WO2023204233A1 - Blood vessel extraction device - Google Patents

Blood vessel extraction device Download PDF

Info

Publication number
WO2023204233A1
WO2023204233A1 PCT/JP2023/015553 JP2023015553W WO2023204233A1 WO 2023204233 A1 WO2023204233 A1 WO 2023204233A1 JP 2023015553 W JP2023015553 W JP 2023015553W WO 2023204233 A1 WO2023204233 A1 WO 2023204233A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
jaw part
cutter groove
upper jaw
lower jaw
Prior art date
Application number
PCT/JP2023/015553
Other languages
French (fr)
Japanese (ja)
Inventor
山木勇作
藤井達徳
Original Assignee
テルモ株式会社
テルモ カーディオバスキュラー システムズ コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社, テルモ カーディオバスキュラー システムズ コーポレイション filed Critical テルモ株式会社
Publication of WO2023204233A1 publication Critical patent/WO2023204233A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/295Forceps for use in minimally invasive surgery combined with cutting implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor

Definitions

  • the present invention relates to a blood vessel collection device.
  • CABG coronary artery bypass surgery
  • the blood vessel used is collected, for example, from the lower limb of the patient.
  • An endoscopic blood vessel harvesting system (EVH system) is used to harvest blood vessels.
  • the endoscopic blood vessel collection system includes an endoscope system, a pneumoperitoneum device, a blood vessel dissection device, and a blood vessel collection device.
  • a blood vessel dissection device is advanced along the blood vessel while supplying carbon dioxide gas with an insufflation device, and the blood vessel is dissected from surrounding fat tissue.
  • a blood vessel sampling device is used to cut the branch blood vessels branching from the blood vessel while stopping the bleeding. Branch blood vessels are cut while being observed with an endoscope.
  • the blood vessel collection device is pulled out and the blood vessel is pulled out from the incision, thereby completing the collection of the blood vessel.
  • Japanese Patent Application Publication No. 2011-229923 discloses an apparatus that cuts tissue under observation with an endoscope.
  • the device disclosed in Japanese Unexamined Patent Publication No. 2011-229923 has electrodes on the clamping surfaces of the jaw structure that clamps tissue.
  • the electrode stops bleeding in the tissue by heating the tissue with electricity.
  • a cutter groove through which a cutter blade passes is formed on the holding surface.
  • tissue that has been hemostatically heated by an electrode is cut by a cutter blade.
  • the cutter blade can come into contact with the electrode. Therefore, when applying electricity between the electrodes, it is necessary to retract the cutter blade toward the proximal end side of the cutter groove in order to prevent a short circuit.
  • the device of Patent Document 1 cannot immediately energize, and requires an operation to retract the cutter blade toward the proximal end.
  • the present invention aims to solve the above problems.
  • One aspect of the following disclosure includes a cylindrical body extending along an axis, an upper jaw part and a lower jaw part attached to the tip of the cylindrical body, and the upper jaw part and the lower jaw part open and close.
  • a jaw structure a cutter blade disposed between the upper jaw part and the lower jaw part and moving in the direction of the axis along cutter grooves of the upper jaw part and the lower jaw part, the jaw structure;
  • the cutter groove includes a pair of clamping surfaces formed at portions where the upper jaw part and the lower jaw part face each other in a closed state, and a flat electrode formed on each of the pair of clamping surfaces, and the cutter groove includes:
  • the cutter groove is formed to penetrate through the planar electrode, and the width of the cutter groove of at least one of the planar electrodes is larger than the thickness of the cutter blade, and the insulator separating the planar electrode and the cutter blade is formed in the cutter groove. in a blood vessel harvesting device.
  • a jaw structure that includes a cylindrical body extending along an axis, and an upper jaw part and a lower jaw part that are attached to the tip of the cylindrical body, and the upper jaw part and the lower jaw part open and close. and a cutter blade disposed between the upper jaw part and the lower jaw part, the cutter blade moving in the direction of the axis along the cutter grooves of the upper jaw part and the lower jaw part, and the jaw structure has a closed jaw structure.
  • a spacer is formed to pass through the electrode and is made of an insulating material and covers the inside of the cutter groove that passes through the planar electrode of either the upper jaw part or the lower jaw part, and the spacer is made of an insulating material. It has an insulated cutter groove through which the blade is inserted and is insulated from the planar electrode, and the width of the insulated cutter groove is equal to the width of the cutter groove that passes through the planar electrode of either the upper jaw part or the lower jaw part. Narrower than the width, located on the blood vessel harvesting device.
  • the cutter blade and the planar electrode can be separated and insulated. Therefore, the blood vessel sampling device can perform electrical heating with the cutter blade protruding into the cutter groove.
  • This blood vessel sampling device is excellent in operability because, when bleeding is observed when cutting tissue with a cutter blade, the current supply can be immediately restarted to stop the bleeding.
  • FIG. 1 is a configuration diagram of a blood vessel collection system according to an embodiment.
  • 2A is a side view of the vicinity of the distal end of the blood vessel sampling device of FIG. 1
  • FIG. 2B is a perspective view of the jaw structure of FIG. 2A viewed from the distal end side.
  • 3A is a plan view of the upper jaw portion of FIG. 2A viewed from the clamping surface
  • FIG. 3B is an exploded perspective view of the lower jaw portion of FIG. 2A.
  • FIG. 4A is an explanatory diagram showing the protruding operation of the cutter blade with the upper jaw part of FIG. 2A removed
  • FIG. 4B is a side view of the jaw structure of FIG. 2A in a closed state.
  • FIG. 5A is an explanatory diagram of the marking step of the blood vessel collection method
  • FIG. 5B is an explanatory diagram of the step of dissecting the blood vessel with a blood vessel dissection device.
  • FIG. 6 is an explanatory diagram of the process of collecting a blood vessel with the blood vessel collection device of FIG. 1.
  • the blood vessel harvesting system 10 shown in FIG. 1 is an EVH system used for EVH (Endoscopic Vessel Harvesting).
  • the blood vessel collection system 10 includes a display device 12, a high-frequency power source 14, a pneumoperitoneum device 16, a trocar 18, an imaging device 20 (endoscope), a blood vessel dissection device 22, and a blood vessel collection device 24. .
  • the display device 12 is connected to the imaging device 20.
  • the display device 12 displays images captured by the imaging device 20.
  • High frequency power supply 14 supplies high frequency power to blood vessel collection device 24 to ablate tissue (blood vessel 90 or branch blood vessel 96).
  • the pneumoperitoneum device 16 supplies carbon dioxide gas to the blood vessel ablation device 22 .
  • the imaging device 20 includes a cylindrical body 20a and a camera 20b attached to the tip of the cylindrical body 20a.
  • the imaging device 20 is inserted into a patient's body together with a blood vessel dissection device 22 or a blood vessel harvesting device 24 to image the work site.
  • the trocar 18 is inserted into the incision near the blood vessel 90.
  • Trocar 18 facilitates the introduction of imaging device 20, vessel ablation device 22, and vessel harvesting device 24 into the body.
  • the trocar 18 is fixed to the skin by a clip 18a.
  • the blood vessel ablation device 22 includes a cylindrical body 22a and a conical ablation portion 22b attached to the tip of the cylindrical body 22a.
  • the cylindrical body 22a has an ejection hole 22c near its tip for releasing carbon dioxide gas.
  • the blood vessel dissection device 22 dissects the blood vessel 90 and the peripheral tissue 92 around it at the dissection portion 22b.
  • the blood vessel ablation device 22 forms a cavity 94 around the blood vessel 90 by carbon dioxide ejected from the ejection hole 22c (see FIG. 5B).
  • the blood vessel sampling device 24 of this embodiment includes a cylindrical body 24a and a jaw structure 26 attached to the tip of the cylindrical body 24a.
  • the cylindrical body 24a is a cylindrical member extending in the direction of the axis, and has wiring (not shown) for flowing high-frequency power therein and an operating wire (not shown) or an operating rod (not shown) for operating the jaw structure 26. accommodate.
  • the blood vessel harvesting device 24 cuts the branch blood vessel 96 of the blood vessel 90 separated by the jaw structure 26.
  • the jaw structure 26 has a function of cutting the branch blood vessel 96 by ablating the branch blood vessel 96 using high-frequency power to stop bleeding. Details of the jaw structure 26 will be explained later.
  • the blood vessel sampling device 24 has a manipulation hub 28 at its proximal end.
  • the operation hub 28 has a cutter operation section 28a, a jaw operation section 28b, and an energization switch 28c.
  • the cutter operation section 28a performs a movement operation of the cutter blade 34 in the axial direction, which will be described later.
  • the jaw operating section 28b opens and closes the jaw structure 26.
  • the energization switch 28c switches between supplying and stopping high-frequency power to the jaw structure 26.
  • the jaw structure 26 has the following configuration.
  • the jaw structure 26 is attached to the tip of the cylindrical body 24a.
  • the cylindrical body 24a has a pair of notched grooves 24b, which are partially cut out in the circumferential direction, at the distal end thereof.
  • the pair of notch grooves 24b are arranged 180 degrees apart in the circumferential direction.
  • Each notch groove 24b extends in the direction of the axis.
  • the jaw structure 26 is accommodated in the notch groove 24b.
  • the cylindrical body 24a has a pair of support portions 24c extending toward the tip between the pair of guide grooves 24d.
  • the support portion 24c supports the jaw structure 26.
  • the support portion 24c has a guide groove 24d and an opening/closing pin attachment hole 24e.
  • the guide groove 24d is located on the tip side of the opening/closing pin attachment hole 24e.
  • the guide groove 24d extends in the direction of the axis.
  • the opening/closing pin attachment hole 24e has a circular shape.
  • the center positions of the guide groove 24d and the opening/closing pin mounting hole 24e are offset by 90 degrees in the circumferential direction of the cylindrical body 24a with respect to the center of the notch groove 24b.
  • the jaw structure 26 includes an upper jaw assembly 30, a lower jaw assembly 32, and a cutter blade 34.
  • the upper jaw assembly 30 and the lower jaw assembly 32 are connected via a shaft pin 36 and an opening/closing pin 38.
  • Axial pin 36 is fixed to upper jaw assembly 30 and lower jaw assembly 32.
  • Axial pin 36 provides a center of rotation for upper jaw assembly 30 and lower jaw assembly 32.
  • the shaft pin 36 is inserted into the guide groove 24d of the cylindrical body 24a.
  • the guide groove 24d is a groove extending in the axial direction, and allows the shaft pin 36 to move in the axial direction.
  • the shaft pin 36 moves in the guide groove 24d as the jaw structure 26 is displaced in the axial direction.
  • the opening/closing pin 38 is a pin fixed to the cylindrical body 24a.
  • the opening/closing pin 38 is displaced relative to the upper jaw assembly 30 and the lower jaw assembly 32 as the jaw structure 26 is displaced in the axial direction.
  • the opening/closing pin 38 is inserted into the first sliding groove 30a of the upper jaw assembly 30 and the second sliding groove 32a of the lower jaw assembly 32.
  • the opening/closing pin 38 slides in the first sliding groove 30a and the second sliding groove 32a when the jaw structure 26 moves forward or backward in the direction of the axis of the cylindrical body 24a.
  • the upper jaw assembly 30 and the lower jaw assembly 32 rotate according to the position of the opening/closing pin 38 in the first sliding groove 30a and the second sliding groove 32a, and the jaw structure 26 opens and closes.
  • the upper jaw assembly 30 has an upper jaw portion 40 and a base portion 42.
  • the upper jaw part 40 has a clamping surface 41 located on the distal end side and perpendicular to the rotation direction.
  • the base portion 42 is located on the base end side of the upper jaw portion 40 and is integrally connected to the upper jaw portion 40.
  • the base 42 has a flat sliding surface 42a in a direction perpendicular to the clamping surface 41.
  • the sliding surface 42a has a shaft hole 42c and a first sliding groove 30a.
  • the shaft pin 36 is inserted through the shaft hole 42c.
  • the shaft hole 42c becomes the rotation center of the upper jaw assembly 30.
  • the first sliding groove 30a extends obliquely with respect to the direction of the axis.
  • the opening/closing pin 38 passes through the first sliding groove 30a.
  • the upper jaw part 40 has a support body 44, a main body part 46, and a flat electrode 48.
  • the support 44 is integrally connected to the base 42 and is made of the same material (for example, metal) as the base 42.
  • the support body 44 supports the main body portion 46 .
  • the main body portion 46 is formed of an insulating material such as resin.
  • the main body portion 46 occupies most of the upper jaw portion 40.
  • the main body portion 46 extends slightly inclined with respect to the direction of the axis.
  • the upper jaw part 40 has a first side surface 43a in a first direction perpendicular to the axis, and has a second side surface 43b in a second direction opposite to the first direction.
  • the centerline of the main body portion 46 is inclined toward the first direction with respect to the axis of the cylindrical body 24a.
  • the first side surface 43 a has a gently arcuate curved surface 45 a that is convex with respect to the cutter groove 49 .
  • the curved surface 45a of the first side surface 43a has a top portion 45b closest to the cutter groove 49 at the base end.
  • the second side surface 43b extends parallel to the cutter groove 49 (in the direction of the axis of the cylindrical body 24a).
  • the main body portion 46 has a distal end portion 46c that protrudes beyond the support body 44 at its distal end.
  • the tip portion 46c has a first inclined surface 47a and a second inclined surface 47b that are inclined with respect to the direction of the axis, and a ridgeline portion 47c.
  • the first inclined surface 47a is a surface inclined toward the first direction, and is adjacent to the first side surface 43a.
  • the second inclined surface 47b is a surface inclined toward the second direction, and is adjacent to the second side surface 43b.
  • the ridgeline portion 47c is formed as a side where the first inclined surface 47a and the second inclined surface 47b intersect.
  • the ridgeline portion 47c is located at the tip of the upper jaw assembly 30 and extends in a direction perpendicular to the clamping surface 41.
  • the first inclined surface 47a and the second inclined surface 47b intersect at an acute angle at the ridge line portion 47c.
  • a ridgeline portion 47c can suitably separate the blood vessel 90 and the surrounding tissue 92.
  • the position of the ridgeline part 47c at the tip is spaced apart from the direction of the axis toward the first direction.
  • the position of the ridge line part 47c is close to the position of the first side surface 43a, so that the visibility of the position where the peeling operation is performed is improved.
  • the upper jaw part 40 has a clamping surface 41 facing the lower jaw part 50.
  • the clamping surface 41 of the upper jaw part 40 has a flat electrode 48 .
  • the plane electrode 48 is made of a plate-shaped metal plate attached to the main body 46 .
  • the surface of the planar electrode 48 constitutes the clamping surface 41 .
  • the clamping surface 41 of the upper jaw part 40 has an upper cutter groove 49a extending along the axis.
  • the upper cutter groove 49a penetrates the planar electrode 48 and reaches the inside of the main body portion 46.
  • the width (dimensions in the first and second directions) of the upper cutter groove 49a is larger than the thickness of the cutter blade 34.
  • the upper cutter groove 49a extends along the axis of the cylindrical body 24a when the jaw structure 26 is closed.
  • the upper cutter groove 49a guides the movement of the cutter blade 34 in the axial direction.
  • the term cutter groove 49 will be used to collectively refer to the upper cutter groove 49a, the lower cutter groove 49b, and the insulating cutter groove 49c.
  • the lower jaw assembly 32 includes a lower jaw portion 50 and a base portion 52.
  • the lower jaw part 50 is located on the distal end side of the base part 52 and has a clamping surface 41 facing the upper jaw part 40 .
  • the base portion 52 is located on the base end side of the lower jaw portion 50 and is integrally connected to the lower jaw portion 50.
  • the base 52 has a flat sliding surface 52a in a direction perpendicular to the clamping surface 41.
  • the sliding surface 52a slides on the sliding surface 42a of the upper jaw assembly 30.
  • the base 52 has a shaft hole 52c and a second sliding groove 32a.
  • the shaft pin 36 is inserted through the shaft hole 52c.
  • the shaft hole 52c becomes the rotation center of the lower jaw assembly 32.
  • the second sliding groove 32a extends obliquely in the opposite direction to the first sliding groove 30a.
  • the opening/closing pin 38 passes through the second sliding groove 32a.
  • the lower jaw portion 50 includes a support body 44, a main body portion 46, a flat electrode 48, a lower cutter groove 49b, and a spacer 60. Since the lower jaw part 50 has a vertically symmetrical shape with respect to the upper jaw part 40, a detailed description of its shape will be omitted. In the lower jaw part 50, the same components as in the upper jaw part 40 are given the same reference numerals.
  • the lower jaw portion 50 is formed on the flat electrode 48 and has a lower cutter groove 49b.
  • the lower cutter groove 49b extends in the direction of the axis.
  • the lower cutter groove 49b penetrates the flat electrode 48 of the lower jaw portion 50 in the thickness direction.
  • the width of the lower cutter groove 49b is larger than the width of the upper cutter groove 49a. Therefore, the lower cutter groove 49b forms a gap with the cutter blade 34, and enables electrical insulation between the cutter blade 34 and the flat electrode 48 of the lower jaw portion 50.
  • the spacer 60 is arranged inside the lower cutter groove 49b and covers the inside of the lower cutter groove 49b.
  • the spacer 60 has a pair of side wall portions 60a that protrude from the main body portion 46.
  • the spacer 60 has an insulating cutter groove 49c between a pair of side wall portions 60a. As shown in FIG. 4A, the insulating cutter groove 49c extends in the axial direction and guides the movement of the cutter blade 34 in the axial direction.
  • the width of the insulating cutter groove 49c is the same as or slightly larger than the thickness (dimension in the width direction) of the cutter blade 34.
  • Spacer 60 is disposed between cutter blade 34 and planar electrode 48 of mandible 50 to insulate cutter blade 34 from planar electrode 48 of mandible 50 .
  • the width of the insulating cutter groove 49c is narrower than the width of the upper cutter groove 49a.
  • Such an insulating cutter groove 49c restricts displacement of the cutter blade 34 in the width direction when the cutter blade 34 slides along the insulating cutter groove 49c and the upper cutter groove 49a. Therefore, the insulating cutter groove 49c prevents the cutter blade 34 from coming into contact with the upper cutter groove 49a. Therefore, the cutter blade 34 is kept separated from the planar electrode 48 forming the upper cutter groove 49a, and the cutter blade 34 can be insulated from the planar electrode 48.
  • the height of the pair of side walls 60a of the spacer 60 protruding from the main body 46 is set to a value greater than the thickness of the flat electrode 48.
  • the spacer 60 protrudes above the flat electrode 48.
  • the spacer 60 prevents the planar electrodes 48 of the upper jaw 40 from contacting the planar electrodes 48 of the lower jaw 50.
  • the upper jaw assembly 30 and the lower jaw assembly 32 are rotatably connected at their respective bases 42 and 52 by a shaft pin 36 and an opening/closing pin 38.
  • a cutter blade 34 is disposed between the base 42 of the upper jaw assembly 30 and the base 52 of the lower jaw assembly 32.
  • the jaw structure 26 is movable in the axial direction with respect to the cylindrical body 24a. When the jaw structure 26 is located on the proximal side, the jaw structure 26 opens and the upper jaw portion 40 and the lower jaw portion 50 are separated, as shown in FIG. 2A. Displacing the jaw structure 26 axially to the distal end causes the jaw structure 26 to close, as shown in FIG. 4B. Movement of the jaw structure 26 is effected by the jaw operating portion 28b of the operating hub 28 in FIG.
  • the clamping surface 41 of the upper jaw part 40 and the clamping surface 41 of the lower jaw part 50 come into contact with each other via the spacer 60.
  • the spacer 60 prevents short circuit between the planar electrode 48 of the upper jaw part 40 and the plane electrode 48 of the lower jaw part 50.
  • the clamping surface 41 of the upper jaw part 40 and the clamping surface 41 of the lower jaw part 50 may have an inclination angle such that the gap becomes wider toward the base end side. In this case, when the upper jaw part 40 and the lower jaw part 50 are brought into strong contact, the clamping surfaces 41 are aligned substantially parallel to each other.
  • the cutter blade 34 extends in the direction of the axis of the cylindrical body 24a.
  • the cutter blade 34 protrudes toward the tip in the axial direction by the cutter operation portion 28a of the operation hub 28 shown in FIG. 1 while sliding in the upper cutter groove 49a and the insulating cutter groove 49c.
  • the cutter blade 34 is biased toward the proximal end, and is located at the proximal end in an initial state, as shown in FIG. 2B.
  • the cutter blade 34 is projected with the jaw structure 26 closed, the cutter blade 34 is displaced toward the tip, as shown in FIG. 4A.
  • the cutter blade 34 cuts the branch blood vessel 96 or blood vessel 90 sandwiched between the jaw structures 26 .
  • the blood vessel sampling device 24 of this embodiment is configured as described above.
  • the blood vessel sampling system 10 is used, for example, in the following blood vessel sampling method.
  • the blood vessel collection method includes a marking step, as shown in FIG. 5A. This process includes the step of confirming the position of the saphenous vein on the shin and the step of making a marking of approximately 2.5 cm at the lower part of the knee joint.
  • the blood vessel sampling method proceeds to the step of inserting the trocar 18.
  • an incision is made at the marked location, and then the trocar 18 is inserted.
  • the trocar 18 is fixed to the skin by a clip 18a.
  • the blood vessel collection method proceeds to a blood vessel dissection step, as shown in FIG. 5B.
  • a blood vessel ablation device 22 and an imaging device 20 are inserted through the trocar 18.
  • This step includes an operation of peeling off the surrounding tissue 92 from the blood vessel 90 with the peeling section 22b while imaging the blood vessel 90 with the imaging device 20.
  • the blood vessel 90 is ablated by the blood vessel ablation device 22 while ejecting carbon dioxide gas from the ejection hole 22c near the ablation portion 22b.
  • This step forms a cavity around the blood vessel 90.
  • the blood vessel ablation device 22 and the imaging device 20 are removed from the body.
  • the blood vessel sampling method proceeds to a blood vessel sampling step, as shown in FIG.
  • the blood vessel sampling step is performed using the blood vessel sampling device 24. This step includes cutting the branch blood vessel 96 with the blood vessel harvesting device 24. Blood vessel harvesting device 24 and imaging device 20 are inserted into a cavity around blood vessel 90 through trocar 18 .
  • the imaging device 20 is disposed on the proximal side of the blood vessel sampling device 24 and images the jaw structure 26 of the blood vessel sampling device 24 from the proximal side.
  • Cutting the branch blood vessel 96 using the blood vessel collection device 24 is performed by the following steps. First, a step of placing the jaw structure 26 in an open state at the position of the branch blood vessel 96 is performed while observing with the imaging device 20. Thereafter, a step is performed in which the jaw structure 26 is closed and the branch blood vessel 96 is sandwiched between the upper jaw part 40 and the lower jaw part 50. A step of supplying high frequency power to the blood vessel sampling device 24 is then performed. High frequency power is supplied between the flat electrode 48 of the upper jaw 40 and the flat electrode 48 of the lower jaw 50 to ablate the pinched branch blood vessel 96 and stop bleeding. Next, the step of cutting the branch blood vessel 96 is performed by advancing the cutter blade 34 along the cutter groove 49.
  • the blood vessel collection device 24 is further advanced to cut another branch blood vessel 96.
  • a ridgeline portion 47c appears at the tip. Therefore, in the blood vessel harvesting process, if a part of the blood vessel 90 is found where the surrounding tissue 92 is not sufficiently peeled off, the surrounding tissue 92 can be peeled off using the ridge line portion 47c.
  • the step of cutting the branch blood vessel 96 includes an operation of sandwiching it between the upper jaw part 40 and the lower jaw part 50 of the jaw structure 26. By this operation, the branch blood vessel 96 is clamped between the pair of clamping surfaces 41 of the jaw structure 26. The spacer 60 protruding from the clamping surface 41 can reliably clamp even the thin branch blood vessel 96. Thereafter, an operation is performed to flow high frequency power between the flat electrode 48 of the upper jaw part 40 and the flat electrode 48 of the lower jaw part 50. The branch blood vessels 96 between the planar electrodes 48 are ablated by the high frequency power to stop bleeding.
  • the supply of high-frequency power to the jaw structure 26 is stopped, and the cutter blade 34 is advanced to cut the branch blood vessel 96.
  • This intersection causes the branch blood vessel 96 to be severed.
  • bleeding may occur.
  • an operation is performed to immediately restart the supply of high-frequency power. Since the cutter blade 34 is insulated from the flat electrode 48 of the mandibular portion 50 by the spacer 60, even if the cutter blade 34 is located in the cutter groove 49, the branch blood vessel 96 can be ablated with high frequency power. In this manner, the blood vessel sampling device 24 of this embodiment can perform hemostasis on the branch blood vessel 96 using high-frequency power while minimizing bleeding.
  • the blood vessel collection device 24 and the imaging device 20 are pulled out of the patient's body. Thereafter, the blood vessel collection method is completed by pulling out the blood vessel 90 from the incision.
  • the blood vessel sampling device 24 of this embodiment described above is summarized below.
  • One aspect of the invention is to have a cylindrical body 24a extending along the axis, and a jaw that is attached to the tip of the cylindrical body and includes an upper jaw part 40 and a lower jaw part 50, and the upper jaw part and the lower jaw part open and close.
  • a cutter blade 34 disposed between the upper jaw part and the lower jaw part and moving in the direction of the axis along a cutter groove 49 of the upper jaw part and the lower jaw part; has a pair of clamping surfaces 41 formed at portions where the upper jaw part and the lower jaw part face each other in a closed state, and a flat electrode 48 formed on each of the pair of clamping surfaces,
  • the cutter groove is formed to penetrate the planar electrode, and the width of the cutter groove of at least one of the planar electrodes is larger than the thickness of the cutter blade, and the cutter groove is an insulator separating the planar electrode and the cutter blade.
  • the blood vessel harvesting device 24 has a cutter groove in the cutter groove.
  • the blood vessel sampling device since the width of the cutter groove is larger than the thickness of the cutter blade, the cutter blade and the planar electrode can be separated and insulated. Therefore, the blood vessel sampling device can perform electrical heating with the cutter blade protruding into the cutter groove.
  • This blood vessel sampling device is excellent in operability because, when bleeding is observed when cutting tissue with a cutter blade, the current supply can be immediately restarted to stop the bleeding.
  • the blood vessel sampling device described above may include a spacer 60 made of an insulating material and covering the inside of the cutter groove that passes through the flat electrode of at least one of the upper jaw and the lower jaw.
  • the spacer can prevent the pair of planar electrodes from shorting through the cutter blade, and even when the cutter blade is located in the cutter groove, high-frequency power can be applied to the planar electrode.
  • the spacer has a pair of side wall portions 60a that protrude from the surface of the planar electrode and prevent a short circuit between the planar electrode of the upper jaw portion and the planar electrode of the lower jaw portion. Good too.
  • the spacer has an insulated cutter groove 49c between the pair of sidewall portions, through which the cutter blade is inserted, and the width of the insulated cutter groove extends through the planar electrode.
  • the width may be narrower than the width of the cutter groove.
  • the cutter blade can be insulated from the flat electrode through the insulating cutter groove, so high-frequency power can be applied even when the cutter blade is protruded.
  • the clamping surface of the upper jaw and the clamping surface of the lower jaw may abut with each other via the spacer.
  • the spacer can prevent a short circuit between the flat electrode on the upper jaw and the flat electrode on the lower jaw.
  • a jaw structure that includes a cylindrical body extending along an axis, and an upper jaw part and a lower jaw part that are attached to the tip of the cylindrical body, and the upper jaw part and the lower jaw part open and close. and a cutter blade disposed between the upper jaw part and the lower jaw part, the cutter blade moving in the direction of the axis along the cutter grooves of the upper jaw part and the lower jaw part, and the jaw structure has a closed jaw structure.
  • a spacer is formed to pass through the electrode and is made of an insulating material and covers the inside of the cutter groove that passes through the planar electrode of either the upper jaw part or the lower jaw part, and the spacer is made of an insulating material. It has an insulated cutter groove 49c into which the blade is inserted and is insulated from the planar electrode, and the width of the insulated cutter groove is equal to the width of the cutter groove that passes through the planar electrode of either the upper jaw part or the lower jaw part. narrower than the width of the vessel sampling device.
  • the blood vessel sampling device when the cutter blade slides in the cutter groove, displacement of the cutter blade in the width direction can be regulated by the insulating cutter groove. Therefore, the blood vessel sampling device can separate and insulate the cutter blade and the planar electrode.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Ophthalmology & Optometry (AREA)
  • Surgical Instruments (AREA)

Abstract

A blood vessel extraction device (24) comprises: a tubular body (24a); a jaw structure (26) which is provided to a tip end of the tubular body (24a) and in which an upper jaw part (40) and a lower jaw part (50) open and close; and a cutter blade (34) which moves along cutter grooves (49) of the upper jaw part (40) and the lower jaw part (50). The jaw structure (26) has a pair of grasping surfaces (41) that are formed in portions of the upper jaw part (40) and the lower jaw part (50) which face each other in a closed state, and planar electrodes (48) that are respectively formed on the pair of grasping surfaces (41). The cutter grooves (49) are formed so as to pass through the planar electrodes (48) and have an insulating body that separates the planar electrodes (48) and the cutter blade (34).

Description

血管採取デバイスblood vessel sampling device
 本発明は、血管採取デバイスに関する。 The present invention relates to a blood vessel collection device.
 冠動脈バイパス手術(CABG)では、病変部位を迂回するように患者から採取した血管の接続が行われる。使用する血管は、例えば患者の下肢等から採取される。血管の採取には、内視鏡下血管採取システム(EVHシステム)が用いられる。 In coronary artery bypass surgery (CABG), blood vessels taken from a patient are connected so as to bypass the lesion site. The blood vessel used is collected, for example, from the lower limb of the patient. An endoscopic blood vessel harvesting system (EVH system) is used to harvest blood vessels.
 内視鏡下血管採取システムは、内視鏡システムと、気腹装置と、血管剥離デバイスと、血管採取デバイスと、を備える。血管の採取は、気腹装置で炭酸ガスを送り込みながら、血管剥離デバイスを血管に沿って前進させ、血管をその周辺の脂肪組織から剥離させる。その後、血管採取デバイスで、血管から分岐する枝血管を止血しつつ切断する。枝血管の切断は、内視鏡で観察しながら行われる。その後、血管採取デバイスを引き抜き、血管を切開部から引き抜くことで、血管の採取が完了する。 The endoscopic blood vessel collection system includes an endoscope system, a pneumoperitoneum device, a blood vessel dissection device, and a blood vessel collection device. To collect a blood vessel, a blood vessel dissection device is advanced along the blood vessel while supplying carbon dioxide gas with an insufflation device, and the blood vessel is dissected from surrounding fat tissue. Thereafter, a blood vessel sampling device is used to cut the branch blood vessels branching from the blood vessel while stopping the bleeding. Branch blood vessels are cut while being observed with an endoscope. Thereafter, the blood vessel collection device is pulled out and the blood vessel is pulled out from the incision, thereby completing the collection of the blood vessel.
 例えば、特開2011-229923号公報は、内視鏡の観察下で、組織の切断を行う装置を開示する。 For example, Japanese Patent Application Publication No. 2011-229923 discloses an apparatus that cuts tissue under observation with an endoscope.
 特開2011-229923号公報のデバイスは、組織を挟み込むジョー構造の挟持面に電極を有する。電極は、組織を通電加熱することで、組織を止血する。挟持面には、カッター刃が通るカッター溝が形成されている。このようなデバイスにおいて、電極による加熱で止血された組織は、カッター刃によって切断される。 The device disclosed in Japanese Unexamined Patent Publication No. 2011-229923 has electrodes on the clamping surfaces of the jaw structure that clamps tissue. The electrode stops bleeding in the tissue by heating the tissue with electricity. A cutter groove through which a cutter blade passes is formed on the holding surface. In such devices, tissue that has been hemostatically heated by an electrode is cut by a cutter blade.
 特開2011-229923号公報のデバイスにおいて、カッター刃は、電極と接触可能となっている。したがって、電極間に通電を行う場合には、短絡を防ぐためにカッター刃をカッター溝よりも基端側に退避させる必要がある。ところが、血管切断手技を行う過程で、カッター刃で血管を切断した際に、止血が不十分であることにより、出血が生じる場合がある。このような場合には、特許文献1のデバイスでは、直ちに通電を行うことができず、カッター刃を基端側に退避させる操作が必要となる。 In the device disclosed in JP-A-2011-229923, the cutter blade can come into contact with the electrode. Therefore, when applying electricity between the electrodes, it is necessary to retract the cutter blade toward the proximal end side of the cutter groove in order to prevent a short circuit. However, in the process of performing a blood vessel cutting procedure, when a blood vessel is cut with a cutter blade, bleeding may occur due to insufficient hemostasis. In such a case, the device of Patent Document 1 cannot immediately energize, and requires an operation to retract the cutter blade toward the proximal end.
 本発明は、上記した課題を解決することを目的とする。 The present invention aims to solve the above problems.
 以下の開示の一観点は、軸線に沿って延在する筒状体と、前記筒状体の先端に取り付けられ、上顎部と下顎部とを有し、前記上顎部と前記下顎部が開閉するジョー構造と、前記上顎部と前記下顎部との間に配置され、前記上顎部と前記下顎部のカッター溝に沿って前記軸線の方向に移動するカッター刃と、を備え、前記ジョー構造は、閉じた状態で前記上顎部と前記下顎部とが互いに向かい合う部分に形成された一対の挟持面と、前記一対の挟持面の各々に形成された平面電極と、を有し、前記カッター溝は、前記平面電極を貫通して形成されており、少なくとも一方の前記平面電極の前記カッター溝の幅が前記カッター刃の厚さよりも大きく、前記平面電極と前記カッター刃とを隔てる絶縁体を前記カッター溝に有する、血管採取デバイスにある。 One aspect of the following disclosure includes a cylindrical body extending along an axis, an upper jaw part and a lower jaw part attached to the tip of the cylindrical body, and the upper jaw part and the lower jaw part open and close. a jaw structure; a cutter blade disposed between the upper jaw part and the lower jaw part and moving in the direction of the axis along cutter grooves of the upper jaw part and the lower jaw part, the jaw structure; The cutter groove includes a pair of clamping surfaces formed at portions where the upper jaw part and the lower jaw part face each other in a closed state, and a flat electrode formed on each of the pair of clamping surfaces, and the cutter groove includes: The cutter groove is formed to penetrate through the planar electrode, and the width of the cutter groove of at least one of the planar electrodes is larger than the thickness of the cutter blade, and the insulator separating the planar electrode and the cutter blade is formed in the cutter groove. in a blood vessel harvesting device.
 別の一観点は、軸線に沿って延在する筒状体と、前記筒状体の先端に取り付けられ、上顎部と下顎部とを有し、前記上顎部と前記下顎部が開閉するジョー構造と、前記上顎部と前記下顎部との間に配置され、前記上顎部と前記下顎部のカッター溝に沿って前記軸線の方向に移動するカッター刃と、を備え、前記ジョー構造は、閉じた状態で前記上顎部と前記下顎部とが互いに向かい合う部分に形成された一対の挟持面と、前記一対の挟持面の各々に形成された平面電極と、を有し、前記カッター溝は、前記平面電極を貫通して形成されており、前記上顎部及び前記下顎部のいずれか一方の前記平面電極を貫通する前記カッター溝の内側を覆う絶縁材料よりなるスペーサを有し、前記スペーサは、前記カッター刃が挿通し、かつ前記平面電極から絶縁された絶縁カッター溝を有し、前記絶縁カッター溝の幅は、前記上顎部及び前記下顎部のいずれか他方の前記平面電極を貫通する前記カッター溝の幅よりも狭い、血管採取デバイスにある。 Another aspect of the present invention is a jaw structure that includes a cylindrical body extending along an axis, and an upper jaw part and a lower jaw part that are attached to the tip of the cylindrical body, and the upper jaw part and the lower jaw part open and close. and a cutter blade disposed between the upper jaw part and the lower jaw part, the cutter blade moving in the direction of the axis along the cutter grooves of the upper jaw part and the lower jaw part, and the jaw structure has a closed jaw structure. a pair of clamping surfaces formed at portions where the upper jaw part and the lower jaw part face each other in the state, and a flat electrode formed on each of the pair of clamping surfaces; A spacer is formed to pass through the electrode and is made of an insulating material and covers the inside of the cutter groove that passes through the planar electrode of either the upper jaw part or the lower jaw part, and the spacer is made of an insulating material. It has an insulated cutter groove through which the blade is inserted and is insulated from the planar electrode, and the width of the insulated cutter groove is equal to the width of the cutter groove that passes through the planar electrode of either the upper jaw part or the lower jaw part. Narrower than the width, located on the blood vessel harvesting device.
 上記観点の血管採取デバイスは、カッター溝の幅がカッター刃の厚さよりも大きいため、カッター刃と平面電極とを離間させて絶縁できる。したがって、血管採取デバイスは、カッター刃をカッター溝に突出させた状態で通電加熱を行える。この血管採取デバイスは、カッター刃で組織を切断した際に、出血が認められた場合に、直ちに通電を再開して止血を行うことができ、操作性に優れる。 In the blood vessel collection device according to the above aspect, since the width of the cutter groove is larger than the thickness of the cutter blade, the cutter blade and the planar electrode can be separated and insulated. Therefore, the blood vessel sampling device can perform electrical heating with the cutter blade protruding into the cutter groove. This blood vessel sampling device is excellent in operability because, when bleeding is observed when cutting tissue with a cutter blade, the current supply can be immediately restarted to stop the bleeding.
図1は、実施形態に係る血管採取システムの構成図である。FIG. 1 is a configuration diagram of a blood vessel collection system according to an embodiment. 図2Aは、図1の血管採取デバイスの先端付近の側面図であり、図2Bは図2Aのジョー構造を先端側から見た斜視図である。2A is a side view of the vicinity of the distal end of the blood vessel sampling device of FIG. 1, and FIG. 2B is a perspective view of the jaw structure of FIG. 2A viewed from the distal end side. 図3Aは、図2Aの上顎部を挟持面から見た平面図であり、図3Bは図2Aの下顎部の分解斜視図である。3A is a plan view of the upper jaw portion of FIG. 2A viewed from the clamping surface, and FIG. 3B is an exploded perspective view of the lower jaw portion of FIG. 2A. 図4Aは、図2Aの上顎部を取り外した状態で、カッター刃の突出動作を示す説明図であり、図4Bは、図2Aのジョー構造を閉じた状態の側面図である。FIG. 4A is an explanatory diagram showing the protruding operation of the cutter blade with the upper jaw part of FIG. 2A removed, and FIG. 4B is a side view of the jaw structure of FIG. 2A in a closed state. 図5Aは、血管採取方法のマーキング工程の説明図であり、図5Bは血管剥離デバイスで血管を剥離する工程の説明図である。FIG. 5A is an explanatory diagram of the marking step of the blood vessel collection method, and FIG. 5B is an explanatory diagram of the step of dissecting the blood vessel with a blood vessel dissection device. 図6は、図1の血管採取デバイスで血管を採取する工程の説明図である。FIG. 6 is an explanatory diagram of the process of collecting a blood vessel with the blood vessel collection device of FIG. 1.
 図1に示す血管採取システム10は、EVH(Endoscopic Vessel Harvesting:内視鏡下血管採取術)に用いられるEVHシステムである。血管採取システム10は、表示装置12と、高周波電源14と、気腹装置16と、トロッカ18と、撮像デバイス20(内視鏡)と、血管剥離デバイス22と、血管採取デバイス24と、を備える。このうち、表示装置12は、撮像デバイス20と接続されている。表示装置12は、撮像デバイス20が撮像した画像を表示する。高周波電源14は、血管採取デバイス24に組織(血管90又は枝血管96)を焼勺するための高周波電力を供給する。気腹装置16は、血管剥離デバイス22に炭酸ガスを供給する。撮像デバイス20は、筒状体20aと、筒状体20aの先端に取り付けられたカメラ20bとを有する。撮像デバイス20は、血管剥離デバイス22又は血管採取デバイス24とともに患者の体内に挿入されて、作業部位の撮像を行う。 The blood vessel harvesting system 10 shown in FIG. 1 is an EVH system used for EVH (Endoscopic Vessel Harvesting). The blood vessel collection system 10 includes a display device 12, a high-frequency power source 14, a pneumoperitoneum device 16, a trocar 18, an imaging device 20 (endoscope), a blood vessel dissection device 22, and a blood vessel collection device 24. . Of these, the display device 12 is connected to the imaging device 20. The display device 12 displays images captured by the imaging device 20. High frequency power supply 14 supplies high frequency power to blood vessel collection device 24 to ablate tissue (blood vessel 90 or branch blood vessel 96). The pneumoperitoneum device 16 supplies carbon dioxide gas to the blood vessel ablation device 22 . The imaging device 20 includes a cylindrical body 20a and a camera 20b attached to the tip of the cylindrical body 20a. The imaging device 20 is inserted into a patient's body together with a blood vessel dissection device 22 or a blood vessel harvesting device 24 to image the work site.
 トロッカ18は、血管90の近くの切開部に挿入される。トロッカ18は、撮像デバイス20、血管剥離デバイス22及び血管採取デバイス24の体内への導入を容易にする。トロッカ18は、クリップ18aにより皮膚に固定される。 The trocar 18 is inserted into the incision near the blood vessel 90. Trocar 18 facilitates the introduction of imaging device 20, vessel ablation device 22, and vessel harvesting device 24 into the body. The trocar 18 is fixed to the skin by a clip 18a.
 血管剥離デバイス22は、筒状体22aと、筒状体22aの先端に取り付けられた円錐状の剥離部22bとを有する。筒状体22aは、先端付近に炭酸ガスを放出する噴出孔22cを有する。血管剥離デバイス22は、剥離部22bにて、血管90とその周囲の周辺組織92とを剥離させる。血管剥離デバイス22は、噴出孔22cから噴出された炭酸ガスによって、血管90の周囲に空洞部94を形成する(図5B参照)。 The blood vessel ablation device 22 includes a cylindrical body 22a and a conical ablation portion 22b attached to the tip of the cylindrical body 22a. The cylindrical body 22a has an ejection hole 22c near its tip for releasing carbon dioxide gas. The blood vessel dissection device 22 dissects the blood vessel 90 and the peripheral tissue 92 around it at the dissection portion 22b. The blood vessel ablation device 22 forms a cavity 94 around the blood vessel 90 by carbon dioxide ejected from the ejection hole 22c (see FIG. 5B).
 本実施形態の血管採取デバイス24は、筒状体24aと、筒状体24aの先端に取り付けられたジョー構造26とを有する。筒状体24aは、軸線の方向に延びる円筒状の部材であり、内部に高周波電力を流す配線(不図示)及びジョー構造26を動作させる操作ワイヤ(不図示)又は操作ロッド(不図示)を収容する。 The blood vessel sampling device 24 of this embodiment includes a cylindrical body 24a and a jaw structure 26 attached to the tip of the cylindrical body 24a. The cylindrical body 24a is a cylindrical member extending in the direction of the axis, and has wiring (not shown) for flowing high-frequency power therein and an operating wire (not shown) or an operating rod (not shown) for operating the jaw structure 26. accommodate.
 血管採取デバイス24は、ジョー構造26により剥離された血管90の枝血管96の切断を行う。ジョー構造26は、高周波電力によって枝血管96を焼勺して止血しつつ切断する機能を有する。ジョー構造26の詳細は、後に説明される。 The blood vessel harvesting device 24 cuts the branch blood vessel 96 of the blood vessel 90 separated by the jaw structure 26. The jaw structure 26 has a function of cutting the branch blood vessel 96 by ablating the branch blood vessel 96 using high-frequency power to stop bleeding. Details of the jaw structure 26 will be explained later.
 血管採取デバイス24は、基端部に操作ハブ28を有する。操作ハブ28は、カッター操作部28a、ジョー操作部28b、通電スイッチ28cを有する。カッター操作部28aは、後述するカッター刃34の軸線の方向への移動操作を行う。ジョー操作部28bは、ジョー構造26の開閉操作を行う。通電スイッチ28cは、ジョー構造26への高周波電力の供給と停止とを切り換える。ジョー構造26は、詳細には、以下の構成を有する。 The blood vessel sampling device 24 has a manipulation hub 28 at its proximal end. The operation hub 28 has a cutter operation section 28a, a jaw operation section 28b, and an energization switch 28c. The cutter operation section 28a performs a movement operation of the cutter blade 34 in the axial direction, which will be described later. The jaw operating section 28b opens and closes the jaw structure 26. The energization switch 28c switches between supplying and stopping high-frequency power to the jaw structure 26. In detail, the jaw structure 26 has the following configuration.
 図2Aに示すように、ジョー構造26は、筒状体24aの先端に取り付けられている。図2Bに示すように、筒状体24aは、その先端部に、周方向の一部を切り欠いた一対の切欠溝部24bを有する。一対の切欠溝部24bは、周方向に180°離れた位置に配置される。各々の切欠溝部24bは、軸線の方向に延在する。切欠溝部24bには、ジョー構造26が収容される。 As shown in FIG. 2A, the jaw structure 26 is attached to the tip of the cylindrical body 24a. As shown in FIG. 2B, the cylindrical body 24a has a pair of notched grooves 24b, which are partially cut out in the circumferential direction, at the distal end thereof. The pair of notch grooves 24b are arranged 180 degrees apart in the circumferential direction. Each notch groove 24b extends in the direction of the axis. The jaw structure 26 is accommodated in the notch groove 24b.
 筒状体24aは、一対の案内溝24dの間に、先端に向けて延び出た一対の支持部24cを有する。支持部24cは、ジョー構造26を支持する。支持部24cは、案内溝24dと、開閉ピン取付孔24eとを有する。案内溝24dは、開閉ピン取付孔24eの先端側に位置する。案内溝24dは、軸線の方向に延びる。開閉ピン取付孔24eは、円形状である。案内溝24d及び開閉ピン取付孔24eの中心位置は、切欠溝部24bの中心に対して筒状体24aの周方向に90°ずれている。 The cylindrical body 24a has a pair of support portions 24c extending toward the tip between the pair of guide grooves 24d. The support portion 24c supports the jaw structure 26. The support portion 24c has a guide groove 24d and an opening/closing pin attachment hole 24e. The guide groove 24d is located on the tip side of the opening/closing pin attachment hole 24e. The guide groove 24d extends in the direction of the axis. The opening/closing pin attachment hole 24e has a circular shape. The center positions of the guide groove 24d and the opening/closing pin mounting hole 24e are offset by 90 degrees in the circumferential direction of the cylindrical body 24a with respect to the center of the notch groove 24b.
 図2Bに示すように、ジョー構造26は、上顎組立体30と、下顎組立体32と、カッター刃34とを備える。上顎組立体30と、下顎組立体32とは、軸ピン36と開閉ピン38とを介して接続されている。軸ピン36は、上顎組立体30と下顎組立体32に対して固定されている。軸ピン36は、上顎組立体30と下顎組立体32の回転中心となる。軸ピン36は、筒状体24aの案内溝24dに挿入されている。案内溝24dは、軸線の方向に延びた溝であり、軸ピン36の軸線の方向の移動を許容する。軸ピン36は、ジョー構造26の軸線の方向の変位に伴って案内溝24dを移動する。 As shown in FIG. 2B, the jaw structure 26 includes an upper jaw assembly 30, a lower jaw assembly 32, and a cutter blade 34. The upper jaw assembly 30 and the lower jaw assembly 32 are connected via a shaft pin 36 and an opening/closing pin 38. Axial pin 36 is fixed to upper jaw assembly 30 and lower jaw assembly 32. Axial pin 36 provides a center of rotation for upper jaw assembly 30 and lower jaw assembly 32. The shaft pin 36 is inserted into the guide groove 24d of the cylindrical body 24a. The guide groove 24d is a groove extending in the axial direction, and allows the shaft pin 36 to move in the axial direction. The shaft pin 36 moves in the guide groove 24d as the jaw structure 26 is displaced in the axial direction.
 開閉ピン38は、筒状体24aに固定されたピンである。開閉ピン38は、ジョー構造26が軸線の方向に変位すると、上顎組立体30と下顎組立体32とに対して相対的に変位する。図2Bに示すように、開閉ピン38は、上顎組立体30の第1摺動溝30aと、下顎組立体32の第2摺動溝32aとに挿入されている。開閉ピン38は、ジョー構造26が筒状体24aの軸線の方向に対して前進又は後退すると、第1摺動溝30a及び第2摺動溝32aとを摺動する。開閉ピン38の第1摺動溝30a及び第2摺動溝32a内の位置に応じて上顎組立体30と下顎組立体32が回動し、ジョー構造26が開閉する。 The opening/closing pin 38 is a pin fixed to the cylindrical body 24a. The opening/closing pin 38 is displaced relative to the upper jaw assembly 30 and the lower jaw assembly 32 as the jaw structure 26 is displaced in the axial direction. As shown in FIG. 2B, the opening/closing pin 38 is inserted into the first sliding groove 30a of the upper jaw assembly 30 and the second sliding groove 32a of the lower jaw assembly 32. The opening/closing pin 38 slides in the first sliding groove 30a and the second sliding groove 32a when the jaw structure 26 moves forward or backward in the direction of the axis of the cylindrical body 24a. The upper jaw assembly 30 and the lower jaw assembly 32 rotate according to the position of the opening/closing pin 38 in the first sliding groove 30a and the second sliding groove 32a, and the jaw structure 26 opens and closes.
 図2Aに示すように、上顎組立体30は、上顎部40と、基部42とを有する。上顎部40は、先端側に位置し、回動方向に直交する挟持面41を有する。基部42は、上顎部40の基端側に位置し、上顎部40と一体的に繋がる。基部42は、挟持面41に直交する方向に平坦な摺動面42aを有する。摺動面42aは、軸孔42c及び第1摺動溝30aを有する。軸孔42cは、軸ピン36が挿通する。軸孔42cは、上顎組立体30の回転中心となる。第1摺動溝30aは、軸線の方向に対して傾斜して延びる。第1摺動溝30aは、開閉ピン38が貫通する。 As shown in FIG. 2A, the upper jaw assembly 30 has an upper jaw portion 40 and a base portion 42. The upper jaw part 40 has a clamping surface 41 located on the distal end side and perpendicular to the rotation direction. The base portion 42 is located on the base end side of the upper jaw portion 40 and is integrally connected to the upper jaw portion 40. The base 42 has a flat sliding surface 42a in a direction perpendicular to the clamping surface 41. The sliding surface 42a has a shaft hole 42c and a first sliding groove 30a. The shaft pin 36 is inserted through the shaft hole 42c. The shaft hole 42c becomes the rotation center of the upper jaw assembly 30. The first sliding groove 30a extends obliquely with respect to the direction of the axis. The opening/closing pin 38 passes through the first sliding groove 30a.
 図2Aに示すように、上顎部40は、支持体44と、本体部46と、平面電極48とを有する。図2Bに示すように、支持体44は、基部42と一体的に繋がっており、基部42と同一材料(例えば、金属)によって形成される。支持体44は、本体部46を支持する。本体部46は、樹脂等の絶縁性の材料によって形成される。本体部46は、上顎部40の大部分を占める。図3Aに示すように、本体部46は、軸線の方向に対して僅かに傾いて延在する。 As shown in FIG. 2A, the upper jaw part 40 has a support body 44, a main body part 46, and a flat electrode 48. As shown in FIG. 2B, the support 44 is integrally connected to the base 42 and is made of the same material (for example, metal) as the base 42. The support body 44 supports the main body portion 46 . The main body portion 46 is formed of an insulating material such as resin. The main body portion 46 occupies most of the upper jaw portion 40. As shown in FIG. 3A, the main body portion 46 extends slightly inclined with respect to the direction of the axis.
 図3Aに示すように、上顎部40は、軸線と直交する第1方向に、第1側面43aを有し、第1方向と反対側の第2方向に、第2側面43bを有する。本体部46の中心線は、筒状体24aの軸線に対して第1方向に向けて傾いている。第1側面43aは、カッター溝49に対して凸となるように緩やかな円弧状の湾曲面45aを有する。第1側面43aの湾曲面45aは、基端部に最もカッター溝49に近くなる頂部45bを有する。第2側面43bは、カッター溝49(筒状体24aの軸線の方向)と平行に延在する。 As shown in FIG. 3A, the upper jaw part 40 has a first side surface 43a in a first direction perpendicular to the axis, and has a second side surface 43b in a second direction opposite to the first direction. The centerline of the main body portion 46 is inclined toward the first direction with respect to the axis of the cylindrical body 24a. The first side surface 43 a has a gently arcuate curved surface 45 a that is convex with respect to the cutter groove 49 . The curved surface 45a of the first side surface 43a has a top portion 45b closest to the cutter groove 49 at the base end. The second side surface 43b extends parallel to the cutter groove 49 (in the direction of the axis of the cylindrical body 24a).
 本体部46は、その先端に支持体44よりも突出した先端部46cを有する。先端部46cは、軸線の方向に対して傾斜した第1傾斜面47a及び第2傾斜面47bと、稜線部47cとを有する。第1傾斜面47aは、第1方向に向けて傾斜した面であり、第1側面43aに隣接する。第2傾斜面47bは、第2方向に向けて傾斜した面であり、第2側面43bに隣接する。稜線部47cは、第1傾斜面47aと、第2傾斜面47bとが交わる辺として形成される。稜線部47cは、上顎組立体30の先端に位置し、挟持面41に直交する方向に延在する。 The main body portion 46 has a distal end portion 46c that protrudes beyond the support body 44 at its distal end. The tip portion 46c has a first inclined surface 47a and a second inclined surface 47b that are inclined with respect to the direction of the axis, and a ridgeline portion 47c. The first inclined surface 47a is a surface inclined toward the first direction, and is adjacent to the first side surface 43a. The second inclined surface 47b is a surface inclined toward the second direction, and is adjacent to the second side surface 43b. The ridgeline portion 47c is formed as a side where the first inclined surface 47a and the second inclined surface 47b intersect. The ridgeline portion 47c is located at the tip of the upper jaw assembly 30 and extends in a direction perpendicular to the clamping surface 41.
 図3Aに示すように、第1傾斜面47aと第2傾斜面47bとは、稜線部47cにて鋭角に交わる。このような稜線部47cは、血管90と周辺組織92との剥離を好適に行うことができる。上顎部40は、先端の稜線部47cの位置が、軸線の方向から、第1方向に向けて離間する。本実施形態の上顎部40は、稜線部47cの位置が第1側面43aの位置に接近しているため、剥離作業が行われる位置の視認性を向上させる。 As shown in FIG. 3A, the first inclined surface 47a and the second inclined surface 47b intersect at an acute angle at the ridge line portion 47c. Such a ridgeline portion 47c can suitably separate the blood vessel 90 and the surrounding tissue 92. In the upper jaw part 40, the position of the ridgeline part 47c at the tip is spaced apart from the direction of the axis toward the first direction. In the upper jaw part 40 of this embodiment, the position of the ridge line part 47c is close to the position of the first side surface 43a, so that the visibility of the position where the peeling operation is performed is improved.
 図3Aに示すように、上顎部40は、下顎部50に向かい合う挟持面41を有する。上顎部40の挟持面41は、平面電極48を有する。平面電極48は、本体部46に貼り付けられた板状の金属板よりなる。平面電極48の表面は、挟持面41を構成する。 As shown in FIG. 3A, the upper jaw part 40 has a clamping surface 41 facing the lower jaw part 50. The clamping surface 41 of the upper jaw part 40 has a flat electrode 48 . The plane electrode 48 is made of a plate-shaped metal plate attached to the main body 46 . The surface of the planar electrode 48 constitutes the clamping surface 41 .
 上顎部40の挟持面41は、軸線に沿って延びる上側カッター溝49aを有する。上側カッター溝49aは、平面電極48を貫通するとともに、本体部46の内部に到達する。上側カッター溝49aの幅(第1、第2方向の寸法)は、カッター刃34の厚さよりも大きな寸法を有する。上側カッター溝49aは、ジョー構造26を閉塞したときに、筒状体24aの軸線に沿って延在する。上側カッター溝49aは、カッター刃34の軸線の方向への移動を案内する。なお、以下の説明において、上側カッター溝49a、下側カッター溝49b及び絶縁カッター溝49cを総称する語として、カッター溝49が使用される。 The clamping surface 41 of the upper jaw part 40 has an upper cutter groove 49a extending along the axis. The upper cutter groove 49a penetrates the planar electrode 48 and reaches the inside of the main body portion 46. The width (dimensions in the first and second directions) of the upper cutter groove 49a is larger than the thickness of the cutter blade 34. The upper cutter groove 49a extends along the axis of the cylindrical body 24a when the jaw structure 26 is closed. The upper cutter groove 49a guides the movement of the cutter blade 34 in the axial direction. In the following description, the term cutter groove 49 will be used to collectively refer to the upper cutter groove 49a, the lower cutter groove 49b, and the insulating cutter groove 49c.
 図2B及び図3Bに示すように、下顎組立体32は、下顎部50と、基部52とを有する。下顎部50は、基部52の先端側に位置し、上顎部40に向かい合う挟持面41を有する。基部52は、下顎部50の基端側に位置し、下顎部50と一体的に繋がる。基部52は、挟持面41に直交する方向に平坦な摺動面52aを有する。摺動面52aは、上顎組立体30の摺動面42aと摺動する。基部52は、軸孔52c及び第2摺動溝32aを有する。軸孔52cは、軸ピン36が挿通する。軸孔52cは、下顎組立体32の回転中心となる。第2摺動溝32aは、第1摺動溝30aと逆方向に傾斜して延びる。第2摺動溝32aは、開閉ピン38が貫通する。 As shown in FIGS. 2B and 3B, the lower jaw assembly 32 includes a lower jaw portion 50 and a base portion 52. The lower jaw part 50 is located on the distal end side of the base part 52 and has a clamping surface 41 facing the upper jaw part 40 . The base portion 52 is located on the base end side of the lower jaw portion 50 and is integrally connected to the lower jaw portion 50. The base 52 has a flat sliding surface 52a in a direction perpendicular to the clamping surface 41. The sliding surface 52a slides on the sliding surface 42a of the upper jaw assembly 30. The base 52 has a shaft hole 52c and a second sliding groove 32a. The shaft pin 36 is inserted through the shaft hole 52c. The shaft hole 52c becomes the rotation center of the lower jaw assembly 32. The second sliding groove 32a extends obliquely in the opposite direction to the first sliding groove 30a. The opening/closing pin 38 passes through the second sliding groove 32a.
 図3Bに示すように、下顎部50は、支持体44と、本体部46と、平面電極48と、下側カッター溝49bと、スペーサ60とを有する。下顎部50は、上顎部40に対して上下対称の形状を有するため、その詳細な形状の説明は省略される。下顎部50において、上顎部40と同様の構成には、同一の符号が付されている。下顎部50は、平面電極48に形成され下側カッター溝49bを有する。下側カッター溝49bは、軸線の方向に延びる。下側カッター溝49bは、下顎部50の平面電極48を厚さ方向に貫通する。下側カッター溝49bの幅は、上側カッター溝49aの幅よりも大きい。そのため、下側カッター溝49bは、カッター刃34との間に間隙を形成し、カッター刃34と下顎部50の平面電極48との電気的絶縁を可能とする。 As shown in FIG. 3B, the lower jaw portion 50 includes a support body 44, a main body portion 46, a flat electrode 48, a lower cutter groove 49b, and a spacer 60. Since the lower jaw part 50 has a vertically symmetrical shape with respect to the upper jaw part 40, a detailed description of its shape will be omitted. In the lower jaw part 50, the same components as in the upper jaw part 40 are given the same reference numerals. The lower jaw portion 50 is formed on the flat electrode 48 and has a lower cutter groove 49b. The lower cutter groove 49b extends in the direction of the axis. The lower cutter groove 49b penetrates the flat electrode 48 of the lower jaw portion 50 in the thickness direction. The width of the lower cutter groove 49b is larger than the width of the upper cutter groove 49a. Therefore, the lower cutter groove 49b forms a gap with the cutter blade 34, and enables electrical insulation between the cutter blade 34 and the flat electrode 48 of the lower jaw portion 50.
 スペーサ60は、下側カッター溝49bの内側に配置され、下側カッター溝49bの内側を覆う。スペーサ60は、本体部46から突出する一対の側壁部60aを有する。スペーサ60は、一対の側壁部60aの間に絶縁カッター溝49cを有する。図4Aに示すように、絶縁カッター溝49cは、軸線の方向に延びており、カッター刃34の軸線方向への移動を案内する。絶縁カッター溝49cの幅は、カッター刃34の厚さ(幅方向の寸法)と同じか僅かに大きい。スペーサ60は、カッター刃34と、下顎部50の平面電極48との間に配置されて、カッター刃34を下顎部50の平面電極48から絶縁する。 The spacer 60 is arranged inside the lower cutter groove 49b and covers the inside of the lower cutter groove 49b. The spacer 60 has a pair of side wall portions 60a that protrude from the main body portion 46. The spacer 60 has an insulating cutter groove 49c between a pair of side wall portions 60a. As shown in FIG. 4A, the insulating cutter groove 49c extends in the axial direction and guides the movement of the cutter blade 34 in the axial direction. The width of the insulating cutter groove 49c is the same as or slightly larger than the thickness (dimension in the width direction) of the cutter blade 34. Spacer 60 is disposed between cutter blade 34 and planar electrode 48 of mandible 50 to insulate cutter blade 34 from planar electrode 48 of mandible 50 .
 絶縁カッター溝49cの幅は、上側カッター溝49aの幅よりも狭い。このような絶縁カッター溝49cは、カッター刃34が絶縁カッター溝49c及び上側カッター溝49aに沿って摺動する際に、カッター刃34の幅方向の変位を規制する。したがって、絶縁カッター溝49cは、カッター刃34の上側カッター溝49aとの接触を阻止する。したがって、カッター刃34は、上側カッター溝49aを形成する平面電極48と離間した状態に保たれ、カッター刃34を平面電極48から絶縁できる。 The width of the insulating cutter groove 49c is narrower than the width of the upper cutter groove 49a. Such an insulating cutter groove 49c restricts displacement of the cutter blade 34 in the width direction when the cutter blade 34 slides along the insulating cutter groove 49c and the upper cutter groove 49a. Therefore, the insulating cutter groove 49c prevents the cutter blade 34 from coming into contact with the upper cutter groove 49a. Therefore, the cutter blade 34 is kept separated from the planar electrode 48 forming the upper cutter groove 49a, and the cutter blade 34 can be insulated from the planar electrode 48.
 図3Bに示すように、スペーサ60の一対の側壁部60aは、本体部46からの突出高さが、平面電極48の厚さよりも大きな値に設定される。平面電極48を下顎部50の本体部46に組み付けた状態において、スペーサ60は平面電極48よりも上方に突出する。図4Bに示すように、ジョー構造26を閉じた状態において、スペーサ60は、上顎部40の平面電極48と、下顎部50の平面電極48との接触を阻止する。 As shown in FIG. 3B, the height of the pair of side walls 60a of the spacer 60 protruding from the main body 46 is set to a value greater than the thickness of the flat electrode 48. In a state where the flat electrode 48 is assembled to the main body part 46 of the lower jaw part 50, the spacer 60 protrudes above the flat electrode 48. As shown in FIG. 4B, when the jaw structure 26 is in the closed state, the spacer 60 prevents the planar electrodes 48 of the upper jaw 40 from contacting the planar electrodes 48 of the lower jaw 50.
 図2Bに示すように、上顎組立体30と、下顎組立体32とは、それぞれの基部42、52が軸ピン36と、開閉ピン38とにより回転可能に連結される。図2Bに示すように、上顎組立体30の基部42と、下顎組立体32の基部52との間には、カッター刃34が配置される。ジョー構造26は、筒状体24aに対して軸線の方向に変位可能となっている。ジョー構造26が基端側に位置する場合には、図2Aに示すように、ジョー構造26が開き、上顎部40と下顎部50とが離れる。ジョー構造26を軸線の方向の先端に変位させると、図4Bに示すように、ジョー構造26が閉じる。ジョー構造26の移動は、図1の操作ハブ28のジョー操作部28bによって行われる。 As shown in FIG. 2B, the upper jaw assembly 30 and the lower jaw assembly 32 are rotatably connected at their respective bases 42 and 52 by a shaft pin 36 and an opening/closing pin 38. As shown in FIG. 2B, a cutter blade 34 is disposed between the base 42 of the upper jaw assembly 30 and the base 52 of the lower jaw assembly 32. The jaw structure 26 is movable in the axial direction with respect to the cylindrical body 24a. When the jaw structure 26 is located on the proximal side, the jaw structure 26 opens and the upper jaw portion 40 and the lower jaw portion 50 are separated, as shown in FIG. 2A. Displacing the jaw structure 26 axially to the distal end causes the jaw structure 26 to close, as shown in FIG. 4B. Movement of the jaw structure 26 is effected by the jaw operating portion 28b of the operating hub 28 in FIG.
 図4Bに示すように、ジョー構造26が閉じた状態において、上顎部40の挟持面41と、下顎部50の挟持面41とは、スペーサ60を介して当接する。スペーサ60は、上顎部40の平面電極48と下顎部50の平面電極48との短絡を阻止する。なお、上顎部40の挟持面41と下顎部50の挟持面41とは、基端側に向かう程間隙が広がる傾斜角を有してもよい。この場合、上顎部40と下顎部50とを強く当接させると、互いに挟持面41が略平行に揃う。 As shown in FIG. 4B, when the jaw structure 26 is in the closed state, the clamping surface 41 of the upper jaw part 40 and the clamping surface 41 of the lower jaw part 50 come into contact with each other via the spacer 60. The spacer 60 prevents short circuit between the planar electrode 48 of the upper jaw part 40 and the plane electrode 48 of the lower jaw part 50. Note that the clamping surface 41 of the upper jaw part 40 and the clamping surface 41 of the lower jaw part 50 may have an inclination angle such that the gap becomes wider toward the base end side. In this case, when the upper jaw part 40 and the lower jaw part 50 are brought into strong contact, the clamping surfaces 41 are aligned substantially parallel to each other.
 図4Aに示すように、カッター刃34は、筒状体24aの軸線の方向に延在する。カッター刃34は、図1に示す操作ハブ28のカッター操作部28aによって軸線の方向の先端に向けて、上側カッター溝49a及び絶縁カッター溝49cと摺動しつつ突出する。カッター刃34は、基端側に付勢されており、初期状態では、図2Bに示すように、基端側に位置する。ジョー構造26を閉じた状態でカッター刃34を突出させると、図4Aに示すようにカッター刃34が先端に向けて変位する。カッター刃34は、ジョー構造26に挟まれた枝血管96又は血管90を切断する。 As shown in FIG. 4A, the cutter blade 34 extends in the direction of the axis of the cylindrical body 24a. The cutter blade 34 protrudes toward the tip in the axial direction by the cutter operation portion 28a of the operation hub 28 shown in FIG. 1 while sliding in the upper cutter groove 49a and the insulating cutter groove 49c. The cutter blade 34 is biased toward the proximal end, and is located at the proximal end in an initial state, as shown in FIG. 2B. When the cutter blade 34 is projected with the jaw structure 26 closed, the cutter blade 34 is displaced toward the tip, as shown in FIG. 4A. The cutter blade 34 cuts the branch blood vessel 96 or blood vessel 90 sandwiched between the jaw structures 26 .
 本実施形態の血管採取デバイス24は以上のように構成される。血管採取システム10は、例えば、下記の血管採取方法に使用される。 The blood vessel sampling device 24 of this embodiment is configured as described above. The blood vessel sampling system 10 is used, for example, in the following blood vessel sampling method.
 血管採取方法は、図5Aに示すように、マーキング工程を有する。この工程は、脛増に伏在静脈の位置の確認ステップと、膝関節下部の位置に約2.5cmのマーキングを行うステップとを含む。 The blood vessel collection method includes a marking step, as shown in FIG. 5A. This process includes the step of confirming the position of the saphenous vein on the shin and the step of making a marking of approximately 2.5 cm at the lower part of the knee joint.
 次に、血管採取方法は、トロッカ18の挿入工程に進む。この工程では、マーキングされた位置への切開が行われ、その後トロッカ18が挿入される。トロッカ18は、クリップ18aにより皮膚に固定される。 Next, the blood vessel sampling method proceeds to the step of inserting the trocar 18. In this step, an incision is made at the marked location, and then the trocar 18 is inserted. The trocar 18 is fixed to the skin by a clip 18a.
 次に、血管採取方法は、図5Bに示すように、血管剥離工程に進む。この工程では、トロッカ18を通じて、血管剥離デバイス22及び撮像デバイス20が挿入される。この工程は、撮像デバイス20で血管90を撮像しつつ、剥離部22bで血管90から周辺組織92を剥離させる操作を含む。血管剥離デバイス22による血管90の剥離は、剥離部22bの近傍に噴出孔22cから炭酸ガスを噴出しつつ行われる。この工程により、血管90の周囲に空洞が形成される。所定の範囲の血管90が周辺組織92から剥離された後、血管剥離デバイス22及び撮像デバイス20は、体内から抜去される。 Next, the blood vessel collection method proceeds to a blood vessel dissection step, as shown in FIG. 5B. In this step, a blood vessel ablation device 22 and an imaging device 20 are inserted through the trocar 18. This step includes an operation of peeling off the surrounding tissue 92 from the blood vessel 90 with the peeling section 22b while imaging the blood vessel 90 with the imaging device 20. The blood vessel 90 is ablated by the blood vessel ablation device 22 while ejecting carbon dioxide gas from the ejection hole 22c near the ablation portion 22b. This step forms a cavity around the blood vessel 90. After a predetermined range of the blood vessel 90 has been ablated from the surrounding tissue 92, the blood vessel ablation device 22 and the imaging device 20 are removed from the body.
 次に、血管採取方法は、図6に示すように、血管採取工程に進む。血管採取工程は、血管採取デバイス24を用いて行われる。この工程は、血管採取デバイス24で枝血管96を切断するステップを有する。血管採取デバイス24及び撮像デバイス20はトロッカ18を通じて血管90の周辺の空洞に挿入される。撮像デバイス20は、血管採取デバイス24の基端側に配置され、基端側から血管採取デバイス24のジョー構造26の撮像を行う。 Next, the blood vessel sampling method proceeds to a blood vessel sampling step, as shown in FIG. The blood vessel sampling step is performed using the blood vessel sampling device 24. This step includes cutting the branch blood vessel 96 with the blood vessel harvesting device 24. Blood vessel harvesting device 24 and imaging device 20 are inserted into a cavity around blood vessel 90 through trocar 18 . The imaging device 20 is disposed on the proximal side of the blood vessel sampling device 24 and images the jaw structure 26 of the blood vessel sampling device 24 from the proximal side.
 血管採取デバイス24を用いた枝血管96の切断は、以下のステップにより行われる。まず、撮像デバイス20で観察しながら、開いた状態のジョー構造26を枝血管96の位置に配置するステップが行われる。その後、ジョー構造26を閉じて、上顎部40と下顎部50とで枝血管96を挟み込むステップが行われる。次いで、血管採取デバイス24に高周波電力を供給するステップが行われる。上顎部40の平面電極48と、下顎部50の平面電極48との間に高周波電力が供給され、挟まれた枝血管96が焼勺されて止血される。次に、カッター刃34をカッター溝49に沿って前進させることで、枝血管96を切断するステップが行われる。 Cutting the branch blood vessel 96 using the blood vessel collection device 24 is performed by the following steps. First, a step of placing the jaw structure 26 in an open state at the position of the branch blood vessel 96 is performed while observing with the imaging device 20. Thereafter, a step is performed in which the jaw structure 26 is closed and the branch blood vessel 96 is sandwiched between the upper jaw part 40 and the lower jaw part 50. A step of supplying high frequency power to the blood vessel sampling device 24 is then performed. High frequency power is supplied between the flat electrode 48 of the upper jaw 40 and the flat electrode 48 of the lower jaw 50 to ablate the pinched branch blood vessel 96 and stop bleeding. Next, the step of cutting the branch blood vessel 96 is performed by advancing the cutter blade 34 along the cutter groove 49.
 その後、血管採取デバイス24をさらに前進させて別の枝血管96の切断を行う操作が行われる。本実施形態の血管採取デバイス24は、ジョー構造26を閉じると、先端に稜線部47cが現われる。したがって、血管採取工程において、血管90の一部で周辺組織92の剥離が十分でない箇所が発見された場合には、稜線部47cを用いて周辺組織92の剥離を行える。 Thereafter, an operation is performed in which the blood vessel collection device 24 is further advanced to cut another branch blood vessel 96. In the blood vessel sampling device 24 of this embodiment, when the jaw structure 26 is closed, a ridgeline portion 47c appears at the tip. Therefore, in the blood vessel harvesting process, if a part of the blood vessel 90 is found where the surrounding tissue 92 is not sufficiently peeled off, the surrounding tissue 92 can be peeled off using the ridge line portion 47c.
 枝血管96を切断する工程は、ジョー構造26の上顎部40及び下顎部50の間に挟み込む操作を含む。この操作により、枝血管96は、ジョー構造26の一対の挟持面41の間に挟持される。挟持面41から突出したスペーサ60は、細い枝血管96も確実に挟み込むことができる。その後、上顎部40の平面電極48と、下顎部50の平面電極48との間に高周波電力を流す操作が行われる。高周波電力によって平面電極48の間の枝血管96が焼勺されて止血される。 The step of cutting the branch blood vessel 96 includes an operation of sandwiching it between the upper jaw part 40 and the lower jaw part 50 of the jaw structure 26. By this operation, the branch blood vessel 96 is clamped between the pair of clamping surfaces 41 of the jaw structure 26. The spacer 60 protruding from the clamping surface 41 can reliably clamp even the thin branch blood vessel 96. Thereafter, an operation is performed to flow high frequency power between the flat electrode 48 of the upper jaw part 40 and the flat electrode 48 of the lower jaw part 50. The branch blood vessels 96 between the planar electrodes 48 are ablated by the high frequency power to stop bleeding.
 その後、ジョー構造26への高周波電力の供給を停止し、カッター刃34を前進させて枝血管96を切断する操作が行われる。この交差により、枝血管96が切断される。その際に、枝血管96の止血が不十分な場合には、出血が生じる場合がある。本実施形態の血管採取デバイス24を用いた血管採取方法では、このような出血が認められた場合には、直ちに高周波電力の供給を再開する操作が行われる。カッター刃34は、スペーサ60によって下顎部50の平面電極48から絶縁されているため、カッター刃34がカッター溝49に位置する状態であっても、高周波電力で枝血管96を焼勺できる。このように、本実施形態の血管採取デバイス24は、出血を最小限に抑制しつつ、高周波電力による枝血管96の止血を実施できる。 Thereafter, the supply of high-frequency power to the jaw structure 26 is stopped, and the cutter blade 34 is advanced to cut the branch blood vessel 96. This intersection causes the branch blood vessel 96 to be severed. At that time, if the hemostasis of the branch blood vessel 96 is insufficient, bleeding may occur. In the blood vessel sampling method using the blood vessel sampling device 24 of this embodiment, when such bleeding is observed, an operation is performed to immediately restart the supply of high-frequency power. Since the cutter blade 34 is insulated from the flat electrode 48 of the mandibular portion 50 by the spacer 60, even if the cutter blade 34 is located in the cutter groove 49, the branch blood vessel 96 can be ablated with high frequency power. In this manner, the blood vessel sampling device 24 of this embodiment can perform hemostasis on the branch blood vessel 96 using high-frequency power while minimizing bleeding.
 その後、所望の範囲の枝血管96及び血管90の切断が完了した後、血管採取デバイス24及び撮像デバイス20は、患者の体内から引き抜かれる。その後、血管90を切開部から引き抜くことで、血管採取方法が完了する。 Thereafter, after the desired range of branch blood vessels 96 and blood vessels 90 have been cut, the blood vessel collection device 24 and the imaging device 20 are pulled out of the patient's body. Thereafter, the blood vessel collection method is completed by pulling out the blood vessel 90 from the incision.
 上記の本実施形態の血管採取デバイス24は、以下にまとめられる。 The blood vessel sampling device 24 of this embodiment described above is summarized below.
 一観点は、軸線に沿って延在する筒状体24aと、前記筒状体の先端に取り付けられ、上顎部40と下顎部50とを有し、前記上顎部と前記下顎部が開閉するジョー構造26と、前記上顎部と前記下顎部との間に配置され、前記上顎部と前記下顎部のカッター溝49に沿って前記軸線の方向に移動するカッター刃34と、を備え、前記ジョー構造は、閉じた状態で前記上顎部と前記下顎部とが互いに向かい合う部分に形成された一対の挟持面41と、前記一対の挟持面の各々に形成された平面電極48と、を有し、前記カッター溝は、前記平面電極を貫通して形成されており、少なくとも一方の前記平面電極の前記カッター溝の幅が前記カッター刃の厚さよりも大きく、前記平面電極と前記カッター刃とを隔てる絶縁体を前記カッター溝に有する、血管採取デバイス24にある。 One aspect of the invention is to have a cylindrical body 24a extending along the axis, and a jaw that is attached to the tip of the cylindrical body and includes an upper jaw part 40 and a lower jaw part 50, and the upper jaw part and the lower jaw part open and close. a structure 26; a cutter blade 34 disposed between the upper jaw part and the lower jaw part and moving in the direction of the axis along a cutter groove 49 of the upper jaw part and the lower jaw part; has a pair of clamping surfaces 41 formed at portions where the upper jaw part and the lower jaw part face each other in a closed state, and a flat electrode 48 formed on each of the pair of clamping surfaces, The cutter groove is formed to penetrate the planar electrode, and the width of the cutter groove of at least one of the planar electrodes is larger than the thickness of the cutter blade, and the cutter groove is an insulator separating the planar electrode and the cutter blade. The blood vessel harvesting device 24 has a cutter groove in the cutter groove.
 上記の血管採取デバイスは、カッター溝の幅がカッター刃の厚さよりも大きいため、カッター刃と平面電極とを離間させて絶縁できる。したがって、血管採取デバイスは、カッター刃をカッター溝に突出させた状態で通電加熱を行える。この血管採取デバイスは、カッター刃で組織を切断した際に、出血が認められた場合に、直ちに通電を再開して止血を行うことができ、操作性に優れる。 In the above blood vessel sampling device, since the width of the cutter groove is larger than the thickness of the cutter blade, the cutter blade and the planar electrode can be separated and insulated. Therefore, the blood vessel sampling device can perform electrical heating with the cutter blade protruding into the cutter groove. This blood vessel sampling device is excellent in operability because, when bleeding is observed when cutting tissue with a cutter blade, the current supply can be immediately restarted to stop the bleeding.
 上記の血管採取デバイスは、前記上顎部及び前記下顎部の少なくとも一方の前記平面電極を貫通する前記カッター溝の内側を覆う、絶縁材料よりなるスペーサ60を有してもよい。上記の血管採取デバイスは、スペーサによってカッター刃を介した一対の平面電極の短絡を防ぐことができ、カッター刃がカッター溝に位置している場合であっても、平面電極に高周波電力を流せる。 The blood vessel sampling device described above may include a spacer 60 made of an insulating material and covering the inside of the cutter groove that passes through the flat electrode of at least one of the upper jaw and the lower jaw. In the above-described blood vessel sampling device, the spacer can prevent the pair of planar electrodes from shorting through the cutter blade, and even when the cutter blade is located in the cutter groove, high-frequency power can be applied to the planar electrode.
 上記の血管採取デバイスにおいて、前記スペーサは、前記平面電極の表面から突出して、前記上顎部の前記平面電極と前記下顎部の前記平面電極との短絡を阻止する一対の側壁部60aを有してもよい。 In the above-mentioned blood vessel collection device, the spacer has a pair of side wall portions 60a that protrude from the surface of the planar electrode and prevent a short circuit between the planar electrode of the upper jaw portion and the planar electrode of the lower jaw portion. Good too.
 上記の血管採取デバイスにおいて、前記スペーサは、前記一対の側壁部の間に前記カッター刃が挿通する絶縁された絶縁カッター溝49cを有し、前記絶縁カッター溝の幅は、前記平面電極を貫通する前記カッター溝の幅よりも狭くてもよい。この血管採取デバイスは、絶縁カッター溝を通じて、カッター刃を平面電極から絶縁できるため、カッター刃を突出させた状態でも高周波電力を流すことができる。 In the blood vessel sampling device described above, the spacer has an insulated cutter groove 49c between the pair of sidewall portions, through which the cutter blade is inserted, and the width of the insulated cutter groove extends through the planar electrode. The width may be narrower than the width of the cutter groove. In this blood vessel collection device, the cutter blade can be insulated from the flat electrode through the insulating cutter groove, so high-frequency power can be applied even when the cutter blade is protruded.
 上記の血管採取デバイスにおいて、前記上顎部の前記挟持面と、前記下顎部の前記挟持面とは、前記スペーサを介して当接してもよい。この血管採取デバイスは、スペーサにより、上顎部の平面電極と下顎部の平面電極との短絡を阻止できる。 In the blood vessel sampling device described above, the clamping surface of the upper jaw and the clamping surface of the lower jaw may abut with each other via the spacer. In this blood vessel sampling device, the spacer can prevent a short circuit between the flat electrode on the upper jaw and the flat electrode on the lower jaw.
 別の一観点は、軸線に沿って延在する筒状体と、前記筒状体の先端に取り付けられ、上顎部と下顎部とを有し、前記上顎部と前記下顎部が開閉するジョー構造と、前記上顎部と前記下顎部との間に配置され、前記上顎部と前記下顎部のカッター溝に沿って前記軸線の方向に移動するカッター刃と、を備え、前記ジョー構造は、閉じた状態で前記上顎部と前記下顎部とが互いに向かい合う部分に形成された一対の挟持面と、前記一対の挟持面の各々に形成された平面電極と、を有し、前記カッター溝は、前記平面電極を貫通して形成されており、前記上顎部及び前記下顎部のいずれか一方の前記平面電極を貫通する前記カッター溝の内側を覆う絶縁材料よりなるスペーサを有し、前記スペーサは、前記カッター刃が挿通し、かつ前記平面電極から絶縁された絶縁カッター溝49cを有し、前記絶縁カッター溝の幅は、前記上顎部及び前記下顎部のいずれか他方の前記平面電極を貫通する前記カッター溝の幅よりも狭い、血管採取デバイスにある。 Another aspect of the present invention is a jaw structure that includes a cylindrical body extending along an axis, and an upper jaw part and a lower jaw part that are attached to the tip of the cylindrical body, and the upper jaw part and the lower jaw part open and close. and a cutter blade disposed between the upper jaw part and the lower jaw part, the cutter blade moving in the direction of the axis along the cutter grooves of the upper jaw part and the lower jaw part, and the jaw structure has a closed jaw structure. a pair of clamping surfaces formed at portions where the upper jaw part and the lower jaw part face each other in the state, and a flat electrode formed on each of the pair of clamping surfaces; A spacer is formed to pass through the electrode and is made of an insulating material and covers the inside of the cutter groove that passes through the planar electrode of either the upper jaw part or the lower jaw part, and the spacer is made of an insulating material. It has an insulated cutter groove 49c into which the blade is inserted and is insulated from the planar electrode, and the width of the insulated cutter groove is equal to the width of the cutter groove that passes through the planar electrode of either the upper jaw part or the lower jaw part. narrower than the width of the vessel sampling device.
 上記の血管採取デバイスは、カッター刃がカッター溝を摺動する際に、カッター刃の幅方向の変位を絶縁カッター溝で規制できる。したがって、血管採取デバイスは、カッター刃と平面電極とを離間させて絶縁できる。 In the blood vessel sampling device described above, when the cutter blade slides in the cutter groove, displacement of the cutter blade in the width direction can be regulated by the insulating cutter groove. Therefore, the blood vessel sampling device can separate and insulate the cutter blade and the planar electrode.
 なお、本発明は、上記した実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を取り得る。 Note that the present invention is not limited to the embodiments described above, and can take various configurations without departing from the gist of the present invention.

Claims (6)

  1.  軸線に沿って延在する筒状体と、
     前記筒状体の先端に取り付けられ、上顎部と下顎部とを有し、前記上顎部と前記下顎部が開閉するジョー構造と、
     前記上顎部と前記下顎部との間に配置され、前記上顎部と前記下顎部のカッター溝に沿って前記軸線の方向に移動するカッター刃と、を備え、
     前記ジョー構造は、
     閉じた状態で前記上顎部と前記下顎部とが互いに向かい合う部分に形成された一対の挟持面と、
     前記一対の挟持面の各々に形成された平面電極と、を有し、
     前記カッター溝は、前記平面電極を貫通して形成されており、少なくとも一方の前記平面電極の前記カッター溝の幅が前記カッター刃の厚さよりも大きく、前記平面電極と前記カッター刃とを隔てる絶縁体を前記カッター溝に有する血管採取デバイス。
    a cylindrical body extending along the axis;
    a jaw structure that is attached to the tip of the cylindrical body and has an upper jaw part and a lower jaw part, and the upper jaw part and the lower jaw part open and close;
    a cutter blade disposed between the upper jaw part and the lower jaw part, the cutter blade moving in the direction of the axis along the cutter groove of the upper jaw part and the lower jaw part;
    The jaw structure includes:
    a pair of clamping surfaces formed at portions where the upper jaw part and the lower jaw part face each other in a closed state;
    a flat electrode formed on each of the pair of sandwiching surfaces;
    The cutter groove is formed to penetrate through the planar electrode, and the width of the cutter groove of at least one of the planar electrodes is larger than the thickness of the cutter blade, and the cutter groove is provided with an insulator separating the planar electrode and the cutter blade. A blood vessel harvesting device having a body in the cutter groove.
  2.  請求項1記載の血管採取デバイスであって、前記上顎部及び前記下顎部の少なくとも一方の前記平面電極を貫通する前記カッター溝の内側を覆う、絶縁材料よりなるスペーサを有する、血管採取デバイス。 The blood vessel sampling device according to claim 1, further comprising a spacer made of an insulating material and covering the inside of the cutter groove passing through the planar electrode of at least one of the upper jaw and the lower jaw.
  3.  請求項2記載の血管採取デバイスであって、前記スペーサは、前記平面電極の表面から突出して、前記上顎部の前記平面電極と前記下顎部の前記平面電極との短絡を阻止する一対の側壁部を有する、血管採取デバイス。 3. The blood vessel sampling device according to claim 2, wherein the spacer includes a pair of side wall portions that protrude from the surface of the planar electrode and prevent a short circuit between the planar electrode of the upper jaw and the planar electrode of the lower jaw. A blood vessel collection device having:
  4.  請求項3記載の血管採取デバイスであって、前記スペーサは、前記一対の側壁部の間に前記カッター刃が挿通する絶縁された絶縁カッター溝を有し、前記絶縁カッター溝の幅は、前記平面電極を貫通する前記カッター溝の幅よりも狭い、血管採取デバイス。 4. The blood vessel sampling device according to claim 3, wherein the spacer has an insulated insulating cutter groove through which the cutter blade is inserted between the pair of side walls, and the width of the insulated cutter groove is equal to or smaller than the flat surface. A blood vessel harvesting device that is narrower than the width of the cutter groove passing through the electrode.
  5.  請求項2~4のいずれか1項に記載の血管採取デバイスであって、前記上顎部の前記挟持面と、前記下顎部の前記挟持面とは、前記スペーサを介して当接する、血管採取デバイス。 The blood vessel sampling device according to any one of claims 2 to 4, wherein the clamping surface of the upper jaw and the clamping surface of the lower jaw are in contact with each other via the spacer. .
  6.  軸線に沿って延在する筒状体と、
     前記筒状体の先端に取り付けられ、上顎部と下顎部とを有し、前記上顎部と前記下顎部が開閉するジョー構造と、
     前記上顎部と前記下顎部との間に配置され、前記上顎部と前記下顎部のカッター溝に沿って前記軸線の方向に移動するカッター刃と、を備え、
     前記ジョー構造は、
     閉じた状態で前記上顎部と前記下顎部とが互いに向かい合う部分に形成された一対の挟持面と、
     前記一対の挟持面の各々に形成された平面電極と、を有し、
     前記カッター溝は、前記平面電極を貫通して形成されており、
     前記上顎部及び前記下顎部のいずれか一方の前記平面電極を貫通する前記カッター溝の内側を覆う絶縁材料よりなるスペーサを有し、
     前記スペーサは、前記カッター刃が挿通し、かつ前記平面電極から絶縁された絶縁カッター溝を有し、
     前記絶縁カッター溝の幅は、前記上顎部及び前記下顎部のいずれか他方の前記平面電極を貫通する前記カッター溝の幅よりも狭い、血管採取デバイス。
    a cylindrical body extending along the axis;
    a jaw structure that is attached to the tip of the cylindrical body and has an upper jaw part and a lower jaw part, and the upper jaw part and the lower jaw part open and close;
    a cutter blade disposed between the upper jaw part and the lower jaw part, the cutter blade moving in the direction of the axis along the cutter groove of the upper jaw part and the lower jaw part;
    The jaw structure includes:
    a pair of clamping surfaces formed at portions where the upper jaw part and the lower jaw part face each other in a closed state;
    a flat electrode formed on each of the pair of sandwiching surfaces;
    The cutter groove is formed to penetrate the planar electrode,
    a spacer made of an insulating material that covers the inside of the cutter groove that passes through the flat electrode of either the upper jaw part or the lower jaw part;
    The spacer has an insulating cutter groove through which the cutter blade is inserted and is insulated from the planar electrode,
    A blood vessel sampling device, wherein the width of the insulating cutter groove is narrower than the width of the cutter groove passing through the planar electrode of either the upper jaw portion or the lower jaw portion.
PCT/JP2023/015553 2022-04-21 2023-04-19 Blood vessel extraction device WO2023204233A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022070089 2022-04-21
JP2022-070089 2022-04-21

Publications (1)

Publication Number Publication Date
WO2023204233A1 true WO2023204233A1 (en) 2023-10-26

Family

ID=88419893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015553 WO2023204233A1 (en) 2022-04-21 2023-04-19 Blood vessel extraction device

Country Status (1)

Country Link
WO (1) WO2023204233A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110082494A1 (en) * 2009-10-06 2011-04-07 Tyco Healthcare Group Lp Jaw, Blade and Gap Manufacturing for Surgical Instruments With Small Jaws
JP2013541988A (en) * 2010-10-01 2013-11-21 エシコン・エンド−サージェリィ・インコーポレイテッド Surgical instrument having jaw members
US20140155878A1 (en) * 2012-12-03 2014-06-05 Ethicon Endo-Surgery, Inc. Surgical instrument with curved blade firing path

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110082494A1 (en) * 2009-10-06 2011-04-07 Tyco Healthcare Group Lp Jaw, Blade and Gap Manufacturing for Surgical Instruments With Small Jaws
JP2013541988A (en) * 2010-10-01 2013-11-21 エシコン・エンド−サージェリィ・インコーポレイテッド Surgical instrument having jaw members
US20140155878A1 (en) * 2012-12-03 2014-06-05 Ethicon Endo-Surgery, Inc. Surgical instrument with curved blade firing path

Similar Documents

Publication Publication Date Title
US7316683B2 (en) Treatment device for cutting living tissue
US6443970B1 (en) Surgical instrument with a dissecting tip
JP5636449B2 (en) High frequency treatment tool
KR100595803B1 (en) High-frequency knife and endoscopic apparatus
US6652521B2 (en) Surgical instrument with a bi-directional cutting element
US6620161B2 (en) Electrosurgical instrument with an operational sequencing element
US6554829B2 (en) Electrosurgical instrument with minimally invasive jaws
EP1363547B1 (en) Electrosurgical instrument with closing tube for conducting rf energy and moving jaws
CA2190578C (en) Biopsy forceps for obtaining tissue specimens and optionally for coagulation
US6695840B2 (en) Electrosurgical instrument with a longitudinal element for conducting RF energy and moving a cutting element
JPH11137562A (en) Surgical electric cutting apparatus
WO2023204233A1 (en) Blood vessel extraction device
WO2023204232A1 (en) Blood collection device
WO2023204231A1 (en) Vein harvesting device
JP5535862B2 (en) High frequency peeling knife device for endoscope
JP2001061848A (en) High frequency treatment apparatus
US20200008866A1 (en) Integrated grounding electrodes for eletrocautery vessel harvester
JP2003199766A (en) Bipolar incision apparatus and blood vessel extraction apparatus
JP7491738B2 (en) Endoscopic treatment tools
WO1996022740A1 (en) Bipolar endoscopic surgical scissor instrument
CN115209823A (en) Electrode unit and method for operating an electrode unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791881

Country of ref document: EP

Kind code of ref document: A1