のように、図7に示す圧力センサ30は、ロボットアーム46の把持部(先端)における触覚センサ等に好適に用いられるものである。
 このような用途では、高い解像度で精度よく圧力を測定するためには、撮像素子32による撮像の焦点(ピント)を光反射層38の表面に合わせる必要がある。そのためには、撮像素子32と光反射層38とを接触あるいは可能な限り近接する、光反射層38における測定面積と撮像素子における撮像面積とを一致させる等の対応策が必要になる。
 ここで、ロボットアームの触覚センサ等に用いられる圧力センサ30は、例えば、2×2cm、3×3cmなど、或る程度の面積において圧力を測定可能であるのが好ましい。従って、適正な撮像を行うためには、撮像素子32の撮像面も、同サイズにする必要がある。
 しかしながら、撮像素子の撮像面は、通常、1×1cm程度であり、撮像面が大きくなるほど、高価で、かつ、消費電力も大きくなる。
As described above, the pressure sensor 30 shown in FIG. 7 is suitably used as a tactile sensor or the like in the gripping portion (tip) of the robot arm 46.
In such applications, in order to accurately measure pressure with high resolution, it is necessary to focus the image taken by the image sensor 32 on the surface of the light reflective layer 38. To this end, countermeasures are required, such as bringing the image sensor 32 and the light reflection layer 38 into contact with each other or as close as possible to each other, and making the measurement area of the light reflection layer 38 coincide with the imaging area of the image sensor.
Here, it is preferable that the pressure sensor 30 used as a tactile sensor of a robot arm or the like is capable of measuring pressure in a certain area, such as 2×2 cm or 3×3 cm, for example. Therefore, in order to perform proper imaging, the imaging surfaces of the imaging elements 32 must also be of the same size.
However, the imaging surface of an image sensor is usually about 1×1 cm, and the larger the imaging surface, the more expensive it is and the more power it consumes.
 これに対して、本発明の圧力センサ30においては、撮像素子32と光反射層38との間に空間を有し、より好ましい態様として、両者の間にレンズ34を設ける。
 このような構成を有することにより、レンズ34による結像に必要な光学距離を確保すると共に、レンズ34と、撮像素子32と、光反射層38との間隔が調節して、撮像素子32による撮像の焦点を光反射層38に合わせることがでる。
 これにより、撮像素子32によって高画質な撮像が可能になり、すなわち、高精度な圧力測定が可能になる。さらに、圧力センサ30の光反射層38が、3×3cmのような大きなサイズであっても、1×1cm程度の通常あるいは小型の撮像素子32が利用可能になる。すなわち、レンズ34を用いることにより、汎用的な撮像素子32を用いて、簡便に装置を構成することが可能になる。
 さらに、レンズ34を選択することで、撮像素子32と光反射層38との間隔が必要以上に広くなること、すなわち、圧力センサ30の大型化も防止できる。
 撮像素子32と光反射層38の間隔(距離)には制限はないが、ロボットなどに実装することを考慮すると圧力センサ30を小型化するために短い方が好ましい。一方、レンズ34を配置すること、撮像素子32を小さくすることを考えると、光学的に有意な距離があるのが好ましい。
 この点を考慮すると、撮像素子32と光反射層38の間隔は、0.1~50mmが好ましく、1~30mmがより好ましく、3~20mmがさらに好ましい。
On the other hand, in the pressure sensor 30 of the present invention, there is a space between the image sensor 32 and the light reflecting layer 38, and in a more preferred embodiment, a lens 34 is provided between the two.
By having such a configuration, the optical distance necessary for image formation by the lens 34 is ensured, and the distance between the lens 34, the image sensor 32, and the light reflection layer 38 is adjusted, so that the image pickup device 32 can take an image. can be focused on the light reflecting layer 38.
This allows the image sensor 32 to capture high-quality images, that is, to measure pressure with high precision. Furthermore, even if the light reflecting layer 38 of the pressure sensor 30 has a large size such as 3×3 cm, a normal or small image sensor 32 of about 1×1 cm can be used. That is, by using the lens 34, it becomes possible to easily configure the apparatus using the general-purpose image sensor 32.
Furthermore, by selecting the lens 34, it is possible to prevent the distance between the image sensor 32 and the light reflection layer 38 from becoming wider than necessary, that is, to prevent the pressure sensor 30 from becoming larger.
Although there is no limit to the interval (distance) between the image sensor 32 and the light reflection layer 38, it is preferable that it be short in order to downsize the pressure sensor 30 in consideration of mounting it on a robot or the like. On the other hand, considering the arrangement of the lens 34 and the miniaturization of the image sensor 32, it is preferable that there be an optically significant distance.
Considering this point, the distance between the image sensor 32 and the light reflective layer 38 is preferably 0.1 to 50 mm, more preferably 1 to 30 mm, and even more preferably 3 to 20 mm.
 また、圧力センサ30のサイズ、撮像素子32のコストおよび駆動電力等を考慮すると、圧力センサ30においては、撮像素子32の撮像面の面積が、光反射層38の面積よりも小さいのが好ましい。
 この点に関しては、上述した血圧センサ10を含めて、本発明の圧力センサの全般において同様である。ただし、撮像素子の撮像面の面積が、光反射層の面積よりも小さい構成は、あくまで好ましい態様であって、本発明の圧力センサにおいては、撮像面の面積が光反射層の面積と同じ構成でもよいし、撮像面の面積が光反射層の面積よりも大きな構成でもよい。
Furthermore, in consideration of the size of the pressure sensor 30, the cost of the image sensor 32, the driving power, etc., in the pressure sensor 30, it is preferable that the area of the imaging surface of the image sensor 32 is smaller than the area of the light reflective layer 38.
In this regard, the same applies to all pressure sensors of the present invention, including the blood pressure sensor 10 described above. However, the configuration in which the area of the imaging surface of the image sensor is smaller than the area of the light-reflecting layer is only a preferred embodiment, and in the pressure sensor of the present invention, the area of the imaging surface of the image-capturing element is the same as the area of the light-reflecting layer. Alternatively, the area of the imaging surface may be larger than the area of the light reflecting layer.
 圧力センサ30は、光反射層38の撮像素子14とは逆側の面に、遮光層としての光吸収層40を有する。
 なお、本発明において、光吸収層40は好ましい態様として設けられるものであり、必須の構成要件ではない。
The pressure sensor 30 has a light absorption layer 40 as a light shielding layer on the surface of the light reflection layer 38 on the side opposite to the image sensor 14 .
Note that in the present invention, the light absorption layer 40 is provided as a preferred embodiment and is not an essential component.
 ロボット用途など触覚センシングに用いる用途において、圧力センサ30の光吸収層40を、接触する物体側に向けて使用される。
 圧力センサ30では、周囲からの環境光(外部環境光)、および、把持する物体に不要に入射した光源36からの測定光等が、物体表面で反射され、光反射層38から圧力センサ30の内部に入射する可能性がある。
 このような不要な光が圧力センサ30内に入射して、撮像素子32で測光されると、ノイズとなって、測定する圧力の誤差の原因となり、好ましくない。
In applications for tactile sensing such as robot applications, the pressure sensor 30 is used with the light absorption layer 40 facing the object to be contacted.
In the pressure sensor 30 , ambient light from the surroundings (external ambient light) and measurement light from the light source 36 that is unnecessarily incident on the object to be gripped are reflected on the object surface and reflected from the light reflecting layer 38 to the pressure sensor 30 . There is a possibility that it may enter the interior.
If such unnecessary light enters the pressure sensor 30 and is measured by the image sensor 32, it becomes noise and causes an error in the measured pressure, which is not preferable.
 光吸収層40は、このような不要な光が、光反射層38から圧力センサ30の内部に入射することを防止するための層である。
 すなわち、本発明の圧力センサ30は、光反射層38の撮像素子32とは逆側の面に、光吸収層40を有することにより、より高精度な圧力の測定が可能になる。
The light absorption layer 40 is a layer for preventing such unnecessary light from entering the inside of the pressure sensor 30 from the light reflection layer 38.
That is, the pressure sensor 30 of the present invention has the light absorption layer 40 on the surface of the light reflection layer 38 opposite to the image pickup device 32, thereby making it possible to measure pressure with higher precision.
 このような光吸収層40は、上述した血圧センサ10の光吸収層20と同様のものであり、不要な光を吸収して、光反射層38の撮像素子32とは逆側の面から圧力センサ30の内部に入射することを防止できるものであれば、各種の層が利用可能である。
 従って、光吸収層40は、光吸収層20で例示したものが利用可能である。
Such a light absorption layer 40 is similar to the light absorption layer 20 of the blood pressure sensor 10 described above, and absorbs unnecessary light and releases pressure from the surface of the light reflection layer 38 opposite to the image sensor 32. Various layers can be used as long as they can prevent light from entering the sensor 30.
Therefore, the light absorption layer 40 that is exemplified for the light absorption layer 20 can be used.
 光源36は、圧力センサ30が圧力を測定するための測定光を出射するものである。
 図7に示す圧力センサ30においては、光源36は、光反射層38に測定光を入射するように、設けられる。
 なお、測定光の入射位置以外は、光源36は、上述した血圧センサ10の光源24と同様のものである。従って、上述した血圧センサ10の光源24の説明は、圧力センサ30の光源36の説明も兼ねる。
The light source 36 emits measurement light for the pressure sensor 30 to measure pressure.
In the pressure sensor 30 shown in FIG. 7, the light source 36 is provided so that measurement light is incident on the light reflective layer 38.
Note that the light source 36 is the same as the light source 24 of the blood pressure sensor 10 described above except for the incident position of the measurement light. Therefore, the above description of the light source 24 of the blood pressure sensor 10 also serves as a description of the light source 36 of the pressure sensor 30.
 以下、本発明の圧力センサ30の作用を説明する。
 上述のように、圧力センサ30は、例えば、ロボット用途における触覚センシングに用いられるものであり、一例として、ロボットアーム46のアーム部材48の先端に装着されて、ロボットアーム46の触覚センサとして利用される。
 また、圧力センサ30は、一例として、コンピュータなどの画像処理装置に接続されている。
 圧力センサ30によって、ロボットアーム46の触覚センシングを行う場合、まず、光源36を点灯して、測定光を光反射層38に入射する。光源36の点灯は、圧力センサ30が接続された画像処理装置の制御によって行ってもよく、あるいは、圧力センサ30の筐体42にスイッチを設けて行ってもよい。
 光反射層38に入射した測定光は、光反射層38によって反射される。光反射層38による反射光は、レンズ34によって集光、結像されて撮像素子32に入射して、撮像される。圧力センサ30の構成によっては、光源36からの測定光の一部が、レンズ34を通して撮像素子32に直接入射して、光反射層38からの反射像と共に撮像される。撮像素子32による撮像画像は、画像処理装置に出力され、処理される。
Hereinafter, the operation of the pressure sensor 30 of the present invention will be explained.
As described above, the pressure sensor 30 is used for tactile sensing in robot applications, for example, and is attached to the tip of the arm member 48 of the robot arm 46 and used as a tactile sensor for the robot arm 46. Ru.
Moreover, the pressure sensor 30 is connected to an image processing device such as a computer, for example.
When performing tactile sensing of the robot arm 46 using the pressure sensor 30, first, the light source 36 is turned on and measurement light is made incident on the light reflection layer 38. The light source 36 may be turned on by controlling an image processing device to which the pressure sensor 30 is connected, or by providing a switch in the casing 42 of the pressure sensor 30.
The measurement light incident on the light reflective layer 38 is reflected by the light reflective layer 38. The light reflected by the light reflection layer 38 is focused and imaged by the lens 34, and enters the image sensor 32, where it is imaged. Depending on the configuration of the pressure sensor 30, a portion of the measurement light from the light source 36 directly enters the image sensor 32 through the lens 34, and is imaged together with the reflected image from the light reflective layer 38. The image captured by the image sensor 32 is output to the image processing device and processed.
 上述のように、光反射層38は、物体が接触した押圧によって厚さが変化する低弾性層である。そのため、圧力センサ30が装着されたロボットアームが物体を掴む動作を行うと、物体により光反射層38は押圧され、この押圧によって変形(圧縮)される。
 また、光反射層38にかかる圧力は、物体の形状等に応じて、部分的に異なる。
As described above, the light reflective layer 38 is a low elastic layer whose thickness changes depending on the pressure applied by an object. Therefore, when the robot arm to which the pressure sensor 30 is attached performs an operation of grasping an object, the light reflecting layer 38 is pressed by the object, and is deformed (compressed) by this pressing.
Further, the pressure applied to the light reflecting layer 38 differs depending on the shape of the object and the like.
 本発明において、光反射層38は、圧力に応じて反射特性が変化するものである。好ましくは、光反射層38は、コレステリック液晶層のように、反射光に波長選択性を有し、圧力による変形(圧縮および伸張)に応じて、選択的に反射する光の波長が変化する。
 従って、例えば光反射層38がコレステリック液晶層である場合には、物体の押圧による厚さの変化によって、コレステリック液晶相の螺旋ピッチが変化し、また、螺旋軸に対する測定光の入射角度も変化する。その結果、光反射層38は、物体の押圧による厚さの変化、および、測定光の入射角度に応じて、光反射層38が選択的に反射する測定光の波長、すなわち反射光の波長(反射スペクトル)が変化する。
In the present invention, the light reflective layer 38 has reflective characteristics that change depending on pressure. Preferably, the light reflecting layer 38 has wavelength selectivity for reflected light, like a cholesteric liquid crystal layer, and the wavelength of the selectively reflected light changes in response to deformation (compression and expansion) due to pressure.
Therefore, for example, when the light reflection layer 38 is a cholesteric liquid crystal layer, the helical pitch of the cholesteric liquid crystal phase changes due to the change in thickness due to the pressure of an object, and the incident angle of the measurement light with respect to the helical axis also changes. . As a result, the light-reflecting layer 38 has a wavelength of the measurement light selectively reflected by the light-reflection layer 38, that is, a wavelength of the reflected light ( reflection spectrum) changes.
 そのため、例えば、測定光が白色光で、撮像素子32がカラーセンサである場合には、押圧されている場所、および、各場所における圧力の強さに応じて、撮像素子32が撮像する画像の色味および濃度が、部分的に変化する。
 また、測定光が白色光または赤色光および緑色光などの単色光で、撮像素子32が白黒のモノクロセンサ(輝度センサ)または単色光に対応するセンサである場合には、押圧されている場所、および、各場所における圧力の強さに応じて、撮像素子32が撮像する画像の濃度(輝度)が、部分的に変化する。
 さらに、測定光が赤色光および緑色光などの単色光で、撮像素子32がカラーセンサである場合には、押圧されている場所、および、各場所における圧力の強さに応じて、撮像素子32が撮像する画像の濃度(輝度)が、部分的に変化する。また、この場合には、測定光の波長域と、光反射層38が選択的に反射する光の波長域との関係で、撮像素子32が撮像する画像の色味も、部分的に、若干、変化する。
Therefore, for example, if the measurement light is white light and the image sensor 32 is a color sensor, the image captured by the image sensor 32 will depend on the location being pressed and the strength of the pressure at each location. Color and density change locally.
In addition, when the measurement light is white light or monochromatic light such as red light and green light, and the image sensor 32 is a black and white monochrome sensor (luminance sensor) or a sensor compatible with monochromatic light, the pressed location, The density (brightness) of the image captured by the image sensor 32 partially changes depending on the strength of the pressure at each location.
Furthermore, when the measurement light is monochromatic light such as red light and green light, and the image sensor 32 is a color sensor, the image sensor 32 The density (brightness) of the image captured by the camera changes partially. In addition, in this case, due to the relationship between the wavelength range of the measurement light and the wavelength range of the light selectively reflected by the light reflection layer 38, the color tone of the image captured by the image sensor 32 may also be slightly different in some parts. ,Change.
 ここで、物体による光反射層38の押圧の状態、すなわち、物体による光反射層38の変形の状態は、加わっている圧力によって異なる。また、上述のように、光反射層38にかかる圧力は、物体の形状等に応じて、部分的に異なる。
 従って、把持する物体の形状、および、ロボットアームによる物体の把持力等に応じて、撮像素子32が撮像する画像も変化する。
Here, the state in which the light reflection layer 38 is pressed by the object, that is, the state in which the light reflection layer 38 is deformed by the object, differs depending on the applied pressure. Further, as described above, the pressure applied to the light reflecting layer 38 differs depending on the shape of the object and the like.
Therefore, the image captured by the image sensor 32 also changes depending on the shape of the object to be grasped, the force with which the robot arm grasps the object, and the like.
 本発明は、これを利用したものであり、接触する物体による圧力と、撮像素子32が撮像する画像との関係を、予め知見しておき、例えば画像処理装置に記憶しておく。
 その上で、例えば上述のように、圧力センサ30をロボットアーム46に装着して、ロボットアーム46によって物体を把持し、光源36から光反射層38に測定光を入射して、撮像素子32によって撮像する。次いで、撮像した画像を画像処理装置に出力して、必要な画像処理を行い、撮像素子32が撮像した画像と、予め記憶した圧力に応じた画像とのマッチングを行う。例えば、撮像素子32が撮像した画像における各場所の色すなわち波長と、予め記憶した圧力に応じた色すなわち波長とのマッチングを行う。なお、画像のマッチングは、公知の方法で行えばよい。
 これより、物体を把持したロボットアーム46(アーム部材48)の各位置にかかる圧力(圧力分布)、すなわち、物体の各位置に圧力を測定できる。
 この測定結果は、例えば、画像処理装置に接続されたディスプレイに表示する。
The present invention utilizes this, and the relationship between the pressure caused by the contacting object and the image captured by the image sensor 32 is known in advance and stored in, for example, an image processing device.
Then, for example, as described above, the pressure sensor 30 is attached to the robot arm 46, the object is gripped by the robot arm 46, measurement light is incident on the light reflection layer 38 from the light source 36, and the image sensor 32 Take an image. Next, the captured image is output to an image processing device to perform necessary image processing, and matching is performed between the image captured by the image sensor 32 and the image corresponding to the pressure stored in advance. For example, the color or wavelength of each location in the image captured by the image sensor 32 is matched with the color or wavelength corresponding to the pressure stored in advance. Note that image matching may be performed using a known method.
This makes it possible to measure the pressure (pressure distribution) applied to each position of the robot arm 46 (arm member 48) that grips the object, that is, the pressure at each position of the object.
This measurement result is displayed on a display connected to the image processing device, for example.
 以上のように、本発明の圧力センサ30によれば、接触する物体による圧力と、撮像素子32が撮像する画像との関係を、予め知見しておき、例えば画像処理装置に記憶しておくだけで、複雑な演算等を行うことなく、例えば、物体を把持したロボットアームの各位置にかかる圧力(圧力分布)の測定、すなわち、ロボットアームにおける触覚センシングを行うことができる。
 また、撮像素子32は、通常、動画を撮像できる。従って、本発明の圧力センサ30は物体を把持したロボットアーム46にかかる圧力の連続測定が可能であり、例えば、ロボットアーム46を操作して把持力および物体の向き等を変えた場合にも、圧力および圧力分布の変動を連続的に測定できる。
 加えて、本発明の圧力センサ30において、撮像素子が撮像した画像は、圧力に応じた画像濃度(輝度)の変化のみならず、圧力に応じた色味(波長)も変化させて、検出することができる。加えて、好ましくは、光反射層38と撮像素子32との間に空間を設け、かつ、両者の間にレンズ34を配置することで、光反射層38(光反射層38の画像)を適正に撮像素子32に結像できる。そのため、本発明の圧力センサ30によれば、より詳細な撮像画像の変化を高画質に撮像して検出でき、その結果、より高精度で高分解能な圧力分布の測定が可能になる。
As described above, according to the pressure sensor 30 of the present invention, the relationship between the pressure caused by a contacting object and the image captured by the image sensor 32 can be known in advance and stored in, for example, an image processing device. For example, it is possible to measure the pressure (pressure distribution) applied to each position of the robot arm gripping an object, that is, to perform tactile sensing on the robot arm, without performing complicated calculations.
Further, the image sensor 32 can normally capture moving images. Therefore, the pressure sensor 30 of the present invention is capable of continuously measuring the pressure applied to the robot arm 46 gripping an object. For example, even when the robot arm 46 is operated to change the gripping force and the orientation of the object, Pressure and pressure distribution fluctuations can be measured continuously.
In addition, in the pressure sensor 30 of the present invention, the image captured by the image sensor is detected by not only changing the image density (brightness) according to the pressure, but also changing the color (wavelength) according to the pressure. be able to. In addition, preferably, by providing a space between the light-reflecting layer 38 and the image sensor 32 and arranging the lens 34 between them, the light-reflecting layer 38 (image of the light-reflecting layer 38) can be properly adjusted. An image can be formed on the image sensor 32 at the same time. Therefore, according to the pressure sensor 30 of the present invention, more detailed changes in captured images can be captured and detected with high quality, and as a result, pressure distribution can be measured with higher precision and higher resolution.
 このような本発明の利点、特に、圧力に応じた撮像画像を、濃度に加え、色味も変化でき、より高精度かつ高分解能な血圧測定が可能である点で、圧力センサ30においても、光源36は白色光源が好ましく、撮像素子32はカラーセンサが好ましい。 The advantages of the present invention, particularly in that the pressure sensor 30 is able to change not only the density but also the color of the captured image according to the pressure, making it possible to measure blood pressure with higher precision and resolution. The light source 36 is preferably a white light source, and the image sensor 32 is preferably a color sensor.
 このような本発明の圧力センサ30による圧力の測定において、光源36は、連続的に測定光を出射してもよく、あるいは、パルス光であってもよい。
 光源36が出射する測定光をパルス光とし、発光周期を例えば測定体の振動周期よりも高周波にすることで、例えば、ローパスフィルタを用いるフィルタカットなどによって、振動による圧力測定結果への影響を除去して、より正確な圧力の測定が可能になる。
In measuring pressure using the pressure sensor 30 of the present invention, the light source 36 may emit measuring light continuously or may emit pulsed light.
The measurement light emitted by the light source 36 is pulsed light, and the emission period is set to a higher frequency than, for example, the vibration period of the measuring object, thereby eliminating the influence of vibration on the pressure measurement results, for example, by filter cutting using a low-pass filter. This allows for more accurate pressure measurements.
 以上、本発明の圧力センサおよびロボットについて詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。 Although the pressure sensor and robot of the present invention have been described in detail above, the present invention is not limited to the above-mentioned examples, and various improvements and changes may be made without departing from the gist of the present invention. , of course.
 以下に実施例に基づいて本発明をさらに詳細に説明する。
 以下に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す態様により限定的に解釈されるべきものではない。
The present invention will be explained in more detail below based on Examples.
The materials, usage amounts, proportions, processing details, processing procedures, etc. shown below can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the embodiments shown below.
(特定セルロース化合物1の合成)
 特定セルロース化合物1を下記スキームに記載する手順で合成した。
(Synthesis of specific cellulose compound 1)
Specific cellulose compound 1 was synthesized by the procedure described in the scheme below.
 ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9)を減圧下、80℃で2時間以上乾燥した。窒素を充填した三口フラスコに20.0gのHPCを秤量し、80mLの脱水アセトンに撹拌しながら溶解し、HPC溶液を得た。HPC溶液に室温下でカレンズAOI(2-イソシアナトエチルアクリレート、昭和電工(株)製)0.40mL(3.2mmol)を加え、50℃で2時間反応させた。反応終了後、得られた溶液に2mLのメタノールを加え、未反応の基質をクエンチした。反応溶液の溶媒をロータリーエバポレーターで除去したのち、減圧下、室温(25℃)で2時間以上乾燥することで、白色粉体の生成物を得た。特定セルロース化合物1の収量は18.0gであった。特定セルロース化合物1のH-NMRスペクトルを測定した結果、HPC側鎖(HPCが有する水酸基の水素原子)へのアクリロイル基の置換度は0.06であった。 Hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name: Hydroxypropylcellulose 2.0 to 2.9) was dried at 80° C. for 2 hours or more under reduced pressure. 20.0 g of HPC was weighed into a three-necked flask filled with nitrogen, and dissolved in 80 mL of dehydrated acetone with stirring to obtain an HPC solution. 0.40 mL (3.2 mmol) of Karenz AOI (2-isocyanatoethyl acrylate, manufactured by Showa Denko K.K.) was added to the HPC solution at room temperature, and the mixture was reacted at 50° C. for 2 hours. After the reaction was completed, 2 mL of methanol was added to the resulting solution to quench the unreacted substrate. After removing the solvent of the reaction solution using a rotary evaporator, the product was dried under reduced pressure at room temperature (25° C.) for 2 hours or more to obtain a white powder product. The yield of specific cellulose compound 1 was 18.0 g. As a result of measuring the 1 H-NMR spectrum of the specific cellulose compound 1, the degree of substitution of the acryloyl group to the HPC side chain (hydrogen atom of the hydroxyl group possessed by HPC) was 0.06.
(特定セルロース化合物2の合成)
 ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9)を減圧下、80℃で2時間以上乾燥した。窒素を充填した三口フラスコに20.0gのHPCを秤量し、80mLの脱水アセトンに撹拌しながら溶解し、HPC溶液を得た。HPC溶液に室温下でカレンズAOI(2-イソシアナトエチルアクリレート、昭和電工(株)製)0.13mL(1.1mmol)を加え、50℃で2時間反応させた。反応終了後、得られた溶液に2mLのメタノールを加え、未反応の基質をクエンチした。反応溶液の溶媒をロータリーエバポレーターで除去したのち、減圧下、室温(25℃)で2時間以上乾燥することで、白色粉体の生成物を得た。特定セルロース化合物2の収量は18.0gであった。特定セルロース化合物2のH-NMRスペクトルを測定した結果、HPC側鎖(HPCが有する水酸基の水素原子)へのアクリロイル基の置換度は0.02であった。
(Synthesis of specific cellulose compound 2)
Hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name: Hydroxypropylcellulose 2.0 to 2.9) was dried at 80° C. for 2 hours or more under reduced pressure. 20.0 g of HPC was weighed into a three-necked flask filled with nitrogen, and dissolved in 80 mL of dehydrated acetone with stirring to obtain an HPC solution. 0.13 mL (1.1 mmol) of Karenz AOI (2-isocyanatoethyl acrylate, manufactured by Showa Denko K.K.) was added to the HPC solution at room temperature, and the mixture was reacted at 50° C. for 2 hours. After the reaction was completed, 2 mL of methanol was added to the obtained solution to quench the unreacted substrate. After removing the solvent of the reaction solution using a rotary evaporator, the product was dried under reduced pressure at room temperature (25° C.) for 2 hours or more to obtain a white powder product. The yield of specific cellulose compound 2 was 18.0 g. As a result of measuring the 1 H-NMR spectrum of the specific cellulose compound 2, the degree of substitution of the acryloyl group to the HPC side chain (hydrogen atom of the hydroxyl group possessed by HPC) was 0.02.
(特定セルロース化合物3の合成)
 ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9)を減圧下、80℃で2時間以上乾燥した。三口フラスコに、12.0gのHPCを秤量し、40mLの脱水アセトンに撹拌しながら溶解し、HPC溶液を得た。HPC溶液に室温下で3-クロロプロピオン酸クロリド2.74ml(0.0285mol)、および塩化プロピオニル23.1mL(0.257mol)を加え、室温で8時間反応させた。反応終了後、得られた溶液に酢酸エチル100mLを加えて希釈し、炭酸水素ナトリウム24gおよび水を100mL加え、1時間撹拌した後、分液操作を行い、水層を取り除いた。得られた有機層にトリエチルアミン14mLを加え、室温で3日間撹拌した後、酢酸エチル200mLおよび1NのHCL水溶液200mLを加え、分液操作を行い、水層を除去した。さらに、残った有機層に15質量%の食塩水200mL加え、分液操作を行い水層を除去し、60℃で減圧乾燥することにより溶媒を除去し、もち状の特定セルロース化合物3を得た。収量は15.0gであった。特定セルロース化合物3のH-NMRスペクトルを測定した結果、HPC側鎖(HPCが有する水酸基の水素原子)へのアクリロイル基の置換度は0.06であり、プロピオニル基の置換度は2.90であった。
(Synthesis of specific cellulose compound 3)
Hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name: Hydroxypropylcellulose 2.0 to 2.9) was dried at 80° C. for 2 hours or more under reduced pressure. 12.0 g of HPC was weighed into a three-necked flask and dissolved in 40 mL of dehydrated acetone with stirring to obtain an HPC solution. 2.74 ml (0.0285 mol) of 3-chloropropionic acid chloride and 23.1 ml (0.257 mol) of propionyl chloride were added to the HPC solution at room temperature, and the mixture was reacted at room temperature for 8 hours. After the reaction was completed, the obtained solution was diluted by adding 100 mL of ethyl acetate, 24 g of sodium hydrogen carbonate and 100 mL of water were added, and after stirring for 1 hour, a liquid separation operation was performed to remove the aqueous layer. After adding 14 mL of triethylamine to the obtained organic layer and stirring at room temperature for 3 days, 200 mL of ethyl acetate and 200 mL of 1N HCL aqueous solution were added, a liquid separation operation was performed, and the aqueous layer was removed. Furthermore, 200 mL of 15% by mass brine was added to the remaining organic layer, the aqueous layer was removed by separation, and the solvent was removed by drying under reduced pressure at 60° C. to obtain a glutinous specific cellulose compound 3. . Yield was 15.0g. As a result of measuring the 1 H-NMR spectrum of specific cellulose compound 3, the degree of substitution of the acryloyl group on the HPC side chain (the hydrogen atom of the hydroxyl group that HPC has) is 0.06, and the degree of substitution of the propionyl group is 2.90. Met.
(光反射層1の製造)
 特定セルロース化合物1(1.52g)、ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9)(0.51g)、光開始剤1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-メチルプロパンオン(0.015g)、および水(0.96g)を混合し、混合液1を調液した。得られた混合液1を、ポリ塩化ビニリデン基材(10μm)とPET基材(40μm)との間に、厚み450μmになる様に設置した。その際、ポリ塩化ビニリデン基材とPET基材とはアクリル樹脂製の透明粘着フィルム(450μm)で貼り合せ、上記混合液1の周囲に隙間ないように設置して、混合液1の周囲がポリ塩化ビニリデン基材、PET基材、および、アクリル樹脂製の透明粘着フィルムで覆われているように設置した。
 その後、PET基材側から、UV-A領域における照度が0.03W/cmとなるように調節した高圧水銀ランプで露光量0.03J/cm(UV-A領域)で露光し、硬化させて、光反射層1を得た。このように作製した光反射層1は、緑光領域(光波長450~550nm)領域に反射率約40%の反射帯域を有するコレステリック液晶性を有し、圧力に応じて色味が青~紫外域まで変化し、微小圧力受けて色味変化することが可能であった。
(Manufacture of light reflective layer 1)
Specific cellulose compound 1 (1.52 g), hydroxypropyl cellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name: hydroxypropyl cellulose 2.0 to 2.9) (0.51 g), photoinitiator 1 -(4-(2-hydroxyethoxy)-phenyl)-2-hydroxy-methylpropanone (0.015 g) and water (0.96 g) were mixed to prepare a mixed solution 1. The obtained mixed liquid 1 was placed between a polyvinylidene chloride base material (10 μm) and a PET base material (40 μm) so that the thickness was 450 μm. At that time, the polyvinylidene chloride base material and the PET base material are pasted together with a transparent adhesive film (450 μm) made of acrylic resin, and placed so that there is no gap around the mixed liquid 1, so that the surroundings of the mixed liquid 1 are covered with polyvinylidene. It was installed so that it was covered with a vinylidene chloride base material, a PET base material, and a transparent adhesive film made of acrylic resin.
Thereafter, from the PET base material side, it was exposed to light using a high-pressure mercury lamp adjusted to have an illumination intensity of 0.03 W/cm 2 in the UV-A region at an exposure amount of 0.03 J/cm 2 (UV-A region), and cured. In this way, a light reflective layer 1 was obtained. The light reflecting layer 1 produced in this way has cholesteric liquid crystallinity with a reflection band with a reflectance of about 40% in the green light region (light wavelength 450 to 550 nm), and the color changes from blue to ultraviolet depending on the pressure. It was possible for the color to change in response to minute pressure.
(光反射層3の製造)
 特定セルロース化合物2(1.52g)、ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9)0.51g、光開始剤1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-メチルプロパンオン(0.015g)、および、水(0.96g)を混合し、混合液3を調液した。得られた混合液3を、ポリ塩化ビニリデン基材(10μm)とPET基材(40μm)との間に、厚み450μmになる様に設置した。その際、ポリ塩化ビニリデン基材とPET基材とはアクリル樹脂製の透明粘着フィルム(450μm)で貼り合せ、上記混合液3の周囲に隙間ないように設置して、混合液3の周囲が、ポリ塩化ビニリデン基材、PET基材、および、アクリル樹脂製の透明粘着フィルムで覆われているように設置した。
 その後、PET基材側から、UV-A領域における照度が0.03W/cmとなるように調節した高圧水銀ランプで露光量0.03J/cm(UV-A領域)で露光し硬化し、光反射層3を得た。このように作製した光反射層3は、緑光領域(光波長450~550nm)領域に反射率約40%の反射帯域を有するコレステリック液晶性を有し、圧力に応じて色味が青~紫外域まで変化し、脈動に伴う血管圧を受けて皮膚上で色味変化することが可能であった。
(Manufacture of light reflective layer 3)
Specific cellulose compound 2 (1.52 g), hydroxypropyl cellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name: hydroxypropyl cellulose 2.0-2.9) 0.51 g, photoinitiator 1-(4 -(2-hydroxyethoxy)-phenyl)-2-hydroxy-methylpropanone (0.015 g) and water (0.96 g) were mixed to prepare a mixed solution 3. The obtained mixed solution 3 was placed between a polyvinylidene chloride base material (10 μm) and a PET base material (40 μm) so that the thickness was 450 μm. At that time, the polyvinylidene chloride base material and the PET base material are bonded together using a transparent adhesive film (450 μm) made of acrylic resin, and placed so that there is no gap around the mixed liquid 3, so that the surroundings of the mixed liquid 3 are It was installed so that it was covered with a polyvinylidene chloride base material, a PET base material, and a transparent adhesive film made of acrylic resin.
Thereafter, from the PET base material side, it was exposed to light with a high-pressure mercury lamp adjusted so that the illuminance in the UV-A region was 0.03 W/cm 2 at an exposure amount of 0.03 J/cm 2 (UV-A region) and cured. , a light reflective layer 3 was obtained. The light reflecting layer 3 produced in this way has cholesteric liquid crystallinity with a reflection band with a reflectance of about 40% in the green light region (light wavelength 450 to 550 nm), and the color changes from blue to ultraviolet depending on the pressure. It was possible for the color to change on the skin in response to vascular pressure associated with pulsation.
(光反射層2、4~11)
 上記光反射層1および3の製造条件を後述する表2に変更した以外は、光反射層1または光反射層3と同様の手順に従って、光反射層2、4~11を作製した。
 光反射層2、4~9は、緑光領域に反射率40%の反射帯域を有するコレステリック液晶性を有し、圧力に応じて色味が青~紫外域まで変化し、脈動に伴う血管圧を受けて皮膚上で色味変化することが可能であった。
 光反射層10は、赤色領域に反射率40%の反射帯域を有するコレステリック液晶性を有し、圧力に応じて色味が緑~紫外域まで変化し、脈動に伴う血管圧を受けて皮膚上で色味変化することが可能であった。
 光反射層11は、青色領域に反射率40%の反射帯域を有するコレステリック液晶性を有し、圧力に応じて色味が紫外域まで変化し、脈動に伴う血管圧を受けて皮膚上で色味変化することが可能であった。
(Light reflective layer 2, 4 to 11)
Light reflective layers 2, 4 to 11 were produced according to the same procedure as that for light reflective layer 1 or light reflective layer 3, except that the manufacturing conditions for light reflective layers 1 and 3 were changed to those shown in Table 2 below.
The light reflection layers 2, 4 to 9 have cholesteric liquid crystallinity with a reflection band of 40% reflectance in the green light region, and the color changes from blue to ultraviolet region depending on the pressure, and reduces blood vessel pressure associated with pulsation. It was possible for the color to change on the skin as a result of the exposure.
The light-reflecting layer 10 has cholesteric liquid crystallinity with a reflection band in the red region with a reflectance of 40%, and its color changes from green to ultraviolet region depending on the pressure. It was possible to change the color tone.
The light-reflecting layer 11 has cholesteric liquid crystallinity with a reflection band in the blue region with a reflectance of 40%, and its color changes to the ultraviolet region according to pressure, and changes color on the skin in response to vascular pressure associated with pulsation. It was possible to change the taste.
 表2中、「化合物1(g)」欄は、特定セルロース化合物1の使用量(g)を表す。
 表2中、「化合物2(g)」欄は、特定セルロース化合物2の使用量(g)を表す。
 表2中、「HPC(g)」欄は、ヒドロキシプロピルセルロースの使用量(g)を表す。
 表2中、「加圧前色味」欄は、目視で確認した加圧する前の光反射層の色味を示す。
In Table 2, the "Compound 1 (g)" column represents the amount (g) of specific cellulose compound 1 used.
In Table 2, the "Compound 2 (g)" column represents the amount (g) of specific cellulose compound 2 used.
In Table 2, the "HPC (g)" column represents the amount (g) of hydroxypropyl cellulose used.
In Table 2, the "color before pressurization" column indicates the color of the light-reflecting layer before pressurization, which was visually confirmed.
 表2中、「応答性」欄中の数値は以下を表す。
 作製した光反射層を指で押して、さらに離した際の色味変化を目視で観察し、下記の基準で評価した。
「1」:ごく弱い圧力に対し色味(反射波長)が変化する。
「2」:やや弱い圧力に対し色味(反射波長)が変化する。
「3」:弱い圧力に対し色味(反射波長)が変化する。
「4」:やや強い圧力に対し色味(反射波長)が変化する。
「5」:強い圧力に対し色味(反射波長)が変化する。
In Table 2, the numerical values in the "responsiveness" column represent the following.
When the produced light-reflecting layer was pressed with a finger and further released, the color change was visually observed and evaluated using the following criteria.
"1": The color (reflection wavelength) changes with very weak pressure.
"2": The color (reflection wavelength) changes in response to slightly weak pressure.
"3": The color (reflection wavelength) changes in response to weak pressure.
"4": The color (reflection wavelength) changes in response to slightly strong pressure.
"5": The color (reflection wavelength) changes in response to strong pressure.
 表2中、「動作安定性」欄中の数値は以下を表す。
 作製した光反射層を指で弱り圧力で押して、さらに離した際の色味変化を目視で観察し、下記の基準で評価した。
「1」:光反射層に圧力を加えてから圧力を0にした際、圧力印可前の色味の状態にごく早く戻る。
「2」:光反射層に圧力を加えてから圧力を0にした際、圧力印可前の色味の状態に早く戻る。
「3」:光反射層に圧力を加えてから圧力を0にした際、圧力印可前の色味の状態にやや早く戻る。
「4」:光反射層に圧力を加えてから圧力を0にした際、圧力印可前の色味の状態にややゆっくり戻る。
「5」:光反射層に圧力を加えてから圧力を0にした際、圧力印可前の色味の状態にゆっくり戻る。
In Table 2, the numerical values in the "operational stability" column represent the following.
The produced light-reflecting layer was pressed with a finger with gentle pressure, and when it was further released, the color change was visually observed and evaluated according to the following criteria.
"1": When pressure is applied to the light reflection layer and then the pressure is reduced to 0, the color returns very quickly to the state before pressure application.
"2": When pressure is applied to the light reflection layer and then the pressure is reduced to 0, the color quickly returns to the state before pressure application.
"3": When pressure is applied to the light reflection layer and then the pressure is reduced to 0, the color returns to the state before pressure application somewhat quickly.
"4": When pressure is applied to the light reflection layer and then the pressure is reduced to 0, the color returns to the state before pressure application rather slowly.
"5": When pressure is applied to the light reflection layer and then the pressure is reduced to 0, the color slowly returns to the state before pressure application.
 上記表2に示すように、光反射層1~11は、圧力をかけることにより、色味変化することが確認された。 As shown in Table 2 above, it was confirmed that the light reflective layers 1 to 11 changed color by applying pressure.
(光反射層12の製造)
 特定セルロース化合物3(8.6g)を酢酸エチル(114g)に溶解させ、そこにドデシルアクリレート(1.3g)、2,2-ジメトキシ-2-フェニルアセトフェノン(0.3g)を加えて攪拌、溶解させた後、エバポレーターで酢酸エチルを除去して、混合液12を調製した。混合液12を、ガラス基材の間にシェアを掛けながら挟みこんだ後、水銀キセノンランプ(露光量1J/cm、照度4mW/cm)で露光硬化した後、液晶膜をガラス基材より剥がして、光反射層12を得た。なお、この時、光反射層12の液晶膜の膜厚は、ガラス基材で挟みこむ際にスペーサーを用いてガラス基材間の距離を制御することによって調節し、100μmとした。このように作製した光反射層12は、緑光領域(光波長450~550nm)領域に反射率約30%の反射帯域を有するコレステリック液晶性を有し、圧力に応じて色味が青~紫外域まで変化し、微小圧力受けて色味変化することが可能であった。
(Manufacture of light reflective layer 12)
Dissolve specific cellulose compound 3 (8.6 g) in ethyl acetate (114 g), add dodecyl acrylate (1.3 g) and 2,2-dimethoxy-2-phenylacetophenone (0.3 g), stir, and dissolve. After that, ethyl acetate was removed using an evaporator to prepare a mixed solution 12. After sandwiching the mixed liquid 12 between glass substrates while applying shear, it was exposed and cured with a mercury xenon lamp (exposure amount 1 J/cm 2 , illumination intensity 4 mW/cm 2 ), and then the liquid crystal film was placed between the glass substrates. The light reflecting layer 12 was obtained by peeling it off. At this time, the film thickness of the liquid crystal film of the light reflective layer 12 was adjusted to 100 μm by controlling the distance between the glass substrates using a spacer when sandwiching them between the glass substrates. The light-reflecting layer 12 produced in this manner has cholesteric liquid crystallinity with a reflection band with a reflectance of about 30% in the green light region (light wavelength 450 to 550 nm), and the color changes from blue to ultraviolet depending on the pressure. It was possible for the color to change in response to minute pressure.
 上述したように、光反射層1~12は、圧力を受けて色味変化することが可能であった。
 次に、これらの光反射層1~12を、それぞれ、図1に示す血圧センサ10に設けられる光反射層18として用いて、実施例1~12の血圧センサを作製した。実施例1~12の血圧センサに対して圧力をかけると、上述した色味変化を示すことが確認された。
As described above, the light reflective layers 1 to 12 were capable of changing color under pressure.
Next, blood pressure sensors of Examples 1 to 12 were manufactured using these light reflection layers 1 to 12 as the light reflection layer 18 provided in the blood pressure sensor 10 shown in FIG. 1, respectively. It was confirmed that when pressure was applied to the blood pressure sensors of Examples 1 to 12, they exhibited the above-mentioned color change.
 さらに、光反射層1~12を、それぞれ、図7に示す圧力センサ30に設けられる光反射層38として用いて、実施例13~24の圧力センサを作製した。実施例13~24の圧力センサに対して圧力をかけると、上述した色味変化を示すことが確認された。 Further, pressure sensors of Examples 13 to 24 were manufactured using the light reflection layers 1 to 12 as the light reflection layer 38 provided in the pressure sensor 30 shown in FIG. 7, respectively. It was confirmed that when pressure was applied to the pressure sensors of Examples 13 to 24, the above-mentioned color changes were exhibited.
 血圧の測定およびロボット用途における触覚センシング等の各種の圧力測定に、好適に利用可能である。 It can be suitably used for various pressure measurements such as blood pressure measurement and tactile sensing in robot applications.
  10、10a、10b 血圧センサ
  12 基板
  14,32 撮像素子
  14L ラインセンサ
  16 光ガイド層
  18,38 光反射層
  20,40 光吸収層
  24,36 光源
  28 バンド
  30 圧力センサ
  34 レンズ
  42 筐体
  46 ロボットアーム
  48 アーム部材
  A 橈骨動脈
  S 表皮
 
10, 10a, 10b Blood pressure sensor 12 Substrate 14, 32 Image sensor 14L Line sensor 16 Light guide layer 18, 38 Light reflection layer 20, 40 Light absorption layer 24, 36 Light source 28 Band 30 Pressure sensor 34 Lens 42 Housing 46 Robot arm 48 Arm member A Radial artery S Epidermis

Claims (25)

  1.  撮像素子と、
     前記撮像素子の撮像面と対面して、前記撮像素子と離間して配置された、圧力に応じて反射特性が変化する光反射層と、
     前記撮像素子と前記光反射層との間に光を入射した状態で、前記光反射層の前記撮像素子とは反対側から圧力がかけられた際における、前記撮像素子による撮像画像の変化から圧力を検出する、圧力センサ。
    An image sensor and
    a light reflecting layer whose reflection characteristics change depending on pressure, the layer facing the imaging surface of the imaging device and disposed apart from the imaging device;
    Pressure is generated from a change in the image captured by the image sensor when pressure is applied from the side of the light reflection layer opposite to the image sensor while light is incident between the image sensor and the light reflection layer. A pressure sensor that detects
  2.  前記撮像素子と前記光反射層との間に、光ガイド層を有する、請求項1に記載の圧力センサ。 The pressure sensor according to claim 1, further comprising a light guide layer between the image sensor and the light reflective layer.
  3.  前記撮像素子と前記光反射層との間に光を入射する光源を有する、請求項1に記載の圧力センサ。 The pressure sensor according to claim 1, further comprising a light source that enters light between the image sensor and the light reflective layer.
  4.  前記撮像素子と前記光反射層との間に光を入射する光源を有する、請求項2に記載の圧力センサ。 The pressure sensor according to claim 2, further comprising a light source that enters light between the image sensor and the light reflective layer.
  5.  前記撮像素子と前記光ガイド層とが接しており、かつ、前記光反射層と前記光ガイド層とが接している、請求項2または4に記載の圧力センサ。 The pressure sensor according to claim 2 or 4, wherein the image sensor and the light guide layer are in contact with each other, and the light reflection layer and the light guide layer are in contact with each other.
  6.  前記光ガイド層が、樹脂層またはガラス層である、請求項2または4に記載の圧力センサ。 The pressure sensor according to claim 2 or 4, wherein the light guide layer is a resin layer or a glass layer.
  7.  前記光源を複数有し、前記光ガイド層を挟むように、前記光源が配置される、請求項4に記載の圧力センサ。 The pressure sensor according to claim 4, wherein the pressure sensor has a plurality of light sources, and the light sources are arranged so as to sandwich the light guide layer.
  8.  前記撮像素子の撮像面の面積が、前記光反射層の面積よりも小さい、請求項2または4に記載の圧力センサ。 The pressure sensor according to claim 2 or 4, wherein the area of the imaging surface of the image sensor is smaller than the area of the light reflective layer.
  9.  前記撮像素子と前記光反射層との間に空間を有する、請求項1に記載の圧力センサ。 The pressure sensor according to claim 1, further comprising a space between the image sensor and the light reflecting layer.
  10.  前記光反射層に光を照射する光源を有する、請求項9に記載の圧力センサ。 The pressure sensor according to claim 9, further comprising a light source that irradiates the light reflection layer with light.
  11.  前記撮像素子と前記光反射層との間にレンズを有する、請求項9または10に記載の圧力センサ。 The pressure sensor according to claim 9 or 10, further comprising a lens between the image sensor and the light reflective layer.
  12.  前記撮像素子の撮像面の面積が、前記光反射層の面積よりも小さい、請求項11に記載の圧力センサ。 The pressure sensor according to claim 11, wherein the area of the imaging surface of the image sensor is smaller than the area of the light reflective layer.
  13.  前記撮像素子の撮像面の面積が、前記光反射層の面積よりも小さい、請求項1または3に記載の圧力センサ。 The pressure sensor according to claim 1 or 3, wherein the area of the imaging surface of the image sensor is smaller than the area of the light reflective layer.
  14.  前記光反射層の前記撮像素子とは反対側に、遮光層を有する、請求項2または9に記載の圧力センサ。 The pressure sensor according to claim 2 or 9, further comprising a light-shielding layer on the opposite side of the light-reflecting layer from the image sensor.
  15.  前記光反射層が、コレステリック液晶層である、請求項2または9に記載の圧力センサ。 The pressure sensor according to claim 2 or 9, wherein the light reflecting layer is a cholesteric liquid crystal layer.
  16.  前記光反射層が、セルロース類を含む、請求項2または9に記載の圧力センサ。 The pressure sensor according to claim 2 or 9, wherein the light reflective layer contains cellulose.
  17.  前記セルロース類が、重合性基を有するセルロース化合物の硬化物を含む、請求項16に記載の圧力センサ。 The pressure sensor according to claim 16, wherein the cellulose contains a cured product of a cellulose compound having a polymerizable group.
  18.  前記セルロース類が、無置換のセルロース化合物を含む、請求項16に記載の圧力センサ。 The pressure sensor according to claim 16, wherein the cellulose contains an unsubstituted cellulose compound.
  19.  前記光反射層が、ウェットゲルで構成される、請求項2または9に記載の圧力センサ。 The pressure sensor according to claim 2 or 9, wherein the light reflecting layer is made of wet gel.
  20.  前記光反射層が、液状成分を含む、請求項2または9に記載の圧力センサ。 The pressure sensor according to claim 2 or 9, wherein the light reflecting layer contains a liquid component.
  21.  前記光反射層が、封止材で封止されている、請求項2または9に記載の圧力センサ。 The pressure sensor according to claim 2 or 9, wherein the light reflecting layer is sealed with a sealing material.
  22.  前記撮像素子が、カラーセンサである、請求項2または9に記載の圧力センサ。 The pressure sensor according to claim 2 or 9, wherein the image sensor is a color sensor.
  23.  血圧センサである、請求項2または4に記載の圧力センサ。 The pressure sensor according to claim 2 or 4, which is a blood pressure sensor.
  24.  触覚センサである、請求項9または10に記載の圧力センサ。 The pressure sensor according to claim 9 or 10, which is a tactile sensor.
  25.  請求項9または請求項10の圧力センサを触感センサとして搭載する、ロボット。
     
    A robot equipped with the pressure sensor according to claim 9 or 10 as a tactile sensor.
PCT/JP2023/014905 2022-04-28 2023-04-12 Pressure sensor and robot WO2023210376A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-074227 2022-04-28
JP2022074227 2022-04-28
JP2022187563 2022-11-24
JP2022-187563 2022-11-24
JP2023011052 2023-01-27
JP2023-011052 2023-01-27

Publications (1)

Publication Number Publication Date
WO2023210376A1 true WO2023210376A1 (en) 2023-11-02

Family

ID=88518459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014905 WO2023210376A1 (en) 2022-04-28 2023-04-12 Pressure sensor and robot

Country Status (1)

Country Link
WO (1) WO2023210376A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532475A (en) * 2000-05-10 2003-11-05 モトローラ・インコーポレイテッド How to get blood pressure data from optical sensors
JP2011525284A (en) * 2008-06-19 2011-09-15 マサチューセッツ インスティテュート オブ テクノロジー Contact sensor using elastic imaging
JP2021131263A (en) * 2020-02-18 2021-09-09 公立大学法人大阪 Sensor, manufacturing method of sensor, measurement system and measurement method of pressure or temperature
JP2022033691A (en) * 2020-08-17 2022-03-02 株式会社SensAI Tactile sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532475A (en) * 2000-05-10 2003-11-05 モトローラ・インコーポレイテッド How to get blood pressure data from optical sensors
JP2011525284A (en) * 2008-06-19 2011-09-15 マサチューセッツ インスティテュート オブ テクノロジー Contact sensor using elastic imaging
JP2021131263A (en) * 2020-02-18 2021-09-09 公立大学法人大阪 Sensor, manufacturing method of sensor, measurement system and measurement method of pressure or temperature
JP2022033691A (en) * 2020-08-17 2022-03-02 株式会社SensAI Tactile sensor

Similar Documents

Publication Publication Date Title
CA3019158C (en) Biometric system with photoacoustic image processing
JP6219988B2 (en) Optical sensor module, optical sensor accessory, and optical sensor device
US9895067B2 (en) Apparatus and method for simultaneously detecting surface pressure and blood volume
USRE44856E1 (en) Tactile sensor using elastomeric imaging
JP6814540B2 (en) Biological signal measuring device and method
JP6913157B2 (en) Organic electroluminescence display device, retardation film, circular polarizing plate
US11690542B2 (en) Non-invasive biometric sensor based on organic photodetector
US20040236223A1 (en) Transducer arrays with an integrated sensor and methods of use
US20170323131A1 (en) Biometric system with photoacoustic imaging
CA2379131A1 (en) Method for obtaining blood pressure data from optical sensor
CN112842290B (en) Multi-path fixed-point pressurizing device and sensor system
EP2552311A1 (en) Sensing moisture level of human skin
RU2009117658A (en) DETECTION OF THE CONDITION OF THE ENVIRONMENT BY A FULLY INTEGRAL TRANSFORMING DEVICE BASED ON HYDROGEL
US20220175321A1 (en) Biological characteristic information detection device and electronic device
WO2023210376A1 (en) Pressure sensor and robot
WO2022040177A1 (en) SOFT BIOSENSORS BASED ON GELATIN METHACRYLOYL (GelMA)
WO2019217109A1 (en) Oled display color compensation
US20220214195A1 (en) Flow rate measuring device
CN207182304U (en) Electronic equipment
TW201808221A (en) An ultrasonic sensing tape and a sensing device using same
CN207182313U (en) Cover plate, ultrasonic wave biological identification device and electronic equipment
US20220054085A1 (en) Nanophotonic sensor implants with 3d hybrid periodic-amorphous photonic crystals for wide-angle monitoring of long-term in-vivo intraocular pressure field
WO2023231913A1 (en) Optical measurement apparatus, bandpass filter, optical measurement method, and electronic device
WO2020232934A1 (en) Display panel structure and electronic device
JP2007075482A (en) Pulse rate measuring instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796120

Country of ref document: EP

Kind code of ref document: A1