WO2023204123A1 - Compound, acid generator comprising said compound, photoresist, and method for manufacturing electronic device using said photoresist - Google Patents

Compound, acid generator comprising said compound, photoresist, and method for manufacturing electronic device using said photoresist Download PDF

Info

Publication number
WO2023204123A1
WO2023204123A1 PCT/JP2023/014912 JP2023014912W WO2023204123A1 WO 2023204123 A1 WO2023204123 A1 WO 2023204123A1 JP 2023014912 W JP2023014912 W JP 2023014912W WO 2023204123 A1 WO2023204123 A1 WO 2023204123A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
photoresist
group
mol
acid
Prior art date
Application number
PCT/JP2023/014912
Other languages
French (fr)
Japanese (ja)
Inventor
智幸 柴垣
友治 中村
拓人 梶原
智仁 木津
Original Assignee
サンアプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンアプロ株式会社 filed Critical サンアプロ株式会社
Publication of WO2023204123A1 publication Critical patent/WO2023204123A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/06Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
    • C07D311/08Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
    • C07D311/16Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring substituted in position 7
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/06Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
    • C07D311/08Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
    • C07D311/18Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring substituted otherwise than in position 3 or 7
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a novel compound, an acid generator containing the compound, a photoresist containing the compound, and a method for manufacturing an electronic device using the photoresist.
  • the resist material used in photolithography includes an acid generator that decomposes to generate acid when exposed to light, and a photosensitive resin whose solubility in a developer changes depending on the acid.
  • Patent Document 1 describes an acid generator containing a compound represented by the following formula (x) (hereinafter sometimes referred to as "compound X").
  • the compound X has an extremely high i-line molar extinction coefficient. Therefore, when the resist layer containing compound X is thickened, most of the i-rays are absorbed at the surface, and only a small amount of the i-rays reach the deep layer. Therefore, there has been a problem that the acid generating ability of compound X is significantly reduced in the deep layer.
  • an object of the present invention is to provide a compound having an acid-generating ability that decomposes and generates sulfonic acid when irradiated with i-rays, and which has good acid-generating ability in the entire resist layer even when the resist layer is thickened.
  • the objective is to provide a new compound that maintains this ability.
  • Another object of the present invention is to provide a compound having an acid-generating ability that decomposes when irradiated with i-rays and generates sulfonic acid, which has excellent solvent solubility and which can be used even when the resist layer is thickened.
  • the object of the present invention is to provide a new compound that can maintain good acid-generating ability overall.
  • compound (1) a compound represented by the following formula (1) (hereinafter sometimes referred to as "compound (1)”) is sensitive to i-line.
  • compound (1) When irradiated with i-line, it easily decomposes to generate sulfonic acid, which is a strong acid (in other words, it has excellent acid-generating ability), and the molar absorption coefficient of i-line is not too high but is moderate.
  • the present inventors have discovered that, by using the above-mentioned compound, a photoresist with excellent stability over time can be prepared.
  • the present invention was completed based on these findings.
  • R 1 and R 2 are the same or different and represent a hydrocarbon group which may have a substituent.
  • R 3 represents a hydrogen atom, OR 13 or R 13 , and R 13 is a substituent.
  • R 4 represents a hydrogen atom or R 14
  • R 14 is a hydrocarbon group which may have a substituent.
  • R 3 and R 4 (Except when both represent hydrogen atoms)
  • the present invention also provides the above compound having an i-line molar extinction coefficient of 100 to 5000 (L/mol ⁇ cm).
  • the present invention also provides the compound having a solubility in propylene glycol monomethyl ether acetate of 5% by weight or more at 25°C.
  • the present invention also provides an acid generator containing the above compound.
  • the present invention also provides the above acid generator, which is an i-line acid generator.
  • the present invention also provides a photoresist containing the acid generator and a photosensitive resin.
  • the present invention also provides the photoresist, which is a thick film photoresist used to form a thick film photoresist layer of 15 ⁇ m or more.
  • the present invention also provides a method for manufacturing an electronic device, including a step of forming a pattern by photolithography using the photoresist.
  • the present invention also provides a step of applying and drying the photoresist to form a thick photoresist layer of 15 ⁇ m or more, and forming a pattern on the formed thick photoresist layer by photolithography.
  • a method for manufacturing a device is provided.
  • Compound (1) has photosensitivity to i-rays, and when irradiated with i-rays, it easily decomposes to generate sulfonic acid, which is a strong acid. Even if the photoresist layer containing compound (1) is thick, the i-line can reach the deep layer, and compound (1) exhibits good acid generation ability in the entire photoresist layer. be able to. Therefore, compound (1) is preferably used as an acid generator for a photoresist for forming a thick photoresist layer (ie, a thick film photoresist). Furthermore, compound (1) has excellent solvent solubility. Therefore, when compound (1) is added to a photoresist, it is uniformly dispersed and can impart good fine pattern forming properties to the photoresist. Further, it is possible to suppress a decrease in sensitivity due to precipitation of the acid generator over time, and a photoresist with excellent storage stability can be obtained.
  • the compound (1) of the present invention is a compound represented by the following formula (1).
  • R 1 and R 2 are the same or different and represent a hydrocarbon group which may have a substituent.
  • R 3 represents a hydrogen atom, OR 13 or R 13 , and R 13 is a substituent.
  • R 4 represents a hydrogen atom or R 14
  • R 14 is a hydrocarbon group which may have a substituent.
  • R 3 and R 4 (Except when both represent hydrogen atoms)
  • the compound (1) includes compounds represented by the following formulas (1a) to (1e).
  • R 1 , R 2 , R 13 and R 14 in the following formula are the same as above.
  • At least one selected from the compounds represented by the above formulas (1a), (1b), and (1c) is preferable because it has excellent solvent solubility and acid-generating ability.
  • the hydrocarbon group includes an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a bonded group thereof.
  • 1 to 20 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s - Alkyl group
  • the alicyclic hydrocarbon group is preferably a C 3-20 alicyclic hydrocarbon group, such as a 3 to 20 membered (preferably 3 ⁇ 15 members, particularly preferably 5 to 8 members) cycloalkyl group; 3 to 20 members (preferably 3 to 15 members, particularly preferably 5 to 8 members) such as cyclopentenyl group, cyclohexenyl group Cycloalkenyl group; perhydronaphthalen-1-yl group, norbornyl group, adamantyl group, tricyclo[5.2.1.0 2,6 ]decane-8-yl group, tetracyclo[4.4.0.1 2, 5 .
  • Examples include bridged cyclic hydrocarbon groups such as 1 7,10 ]dodecane-3-yl group.
  • the aromatic hydrocarbon group is preferably a C 6-14 (particularly C 6-10 ) aromatic hydrocarbon group, such as a phenyl group or a naphthyl group.
  • the hydrocarbon group in which an aliphatic hydrocarbon group and an alicyclic hydrocarbon group are bonded includes a cycloalkyl-substituted alkyl group such as a cyclopentylmethyl group, a cyclohexylmethyl group, and a 2-cyclohexylethyl group (for example, a C 3-20 cyclo alkyl-substituted C 1-4 alkyl groups, etc.).
  • hydrocarbon groups in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group are bonded include aralkyl groups (for example, C 7-18 aralkyl groups, etc.), alkyl-substituted aryl groups (for example, about 1 to 4 phenyl group or naphthyl group substituted with C 1-4 alkyl group).
  • the above hydrocarbon group may have various substituents [for example, an oxo group, an alkoxy group, an aryloxy group, an aralkyloxy group, an acyloxy group, etc.].
  • the number of carbon atoms in the hydrocarbon group of R 1 is, for example, 1 to 20.
  • the lower limit of the number of carbon atoms is preferably 5, particularly preferably 5, from the viewpoint of suppressing the mobility of sulfonic acid generated by photolysis in the photoresist, thereby increasing the resolution of photolithography.
  • the upper limit of the number of carbon atoms is preferably 18, particularly preferably 15.
  • R 1 is a bulky group having an alicyclic or aromatic ring structure
  • the mobility of sulfonic acid generated by photolysis in the photoresist is suppressed. Therefore, the effect of increasing the resolution of photolithography can be obtained.
  • R 1 is a chain hydrocarbon group
  • solubility in organic solvents tends to be particularly excellent.
  • R 2 an aliphatic hydrocarbon group is preferable, and an alkyl group (linear or branched alkyl group) is particularly preferable. Further, the number of carbon atoms in the hydrocarbon group of R 2 is preferably 1 to 5, particularly preferably 1 to 3.
  • R 13 is preferably an aliphatic hydrocarbon group, and particularly preferably a linear or branched alkyl group.
  • the number of carbon atoms in R 13 is, for example, 1 to 12.
  • the upper limit of the number of carbon atoms in R 13 is preferably 10, more preferably 8, even more preferably 7, particularly preferably 6, most preferably 5, particularly preferably from the viewpoint of particularly excellent solvent solubility and acid generating ability. is 3.
  • R 14 is preferably an aliphatic hydrocarbon group, more preferably a linear or branched alkyl group, and particularly preferably a branched alkyl group.
  • the number of carbon atoms in R 14 is, for example, 1 to 12.
  • the lower limit of the number of carbon atoms in R 14 is preferably 2, since it has particularly excellent acid generating ability.
  • the upper limit of the number of carbon atoms in R 14 is preferably 10, more preferably 8, particularly preferably 7, most preferably 6, particularly preferably 5, from the viewpoint of improving solvent solubility.
  • the compound (1) has the above groups at the 6th and/or 8th positions of the coumarin ring, but it also has substituents (for example, C 1-12 alkyl group, C 1-12 alkoxy group) at other positions of the coumarin ring. etc.).
  • the compound (1) has high photosensitivity to i-line, and has a molar absorption coefficient of i-line of, for example, 100 to 5000 (L/mol ⁇ cm).
  • the lower limit of the i-line molar extinction coefficient is preferably 300 (L/mol ⁇ cm), particularly preferably 350 (L/mol ⁇ cm), most preferably 400 ( L/mol ⁇ cm), particularly preferably 450 (L/mol ⁇ cm).
  • the upper limit value of the molar extinction coefficient is preferably 4000 (L/mol ⁇ cm), more preferably 3500 (L/mol ⁇ cm), more preferably 3000 (L/mol ⁇ cm), particularly preferably 2000 (L/mol ⁇ cm), most preferably 1000 (L/mol ⁇ cm), particularly preferably 800 ( L/mol ⁇ cm).
  • the compound (1) has excellent solubility in organic solvents, and its solubility in organic solvents (for example, propylene glycol monomethyl ether acetate) at 25°C is, for example, 5% by weight or more (for example, 5 to 50% by weight). ), preferably 10% by weight or more, particularly preferably 15% by weight or more.
  • organic solvents for example, propylene glycol monomethyl ether acetate
  • organic solvent examples include aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; carbonates such as propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, dimethyl carbonate, and diethyl carbonate; ethyl acetate, butyl acetate, Ethyl lactate, etc., linear or cyclic esters such as ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone;; ethylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monobutyl ether; Glycol diethers such as dipropylene glycol dimethyl ether, triethylene glycol diethyl ether, tripropylene glycol dibutyl ether; glycol monoethers such as ethylene glycol monomethyl ether acetate, propylene glycol monomethyl
  • Ketones such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, methyl isoamyl ketone, and 2-heptanone can be mentioned. These can be used alone or in combination of two or more.
  • the organic solvent preferably contains at least one selected from ketones, chain esters, and glycol monoether monoesters.
  • the compound (1) has the above characteristics, it can be suitably used as an acid generator (for example, a photoacid generator, a nonionic acid generator, or a nonionic photoacid generator).
  • an acid generator for example, a photoacid generator, a nonionic acid generator, or a nonionic photoacid generator.
  • the compound (1) can be produced, for example, through the following reactions [I] and [II].
  • R 1 , R 2 , R 3 and R 4 are as defined above.
  • X is the same or different and represents a halogen atom.
  • Reaction [I] consists of a compound represented by formula (2) (hereinafter sometimes referred to as “compound (2)”) and a compound represented by formula (3) (hereinafter referred to as “compound (3)”). This is a reaction in which a compound represented by formula (4) (hereinafter sometimes referred to as “compound (4)”) is obtained by reacting a compound (hereinafter sometimes referred to as “compound (4)").
  • the amount of compound (3) to be used is, for example, 0.5 to 5 mol, preferably 1 to 3 mol, per 1 mol of compound (2).
  • Compound (2) is preferably dissolved in a solvent before being added to the reaction system, and examples of the solvent include ethers such as tetrahydrofuran, diethyl ether, dibutyl ether, dimethoxyethane, and dioxane; methylene chloride, chloroform, etc. Halogenated hydrocarbons and the like can be used. These can be used alone or in combination of two or more.
  • the compound (3) is also dissolved in a solvent before being added to the reaction system.
  • the solvent include alcohols such as methanol and ethanol; halogenated hydrocarbons such as methylene chloride and chloroform. can do. These can be used alone or in combination of two or more.
  • the reaction temperature is, for example, about 0 to 60°C.
  • the reaction time is, for example, about 0.5 to 5 hours. Further, the reaction can be carried out by any method such as a batch method, a semi-batch method, or a continuous method.
  • a basic compound such as potassium hydroxide, sodium hydroxide, sodium hydrogen carbonate, pyridine, triethylamine, etc. may be added as a dehydrochlorination agent into the reaction system. These can be used alone or in combination of two or more.
  • the reaction atmosphere is not particularly limited as long as it does not inhibit the reaction, and may be any of air atmosphere, nitrogen atmosphere, argon atmosphere, etc.
  • the obtained reaction product can be separated and purified, for example, by separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, or a combination of these separation means.
  • separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, or a combination of these separation means.
  • reaction [II] is a reaction in which compound (4) and the compound represented by formula (5) (hereinafter sometimes referred to as "compound (5)") are reacted to obtain compound (1).
  • the amount of compound (5) to be used is, for example, 0.5 to 5 mol, preferably 1 to 3 mol, per 1 mol of compound (4).
  • a basic compound such as potassium hydroxide, sodium hydroxide, pyridine, triethylamine, etc. may be added as a dehydrochlorination agent into the reaction system. These can be used alone or in combination of two or more.
  • the reaction between compound (4) and compound (5) can be carried out in the presence of a solvent.
  • a solvent for example, halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, chlorobenzene, and bromobenzene can be used. These can be used alone or in combination of two or more.
  • the amount of the solvent used is, for example, about 50 to 300% by weight based on the total amount of compound (4) and compound (5).
  • the reaction temperature is, for example, about 30 to 70°C.
  • the reaction time is, for example, about 1 to 12 hours. Further, the reaction can be carried out by any method such as a batch method, a semi-batch method, or a continuous method.
  • the reaction atmosphere is not particularly limited as long as it does not inhibit the reaction, and may be any of air atmosphere, nitrogen atmosphere, argon atmosphere, etc.
  • the obtained reaction product can be separated and purified, for example, by separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, or a combination of these separation means.
  • separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, or a combination of these separation means.
  • compound (2) can be produced, for example, through the following reactions [III] and [IV].
  • R 3 and R 4 are as defined above.
  • X represents a halogen atom.
  • the amount of compound (7) to be used is, for example, 0.5 to 3 mol, preferably 0.5 to 2 mol, per 1 mol of compound (6).
  • the reaction between compound (6) and compound (7) can be carried out in the presence of a solvent.
  • a solvent for example, water; alcohol such as methanol, ethanol, etc. can be used. These can be used alone or in combination of two or more.
  • the reaction temperature is, for example, about 50 to 120°C.
  • the reaction time is, for example, about 0.5 to 5 hours. Further, the reaction can be carried out by any method such as a batch method, a semi-batch method, or a continuous method.
  • the reaction atmosphere is not particularly limited as long as it does not inhibit the reaction, and may be any of air atmosphere, nitrogen atmosphere, argon atmosphere, etc.
  • the obtained reaction product can be separated and purified, for example, by separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, or a combination of these separation means.
  • separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, or a combination of these separation means.
  • Reaction [IV] is a reaction in which compound (8) is halogenated to obtain compound (2).
  • a halogenating agent can be used for halogenation.
  • the halogenating agent for example, thionyl chloride can be used.
  • the amount of the halogenating agent used is, for example, 1 to 5 mol per 1 mol of compound (8).
  • the reaction temperature is, for example, about 50 to 120°C.
  • the reaction time is, for example, about 0.5 to 5 hours. Further, the reaction can be carried out by any method such as a batch method, a semi-batch method, or a continuous method.
  • the reaction atmosphere is not particularly limited as long as it does not inhibit the reaction, and may be any of air atmosphere, nitrogen atmosphere, argon atmosphere, etc.
  • the obtained reaction product can be separated and purified, for example, by separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, or a combination of these separation means.
  • separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, or a combination of these separation means.
  • the acid generator of the present invention contains at least the compound (1).
  • the acid generator may contain one kind of the above compound (1) alone, or may contain two or more kinds in combination. Further, the acid generator may contain components other than the compound (1), but the compound ( The proportion of 1) is preferably 50% by weight or more, more preferably 60% by weight or more, even more preferably 70% by weight or more, particularly preferably 80% by weight or more, most preferably 90% by weight or more, Particularly preferably, it is 95% by weight or more. That is, it may contain an acid generator other than the compound (1), but the content of the other acid generator is, for example, 50% by weight with respect to all the compounds that decompose and generate acid upon irradiation with light. % or less, more preferably 40% by weight or less, still more preferably 30% by weight or less, particularly preferably 20% by weight or less, most preferably 10% by weight or less, particularly preferably 5% by weight or less.
  • the acid generator has high photosensitivity to i-line, and has a molar absorption coefficient of i-line of, for example, 100 to 5000 (L/mol ⁇ cm).
  • the lower limit of the i-line molar extinction coefficient is preferably 300 (L/mol ⁇ cm), particularly preferably 350 (L/mol ⁇ cm), most preferably 400 ( L/mol ⁇ cm), particularly preferably 450 (L/mol ⁇ cm).
  • the upper limit value of the molar extinction coefficient is preferably 4000 (L/mol ⁇ cm), more preferably 4000 (L/mol ⁇ cm), in order to improve the resolution of the pattern shape obtained by subjecting the thickened photoresist layer to photolithography treatment.
  • the acid generator has excellent solubility in organic solvents, and the amount of the acid generator that dissolves in 100 parts by weight of the organic solvent at 25° C. is, for example, 5 parts by weight or more, preferably 10 parts by weight or more, Particularly preferably 15 parts by weight or more, most preferably 20 parts by weight or more.
  • examples of the organic solvent include the same organic solvents in which compound (1) exhibits solubility.
  • the acid generator When the acid generator is irradiated with i-rays, it easily decomposes and generates sulfonic acid (R 1 --SO 3 H), which is a strong acid.
  • the acid generator has the above characteristics, it can be suitably used as an acid generator for photoresists.
  • the photoresist of the present invention contains the acid generator (or the compound (1)) and a photosensitive resin.
  • the content of the acid generator (or the compound (1)) is, for example, 0.001 to 20% by weight, preferably 0.01 to 15% by weight, particularly preferably 0.001 to 15% by weight, based on the total amount of the photosensitive resin. 05 to 7% by weight.
  • the content of the acid generator (or the compound (1)) is 0.001% by weight or more, excellent photosensitivity to i-line can be exhibited. Further, if the content is 20% by weight or less, the effect of improving the resolution of the photoresist can be obtained.
  • the photosensitive resins include negative photosensitive resins (QN) whose solubility decreases (or unexposed areas are removed) upon irradiation with light, and negative photosensitive resins (QN) whose solubility increases upon irradiation with light (or whose exposed areas are removed). positive-working photopolymer (QP) that is selectively removed. These can be selected and used depending on the purpose.
  • Negative photosensitive resin (or negative chemically amplified resin; QN) is made by, for example, phenolic hydroxyl group-containing resin (QN1) and crosslinking agent (QN2), each alone or in combination of two or more. It is a composition containing.
  • the phenolic hydroxyl group-containing resin (QN1) is not particularly limited as long as it contains a phenolic hydroxyl group, and examples include novolak resin, polyhydroxystyrene, a copolymer of hydroxystyrene, a copolymer of hydroxystyrene and styrene, Hydroxystyrene, copolymers of styrene and (meth)acrylic acid derivatives, phenol-xylylene glycol condensation resins, cresol-xylylene glycol condensation resins, polyimides containing phenolic hydroxyl groups, polyamic acids containing phenolic hydroxyl groups, phenol -dicyclopentadiene condensation resins, etc.
  • the phenolic hydroxyl group-containing resin (QN1) may contain a phenolic low molecular compound as a part of the components.
  • the polystyrene equivalent weight average molecular weight (Mw) of the phenolic hydroxyl group-containing resin (QN1) measured by GPC is, for example, 2,000 to 20,000.
  • the crosslinking agent (QN2) may be any compound that can crosslink the phenolic hydroxyl group-containing resin (QN1) with the acid generated from the acid generator, such as bisphenol A-based epoxy compounds, bisphenol F-based epoxy compounds, and bisphenol S.
  • epoxy compounds novolak resin epoxy compounds, resol resin epoxy compounds, poly(hydroxystyrene) epoxy compounds, oxetane compounds, melamine compounds containing methylol groups, benzoguanamine compounds containing methylol groups, urea compounds containing methylol groups, phenols containing methylol groups Compound, alkoxyalkyl group-containing melamine compound, alkoxyalkyl group-containing benzoguanamine compound, alkoxyalkyl group-containing urea compound, alkoxyalkyl group-containing phenol compound, carboxymethyl group-containing melamine resin, carboxymethyl group-containing benzoguanamine resin, carboxymethyl group-containing urea resin , a carboxymethyl group-containing phenol resin, a carboxymethyl group-containing melamine compound, a carboxymethyl group-containing benzoguanamine compound, a carboxymethyl group-containing urea compound, and a carboxymethyl group-containing phenol compound.
  • the content of the crosslinking agent (QN2) is, for example, 10 to 40 mol% based on the total acidic functional groups in the phenolic hydroxyl group-containing resin (QN1) from the viewpoint of forming a pattern with high precision.
  • positive photosensitive resins or positive chemically amplified resins; QP
  • examples of positive photosensitive resins include alkali-soluble resins into which acid-dissociable groups are introduced as protecting groups (protecting group-introduced resins; QP1).
  • the protecting group-introduced resin (QP1) is a resin in which some or all of the hydrogen atoms of acidic functional groups (for example, phenolic hydroxyl groups, carboxyl groups, sulfonyl groups, etc.) in an alkali-soluble resin are substituted with acid-dissociable groups.
  • acidic functional groups for example, phenolic hydroxyl groups, carboxyl groups, sulfonyl groups, etc.
  • the protecting group-introduced resin (QP1) itself is an alkali-insoluble or slightly alkali-soluble resin, and when the acid-dissociable group is dissociated by the acid generated from the acid generator, an alkali-soluble resin that is easily soluble in an alkaline developer is generated. do.
  • the alkali-soluble resin is, for example, a resin with an HLB value of 4 to 19 (preferably 5 to 18, particularly preferably 6 to 17).
  • Alkali-soluble resins include phenolic hydroxyl group-containing resins, carboxyl group-containing resins, and sulfonic acid group-containing resins.
  • phenolic hydroxyl group-containing resin examples include the same resins as the above-mentioned phenolic hydroxyl group-containing resin (QN1).
  • the carboxyl group-containing resin is not particularly limited as long as it is a polymer having a carboxyl group, for example, a homopolymer of a carboxyl group-containing vinyl monomer (Ba), or a carboxyl group-containing vinyl monomer (Ba) and a hydrophobic group-containing vinyl monomer.
  • a homopolymer with (Bb) can be mentioned.
  • carboxyl group-containing vinyl monomer (Ba) is (meth)acrylic acid.
  • hydrophobic group-containing vinyl monomers (Bb) examples include (meth)acrylic acid esters (Bb1) such as C 1-20 alkyl (meth)acrylates and alicyclic group-containing (meth)acrylates, and hydrocarbon monomers having a styrene skeleton.
  • hydrocarbon monomers having a styrene skeleton examples include aromatic hydrocarbon monomers (Bb2) such as vinylnaphthalene.
  • the sulfonic acid group-containing resin is not particularly limited as long as it is a polymer having a sulfonic acid group.
  • a sulfonic acid group-containing vinyl monomer (Bc) such as vinyl sulfonic acid or styrene sulfonic acid, and if necessary, a hydrophobic group-containing vinyl It is obtained by vinyl polymerizing the monomer (Bb).
  • Examples of the acid-dissociable group possessed by the protecting group-introduced resin (QP1) include 1-substituted methyl groups such as methoxymethyl group, benzyl group, and tert-butoxycarbonylmethyl group; 1-methoxyethyl group, 1-ethoxyethyl group; 1-substituted ethyl groups such as; 1-branched alkyl groups such as tert-butyl groups; silyl groups such as trimethylsilyl groups; germyl groups such as trimethylgermyl groups; alkoxycarbonyl groups such as tert-butoxycarbonyl groups; acyl groups; Examples include cyclic acid dissociable groups such as a tetrahydropyranyl group, a tetrahydrofuranyl group, a tetrahydrothiopyranyl group, and a tetrahydrothiofuranyl group. These may contain one type alone or a combination of two or more types.
  • Introduction rate of acid-dissociable groups in the protecting group-introduced resin (QP1) ⁇ ratio of the number of acid-dissociable groups to the total number of unprotected acidic functional groups and acid-dissociable groups in the protecting group-introduced resin (QP1) ⁇ cannot be absolutely defined depending on the acid-dissociable group or the type of alkali-soluble resin into which the group is introduced, but it is preferably 10 to 100%, more preferably 15 to 100%.
  • the polystyrene equivalent weight average molecular weight (Mw) of the protecting group-introduced resin (QP1) measured by GPC is, for example, 1,000 to 150,000, preferably 3,000 to 100,000.
  • the photoresist of the present invention can be prepared, for example, by dissolving the acid generator (or the compound (1)) in an organic solvent and mixing this with a photosensitive resin.
  • the photoresist may contain one or more other components as necessary.
  • Other components include, for example, organic solvents, pigments, dyes, photosensitizers, dispersants, surfactants, fillers, leveling agents, antifoaming agents, antistatic agents, ultraviolet absorbers, pH adjusters, surface Examples include modifiers, plasticizers, drying accelerators, and the like.
  • the organic solvent may be any solvent that can dissolve the photosensitive resin and impart good coating properties to the photoresist, but among them, those having a boiling point of 200° C. or lower are used. This is preferable in that the photoresist can be easily dried after coating.
  • organic solvents include aromatic hydrocarbons such as toluene; alcohols such as ethanol and methanol; ketones such as cyclohexanone, methyl ethyl ketone, and acetone; esters such as ethyl acetate, butyl acetate, and ethyl lactate; propylene glycol monomethyl ether acetate, etc. Glycol monoether monoesters and the like are preferred. These can be used alone or in combination of two or more.
  • the photoresist contains a compound (1) having an appropriate molar extinction coefficient for i-line. Therefore, even if the photoresist layer is made thicker (for example, 15 ⁇ m or more, preferably 20 ⁇ m or more), the i-line can reach the deep part of the resist layer, and photolithography can increase the thickness of the photoresist layer. An etching mask having a pattern shape with high resolution can be formed with high precision. Therefore, the photoresist can be suitably used as a thick film photoresist used to form a thick film photoresist layer (layer thickness, for example, 15 ⁇ m or more).
  • the method for manufacturing an electronic device of the present invention includes a step of forming a pattern by photolithography using the photoresist.
  • the step of forming a pattern by photolithography using the photoresist is preferably a step of forming an etching mask on the substrate through steps 1 to 3 below.
  • Step 1 Forming a photoresist layer on a substrate using the photoresist
  • Step 2 Irradiating the photoresist layer with light in a pattern
  • Step 3 Performing alkali development
  • the photoresist layer is made thick (for example, 15 ⁇ m or more, preferably 20 ⁇ m or more. Even if the upper limit of the thickness is, for example, 50 ⁇ m, preferably 30 ⁇ m, an etching mask having a pattern shape with high resolution can be formed with high precision.
  • the method for manufacturing the electronic device includes a step of coating and drying the photoresist to form a thick photoresist layer of 15 ⁇ m or more, and forming a pattern on the formed thick photoresist layer by photolithography.
  • a method including:
  • Step 1 This step is a step of forming the photoresist layer on the substrate to be etched.
  • the photoresist layer can be formed by applying the photoresist onto a substrate using a known method such as spin coating, curtain coating, roll coating, spray coating, or screen printing, and then drying it.
  • Step 2 This step is a step in which the photoresist layer obtained through Step 1 is irradiated with light in a patterned manner, such as by irradiating light through a photomask having a pattern.
  • the light beam used for light irradiation is not particularly limited as long as it can decompose the compound (1) and generate acid, but it is preferable to use i-line.
  • Step 3 This step is a step in which the photoresist layer that has undergone step 2 is subjected to an alkali development treatment.
  • alkaline developer used in the alkaline development treatment examples include an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, an aqueous sodium bicarbonate and tetramethylammonium salt solution, and the like.
  • Methanol, ethanol, isopropyl alcohol, tetrahydrofuran, N-methylpyrrolidone, etc. may be added to the alkaline developer.
  • the alkaline development treatment is performed by applying the alkaline developer to the photoresist layer by a method such as a dip method, a shower method, or a spray method.
  • the temperature of the alkaline developer is, for example, 25 to 40°C. Further, the alkaline development time is appropriately determined depending on the thickness of the resist, and is, for example, about 1 to 5 minutes.
  • an etching mask can be formed on the substrate. By etching a substrate using the etching mask obtained in this manner, a highly accurate electronic device can be manufactured.
  • the electronic devices include, for example, display devices such as organic EL displays and liquid crystal displays; input devices such as touch panels; light emitting devices; sensor devices; optical scanners, optical switches, acceleration sensors, pressure sensors, gyroscopes, microchannels, This includes MEMS (Micro Electro Mechanical Systems) devices such as inkjet heads.
  • display devices such as organic EL displays and liquid crystal displays
  • input devices such as touch panels
  • sensor devices such as light emitting devices
  • sensor devices optical scanners, optical switches, acceleration sensors, pressure sensors, gyroscopes, microchannels
  • MEMS Micro Electro Mechanical Systems
  • Example 1 14.7 g (0.097 mol) of 2-hydroxy-3-methoxybenzaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to water, and while stirring, 15.3 g (0.1.6 mol) of Meldrum's acid was added. . After stirring at 100° C. for 2 hours while refluxing, the mixture was returned to room temperature and the solid was collected. By washing this with a mixed solvent of water and methanol, 13.8 g (0.063 mol) of 8-methoxycoumarin-3-carboxylic acid was obtained. 13.8 g (0.063 mol) of 8-methoxycoumarin-3-carboxylic acid was dissolved in thionyl chloride (100 mL) and stirred at 80° C.
  • 2-hydroxy-3-methoxybenzaldehyde manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 2 9.1 g (0.377 mol) of a 60% liquid paraffin dispersion of sodium hydride was added to dimethyl sulfoxide, stirred, and replaced with nitrogen. 12.5 g (0.091 mol) of 2,3-dihydroxybenzaldehyde was added, and further 14.9 g (0.109 mol) of 1-bromobutane was added dropwise, followed by stirring at room temperature. After 6 hours, the reaction solution was poured into cold water, and after adding hydrochloric acid, the mixture was extracted with dichloromethane. After separating the organic layer, the solvent was distilled off using an evaporator to recover a white solid, thereby obtaining 15.8 g (0.081 mol) of 2-hydroxy-3-butoxybenzaldehyde.
  • Example 3 10.9 g (0.115 mol) of magnesium chloride and 13.0 g (0.095 mol) of 2-n-propylphenol were added to acetonitrile, stirred, and cooled. Thereafter, 24.1 g (0.239 mol) of triethylamine was added, the temperature was raised to 60° C., 8.6 g (0.286 mol) of paraformaldehyde was added, and the mixture was aged for 3 hours. After the reaction solution was returned to room temperature, hydrochloric acid was added and extracted with ethyl acetate. After separating the organic layer, the solvent was distilled off using an evaporator to recover a brown solid, thereby obtaining 14.1 g (0.086 mol) of 2-hydroxy-3-n-propylbenzaldehyde.
  • Example 4 The following formula (1- 11.1 g (0.020 mol) of the compound represented by 4) [nonionic photoacid generator (4)] was obtained.
  • Example 5 Represented by the following formula (1-5) in the same manner as in Example 1 except that 7.8 g (0.080 mol) of N-ethylhydroxylammonium hydrochloride was used instead of N-methylhydroxylammonium hydrochloride. 10.3 g (0.020 mol) of the compound [nonionic photoacid generator (5)] was obtained.
  • Example 6 10.3 g (0.108 mol) of magnesium chloride and 12.3 g (0.090 mol) of 4-isopropylphenol were added to acetonitrile, stirred, and cooled. Thereafter, 22.8 g (0.226 mol) of triethylamine was added, the temperature was raised to 60° C., 8.1 g (0.271 mol) of paraformaldehyde was added, and the mixture was aged for 3 hours. After the reaction solution was returned to room temperature, hydrochloric acid was added and extracted with ethyl acetate. After separating the organic layer, the solvent was distilled off using an evaporator to collect a brown solid, thereby obtaining 13.3 g (0.081 mol) of 2-hydroxy-5-isopropylbenzaldehyde.
  • Comparative example 1 Represented by the following formula (x) in the same manner as in Example 1 except that 17.1 g (0.112 mol) of 2-hydroxy-4-methoxybenzaldehyde was used instead of 2-hydroxy-5-butoxybenzaldehyde. 11.6 g (0.027 mol) of the compound [nonionic photoacid generator (7)] was obtained.
  • ⁇ Molar extinction coefficient> A nonionic photoacid generator was diluted to 0.25 mmol/L using acetonitrile, and measured in a 1 cm cell in the range of 200 to 500 nm using a UV-visible spectrophotometer (manufactured by Shimadzu Corporation, UV-2550). The absorbance was measured over a long period of time. The i-line (365 nm) molar extinction coefficient (L/mol ⁇ cm) was calculated from the i-line (365 nm) absorbance.
  • ⁇ Acid generating ability> A test in which a resist coating film was formed using the nonionic photoacid generator obtained in Examples and Comparative Examples, and the formed resist coating film was subjected to exposure and development treatment [see below (Photoresist Preparation) (Resist Coating film preparation) (Exposure) and (Development)] were carried out by changing the i-line exposure amount stepwise from 50 mJ/cm 2 to 1000 mJ/cm 2 until the exposed area of the resist coating was completely covered. The minimum exposure amount required to dissolve in the developer and leave no residue, that is, the minimum exposure amount necessary to form a resist pattern was determined.
  • a membrane with a pore size of 1 ⁇ m was prepared by mixing 0.2 parts by weight of a nonionic photoacid generator, 100 parts by weight of a positive photosensitive resin represented by the following formula (Resin-1), and 200 parts by weight of propylene glycol monomethyl ether acetate.
  • a photoresist was prepared by filtration through a filter.
  • the obtained photoresist was applied onto a 10 cm square glass substrate using a spin coater. Next, it was vacuum dried at 25° C. for 5 minutes, and then dried on a hot plate at 110° C. for 5 minutes to form a resist coating film with a thickness of 20 ⁇ m.
  • This resist coating film was exposed to i-line (light with a wavelength of 365 nm) using a 10 mm x 10 mm square pattern mask and an ultraviolet irradiation device (TME-150RSC, manufactured by Topcon Corporation).
  • the acid generation ability was evaluated using the following criteria from the minimum exposure amount determined by the above method. Note that the smaller the minimum exposure amount, the better the sensitivity of the nonionic photoacid generator and the better the acid generation ability.
  • ⁇ Evaluation criteria> ⁇ (Excellent): Minimum exposure amount is 200 mJ/cm 2 or less ⁇ (Good): Minimum exposure amount is greater than 200 mJ/cm 2 and 500 mJ/cm 2 or less ⁇ (Poor): Minimum exposure amount is 500 mJ/cm 2 bigger
  • R 1 to R 5 of the acid generator in the table are R 1 to R 5 in the following formulas, respectively.
  • Table 1 shows that the acid generator (or compound (1)) of the present invention has excellent solvent solubility. Furthermore, if a photoresist containing the acid generator (or compound (1)) of the present invention is used, even when a thick film is formed, it is possible to form a pattern well by irradiating with i-rays. I understand.
  • R 1 and R 2 are the same or different and represent a hydrocarbon group which may have a substituent.
  • R 3 represents a hydrogen atom, OR 13 or R 13 , and R 13 is a substituent.
  • R 4 represents a hydrogen atom or R 14
  • R 14 is a hydrocarbon group which may have a substituent.
  • R 3 and R 4 (Except when both represent hydrogen atoms)
  • the compound according to [1] which has an i-line molar extinction coefficient of 100 to 5000 (L/mol ⁇ cm).
  • [3] The compound according to [1] or [2], which has a solubility in propylene glycol monomethyl ether acetate at 25° C. of 5% by weight or more.
  • the photoresist according to [6] which is a thick film photoresist used to form a thick film photoresist layer of 15 ⁇ m or more.
  • a method for manufacturing an electronic device including a step of forming a pattern by photolithography using the photoresist according to [6] or [7].
  • a method of manufacturing an electronic device including the steps of: [10] Use of the compound according to any one of [1] to [3] as an acid generator. [11] Use of the compound according to any one of [1] to [3] as an acid generator used in a thick film photoresist. [12] Use of the compound according to any one of [1] to [3] as an i-line acid generator.
  • Compound (1) is easily decomposed by i-ray irradiation to generate sulfonic acid, which is a strong acid. Even if the photoresist layer containing compound (1) is thick, the i-line can reach the deep layer, and compound (1) exhibits good acid generation ability in the entire photoresist layer. be able to. Therefore, compound (1) is preferably used as an acid generator for thick film photoresists.

Abstract

Provided is a novel compound which has such acid generating capability that the compound is decomposed by the irradiation with i line to generate a sulfonic acid and which can keep the acid generating capability thereof at a satisfactory level in the whole area of a resist layer even when the thickness of the resist layer is increased. The compound (1) according to the present invention is represented by formula (1). In formula (1), R1 and R2 each independently represent a hydrocarbon group that may have a substituent. R3 represents a hydrogen atom, a OR13 group or a R13 group, in which the R13 represents a hydrocarbon group that may have a substituent. R4 represents a hydrogen atom or R14, in which the R14 represents a hydrocarbon group that may have a substituent. The case where each of R3 and R4 represents a hydrogen atom at the same time is excluded.

Description

化合物、前記化合物を含む酸発生剤、フォトレジスト、及び前記フォトレジストを使用した電子デバイスの製造方法Compound, acid generator containing the compound, photoresist, and method for manufacturing an electronic device using the photoresist
 本発明は、新規の化合物、前記化合物を含む酸発生剤、前記化合物を含むフォトレジスト、及び前記フォトレジストを使用した電子デバイスの製造方法に関する。 The present invention relates to a novel compound, an acid generator containing the compound, a photoresist containing the compound, and a method for manufacturing an electronic device using the photoresist.
 従来、半導体の製造に代表される微細加工の分野では、露光光を、用途に応じて選択して用いたフォトリソグラフィーが行われている。そして、微細なパターンを精度良く加工することが求められる場合には、前記露光光としてi線(365nm)が使用される。 Conventionally, in the field of microfabrication, typified by semiconductor manufacturing, photolithography has been carried out using exposure light that is selected depending on the application. When it is required to process a fine pattern with high precision, i-line (365 nm) is used as the exposure light.
 フォトリソグラフィーに用いるレジスト材料は、光照射により分解して酸を発生する酸発生剤と、酸により現像液への溶解性が変化する感光性樹脂とを含む。 The resist material used in photolithography includes an acid generator that decomposes to generate acid when exposed to light, and a photosensitive resin whose solubility in a developer changes depending on the acid.
 特許文献1には、下記式(x)で表される化合物(以後、「化合物X」と称する場合がある)を含有する酸発生剤が記載されている。
Figure JPOXMLDOC01-appb-C000002
Patent Document 1 describes an acid generator containing a compound represented by the following formula (x) (hereinafter sometimes referred to as "compound X").
Figure JPOXMLDOC01-appb-C000002
国際公開第2016/072049号International Publication No. 2016/072049
 前記化合物Xは、i線のモル吸光係数が極めて高い。そのため、化合物Xを含有するレジスト層を厚膜化すると、表面部においてi線のほとんどが吸収されてしまい、深層部まで到達するi線はほんのわずかとなる。そのため、深層部では化合物Xの酸発生能が著しく低下することが問題であった。 The compound X has an extremely high i-line molar extinction coefficient. Therefore, when the resist layer containing compound X is thickened, most of the i-rays are absorbed at the surface, and only a small amount of the i-rays reach the deep layer. Therefore, there has been a problem that the acid generating ability of compound X is significantly reduced in the deep layer.
 従って、本発明の目的は、i線の照射により分解してスルホン酸を発生する酸発生能を有する化合物であって、レジスト層を厚膜化した場合にも、レジスト層全体において良好な酸発生能を維持できる新規の化合物を提供することにある。
 本発明の他の目的は、i線の照射により分解してスルホン酸を発生する酸発生能を有する化合物であって、溶剤溶解性に優れ、レジスト層を厚膜化した場合にも、レジスト層全体において良好な酸発生能を維持できる新規の化合物を提供することにある。
 本発明の他の目的は、前記の新規化合物を含む酸発生剤を提供することにある。
 本発明の他の目的は、前記酸発生剤を含むフォトレジストを提供することにある。
 本発明の他の目的は、前記フォトレジストを使用した電子デバイスの製造方法を提供することにある。
Therefore, an object of the present invention is to provide a compound having an acid-generating ability that decomposes and generates sulfonic acid when irradiated with i-rays, and which has good acid-generating ability in the entire resist layer even when the resist layer is thickened. The objective is to provide a new compound that maintains this ability.
Another object of the present invention is to provide a compound having an acid-generating ability that decomposes when irradiated with i-rays and generates sulfonic acid, which has excellent solvent solubility and which can be used even when the resist layer is thickened. The object of the present invention is to provide a new compound that can maintain good acid-generating ability overall.
Another object of the present invention is to provide an acid generator containing the above-mentioned novel compound.
Another object of the present invention is to provide a photoresist containing the acid generator.
Another object of the present invention is to provide a method for manufacturing an electronic device using the photoresist.
 本発明者らは、上記課題を解決するため鋭意検討した結果、下記式(1)で表される化合物(以後、「化合物(1)」と称する場合がある)は、i線に対して感光性を有し、i線を照射することで、容易に分解して強酸であるスルホン酸を発生すること(つまり、酸発生能に優れること)、i線のモル吸光係数が高すぎず適度であるため、化合物(1)を含むレジスト層を厚膜化しても、深層部にまでi線を透過させることができ、レジスト層全体において酸発生能を良好に発揮することができること、溶剤溶解性に優れるため、前記化合物を使用すれば経時安定性に優れたフォトレジストを調製できることを見いだした。本発明はこれらの知見に基づいて完成させたものである。 As a result of intensive studies to solve the above problems, the present inventors found that a compound represented by the following formula (1) (hereinafter sometimes referred to as "compound (1)") is sensitive to i-line. When irradiated with i-line, it easily decomposes to generate sulfonic acid, which is a strong acid (in other words, it has excellent acid-generating ability), and the molar absorption coefficient of i-line is not too high but is moderate. Therefore, even if the resist layer containing compound (1) is thickened, the i-line can penetrate deep into the layer, and the entire resist layer can exhibit good acid generation ability, and the solvent solubility The present inventors have discovered that, by using the above-mentioned compound, a photoresist with excellent stability over time can be prepared. The present invention was completed based on these findings.
 すなわち、本発明は、下記式(1)で表される化合物を提供する。
Figure JPOXMLDOC01-appb-C000003
(式中、R1、R2は同一又は異なって、置換基を有していても良い炭化水素基を示す。R3は水素原子又はOR13又はR13を示し、前記R13は置換基を有していても良い炭化水素基である。R4は水素原子又はR14を示し、前記R14は置換基を有していても良い炭化水素基である。但し、R3とR4が同時に水素原子を示す場合は除く)
That is, the present invention provides a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 1 and R 2 are the same or different and represent a hydrocarbon group which may have a substituent. R 3 represents a hydrogen atom, OR 13 or R 13 , and R 13 is a substituent. is a hydrocarbon group which may have a substituent.R 4 represents a hydrogen atom or R 14 , and R 14 is a hydrocarbon group which may have a substituent. However, R 3 and R 4 (Except when both represent hydrogen atoms)
 本発明は、また、i線のモル吸光係数が100~5000(L/mol・cm)である前記化合物を提供する。 The present invention also provides the above compound having an i-line molar extinction coefficient of 100 to 5000 (L/mol·cm).
 本発明は、また、25℃における、プロピレングリコールモノメチルエーテルアセテートへの溶解度が5重量%以上である前記化合物を提供する。 The present invention also provides the compound having a solubility in propylene glycol monomethyl ether acetate of 5% by weight or more at 25°C.
 本発明は、また、前記化合物を含む酸発生剤を提供する。 The present invention also provides an acid generator containing the above compound.
 本発明は、また、i線用酸発生剤である前記酸発生剤を提供する。 The present invention also provides the above acid generator, which is an i-line acid generator.
 本発明は、また、前記酸発生剤と感光性樹脂を含むフォトレジストを提供する。 The present invention also provides a photoresist containing the acid generator and a photosensitive resin.
 本発明は、また、15μm以上の厚膜フォトレジスト層を形成するために用いられる厚膜用フォトレジストである前記フォトレジストを提供する。 The present invention also provides the photoresist, which is a thick film photoresist used to form a thick film photoresist layer of 15 μm or more.
 本発明は、また、前記フォトレジストを使用したフォトリソグラフィーによりパターン形成を行う工程を含む、電子デバイスの製造方法を提供する。 The present invention also provides a method for manufacturing an electronic device, including a step of forming a pattern by photolithography using the photoresist.
 本発明は、また、前記フォトレジストを塗布・乾燥して、15μm以上の厚膜フォトレジスト層を形成し、形成された厚膜フォトレジスト層に、フォトリソグラフィーによりパターン形成を行う工程を含む、電子デバイスの製造方法を提供する。 The present invention also provides a step of applying and drying the photoresist to form a thick photoresist layer of 15 μm or more, and forming a pattern on the formed thick photoresist layer by photolithography. A method for manufacturing a device is provided.
 化合物(1)は、i線に対する感光性を有し、i線を照射することで、容易に分解して強酸であるスルホン酸を発生する。そして、化合物(1)を含むフォトレジスト層は、厚くても、その深層部にまでi線を到達させることができ、フォトレジスト層全体において、化合物(1)は良好に酸発生能を発揮することができる。そのため、化合物(1)は、厚膜化フォトレジスト層を形成するためのフォトレジスト(すなわち、厚膜用フォトレジスト)の酸発生剤として使用することが好ましい。
 さらに、化合物(1)は、溶剤溶解性に優れる。そのため、化合物(1)をフォトレジストに添加すると、均一に分散してフォトレジストに良好な微細パターン形成性を付与することができる。また、経時で酸発生剤が析出することによる感度の低下を抑制することができ、保存安定性に優れたフォトレジストが得られる。
Compound (1) has photosensitivity to i-rays, and when irradiated with i-rays, it easily decomposes to generate sulfonic acid, which is a strong acid. Even if the photoresist layer containing compound (1) is thick, the i-line can reach the deep layer, and compound (1) exhibits good acid generation ability in the entire photoresist layer. be able to. Therefore, compound (1) is preferably used as an acid generator for a photoresist for forming a thick photoresist layer (ie, a thick film photoresist).
Furthermore, compound (1) has excellent solvent solubility. Therefore, when compound (1) is added to a photoresist, it is uniformly dispersed and can impart good fine pattern forming properties to the photoresist. Further, it is possible to suppress a decrease in sensitivity due to precipitation of the acid generator over time, and a photoresist with excellent storage stability can be obtained.
 [化合物(1)]
 本発明の化合物(1)は、下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000004
(式中、R1、R2は同一又は異なって、置換基を有していても良い炭化水素基を示す。R3は水素原子又はOR13又はR13を示し、前記R13は置換基を有していても良い炭化水素基である。R4は水素原子又はR14を示し、前記R14は置換基を有していても良い炭化水素基である。但し、R3とR4が同時に水素原子を示す場合は除く)
[Compound (1)]
The compound (1) of the present invention is a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 1 and R 2 are the same or different and represent a hydrocarbon group which may have a substituent. R 3 represents a hydrogen atom, OR 13 or R 13 , and R 13 is a substituent. is a hydrocarbon group which may have a substituent.R 4 represents a hydrogen atom or R 14 , and R 14 is a hydrocarbon group which may have a substituent. However, R 3 and R 4 (Except when both represent hydrogen atoms)
 前記化合物(1)には、下記式(1a)~(1e)で表される化合物が含まれる。下記式中のR1、R2、R13、R14は前記に同じである。
Figure JPOXMLDOC01-appb-C000005
The compound (1) includes compounds represented by the following formulas (1a) to (1e). R 1 , R 2 , R 13 and R 14 in the following formula are the same as above.
Figure JPOXMLDOC01-appb-C000005
 前記化合物(1)としては、溶剤溶解性及び酸発生能に優れる点で、上記式(1a)(1b)(1c)で表される化合物から選択される少なくとも1種が好ましい。 As the compound (1), at least one selected from the compounds represented by the above formulas (1a), (1b), and (1c) is preferable because it has excellent solvent solubility and acid-generating ability.
 前記炭化水素基には、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、及びこれらの結合した基が含まれる。 The hydrocarbon group includes an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a bonded group thereof.
 脂肪族炭化水素基としては、炭素数1~20(=C1-20)の脂肪族炭化水素基が好ましく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、デシル基、ドデシル基等の炭素数1~20(好ましくは1~10、特に好ましくは1~3)程度のアルキル基;ビニル基、アリル基、1-ブテニル基等の炭素数2~20(好ましくは2~10、特に好ましくは2~3)程度のアルケニル基;エチニル基、プロピニル基等の炭素数2~20(好ましくは2~10、特に好ましくは2~3)程度のアルキニル基等を挙げることができる。 The aliphatic hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 20 carbon atoms (=C 1-20 ), such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s - Alkyl group having about 1 to 20 carbon atoms (preferably 1 to 10, particularly preferably 1 to 3) such as butyl group, t-butyl group, pentyl group, hexyl group, decyl group, dodecyl group; vinyl group, allyl group alkenyl groups having about 2 to 20 carbon atoms (preferably 2 to 10, particularly preferably 2 to 3), such as 1-butenyl groups; , particularly preferably about 2 to 3) alkynyl groups.
 脂環式炭化水素基としては、C3-20脂環式炭化水素基が好ましく、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等の3~20員(好ましくは3~15員、特に好ましくは5~8員)程度のシクロアルキル基;シクロペンテニル基、シクロへキセニル基等の3~20員(好ましくは3~15員、特に好ましくは5~8員)程度のシクロアルケニル基;パーヒドロナフタレン-1-イル基、ノルボルニル基、アダマンチル基、トリシクロ[5.2.1.02,6]デカン-8-イル基、テトラシクロ[4.4.0.12,5.17,10]ドデカン-3-イル基等の橋かけ環式炭化水素基等を挙げることができる。 The alicyclic hydrocarbon group is preferably a C 3-20 alicyclic hydrocarbon group, such as a 3 to 20 membered (preferably 3 ~15 members, particularly preferably 5 to 8 members) cycloalkyl group; 3 to 20 members (preferably 3 to 15 members, particularly preferably 5 to 8 members) such as cyclopentenyl group, cyclohexenyl group Cycloalkenyl group; perhydronaphthalen-1-yl group, norbornyl group, adamantyl group, tricyclo[5.2.1.0 2,6 ]decane-8-yl group, tetracyclo[4.4.0.1 2, 5 . Examples include bridged cyclic hydrocarbon groups such as 1 7,10 ]dodecane-3-yl group.
 芳香族炭化水素基としては、C6-14(特に、C6-10)芳香族炭化水素基が好ましく、例えば、フェニル基、ナフチル基等を挙げることができる。 The aromatic hydrocarbon group is preferably a C 6-14 (particularly C 6-10 ) aromatic hydrocarbon group, such as a phenyl group or a naphthyl group.
 脂肪族炭化水素基と脂環式炭化水素基とが結合した炭化水素基には、シクロペンチルメチル基、シクロヘキシルメチル基、2-シクロヘキシルエチル基等のシクロアルキル置換アルキル基(例えば、C3-20シクロアルキル置換C1-4アルキル基等)等が含まれる。また、脂肪族炭化水素基と芳香族炭化水素基とが結合した炭化水素基には、アラルキル基(例えば、C7-18アラルキル基等)、アルキル置換アリール基(例えば、1~4個程度のC1-4アルキル基が置換したフェニル基又はナフチル基等)等が含まれる。 The hydrocarbon group in which an aliphatic hydrocarbon group and an alicyclic hydrocarbon group are bonded includes a cycloalkyl-substituted alkyl group such as a cyclopentylmethyl group, a cyclohexylmethyl group, and a 2-cyclohexylethyl group (for example, a C 3-20 cyclo alkyl-substituted C 1-4 alkyl groups, etc.). In addition, hydrocarbon groups in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group are bonded include aralkyl groups (for example, C 7-18 aralkyl groups, etc.), alkyl-substituted aryl groups (for example, about 1 to 4 phenyl group or naphthyl group substituted with C 1-4 alkyl group).
 上記炭化水素基は、種々の置換基[例えば、オキソ基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、アシルオキシ基等]を有していてもよい。 The above hydrocarbon group may have various substituents [for example, an oxo group, an alkoxy group, an aryloxy group, an aralkyloxy group, an acyloxy group, etc.].
 R1の炭化水素基の炭素数は、例えば1~20である。前記炭素数の下限値は、光分解で発生するスルホン酸の、フォトレジスト中での移動度が抑制されることで、フォトリソグラフィーの解像度を高める効果が得られる観点から、好ましくは5、特に好ましくは7である。前記炭素数の上限値は、好ましくは18、特に好ましくは15である。 The number of carbon atoms in the hydrocarbon group of R 1 is, for example, 1 to 20. The lower limit of the number of carbon atoms is preferably 5, particularly preferably 5, from the viewpoint of suppressing the mobility of sulfonic acid generated by photolysis in the photoresist, thereby increasing the resolution of photolithography. is 7. The upper limit of the number of carbon atoms is preferably 18, particularly preferably 15.
 また、R1が脂環或いは芳香環構造を有する嵩高い基である場合、光分解で発生するスルホン酸の、フォトレジスト中での移動度が抑制される。そのため、フォトリソグラフィーの解像度を高める効果が得られる。 Furthermore, when R 1 is a bulky group having an alicyclic or aromatic ring structure, the mobility of sulfonic acid generated by photolysis in the photoresist is suppressed. Therefore, the effect of increasing the resolution of photolithography can be obtained.
 さらに、R1が鎖状炭化水素基である場合は、有機溶剤への溶解性が特に優れる傾向がある。 Furthermore, when R 1 is a chain hydrocarbon group, solubility in organic solvents tends to be particularly excellent.
 R2としては、脂肪族炭化水素基が好ましく、アルキル基(直鎖状又は分岐鎖状アルキル基)が特に好ましい。また、R2の炭化水素基の炭素数は、好ましくは1~5、特に好ましくは1~3である。 As R 2 , an aliphatic hydrocarbon group is preferable, and an alkyl group (linear or branched alkyl group) is particularly preferable. Further, the number of carbon atoms in the hydrocarbon group of R 2 is preferably 1 to 5, particularly preferably 1 to 3.
 R13としては、なかでも脂肪族炭化水素基が好ましく、直鎖状又は分岐鎖状アルキル基が特に好ましい。 Among these, R 13 is preferably an aliphatic hydrocarbon group, and particularly preferably a linear or branched alkyl group.
 R13における炭素数は、例えば1~12である。R13の炭素数の上限値は、溶剤溶解性及び酸発生能に特に優れる点で、好ましくは10、より好ましくは8、更に最も好ましくは7、特に好ましくは6、最も好ましくは5、とりわけ好ましくは3である。 The number of carbon atoms in R 13 is, for example, 1 to 12. The upper limit of the number of carbon atoms in R 13 is preferably 10, more preferably 8, even more preferably 7, particularly preferably 6, most preferably 5, particularly preferably from the viewpoint of particularly excellent solvent solubility and acid generating ability. is 3.
 R14としては、なかでも脂肪族炭化水素基が好ましく、直鎖状又は分岐鎖状アルキル基が更に好ましく、分岐鎖状アルキル基が特に好ましい。 Among these, R 14 is preferably an aliphatic hydrocarbon group, more preferably a linear or branched alkyl group, and particularly preferably a branched alkyl group.
 R14における炭素数は、例えば1~12である。R14の炭素数の下限値は、なかでも、酸発生能に特に優れる点で、好ましくは2である。また、R14の炭素数の上限値は、溶剤溶解性を高める観点から、好ましくは10、更に好ましくは8、特に好ましくは7、最も好ましくは6、とりわけ好ましくは5である。 The number of carbon atoms in R 14 is, for example, 1 to 12. The lower limit of the number of carbon atoms in R 14 is preferably 2, since it has particularly excellent acid generating ability. Further, the upper limit of the number of carbon atoms in R 14 is preferably 10, more preferably 8, particularly preferably 7, most preferably 6, particularly preferably 5, from the viewpoint of improving solvent solubility.
 前記化合物(1)は、クマリン環の6位及び/又は8位に前記基を有するが、クマリン環の他の位置にも置換基(例えば、C1-12アルキル基、C1-12アルコキシ基等)を有していても良い。 The compound (1) has the above groups at the 6th and/or 8th positions of the coumarin ring, but it also has substituents (for example, C 1-12 alkyl group, C 1-12 alkoxy group) at other positions of the coumarin ring. etc.).
 前記化合物(1)は、i線に対して高い感光性を有し、i線のモル吸光係数は例えば100~5000(L/mol・cm)である。i線のモル吸光係数の下限値は、より優れた酸発生能を示す点で、好ましくは300(L/mol・cm)、特に好ましくは350(L/mol・cm)、最も好ましくは400(L/mol・cm)、とりわけ好ましくは450(L/mol・cm)である。また、前記モル吸光係数の上限値は、厚膜化レジスト層をフォトリソグラフィーに付して、得られるパターン形状の解像度を向上する点で、好ましくは4000(L/mol・cm)、より好ましくは3500(L/mol・cm)、更に好ましくは3000(L/mol・cm)、特に好ましくは2000(L/mol・cm)、最も好ましくは1000(L/mol・cm)、とりわけ好ましくは800(L/mol・cm)である。 The compound (1) has high photosensitivity to i-line, and has a molar absorption coefficient of i-line of, for example, 100 to 5000 (L/mol·cm). The lower limit of the i-line molar extinction coefficient is preferably 300 (L/mol·cm), particularly preferably 350 (L/mol·cm), most preferably 400 ( L/mol·cm), particularly preferably 450 (L/mol·cm). Further, the upper limit value of the molar extinction coefficient is preferably 4000 (L/mol·cm), more preferably 3500 (L/mol·cm), more preferably 3000 (L/mol·cm), particularly preferably 2000 (L/mol·cm), most preferably 1000 (L/mol·cm), particularly preferably 800 ( L/mol·cm).
 また、前記化合物(1)は有機溶剤への溶解性に優れ、25℃における、有機溶剤(例えば、プロピレングリコールモノメチルエーテルアセテート)への溶解度は、例えば5重量%以上(例えば、5~50重量%)、好ましくは10重量%以上、特に好ましくは15重量%以上である。 Further, the compound (1) has excellent solubility in organic solvents, and its solubility in organic solvents (for example, propylene glycol monomethyl ether acetate) at 25°C is, for example, 5% by weight or more (for example, 5 to 50% by weight). ), preferably 10% by weight or more, particularly preferably 15% by weight or more.
 前記有機溶剤としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;プロピレンカーボネート、エチレンカーボネート、1,2-ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等のカーボネート;酢酸エチル、酢酸ブチル、乳酸エチル等、β-プロピオラクトン、β-ブチロラクトン、γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトン等の鎖状又は環状エステル;;エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリプロピレングリコールジブチルエーテル等のグリコールジエーテル;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のグリコールモノエーテルモノエステル;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、メチルイソアミルケトン、2-ヘプタノン等のケトンが挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 Examples of the organic solvent include aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; carbonates such as propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, dimethyl carbonate, and diethyl carbonate; ethyl acetate, butyl acetate, Ethyl lactate, etc., linear or cyclic esters such as β-propiolactone, β-butyrolactone, γ-butyrolactone, δ-valerolactone, ε-caprolactone;; ethylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monobutyl ether; Glycol diethers such as dipropylene glycol dimethyl ether, triethylene glycol diethyl ether, tripropylene glycol dibutyl ether; glycol monoethers such as ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, etc. Monoester; Ketones such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, methyl isoamyl ketone, and 2-heptanone can be mentioned. These can be used alone or in combination of two or more.
 前記有機溶剤としては、なかでも、ケトン、鎖状エステル、及びグリコールモノエーテルモノエステルから選択される少なくとも1種を含有することが好ましい。 The organic solvent preferably contains at least one selected from ketones, chain esters, and glycol monoether monoesters.
 前記化合物(1)は上記特性を有するため、酸発生剤(例えば、光酸発生剤、非イオン系酸発生剤、又は非イオン系光酸発生剤)として好適に使用することができる。 Since the compound (1) has the above characteristics, it can be suitably used as an acid generator (for example, a photoacid generator, a nonionic acid generator, or a nonionic photoacid generator).
 [化合物(1)の製造方法]
 前記化合物(1)は、例えば、下記反応[I][II]を経て製造することができる。下記式中、R1、R2、R3、R4は前記に同じである。Xは同一又は異なってハロゲン原子を示す。
Figure JPOXMLDOC01-appb-C000006
[Method for producing compound (1)]
The compound (1) can be produced, for example, through the following reactions [I] and [II]. In the following formula, R 1 , R 2 , R 3 and R 4 are as defined above. X is the same or different and represents a halogen atom.
Figure JPOXMLDOC01-appb-C000006
 [I]
 反応[I]は、式(2)で表される化合物(以後、「化合物(2)」と称する場合がある)と式(3)で表される化合物(以後、「化合物(3)」と称する場合がある)を反応させて、式(4)で表される化合物(以後、「化合物(4)」と称する場合がある)を得る反応である。
[I]
Reaction [I] consists of a compound represented by formula (2) (hereinafter sometimes referred to as "compound (2)") and a compound represented by formula (3) (hereinafter referred to as "compound (3)"). This is a reaction in which a compound represented by formula (4) (hereinafter sometimes referred to as "compound (4)") is obtained by reacting a compound (hereinafter sometimes referred to as "compound (4)").
 化合物(3)の使用量は、化合物(2)1モルに対して、例えば0.5~5モル、好ましくは1~3モルである。 The amount of compound (3) to be used is, for example, 0.5 to 5 mol, preferably 1 to 3 mol, per 1 mol of compound (2).
 化合物(2)は、溶剤に溶解してから反応系に添加することが好ましく、前記溶剤としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、ジメトキシエタン、ジオキサン等のエーテル;塩化メチレン、クロロホルム等のハロゲン化炭化水素などを使用することができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 Compound (2) is preferably dissolved in a solvent before being added to the reaction system, and examples of the solvent include ethers such as tetrahydrofuran, diethyl ether, dibutyl ether, dimethoxyethane, and dioxane; methylene chloride, chloroform, etc. Halogenated hydrocarbons and the like can be used. These can be used alone or in combination of two or more.
 また、化合物(3)も、溶剤に溶解してから反応系に添加することが好ましく、前記溶剤としては、例えば、メタノール、エタノール等のアルコール;塩化メチレン、クロロホルム等のハロゲン化炭化水素などを使用することができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 Further, it is preferable that the compound (3) is also dissolved in a solvent before being added to the reaction system. Examples of the solvent include alcohols such as methanol and ethanol; halogenated hydrocarbons such as methylene chloride and chloroform. can do. These can be used alone or in combination of two or more.
 反応温度は、例えば0~60℃程度である。反応時間は、例えば0.5~5時間程度である。また、反応はバッチ式、セミバッチ式、連続式等の何れの方法でも行うことができる。 The reaction temperature is, for example, about 0 to 60°C. The reaction time is, for example, about 0.5 to 5 hours. Further, the reaction can be carried out by any method such as a batch method, a semi-batch method, or a continuous method.
 前記反応が進行すると、反応系内に塩酸が生成する。そのため、前記反応系内に脱塩酸剤として、水酸化カリウム、水酸化ナトリウム、炭酸水素ナトリウム、ピリジン、トリエチルアミン等の塩基性化合物を添加しても良い。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 As the reaction proceeds, hydrochloric acid is produced in the reaction system. Therefore, a basic compound such as potassium hydroxide, sodium hydroxide, sodium hydrogen carbonate, pyridine, triethylamine, etc. may be added as a dehydrochlorination agent into the reaction system. These can be used alone or in combination of two or more.
 反応雰囲気としては反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。 The reaction atmosphere is not particularly limited as long as it does not inhibit the reaction, and may be any of air atmosphere, nitrogen atmosphere, argon atmosphere, etc.
 反応終了後、得られた反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、吸着、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。 After completion of the reaction, the obtained reaction product can be separated and purified, for example, by separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, or a combination of these separation means.
 [II]
 反応[II]は、化合物(4)と式(5)で表される化合物(以後、「化合物(5)」と称する場合がある)を反応させて、化合物(1)を得る反応である。
[II]
Reaction [II] is a reaction in which compound (4) and the compound represented by formula (5) (hereinafter sometimes referred to as "compound (5)") are reacted to obtain compound (1).
 化合物(5)の使用量は、化合物(4)1モルに対して、例えば0.5~5モル、好ましくは1~3モルである。 The amount of compound (5) to be used is, for example, 0.5 to 5 mol, preferably 1 to 3 mol, per 1 mol of compound (4).
 前記反応が進行すると、反応系内に塩酸が生成する。そのため、前記反応系内に脱塩酸剤として、水酸化カリウム、水酸化ナトリウム、ピリジン、トリエチルアミン等の塩基性化合物を添加しても良い。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 As the reaction proceeds, hydrochloric acid is produced in the reaction system. Therefore, a basic compound such as potassium hydroxide, sodium hydroxide, pyridine, triethylamine, etc. may be added as a dehydrochlorination agent into the reaction system. These can be used alone or in combination of two or more.
 化合物(4)と化合物(5)の反応は溶剤の存在下で行うことができる。前記溶剤としては、例えば、塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ブロモベンゼン等のハロゲン化炭化水素を使用することができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 The reaction between compound (4) and compound (5) can be carried out in the presence of a solvent. As the solvent, for example, halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, chlorobenzene, and bromobenzene can be used. These can be used alone or in combination of two or more.
 前記溶剤の使用量としては、化合物(4)と化合物(5)の総量に対して、例えば50~300重量%程度である。 The amount of the solvent used is, for example, about 50 to 300% by weight based on the total amount of compound (4) and compound (5).
 反応温度は、例えば30~70℃程度である。反応時間は、例えば1~12時間程度である。また、反応はバッチ式、セミバッチ式、連続式等の何れの方法でも行うことができる。 The reaction temperature is, for example, about 30 to 70°C. The reaction time is, for example, about 1 to 12 hours. Further, the reaction can be carried out by any method such as a batch method, a semi-batch method, or a continuous method.
 反応雰囲気としては反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。 The reaction atmosphere is not particularly limited as long as it does not inhibit the reaction, and may be any of air atmosphere, nitrogen atmosphere, argon atmosphere, etc.
 反応終了後、得られた反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、吸着、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。 After completion of the reaction, the obtained reaction product can be separated and purified, for example, by separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, or a combination of these separation means.
 尚、化合物(2)は、例えば下記反応[III][IV]を経て製造することができる。下記式中、R3、R4は前記に同じである。Xはハロゲン原子を示す。
Figure JPOXMLDOC01-appb-C000007
In addition, compound (2) can be produced, for example, through the following reactions [III] and [IV]. In the following formula, R 3 and R 4 are as defined above. X represents a halogen atom.
Figure JPOXMLDOC01-appb-C000007
 [III]
 反応[III]は、式(6)で表される化合物(以後、「化合物(6)」と称する場合がある)と式(7)で表される化合物(以後、「化合物(7)」と称する場合がある)を反応させて、式(8)で表される化合物(以後、「化合物(8)」と称する場合がある)を得る反応である。
[III]
Reaction [III] consists of a compound represented by formula (6) (hereinafter sometimes referred to as "compound (6)") and a compound represented by formula (7) (hereinafter referred to as "compound (7)"). This is a reaction in which a compound represented by formula (8) (hereinafter sometimes referred to as "compound (8)") is obtained by reacting a compound (hereinafter sometimes referred to as "compound (8)").
 化合物(7)の使用量は、化合物(6)1モルに対して、例えば0.5~3モル、好ましくは0.5~2モルである。 The amount of compound (7) to be used is, for example, 0.5 to 3 mol, preferably 0.5 to 2 mol, per 1 mol of compound (6).
 化合物(6)と化合物(7)の反応は溶剤の存在下で行うことができる。前記溶剤としては、例えば、水;メタノール、エタノール等のアルコールなどを使用することができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 The reaction between compound (6) and compound (7) can be carried out in the presence of a solvent. As the solvent, for example, water; alcohol such as methanol, ethanol, etc. can be used. These can be used alone or in combination of two or more.
 反応温度は、例えば50~120℃程度である。反応時間は、例えば0.5~5時間程度である。また、反応はバッチ式、セミバッチ式、連続式等の何れの方法でも行うことができる。 The reaction temperature is, for example, about 50 to 120°C. The reaction time is, for example, about 0.5 to 5 hours. Further, the reaction can be carried out by any method such as a batch method, a semi-batch method, or a continuous method.
 反応雰囲気としては反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。 The reaction atmosphere is not particularly limited as long as it does not inhibit the reaction, and may be any of air atmosphere, nitrogen atmosphere, argon atmosphere, etc.
 反応終了後、得られた反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、吸着、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。 After completion of the reaction, the obtained reaction product can be separated and purified, for example, by separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, or a combination of these separation means.
 [IV]
 反応[IV]は、化合物(8)をハロゲン化して、化合物(2)を得る反応である。
[IV]
Reaction [IV] is a reaction in which compound (8) is halogenated to obtain compound (2).
 ハロゲン化には、ハロゲン化剤を使用することができる。前記ハロゲン化剤としては、例えば、塩化チオニル等を使用することができる。 A halogenating agent can be used for halogenation. As the halogenating agent, for example, thionyl chloride can be used.
 ハロゲン化剤の使用量は、化合物(8)1モルに対して、例えば1~5モルである。 The amount of the halogenating agent used is, for example, 1 to 5 mol per 1 mol of compound (8).
 反応温度は、例えば50~120℃程度である。反応時間は、例えば0.5~5時間程度である。また、反応はバッチ式、セミバッチ式、連続式等の何れの方法でも行うことができる。 The reaction temperature is, for example, about 50 to 120°C. The reaction time is, for example, about 0.5 to 5 hours. Further, the reaction can be carried out by any method such as a batch method, a semi-batch method, or a continuous method.
 反応雰囲気としては反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。 The reaction atmosphere is not particularly limited as long as it does not inhibit the reaction, and may be any of air atmosphere, nitrogen atmosphere, argon atmosphere, etc.
 反応終了後、得られた反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、吸着、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。 After completion of the reaction, the obtained reaction product can be separated and purified, for example, by separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography, or a combination of these separation means.
 [酸発生剤]
 本発明の酸発生剤は、前記化合物(1)を少なくとも含有する。前記酸発生剤は、前記化合物(1)の1種を単独で含有していても良いし、2種以上を組み合わせて含有していても良い。また、前記酸発生剤は、前記化合物(1)以外の成分を含有していても良いが、前記酸発生剤に含まれる、光照射により分解して酸を発生する全ての化合物に対する前記化合物(1)の占める割合が、例えば50重量%以上であることが好ましく、より好ましくは60重量%以上、更に好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上、とりわけ好ましくは95重量%以上である。すなわち、前記化合物(1)以外の酸発生剤を含んでいても良いが、他の酸発生剤の含有量は、光照射により分解して酸を発生する全ての化合物に対して、例えば50重量%以下であることが好ましく、より好ましくは40重量%以下、更に好ましくは30重量%以下、特に好ましくは20重量%以下、最も好ましくは10重量%以下、とりわけ好ましくは5重量%以下である。
[Acid generator]
The acid generator of the present invention contains at least the compound (1). The acid generator may contain one kind of the above compound (1) alone, or may contain two or more kinds in combination. Further, the acid generator may contain components other than the compound (1), but the compound ( The proportion of 1) is preferably 50% by weight or more, more preferably 60% by weight or more, even more preferably 70% by weight or more, particularly preferably 80% by weight or more, most preferably 90% by weight or more, Particularly preferably, it is 95% by weight or more. That is, it may contain an acid generator other than the compound (1), but the content of the other acid generator is, for example, 50% by weight with respect to all the compounds that decompose and generate acid upon irradiation with light. % or less, more preferably 40% by weight or less, still more preferably 30% by weight or less, particularly preferably 20% by weight or less, most preferably 10% by weight or less, particularly preferably 5% by weight or less.
 また、前記酸発生剤は、i線に対して高い感光性を有し、i線のモル吸光係数は、例えば100~5000(L/mol・cm)である。i線のモル吸光係数の下限値は、より優れた酸発生能を示す点で、好ましくは300(L/mol・cm)、特に好ましくは350(L/mol・cm)、最も好ましくは400(L/mol・cm)、とりわけ好ましくは450(L/mol・cm)である。また、前記モル吸光係数の上限値は、厚膜化フォトレジスト層をフォトリソグラフィー処理に付して、得られるパターン形状の解像度を向上する点で、好ましくは4000(L/mol・cm)、より好ましくは3500(L/mol・cm)、更に好ましくは3000(L/mol・cm)、特に好ましくは2000(L/mol・cm)、最も好ましくは1000(L/mol・cm)、とりわけ好ましくは800(L/mol・cm)である。 Further, the acid generator has high photosensitivity to i-line, and has a molar absorption coefficient of i-line of, for example, 100 to 5000 (L/mol·cm). The lower limit of the i-line molar extinction coefficient is preferably 300 (L/mol·cm), particularly preferably 350 (L/mol·cm), most preferably 400 ( L/mol·cm), particularly preferably 450 (L/mol·cm). Further, the upper limit value of the molar extinction coefficient is preferably 4000 (L/mol·cm), more preferably 4000 (L/mol·cm), in order to improve the resolution of the pattern shape obtained by subjecting the thickened photoresist layer to photolithography treatment. Preferably 3500 (L/mol·cm), more preferably 3000 (L/mol·cm), particularly preferably 2000 (L/mol·cm), most preferably 1000 (L/mol·cm), particularly preferably 800 (L/mol·cm).
 更にまた、前記酸発生剤は有機溶剤への溶解性に優れ、25℃において、有機溶剤100重量部に溶解する、前記酸発生剤量は、例えば5重量部以上、好ましくは10重量部以上、特に好ましくは15重量部以上、最も好ましくは20重量部以上である。尚、前記有機溶剤としては、化合物(1)が溶解性を示す有機溶剤と同様の例が挙げられる。 Furthermore, the acid generator has excellent solubility in organic solvents, and the amount of the acid generator that dissolves in 100 parts by weight of the organic solvent at 25° C. is, for example, 5 parts by weight or more, preferably 10 parts by weight or more, Particularly preferably 15 parts by weight or more, most preferably 20 parts by weight or more. Incidentally, examples of the organic solvent include the same organic solvents in which compound (1) exhibits solubility.
 前記酸発生剤は、i線を照射すると、容易に分解して強酸であるスルホン酸(R1-SO3H)を発生する。 When the acid generator is irradiated with i-rays, it easily decomposes and generates sulfonic acid (R 1 --SO 3 H), which is a strong acid.
 前記酸発生剤は前記特性を有するため、フォトレジスト用酸発生剤として好適に使用することができる。 Since the acid generator has the above characteristics, it can be suitably used as an acid generator for photoresists.
 [フォトレジスト]
 本発明のフォトレジストは、前記酸発生剤(若しくは、前記化合物(1))と感光性樹脂を含む。
[Photoresist]
The photoresist of the present invention contains the acid generator (or the compound (1)) and a photosensitive resin.
 前記酸発生剤(若しくは、前記化合物(1))の含有量は、感光性樹脂全量に対して、例えば0.001~20重量%、好ましくは0.01~15重量%、特に好ましくは0.05~7重量%である。 The content of the acid generator (or the compound (1)) is, for example, 0.001 to 20% by weight, preferably 0.01 to 15% by weight, particularly preferably 0.001 to 15% by weight, based on the total amount of the photosensitive resin. 05 to 7% by weight.
 前記酸発生剤(若しくは、前記化合物(1))の含有量が0.001重量%以上であればi線に対して優れた感光性を発揮することができる。また、前記含有量が20重量%以下であれば、フォトレジストの解像度を向上する効果が得られる。 If the content of the acid generator (or the compound (1)) is 0.001% by weight or more, excellent photosensitivity to i-line can be exhibited. Further, if the content is 20% by weight or less, the effect of improving the resolution of the photoresist can be obtained.
 前記感光性樹脂には、光照射により溶解性が減少する(或いは、未露光部が除去される)ネガ型感光性樹脂(QN)と、光照射により溶解性が増大する(或いは、露光部が選択的に除去される)ポジ型感光性樹脂(QP)が含まれる。これらは、用途に応じて選択して使用することができる。 The photosensitive resins include negative photosensitive resins (QN) whose solubility decreases (or unexposed areas are removed) upon irradiation with light, and negative photosensitive resins (QN) whose solubility increases upon irradiation with light (or whose exposed areas are removed). positive-working photopolymer (QP) that is selectively removed. These can be selected and used depending on the purpose.
 ネガ型感光性樹脂(若しくは、ネガ型化学増幅樹脂;QN)は、例えば、フェノール性水酸基含有樹脂(QN1)と架橋剤(QN2)を、それぞれ1種を単独で、又は2種以上を組み合わせて含有する組成物である。 Negative photosensitive resin (or negative chemically amplified resin; QN) is made by, for example, phenolic hydroxyl group-containing resin (QN1) and crosslinking agent (QN2), each alone or in combination of two or more. It is a composition containing.
 フェノール性水酸基含有樹脂(QN1)は、フェノール性水酸基を含有する樹脂であれば特に制限はなく、例えば、ノボラック樹脂、ポリヒドロキシスチレン、ヒドロキシスチレンの共重合体、ヒドロキシスチレンとスチレンの共重合体、ヒドロキシスチレン、スチレン及び(メタ)アクリル酸誘導体の共重合体、フェノール-キシリレングリコール縮合樹脂、クレゾール-キシリレングリコール縮合樹脂、フェノール性水酸基を含有するポリイミド、フェノール性水酸基を含有するポリアミック酸、フェノール-ジシクロペンタジエン縮合樹脂等が挙げられる。 The phenolic hydroxyl group-containing resin (QN1) is not particularly limited as long as it contains a phenolic hydroxyl group, and examples include novolak resin, polyhydroxystyrene, a copolymer of hydroxystyrene, a copolymer of hydroxystyrene and styrene, Hydroxystyrene, copolymers of styrene and (meth)acrylic acid derivatives, phenol-xylylene glycol condensation resins, cresol-xylylene glycol condensation resins, polyimides containing phenolic hydroxyl groups, polyamic acids containing phenolic hydroxyl groups, phenol -dicyclopentadiene condensation resins, etc.
 フェノール性水酸基含有樹脂(QN1)は、成分の一部にフェノール性低分子化合物を含有していても良い。 The phenolic hydroxyl group-containing resin (QN1) may contain a phenolic low molecular compound as a part of the components.
 フェノール性水酸基含有樹脂(QN1)の、GPCで測定したポリスチレン換算重量平均分子量(Mw)は、例えば2000~20000である。 The polystyrene equivalent weight average molecular weight (Mw) of the phenolic hydroxyl group-containing resin (QN1) measured by GPC is, for example, 2,000 to 20,000.
 架橋剤(QN2)は、酸発生剤から発生した酸により、フェノール性水酸基含有樹脂(QN1)を架橋し得る化合物であればよく、例えば、ビスフェノールA系エポキシ化合物、ビスフェノールF系エポキシ化合物、ビスフェノールS系エポキシ化合物、ノボラック樹脂系エポキシ化合物、レゾール樹脂系エポキシ化合物、ポリ(ヒドロキシスチレン)系エポキシ化合物、オキセタン化合物、メチロール基含有メラミン化合物、メチロール基含有ベンゾグアナミン化合物、メチロール基含有尿素化合物、メチロール基含有フェノール化合物、アルコキシアルキル基含有メラミン化合物、アルコキシアルキル基含有ベンゾグアナミン化合物、アルコキシアルキル基含有尿素化合物、アルコキシアルキル基含有フェノール化合物、カルボキシメチル基含有メラミン樹脂、カルボキシメチル基含有ベンゾグアナミン樹脂、カルボキシメチル基含有尿素樹脂、カルボキシメチル基含有フェノール樹脂、カルボキシメチル基含有メラミン化合物、カルボキシメチル基含有ベンゾグアナミン化合物、カルボキシメチル基含有尿素化合物及びカルボキシメチル基含有フェノール化合物等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 The crosslinking agent (QN2) may be any compound that can crosslink the phenolic hydroxyl group-containing resin (QN1) with the acid generated from the acid generator, such as bisphenol A-based epoxy compounds, bisphenol F-based epoxy compounds, and bisphenol S. epoxy compounds, novolak resin epoxy compounds, resol resin epoxy compounds, poly(hydroxystyrene) epoxy compounds, oxetane compounds, melamine compounds containing methylol groups, benzoguanamine compounds containing methylol groups, urea compounds containing methylol groups, phenols containing methylol groups Compound, alkoxyalkyl group-containing melamine compound, alkoxyalkyl group-containing benzoguanamine compound, alkoxyalkyl group-containing urea compound, alkoxyalkyl group-containing phenol compound, carboxymethyl group-containing melamine resin, carboxymethyl group-containing benzoguanamine resin, carboxymethyl group-containing urea resin , a carboxymethyl group-containing phenol resin, a carboxymethyl group-containing melamine compound, a carboxymethyl group-containing benzoguanamine compound, a carboxymethyl group-containing urea compound, and a carboxymethyl group-containing phenol compound. These can be used alone or in combination of two or more.
 架橋剤(QN2)の含有量は、精度良くパターンを形成する観点から、フェノール性水酸基含有樹脂(QN1)中の全酸性官能基に対して、例えば10~40モル%である。 The content of the crosslinking agent (QN2) is, for example, 10 to 40 mol% based on the total acidic functional groups in the phenolic hydroxyl group-containing resin (QN1) from the viewpoint of forming a pattern with high precision.
 ポジ型感光性樹脂(若しくは、ポジ型化学増幅樹脂;QP)としては、保護基として酸解離性基が導入されたアルカリ可溶性樹脂(保護基導入樹脂;QP1)が挙げられる。 Examples of positive photosensitive resins (or positive chemically amplified resins; QP) include alkali-soluble resins into which acid-dissociable groups are introduced as protecting groups (protecting group-introduced resins; QP1).
 保護基導入樹脂(QP1)は、アルカリ可溶性樹脂中の酸性官能基(例えば、フェノール性水酸基、カルボキシル基、スルホニル基等)の水素原子の一部或いは全部が酸解離性基で置換された樹脂である。 The protecting group-introduced resin (QP1) is a resin in which some or all of the hydrogen atoms of acidic functional groups (for example, phenolic hydroxyl groups, carboxyl groups, sulfonyl groups, etc.) in an alkali-soluble resin are substituted with acid-dissociable groups. be.
 保護基導入樹脂(QP1)自体はアルカリ不溶性又はアルカリ難溶性の樹脂であり、酸発生剤から発生した酸によって酸解離性基が解離すると、アルカリ現像液に易溶解性を示すアルカリ可溶性樹脂が生成する。 The protecting group-introduced resin (QP1) itself is an alkali-insoluble or slightly alkali-soluble resin, and when the acid-dissociable group is dissociated by the acid generated from the acid generator, an alkali-soluble resin that is easily soluble in an alkaline developer is generated. do.
 アルカリ可溶性樹脂は、例えばHLB値が4~19(好ましくは5~18、特に好ましくは6~17)の樹脂である。 The alkali-soluble resin is, for example, a resin with an HLB value of 4 to 19 (preferably 5 to 18, particularly preferably 6 to 17).
 アルカリ可溶性樹脂には、フェノール性水酸基含有樹脂、カルボキシル基含有樹脂、及びスルホン酸基含有樹脂が含まれる。 Alkali-soluble resins include phenolic hydroxyl group-containing resins, carboxyl group-containing resins, and sulfonic acid group-containing resins.
 フェノール性水酸基含有樹脂としては、上記フェノール性水酸基含有樹脂(QN1)と同様の樹脂が例示される。 Examples of the phenolic hydroxyl group-containing resin include the same resins as the above-mentioned phenolic hydroxyl group-containing resin (QN1).
 カルボキシル基含有樹脂としては、カルボキシル基を有するポリマーでああれば特に制限はなく、例えば、カルボキシル基含有ビニルモノマー(Ba)のホモポリマーや、カルボキシル基含有ビニルモノマー(Ba)と疎水基含有ビニルモノマー(Bb)とのホモポリマーが挙げられる。 The carboxyl group-containing resin is not particularly limited as long as it is a polymer having a carboxyl group, for example, a homopolymer of a carboxyl group-containing vinyl monomer (Ba), or a carboxyl group-containing vinyl monomer (Ba) and a hydrophobic group-containing vinyl monomer. A homopolymer with (Bb) can be mentioned.
 カルボキシル基含有ビニルモノマー(Ba)としては、例えば、(メタ)アクリル酸である。 An example of the carboxyl group-containing vinyl monomer (Ba) is (meth)acrylic acid.
 疎水基含有ビニルモノマー(Bb)としては、C1-20アルキル(メタ)アクリレート、脂環基含有(メタ)アクリレート等の(メタ)アクリル酸エステル(Bb1)、及びスチレン骨格を有する炭化水素モノマーやビニルナフタレン等の芳香族炭化水素モノマー(Bb2)等が挙げられる。 Examples of hydrophobic group-containing vinyl monomers (Bb) include (meth)acrylic acid esters (Bb1) such as C 1-20 alkyl (meth)acrylates and alicyclic group-containing (meth)acrylates, and hydrocarbon monomers having a styrene skeleton. Examples include aromatic hydrocarbon monomers (Bb2) such as vinylnaphthalene.
 スルホン酸基含有樹脂としては、スルホン酸基を有するポリマーであれば特に制限はなく、例えば、ビニルスルホン酸、スチレンスルホン酸等のスルホン酸基含有ビニルモノマー(Bc)と、必要により疎水基含有ビニルモノマー(Bb)とをビニル重合することで得られる。 The sulfonic acid group-containing resin is not particularly limited as long as it is a polymer having a sulfonic acid group. For example, a sulfonic acid group-containing vinyl monomer (Bc) such as vinyl sulfonic acid or styrene sulfonic acid, and if necessary, a hydrophobic group-containing vinyl It is obtained by vinyl polymerizing the monomer (Bb).
 保護基導入樹脂(QP1)が有する酸解離性基としては、例えば、メトキシメチル基、ベンジル基、tert-ブトキシカルボニルメチル基等の1-置換メチル基;1-メトキシエチル基、1-エトキシエチル基等の1-置換エチル基;tert-ブチル基等の1-分岐アルキル基;トリメチルシリル基等のシリル基;トリメチルゲルミル基等のゲルミル基;tert-ブトキシカルボニル基等のアルコキシカルボニル基;アシル基;テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、テトラヒドロチオフラニル基等の環式酸解離性基等が挙げられる。これらは1種を単独で含有していても良いし、2種以上を組み合わせて含有していても良い。 Examples of the acid-dissociable group possessed by the protecting group-introduced resin (QP1) include 1-substituted methyl groups such as methoxymethyl group, benzyl group, and tert-butoxycarbonylmethyl group; 1-methoxyethyl group, 1-ethoxyethyl group; 1-substituted ethyl groups such as; 1-branched alkyl groups such as tert-butyl groups; silyl groups such as trimethylsilyl groups; germyl groups such as trimethylgermyl groups; alkoxycarbonyl groups such as tert-butoxycarbonyl groups; acyl groups; Examples include cyclic acid dissociable groups such as a tetrahydropyranyl group, a tetrahydrofuranyl group, a tetrahydrothiopyranyl group, and a tetrahydrothiofuranyl group. These may contain one type alone or a combination of two or more types.
 保護基導入樹脂(QP1)における酸解離性基の導入率{保護基導入樹脂(QP1)中の保護されていない酸性官能基と酸解離性基との合計数に対する酸解離性基の数の割合}は、酸解離性基や該基が導入されるアルカリ可溶性樹脂の種類により一概には規定できないが、好ましくは10~100%、さらに好ましくは15~100%である。 Introduction rate of acid-dissociable groups in the protecting group-introduced resin (QP1) {ratio of the number of acid-dissociable groups to the total number of unprotected acidic functional groups and acid-dissociable groups in the protecting group-introduced resin (QP1) } cannot be absolutely defined depending on the acid-dissociable group or the type of alkali-soluble resin into which the group is introduced, but it is preferably 10 to 100%, more preferably 15 to 100%.
 保護基導入樹脂(QP1)の、GPCで測定したポリスチレン換算重量平均分子量(Mw)は、例えば1000~150000、好ましくは3000~100000である。 The polystyrene equivalent weight average molecular weight (Mw) of the protecting group-introduced resin (QP1) measured by GPC is, for example, 1,000 to 150,000, preferably 3,000 to 100,000.
 本発明のフォトレジストは、例えば、前記酸発生剤(若しくは、前記化合物(1))を有機溶剤に溶解し、これを感光性樹脂と混合することにより調製することができる。 The photoresist of the present invention can be prepared, for example, by dissolving the acid generator (or the compound (1)) in an organic solvent and mixing this with a photosensitive resin.
 前記フォトレジストは、前記酸発生剤(若しくは、前記化合物(1))と感光性樹脂以外にも必要に応じて他の成分を1種又は2種以上含有することができる。他の成分としては、例えば、有機溶剤、顔料、染料、光増感剤、分散剤、界面活性剤、充填剤、レベリング剤、消泡剤、帯電防止剤、紫外線吸収剤、pH調整剤、表面改質剤、可塑剤、乾燥促進剤等が挙げられる。 In addition to the acid generator (or the compound (1)) and the photosensitive resin, the photoresist may contain one or more other components as necessary. Other components include, for example, organic solvents, pigments, dyes, photosensitizers, dispersants, surfactants, fillers, leveling agents, antifoaming agents, antistatic agents, ultraviolet absorbers, pH adjusters, surface Examples include modifiers, plasticizers, drying accelerators, and the like.
 前記有機溶剤としては、前記感光性樹脂を溶解させることができ、フォトレジストに良好な塗布性を付与することができる溶剤であれば良いが、なかでも、沸点が200℃以下のものを使用することが、フォトレジストを塗布後、容易に乾燥させることができる点で好ましい。このような有機溶剤としては、トルエン等の芳香族炭化水素;エタノール、メタノール等のアルコール;シクロヘキサノン、メチルエチルケトン、アセトン等のケトン;酢酸エチル、酢酸ブチル、乳酸エチル等のエステル;プロピレングリコールモノメチルエーテルアセテート等のグリコールモノエーテルモノエステルなどが好ましい。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 The organic solvent may be any solvent that can dissolve the photosensitive resin and impart good coating properties to the photoresist, but among them, those having a boiling point of 200° C. or lower are used. This is preferable in that the photoresist can be easily dried after coating. Examples of such organic solvents include aromatic hydrocarbons such as toluene; alcohols such as ethanol and methanol; ketones such as cyclohexanone, methyl ethyl ketone, and acetone; esters such as ethyl acetate, butyl acetate, and ethyl lactate; propylene glycol monomethyl ether acetate, etc. Glycol monoether monoesters and the like are preferred. These can be used alone or in combination of two or more.
 前記フォトレジストは、i線の適度なモル吸光係数を有する化合物(1)を含有する。そのため、フォトレジスト層を厚膜化しても(例えば15μm以上、好ましくは20μm以上にまで厚膜化しても)、レジスト層の深層部にまでi線を到達させることができ、フォトリソグラフィーにより、高い解像度のパターン形状を有するエッチングマスクを精度良く形成することができる。従って、前記フォトレジストは、厚膜フォトレジスト層(層厚みは、例えば15μm以上)を形成するために用いられる厚膜用フォトレジストとして好適に使用することができる。 The photoresist contains a compound (1) having an appropriate molar extinction coefficient for i-line. Therefore, even if the photoresist layer is made thicker (for example, 15 μm or more, preferably 20 μm or more), the i-line can reach the deep part of the resist layer, and photolithography can increase the thickness of the photoresist layer. An etching mask having a pattern shape with high resolution can be formed with high precision. Therefore, the photoresist can be suitably used as a thick film photoresist used to form a thick film photoresist layer (layer thickness, for example, 15 μm or more).
 [電子デバイスの製造方法]
 本発明の電子デバイスの製造方法は、前記フォトレジストを使用したフォトリソグラフィーによりパターン形成を行う工程を含む。
[Manufacturing method of electronic device]
The method for manufacturing an electronic device of the present invention includes a step of forming a pattern by photolithography using the photoresist.
 前記フォトレジストを使用したフォトリソグラフィーによりパターン形成を行う工程は、好ましくは、下記工程1~3を経て基板上にエッチングマスクを形成する工程である。 The step of forming a pattern by photolithography using the photoresist is preferably a step of forming an etching mask on the substrate through steps 1 to 3 below.
工程1:前記フォトレジストを使用して、基板上にフォトレジスト層を形成する工程
工程2:前記フォトレジスト層にパターン形状の光照射を行う工程
工程3:アルカリ現像を行う工程
Step 1: Forming a photoresist layer on a substrate using the photoresist Step 2: Irradiating the photoresist layer with light in a pattern Step 3: Performing alkali development
 本発明の方法では、i線の適度なモル吸光係数を有する化合物(1)を含有するフォトレジストを使用するため、フォトレジスト層を厚膜化(例えば15μm以上、好ましくは20μm以上である。尚、厚みの上限値は、例えば50μm、好ましくは30μmである)しても、高い解像度のパターン形状を有するエッチングマスクを精度良く形成することができる。 In the method of the present invention, since a photoresist containing compound (1) having an appropriate molar absorption coefficient for i-line is used, the photoresist layer is made thick (for example, 15 μm or more, preferably 20 μm or more. Even if the upper limit of the thickness is, for example, 50 μm, preferably 30 μm, an etching mask having a pattern shape with high resolution can be formed with high precision.
 従って、前記電子デバイスの製造方法は、前記フォトレジストを塗布・乾燥して、15μm以上の厚膜フォトレジスト層を形成し、形成された厚膜フォトレジスト層に、フォトリソグラフィーによりパターン形成を行う工程を含む方法であってもよい。 Therefore, the method for manufacturing the electronic device includes a step of coating and drying the photoresist to form a thick photoresist layer of 15 μm or more, and forming a pattern on the formed thick photoresist layer by photolithography. A method including:
 (工程1)
 本工程は、エッチングする基板上に、前記フォトレジスト層を形成する工程である。前記フォトレジスト層は、前記フォトレジストを、スピンコート、カーテンコート、ロールコート、スプレーコート、スクリーン印刷等公知の方法を用いて基板に塗布後、乾燥させることで形成することができる。
(Step 1)
This step is a step of forming the photoresist layer on the substrate to be etched. The photoresist layer can be formed by applying the photoresist onto a substrate using a known method such as spin coating, curtain coating, roll coating, spray coating, or screen printing, and then drying it.
 (工程2)
 本工程は、工程1を経て得られたフォトレジスト層に、パターンを有するフォトマスクを介して光照射する等の方法で、パターン形状の光照射を行う工程である。光照射に用いる光線としては、前記化合物(1)を分解して、酸を発生させることができれば特に制限はないが、i線を使用することが好ましい。
(Step 2)
This step is a step in which the photoresist layer obtained through Step 1 is irradiated with light in a patterned manner, such as by irradiating light through a photomask having a pattern. The light beam used for light irradiation is not particularly limited as long as it can decompose the compound (1) and generate acid, but it is preferable to use i-line.
 光照射後は、60~200℃の温度で、0.1~120分程度加熱することが、露光部と未露光部のアルカリ現像液への溶解性の差異を高めることができる点で好ましい。 After light irradiation, it is preferable to heat at a temperature of 60 to 200° C. for about 0.1 to 120 minutes because it can increase the difference in solubility in an alkaline developer between the exposed and unexposed areas.
 (工程3)
 本工程は、工程2を経たフォトレジスト層を、アルカリ現像処理に付す工程である。
(Step 3)
This step is a step in which the photoresist layer that has undergone step 2 is subjected to an alkali development treatment.
 アルカリ現像処理に使用するアルカリ現像液としては、例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液、炭酸水素ナトリウム及びテトラメチルアンモニウム塩水溶液等が挙げられる。 Examples of the alkaline developer used in the alkaline development treatment include an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, an aqueous sodium bicarbonate and tetramethylammonium salt solution, and the like.
 前記アルカリ現像液には、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン、N-メチルピロリドン等を添加しても良い。 Methanol, ethanol, isopropyl alcohol, tetrahydrofuran, N-methylpyrrolidone, etc. may be added to the alkaline developer.
 アルカリ現像処理は、前記フォトレジスト層に、ディップ方式、シャワー方式、スプレー方式等の方法により前記アルカリ現像液を塗布することで行われる。 The alkaline development treatment is performed by applying the alkaline developer to the photoresist layer by a method such as a dip method, a shower method, or a spray method.
 アルカリ現像液の温度は、例えば25~40℃である。また、アルカリ現像時間は、レジストの厚さに応じて適宜決定されるが、例えば1~5分程度である。 The temperature of the alkaline developer is, for example, 25 to 40°C. Further, the alkaline development time is appropriately determined depending on the thickness of the resist, and is, for example, about 1 to 5 minutes.
 工程3を経て、基板上にエッチングマスクを形成することができる。このようにして得られたエッチングマスクを利用して基板をエッチングすれば、高精度の電子デバイスを製造することができる。 After Step 3, an etching mask can be formed on the substrate. By etching a substrate using the etching mask obtained in this manner, a highly accurate electronic device can be manufactured.
 前記電子デバイスには、例えば、有機ELディスプレイ、液晶ディスプレイ等の表示デバイス;タッチパネル等の入力デバイス;発光デバイス;センサーデバイス;光スキャナー、光スイッチ、加速度センサー、圧力センサー、ジャイロスコープ、マイクロ流路、インクジェットヘッド等のMEMS(Micro Electro Mechanical Systems)デバイス等が含まれる。 The electronic devices include, for example, display devices such as organic EL displays and liquid crystal displays; input devices such as touch panels; light emitting devices; sensor devices; optical scanners, optical switches, acceleration sensors, pressure sensors, gyroscopes, microchannels, This includes MEMS (Micro Electro Mechanical Systems) devices such as inkjet heads.
 以上、本発明の各構成及びそれらの組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において、適宜、構成の付加、省略、置換、及び変更が可能である。また、本発明は、実施形態によって限定されることはなく、特許請求の範囲の記載によってのみ限定される。 The configurations and combinations thereof of the present invention described above are merely examples, and additions, omissions, substitutions, and changes to the configurations can be made as appropriate without departing from the gist of the present invention. Furthermore, the present invention is not limited by the embodiments, but only by the claims.
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.
 実施例1
 2-ヒドロキシ-3-メトキシベンズアルデヒド(東京化成工業(株)製)14.7g(0.097mol)を水に投入し、撹拌しながら、メルドラム酸15.3g(0.1.6mol)を加えた。還流しながら100℃で2時間撹拌した後、室温に戻して、固体を回収した。これを水とメタノールの混合溶媒で洗浄することで、8-メトキシクマリン-3-カルボン酸13.8g(0.063mol)を得た。
 8-メトキシクマリン-3-カルボン酸13.8g(0.063mol)を、塩化チオニル(100mL)中に溶解し、80℃で2時間撹拌した。その後、80℃で減圧にして塩化チオニルと、系中で発生した塩酸を留去して、8-メトキシクマリン-3-カルボン酸クロリド15.0g(0.063mol)を得た。
Example 1
14.7 g (0.097 mol) of 2-hydroxy-3-methoxybenzaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to water, and while stirring, 15.3 g (0.1.6 mol) of Meldrum's acid was added. . After stirring at 100° C. for 2 hours while refluxing, the mixture was returned to room temperature and the solid was collected. By washing this with a mixed solvent of water and methanol, 13.8 g (0.063 mol) of 8-methoxycoumarin-3-carboxylic acid was obtained.
13.8 g (0.063 mol) of 8-methoxycoumarin-3-carboxylic acid was dissolved in thionyl chloride (100 mL) and stirred at 80° C. for 2 hours. Thereafter, thionyl chloride and hydrochloric acid generated in the system were distilled off under reduced pressure at 80° C. to obtain 15.0 g (0.063 mol) of 8-methoxycoumarin-3-carboxylic acid chloride.
 N-メチルヒドロキシルアンモニウム塩酸塩7.8g(0.094mol)をメタノール(50mL)に溶解させ、0℃で撹拌しながら、水酸化カリウムの10%メタノール溶液60gを滴下して加えた。さらに、8-メトキシクマリン-3-カルボン酸クロリド15.0g(0.063mol)をTHF(35mL)に溶解させたものを加え、1時間撹拌した。反応液を室温に戻し、さらに1時間撹拌した後、エバポレーターで反応溶液を留去した。残渣を酢酸エチルと飽和食塩水で抽出し、有機層を分離した後、エバポレーターで溶媒を留去して、白色固体を回収した。 7.8 g (0.094 mol) of N-methylhydroxylammonium hydrochloride was dissolved in methanol (50 mL), and 60 g of a 10% methanol solution of potassium hydroxide was added dropwise while stirring at 0°C. Furthermore, a solution of 15.0 g (0.063 mol) of 8-methoxycoumarin-3-carboxylic acid chloride in THF (35 mL) was added, and the mixture was stirred for 1 hour. After the reaction solution was returned to room temperature and further stirred for 1 hour, the reaction solution was distilled off using an evaporator. The residue was extracted with ethyl acetate and saturated brine, the organic layer was separated, and the solvent was distilled off using an evaporator to recover a white solid.
 得られた固体7.8gと、1-オクタンスルホニルクロリド7.0g(0.033mol)をクロロホルム(50mL)に溶解し、0℃で撹拌しながら、トリエチルアミン3.5g(0.034mol)を滴下投入した。50℃で8時間撹拌後、この反応液をクロロホルム-水で抽出した後、有機層を減圧除去し溶剤を除去することで褐色油状物を得た。さらにメタノールで再結晶を行うことで、下記式(1-1)で表される化合物[非イオン系光酸発生剤(1)]10.0g(0.023mol)を得た。 7.8 g of the obtained solid and 7.0 g (0.033 mol) of 1-octanesulfonyl chloride were dissolved in chloroform (50 mL), and 3.5 g (0.034 mol) of triethylamine was added dropwise while stirring at 0°C. did. After stirring at 50° C. for 8 hours, the reaction solution was extracted with chloroform-water, the organic layer was removed under reduced pressure, and the solvent was removed to obtain a brown oil. Further recrystallization with methanol yielded 10.0 g (0.023 mol) of a compound represented by the following formula (1-1) [nonionic photoacid generator (1)].
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 実施例2
 ジメチルスルホキシドに水素化ナトリウムの60%流動パラフィン分散液9.1g(0.377mol)を投入して撹拌し、窒素置換した。2,3-ジヒドロキシベンズアルデヒド12.5g(0.091mol)を加え、さらに1-ブロモブタン14.9g(0.109mol)を滴下して室温で撹拌した。6時間後反応液を冷水に投入し、塩酸を加えた後ジクロロメタンで抽出した。有機層を分離した後、エバポレーターで溶媒を留去して白色固体を回収することにより、2-ヒドロキシ-3-ブトキシベンズアルデヒド15.8g(0.081mol)を得た。
Example 2
9.1 g (0.377 mol) of a 60% liquid paraffin dispersion of sodium hydride was added to dimethyl sulfoxide, stirred, and replaced with nitrogen. 12.5 g (0.091 mol) of 2,3-dihydroxybenzaldehyde was added, and further 14.9 g (0.109 mol) of 1-bromobutane was added dropwise, followed by stirring at room temperature. After 6 hours, the reaction solution was poured into cold water, and after adding hydrochloric acid, the mixture was extracted with dichloromethane. After separating the organic layer, the solvent was distilled off using an evaporator to recover a white solid, thereby obtaining 15.8 g (0.081 mol) of 2-hydroxy-3-butoxybenzaldehyde.
 得られた2-ヒドロキシ-3-ブトキシベンズアルデヒド15.8g(0.081mol)を水に投入し、撹拌しながら、メルドラム酸12.9g(0.089mol)を加えた。還流しながら100℃で2時間撹拌した後、室温に戻して、固体を回収した。これを水とメタノールの混合溶媒で洗浄することで、8-ブトキシクマリン-3-カルボン酸13.9g(0.053mol)を得た。
 8-ブトキシクマリン-3-カルボン酸13.9g(0.053mol)を、塩化チオニル(100mL)中に溶解し、80℃で2時間撹拌した。その後、80℃で減圧にして塩化チオニルと、系8中で発生した塩酸を留去して、8-ブトキシクマリン-3-カルボン酸クロリド14.8g(0.053mol)を得た。
15.8 g (0.081 mol) of the obtained 2-hydroxy-3-butoxybenzaldehyde was poured into water, and while stirring, 12.9 g (0.089 mol) of Meldrum's acid was added. After stirring at 100° C. for 2 hours while refluxing, the mixture was returned to room temperature and the solid was collected. By washing this with a mixed solvent of water and methanol, 13.9 g (0.053 mol) of 8-butoxycoumarin-3-carboxylic acid was obtained.
13.9 g (0.053 mol) of 8-butoxycoumarin-3-carboxylic acid was dissolved in thionyl chloride (100 mL) and stirred at 80° C. for 2 hours. Thereafter, thionyl chloride and hydrochloric acid generated in system 8 were distilled off under reduced pressure at 80° C. to obtain 14.8 g (0.053 mol) of 8-butoxycoumarin-3-carboxylic acid chloride.
 N-メチルヒドロキシルアンモニウム塩酸塩6.6g(0.080mol)をメタノール(50mL)に溶解させ、0℃で撹拌しながら、水酸化カリウムの10%メタノール溶液60gを滴下して加えた。さらに、8-ブトキシクマリン-3-カルボン酸クロリド14.8g(0.053mol)をTHF(35mL)に溶解させたものを加え、1時間撹拌した。反応液を室温に戻し、さらに1時間撹拌した後、エバポレーターで反応溶液を留去した。残渣を酢酸エチルと飽和食塩水で抽出し、有機層を分離した後、エバポレーターで溶媒を留去して、白色固体を回収した。 6.6 g (0.080 mol) of N-methylhydroxylammonium hydrochloride was dissolved in methanol (50 mL), and 60 g of a 10% methanol solution of potassium hydroxide was added dropwise while stirring at 0°C. Furthermore, a solution of 14.8 g (0.053 mol) of 8-butoxycoumarin-3-carboxylic acid chloride in THF (35 mL) was added, and the mixture was stirred for 1 hour. After the reaction solution was returned to room temperature and further stirred for 1 hour, the reaction solution was distilled off using an evaporator. The residue was extracted with ethyl acetate and saturated brine, the organic layer was separated, and the solvent was distilled off using an evaporator to recover a white solid.
 得られた固体7.7gと、(+)-10-カンファースルホニルクロリド7.0g(0.028mol)をクロロホルム(50mL)に溶解し、0℃で撹拌しながら、トリエチルアミン2.9g(0.029mol)を滴下投入した。50℃で8時間撹拌後、この反応液をクロロホルム-水で抽出した後、有機層を減圧除去し溶剤を除去することで褐色油状物を得た。さらにメタノールで再結晶を行うことで、下記式(1-2)で表される化合物[非イオン系光酸発生剤(2)]10.0g(0.020mol)を得た。 7.7 g of the obtained solid and 7.0 g (0.028 mol) of (+)-10-camphorsulfonyl chloride were dissolved in chloroform (50 mL), and while stirring at 0°C, 2.9 g (0.029 mol) of triethylamine was added. ) was added dropwise. After stirring at 50° C. for 8 hours, the reaction solution was extracted with chloroform-water, the organic layer was removed under reduced pressure, and the solvent was removed to obtain a brown oil. Further recrystallization with methanol yielded 10.0 g (0.020 mol) of a compound represented by the following formula (1-2) [nonionic photoacid generator (2)].
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 実施例3
 アセトニトリルに塩化マグネシウム10.9g(0.115mol)と2-n-プロピルフェノール13.0g(0.095mol)を投入して撹拌し、冷却した。その後、トリエチルアミン24.1g(0.239mol)を加え、60℃に昇温してパラホルムアルデヒドを8.6g(0.286mol)投入して3時間熟成した。反応液を室温に戻してから塩酸を投入し、酢酸エチルで抽出した。有機層を分離した後、エバポレーターで溶媒を留去して褐色固体を回収することにより、2-ヒドロキシ-3-n-プロピルベンズアルデヒド14.1g(0.086mol)を得た。
Example 3
10.9 g (0.115 mol) of magnesium chloride and 13.0 g (0.095 mol) of 2-n-propylphenol were added to acetonitrile, stirred, and cooled. Thereafter, 24.1 g (0.239 mol) of triethylamine was added, the temperature was raised to 60° C., 8.6 g (0.286 mol) of paraformaldehyde was added, and the mixture was aged for 3 hours. After the reaction solution was returned to room temperature, hydrochloric acid was added and extracted with ethyl acetate. After separating the organic layer, the solvent was distilled off using an evaporator to recover a brown solid, thereby obtaining 14.1 g (0.086 mol) of 2-hydroxy-3-n-propylbenzaldehyde.
 得られた2-ヒドロキシ-3-n-プロピルベンズアルデヒド14.1g(0.086mol)を水に投入し、撹拌しながら、メルドラム酸13.6g(0.094mol)を加えた。還流しながら100℃で2時間撹拌した後、室温に戻して、固体を回収した。これを水とメタノールの混合溶媒で洗浄することで、8-n-プロピルクマリン-3-カルボン酸13.0g(0.056mol)を得た。
 8-n-プロピルクマリン-3-カルボン酸13.0g(0.056mol)を、塩化チオニル(100mL)中に溶解し、80℃で2時間撹拌した。その後、80℃で減圧にして塩化チオニルと、系中で発生した塩酸を留去して、8-n-プロピルクマリン-3-カルボン酸クロリド14.0g(0.056mol)を得た。
14.1 g (0.086 mol) of the obtained 2-hydroxy-3-n-propylbenzaldehyde was poured into water, and while stirring, 13.6 g (0.094 mol) of Meldrum's acid was added. After stirring at 100° C. for 2 hours while refluxing, the mixture was returned to room temperature and the solid was collected. By washing this with a mixed solvent of water and methanol, 13.0 g (0.056 mol) of 8-n-propylcoumarin-3-carboxylic acid was obtained.
13.0 g (0.056 mol) of 8-n-propylcoumarin-3-carboxylic acid was dissolved in thionyl chloride (100 mL) and stirred at 80° C. for 2 hours. Thereafter, thionyl chloride and hydrochloric acid generated in the system were distilled off under reduced pressure at 80° C. to obtain 14.0 g (0.056 mol) of 8-n-propylcoumarin-3-carboxylic acid chloride.
 N-メチルヒドロキシルアンモニウム塩酸塩7.0g(0.084mol)をメタノール(50mL)に溶解させ、0℃で撹拌しながら、水酸化カリウムの10%メタノール溶液60gを滴下して加えた。さらに、8-n-プロピルクマリン-3-カルボン酸クロリド14.0g(0.056mol)をTHF(35mL)に溶解させたものを加え、1時間撹拌した。反応液を室温に戻し、さらに1時間撹拌した後、エバポレーターで反応溶液を留去した。残渣を酢酸エチルと飽和食塩水で抽出し、有機層を分離した後、エバポレーターで溶媒を留去して、白色固体を回収した。 7.0 g (0.084 mol) of N-methylhydroxylammonium hydrochloride was dissolved in methanol (50 mL), and 60 g of a 10% methanol solution of potassium hydroxide was added dropwise while stirring at 0°C. Furthermore, a solution of 14.0 g (0.056 mol) of 8-n-propylcoumarin-3-carboxylic acid chloride in THF (35 mL) was added, and the mixture was stirred for 1 hour. After the reaction solution was returned to room temperature and further stirred for 1 hour, the reaction solution was distilled off using an evaporator. The residue was extracted with ethyl acetate and saturated brine, the organic layer was separated, and the solvent was distilled off using an evaporator to recover a white solid.
 得られた固体7.3gと、(+)-10-カンファースルホニルクロリド7.4g(0.029mol)をクロロホルム(50mL)に溶解し、0℃で撹拌しながら、トリエチルアミン3.1g(0.031mol)を滴下投入した。50℃で8時間撹拌後、この反応液をクロロホルム-水で抽出した後、有機層を減圧除去し溶剤を除去することで褐色油状物を得た。さらにメタノールで再結晶を行うことで、下記式(1-3)で表される化合物[非イオン系光酸発生剤(3)]10.0g(0.021mol)を得た。 7.3 g of the obtained solid and 7.4 g (0.029 mol) of (+)-10-camphorsulfonyl chloride were dissolved in chloroform (50 mL), and while stirring at 0°C, 3.1 g (0.031 mol) of triethylamine was added. ) was added dropwise. After stirring at 50° C. for 8 hours, the reaction solution was extracted with chloroform-water, the organic layer was removed under reduced pressure, and the solvent was removed to obtain a brown oil. Further recrystallization with methanol yielded 10.0 g (0.021 mol) of a compound represented by the following formula (1-3) [nonionic photoacid generator (3)].
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 実施例4
 (+)-10-カンファースルホニルクロリドに代えて、2,4,6-トリイソプロピルベンゼンスルホニルクロリド8.4g(0.028mol)を使用した以外は実施例2と同様にして、下記式(1-4)で表される化合物[非イオン系光酸発生剤(4)]11.1g(0.020mol)を得た。
Example 4
The following formula (1- 11.1 g (0.020 mol) of the compound represented by 4) [nonionic photoacid generator (4)] was obtained.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 実施例5
 N-メチルヒドロキシルアンモニウム塩酸塩に代えて、N-エチルヒドロキシルアンモニウム塩酸塩7.8g(0.080mol)を使用した以外は実施例1と同様にして、下記式(1-5)で表される化合物[非イオン系光酸発生剤(5)]10.3g(0.020mol)を得た。
Example 5
Represented by the following formula (1-5) in the same manner as in Example 1 except that 7.8 g (0.080 mol) of N-ethylhydroxylammonium hydrochloride was used instead of N-methylhydroxylammonium hydrochloride. 10.3 g (0.020 mol) of the compound [nonionic photoacid generator (5)] was obtained.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 実施例6
 アセトニトリルに塩化マグネシウム10.3g(0.108mol)と4-イソプロピルフェノール12.3g(0.090mol)を投入して撹拌し、冷却した。その後、トリエチルアミン22.8g(0.226mol)を加え、60℃に昇温してパラホルムアルデヒドを8.1g(0.271mol)投入して3時間熟成した。反応液を室温に戻してから塩酸を投入し、酢酸エチルで抽出した。有機層を分離した後、エバポレーターで溶媒を留去して褐色固体を回収することにより、2-ヒドロキシ-5-イソプロピルベンズアルデヒド13.3g(0.081mol)を得た。
Example 6
10.3 g (0.108 mol) of magnesium chloride and 12.3 g (0.090 mol) of 4-isopropylphenol were added to acetonitrile, stirred, and cooled. Thereafter, 22.8 g (0.226 mol) of triethylamine was added, the temperature was raised to 60° C., 8.1 g (0.271 mol) of paraformaldehyde was added, and the mixture was aged for 3 hours. After the reaction solution was returned to room temperature, hydrochloric acid was added and extracted with ethyl acetate. After separating the organic layer, the solvent was distilled off using an evaporator to collect a brown solid, thereby obtaining 13.3 g (0.081 mol) of 2-hydroxy-5-isopropylbenzaldehyde.
 得られた2-ヒドロキシ-5-イソプロピルベンズアルデヒド13.3g(0.081mol)を水に投入し、撹拌しながら、メルドラム酸12.9g(0.089mol)を加えた。還流しながら100℃で2時間撹拌した後、室温に戻して、固体を回収した。これを水とメタノールの混合溶媒で洗浄することで、6-イソプロピルクマリン-3-カルボン酸12.2g(0.053mol)を得た。
 6-ブトキシクマリン-3-カルボン酸12.2g(0.053mol)を、塩化チオニル(100mL)中に溶解し、80℃で2時間撹拌した。その後、80℃で減圧にして塩化チオニルと、系中で発生した塩酸を留去して、6-イソプロピルクマリン-3-カルボン酸クロリド13.3g(0.053mol)を得た。
13.3 g (0.081 mol) of the obtained 2-hydroxy-5-isopropylbenzaldehyde was poured into water, and while stirring, 12.9 g (0.089 mol) of Meldrum's acid was added. After stirring at 100° C. for 2 hours while refluxing, the mixture was returned to room temperature and the solid was collected. By washing this with a mixed solvent of water and methanol, 12.2 g (0.053 mol) of 6-isopropylcoumarin-3-carboxylic acid was obtained.
12.2 g (0.053 mol) of 6-butoxycoumarin-3-carboxylic acid was dissolved in thionyl chloride (100 mL) and stirred at 80° C. for 2 hours. Thereafter, thionyl chloride and hydrochloric acid generated in the system were distilled off under reduced pressure at 80° C. to obtain 13.3 g (0.053 mol) of 6-isopropylcoumarin-3-carboxylic acid chloride.
 N-メチルヒドロキシルアンモニウム塩酸塩6.6g(0.080mol)をメタノール(50mL)に溶解させ、0℃で撹拌しながら、水酸化カリウムの10%メタノール溶液60gを滴下して加えた。さらに、6-イソプロピルクマリン-3-カルボン酸クロリド13.3g(0.053mol)をTHF(35mL)に溶解させたものを加え、1時間撹拌した。反応液を室温に戻し、さらに1時間撹拌した後、エバポレーターで反応溶液を留去した。残渣を酢酸エチルと飽和食塩水で抽出し、有機層を分離した後、エバポレーターで溶媒を留去して、白色固体を回収した。 6.6 g (0.080 mol) of N-methylhydroxylammonium hydrochloride was dissolved in methanol (50 mL), and 60 g of a 10% methanol solution of potassium hydroxide was added dropwise while stirring at 0°C. Furthermore, a solution of 13.3 g (0.053 mol) of 6-isopropylcoumarin-3-carboxylic acid chloride in THF (35 mL) was added, and the mixture was stirred for 1 hour. After the reaction solution was returned to room temperature and further stirred for 1 hour, the reaction solution was distilled off using an evaporator. The residue was extracted with ethyl acetate and saturated brine, the organic layer was separated, and the solvent was distilled off using an evaporator to recover a white solid.
 得られた固体6.9gと、(+)-10-カンファースルホニルクロリド7.0g(0.028mol)をクロロホルム(50mL)に溶解し、0℃で撹拌しながら、トリエチルアミン2.9g(0.029mol)を滴下投入した。50℃で8時間撹拌後、この反応液をクロロホルム-水で抽出した後、有機層を減圧除去し溶剤を除去することで褐色油状物を得た。さらにメタノールで再結晶を行うことで、下記式(1-6)で表される化合物[非イオン系光酸発生剤(6)]9.4g(0.020mol)を得た。 6.9 g of the obtained solid and 7.0 g (0.028 mol) of (+)-10-camphorsulfonyl chloride were dissolved in chloroform (50 mL), and while stirring at 0°C, 2.9 g (0.029 mol) of triethylamine was added. ) was added dropwise. After stirring at 50° C. for 8 hours, the reaction solution was extracted with chloroform-water, the organic layer was removed under reduced pressure, and the solvent was removed to obtain a brown oil. Further recrystallization with methanol yielded 9.4 g (0.020 mol) of a compound represented by the following formula (1-6) [nonionic photoacid generator (6)].
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 比較例1
 2-ヒドロキシ-5-ブトキシベンズアルデヒドに代えて、2-ヒドロキシ-4-メトキシベンズアルデヒド17.1g(0.112mol)を使用した以外は実施例1と同様にして、下記式(x)で表される化合物[非イオン系光酸発生剤(7)]11.6g(0.027mol)を得た。
Comparative example 1
Represented by the following formula (x) in the same manner as in Example 1 except that 17.1 g (0.112 mol) of 2-hydroxy-4-methoxybenzaldehyde was used instead of 2-hydroxy-5-butoxybenzaldehyde. 11.6 g (0.027 mol) of the compound [nonionic photoacid generator (7)] was obtained.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 (評価)
 実施例及び比較例で得られた非イオン系光酸発生剤について、溶剤溶解性、モル吸光係数、及び酸発生能を以下の方法で評価した。結果を下記表にまとめて示す。
(evaluation)
The nonionic photoacid generators obtained in Examples and Comparative Examples were evaluated for solvent solubility, molar extinction coefficient, and acid generation ability using the following methods. The results are summarized in the table below.
 <溶剤溶解性>
 非イオン系光酸発生剤0.1gを試験管にとり、25℃温調下で有機溶剤を0.2gずつ、前記非イオン光系酸発生剤が完全に溶解するまで加えて、完全に溶解した時の前記非イオン光系酸発生剤の濃度を求めた。前記濃度が高い方が、溶剤溶解性に優れる。尚、前記有機溶剤としては、プロピレングリコールモノメチルエーテルアセテートを使用した。
<Solvent solubility>
0.1 g of the nonionic photoacid generator was placed in a test tube, and 0.2g of organic solvent was added under temperature control at 25°C until the nonionic photoacid generator was completely dissolved. The concentration of the nonionic photoacid generator at the time was determined. The higher the concentration, the better the solvent solubility. Note that propylene glycol monomethyl ether acetate was used as the organic solvent.
 <モル吸光係数>
 非イオン系光酸発生剤を、アセトニトリルを用いて0.25mmol/Lに希釈し、紫外可視分光光度計(島津製作所社製、UV-2550)を用いて、200~500nmの範囲で1cmのセル長の吸光度を測定した。i線(365nm)のモル吸光係数(L/mol・cm)は、i線(365nm)の吸光度から算出した。
<Molar extinction coefficient>
A nonionic photoacid generator was diluted to 0.25 mmol/L using acetonitrile, and measured in a 1 cm cell in the range of 200 to 500 nm using a UV-visible spectrophotometer (manufactured by Shimadzu Corporation, UV-2550). The absorbance was measured over a long period of time. The i-line (365 nm) molar extinction coefficient (L/mol·cm) was calculated from the i-line (365 nm) absorbance.
 <酸発生能>
 実施例及び比較例で得られた非イオン系光酸発生剤を用いて、レジスト塗膜を形成し、形成されたレジスト塗膜に露光及び現像処理を行う試験[下記(フォトレジスト調製)(レジスト塗膜調製)(露光)及び(現像)に記載の通り]を、i線露光量を50mJ/cm2から1000mJ/cm2へ段階的に変化させて行い、レジスト塗膜の露光部が完全に現像液に溶解し、残渣が認められなくなる最小の露光量、すなわちレジストパターンを形成するのに必要な最低露光量を求めた。
<Acid generating ability>
A test in which a resist coating film was formed using the nonionic photoacid generator obtained in Examples and Comparative Examples, and the formed resist coating film was subjected to exposure and development treatment [see below (Photoresist Preparation) (Resist Coating film preparation) (Exposure) and (Development)] were carried out by changing the i-line exposure amount stepwise from 50 mJ/cm 2 to 1000 mJ/cm 2 until the exposed area of the resist coating was completely covered. The minimum exposure amount required to dissolve in the developer and leave no residue, that is, the minimum exposure amount necessary to form a resist pattern was determined.
 (フォトレジスト調製)
 非イオン系光酸発生剤0.2重量部、下記式(Resin-1)で示されるポジ型感光性樹脂100重量部、及びプロピレングリコールモノメチルエーテルアセテート200重量部を混合して、孔径1μmのメンブレンフィルターを通してろ過し、フォトレジストを調製した。
(Photoresist preparation)
A membrane with a pore size of 1 μm was prepared by mixing 0.2 parts by weight of a nonionic photoacid generator, 100 parts by weight of a positive photosensitive resin represented by the following formula (Resin-1), and 200 parts by weight of propylene glycol monomethyl ether acetate. A photoresist was prepared by filtration through a filter.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 (レジスト塗膜調製)
 得られたフォトレジストを、10cm角のガラス基板上にスピンコーターを用いて塗布した。次いで、25℃で5分間真空乾燥した後、110℃のホットプレート上で5分間乾燥させて、膜厚20μmのレジスト塗膜を形成した。
(Resist coating film preparation)
The obtained photoresist was applied onto a 10 cm square glass substrate using a spin coater. Next, it was vacuum dried at 25° C. for 5 minutes, and then dried on a hot plate at 110° C. for 5 minutes to form a resist coating film with a thickness of 20 μm.
 (露光)
 このレジスト塗膜に、10mm×10mmのスクエアパターンのマスクと紫外線照射装置(トプコン社製、TME-150RSC)を用いて、i線(波長365nmの光)露光を行った。
(exposure)
This resist coating film was exposed to i-line (light with a wavelength of 365 nm) using a 10 mm x 10 mm square pattern mask and an ultraviolet irradiation device (TME-150RSC, manufactured by Topcon Corporation).
 (現像)
 次いで、90℃のホットプレートで3分間の露光後加熱(PEB)を行った。その後、2.38重量%テトラメチルアンモニウムヒドロキシド水溶液に90秒間浸漬することで現像し、直ちに水洗、乾燥を行った。
(developing)
Next, post-exposure heating (PEB) was performed for 3 minutes on a 90° C. hot plate. Thereafter, the film was developed by immersing it in a 2.38% by weight aqueous tetramethylammonium hydroxide solution for 90 seconds, and immediately washed with water and dried.
 上記方法で求めた最低露光量から、下記基準で酸発生能を評価した。尚、最低露光量が小さいほど、非イオン系光酸発生剤の感度が良好であり、酸発生能が優れていることを示す。
<評価基準>
◎(非常に優れる):最低露光量が200mJ/cm2以下
○(良好):最低露光量が200mJ/cm2より大きく、500mJ/cm2以下
×(不良):最低露光量が500mJ/cm2より大きい
The acid generation ability was evaluated using the following criteria from the minimum exposure amount determined by the above method. Note that the smaller the minimum exposure amount, the better the sensitivity of the nonionic photoacid generator and the better the acid generation ability.
<Evaluation criteria>
◎ (Excellent): Minimum exposure amount is 200 mJ/cm 2 or less ○ (Good): Minimum exposure amount is greater than 200 mJ/cm 2 and 500 mJ/cm 2 or less × (Poor): Minimum exposure amount is 500 mJ/cm 2 bigger
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表中の酸発生剤のR1~R5は、それぞれ下記式中のR1~R5である。
Figure JPOXMLDOC01-appb-C000017
R 1 to R 5 of the acid generator in the table are R 1 to R 5 in the following formulas, respectively.
Figure JPOXMLDOC01-appb-C000017
 表中の略号を以下に説明する。
Figure JPOXMLDOC01-appb-C000018
The abbreviations in the table are explained below.
Figure JPOXMLDOC01-appb-C000018
 表1より、本発明の酸発生剤(若しくは、化合物(1))は、溶剤溶解性に優れることが分かる。
 また、本発明の酸発生剤(若しくは、化合物(1))を含むフォトレジストを使用すれば、厚く成膜した場合にも、i線を照射することで、良好にパターン形成することができることが分かる。
Table 1 shows that the acid generator (or compound (1)) of the present invention has excellent solvent solubility.
Furthermore, if a photoresist containing the acid generator (or compound (1)) of the present invention is used, even when a thick film is formed, it is possible to form a pattern well by irradiating with i-rays. I understand.
 以上のまとめとして、本発明の構成及びそのバリエーションを以下に付記する。
[1] 式(1)で表される化合物。
(式中、R1、R2は同一又は異なって、置換基を有していても良い炭化水素基を示す。R3は水素原子又はOR13又はR13を示し、前記R13は置換基を有していても良い炭化水素基である。R4は水素原子又はR14を示し、前記R14は置換基を有していても良い炭化水素基である。但し、R3とR4が同時に水素原子を示す場合は除く)
[2] i線のモル吸光係数が100~5000(L/mol・cm)である、[1]に記載の化合物。
[3] 25℃における、プロピレングリコールモノメチルエーテルアセテートへの溶解度が5重量%以上である、[1]又は[2]に記載の化合物。
[4] [1]~[3]の何れか1つに記載の化合物を含む酸発生剤。
[5] i線用酸発生剤である、[4]に記載の酸発生剤。
[6] [4]又は[5]に記載の酸発生剤と感光性樹脂を含むフォトレジスト。
[7] 15μm以上の厚膜フォトレジスト層を形成するために用いられる厚膜用フォトレジストである、[6]に記載のフォトレジスト。
[8] [6]又は[7]に記載のフォトレジストを使用したフォトリソグラフィーによりパターン形成を行う工程を含む、電子デバイスの製造方法。
[9] [6]又は[7]に記載のフォトレジストを塗布・乾燥して、15μm以上の厚膜フォトレジスト層を形成し、形成された厚膜フォトレジスト層に、フォトリソグラフィーによりパターン形成を行う工程を含む、電子デバイスの製造方法。
[10] [1]~[3]の何れか1つに記載の化合物の酸発生剤としての使用。
[11] [1]~[3]の何れか1つに記載の化合物の、厚膜用フォトレジストに用いられる酸発生剤としての使用。
[12] [1]~[3]の何れか1つに記載の化合物のi線用酸発生剤としての使用。
As a summary of the above, the configuration of the present invention and its variations are additionally described below.
[1] A compound represented by formula (1).
(In the formula, R 1 and R 2 are the same or different and represent a hydrocarbon group which may have a substituent. R 3 represents a hydrogen atom, OR 13 or R 13 , and R 13 is a substituent. is a hydrocarbon group which may have a substituent.R 4 represents a hydrogen atom or R 14 , and R 14 is a hydrocarbon group which may have a substituent. However, R 3 and R 4 (Except when both represent hydrogen atoms)
[2] The compound according to [1], which has an i-line molar extinction coefficient of 100 to 5000 (L/mol·cm).
[3] The compound according to [1] or [2], which has a solubility in propylene glycol monomethyl ether acetate at 25° C. of 5% by weight or more.
[4] An acid generator containing the compound according to any one of [1] to [3].
[5] The acid generator according to [4], which is an i-ray acid generator.
[6] A photoresist containing the acid generator according to [4] or [5] and a photosensitive resin.
[7] The photoresist according to [6], which is a thick film photoresist used to form a thick film photoresist layer of 15 μm or more.
[8] A method for manufacturing an electronic device, including a step of forming a pattern by photolithography using the photoresist according to [6] or [7].
[9] Coating and drying the photoresist described in [6] or [7] to form a thick photoresist layer of 15 μm or more, and patterning the formed thick photoresist layer by photolithography. A method of manufacturing an electronic device, including the steps of:
[10] Use of the compound according to any one of [1] to [3] as an acid generator.
[11] Use of the compound according to any one of [1] to [3] as an acid generator used in a thick film photoresist.
[12] Use of the compound according to any one of [1] to [3] as an i-line acid generator.
 化合物(1)は、i線を照射することで、容易に分解して強酸であるスルホン酸を発生する。そして、化合物(1)を含むフォトレジスト層は、厚くても、その深層部にまでi線を到達させることができ、フォトレジスト層全体において、化合物(1)は良好に酸発生能を発揮することができる。そのため、化合物(1)は厚膜用フォトレジストの酸発生剤として使用することが好ましい。 Compound (1) is easily decomposed by i-ray irradiation to generate sulfonic acid, which is a strong acid. Even if the photoresist layer containing compound (1) is thick, the i-line can reach the deep layer, and compound (1) exhibits good acid generation ability in the entire photoresist layer. be able to. Therefore, compound (1) is preferably used as an acid generator for thick film photoresists.

Claims (9)

  1.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1、R2は同一又は異なって、置換基を有していても良い炭化水素基を示す。R3は水素原子又はOR13又はR13を示し、前記R13は置換基を有していても良い炭化水素基である。R4は水素原子又はR14を示し、前記R14は置換基を有していても良い炭化水素基である。但し、R3とR4が同時に水素原子を示す場合は除く)
    A compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 and R 2 are the same or different and represent a hydrocarbon group which may have a substituent. R 3 represents a hydrogen atom, OR 13 or R 13 , and R 13 is a substituent. is a hydrocarbon group which may have a substituent.R 4 represents a hydrogen atom or R 14 , and R 14 is a hydrocarbon group which may have a substituent. However, R 3 and R 4 (Except when both represent hydrogen atoms)
  2.  i線のモル吸光係数が100~5000(L/mol・cm)である、請求項1に記載の化合物。 The compound according to claim 1, which has an i-line molar extinction coefficient of 100 to 5000 (L/mol·cm).
  3.  25℃における、プロピレングリコールモノメチルエーテルアセテートへの溶解度が5重量%以上である、請求項1又は2に記載の化合物。 The compound according to claim 1 or 2, having a solubility in propylene glycol monomethyl ether acetate at 25°C of 5% by weight or more.
  4.  請求項1又は2に記載の化合物を含む酸発生剤。 An acid generator comprising the compound according to claim 1 or 2.
  5.  i線用酸発生剤である、請求項4に記載の酸発生剤。 The acid generator according to claim 4, which is an i-line acid generator.
  6.  請求項4に記載の酸発生剤と感光性樹脂を含むフォトレジスト。 A photoresist comprising the acid generator according to claim 4 and a photosensitive resin.
  7.  15μm以上の厚膜フォトレジスト層を形成するために用いられる厚膜用フォトレジストである、請求項6に記載のフォトレジスト。 The photoresist according to claim 6, which is a thick film photoresist used to form a thick film photoresist layer of 15 μm or more.
  8.  請求項6に記載のフォトレジストを使用したフォトリソグラフィーによりパターン形成を行う工程を含む、電子デバイスの製造方法。 A method for manufacturing an electronic device, comprising a step of forming a pattern by photolithography using the photoresist according to claim 6.
  9.  請求項6に記載のフォトレジストを塗布・乾燥して、15μm以上の厚膜フォトレジスト層を形成し、形成された厚膜フォトレジスト層に、フォトリソグラフィーによりパターン形成を行う工程を含む、電子デバイスの製造方法。 An electronic device comprising the step of coating and drying the photoresist according to claim 6 to form a thick photoresist layer of 15 μm or more, and forming a pattern on the formed thick photoresist layer by photolithography. manufacturing method.
PCT/JP2023/014912 2022-04-18 2023-04-12 Compound, acid generator comprising said compound, photoresist, and method for manufacturing electronic device using said photoresist WO2023204123A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022068343A JP2023007395A (en) 2022-04-18 2022-04-18 Compound, acid generator containing compound, photoresist, and method for producing electronic device using photoresist
JP2022-068343 2022-04-18

Publications (1)

Publication Number Publication Date
WO2023204123A1 true WO2023204123A1 (en) 2023-10-26

Family

ID=85107833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014912 WO2023204123A1 (en) 2022-04-18 2023-04-12 Compound, acid generator comprising said compound, photoresist, and method for manufacturing electronic device using said photoresist

Country Status (3)

Country Link
JP (1) JP2023007395A (en)
TW (1) TW202402744A (en)
WO (1) WO2023204123A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023007395A (en) * 2022-04-18 2023-01-18 サンアプロ株式会社 Compound, acid generator containing compound, photoresist, and method for producing electronic device using photoresist

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099726A (en) * 2002-09-09 2004-04-02 Fuji Photo Film Co Ltd Photoacid generator and photosensitive composition
WO2016072049A1 (en) * 2014-11-07 2016-05-12 サンアプロ株式会社 Sulfonate compound, photoacid generator, and photolithographic resin composition
JP2023007395A (en) * 2022-04-18 2023-01-18 サンアプロ株式会社 Compound, acid generator containing compound, photoresist, and method for producing electronic device using photoresist
JP2023014435A (en) * 2022-04-11 2023-01-30 サンアプロ株式会社 Compound, acid generator containing the compound, photoresist, and method for producing electronic device using the photoresist

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099726A (en) * 2002-09-09 2004-04-02 Fuji Photo Film Co Ltd Photoacid generator and photosensitive composition
WO2016072049A1 (en) * 2014-11-07 2016-05-12 サンアプロ株式会社 Sulfonate compound, photoacid generator, and photolithographic resin composition
JP2023014435A (en) * 2022-04-11 2023-01-30 サンアプロ株式会社 Compound, acid generator containing the compound, photoresist, and method for producing electronic device using the photoresist
JP2023007395A (en) * 2022-04-18 2023-01-18 サンアプロ株式会社 Compound, acid generator containing compound, photoresist, and method for producing electronic device using photoresist

Also Published As

Publication number Publication date
TW202402744A (en) 2024-01-16
JP2023007395A (en) 2023-01-18

Similar Documents

Publication Publication Date Title
KR101399681B1 (en) Sulfonium salt, resist composition, and patterning process
JP5040005B2 (en) Fluorinated polymer having a fluorinated norbornene derivative unit
JP4923376B2 (en) Novel fluoropolymer having acid-reactive group and chemically amplified photoresist composition using the same
US6514666B1 (en) Photoresist monomers, polymers thereof and photoresist compositions containing it
KR101855112B1 (en) Photoacid generators and photoresists comprising same
TWI594073B (en) Negative tone-development resist composition and method of forming resist pattern
TWI449687B (en) Sulfonium salt, resist composition, and patterning process
US20020058199A1 (en) Novel polymers and photoresist compositions comprising electronegative groups
EP2452932A2 (en) Base reactive photoacid generators and photoresists comprising same
KR20110110061A (en) Photoacid generators and photoresists comprising same
TW201303490A (en) Resist composition, method of forming resist pattern, and polymeric compound
KR20180077082A (en) Chemically amplified positive resist composition and resist pattern forming process
US5882835A (en) Positive photoresist resin and chemical amplified positive photoresist composition containing the same
WO2023204123A1 (en) Compound, acid generator comprising said compound, photoresist, and method for manufacturing electronic device using said photoresist
WO2023199841A1 (en) Compound, acid generator containing said compound, photoresist, and method for producing electronic device using said photoresist
JPH05310714A (en) Sulfonic acid ester of 2,4,6-tris-(2-hydroxyethoxy)-(1,3,5)triazine and positive-working radiation sensitive mixture and recording material produced with same
US20060008731A1 (en) Novel photoresist monomers and polymers
US20040023176A1 (en) Fluorinated polymer
KR100557553B1 (en) Photoresist monomer, polymer thereof and photoresist composition containing it
WO2020049939A1 (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, and method for manufacturing electronic device
KR100557552B1 (en) Photoresist monomer, polymer thereof and photoresist composition containing it
WO2024029354A1 (en) Sulfonium salt and acid generator containing said sulfonium salt
JP2000281611A (en) Synthesis of phenolic compound having protected hydroxy group, and radioactive ray-sensitive composition by using the same
KR100638957B1 (en) Photoresist Polymer and Photoresist Composition Containing it
JP4623260B2 (en) Resist compounds and compositions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791771

Country of ref document: EP

Kind code of ref document: A1